Publication Number
SH20-6603-01

IMS Application Development
Facility Il
Version2 Release 2

DATABASE 2 Application
Specification Guide

IMS Application Development
Facility Il
Version2 Release 2

DATABASE 2 Application
Specification Guide
Publication Number File Number
SH20-6603-01 S/370/4300-32

Program Number
5665-348

Second Edition (June 1986)

This edition applies to Version 2, Release 2 of the program
product IMS Application Development Facility II (5665-348), and
to all subsequent releases and modifications unless otherwise
indicated in new editions or Technical Newsletters.

Information in this publication is subject to change. Changes
will be published in new editions or technical newsletters.
Before using this publication, consult either your IBM
System/370 and 4300 Processors Bibliography (GC20-0001) or IBM
System/370 and 4300 Processors Bibliography of Industry Systems
Systems _and Application Programs (GC20-0370) to learn which
editions and technical newsletters are current and applicable.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available
outside the United States. Any reference to an IBM program
product in this document is not intended to state or imply that
only IBM's program products may be used. Any functionally
equivalent program products may be used instead.

Requests for copies of IBM publications should be made to your
IBM representative or to the IBM branch office serving your
locality.

A form for readers' comments has been provided at the back of
this publication. If this form has been removed, address
comments to:

IBM Corporation
Information Processing
Department 6DD

220 Las Colinas Blvd.
Irving, Texas 75039-5513

IBM may use or distribute any of the information you supply in
any way it believes appropriate without incurring any obligation
whatever. You may, of course, continue to use the information
you supply.

ic) Copyright International Business Machines Corporation 1985,
986

PREFACE

This publication is a guide to developing IMSADF II applications that
access IBM DATABASE 2 (DB2) data bases.

This publication consists of five chapters and six appendixes.

Chapter 1, "An Overview of Application Design™ gives an overview of
application design. It describes the DB2 Relational Data Base
support, the IMSADF II Application Design and Performance
considerations.

Chapter 2, "User Specification”™ describes how to define the
environment and functions required by an IMSADF II transactions
accessing DB2 data.

Chapter 3, "RGLGEN Utility™ describes how to extract Rules Generator
source from the DB2 catalog.

Chapter 4, "Execution Processing"™ describes the IMSADF II functions
that are available to IMSADF II DB2 transactions at execution.

Chapter 5, "Installation"™ describes one optional IMSADF II
installation step, and the IMSADF II DB2 sample problem.

The appendixes include:
Appendix A, "Sample Rules Generator Source and Output™
Appendix B, "Specification Example™
Appendix C, "Sample Problem"
Appendix D, "BTS in an IMS/VS - DB2 Environment™
Appendix E, "IMSADF II Trace Facility™
Appendix F, "RGLGEN Utility Link-edit Plan"

Preface 1111

RELATED PUBLICATIONS

IMSADF II PUBLICATIONS

U IMS Application Development Facility II Version 2 Release 2 General
Information, GH20-6591.

. IMS Application Development Facility IT Version 2 Release 2 User
Reference, SH20-6592.

. IMS Application Development Facility II Version 2 Release 2
Installation Guide, SH20-6593.

N

o IMS Application Development Facility II Version Release 2

Application Development Reference, SH20-65964.

o IMS Application Development Facility II Version 2 Release 2
Application Development Guide, SH20-6595.

. IMS Application Development Facility II Version 2 Release 2 Rules
Documentation User's Guide, SH20-6596.

) IMS Application Development Facility II Version 2 Release 2 Data
Dictionary Extension User's Guide, SH20-6597.

. IMS Application Development Facility II Version 2 Release 2 Master
Index, SH20-6599.

L IMS Application Development Facility II Version 2 Release 2
Introduction to Using the Interactive ADF, SH20-6601.

o IMS Application Development Facility II Version 2 Release 2
Interactive ADF Administration Guide, SH20-6602.

. IMS Application Development Facility II Version 2 Release 2 DATABASE
2 Application Specification Guide, SH20-6603.

L3 IMS Application Development Facility II Version 2 Release 2
Diagnosis Guide, LY20-6401.

OTHER PUBLICATIONS
. IBM DATABASE 2 Reference, SC26-4078

. IBM DATABASE 2 Application Programming Guide for IMS/VS Version 1
Users, S5C26-4079

. IBM DATABASE 2 Application Programming Guide for CICS/0S/VS Users,

5C26-4080
. IBM DATABASE 2 Application Programming Guide for TS0 Users,
5C26-4081

o IBM DATABASE 2 System Planning and Administration Guide, S5C26-4085

. IBM DATABASE 2 Messages and Codes, 5C26-4113
. IMS/VS BTS Program Reference and Operations Manual, SH20-5523

iv IMSADF II Application Specification Guide for DB2

CONTENTS

Chapter 1. An Overview of Application Design 1-1
DB2 Relational Data Base Support 1-1
Description 1-1
IMSADF II Application Design Considerations 1-1
TABLE/VIEW 1-1
SQL Language Usage 1-2
DB2 Scheduling 1-3
DB2 Functions Supported Indirectly 1-3
DB2 Services Not Supported Using Standard IMSADF II Functions 1-3
Standard IMSADF II Functions Not Available for DB2 Tables 1-%

Chapter 2. User Specification 2-1
Rules Generator 2-1
SYSTEM Statement 2-1
TABLE (SEGMENT) Statement 2-1
COLUMN (FIELD) Statement 2-4
GENERATE Statement 2-7
Table Layout Rule 2-7
Table Handler Rule 2-8
SQLCALL Functions 2-10
CSELECT - CURSOR SELECT for Single Row Inquiry 2-11
INSERT ~ INSERT of a Single Row 2-12
CUPDATE - CURSOR UPDATE for Single Row 2-12
CDELETE - CURSOR DELETE for Single Row 2-13
SELECT - SELECT of a Single Row 2-1¢
UPDATE - UPDATE of a Single Row 2-15
DELETE - DELETE of a Single Row 2-15
KSELECT - SELECT for Secondary Key Selection Browse 2-16
USER SQL Statements 2-18
Summary for Table Handler Rule 2-21
Summary of Rules Generator Operands for the Table Handler Rule 2-22
Other GENERATE Statement Operands 2-23
Input Transaction Rules 2-23
Preload, Composite and Driver Link-Edits 2-24%
Using the Rules Generator Execution Procedure 2-24
High Level Audit Language 2-26
DB2 Related Audit Operations 2-26
CONCAT 2-26
SUBSTR 2-27
IMMEDIATE SQL Call 2-27
Interrogate SQL SQLCODE and SQLWARN(0-7) 2-28
USER SQL - Key Selection Browse 2-30
DB2 Column Null and Truncation (Test and Set) 2-32
Message Generation 2-33
EXIT Functions 2-34
SQLHNDLR Call 2-34
SQLHNDLR Call Format 2-35
SQLHNDLR Call Parameters 2-35
Exit Parameter Lists 2-37
Rules Documentation 2-37
DB2 Specifications 2-38
BIND Process 2-38
IMSADF II - DB2 Naming Conventions 2-40

Chapter 3. RGLGEN Utility 3-1
Description 3-1
Dependencies 3-1
SYSIBM.SYSCOLUMNS Table 3-2
SYSIBM.SYSINDEXES Table 3-3
SYSIBM.SYSKEYS Table 3-3
SYSADF.ADFCOLUMNID Table 3-4
IMSADF II Administrator Control 3-5
Program Preparation 3-6
DB2 and IMSADF II Installation 3-6
Install SYSADF.ADFCOLUMNID Table 3-6
BIND Process 3-7
TS0 Program Parameters 3-7
Input 3-9

Contents v

Parameters 3-10
OQutput 3-11
Messages 3-11
Return Codes 3-12
Abnormal Termination Codes 3-12
ERROR, WARNING, and INFORMATIONAL Messages 3-12
Message Parameters 3-12
Message Text 3-13

Chapter 4. Execution Processing 4-1

Signon and Menus 6-1

Key Selection 6-1

Screen Handling 6-4

Auditor 4-5

Message Handling 6-6
Error and Warning Messages %-6
Error Processing 6-6

Data Base Handling 4-7
CUPDATE - CURSOR UPDATE for single row 4-8
CDELETE - CURSOR DELETE for Single Row 6-8
INSERT - INSERT of a Single row 4-9

Rule and SPA Workarea Handling 4-10

Exit Processing 6-10

Chapter 5. Installation 5-1
Sample Problem 5-1
DB2 Application Plan Restriction 5-2

Appendix A. Sample Rules Generator Source and Output A-1
Rules Generator Source Statements A-1
Table Handler Generated Assembler Source Statements A-%

Appendix B. Specification Example B-1
DB2 Employee Table Definition B-1
Rules Generator Input B-2
Transaction Help Facility B-8
High Level Audit Language B-9

EM and EX Transactions B-9
ES Transaction B-10
The Bind Process B-11

Appendix C. Sample Problem C-1

Appendix D. BTS in an IMS/VS - DB2 Environment D-1
BTS Input Commands D-1

BTS Output D-2

Appendix E. IMSADF II Trace Facility E-1

Appendix F. RGLGEN Utility Link-edit Plan F-1

Index X-1

vi IMSADF II Application Specification Guide for DB2

FIGURES

NNNNN

OOOOOOOOOO

ITNNNNNNDNDNN

| b= ot ot bt =t |

OB LPUUUWUHUL |

I I I |
T s b bt b b b b b b |

ool

| U I I I O T N N IR I N N T N M |
NROONOMIPAUWUNRFROVWRNAUVIRAUNRFRNRENRAOUIRPUNRFPPRPUNFOORNOUNIPDAUWUN -

o o

e o o o o o o

e o e o o o« o e

e ¢ o ¢ s o o o

DATA TYPES 2-6

CURSOR SELECT, Standard IMSADF II Function 2-11

INSERT, Standard IMSADF II Function 2-12

CURSOR UPDATE, Standard IMSADF II Function 2-13

CURSOR DELETE, Standard IMSADF II Function 2-14

SELECT, Non-Standard IMSADF II Function 2-14

UPDATE, Non-Standard IMSADF II Function 2-15

DELETE, Non-Standard IMSADF II Function 2-15

KSELECT, Secondary Key Selection Browse Function 2-17
USER SQL Statement Formats 2-21

Rules Generator Operands Applicable to Table Handler Rule
DB*I MENU Panel 2-38

DB2T BIND/REBIND/FREE MENU Panel 2-39

BIND Panel 2-39

SYSIBM.SYSCOLUMNS TABLE 3-2

SYSIBM.SYSINDEXES TABLE 3-3

SYSIBM.SYSKEYS TABLE 3-3

SYSADF.ADFCOLUMNID TABLE 3-4

DB21 BIND Panel, RGLGEN Utility 3-7

Rules Source from DB2 Catalog Panel 3-9

SQLCODE and IMSADF II ACTION 4-7

IMSADF II SQL Error Message (SQLCODE < 0) 64-7

Rules Source from DB2 Catalog Panel B-2

DB2I Bind Panel Input B-11

Sign-on Screen C-1

Primary Key Selection, Transaction EM C-2

Primary Key Selection, Transaction EM, HELP REQUEST C-2
HELP Screen, Transaction EM C-3

Primary Key Selection, Transaction EM C-3

Secondary Key Selection, Transaction EM BY WORKDEPT C-4
Secondary Key Selection, Transaction EM BY WORKDEPT C-¢
Primary Key Selection, Transaction EM C-5

Secondary Key Selection, Transaction EM BY EMPNO C-5
Transaction Display Screen, Transaction EM C-6
Transaction Display Screen, Transaction EM C-6
Transaction Display Screen, Transaction ES C-7
Transaction Display Screen, Transaction ES C-7
Transaction Display Screen, Transaction ES by DEPT A00 C
Transaction Display Screen, Transaction ES by DEPT A00 C
Transaction Display Screen, Transaction ES by JOBCODE 55

2-22

8
8
Cc-9

Transaction Display Screen, Transaction ES by JOBCODE 55 C-9

Transaction Display Screen, Transaction ES by EDUCLVL 16
Sample BTSIN Data for an IMSADF II - DB2 Transaction D-1
BTS SQL Trace D-2

c-10

Figures vii

viii IMSADF II Application Specification Guide for DB2

CHAPTER 1. AN OVERVIEW OF APPLICATION DESIGN

DB2 RELATIONAL DATA BASE SUPPORT

DESCRIPTION

The IMS Application Development Facility II supports IBM's relational
data base management system DATABASE 2 (DB2). A DB2 table/view is
defined to the IMSADF II Rules Generator by TABLE and COLUMN statements
(or alternatively, by SEGMENT and FIELD statements.) These statements
can be user specified or can be produced using the IMSADF II RGLGEN
Utility. The Rules Generator builds a Table Layout Rule to define the
table/view layout and a Table Handler Rule to define SQL access. The
Table Layout Rule defines the table layout to the execution time
transaction drivers. The Table Handler Rule is a generated Assembler
program that issues static SQL statements for the IMSADF II transaction.
The SQL WHERE clauses include standard generated predicates (that is,
columns marked as KEY=YES, connected with the = relational operator) and
user-supplied predicates. Host variables, representing column I/0 areas
for SELECT, UPDATE, DELETE, or INSERT calls are defined as DSECTs on the
IMSADF II SPA workarea. The Table Handler program is created by the
Rules Generator, which dynamically invokes the DB2 pre-compiler,
assembler and linkage editor.

Standard IMSADF II functions process one row from a DB2 table per
transaction iteration. Each DB2 row processed should be defined with
unique column values to satisfy IMSADF II key requirements. Multiple
DB2 tables can be processed simultaneously. Processing multiple rows
from a DB2 table in a single iteration of an IMSADF II transaction
requires additional audit or special processing routine logic.

At execution, an IMSADF II transaction driver - conversational,
nonconversational, or batch (BMP) - issues SQL calls to access and
update a Tables/View, as appropriate. Applications can bevdefined, with
additional SQL WHERE clauses, that are still controlled by the IMSADF II
transaction driver, but are triggered with application logic through an
Audit operation or with a SQLHNDLR Call in an Audit Exit or Special
Processing Routine. Additionally, an Audit Exit or Special Processing
Routine can issue native SQL calls (static or dynamic).

IMSADF II APPLICATION DESIGN CONSIDERATIONS

TABLE/VIENW

U A TablesView is defined to the IMSADF II Rules Generator via TABLE
and COLUMN statements. IMSADF II does not distinguish between a
Table or a View. This is analogous to DL/I support, in that IMSADF
II does not distinguish between logical and physical data bases.

When a SQL statement is defined to IMSADF II in a Table Handler
Rule, all DB2 Columns defined in the corresponding Table Layout Rule
are named and SELECTed for that Tables/View. In the UPDATE and
INSERT statements, the SET and VALUES clauses include all columns
specifying the Rules Generator operands, SQLUPD=YES and SQLISRT=YES.

. The Rules Generator accepts TABLE and COLUMN names of up to 50
characters, including SQL built-in functions and arithmetic
expressions. IMSADF II uses these names to communicate with DB2.
IMSADF II Table and Column IDs must be associated with every DB2
name defined. This is the same technique used to relate DL/I
segment and field names to the IMSADF II. The dual naming
convention is required by IMSADF II for inter-rule relationships.

. All DB2 data types are supported by IMSADF II. However, DB2 data
types VARCHAR and FLOAT have limited support.

Chapter 1. An Overview of Application Design 1-1

sQL

1-2

VARCHAR IMSADF II support is limited to a 253-byte varying
character string. (DB2 allows 32K.)

A data field TYPE=VARCHAR is modified when:
Entered from a screen or batch input.

IMSADF II recalculates the current data length,
based on the last non-blank character.

Modified through audits, or modified from an exit with
the MAPPER function.

The length of the source field(s) is used to
calculate the current length of a target VARCHAR
field. Trailing blanks are significant. IMSADF
II does NOT recalculate the current data length
based on the last non-blank character.

Exits that modify a field with TYPE=VARCHAR within their
own data area must also set the current data length
attribute unless the field is mapped to the SPA Table I/0
area with the MAPPER function. Recalculation of the
current data length does not occur when a changed VARCHAR
fielg is moved to the SPA Table I/0 area with the COPYSEG
function.

When defining VARCHAR Columns to the Rules Generator, only
specify the maximum length of the data area. The Rules
Generator reserves two additional bytes for the halfword
length attribute.

FLOAT Support is limited to display and data entry. Data
conversions of FLOAT to display and display to FLOAT are
handled automatically. Data manipulation functions are
not provided, except for float to float, float to
alphanumeric, and alphanumeric to float. Arithmetic
operations in the Auditor and other data conversions are
not supported.

Data types FLOAT and VARCHAR are also available to all other IMSADF
II segment types: DL/I data base, pseudo, map, and out.

IMSADF II supports DB2 indicator variables by means of an indicator
structure. The purpose of the indicator variable is to allow for
the null value. When none of the DB2 Columns are eligible for null
processing, the indicator structure is omitted from the Table I/0
area. MWhen one or more DB2 Columns are eligible for null
processing, (SQLNULL=YES), an indicator structure containing an
indicator variable for every Column is defined at the end of the
Table 170 area.

DB2 Tables are not supported in IMSADF II Text Utility transactions.

LANGUAGE USAGE

For standard access to DB2 tables (that is, no procedural coding),
unique column values (or keys) should be specified. The user should
CREATE INDEX with the UNIQUE attribute for Tables that are accessed
using standard IMSADF II functions, (that is, key selection browse,
automatic data base update).

The standard key selection browse function has an ORDER BY clause
associated with the SQL CURSOR SELECT statement. This ensures that
the rows displaved on the key selection browse screen are in an
ordered sequence. Even though a UNIQUE INDEX is defined for a
TABLE, the DB2 BIND process may choose to ignore it and define a
search strategy using a TABLE scan technique. This causes the rows
to be displayed in an arbitrary order. Specifying an ORDER BY
clause may influence DB2 to use the INDEX to avoid the overhead of
the sort associated with using an ORDER BY clause.

IMSADF II Application Specification Guide for DB2

L When DB2 utilizes the ORDER BY clause, a sort may be performed for
the entire set of rows satisfying the WHERE clause at CURSOR OPEN.
Terminal I/0 causes the cursor to be closed. Therefore, if the
terminal operator requests the next screen of key selection, the
repositioning process will require the re-execution of the SQL call
and another sort of the selected set of rows. Use of the key
selection browse function with DB2 tables should be reviewed
carefully, due to the potential adverse impact on performance.

L3 Arithmetic expressions are not allowed in the SET and VALUES clauses
of the UPDATE and INSERT calls. These functions can be accomplished
by current operations in the Audit Language.

] Static SQL is supported through the generation of a Table Handler
Rule. Dynamic SQL is not supnorted in the Table Handler Rule,
though an Audit Exit or Special Processing Routine may issue native
SQL calls to PREPARE, DESCRIBE, and EXECUTE a dynamic SQL request
and map the data back to the SPA workarea for display.

DB2 SCHEDULING

Since one Application Plan (same name as PSB and mini-driver name) may
include many Table Handler Rules with intent to UPDATE, it is
recommended that page locking be used. Additionally, the BIND input for
the Application Plan should specify cursor stability. This allows more
optimal DB2 processing and reduces lock conflicts between applications.

Table locking and access path are determined by DB2 during the BIND
process. Even if PAGE locks are specified, the DB2 BIND may choose a
TABLE SPACE lock.

One IMS/VS PSB can cluster many IMSADF II transactions. This implies
that many IMSADF II transactions can also be defined by one DB2
Application Plan. However, large DB2 Application Plans are not as
efficient as smaller ones.

The IBM DATABASE 2 System Planning and Administration Guide contains
additional information on the DB2 BIND and Application Plan process and
the Concurrency Control Mechanisms (Locking).

DB2 FUNCTIONS SUPPORTED INDIRECTLY

The following DB2 functions are supported indirectly via the DB2 View
mechanism:

. Joins of Tables where multiple Table/View name combinations exceed
the 50 character IMSADF II Rules Generator SQLNAME operand limit.

. DB2 Column name expressions that exceed the 50 character IMSADF II
Rules Generator SQLNAME operand limit.

- SQL built-in functions (such as DISTINCT, COUNT)

- Arithmetic expressions

- Multiple DB2 Column names
DB2 SERVICES NOT SUPPORTED USING STANDARD IMSADF II FUNCTIONS
The following DB2 categories of SQL statements are not supported using
standard IMSADF II functions. They can be invoked by defining native
SQL statements in an Audit Exit or a Special Processing Routine. The
last three can also be implemented with IMSADF II-defined USER SQL
statements.
. SQL Data Definition Statements
. Dynamic SQL Statements
. SQL Control Statements (that is, LOCK)

. SQL Authorization Statements

Chapter 1. An Overview 6f Application Design 1-3

. SQL Statements with UNION
. SQL clauses GROUP BY and HAVING
. SQL subselects

STANDARD IMSADF II FUNCTIONS NOT AVAILABLE FOR DB2 TABLES

L DB2 Tables are not supported in Text Utility transactions.
. Standard TWIN processing function (DL/I only)

. "N' OPTION

. DL/I EXIT

1-4 IMSADF 11 Application Specification Guide for DB2

CHAPTER 2. USER SPECIFICATION

Note: Refer to the following appendixes while reading this chapter:

. Appendix A, "Sample Rules Generator Source and Output,™ for Rules
Generator input and output

. Appendix B, "Specification Example,"™ for a complete specification
example

. Appendix C, "Sample Problem,"™ for Screen flow for two sample DB2
transactions

RULES GENERATOR

Four Rules Generator statements are used to describe a DB2 application
to IMSADF II:

SYSTEM Specifies setup information

TABLE Fefines Table/View information, (synonym - SEGMENT)
COLUMN Defines Table/View layout, (synonym - FIELD)
GENERATE Requests the application rule and screen generations

SYSTEM STATEMENT

The SYSTEM statement defines the major application system identification
and setup information. The SYSTEM statement must precede any table/view
or segment definitions. See the IMS Application Development Facility II
Version 2 Release 2 Application Development Reference for a description
of the SYSTEM statement and its operands. The only SYSTEM operand not
applicable to applications processing DB2 Tables/Views is PCBNO, which
is a DL/I parameter.

TABLE (SEGMENT) STATEMENT

The TABLE (synonym SEGMENT) statement describes a DB2 Table/View. See
the IMS Application Development Facility II Version 2 Release 2
Application Development Reference for a description of the SEGMENT
statement and its operands.

The following TABLE statement operands are used exclusively to define
DB2 Tables to IMSADF II.

TYPE=TBL

The value TBL indicates a DB2 Tables/View is being defined. The TBL
value indicates to the IMSADF II transaction drivers that data base I/0
is performed through SQL functions in the associated Table Handler Rule.
Those SQL functions include SELECT, UPDATE, INSERT, DELETE, or user
supplied functions.

If TABLE is used to identify the TABLE statement (rather than SEGMENT),
the default value for TYPE is TBL.

SQLDIST=NO
YES

SQLDIST=YES indicates that the SQL DISTINCT keyword is used on all
SELECT SQL statements defined in the Table Handler Rule. Both standard
and user-specified SQL SELECT statements are defined with the DISTINCT
keyword.

SQLIND=NO
YES

Chapter 2. User Specification 2-1

SQLIND=YES indicates that Columns in the TablesView may have indicator
variables. Indicator variables are available to receive the SQL
indication that a Column is NULL or truncated, or to set a column NULL
in UPDATE or INSERT SQL statements.

Indicator variables, if present, are used by screen handling for NULL
display, and can be tested or set (NULL) in audits.

If no Columns are defined with SQLNULL=YES, indicator variables are not
defined for the Table (no additional Table I/0 area reserved).

When IMSADF II generates indicator variables, (at least 1 Column defined
with SQLNULL=YES), one is assigned to each Column in the Table even
though only those Columns specifying SQLNULL=YES will be eligible for
indicator variable processing (5S5QL statements and audits).

Each indicator variable is a binary halfword. The Table I/0 area length
reflects the lengths of all Columns and all indicator variables.

The setting of SQLIND on the TABLE statement cannot be changed on a
TABLE OVERRIDE statement.

Format of the Table I/0 area as defined by the Table Layout Rule
follows:

Table Definition Information

Data Elements (Columns)
coLy
coL2 . .

COLn

Indicator Variables
IND1 .
IND2
INDn

SQLISRT=YES
NO
SQLISRT=YES indicates that all Columns in the Table are eligible for
insert. SQLISRT=NO indicates that no Columns are eligible for insert.
Specifying SQLISRT=YES
. Causes SQLISRT=YES to be specified for each Column entry.

. Includes the Column in the VALUES clause of the SQL INSERT statement
in the Table Handler Rule.

Examples of columns that cannot be inserted are those derived from
built-in functions or arithmetic expressions. Other columns not
eligible for insert are application dependent.

Specification of SQLISRT on the COLUMN statement overrides the SQLISRT
operand on the TABLE statement.

The setting of SQLISRT on the TABLE statement cannot be changed on a
TABLE OVERRIDE statement.

SQLNAME="'1 to 50 characters’
The SQLNAME operand is required for all DB2 Tables/Views defined to
IMSADF II. The SQLNAME operand on a Table statement can contain DB2
Table names in four forms:

Unqualified name Table name, a long identifier, one to 18 characters.

2-2 IMSADF II Application Specification Guide for DB2

Qualified name 'Authorization ID.Table name'

Authorization ID, a short identifier, one to eight
characters.

Table name, a long identifier, one to 18 characters.

The Unqualified and Qualified Table names are valid
for all SQL statements that can be included in a Table
Handler Rule.

Join 'tablel, table2, table3'

Defining multiple names is used to define a view that
is a join of several DB2 Tables. When this type of
name is specified the normal DB2 restrictions for
views are enforced. Namely, the View is not eligible
for Update, Insert, or Delete.

correlation-name 'dsn8.templ x'

If a correlation-name is specified, it is defined as
part of the Table name on all SQL functions except
INSERT. The correlation-name is ignored by IMSADF II
and SQL, except where referenced.

When specifying a Qualified Table name, a period separates the
authorization ID and the Table name, and the entire name must be
enclosed in quotes.

The SQLNAME operand is required to build the Table Handler Rule and to
define SQL access to DB2.

The SQLNAME operand must be specified on the initial TABLE statement.
It cannot be overridden on a Tables/Segment OVERRIDE statement.

SQLUPD=YES
NO
SQLUPD=YES indicates that all Columns in the Table are eligible for
update. SQLUPD=NO indicates there are no Columns eligible for update.
Specj fying SQLUPD=YES:

. Causes SQLUPD=YES to be specified for each Column entry, (except
KEY=YES Columns).

U Includes the Column in the SET clause of the SQL UPDATE statement in
the Tgble Handler Rule.

Examples of columns that cannot be updated are those derived from
built-in functions or arithmetic expressions. Other columns not
eligible for update are application-dependent.

Specification of SQLUPD on the COLUMN statement overrides the SQLUPD
operand on the TABLE statement.

The setting of SQLUPD on the TABLE statement cannot be changed on a
TABLE OVERRIDE statement.

SKSEGS=0
n

SKSEGS=0, the default, indicates that Secondary Key Selection browsing
is not available for this DB2 TablesView.

SKSEGS=n specifies the number of row occurrences to be displayed. It
indicates that this DB2 Table/View is eligible to be processed by
Secondary Key Selection Browse functions under the following conditions:

. The Table is defined in the DBPATH operand of the conversational
Input Transaction Rule GENERATE (CVALL).

Chapter 2. User Specification 2-3

. A generic search is requested ('>', '<', '%', '_') by the terminal
operator, or an incorrect key, or no key is entered by the terminal
operator.

U A user-defined Secondary Key Selection browse function is requested
through a Primary Key audit.

DBPATH defines the Tables and Segments to be automatically retrieved by
the IMSADF II transaction drivers. The keys to retrieve these Tables
and/or Segments are supplied by the terminal operator or through audits.

COLUMN (FIELD) STATEMENT

The COLUMN (synonym FIELD) statement describes a DB2 Table/View column.
IMSADF II supports a maximum of 512 columns per table/view. See the IMS
Application Development Facility II Version 2 Release 2 Application
Development Reference for a description of the FIELD statement and its
operands.

The following COLUMN statement operands are used exclusively to define
DB2 Tables:

KEY=NO
YES

The KEY=YES operand specifies Columns to be used in the SQL WHERE clause
of the Table Handler Rule. The relational operator between the DB2
Column name and the IMSADF II host variable is '=' for the standard
SELECT, DELETE, and UPDATE statements. The standard Secondary Key
Selection browse SELECT uses '">=' or '<=' or the DB2 LIKE predicate for
its relational operator.

Standard processing functions assume that the key values uniquely
identify a row. It is recommended that KEY=YES columns be defined in a
Table UNIQUE INDEX for better DB2 performance in processing the SQL
WHERE clause. It is NOT recommended for tables with multiple unique
indexes to be processed under IMSADF II. If multiple unique indexes are
defined, it would be possible for an end user to specify values which
are a unique combination of all the KEY columns, but are not unique
witgin each index. This would result in a DB2 error condition (SQLCODE
-803).

If more than one column is defined as KEY=YES and a DB2 composite INDEX
exists, the order of the columns specified to the Rules Generator should
match the order specified in the INDEX.

Every Table must have at least one Column specifying KEY=YES to uniquely
identify a row. This requirement exists for all data base segments
(DL/I and DB2) that are defined to IMSADF II. If the Table is accessed
through one of the standard SQL calls, the Table's KEY=YES Columns are
included in the WHERE clause.

Notes:

1. DB2 Columns defined as KEY Columns are not eligible for NULL
processing.

2. TYPE=FLOAT and TYPE=BIT Columns/Fields cannot be defined as keys.

SQLISRT=YES
NO

SQLISRT=NO identifies a Column that is not eligible for insert. This
Column is not included in the VALUES clause of the SQL INSERT statement
in the Table Handler FRule.

Arithmetic expressions are not allowed in the SET and VALUES clauses of

the UPDATE and INSERT calls. These functions can be accomplished prior
to issuing the SQL call with currently available Audit operations.

2-4¢ IMSADF II Application Specification Guide for DB2

SQLNAME="1 to 50 characters’

The SQLNAME operand identifies the DB2 Column name as it is specified in
the DB2 catalog. An unqualified SQLNAME is one to 18 characters long.
If qualified, a period separates the qualifier and the unqualified
Column name.

Quotes are required for all forms of SQLNAME, except the unqualified
Column name.

Every Column in a Table speci “ication must have a SQLNAME operand as DB2
addressability is to the column level.

The SQLNAME operand must be specified on each COLUMN statement that
represents a DB2 Column. It cannot be changed by a COLUMN MERGE, or
OVERRIDE statement.

The SQLNAME operand may also identify a column name with a built-in
function or arithmetic expression. The Rules Generator uses the value
between the single quotes when building the column list in the SQL
SELECT statement.

If a DB2 built-in function or arithmetic expression is used the Column
should be marked as SQLUPD=NO and SQLISRT=NO.

Every DB2 Table (TYPE=TBL) must have at least one Column defined with a
SQLNAME operand.

SQLNULL=NO
YES

Identifies those Columns that can be NULL. NO indicates that this
Column is defined to DB2 as NOT NULL. If the value YES is specified,
the column can be NULL. SQLNULL=YES implies SQLIND=YES at the Table
level has been specified.

A Column can be marked NULL in an UPDATE or INSERT function through the
setting of the indicator variable. The indicator variable is set
through a screen input convention or through Audit operations.

DB2 Columns defined to IMSADF II as KEY Columns are not eligible for
NULL processing.

SQLORD=ASC
DESC

SQLORD indicates the order of column values for those columns marked
KEY=YES. ASC means ascending values and DESC means descending values.
SQLORD is used to define the following Secondary Key Selection browse
functions:

U Define the WHERE clause relational operator, '>=' or '<=',
. Define the ORDER BY clause, ASC or DESC.
U Initialize keys, HI or LO values.

SQLUPD=YES

NO

SQLUPD=NO identifies a Column that is not eligible for update. This
Column is not included in the SET clause of the SQL UPDATE statement in
the Table Handler Rule.

For example, if a View Column is a virtual column (that is, derived from
a built-in function), it cannot be updated in the SQL UPDATE call.

Default is YES, except for KEY=YES columns, which default to NO and
cannot be changed to YES. KEY=YES columns are never eligible for
update.

Arithmetic expressions are not allowed in the SET and VALUES clauses of

the UPDATE and INSERT calls. These functions can be accomplished prior
to issuing the SQL call with currently available Audit operations.

Chapter 2. User Specification 2-5

TYPE=ALPHA
ALPHANUM
BIN
BIT
DATE
DBCS
DEC
FLOAT
HEX
MIXED
NUM

PD
VARCHAR
The TYPE identifies the data format for the Column. The following table

shows DB2 data types and the corresponding IMSADF II data types to which
the data is converted.

DB2 Data Types IMSADF II Data Types

INTEGER -- 32 bits BINARY---- 4 bytes

SMALLINT - 15 bits BINARY---- 2 bytes

DECIMAL -- precision - 15 digits PDEC ~----- 8 bytes - 15 digits
- scale - 15 digits - scale - 13 digits

CHAR ----- 254 characters ALPHANUM--255 bytes

VARCHAR --32k characters VARCHAR --253 bytes

FLOAT ---- 64 bits FLOAT ---- 8 bytes

Figure 2-1. DATA TYPES

Because IMSADF II uses the LENGTH operand to determine packed decimal
precision, the DB2 column definition for decimal fields should be
defined with a precision that will match the length defined in the
IMSADF II rules.

For example, a DB2 column precision of (4,2) will not match an IMSADF II
length of 3 and will have to be specified as (5,2).

Data conversion for field type FLOAT is supported only for display to
FLOAT and FLOAT to display. Audit move operations support FLOAT to
FLOAT, FLOAT to Alphanumeric, and Alphanumeric to FLOAT. Other audit
move and arithmetic operations are not allowed on Columns/Fields defined
as TYPE=FLOAT. FLOAT represents a long floating point number with
approximate range of 5.4E-79 to 7.2E+75.

Data type VARCHAR has the following format:

2 bytes data area
length (1 to 253 characters)
LENGTH=N

LENGTH specifies in bytes the data storage occupied by this column.

An exception is TYPE=VARCHAR, where LENGTH is the maximum length of the
data area and does not include the halfword length attribute. This
halfword precedes the data area, dynamically specifying the current data
length.

When defining VARCHAR Columns to the Rules Generator only specify the
maximum length of the data area. The Rules Generator reserves two
additional bytes for the halfword length attribute.
When a data field TYPE=VARCHAR is modified:
Entered from a screen or batch BMP input - IMSADF II recalculates
the current data length, based on the last non-blank character.

2-6 IMSADF II Application Specification Guide for DB2

Modified through audit operations, or modified from an Audit Exit or
Special Processing Routine with the MAPPER function - the length of
the source field(s) is used to calculate the current length of a
target VARCHAR field. Trailing blanks are significant. IMSADF II
does NOT recalculate the current data length, based on the last
non-blank character.

Audit Exits and Special Processing Routines that modify a TYPE=VARCHAR
field in their own data area must also set the current data length
attribute unless the field is mapped to the SPA Table I/0 area with the
MAPPER function.

Recalculation of the current data length does not occur when a changed
VARCHAR field is moved to the SPA Table I/0 area with the COPYSEG
function.

POSITION=Nn

DB2 Column definitions should not include the POSITION/START operand.
If the RGLGEN Utility is used to extract definitions from the DB2
catalog the POSITION operand is not included. The Rules Generator
automatically calculates position in the Table I/0 area based on offset
and length of preceding Columns.

When adding non-DB2 Column redefinitions to the DB2 COLUMN statements,
the Rules Generator operands REDEFINE and OFFSET should be used to
define the correct layout.

GENERATE STATEMENT

The GENERATE statement is used to request generation of

U static rules
U transaction drivers
. screen source

See the IMS Application Development Facility II Version 2 Release 2
Application Development Reference for a description of the GENERATE
statement and its operands. The GENERATE operands that follow are used
exclusively to generate rules for processing DB2 Tables/Vieuws.

Table Layout Rule

OPTIONS=TABL
SEGL

Format of the GENERATE statement is
GENERATE OPTIONS=TABL,TABLES=(id,id,...id)

A Table Layout Rule is required for each TablesView to be processed by
IMSADF II. The GENERATE option TABL/SEGL builds the Table Layout Rule
control block describing the data type, length, offset, etc. of each
Column in the DB2 TablesView. This information is utilized at execution
time by the transaction drivers to interpret the data returned and
updated through DB2 SQL.

DB2 addresses data at the Column level. Therefore, the Table Layout
Rule must match the Assembler DSECTs generated in the Table Handler
Rule.

The Rules Generator doesn't do any boundary alignment for DB2 SMALLINT
(halfword), INTEGER (fullword), DECIMAL (doubleword), FLOAT (doubleword)
data types. The generated Assembler DSECT in the Table Handler Rule is
assembled using the Assembler (NOALIGN) parameter to ensure that it is
consistent with the Table Layout Rule definition.

TABLES=(id, id,...id)

TABLES specifies the two-character ID (or IDs) identifying the DB2
Tables/View requiring a Table Layout Rule generation.

Chapter 2. User Specification 2-7

Table Handler Rule

OPTIONS=TABH
The format of the GENERATE statement is:

GENERATE OPTIONS=TABH,TABLES=(id,id,...id),SQLCALL=,SQLUSER=

* 1-8 10-17 19-71

label sqlfunc KHERE clause

* 16 to 71 continuation

&SQLENDS
A Table Handler Rule is required for each Table/View ID to be processed
by the IMSADF Il1 transaction drivers through standard processing
functions, Audit operations or SQLHNDLR Calls from an Audit Exit or
Special Processing Routine.

The GENERATE option TABH builds an Assembler program, containing
standard static SQL calls and USER SQL calls.

The SQL functions supported are:

. CURSOR SELECT

. CURSOR UPDATE

. CURSOR DELETE

. CURSOR SELECT for multiple key selection row browse

U SELECT for single row inquiry

. UPDATE
. INSERT
. DELETE

All standard IMSADF II functions, (data base retrieval, Key Selection
browse, and data base update) are performed using only the following SQL
calls:

. CURSOR SELECT
. CURSOR UPDATE
. CURSOR DELETE
. INSERT

The Table Handler Rule, an Assembler language program is created by the
Rules Generator. This program contains static SQL statements that
execute the specified SQL calls. The Rules Generator dynamically
invokes the DB2 pre-compiler which replaces the static SQL statements
with additional Assembler code. The Rules Generator also dynamically
invokes the Assembler, and the linkage editor. The Assembler is invoked
with the Assembler (NOALIGN) parameter in effect to ensure that the
Assembler DSECTs in the Table Handler Rule are assembled with no
boundary alignment. This ensures that the Assembler DSECTs match the
Table Layout Rule.

When the Rules Generator dynamically invokes the DB2 pre-compiler, a
DBRM member is created and placed in a DBRM library. The DB2 BIND
process must be invoked to include this DBRM in a DB2 Application Plan
prior to executing an IMSADF II transaction that accesses the DB2 Table.

Note: Refer to "DB2 Specifications"™ on page 2-38 and "BIND Process" on
page 2-38 for additional details.

2-8 IMSADF II Application Specification Guide for DB2

TABLES=(id)id} . ttid)

TABLE specifies the two-character ID (or IDs) identifying this DB2
Table/View. Only one id should be specified if SQLCALL requirements vary
between Tables. Only one id can be specified if SQLUSER=YES.

SQLCALL=(CSELECT, INSERT, CUPDATE,CDELETE,KSELECT1)
SELECT,UPDATE,DELETE,KSELECT2,DSQLCALL
NONE

The SQLCALL operand specifies the SQL calls to be included in the Table
Handler Rule.

. If SQLCALL is not specified, the five defaults CSELECT, INSERT,
CUPDATE, CDELETE, KSELECT1 are taken.

L If SQLCALL is specified, all keywords including the defaults must be
specified.

. Defaults are entered individually, or by specifying the DSQLCALL
keyword to include all five defaults.

. If SQLCALL=NONE is specified, SQLUSER=YES must be specified and no
other keywords are allowed.

. If SQLLALL=KSELECT2 is specified, the key Column in the WHERE clause
that is manipulated by the DB2 LIKE relational operator must be the
first key Column defined with an alphanumeric data type.

Internal IMSALF II Naming Conventions:

The following internal naming conventions are used by the Rules
Generator when building DSECTs and SQL statements in the Table Handler
Rule.

They should be used as a reference while reading the following sections
defining IMSADF II SQLCALL functions.

The only time application developers need concern themselves with the
names defined in the Table Handler Rule is when defining Host Variables
in USER SQL statements. Refer to "USER SQL Statements™ on page 2-18.

U column - Column name as known to DB2

. tablename - Tables/View name as known to DB2

. tAXXFFffn, ::Axxffff$, :Axxffffa - Host Variables where -

: constant, Host Variable indicator
A

- constant, Assembluer requirement
XX - Table ID
ffff - Column ID
n - Key Column Host Variables
1,2 Standard key select functions
KSELECT1 and KSELECT2
3-9 USER defined key select functions
KSELECTn
A-Z USER defined SQL functions
$ - constant, Column Host Variable
] - constant, Column Indicator Variable

Chapter 2. User Specification 2-9

SQLCALL Functions

DB2 SQL statements that are defined in IMSADF II Table Handler Rules are
divided into three categories:

standard

Non-standard

USER

SQL statements that IMSADF II uses to perform its standard
data base calls.

The standard IMSADF II SQL functions are:

. CSELECT - CURSOR SELECT for single row inquiry
. CUPDATE - CURSOR UPDATE for single row

. CDELETE - CURSOR DELETE for single row

. INSERT - INSERT of a single row

. KSELECT1
. KSELECT2
Standard IMSADF II data base calls are used for:

SELECT for Secondary Key Selection Browse

I

SELECT for Secondary Key Selection Browse

. Primary Key Selection - CSELECT

. Key Selection browse - KSELECT1l, KSELECT2
CUPDATE, CDELETE, INSERT
CUPDATE, CDELETE

. Data Base Update

. Data Compare

Note: IMSADF II standard processing functions process a
single row at a time using the DB2 cursor technique.

This technique is consistent with IMSADF II DL/I support,
in that IMSADF II only processes the first occurrence of a
non-uniquely keyed segment type.

SQL statements that IMSADF II only processes when they
are:

1. Defined by the application developer using the SQLCALL
operand.

2. Invoked using Audit operations or with a SQLHNDLR call
in an Audit Exit or Special Processing Routine.

The non-standard IMSADF II SQL functions are:

. SELECT - SELECT of a single rouw
. UPDATE - UPDATE of a single row
. DELETE - DELETE of a single row

USER SQL statements include additional Secondary Key
Selection browse functions and SQL statements that require
more complex WHERE clauses.

USER SQL statements are invoked invoked using Audit
operations or with a SQLHNDLR call in an Audit Exit or
Special Processing Routine.

Note: Standard IMSADF II SQL functions can also be invoked using Audit
operations or with a SQLHNDLR call in an Audit Exit or Special
Processing Routine.

The WHERE clauses for the DB2 SQL statements defined in the Table
Handler Rule are built by the Rules Generator, except for USER SQL
statements in which the WHERE clauses are user defined.

The WHERE clause contains those Column names specifying KEY=YES. If
more than one Column indicates KEY=YES, the predicates are connected

2-10 1IMSADF 1II Application Specifi.ation Guide for DB2

with the 'AND' relational operator. Each KEY=YES Column is connected to
a host variable, defining the Column I/0 area, with the = relational
operator. Secondary Key Selection browse functions use the >=, <=, or
the DB2 LIKE relational operator.

The SELECT statements contained in the SQLCALL functions select all DB2
Columns defined to the Rules Generator for the Table/View.

If SQLDIST=YES is specified on the Rules Generator Table definition,
then the DB2 DISTINCT kevword is specified on all SELECT statements in
the Table Handler Rule.

CSELECT -~ CURSOR SELECT for Single Rouw Inquiry

CURSOR SELECT is the standard IMSADF II SQL function used to retrieve a
single row from DBPATH DB2 Tables. This technique is used in order to

protect against non-unique rows. The FETCH retrieves only one row into
the Table I/0 area.

FUNCTION GENERATED SQL STATEMENT
CSELECTO - DECLARE CSELECT CURSOR FOR
SELECT columnl,column2, ... column(n)
FROM tablename
WHERE columnl=:Axxffffl
OPEN CSELECT

FETCH CSELECT
INTO CAXXFFFFS, : AXXFEFFS : AxxFFffa, ...

CSELECTC CLOSE CSELECT

Figure 2-2. CURSOR SELECT, Standard IMSADF II Function

The CSELECT statement declares a CURSOR to SELECT a row, OPENs the
CURSOR, fetches the row into the IMSADF II work area, and CLOSEs the
CURSOR. The DECLARE CURSOR, OPEN, and FETCH are invoked through the
CSELECTO function. The CLOSE CURSOR function is invoked with the
CSELECTC function.

Chapter 2. User Specification 2-11

At execution time the CSELECT func*ion can be used as follows:

. Standard Primary Key Selection if the Table ID is specified in
DBPATH to indicate transaction driver retrieval.

. High Level Audit Language 'CSELECT', 'CSELECTO', 'CSELECTC'
. SQLHNDLR Call function 'CSELECT', 'CSELECTO', 'CSELECTC®

INSERT - INSERT of a Single RoOW

INSERT is the standard IMSADF II SQL function used to INSERT a single
row into the DB2 Table or VIEW if allowed. All Columns that specify
SQLISRT=YES are be included in the VALUES clause.

If SQLIND=YES is specified, each Column host variable that is defined as
eligible for the null value, (SQLNULL=YES) is followed by an indicator
variable. If the Column is null the indicator variable is set to -1
according to DB2 protocol.

FUNCTION GENERATED SQL STATEMENT

INSERT - INSERT INTO tablename
(columnl,column2,..... columnn)
VALUES (:AxxXFFfffS:Axxffffd, :Axxffffs:Axxffffa,...)

Figure 2-3. INSERT, Standard IMSADF II Function

At execution time the INSERT function can be used as follows:
. Standard data base insert function

. High Level Audit Language "INSERT'

. SQLHNDLR Call function 'INSERT'

CUPDATE - CURSOR UPDATE for Single Rou

CURSOR UPDATE is the standard IMSADF II SQL function used to update a
single row in a DB2 Table or View if allowed.

The CURSOR UPDATE function updates a row that has been previously
SELECTed and modified. The CURSOR UPDATE function is used to FETCH a
new copy of the row and hold the cursor open. If the IMSADF II data
compare (DATACOMP) function has been specified, the new copy of the row
is compared with an initial copy of the row saved prior to user
modifications. Upon verification of the row the UPDATE is issued. If
data compare is not specified the UPDATE is issued without data
‘comparison.

Note: Columns defined as KEY=YES are not eligible for update and do not
appear in the SET clause.

2-12 IMSADF II Application Specification Guide for DB2

FUNCTION GENERATED SQL STATEMENT

CUPDATEO - DECLARE CUPDATE CURSOR FOR
SELECT columnl,column2, ... column(n)
FROM tablename
WHERE columnl=:Axxffffl
FOR UPDATE OF column2,...column(n)

OPEN CUPDATE

FETCH CUPDATE
INTO TAXXTFFFS, AXXFFFfS: Axuffffa, ...

CUPDATEU UPDATE tablename
SET column2=: Axxffff$: Axxffffa, ...,
columnn=: Axxffff$: Axxffffa
WHERE CURRENT OF CUPDATE

CUPDATEC CLOSE CUPDATE

Figure 2-4. CURSOR UPDATE, Standard IMSADF II Function

The CUPDATE statement declares a CURSOR to SELECT a row, OPENs the
CURSOR, fetches the row into an IMSADF II work area, updates the row in
the Table (or VIEW if allowed), and CLOSEs the CURSOR. The DECLARE
CURSOR, OPEN and FETCH are invoked through the CUPDATEO function. The
UPDATE, where current of cursor, is executed with the CUPDATEU function.
The close CURSOR is executed with the CUPDATEC function.

At execution time the CUPDATE function can be used as follouws:

. Standard data base update function

. High Level Audit tanguage 'CUPDATE', 'CUPDATEO', 'CUPDATEU', 'CUPDATEC'
. SQLHNDLR Call function 'CUPDATE','CUPDATEO','CUPDATEU','CUPDATEC'

CDELETE - CURSOR DELETE for Single RouW

CURSOR DELETE is the standard IMSADF II SQL function used fo delete a
single row from a DB2 Table.

The CURSOR DELETE function deletes a row that has been previously
SELECTed. The CURSOR DELETE function is used to FETCH a new copy o7 the
row and hold the cursor open. If the IMSADF II data compare (DATACOMP)
function has been specified, the new copy of the row is compared with an
initial copy of the row that was previously SELECTed. Upon verification
of the row the DELETE is issued. If data compare is not specified the
DELETE is issued without data comparison.

Chapter 2. User Specification 2-13

FUNCTION GENERATED SQL STATEMENT
CDELETEO - DECLARE CDELETE CURSOR FOR
SELECT columnl,column2, ... column(n)
FROM tablename
WHERE columnl=:Axxffffl
OPEN CDELETE

FETCH CDELETE
INTO tAXXFFFES, : AXXTFFFfS : Axxffffa, .

CDELETED DELETE FROM tablename
WHERE CURRENT OF CDELETE

CDELETEC CLOSE CDELETE

Figure 2-5. CURSOR DELETE, Standard IMSADF II Function

The CDELETE statement declares a CURSOR to SELECT a row, OPENs the
CURSOR, fetches the row into the IMSADF Il work area, deletes the row in
the Table (or VIEW if allowed), and CLOSEs the CURSOR. The DECLARE
CURSOR, OPEN and FETCH are invoked “hrough the CDELETEO function. The
DELETE, where current of cursor, is executed with the CDELETED function.
The close cursor is executed with the CDELETEC function.

At execution time the CDELETE function can be used as follows:

. Standard data base delete function

. High Level Audit Language 'CDELETE','CDELETEO','CDELETED','CDELETEC'
. SQLHNDLR Call function 'CDELETE','CDELETEO','CDELETED', 'CDELETEC’

SELECT - SELECT of a Single Rou

SELECT is a non-standard IMSADF II SQL function that is used to retrieve
a single row from a DB2 Table.

This statement can only be used successfully when the result Table
contains a single row (that is, Unique key columns).

When this SELECT statement is executed, and the result Table contains
more than one row, DB2 issues a SQL return code of -811 and the
transaction is terminated.

FUNCTION GENERATED SQL STATEMENT

SELECT - SELECT columnl,column2, ... column(n)
INTO tAXXTFFFS, : AXXTFFFfS: Axxffffa, ..
FROM tablename
WHERE columnl=:Axxffffl

Figure 2-6. SELECT, Non-Standard IMSADF II Function

At execution time the SELECT function can be used as follows:
[High Level Audit Language 'SELECT?'
U SQLHNDLR Call function 'SELECT'

2-14 IMSADF II Application Specification Guide for DB2

UPDATE - UPDATE of a Single ROW

UPDATE is 3 non-standard IMSADF II SQL function that is used to update a
one or more rows of a DB2 Table.

If the key Columns in the WHERE clause define a unique key value then
only one row in the DB2 Table is updated.

If the key Columns in the WHERE clause do not define a unique search
condition then all rows for which the search condition is true are
updated.

The UPDATE statement updates all columns defined in the Table/View that
are eligible for update (SQLUPD=YES).

DB2 columns specified as KEY=YES are not eligible for update and do not
appear in the SET clause.

FUNCTION GENERATED SQL STATEMENT

UPDATE - UPDATE tablename
SET column2=: AxxffffS: Axxffffa, ...,
columnn=: AxxFfff$: AxxFFfffa
WHERE columnl=:Axxffffl

Figure 2-7. UPDATE, Non-Standard IMSADF II Function

At execution time the UPDATE function can be used as follows:
° High Level Audit Language 'UPDATE®'
. SQLHNDLR Call function 'UPDATE'

DELETE - DELETE of a Single Rou

DELETE is a non-standard IMSADF II SQL function that is used to delete
one or more rows of a DB2 Table.

If the key Columns in the WHERE clause define a unique key value then
only one row in the DB2 Table is deleted.

If the key Columns in the WHERE clause do not define a unique search
condition then all rows for which the search condition is true are
deleted.

FUNCTION GENERATED SQL STATEMENT

DELETE - DELETE FROM tablename
WHERE columnl=:Axxffffl

Figure 2-8. DELETE, Non-Standard IMSADF II Function

At execution time the DELETE function can be used as follows:
. High Level Audit Language 'DELETE®
. SQLHNDLR Call function 'DELETE'

Chapter 2. User Specification 2-15

KSELECT - SELECT for Secondary Key Selection Browse

The KSELECT1 and KSELECT2 functions are special cases of the standard
IMSADF II CURSOR SELECT function. The Key Columns in the Where clauses
are defined with '>=', '<=', or the DB2 LIKE relational operator.

These functions are used during Secondary Key Selection browse for
accessing DB2 Tables/Vieuws.

The KSELECT1 function is invoked if the terminal operator:

enters a partial key with a > or <

or
enters an incorrect key

or
enters no key

and
the Table is eligible for secondary key selection
(SKSEGS>0), and the KSELECT1l function was defined
for the Table Handler Rule.

and
SPASQLKS was not set to a user defined function
KSELECTn by a primary key audit.

The KSELECT2 function is invoked if the terminal operator:

enters a partial key with a % or
and
the Table is eligible for secondary key selection
(SKSEGS>0), and the KSELECT2 function was defined
for the Table Handler Rule.
and
SPASQLKS was not set to a user defined function
KSELECTn by a primary key audit.

The Columns in the WHERE clause should be defined as Columns in a UNIQUE
INDEX. The host variables in the WHERE clause may contain an
initialized value, a partial value or full value depending on the
terminal operator input.

The secondary Key Selection browse functions have an ORDER BY clause
associated with their SQL SELECT statement. This ensures that the rows
displayed on the key selection browse screen are in an ordered sequence.
Even though a UNIQUE INDEX is defined for a Table the DB2 BIND process
may choose to ignore it and search the Table using a Table scan
technique. This causes the rows to be displayed in an arbitrary order.
Specifying an ORDER BY clause may influence DB2 to use the INDEX to
avoid the overhead of the sort associated with using an ORDER BY clause.

KSELECT2 is included in the key selection SQL calls only if
SQLCALL=KSELECT2 is specified, and if the Table keys include at least
one Column with an alphanumeric data type. Additionally, the LIKE
relational operator is only available for the first KEY Column with an
alphanumeric data type. IMSADF II alphanumeric data types are
alphanumeric, alpha, numeric, and varchar. Normally DB2 does not use
the index when processing WHERE clauses containing the LIKE relational
operator. However, if a UNIQUE INDEX is defined for the Column being
operated on by the LIKE relational operator, then DB2 may use it.

Use of the key select browse function should be reviewed for performance
considerations, that is, number of rows in the Tables/View satisfying the
WHERE condition and potential number of terminal operator iterations of
the browse function.

Each screen iteration during the key selection browse function is a
separate transaction iteration. The result Table for the rows being
browsed are retrieved for each screen iteration. This implies that the
WHERE clause should be defined so that each subsequent key selection
browse iteration be positioned correctly into the Table, beyond the rows
previously retrieved.

The key selection browse function for large Tables and/or a large number
of KEY Columns may be expensive in terms of CPU time and resources.

2-16 IMSADF II Applicatinn Specification Guide for DB2

FUNCTION GENERATED SQL STATEMENT

KSELEC10 - DECLARE KSELECT1 CURSOR FOR
SELECT columnl,column2, ... column(n)
FROM tablename
WHERE columnl>=:Axxffffl
ORDER BY COLUMN1 ASC

tAxxffffl Holds initial key value entered on the first iteration.
On subsequent iterations it holds the last key displayed
on the Secondary Key Selection Browse Screen

>= is used when SQLORD=ASC and <= when SQLORD=DESC
OPEN KSELECT1

KSELEC1F FETCH KSELECT1
INTO :AxxFfffs, :Axxffffs: Axxffffa,...

KSELEC1C CLOSE KSELECT1
KSELEC20 - DECLARE KSELECT2 CURSOR FOR
SELECT columnl,column2, ... column(n)
FROM tablename
WHERE columnl LIKE :Axxffff2
AND columnl >=:Axxffffl
ORDER BY COLUMN1 ASC

X X X X X X X

:Axxffffl Holds initial key value entered on the first iteration.
On subsequent jiterations it holds the last key displayed
on the Secondary Key Selection Browse Screen

:Axxffff2 Hclds search value with the LIKE Predicate (% or _).

The LIKE Predicate is ONLY available for the first
character KEY Column.

X XK XK X XX XXX

OPEN KSELECT2

KSELEC2F FETCH KSELECT2
INTO :AxXTFFFS, :AXXFFFFS:AxxFFffa, ...

KSELEC2C CLOSE KSELECT2

Figure 2-9. KSELECT, Secondary Key Selection Browse Function

The KSELECT statement declares a CURSOR to SELECT a set of rows, OPENs
the CURSOR, fetches one or more rows into an IMSADF II work area, and
CLOSEs the CURSOR. The DECLARE CURSOR and OPEN are invoked through the
KSELECnO function. The KSELECnF function fetches the next row in the
table and the KSELECNhC function closes the cursor.

The following defines the WHERE clauses required for the Secondary Key
Selection Browse functions with ONE and TWO key Columns:

. KSELECT1 - ONE KEY
WHERE COLUMNA >= CURRKEY1
. KSELECT2 - ONE KEY
WHERE COLUMNA LIKE IMTTKEY1l and COLUMNA >= CURRKEY1
. KSELECT1 - TWO KEYS
WHERE (COLUMNA >= CURRKEY1l AND COLUMNB >= CURRKEY2)
OR(COLUMNA > CURRKEY1)

Chapter 2. User Specification 2-17

. KSELECT2 - TWO KEYS

WHERE (COLUMNA LIKE INITKEY1l AND
COLUMNA >= CURRKEY1 AND COLUMNB >= CURRKEY2)
OR
(COLUMNA LIKE INITKEYl AND
COLUMNA > CURRKEY1l AND KEY2 >= INITKEY2)

INIT Initial KEY value: Specified by the user or HI or LO values
assigned by IMSADF II.

CURR Current KEY value: Contains the initial key value on the first
iteration. O0On subsequent iterations it contains the key of
the last row displayed on the Secondary Key Selection Browse
Screen.

Notes:

1. The LIKE Predicate is ONLY available for the first character KEY
Column.

2. Three or more KEY Columns follow the same pattern of increased
complexity.

3. Invocation of Secondary Key Selection browse is controlled by the
SKSEGS operand on the TABLE statement.

At execution time the KSELECT1 and KSELECT2 functions can be used as
follows:

o Secondary Key Selection Browse (Conversational only)

. High Level Audit Language 'KSELEC10','KSELEC1F','KSELEC1C',
'KSELEC20', 'KSELEC2F', 'KSELEC2C'

. SQLHNDLR Call function 'KSELEC10', '"KSELECL1F', "KSELEC1C"',
'KSELEC20', 'KSELEC2F', "KSELEC2C"

USER SQL Statements

User SQL calls may also be included in the Table Handler Rule for
execution in the High Level Audit Language or in the SQLHNDLR Call
function.

SQLUSER=NO
YES

SQLUSER=YES indicates that USER SQL statements with user specified WHERE
clauses are to be included in this Table Handler Rule. Default value is
NO. If YES, the user supplies a label, the SQLFUNC, and a WHERE clause.
User SQL statements are specified immediately following the GENERATE
OPTIONS=TABH SQLUSER=YES statement.

USER SQL statements can be executed through Audit operations or with the
SQLHNDLR Call function in an Audit Exit or Special Processing Routine.

A maximum of 26 SQLUSER WHERE clauses can be specified for a Table
Handler Rule.

User SQL statements have the following format:
GENERATE OPTIONS=TABH, TABLES=xx,SQLUSER=YES
label sqlfunc where clause
&SQLENDS

Note: The &SQLENDS label must be specified in columns 1 to 8 to
terminate USER SQL statement definitions.

LABEL LABEL is a one- to eight-character name, where the first

character must be alphabetic. The LABEL must be specified
starting in column one.

2-18 IMSADF II Application Specification Guide for DB2

SQLFUNC

WHERE CLAUSE

USER specified LABELs cannot match any of the labels used
to define the Standard and Non-Standard SQL statements.
The functions defined in the previous section, (Figure 2-2
through Figure 2-9) represent the reserved LABELs.

LABEL defines the type of SQL function in the High Level
Audit Language SQL call operation and the function name
specified in a SQLHNDLR Call.

Another SQLUSER option is to augment the Secondary Key
Selection browse function. In this case, LABEL has the
format KSELECTn, where n is 3 through 9, (n=1 and 2 are
reserved for standard Secondary Key Selection brouwse
functions). Refer to "USER SQL - Key Selection Browse" on
page 2-30 for additional details.

SQLFUNC defines the type of SQL statement to be executed.
It must be specified starting in column 10.

The valid SQL statements are:

SELECT
UPDATE
DELETE
CURSOR
OPEN

FETCH

CLOSE

Note: The SQL INSERT statement is not valid as a USER SQL
statement. It's definition is the same as the standard
INSERT function. If INSERT is required for Table
processing use the standard INSERT function.

WHERE CLAUSE defines the DB2 operands required for the
specified SQLFUNC. It must be defined in columns 19
through 71. If more than one line is required, then enter
a continuation character in column 72 and start the
continuation in column 16 of the next line.

WHERE CLAUSE contains the WHERE clause for a SELECT,
UPDATE, DELETE, and CURSOR statement. It contains only
the CURSOR label in the OPEN, FETCH and CLOSE statements.

Notes:

1. USER SQL statements cannot override the Columns to be
SELECTed or the Columns to be UPDATEd. The Rules
Generator uses the associated Table Layout Rule for
this information.

2. When a SQL statement is defined to IMSADF II in a
Table Handler Rule, all DB2 Columns defined in the
corresponding Table Layout Rule are named and SELECTed
for that TablesView. In the UPDATE and INSERT
statements, the SET and VALUES clauses include all
Columns specifying the Rules Generator operands,
SQLUPD=YES and SQLISRT=YES.

The WHERE clause may contain any of the DB2 comparison
operators, predicate relational operators and calculated
values. The host variables in the WHERE clause are
represented through the IMSADF II Column names.

Chapter 2. User Specification 2-19

The format of a host variable is - :ffff.xx

COLON - required host variable delimiter
ffff - one- to four-character Column ID
PERIOD - required

XX - two-character Table ID

Note: Table ID and Column ID must be previously defined
in this Rules Generator input stream.

At execution time, the host variables are passed by the Auditor or the
SQLHNDLR Call in a contiguous string and in the order specified in the
WHERE clause. Reference the High Level Audit Language and Exit
Functions sections for additional details on the SQLHNDLR Call.

The WHERE clause is included, as is, in the Table Handler Rule, with
only the substitutions of host variables. The :ffff.xx is converted to
Axxffffn where n is a sequential letter A to Z uniquely identifying the
appropriate USER SQL statement variables.

For the OPEN, FETCH, and CLOSE statements, the WHERE Clause contains the
LABEL name of the applicable CURSOR.

The selected columns, and the DB2 SET and VALUES clauses are built by
IMSADF II according to the Rules Generator Table/Column definitions, the
SQLIND, SQLNULL, SQLUPD, and SQLISRT operands.

If the SQLDIST=YES is specified on the Rules Generator TABLE statement
then all SELECT statements in the Table Handler Rule are defined with
the DB2 DISTINCT keyword.

If "FOR UPDATE OF' is specified in the WHERE Clause of a CURSOR
statement, then 'FOR UPDATE OF' is included in the SELECT statement
declared for the cursor.

For USER SQL key selection, specify (LABEL - KSELECTn, SQLFUNC -
SELECT). The WHERE clause can contain the Key column host variables,
non-key host variables and pseudo segment field host variables. If the
host variables are not keys, the High Level Audit Language function
SPAWHERE must be executed during a Primary Key Audit. SPAWHERE must
reflect the host variables in the defined data format, length, and
order. Additionally, the Primary Key Audit should specify which USER
SQL key selection function to execute, (that is, KSELECT3, or KSELECT4)
by also setting SPASQL in the Primary Key Audit. Refer to the High
LeveéLAudit Language section for details on defining SPAWHERE and
SPASQL.

User specified secondary key selection WHERE clauses should be defined
to allow for repositioning into the table for each subsequent iteration,
when the terminal operator requests the next page of selections. This
can be done by updating the host variables to reflect the last row on
the page. A Secondary Key Audit routine called after each row is
FETCHed can perform this function.

If a row is selected for display from the Secondary Key Selection browse
screen, it is re-fetched using the standard IMSADF II CSELECT call. The
host variables used for this fetch may be different from the values used
for the USER SQL key selection function if non-keved host variables are
used for the secondary key selection brouwse.

When specifying KSELECTn (n=3-9) functions, only define the SELECT
statement and the associated WHERE clause. Logic is included in the
Table Handler Rule to DECLARE, OPEN, FETCH, and CLOSE the KSELECTn
CURSOR. These functions are manipulated by IMSADF II secondary key
selection modules when KSELECTn is specified.

2-20 IMSADF II Application Specification Guide for DB2

Figure 2-10 contains examples of USER SQL statements.

GENERATE OPTIONS=TABH,TABLES=XX,SQLUSER=YES
¥ LABEL SQLFUNC WHERE CLAUSE

* columns

¥ 1 to 8 10 to 17 19 +to 71

* 16 continuation (16 TO 71)

H o o e e e e e - - - = - - =

XXSELECT SELECT WHERE TABCOLUMN1 BETWEEN :ffff.xx AND :ffff.xx
AND TABCOLUMNZ2 > :ffff.xx

XXUPDATE UPDATE WHERE TABCOLUMN1 IN C(:ffff.xx,:ffff.xx)

XXDELETE DELETE WHERE TABCOLUMN1 <= :ffff.xx AND TABCOLUMN1l -= 0

XXCURS1 CURSOR WHERE TABCOLUMN1 LIKE :ffff.xx FOR UPDATE OF

XXCURS10 OPEN XXCURS1

XXCURS1F FETCH XXCURS1

XXCURS1U UPDATE WHERE CURKRENT OF XXCURS1

XXCURS1D DELETE WHERE CURRENT OF XXCURS1

XXCURS1C CLOSE XXCURS1

KSELEng SELECT WHERE TABCOLUMN1 BETWEEN :ffff.xx AND :ffff.xx

&SQLEN

Figure 2-10. USER SQL Statement Formats

If additional DB2 function is required, native SQL calls may be issued
in an Audit Exit or Special Processing Routine and mapped back to the
SPA work area (Table ID or pseudo segment ID) via the MAPPER or COPYSEG
function.

Only those SQL calls, that are executed by the IMSADF II transaction
drivers, should be included in the Table Handler Rule. The number of
SQL calls determine the size of an DB2 Application Plan and the size of
an DB2 Application Plan is an important consideration in the performance
of the DB2 system.

summary for Table Handler Rule

In summary, all Column names in a Table are specified in the SELECT list
and Indicator Variables if specified (SQLIND=YES on the TABLE statement)
are associated with each Column. However, only those Columns that have
SQLNULL=YES specified are eligible for Indicator Variable processing.

The Host variables, specified in the INTO clause, define the receiving
I/0 area for each Column. This I/0 area may be in the IMSADF II SPA
work area, an IMSADF II internal buffer area for secondary key selection
browse or Data Compare, or in an exits work area.

The WHERE clause specifies the Column names, comparison operators '=',
'>=r, '<=', or the DB2 LIKE relational operator, and host variables
representing the KEY columns.

IMSADF II support allows up to 512 Columns per Table. The maximum Table
I/0 area including Indicator Variables is 6000 bytes.

The DB2 pre-compiler issues a Return Code 4 when processing the
generated Table Handler Rule. This is due to the absence of a SQL TABLE
DECLARATION statement. For COBOL and PL/I, the DB2 DCLGEN function
builds a data structure and SQL DECLARE. The pre-compiler matches the
SQL statement usage against SQL DECLARE for consistency. Since the
Rules Generator created Table Handler Rule is an Assembler program and
DB2 does not provide DCLGEN support for Assembler language programs this
SQL DECLARE is omitted. It provides no additional checking for IMSADF
II.

Chapter 2. User Specification 2-21

summary of Rules Generator Operands for the Table Handler Rule

The Rules Generator operands that determine the content of the Table
Handler Rule follow:

TABLE statement

ID Naming convention for Table Handler Rule (ssssSid)

SKSEGS If greater than zero then eligible for SKS calls

SQLIND Specifies indicator variables are to be generated

SQLDIST Specifies the presence of DISTINCT in SELECT
statements.

SQLNAME Table name in FROM and INTO clause

TYPE Indicates these statements define a DB2 Table

COLUMN statement

KEY Indicates search columns in WHERE clause
TYPE Indicates data type for the column host variable
ID Naming convention for host variables
where xx is Table ID and ffff is Column ID.
Host Variables - tAxxffff$
Indicator Variables - :Axxffffa
KEY Columns = Axxffffn (n is 1-9 or a-z)
LENGTH Indicates length of the column
SQLISRT Indicates whether column exists in VALUES clause
SQLNAME Column name
SQLNULL Indicates whether column may be NULL
SQLORD Indicates order of key values (ASC, DESC)
SQLUPD Indicates whethar column exists in SET clause
GENERATE statement
SQLCALL Specifies the SQL statements to be built
SQLUSER - Specifies user SQL statements and WHERE clauses
to be built

Figure 2-11. Rules Generator Operands Applicable to Table Handler Rule

2-22 IMSADF II Application Specification Guide for DB2

Other GENERATE Statement Operands
OPTIONS=SGALL

Format of the SGALL GENERATE statement is:
GENERATE OPTIONS=SGALL,SEGMENTS=(id,id,...id)

The SGALL operand is a Rules Generator operand that is compatible with
DB2 table definitions and DL/I segment definitions.

The GENERATE option SGALL produces a Table Layout Rule for each DB2
Table ID and a Segment Layout and Segment Handler Rule for each DL/I
segment specified in the SEGMENTS operands. If the SEGMENTS operand is
not specified, a Table Layout Rule is generated for each DB2 Table
defined in this Rules Generator input stream. For each DL/I segment
defined in this Rules Generator input stream, both a Segment Layout and
Segment Handler Rule are generated.

Table Handler Rules must be generated using the GENERATE OPTIONS=TABH
statement.

Input Transaction Rules

The Input Transaction Rules will support the inclusion of both DL/I
segments and DB2 Tables in the same rule. Both segments and tables will
be displayed on the same screen and updated in the appropriate data base
management system.

The following existing GENERATE statement operands apply additionally to
DB2 tables:

DBPATH DBPATH list those DB2 Tables to be SELECTed by the transaction
drivers and for which the terminal operator is prompted for
keys in the conversational environment. Table ID order within
the DBPATH operand becomes the processing order at execution
time. If the DL/I segment IDs are intermixed, an entire DL/I
path is still processed together.

TSEGS TSEGS list those DB2 Tables to be allocated space in the SPA
work area. Access to TSEGS is provided with SQL statements
invoked with Audit operations or the SQLHNDLR Call function.

DLET DLET eligibility indicates that the Table row may be deleted
through an Audit operation or through the SQLHNDLR call
function. This is the analogous function to DL/I segments.

ISRT If the transaction mode is Update or Delete and this Table row
is not found, the row is INSERTed if the USERID has ADD
authority and data was entered for the row. This is the
analogous function to DL/I segments.

Because each DB2 table specified is considered by IMSADF II to
be a root-only data base, each table will have insert
S%;g}gility independent of all other tables specified in the

For example, a user could specify:
DBPATH=(T1,T2,T3),ISRT=(T3)

In this case, data for table T3 may be inserted even though no
rows exist for tables Tl and T2.

DATACOMP The DATACOMP operand specifies Tables/Segments which are
compared for change prior to update or delete. This operand
is valid only for c:nversational processing and should be
specified for any Table/Segment that could have simultaneous
updates by different users. Before an UPDATE or DELETE is
performed, the Table row is SELECTed and compared with the
copy saved at the first screen display. The CUPDATE and
CDELETE Standard SQL statements are used for the data base
update and data base delete functions.

Chapter 2. User Specification 2-23

Other existing operands specifying Input Transaction Rule generation
requirements follow:

. Request for Generation

OPTIONS=CVALL, TPALL, BAIT
. Transaction Identification

TRXID, DBPATH, TSEGS, AGROUP, LRULE, LINKLIB, ASMREQ
. Transaction Exit Specifications

SPECIAL, LANGUAGE, BYPASS, STX, DLIEXIT (only data base DL/1
calls)

L Delete and Insert Eligibility

DLET, ISRT
. Conversatioral and Nonconversational Only

CURSOR, DEVNAME, DEVTYPE, IMAGE, PFKDATA, PFKLIT, PFKNUMB
U Conversational On’y

SP0S, TRXNAME, DISPNAME, DATACOMP, DAMSG, ADDMODE, COMMLEN,
KEYSEL, MAXKEY, PGROUP, SFORMAT, SHEADING, SOMTX, DKEY, DTRAN

. Nonconversational Only

MODNAME, ORID
. Batch Only

CNT, EOF
Note: The standard processing TWIN operands do not apply to DB2 Tables.
They are only available for DL/I processing.
Preload, Composite and Driver Link-Edits
The Rules Generator PRELOAD, COMPOSITE and DRIVER LINK-EDITS statements
have not changed for DB2 transactions. Only DB2 transactions must be
linked to an IMSADF II driver, as all IMSADF II transactions make use of
the facility data bases.
The GENERATE statements incorporating SHTABLE (the list of Segment
Handler Rules), also incorporates Table Handler Rules. The GENERATE
OPTIONS applying to the expanded use of the SHTABLE operand include:
U PREL Preload Table
. CTLE,NCLE Composite Load Modules
. STLE,SPLE Conversational Link-edits
o NCLE,TPLE Nonconversational Link-edits

. BDLE Batch Driver Link-edit

USING THE RULES GENERATOR EXECUTION PROCEDURE

A catalog procedure, ????G (???? - Substitute installed ADFID) is
provided to invoke the Rules Generator. Reference the IMS Application
Development Facility II Version 2 Release 2 Application Development
Reference Rules Generator chapter, and the IMS Application Development
Facility II Version 2 Release 2 Installation Guide for complete details.

A new PARM operand and several new DDNAME statements have been added to
this procedure for the DB2 support.

2-2% IMSADF II Application Specification Guide for DB2

#coLs

ADFSQLHO

ADFSQLHU

DBRMLIB

DB2PRINT
DB2TERM

A PARM operand specified to indicate the maximum number of DB2
columns for one SYSTEM statement in this execution of the
Rules Generator. #cols is used in the GETMAIN size
calculation.

Following is the format of the PARM operand specified on the
Rules Generator JCL execute statement.

PARM=(#fields, #screens, #cols,sysid)

The #cols is the third positional parameter. SYSID remains an
optional parameter. If the SYSID is not specified the PARM
field would be specified as:

PARM=(#fields, #screens, #icols)

#cols is required for DB2 tables, since there is a significant
size difference in the NAME and SQLNAME operands.

The default is 100. This includes Table and Column statements
that contain the SQLNAME operand.

Input to DB2 pre-complier. Contains Rules Generator created
Assembler language source for a Table Handler Rule.

Work file used by the Rules Generator during Table Handler
Rule generation.

The DB2 pre-compilier stores a DBRM member for each Table
Handler Rule created into this cataloged MVS partitioned data
set.

JOB2 requires that the member name be included in the JCL.
This implies that only one DBRM member can be defined per
invocation of the DB2 pre-compiler.

However, the Rules Generator can create many Table Handler
Rules (and DBRMs) during one execution. Therefore, the hard
rcoded member name in the DBRMLIB DD JCL statement is not used.
It must be there, but it is treated as a dummy name.

In order for the Rules Generator to process the DBRMLIB DD JCL
statement, the DISP parameter must be specified as OLD or SHR.

The Rules Generator builds a member name for each Table
Handler Rule and DBRM created in the following format ssssSid
where:

5555 - Rules Generator SYSTEM statement SYSID operand
S - Constant
id - TABLE ID being processed
Note: This naming convention is the same as the naming
convention used when the Rules Generator creates Segment
Handler Rules.
Used by DB2 pre-compilier as SYSPRINT file.

Used by DB2 pre-compilier as SYSTERM file.

Chapter 2. User Specification 2-25

HIGH LEVEL AUDIT LANGUAGE
) All Audit Phases

DB2 Table Columns (fields) are eligible for all three phases of
auditing:

- KEY - pre SQL call

- PRELIM - before transaction screen display
- PROCESS - after transaction screen input
Additionally, all three legs of auditing apply.
- P0 - Automatic Field Assignment

- P1 - Field Audit

- P2 - Message sending

. All audit operations, except DL/I related are available for DB2
Table processing.

All field types are supported except TYPE=FLOAT Columns which are
limited to data moves of FLOAT to FLOAT, FLOAT to ALPHANUMERIC, and
ALPHANUMERIC to FLOAT. Arithmetic operations and other data
conversions are not supported.

J All current audit routines, including arithmetic, data compares and
moves, encode-decode, subroutine branching, message sending, dynamic
screen attribute modification, transaction switching, are available
to DB2 Table Columns.

. Refer to the Audit Language, and the Data Base Rules Specification
chapters of IMS Application Development Facility II Version 2

Release 2 Application Development Reference for additional details
on all audit operations.

DB2 RELATED AUDIT OPERATIONS

. CONCAT and SUBSTR operations are available for character string
manipulation for field types ALPHA, ALPHANUM, NUM and VARCHAR.

. IMMEDIATE DB2 SQL call operation

. Interrogate DB2 SQLCODE and SQLWARN(0-7)

. USER defined Secondary Key Selection Browse
. DB2 Column Null value (Set and Test)

U DB2 Column Truncation (Test)

CONCAT
The CONCAT operation concatenates two source fields into one target
field. The entirety of each source field is used in the concatenation.
For VARCHAR fields this is determined by the current field length. If
one of the source fields is null, the target is set to null.
field = CONCAT field field
The fields used can be audited or related fields.
Example:
STR1 = CONCAT BAPSSTR2 BAPSSTR3
- wWwill generate -

01GOBAPSSTR10202

2-26 IMSADF II Application Specification Guide for DB2

0001(BAPSSTR2,BAPSSTR3)

SUBSTR

There are two forms of the SUBSTR audit operation. In one the
substringing is performed on the source field, while on the pther, it is
performed on the target field. For both operations, the target field
name is in the related field area of the operation descriptor, the
source field name is in the first data descriptor and the starting
position and length of the substring are in the second data descriptor.
The auditor uses the operation descriptor code to tell whether to
perform the substring on the target or the source field. The two forms
of the SUBSTR are as follows:

tgtfield = SUBSTR srcfield starting-position : length

SUBSTR tgtfield starting-position : length = srcfield
Any field name used may be an audited or a related field. Both starting
position and length must be numeric constants or both must be fields
containing numeric constants. The numeric constants must be 1 to 255.

Example: Source field substringing

STR1 = SUBSTR BAPSSTR2 7 : 3
OR
STR1 = SUBSTR BAPSSTR2 BAPSSTR3 : BAPSSTR4

- Will generate -

01G1BAPSSTR10202 01G1BAPSSTR10202
0001(BAPSSTR2) OR 0001(BAPSSTR2)
0002¢7,3) 0002(BAPSSTR3,BAPSSTR%)

Example: Target field substringing
SUBSTR BAPSSTR1 7 : 3 = STR4
OR
SUBSTR BAPSSTR1 BAPSSTR2 : BAPSSTR3 = BAPSSTR4

- will generate -

01G2BAPSSTR10202 01G2BAPSSTR10202
0001(BAPSSTR4) OR 0001(BAPSSTR4%)
0002(7,3) 0002(BAPSSTR2,BAPSSTR3)

IMMEDIATE SQL Call

An operation, comparable to the IMMEDIATE DL/I call operation, is
available to execute SQL calls for a Tables/Vieuw.

SQL call expressions are coded in the following format:

IF sSQL label field <">tableid<'> <NOT> OK
SQL Identifies the statement as a DB2 SQL function.
labheal Defines the type of SQL function, standard, non-standard, or

USER QL statement.

Toélgwing are the valid SQL functions that may be specified as
abels.

SELECT, UPDATE, DELETE, INSERT
CSELECT, CUPDATE, CDELETE
KSELECn0O, KSELECnF, KSELECNnC
CSELECTO, CSELECTC

CUPDATEO, CUPDATEU, CUPDATEC

Chapter 2. User Specification 2-27

CDELETEO, CDELETED, CDELETEC

USER SUPPLIED - label is one to eight characters (first
character alphabetic) and is a label that was specified in
the SQLUSER LABEL section when the Rules Generator was
cBeating the Table Handler Rule for the specified Table
ID.

Notes:

1. All DB2 SQL calls are immediate. If non-immediate DB2 SQL
calls are required, (that is, Table updates do not occur
until transaction driver data base updates, after
successful PROCESS Audits), the SETFLAG operation should
be used.

2. The IMSADF II data compare DATACOMP function only applies
to transaction driver updates or a SEGUPDTE Call function.

field Name of the field containing the search values. This field
must represent a field containing the concatenation of all
host variables in the WHERE clause.

For the standard SQL functions, the host variables are in the
order in which the KEY columns are specified to the Rules
Generator.

A keyword 'KEYFIELD' specifies that the current key associated
with the Table will be used.

For USER SQL functions, the field must represent a
concatenation of all host variables in the WHERE clause, in
the order specified in th~- WHERE clause.

tableid Specifies the two-character Table ID of the DB2 Table to be
accessed.

0K Indicates that SQLCODE is zero and SQLWARNO is not "W’

The SQL call expression performs both a SQL call and a check of the SQL
status code returned from the call. If the SQLCODE is zero and SQLWARNO
is blank, the NEXT TRUE branch is taken. To determine the specific
setting of SQLCODE and SQLWARN returned, a system expression using
SQLCODE and SQLWARN(0-7) keywords can be used.

Example:

IF SQL DEPTSELC SAP2DEPT ES NOT 0K
ERRORMSG = 0805

- will generate -

01G8SAP2DEPT02 0805 If DEPTSELC function on table ES
0001CES,DEPTSELC) using the key from related
field SAP2DEPT is NOT 0K, issue
error msg 0805 and terminate audit

Interrogate SQL SQLCODE and SQLWARN(0-7)

To interrogate the DB2 SQL return code and warning conditions associated
with a SQL call, the following system field keywords have been defined.

SQLCODE A fullword integer in the SQL Communication Area that contains
a return code pertaining to the most recently executed SQL
statement. Some of the return code values vou might be
interested in are:

zZero The SQL statement executed successfully.
-n A negative integer value, DB2 error.
+n A positive integer value, the 5QL statement executed

successfully, and an exceptional condition has
occurred.

2-28 IMSADF 11 Application Specification Guide for DB2

+100 No data exists to process.

SQLHWARN Eight single character variables that denote a warning, of
which only the first six are used by DB2.

SQLWARNO If blank, all other SQLWARNNn variables are blank.
Otherwise the value W' and at least one other
SQLWARNNn variable is also 'W'.

SQLUARNL If 'W', at least one column's value was truncated
when it was stored into a host variable.

SQLWARN2 If 'W', at least one null value was eliminated from
the argument set of a function.

SQLWARN3 If 'W', the number of host variables specified in
the SQL statement is unequal to the number of
columns in the table or view being operated on by
the statement.

SQLWARNG If 'W', a prepared (that is, dynamic SQL) UPDATE or
DELETE statement does not include a WHERE clause.

SQLWARNS If '"W', your program tried to execute a statement
that applies only to SQL/DS.

SQLHARNG Reserved.
SQLWARN7 Reserved.
The format of the SQLCODE system expressions is:
SQLCODE comparison-operator numeric-constant(s)
Where:
comparison-operator: =, ==, &, >, <=, >3, EQ,NE,LT,GT,LE,GE
numeric-constant: list of one or more numeric constants
Use of SQLCODE causes a compare between the corresponding system field
and a list of one or more numeric constants. If any one compare is
true, the result of the compare is true. It is recommended that only
one constant be coded for a compare using GT, LT, GE and LE.
The format of the SQLWARNn system expressions is:
SQLHARNNn comparison-operator literal
Where:
comparison-operator: =, ==, EQ ,NE
literal: 1 character warning value '"W' or ' '

Use of one of the SQLWARNn keywords causes the corresponding system
field to be checked for a value of "W' or ' '.

Chapter 2. User Specification 2-29

Following is a scenario of a check after a SQL call:

IF SQLCODE < 0
ERRORMSG = 30
ELSE
IF SQLCODE 0
ERRORMSG 00
ELSE
IF SQLWARNO = 'W'
WARNMSG = 1000
ENDIF
ENDIF
ENDIF

01
10
01

- wWwill generate -

02H1SPASQLCD 030001 If SPASQLCD is less than 0, put out

0001(0) error msg 0001 and terminate audit
03G9SPASQLCD 040100 Else If SPASQLCD is 100, put out

0001(¢100) error msg 0100 and terminate audit
04G9SPAWARNOOOO001000 Else IF SPAWARNO is '"W' put out

0001CW) error msg 1000 and terminate audit

During execution of a SQL call, the IMSADF II SPA (Scratch Pad Area)
fields SPASQLCD and SPAWARN are updated with the DB2 SQL return code and
warning conditions. The values in these SPA fields are the values
interrogated when the SQLCODE and SQLWARNnh system expressions are coded.

The Auditor maintains additional error information if a S5QL call results
in an error or warning condition. The DB2 SQL Communication Area
information (SQLCODE, and SQLWARN) is maintained in the IMSADF II SPA
for each audited field flagged in error. The information can be mapped
into user error and warning messages using VARLIST6, and VARLIST7.
VARLIST6 ¢4 bytes - SQLCODE

VARLIST7 8 bytes - SQLWARN(0-7)

USER SQL =- Key Selection Brouwse

If a '>' or '<' is entered in a Key Column for a DBPATH table, the
standard SQL statement KSELECT1l is executed.

If %string%Z or __string (DB2 LIKE relational operator) is entered, the
standard SQL statement KSELECT2 is executed.

If a USER SQL statement is required for the Key Selection browse
function, then USER SQL statement must be defined to the key selection
process in a Primary Key Audit.

Note: The overall invocation control for the Secondary Key Selection
browse function is the Rules Generator SKSEGS operand.

Two audit operations are available to aid in the Secondary Key Selection
browsing of DB2 Tables.

SPASQL Sets a system field in the IMSADF II SPA (SPASQLKS).
The number of the user defined key selection function to be
executed is moved to this field by setting SPASQL in a Primary
Key Audit.

Note: The value coded is of the form KSELECTn. Only the n is
stored in SPASQLKS.

2-30 IMSADF II Application Specification Guide for DB2

The USER SQL Key Selection browse function is invoked instead
of standard Secondary Key Selection browse whenever the
terminal operator:

enters a partial key with a >, <, %, or _

or
enters an incorrect key

or
enters no key

and
the Table is eligible for secondary key selection
(SKSEGS>0), and the specified KSELECTn function
was defined in the Table Handler Rule.

and

SPASQLKS was set to a user defined function
KSELECTn (n=3-9) by a primary key audit.

Syntax for SPASQL statement is:
SPASQL = {field,KSELECTn,n}
Where:

field a related or audited field that contains an 8 character name
of the format KSELECTn, and n is a digit 3 to 9.

KSELECTn a constant, and n is a digit 3 to 9.

n a digit 3 to 9.

Example of 3 forms of SPASQL statements:
SPASQL = RELFIELD
SPASQL = KSELECT3
SPASQL = 3

- Wwill generate -

01G3RELFIELDO0202 Related field - KSELECTn, n is 3-9
SPASQLKS is set to n

02G3 0303 SPASQLKS is set to 3
0001(3)

03G3 0000 SPASQLKS is set to 3
0001(3)

SPAUHERE Sets a system field in the IMSADF II SPA (SPAWHERE).

It contains the name of the field holding the secondary key
selection WHERE clause host variables. SPAWHERE should be set
in conjunction with the SPASQL secondary key selection
function if the WHERE clause requires other than the Table Key
Column values.

The field named in SPAWHERE should be updated, with a
Secondary Key Audit after each FETCH. This is to accommodate

repositioning for subsequent secondary key selection
iterations.

The value coded is an eight-character IMSADF II field name.
At execution time the field name is converted into a two-byte
offset into the Table I/0 area. The two-byte offset is the
value stored in SPAWHERE.

Syntax for SPAWHERE statement is:

SPAWHERE = {field,KEYFIELD}
Where:
field a related or audited field.

KEYFIELD a constant, that specifies that the key area for the Table
contains the correct keys.

Chapter 2. User Specification 2-31

Example of SPAWHERE statement:

SPAWHERE = AUDFIELD
SPAWHERE = RELFIELD
SPAWHERE = KEYFIELD

- will generate -

DB2

2-32

01G4 0202 Audited field
02G4RELFIELDO0303 Related field
03G4KEYFIELDOOOO Table key area

column Null and Truncation (Test and Set)
Test a DB2 Column for the null value.

A test is made on the Columns indicator variable. A value of less
than zero indicates the null value.

Syntax for NULL test:
IF <field> NULL comparison-operator {ON,OFF}

Where:

field a related or audited field to be tested for
null value.

comparison-operator: =, ==, EQ, NE

(ON, OFF) ON - null, OFF - not NULL

Example of NULL test:

IF NULL = ON
IF AUDFIELD NULL
IF RELFIELD NULL

ON
ON

- will generate -
01G5 0200 test audited field
02G5 0300 test audited field
03G5REL*FIELDO0400O test related field
Set a DB2 Column to the null value.
The Columns irdicator variable is set to a negative number.
Note: This operation cannot be used to set a Column to not null.
In order to change a Column from null to not null, data must be
moved into the Column. Part of the logic associated with the data
move is to set the indicator variable to zero.
Syntax for Set to NULL:
field NULL = ON
Where:
field a related or audited field to be SET to NULL.
Example of SET to NULL:

AUDFIELD NULL = ON
RELFIELD NULL = ON

- will generate -

01G7 0203 set audited field to NULL
01G7RELFIELD0203 set related field to NULL

Test a DB2 Column for truncation.

IMSADF II Application Specification Guide for DB2

A test is made on the Columns indicator variable. A value greater
than zero indicates truncation occurred when DB2 moved data into the
host variabla. The positive value in the indicator variable is the
length of the source Column in the DB2 data base.
Syntax for Truncation test:

IF <field> TRUNC comparison-operator {ON,OFF}
Where:

field a related or audited field to be tested for
truncation.

comparison-operator: =, ==, EQ, NE
(ON, OFF) ON - truncated, OFF - not truncated
Example of Truncation test:

IF TRUNC = ON

IF AUDFIELD TRUNC = ON
IF RELFIELD TRUNC = ON
- will generate -
01G6 0200 test audited field
02G6 0300 test audited field

03G6RELFIELDO0400 test related field

MESSAGE GENERATION

To aid in the mapping of diagnostic information on SQL calls issued by
the IMSADF II transaction drivers or an audit operation, VARLISTé and
VARLIST? have been added to the message mapping process.

VARLIST provides a technique for mapping data other than Table/Column
data into the message text.

Currently VARLIST1 can be used when Segment Handler Rule errors occur,
to map the two-character DL/I status code into the message. VARLISTé6
can be used in a similar manner to map the four-character DB2 SQL return
code, (SQLCODE) into a message.

Messages generated by the Auditor can map both VARLISTé and VARLIST?
data into the message text. The Auditor maintains an error table in the
SPA for each audited field flagged in error. Fields that are set in
error using the SETERROR function are not included in this table.
VARLIST6 & bytes - SQLCODE

VARLIST7 8 bytes - SQLWARN(0-7)

Chapter 2. User Specification 2-33

EXIT FUNCTIONS

SQLHNDLR CALL

A SQLHNDLR function is available to Audit Exits and Special Processing
Routines to retrieve or update DB2 data base Tables. The SQLHNDLR call,
in conjunction with the appropriate Table Handler Rule, executes IMSADF
II Standard, Non-Standard, and USER SQL statements to provide all the
fugitions required to SELECT, INSERT, UPDATE, and DELETE a row in a DB2
TablesView.

The use of the Table Handler Rule eliminates the need for programming
detailed DB2 SQL statements. It also eliminates the requirement that
Audit Exits and Special Processing Routines must be processed by the DB2
pre-compiler, and be included in the DB2 application plan. Each
TablesView that is accessed with a SQLHNDLR call must have a Table
Handler Rule that contains the desired SQL statements.

When the transaction logic is controlled with a Special Processing
Routine, it is also responsible for all data base updates (UPDATE,
INSERT, DELETE). This can be accomplished either by individual SQLHNDLR
calls or by using the automatic data base update routine, SEGUPDTE. A
SEGUPDTE call causes all Tables/Segments in the IMSADF II SPA work area
to be scanned to see if they should be INSERTed, UPDATEd, or DELETEd.
Only the SEGUPDTE facility verifies that a Table row to be updated has
not changed since originally fetched, if the IMSADF II data compare
(DATACOMP) function was specified for this Table.

The logic of a Special Processing Routine should determine when and hou
a Table should be updated and issue the appropriate SQLHNDLR Calls or
SEGUPDTE Call. In addition, any retrieval of Tables other than the
Table rows SELECTed by the transaction driver, DBPATH, must be handled
by the Special Processing Routine.

The application developer/programmer can perform data base I/0 either
into an area in the exit or into a Table I/0 area reserved in the IMSADF
II SPA work area. If the IMSADF II SPA work area is used, the Tables
accessed must be described in the Input Transaction Rule.

I70 performed in the IMSADF II SPA work area has the following
advantages:

. SQLHNDLR Call parameters are simplified.

. IMSADF II transaction drivers maintains the current key and updates
it upon a successful FETCH.

U] The Auditor can be invoked to validate Columns in the IMSADF II SPA
work area.

U Input data is mapped to the appropriate Table Column(s) by the
transaction driver.

. Table Columns in the IMSADF II SPA work area can be formatted and
displayed by the cransaction driver.

U The programmer can retrieve specific Columns or the entire row by
calling the Data MAPPER or COPYSEG function.

2-3%4 IMSADF II Application Specification Guide for DB2

SQLHNDLR Call Format

The format
In COBOL

In PL/I

of the SQLHNDLR call is:

WORKING STORAGE SECTION.
77 1D PICTURE XX.
77 FUNC PICTURE XXXXXXXX.
77 KEY PICTURE X(n). NOTE n is defined as necessary.
77 AREA PICTURE X(n). NOTE n is defined as necessary.
77 TLR PICTURE X(n). NOTE n is defined as necessary.
EXEC SQL

INCLUDE SQLCA
END-EXEC

CALL 'SQLHNDLR' USING ID, FUNC, {KEY, AREA, TLR, SQLCA}.
DCL (SQLHNDLR) ENTRY OPTIONS(ASSEMBLER,INTER);

DCL ID CHAR(2),
FUNC CHAR(8),

KEY CHAR(n), /¥ n is defined as necessary X/
AREA CHAR(n), /¥ n is defined as necessary X/
TLR CHAR(n); /¥ n is defined as necessary ¥/

EXEC SQL INCLUDE SQLCA ;
CALL SQLHNDLR (ID,FUNC, {KEY,AREA,TLR,SQLCA});

Note: The EXEC SQL INCLUDE SQLCA is only required if the optional

parameter
common SQL

SQLCA is included in the call list. This implies that the
Communication Area maintained by IMSADF II is not used. The

Audit Exit or Special Processing Routine contains its ouwn SQL
Communication Area.

SQLHNDLR Call Parameters

The first
remaining

ID

FUNC

KEY

two parameters of the SQLHNDLR Call are required. The
three are optional depending on the access requirements.

Two-character target Tables/View ID. This ID is used to
identify the appropriate Table Handler Rule and to determine
whether the Table I/0 area in the IMSADF II SPA work area is
required.

A one- to eight-character label that defines the Standard,
Non-Standard, or USER SQL statement to be executed.

Valid SQL statement labels are:

SELECT, UPDATE, DELETE, INSERT

CSELECT, CUPDATE, CDELETE

KSELECnO, KSELECnF, KSELECKC

CSELECTO, CSELECTC

CUPDATEO, CUPDATEU, CUPDATEC

CDELETEO, CDELETED, CDELETEC

USER SQL - label is one to eight characters (first
character alphabetic) and is a label that was specified in
the SQLUSER LABEL section when the Rules Generator was
gBeating the Table Handler Rule for the specified Table

Optional Parameter

If specified, key defines an 170 area in the Audit Exit or
Special Processing Routine that contains the WHERE clause host
variables for the S5QL function being executed.

If key is not specified, the transaction driver uses the
current key for the Table which is kept in a reserved area in
the IMSADF II SPA work area. This key is located using the ID
parameter. MWhichever key area is used, must contain the
complete key required by the SQL function being executed.

Chapter 2. User Specification 2-35

AREA

TLR

SQLCA

If the SQLHNDLR Call is made using the Table I/0 area in the
IMSADF II SPA work area and if the SQL statement executed
results in I/0, (that is, FETCH, UPDATE) then the current key
area associated with the Table is updated.

No attempt is made to parallel the current IMSADF II SEGHNDLR
call DL/1I support that always updates the key area. DB2 does
not provide a key feedback area.

The application programmer must ensure that the key area is
correctly defined to match the host variables in the SQL
statement being executed.

Optional Parameter

If specified defines the I/0 area in the Audit Exit or Special
Processing Routine in which data base I/0 is to be performed.

If AREA is not specified, the transaction driver uses the
Table I/0 area in the IMSADF II SPA work area for data base
I1/0.

Optional Parameter

If specified defines the Table Layout Rule associated with the
Table ID.

If TLR is not specified, the transaction driver uses the Table
Layout Rule in the IMSADF II SPA work area if available.
Otherwise, the parameter is initialized to zero.

Optional Parameter

If the SQLCA parameter is specified DB2 maps the status of the
SQL statement being executed into the SQL Communication Area
defined in the Audit Exit or Special Processing Routine.

If specified it requires that the DB2 SQL Communication Area
be defined in the Audit Exit or Special Processing Routine.

To define the SQL Communication Area requires coding the
following DB2 statement in the Audit Exit or Special
Processing Routine.

EXEC SQL INCLUDE SQLCA

It also requires that the Audit Exit or Special Processing
Routine be processed by the DB2 pre-compiler prior to compile,
assemble and link-edit.

If the SQLCA parameter is not specified the copy of the 5QL
Communication Area contained in the IMSADF II transaction
driver is used. DB2 maps the status of the SQL statement
being executed into this copy.

This eliminates the need to define a separate copy of SQL
Communication Area for each Audit Exit and Special Processing
Routine.

The address of the IMSADF II SQL Communication Area is passed
to Audit Exits and Special Processing Routines.

When the executed SQL function involves data base I/0 the DB2
SQL return code (SQLCODE) and warning conditions (SQLWARN) are
also mapped to the IMSADF II SPA work area fields, (SPASQLCD,
and SPAWARN). Audit Exits and Special Processing Routines
have addressability to these SPA fields.

Note: 1If native SQL statements are coded, then the SQL
Communication Area must be defined in the Audit Exit or
Special Processing Routine.

When any of the optional parameters are specified with the SQLHNDLR
Call, all parameters that precede it must also be specified. If a Table

2-36

IMSADF II Avplication Specification Guide for DB2

is not described in the Input Transaction Rule (DBPATH, or TSEGS), then
all data base I/0 must be performed in the Audit Exit or Special
Processing Routine I/0 area. When data base I/0 is performed in the
Audit Exit or Special Processing Routine I/0 area the first four
parameters are required.

The SQLHNDLR Call returns the following Return Codes in SPARTNCD.

0 SQL statement was executed.
Check SQLCODE, and SQLWARN (SPASQLCD, SPAWARN) for completion
status.

% SQL statement was executed.

DB2 SQL return code is less than zero, or equals one hundred,
(SQLCODE<O0, or SQLCODE=100). Check SQLCODE (SPASQLCD).

8 SQL statement was not executed.

The SQL function specified by the LABEL parameter is not in
the Table Handler Rule for Table ID specified.

EXIT PARAMETER LISTS
U Audit Exit
The following parameters are passed to an audit exit routine:

audit field, field definition, op code, audit pcb, comopt,
truesfalse, function, spa, pcb address list, cokey, reldted
field, related field definition, data descriptor, SQLCA,
reserved, reserved, pcbh count, user pcbl, user pcb2,

. Special Processing Routine
The following parameters are passed to a special processing routine:

spa, comopt, audit pcb, message pcb, user pcbl, user pcb2,,
iopcb, alternate iopcb, express iopcb, SQLCA

RULES DOCUMENTATION

The following RDOC reports will reflect DB2 pertinent data. DB2 Table
layout TYPE=TBL and DB2 Column data is reported. The DB2 Table name and
Column names are not reported. These can be referenced by their IMSADF
II Table and Column ID's.

The Table Lavout and Table Handler Rules are treated the same as Segment
Layout and Segment Handler Rules.

SR01 Static Rules Summary

SR01 Segment Layout Summary

SR02 Static Rules Summary

SR02 Segment Layout Summary

SR02 Input Transaction Rule Details
SR03 Segment Where Used Report

SR04 Segment Where Used Report

SR04 Segment Layout Details

SR05 Segment Where Used Report

SR05 Segment Layout Details

SR06 Static Rules Summary

SR06 Input Transaction Rule Details
SR07 Composite Load Module Details by System

Chapter 2. User Specification 2-37

DB2 SPECIFICATIONS

BIND PROCESS

In the DB2 envircnment the 'Application Plan' is used for scheduling and
authorization checking. The plan is built by a DB2 BIND subcommand
issued in the TS0 environment to incorporate all related modules,
issuing SQL calls. The Application Plan name in the IMS/VS environment
is the PSB name. For an IMSADF II application, all Table Handler Rules
and Audit Exits and Special Processing Routines with native SQL calls
must be included in the BIND process for successful execution.

From the ISPF-MVS primary option menu, the DB2I option is selected. The
DB2I MENU panel is then displaved listing DB2 functions.

DSNEPRI DB2I MENU
===>
SELECT ONE OF THE FOLLOWING DB2 FUNCTIONS:

1 SPUFI Process SQL statements.

2 DCLGEN Generate SQL and source language declarations.
3 BIND/REBIND/FREE Issue BIND, REBIND, or FREE for application plans.
4 PROGRAM PREPARATION PRECOMPILE, BIND, COMPILE, LINK, and RUN.

5 RUN RUN a SQL program.

6 DB2 COMMANDS Issue DB2 commands.

7 UTILITIES Invoke DB2 utilities.

X EXIT Leave DB2I.
PRESS: END to exit HELP for more information

Figure 2-12. DB2I MENU Panel

2-38 IMSADF II Application Specification Guidea for DB2

The function BIND/REBIND/FREE is selected and the BIND/REBIND/FREE menu
panel is displayed.

DSNEBPO1 BIND/REBIND/FREE

===>

SELECT ONE OF THE FOLLOWING:

1 BIND Add or replace an application
2 REBIND Rebind existing application pl
3 FREE Erase application plan(s).

PRESS: ENTER to process END to exit HELP for

plan.

an(s).

more information

Figure 2-13. DB2I BIND/REBIND/FREE MENU Panel

isplaved.

When the BIND option is selected, the BIND panel is d
DSNEBPO02 BIND
===>

ENTER THE DBRM LIBRARY NAME(S):
1 DBRMLIB1l ===> 'gbz.dbrmlib'
3 DBRMLIB2 ===> 'imsadf.adfdbrm'

5 DBRMLIB3 >

7 DBRMLIB4 >

ENTER THE MEMBER NAME(S) TO BE BOUND IN THIS PLAN:
9 ===> sampsem 12 ===> 15 ===>
10 ===> sampses 13 === 16 ===>
11 ===> 14 ===> 17 ===>

SPECIFY OPTIONS AS DESIRED:

21 PLAN NAME ===> samptor Enter

22 ACTION ON PLAN ===> add Enter

23 RETAIN EXECUTION AUTH. . ===> yes Enter

24 PLAN VALIDATION TIME ... ===> bind Enter

25 ISOLATION LEVEL ===> ¢cS$s Enter

26 MESSAGE LEVEL ceees =E2> 4 Enter

27 DB2 NAME ===> dsn Enter

PRESS: ENTER to process END to exit HELP f

2 PASSWORD1
4 PASSWORD2
6 PASSWORD3
8 PASSWORD4

=
o

nuan

nunan

uwuu
vvyv

desired plan name.

ADD or REPLACE.

YES to retain user list.
RUN or BIND.

RR or CS.

I, “; Er or C.

DB2 subsystem name.

or more information

Figure 2-14. BIND Panel

On this panel enter the required DB2 BIND information:

Libraries containing the DBRM entries
DBRM member names to be included in the applicati
application plan name

other BIND options

Chapter 2. User

on plan

Specification 2-39

DBRM entries include Table Handler rules, and Audit Exits and Special
Processing Routines issuing native SQL calls.

On entry, the DB2 BIND process is executed in TS0 foreground.

BIND options are described in the IBM DATABASE 2 Reference under the
BIND subcommand.

IMSADF II - DB2 NAMING CONVENTIONS

IMSADF II transactions execute in the IMS/VS online and batch
environments, and support conversational and nonconversational
processing. To uniquely define IMSADF II applications to IMS/VS, it is
necessary to employ a naming convention that uses the IMSADF II major
application system identification and the processing type as keys.
These keys are established when link-editing the generalized IMSADF II
application programs and defining the IMS/VS transaction names.

This naming convention where the IMSADF II transaction driver name is
the same as the IMS/VS transaction name and PSB name has been extended
to include the DB2 Application Plan name.

The following description provides a summary of the IMSADF II naming
conventions:

. IMSADF II member names to be bound in a DB2 Application Plan
include:

- Table Hendler Rules - sss555xX
- Special Processing Routine (ssssUxx) with native SQL calls

- audit exits (naming convention is user specified) with native

SQL calls
Note:
ssss = IMSADF II major application system identification
S = Table Handler Rule
U = Special Processing Routine
xX = Table ID, or Transaction ID

o The DB2 Application Plan name is the same as the IMSADF II
transaction driver and IMS/VS PSB name under which this IMSADF II
transaction ID is executing.

2-60 IMSADF II Application Specification Guide for DB2

CHAPTER RGLGEN UTILITY

DESCRIPTION

The IMSADF II utility (RGLGEN), a DB2 TSO application program, is
similar to the DB2 DCLGEN in function. It extracts Table and Column
definitions from the DB2 catalog in the form of Rules Generator TABLE
and COLUMN source statements.

The RGLGEN Utility can be invoked using Interactive Application
Development Facility (IADF) panels as a TS50 foreground/background
program, or by submitting JCL to invoke a TS0 background job.

The RGLGEN Utility executes in the TS0 foreground or background under
the control of the TS0 Terminal Monitor Program (TMP). Required runtime
parameters are entered on the IADF RGLGEN panel or are defined with the
TS0 DSN and RUN commands.

Multiple DB2 Table definitions can be processed with a single
invocation. Each Table to be processed is defined as a record in a
sequential input file. Output for each Table processed is routed to a
member of a partitioned data set. Output is also routed to the
submitting terminal or SYSPRINT, depending on foreground or background

processing. Error, Warning, and Informational messages are also routed
to the submitting terminal or SYSPRINT.

DEPENDENCIES

. DB2 and its TS0 attachment must be installed and available at
execution.

. The DB2 Table (SYSADF.ADFCOLUMNID) must be defined.

L The DB2 BIND process must be invoked to create the RGLGEN
application plan.

. DB2 authorization must be granted to:
GRANT EXECUTE authority for the DB2 application plan.
GRANT SELECT authority for the SYSIBM.SYSCOLUMNS catalog Table.
GRANT SELECT authority for the SYSIBM.SYSINDEXES catalog Table.
GRANT SELECT authority for the SYSIBM.SYSKEYS catalog Table.

GRANT SELECT, UPDATE and INSERT authority for the
SYSADF.ADFCOLUMNID Table.

. When invoked using IADF, a 4096K TS0 region may be required.

Chapter 3. RGLGEN Utility 3-1

SYSIBM.SYSCOLUMNS TABLE

The RGLGEN Utility extracts Table and Column definitions from the DB2

SYSIBM.SYSCOLUMNS Catalog Table.

The SYSIBM.SYSCOLUMNS Table contains

one row for every column of each table and view (including the columns
of the DB2 catalog tables),

defined to the DB2 system.

The following figure defines the view of the SYSIBM.SYSCOLUMNS Table
that is interrogated by the RGLGEN Utility.

column
Name

Data
Type

Description

NAME

VARCHAR(18)

Name of the column.

TBNAME

VARCHAR(18)

Name of the table or view which contains the
column.

TBCREATOR

CHAR(8)

Agthorization ID of the creator of the table or
view.

COLNO

SMALLINT

Ordinal number of the column in the table or
view.

COLTYPE

CHAR(8)

Type of column:

"INTEGER'=large integer

'SMALLINT'=small integer
'"FLOAT'=floating-point

'"CHAR'=fixed length character string
'"VARCHAR'=varying length character string
'LONGVAR'=varying length character string
'DECIMAL'=decimal

LENGTH

SMALLINT

The length attribute of the column; or, in
the case of a decimal column, its precision.
The number does not include the internal
prefixes used to record actual length and
null state where applicable.

"INTEGER'=4

*SMALLINT'=2

'FLOAT'=8

'CHAR'=length of string
'"VARCHAR'=maximum length of string
"LONGVAR'=maximum length of string
"DECIMAL'=precision of number

SCALE

SMALLINT

Scale of decimal data.

NULLS

CHAR(1)

Indicates whether the column can contain
null values.

'N'=nho

'Y'=yes

UPDATES

CHAR(1)

Indicates whether the column can be updated
for reasons other than being the column of a
read-only vieuw.

'N'=no

'Y'=yes

Figure 3-1.

SYSIBM.SYSCOLUMNS

TABLE

3-2 IMSADF II Application Specification Guide for DB2

SYSIBM.SYSINDEXES TABLE
The RGLGEN Utility also accesses the SYSIBM.SYSINDEXES Table to obtain

information regarding the

DB2 table being processed.

information obtained from
which columns should have
Generator source produced

unique indexes which have been created for the

This information,
the SYSIBM.SYSKEYS Table,
the KEY=YES parameter in the RGLGENO Rules
by the RGLGEN Utility.

in combination with the
is used to determine

The following figure defines the view of the SYSIBM.SYSINDEXES Table
that is interrogated by the RGLGEN Utility.

column Data Description

Name Type

NAME VARCHAR(18) Name of the index.

CREATOR CHAR(8) Authorization ID of the creator of the index.

TBNAME VARCHAR(18) Name of the table on which the index is
defined.

TBCREATOR CHAR(8) Authorization ID of the creator of the table.

UNIQUERULE CHAR(1) Whether the index is unique
(Duplicates allowed, U=Unique)

COLCOUNT SMALLINT The number of columns in the key.

Figure 3-2. SYSIBM.SYSINDEXES TABLE

SYSIBM.SYSKEYS TABLE

The SYSIBM.SYSINDEXES Table is used to obtain the name of the unique

indexes which have been created for the DB2 table being processed.

The

SYSIBM.SYSKEYS Table is used to obtain the names of the key columns

within the index.

All key columns within all unique indexes will be

given the KEY=YES parameter in the RGLGENO Rules Generator source

produced by the RGLGEN Utility.

The following figure defines the view of the SYSIBM.SYSKEYS Table that
is interrogated by the RGLGEN Utility.

column Name Data Type Description

IXNAME VARCHAR(18) Name of the index.

IXCREATOR CHAR(8) Authorization ID of the creator of the index.

COLNAME VARCHAR(18) Name of the column of the key.

COLNO SMALLINT Numerical position of the column in the row.
Figure 3-3. SYSIBM.SYSKEYS TABLE

Chapter 3. RGLGEN Utility 3-3

SYSADF.ADFCOLUMNID VABLE

When the RGLGEN Utility is invoked an optional DB2 Table,

SYSADF.ADFCOLUMNID,

can be used to define IMSADF II Column IDs and to

control the relationship between the IMSADF II Column ID and the DB2

Column names.

The RGLGEN Utility contains SQL statements that reference the

SYSADF.ADFCOLUMNID.
it must be defined to the DB2 system before a valid DB2
Application Plan can be created.

execution,

Therefore,

even if this Table is not used at

The Column definitions of the SYSADF.ADFCOLUMNID Table are:

column Data Description

Name Type

COLNAME VARCHAR(18) Name of the column.

TBNAME VARCHAR(18) Name of the table or view which contains the
column.

TBCREATOR CHAR(8) Agthorization ID of the creator of the table or
view.

ADFCOLID CHAR(4) IMSADF II Column ID.

Figure 3-4¢. SYSADF.ADFCOLUMNID TABLE

When Rules Generator source is extracted from the DB2 catalog by the
RGLGEN Utility the four-character IMSADF II Column ID is defined for

each Column name.

There are two methods available to RGLGEN Utility for defining the

Column ID.

1. The RGLGEN Utility maintains the SYSADF.ADFCOLUMNID Table.
DB2 Column processed the RGLGEN Utility will

For each
interrogate the

SYSADF.ADFCOLUMNID Table to determine if this DB2 Column has been
previously defined.

If the DB2 Column

is used.

If the DB2 Column

. A master row contained in the Table is SELECTed.

is found then the associated IMSADF II Column ID

is not found then the following occurs:

This row

contains the last used Column ID.

. The value of this last used Column ID is incremented by one.

. The Table is interrogated to determine that this Column ID is

unique.

If the Column ID is unique it is associated with the Column

name.

If the Column ID is not unique it

is incremented by one until a

unique Column ID is obtained.

. Once a unique Column ID is obtained the Rules Generator source

is created for the DB2 Column.

A row is INSERTed into the Table

recording the relationship between the DB2 Column name and the
IMSADF II Column ID.

Notei

have been processed.

If the master row is not found one is INSERTed.

The master row is updated after all requested DB2 Tables

The first

IMSADF II Column ID used is 0001.

3-4 IMSADF II Application Specification Guide for DB2

IMSADF II Column ID's are defined in the following order:

All numeric: 0001-9999
All alphabetic: AAAA-ZZZZ and 2233, H####, $$6$
Alphanumeric: unique values not previously used

2. The second method available to the RGLGEN Utility does not use the
SYSADF.ADFCOLUMNID Table.

Each time the RGLGEN Utility is invoked, assign 0001 as the first
Column ID, and increment each subsequent Column ID by one.

The advantages of the first method are:
. Eliminates the need for the user to define their own Column ID's.

. Defines unique IMSADF II Column ID - DB2 Column name relationships
within a DB2 system.

. If a DB2 Table is reorganized, or if a View is defined, the Column
ID's associated with the Column names do not change. This is
especially important because it implies that IMSADF II audits,
specified by Column ID, do not have to be respecified to reflect the
new Column ID's. Also, previously defined Rules Generator Column
merge statements still reflect the same IMSADF II Column ID/DB2
Column name.

IMSADF II ADMINISTRATOR CONTROL

The SYSADF.ADFCOLUMNID Table can be accessed outside the control of the
RGLGEN Utility, (for example, SPUFI).

This allows an IMSADF II administrator to:
U INSERT new rows.

Unique combinations of Column name, Table name and Table creator can
be added. The associated ADFCOLID is user defined.

Subsequent invocations of the RGLGEN Utility that process this row
Wwill use the user specified ADFCOLID.

When the RGLGEN Utility INSERTs new rows into the Table it only
enters data into the Column name and ADFCOLID. The Table name and
Table creator Columns are left blank (that is, the Column name is
unqualified). These two Columns can be used by the IMSADF II
administrator to further qualify Column names that appear in
multiple Tables/Views. The Rules Generator SQLNAME operand in the
output is qualified or unqualified based on the contents of the
Table name Column.

L3 UPDATE existing rows.
Change the RGLGEN Utility defined ADFCOLID to a user specified ID.

Qualify the Column name by defining the Table name and/or Table
creator Columns.

L DELETE existing rows.

L UPDATE or INSERT the master row.
The master row contains the last used ADFCOLID. If the IMSADF II
administrator changes the last used ADFCOLID, then subsequent
invocations of the RGLGEN Utility will define ADFCOLIDs from this

new starting position. The key for the master row is
COLNAME="H#BHHHBBHRHBHBUSRSH" .

Chapter 3. RGLGEN Utility 3-5

PROGRAM PREPARATION

Before executing the RGLGEN Utility the following steps MUST be
completed:

o DB2 and IMSADF II installation
o Install SYSADF.ADFCOLUMNID Table

. BIND process

DB2 AND IMSADF II INSTALLATION

. DB2 installation is defined in the IBM DATABASE 2 Installation
Guide.

. Installing the RGLGEN Utility is an optional part of the standard
IMSADF II installation process.

Note: Refer to the IMS Application Development Facility II Version
2 Release 2 Installation Guide for details on installing and
customizing IMSADF II.

The RGLGEN Utility is supplied in load module format. It contains
static SQL statements that have been processed by the DB2
precompiler. The corresponding DBRM is also supplied.

A copy of the DB2 TSO LANGUAGE interface module (DSNELI) must be
available for the RGLGEN Utility link-edit.

Prior to executing the IMSADF II installation link-edit step the
library referenced by the ALOAD DD statement may have to be changed.
This library must reference the SMP DLIB library where the DB2 TSO
language interface module (DSNELI) resides.

Whether you install IMSADF II using the IADF installation dialogs,
or the Batch method, an SMP system library (IMSADF.ADFDBRM) is
created when the product function is applied.

This library contains the supplied DBRM for the RGLGEN Utility
(MFC1Y25D), and can also be used to hold DBRMs associated with
IMSADF II DB2 transactions.

INSTALL SYSADF.ADFCOLUMNID TABLE

This Table MUST be defined to your DB2 system if the RGLGEN Utility is
used.

The IMSADF II distributed library (IMSADF.ADFMAC) contains a member
(ADFDB2TC) that contains Table CREATE and Index CREATE source statements
for the SYSADF.ADFCOLUMNID Table.

The following is a listing of the DB2 Table definition statements for
the SYSADF.ADFCOLUMNID Table.

CREATE TABLE SYSADF.ADFCOLUMNID

(COLNAME VARCHAR(18) NOT NULL,
TBNAME VARCHAR(18) NOT NULL,
TBCREATOR CHAR(8) NOT NULL,
ADFCOLID CHAR(4) NOT NULL)

IN DATABASE XXXXXXXX;
CREATE UNIQUE INDEX SYSADF.ADFCOL1
ON SYSADF.ADFCOLUMNID
(COLNAME, TBNAME, TBCREATOR) ;
This source must be modified and processed by the DB2 SPUFI function.
Copy this member to your own library before making any modifications.
The only modification required is to define a valid DB2 Data Base or
Table Space, (Replace the XXXXXXXX).

3-6 IMSADF II Application Specification Guide for DB2

The modified source should then be used as input to the DB2 SPUFI
function.

BIND PROCESS

The DB2 Application Plan associated with the RGLGEN Utility must be
built.

The Application Plan name is user specified. However, the DBRM member
name specified is always MFC1Y25D.

The following is an example of what should be specified on the DB2I BIND
Panel for the RGLGEN Utility Application Plan. The name of the
Application Plan in this illustration is RGLGEN.

DSNEBPO02 BIND
===>
ENTER THE DBRM LIBRARY NAME(S):
1 DBRMLIB1 ===> 'imsadf.adfbhrm' 2 PASSWORD1 ===>
3 DBRMLIB2 ===> 4 PASSWORD2 ===>
5 DBRMLIB3 ===> 6 PASSWORD3 ===>
7 DBRMLIB4 ===> 8 PASSWORD% ===>
ENTER THE MEMBER NAME(S) TO BE BOUND IN THIS PLAN:
9 ===> mfcly25d 12 ===> 15 ===> 18 ===>
10 ===> 13 ===> 16 ===> 19 ===>
11 z==> 14 z==> 17 ===> 20 z===>
SPECIFY OPTIONS AS DESIRED:
21 PLAN NAMEcccven ===> rglgen Enter desired plan name.
22 ACTION ON PLAN ===> add Enter ADD or REPLACE.
23 RETAIN EXECUTION AUTH. ===> yes Enter YES to retain user list.
24 PLAN VALIDATION TIME ... ===> bind Enter RUN or BIND.
25 ISOLATION LEVEL ===> ¢s Enter RR or CS.
26 MESSAGE LEVEL ===> i Enter I, W, E, or C.
27 DB2 NAMEcceeveen ===> dsn Enter DB2 subsystem name.
PRESS: ENTER to process END to exit HELP for more information

Figure 3-5. DB2I BIND Panel, RGLGEN Utility

TS0 PROGRAM PARAMETERS

In order to execute the RGLGEN Utility in the TS0 environment, data sets
must be defined/allocated and TS50 commands must be defined.

If the IADF RGLGEN panels are used to invoke the RGLGEN Utility all of
the JCL and TS0 commands required for execution as a TS0
foreground/background job are predefined.

The following example defines the JCL required to invoke the RGLGEN
Utility as a TS0 background (batch) job.

Chapter 3. RGLGEN Utility 3-7

77
//RGLGEN
/7/STEPLI
/7/75YSTSP
//RGLGEN
//RGLGEN
//RGLGEN
/7/SYSPRI
//75YSUDU
/77/ADFDUM
Va4
/7/75YSOUT
//REPORT
//5YSTSI
DSN SYS
RUN PRO
PLA
LIB

JOB
EXEC PGM=IKJEFTO01l
B DD DSN=IMSADF.INSTALL.ADFLOAD,DISP=SHR
RT DD SYSOUT=x
I DD DSN=TSOUSER.ADFDB2.RGLGENIN,DISP=SHR
0 DD DSN=TSOUSER.ADFDB2.TABH,DISP=SHR
T DD SYSOUT=(X,,SYS)
NT DD SYSOUT=(X,,SYS),DCB=(LRECL=133,BLKSIZE=133,RECFM=FB)
MP DD SYSOUT=%
P DD SYSOUT=(X,,S5YS),DCB=(RECFM=FBA,LRECL=121,BLKSIZE=121,
BUFNO=1),0UTLIM=10000
DD SYSOUT=(X,,SYS)
DD SYSOUT=x
N DD %
TEM(DSN)
GRAM (MFClY25) -
N (RGLGEN) -
("IMSADF.INSTALL.ADFLOAD') -

PARMS ('B,Y'")

END
/ %

The requir
IKJEFTO1
STEPLIB

RGLGENI

RGLGENO

RGLGENT

SYSPRINT

ADFDUMP

SYSTSIN
DSN
RUN

PARMS

ed TS0 program parameters are:
Execute the TS50 Terminal Monitor Program (TMP).
Optional DD statement.

This DD statement defines the library that contains the IMSADF
II trace modules, MFCLFLLM and MFC1V40.

If you wish to invoke the IMSADF II trace facility while
executing the RGLGEN Utility this DD must be specified. When
this DD statement is not specified IMSADF II tracing is
disabled.

This DD statement defines the sequential card image
(80-character) input file. Refer to "Parameters™ on
page 3-10.

This DD statement defines the output partitioned data set.

The Rules Generator source created for each Table processed by
the RGLGEN Utility is stored in a separate member of this data
set.

The member name for each Table is passed to the RGLGEN Utility
as an input parameter. Refer to "Parameters" on page 3-10.

This DD statement defines output routed to the terminal that
invoked the RGLGEN Utility in the TS0 foreground. The output
contains the Rules Generator source statements and all RGLGEN
Utility messages.

This DD statement defines output routed to the printer. This
DD is used if the RGLGEN Utility is invoked in the TS0
background. The output contains the Rules Generator source
statements and all RGLGEN Utility messages.

Optional DD statement. This DD statement defines the IMSADF
II trace facility output. This DD is only required when
IMSADF II trace is requested.

This DD statement defines the TS0 TMP input.

The TS0 command that connects the TS0 job to the DB2 SYSTEM.

The DSN subcommand used to invoke a TS0 application program
containing SQL statements.

defines the runtime parameters passed to the TS0 application
program.

Two runtime parameters are passed to the RGLGEN Utility.

3-8 IMSADF II Application Specification Guide for DB2

1. Foreground/background indicator - (F,B) a one character
parameter defining the TS0 application program output
routing.

2. SYSADF.ADFCOLUMNID Table indicator - (Y,N) a one-character

parameter defining the use of the optional
SYSADF.ADFCOLUMNID Table, (Yes,No).

These two parameters are separated by a comma, and enclosed in

quotes.

END The DSN subcommand used to disconnect the TS50 job from DB2

INPUT

The input parameters required at execution are passed to the RGLGEN
Utility as 80-character card image records defined in the sequential
input file referenced by the RGLGENI DD statement.

If the RGLGEN Utility is invoked by submitting a TS0 background job the

RGLGENI DD statement can reference an existing sequential data set, or
it can be processed as an inline data file.

If the IADF RGLGEN panels are used to invoke the RGLGEN Utility then the

input parameters are defined on the RGLGEN GENERATION panel.

The following is an example of what should be specified on the IADF
RGLGEN GENERATION panel.

In this example three Tables are defined. The output will be written to

three members in the 'TSOUSER.ADFDB2.TABH' partitioned data set. The
SYSADF.ADFCOLUMNID Table is used to create IMSADF II Column ID's.

COMMAND === SCROLL
SYSID ===> SAMP PGROUP ===> PG LEVEL:1

DB2 Subsystem Name ===> DSN IMSADF II ADFCOLUMNID TABLE =
ISPF Library: DB2 Plan Name =
PROJECT ===> tsouser
GROUP ===> adfdh2
TYPE z===> tabh
Other partitioned Data Set:
DATA SET NAME ===

------------ m======--w-- RULES SOURCE FROM DB2 CATALOG =-=============

Line Commands: Inn Insert, Dnn Delete, RNN Repeat, MnNn Move, Cnn Copy

===> PAGE

Available Commands: CAN Cancel LOC Locate a given member RES Reset

Y (YIN)
RGLGEN

Command Member Name DB2 Table or View Name IMSADF II Table ID
vee *DSN8. TEMPL' EM
rey *DSN8.TDEPT' DP
ree *DSN8.TPROJ

FHHHMHIHMNIEHMNNINMHIHRHNNNNNNKNX BOTTOM OF DATA 333 I 3 I 3 X H 3 H X H I M X I X I I X X X X X %

Figure 3-6. Rules Source from DB2 Catalog Panel

The Rules Source from DB2 Catalog panel parameters are:
SYSID The four-character IMSADF II System ID.
PGROUP The two-character IMSADF II Project/Group.

DB2 SUBSYSTEM NAME The DB2 Subsystem to which the TS0 job should be
connected.

Chapter 3. RGLGEN Utility 3-9

DB2 PLAN NAME The DB2 Application Plan Name specified for the BIND
of the RGLGEN Utility for this DB2 sub system using
the IMSADF II supplied DBRM (MFC1Y25D).

A default DB2 Application Plan Name of RGLGEN is
displayed.

ADFCOLUMNID TABLE Y - process with the SYSADF.ADFCOLUMNID Table.
N - do not use the SYSADF.ADFCOLUMNID Table.

ISPF Library Qutput partitioned data set (RGLGENO DD).
command Available line commands.
Member Name The Rules Generator source statements for this Table

are routed to this member.

When using the IADF panels this input parameter is
normally left blank. It is only required for
non-standard member names.

Standard member names have the following format, and
are built automatically by IADF when the Member Name

is blank.
858STBXX
Where:
ssss = Current IMSADF II system ID
TB = constant
xx = Current Table ID
Table Name The qualified name of the DB2 Tables/View to be
processed.

If the Table Name is in quotes, IADF assumes it is
qualified and passes it as it is.

If the Table Name is not in quotes, IADF assumes it
is not qualified, appends the current TS0 Userid and
puts the entire name in quotes.

If the Table Name input parameter is not qualified,
the RGLGEN Utility will terminate processing with an
error message.

Note: Refer to the IBM DATABASE 2 Reference manual
for details on DB2 naming conventions.

Table ID The IMSADF II Table ID to be associated with this
DB2 Tables/View.

PARAMETERS

The RGLGEN Utility treats all input parameters as keywords. Each
keyword must be followed by an equal sign and its value. A comma is the
only valid delimiter between keywords. Blanks are not valid, except
after the last parameter value. There are no allowable abbreviations
for the keywords.

The input parameters are as follows:

MEMBER Table/View Column definitions written to this output member
name.

One to eight characters in length. The first character must
be alphabetic.

NAME The qualified name of the DB2 Tables/View to be processed.
A qualified DB2 Table name has the following format:

3-10 IMSADF II Application Specification Guide for DB2

authorization-id.long-identifier

The maximum length of the qualified Table name is 27
characters.

The qualified Table name must be enclosed in single quotes.

Note: Refer to the IBM DATABASE 2 Reference manual for
details on DB2 naming conventions.

ID The two-character IMSADF II Table ID to be associated with
this DB2 TablesVieuw.

Whether the input parameters are defined through IADF or built by the
user, the input records should have the following format:

MEMBER=SAMPTBEM,NAME="DSN8.TEMPL "', ID=EM
MEMBER=SAMPTBDP, NAME="DSN8 . TDEPT',ID=DP
MEMBER=SAMPTBPJ,NAME="DSN8.TPROJ"',ID=PJ

Note: These input records define the three Tables requested on the
previous RGLGEN GENERATION panel.

OUTPUT

The RGLGEN Utility queries the DB2 catalog for the specified Table/View
Column definitions and creates the appropriate Rules Generator operands
to define the Table layout.

The Rules Generator source statements are:

TABLE ID=, TYPE=TBL,SQLNAME=,SQLIND=
COLUMN 1ID=0001,SQLNAME=,SNAME=,
TYPE=, LENGTH=,DEC=,SQLNULL=,SQLUPD=

The SQLNAME operand on the TABLE statement contains the qualified Table
name.

The SQLNAME operand on the COLUMN statement contains the qualified form
of the Column name if the optional SYSADF.ADFCOLUMNID Table was used,
and the Table name Column was not blank. Otherwise, the SQLNAME operand
is unqualified.

Note: Refer to "Rules Generator™ on page 2-1 for details on the Rules
Generator operands.

The output for each Table/View processed by the RGLGEN Utility is
written to a separate member of the partitioned data set referenced by
the RGLGENO DD statement. Eighty-character card image records are
written to this data set. If the MEMBER exists it is replaced. If the
member does not exist it is added.

If the RGLGEN Utility is executing in the TSO foreground then a copy of
the Rules Generator source statements as well as all messages are routed
back to the submitting terminal. This output routing is controlled by
the RGLGENT DD statement.

If the RGLGEN Utility is executing in the TS0 background then a copy of
the Rules Generator source statements as well as all messages are routed
to the printer. This output routing is controlled by the SYSPRINT DD
statement.

MESSAGES

The RGLGEN Utility generates Informational, Warning, and Error messages.
Informational - For each DB2 table successfully processed

Harning - Processing continues

Error - Processing terminates for current table

Chapter 3. RGLGEN Utility 3-11

If the RGLGEN Utility is executing in the TS50 foreground, messages are
routed to the submitting terminal.

If the RGLGEN Utility is executing in the TS0 background, messages are
routed to the SYSPRINT DD.

RETURN CODES

The RGLGEN Utility issues the following Return codes:

0 Processing successful for all table(s), informational message(s).
4 Processing continues for current table, warning message(s).
38 Processing terminated for current table, error message(s).

ABNORMAL TERMINATION CODES
The RGLGEN Utility does not generate any abnormal termination codes.
However, the TS0 Terminal Monitor Program invokes the RGLGEN Utility,

and controls the access to DB2. Therefore, the RGLGEN Utility is
subject to TS0 and DB2 Abnormal Termination Codes.

ERROR, WARNING, AND INFORMATIONAL MESSAGES

This section lists all messages generated by the RGLGEN Utility.
Associated with each message is a more detailed explanation. If
applicable, there is a brief description of the system action, and a
suggested user response.

Each message generated by the RGLGEN Utility is preceded by a message
identification header of the following format:

ADFY9nn t

ADF Distinguishes this message as an IMSADF II message.

Y The IMSADF II component code. Y - Utilities message.

9 Range, of all RGLGEN Utility messages is from 900 to 999.

nn Message sequence number.

t Identifies the type of message, as follows:
I Information message. (Return Code=0)
W Warning message. Execution continues. (Return code=4)
E Error message. Processing terminated for current Table.

(Return code=8)
Each invocation of the RGLGEN Utility may generate multiple messages.
However, the return code always reflects the severest message issued.
MESSAGE PARAMETERS

RGLGEN Utility input parameters, DB2 status codes, and other dynamic
information, are embedded in the message text.

The message text shown here displays these dynamic message parameters in
lower case. During execution, the RGLGEN Utility substitutes current
values into the message text.

The dynamic message parameters are:

L3 table.name DB2 qualified Table name.

. table.id IMSADF II Table ID.

3-12 IMSADF II Application Specification Guide for DB2

ADFY901 E

ADFY902 E

membername
sqlcode
sqlwarn
invalid.parm
ddname
function
offset
string
column.name
creator

adfcolumnid

MESSAGE TEXT
ADFY900 I IMSADF II RGLGEN UTILITY SUCCESSFUL EXECUTION, TABLE

Output Member Name.

DB2 return code.

DB2 warning indicators.

Invalid parameter.

RGLGEN Utility DD statement.

Function being invoked.

Starting position of the invalid data.

Ten bytes of invalid data from the offset.
DB2 unqualified Column name.

DB2 authorization-id.

IMSADF II Column ID.

NAME=table.name, TABLE ID=tahle.id, MEMBER=membername

Explanation: RGLGEN Utility processing was successfully
completed with a return code of zero for this Table.

system Action: None

Operator Response: None

SQL PROCESSING: SQLCODE=sqglcode, SQLWARN(0-7)=sqluWarn, TABLE

NAME=table.name, TABLE ID=table.id, MEMBER=membername

Explanation: A non-zero return code was returned by DB2.

If SQLCODE is less than zero this is an error message.

If SQLCODE is greater than zero this is a warning message.

system Action: If the SQLCODE is less than zero the RGLGEN
Utility terminates processing for this Table, otherwise
processing continues.

Operator Response: Look up the SQLCODE in the IBM DATABASE 2
Messages and Codes manual and take the appropriate corrective

action.

If additional information is required to resolve the

error (that is, full SQL Communication Area), invoke the
IMSADF II Trace facility for the RGLGEN Utility.

SQL PROCESSING THE OPTIONAL SYSADF.ADFCOLUMNID TABLE:

SQLCODE=sqlcode, SQLWARN(0-7)=sqlwarn, TABLE NAME=table.name,
TABLE ID=table.id, MEMBER=membername

Explanation: A non-zero return code was returned by DB2.

If SQLCODE is less than zero this is an error message.

If SQLCODE is greater than zero this is a warning message.

system Action: If the SQLCODE is less than zero the RGLGEN
Utility terminates processing for this Table, otherwise
processing continues.

operator Response: Look up the SQLCODE in the IBM DATABASE 2
Messages and Codes manual and take the appropriate corrective

action.

If additional information is required to resolve the

error (that is, full SQL Communication Area), invoke the
IMSADF II Trace facility for the RGLGEN Utility.

Chapter 3. RGLGEN Utility 3-13

ADFY903 E INVALID TSO FOREGROUND/BACKGROUND PARAMETER - invalid.parm,

ADFY904 E

ADFY905 E

VALID VALUES ARE F OR B

Explanation: The TS0 foreground/background runtime parameter
is invalid.

system Action: The RGLGEN Utility terminates processing.

Operator Response: The TS0 FOREGROUND/BACKGROUND parameter is
a runtime parameter that is specified in the DSN subcommand
RUN. It is passed to the RGLGEN Utility when the TS0 Terminal
Monitor Program passes it control.

If the RGLGEN Utility was invoked using IADF this parameter is
built by IADF. If this is the case and no modifications have
been made to IADF, and the error persist, notify your IBM
representative.

If the RGLGEN Utility was invoked using your own batch JCL
stream, or you changed the IADF output, correct the PARMS
keyword on the TS0 DSN subcommand RUN and resubmit the RGLGEN
Utility.

Refer to the TS0 PROGRAM PARAMETERS section in this guide for
additional information on runtime PARAMETERS.

INVALID OPTIONAL SYSADF.ADFCOLUMNID TABLE PARAMETER _
invalid.parm, VALID VALUES ARE Y OR N

Explanation: The optional SYSADF.ADFCOLUMNID Table parameter
is invalid.

system Action: The RGLGEN Utility terminates processing.

Ooperator Response: The optional SYSADF.ADFCOLUMNID Table
parameter is a runtime parameter that is specified in the DSN
subcommand RUN. It is passed to the RGLGEN Utility when the
TS50 Terminal Monitor Program passes it control.

If the RGLGEN Utility was invoked using IADF this parameter is
verified by IADF. If this is the case and no modifications
have been made to IADF, and the error persist, notify your IBM
representative.

If the RGLGEN Utility was invoked using your own batch JCL
stream, or you changed the IADF output, correct the PARMS
keyword on the TS50 DSN subcommand RUN and resubmit the RGLGEN
Utility.

Refer to the TS0 PROGRAM PARAMETERS section in this guide for
additional information on runtime PARAMETERS.

ddname DD IS NOT IN JOBSTEP OR IS DEFINED AS DD DUMMY

Explanation: One or more of the required RGLGEN Utility DD
statements is missing or incorrectly defined, (RGLGENI,
RGLGENT, SYSPRINT).

system Action: The RGLGEN Utility terminates processing.

operator Response: If the RGLGEN Utility was invoked using
IADF, define the required DD statements to IADF and reinvoke
the RGLGEN Utility.

If the RGLGEN Utility was invoked using your own batch JCL
stream, add the required DD statements to the JCL and resubmit
the RGLGEN Utility.

Refer to the TS0 PROGRAM PARAMETERS section in this guide for
additional information on required DD statements.

3-14 IMSADF II Application Specification Guide for DB2

ADFY906 E ddname DD function ERROR ENCOUNTERED BY MFC1V48. NOTIFY

ADFY907 E

ADFY908 E

IMSADF II ADMINISTRATOR. TABLE NAME=table.name, TABLE
ID=table.id, MEMBER=membername

Explanation: The IMSADF II module MFClV48 is used to control
output being written to members in the RGLGENO DD statement.

system Action: The RGLGEN Utility terminates processing.

operator Response: The MFClV48 module controls four functions
associated with the RGLGENO DD statement.

DEFINE Verify that the data set specified by the RGLGENO DD
statement is a valid partitioned data set.

OPEN Open the current member name as output for this Table.
HRITE Write the DB2 TablesView Column definitions.

CLOSE Close the current member name and add it to the
partitioned data set specified by the RGLGENO DD
statement.

If the RGLGEN Utility was invoked using IADF, define or
correct the RGLGENO DD statement to IADF and reinvoke the
RGLGEN Utility.

If the RGLGEN Utility was invoked using your own batch JCL
stream, add a valid RGLGENO DD statement and resubmit the
RGLGEN Utility.

If the error persist notify your IBM representative.

Refer to the TS0 PROGRAM PARAMETERS section in this guide for
additional information on the RGLGENO DD statement.

INVALID OR MISSING INPUT PARAMETER(S) AT OFFSET-offset, STRING
VALUE: string: CURRENT VALUES: TABLE NAME=table.name, TABLE
ID=table.id, MEMBER=membername

Explanation: One or more of the three input parameters
required by the RGLGEN Utility is invalid or missing.

system Action: The RGLGEN Utility terminates processing for
this input record.

Operator Response: Review the required input parameters,
correct the error(s), and resubmit the RGLGEN Utility.

Refer to the PARAMETERS section in this guide for additional
information on input parameters.

INVALID PARAMETER KEYWORD AT OFFSET-offset, STRING VALUE:
string: VALID KEYWORDS ARE: NAME=, ID=, MEMBER= CURRENT
VALUES: TABLE NAME=table.name, TABLE ID=table.id,
MEMBER=membername

Explanation: One or more of the three input parameter keywords
required by the RGLGEN Utility is invalid.

system Action: The RGLGEN Utility terminates processing for
this input record.

Operator Response: Review the required input parameter
keywords, correct the error(s), and resubmit the RGLGEN
Utility.

Refer to the PARAMETERS section in this guide for additional
information on input parameter keywords.

Chapter 3. RGLGEN Utility 3-15

ADFY909 E DUPLICATE invalid.parm INPUT PARAMETER AT OFFSET-offset,
STRING VALUE: string: CURRENT VALUES: TABLE NAME=table.name,
TABLE ID=table.id, MEMBER=membername

Explanation: The specified input parameter is a duplicate.

system Action: The RGLGEN Utility terminates processing for
this input record.

Operator Response: Eliminate the duplicate input parameter.

ADFY910 E invalid.parm INPUT PARAMETER TRU&CATED OR TOO LONG AT
OFFSET-offset, STRING VALUE: str!ng: CURRENT VALUES: TABLE
NAME=table.name, TABLE ID=table.id, MEMBER=membername

Explanation: The specified input parameter value exceeds its
maximum allowable length or the value has been truncated.

system Action: The RGLGEN Utility terminates processing for
this input record.

Operator Response: Correct the input parameter value.

ADFY91l E invalid.parm INPUT PARAMETER IS TOO LONG OR TOO SHORT AT
OFFSET-offset, STRING VALUE: str!ng: CURRENT VALUES: TABLE
NAME=table.name, TABLE ID=table.id, MEMBER=membername

Explanation: The specified input parameter value exceeds its
maximum allowable length or is less than minimum allowable
length.

system Action: The RGLGEN Utility terminates processing for
this input record.

Operator Response: Correct the input parameter value.

ADFY912 E invalid.parm PORTION OF THE TABLE NAME INPUT PARAMETER IS
MISSING OR TOO LONG AT OFFSET-offset, STRING VALUE: string:
CURRENT VALUES: TABLE NAME=table.name, TABLE ID=table.id,
MEMBER=membername

Explanation: Either the authorization-id or the unqualified
Table name portion of the qualified Table name is missing or
exceeds the maximum allowable length.

system Action: The RGLGEN Utility terminates processing for
this input record.

Operator Response: Correct the Table Name input parameter
value.

ADFY913 E INVALID TABLE ID INPUT PARAMETER AT OFFSET-offset, STRING
VALUE: string: VALID TABLE ID CHARACTERS ARE ALPHABETIC,
NUMERIC, OR 3, %, #

Explanation: The specified two character IMSADF II Table ID is
not alphanumeric.

system Action: The RGLGEN Utility terminates processing for
this input record.

Operator Response: Correct the Table ID input parameter value.

3-16 IMSADF II Application Specification Guide for DB2

ADFY9l4 E

ADFY915 E

ADFY916 E

ADFY917 E

ADFY918 E

COMMA MUST BE FOLLOWED BY A NON-QLANK CHARACTER,
OFFSET-offset, STRING VALUE: string: CURRENT VALUES: TABLE
NAME=table.name, TABLE ID=table.id, MEMBER=membername

Explanation: A blank character was encountered after a valid
delimiter (comma).

system Action: The RGLGEN Utility terminates processing for
this input record.

Operator Response: Remove blank characters from the input
parameters. Do not put a comma after the last input
parameter.

IMBEDDED BLANKS NOT ALLOWED IN INPUT PARAMETERS,
OFFSET-offset, STRING VALUE: string: CURRENT VALUES: TABLE
NAME=table.name, TABLE ID=table.id, MEMBER-=membername

Explanation: An imbedded blank was encountered in the input
parameters.

system Action: The RGLGEN Utility terminates processing for
this input record.

Operator Response: Remove blank characters from the input
parameters.

invalid.parm IS A REQUIRED INPUT PARAMETER. INPUT KEYWORDS
ARE NAME=, ID=, MEMBER=. CURRENT VALUES: TABLE
NAME=table.name, TABLE ID=table.id, MEMBER=membername

Explanation: The specified input parameter was not found.

system Action: The RGLGEN Utility terminates processing for
this input record.

Operator Response: Define all required input parameters.

NO COLUMNS FOUND FOR SPECIFIED TABLE. SQLCODE=sqlcode,
SQLWARN(0-7)=sqluarn, CURRENT VALUES: TABLE NAME=table.name,
TABLE ID=table.id, MEMBER=membername

Explanation: The DB2 return code is +100. There were no rows
found in the DB2 SYSIBM.SYSCOLUMNS Table representing Columns
in the specified Table.

system Action: The RGLGEN Utility terminates processing for
this Table.

Operator Response: Verify that the qualified Table name is
valid and that it is defined in the DB2 catalog
SYSIBM.SYSCOLUMNS Table for the current DB2 sub-system.

INVALID COLUMN DATA TYPE: function. THE IMSADF II COLUMN TYPE
AND LENGTH OPERANDS HAVE BEEN SET TO QUESTION MARKS.

Explanation: A DB2 data type not recognized by the RGLGEN
Utility has been encountered.

system Action: The RGLGEN Utility continues processing for
this Table. However, the Rules Generator TYPE and LENGTH
operands have been set to question marks.

operator Response: Verify that the DB2 data type is valid. If
it is and this error persist contact your IBM representative.

Chapter 3. RGLGEN Utility 3-17

ADFY919 E

ADFY920 E

ADFY921 W

ADFY922 E

INVALID COLUMN LENGTH: function. THE IMSADF II COLUMN LENGTH
OPERAND HAS BEEN SET TO QUESTION MARKS.

Explanation: A DB2 data type has been specified with a data
length attribute that exceeds the allowable IMSADF II maximum
length.

system Action: The RGLGEN Utility continues processing for
this Table. However, the Rules Generator LENGTH operand has
been set to question marks.

operator Response: Verify that the DB2 data length is valid
and that it is within the allowable IMSADF II maximum length
for that data type.

If the DB2 length exceeds the allowable IMSADF II maximum then
this Column cannot be processed directly by standard IMSADF II
functions.

INVALID COLUMN DECIMAL SCALE: function. THE IMSADF II COLUMN
DECIMAL OPERAND HAS BEEN SET TO QUESTION MARKS.

Explanation: A DB2 data type decimal has been specified that
has a SCALE value greater than the IMSADF II allowable maximum
of 13.

system Action: The RGLGEN Utility continues processing for
this Table. However, the Rules Generator DECIMAL operand has
been set to question marks.

Operator Response: Verify that the DB2 decimal scale value is
valid and that it is within the allowable IMSADF II maximum of
13.

If the DB2 decimal scale exceeds the allowable IMSADF II
maximum then this Column cannot be processed directly by
standard IMSADF II functions.

INVALID COLUMN DATA TYPE: LONG VARCHAR. THE IMSADF II DOES
NOT SUPPORT THIS DATA TYPE. THE DATA TYPE HAS BEEN CONVERTED
TO VARCHAR.

Explanation: A DB2 data type of LONG VARCHAR has been
encountered. IMSADF II does not support this data type. The
data type is converted to SHORT VARCHAR which is supported by
IMSADF II.

system Action: The RGLGEN Utility continues processing for
this Table.

Operator Response: Verify that the DB2 data type is valid.

NO INPUT RECORDS FOUND. THE SEQUENTIAL INPUT DATA SET
REFERENCED BY RGLGENI DD IS EMPTY.

Explanation: The sequential input data set referenced by the
RGLGENI DD statement is empty. There are no input records for
the RGLGEN Utility to process.

system Action: The RGLGEN Utility terminates processing.
Operator Response: If the RGLGEN Utility was invoked using the
IADF RGLGEN GENERATE panel, the input parameters specified are
built into input records by IADF.

If the RGLGEN Utility was invoked as a TS0 batch job then the
RGLGENI DD data set must be defined, either as instream
records or as a valid sequential data set.

In either case valid input records must be defined.

3-18 IMSADF II Application Specification Guide for DB2

ADFY923 I

ADFY924 1

ADFY925 1

ADFY926 E

OPTIONAL SYSADF.ADFCOLUMNID TABLE USED. THE ROW SELECTED HWAS:
COLUMN NAME: column.name, TABLE NAME: table.name, TABLE
CREATOR: creator, IMSADF II COLUMN ID: adfcolumnid

Explanation: This informational message is generated every
time a previously defined IMSADF II Column ID is used. It
implies that this DB2 Column has been previously defined to
IMSADF II.

system Action: None
Operator Response: None

OPTIONAL SYSADF.ADFCOLUMNID TABLE USED. THE FOLLOWING ROW WAS
A MATCH BUT WAS NOT SELECTED BECAUSE ANOTHER ROW CONTAINED A
BETTER MATCH. COLUMN NAME: column.name, TABLE NAME:
table.name, TABLE CREATOR: creator, IMSADF II COLUMN ID:
adfcolumnid

Explanation: This informational message is generated when a
DB2 Column is defined in the SYSADF.ADFCOLUMNID Table multiple
times. This can happen if the COLUMN name is defined once
with a blank Table name and creator, and one or more
additional times with non-blank Table names and creator.

system Action: None
Operator Response: None

OPTIONAL SYSADF.ADFCOLUMNID TABLE USED. THE MASTER RON
CONTAINING THE LAST USED IMSADF II COLUMN ID WAS NOT FOUND. A
MASTER ROW WAS INSERTED WITH COLUMN NAME: column.name, and
IMSADF II COLUMN ID: adfcolumnid

Explanation: This informational message is generated when the
first DB2 Column is defined in the SYSADF.ADFCOLUMNID Table.

A master row containing the last used IMSADF II Column ID must
be INSERTed the first time the SYSADF.ADFCOLUMNID Table is
used. After that the master row is UPDATEd.

system Action: None
Ooperator Response: None

OPTIONAL SYSADF.ADFCOLUMNID TABLE USED. THE LAST USED IMSADF

II COLUMN ID IN THE MASTER ROW CONTAINS INVALID CHARACTERS OR

IMBEDDED BLANKS. NOTIFY YOUR IMSADF II ADMINISTRATOR. COLUMN
NAME: column.name, IMSADF II COLUMN ID: adfcolumnid

Explanation: The last used IMSADF II Column ID is invalid.
This should only happen if some one has modified the last used
row outside of the control of the RGLGEN Utility.

system Action: The RGLGEN Utility terminates processing.
Operator Response: Modify the master row in the
SYSADF.ADFCOLUMNID Table so that it contains a valid last used

IMSADF II Column ID, or DELETE the master row and INSERT a new
row with a valid last used ID.

Chapter 3. RGLGEN Utility 3-19

ADFY927 I

ADFY923 W

ADFY929 W

OPTIONAL SYSADF.ADFCOLUMNID TABLE USED. IMSADF II COLUMN ID
VALUES ARE BEING SWITCHED FROM ALL NUMERIC TO ALL ALPHABETIC,
OR FROM ALL ALPHABETIC TO ALPHANUMERIC. STARTING WITH IMSADF
II COLUMN ID: adfcolumnid

Explanation: This informational message is generated when
IMSADF II Column ID, 9999 is the last used ID and another
Column ID is required. Once the RGLGEN Utility has exhausted
all numeric Column ID's it automatically switches to
generating all alphabetic IMSADF II Column ID's.

system Action: None
operator Response: None

TABLE DOES NOT HAVE A UNIQUE INDEX DEFINED. NO COLUMNS IN
THIS TABLE HAVE THE KEY=YES PARAMETER SPECIFIED. RULEGEN

ERRO% WILL RESULT. TABLE NAME: table.name, TABLE CREATOR:

creator

Explanation: The table does not have a unique index defined.
IMS Application Development Facility II requires one or more
columns in each DB2 table to be key columns.

system Action: None

operator Response: Use the SQL CREATE INDEX command to define
a unique index. Then, either re-run the RGLGEN job to obtain
the KEY=YES parm(s), or add the KEY=YES parm(s) manually in
the Rules Generator source in the RGLGENO member. This should
be done prior to using the RGLGENO member for input to the
Rules Generator or an error condition will result.

TABLE HAS MULTIPLE UNIQUE INDEXES DEFINED. THIS MAY RESULT IN
PROCESSING ERROR(S) AT IMSADF II EXECUTION TIME. TABLE NAME:
table.name, TABLE CREATOR: creator

Explanation: The table has multiple unique indexes defined.
All the key columns in the unique indexes have the KEY=YES
parm specified in the Rules Generator source created by
RGLGEN. When the end user is performing an insert under
online IMSADF II, IMSADF II will enforce uniqueness over the
combination of values in all the KEY columns. DB2 enforces
uniqueness over the combination of values in the KEY columns
of EACH unique index. It would be possible for an end user to
specify values which are a unique combination of all the KEY
columns, but are not unique within each index. This will
result in a DB2 error condition (SQLCODE -803).

system Action: None

operator Response: The unique indexes defined for the table
shouid e re-examined and verified. It is not recommended for
tables with multiple unique indexes to be processed under
IMSADF II.

3-20 IMSADF II Application Specification Guide for DB2

CHAPTER 4. EXECUTION PROCESSING

At execution:

[All DB2 SQL calls issued by IMSADF II are processed by the Table
Handler Rule defined for the DB2 Table/View being processed. The
Table Handler Rules are the only standard IMSADF II modules that
contain SQL statements. Table Handler Rules must be defined in a
DB2 Application Plan prior to execution.

Special Processing Routines and Audit Exits that process IMSADF II
SQLHNDLR calls use the IMSADF II Table Handler Rule interface.

Native static and dynamic SQL statements contained in Special
Processing Routines and Audit Exits do not use the IMSADF II Table
Handler Rule interface. These exits must be defined in a DB2
Application Plan prior to execution.

o The DB2 S5QL return code, SQLCODE and SQLWARN, are mapped into IMSADF
II SPA fields, SPASQLCD and SPAWARN for DB2 SQL calls issued by an
IMSADF II Table Handler Rule, that result in data I/0 or result in a
SQLCODE of less than zero, or equal to one hundred.

The status, DB2 SQL return code, of DECLARE CURSOR, and CLOSE CURSOR
SQL calls is not saved unless the call results in a SQLCODE less
than zero.

SIGNON AND MENUS

The signon process, and Primary Option and Secondary Option menu display
apply for DB2 applications. An IMSADF II USERID must be authorized to
execute an IMSADF II transaction at a specified level of intent (that
is, retrieve, update, insert, delete). Additionally, if the DB2
authorization is violated by an IMSADF II user during a SQL Call, IMSADF
II issues an error message with the appropriate DB2 SQL return code.
Reference "Error Processing”™ on page 4-6 for more information.

KEY SELECTION
. Primary Key Selection

DB2 Table search values IMSADF II key Columns should uniquely
identify a row and should represent the Table Index for optimum
performance.

A row from each Table that the user specifies in the Rules Generator
DBPATH operand is automatically fetched by IMSADF II at execution
time.

At execution the key Columns are analyzed.

- If a >, <, %, _ is found the secondary key selection brouse
function is invoked.

- Else, the standard SQL statement CSELECT is used to FETCH a row
from the Table based on the key entered.

The DB2 SQL return codes associated with the CSELECT call are as
follows:

SQLCODE=0 Display the fetched row on the transaction display
screen.

SQLCODE<O DB2 error.
Display the PROCESSING ERROR message with the

SQLCODE mapped into the message. Redisplay the
primary option menu screen.

Chapter 4. Execution Processing 6-1

SQLCODE=100 1Invalid key. Invoke the secondary key selection
browse function.

SQLCODE>O and -= 100 Processing continues.

Display the fetched row on the transaction display
screen.

The DB2 CURSOR SELECT SQL statements are used by IMSADF II to ensure
that only one row is fetched for each Table.

Primary Key Selection DECLAREs a CURSOR, OPENs the CURSOR, FETCHes a
single row into the IMSADF II SPA workarea, and CLOSEs the CURSOR.

Note: If the WHERE clause used by the SELECT statement does not
define a unique key, the IMSADF II standard functions only process
the first row with that key value.

Secondary Key Selection Brouwse

DL/I secondary key selection allows a browse of all segments, a
selected set controlled through secondary key audits, or a generic
browse using a partial key and >.

The Secondary Key Selection browse function available for DB2 Tables
allows for all of the DL/I capability as well as additional function
only available to DB2, (that is, additional generic search
arguments, and user defined arguments).

In order for a Table to be eligible it must be specified in the
Rules Generator DBPATH operand, and SKSEGS > 0 must be specified on
the Rules Generator TABLE statement.

At execution time the Secondary Key Selection browse functions are
invoked as follows:

- The KSELECT1 function is invoked if the terminal operator:

enters a partial key with a > or <

or
enters an incorrect key

or
enters no key

and
the Table is eligible for secondary key selection
(SKSEGS>0), and the KSELECT1 function was defined
for the Table Handler Rule.

and
SPASQLKS was not set to a user defined KSELECTn
function in a primary key audit.

- The KSELECT2 function is invoked if the terminal operator:

enters a partial key with a % or
and
the Table is eligible for secondary key selection
(SKSEGS>0), and the KSELECT2 function was defined
for the Table Handler Rule.
and
SPASQLKS was not set to a user defined KSELECTn
function in a primary key audit.

When the KSELECT2 function, DB2 LIKE predicate relational
operator, is invoked, the entire key column must be filled in.
DB2 treats trailing blanks as significant characters.

For example:

— A DB2 Column is defined to the IMSADF II Rules Generator as
follows:

COLUMN ID=0001,TYPE=C,LENGTH=006,SQLNAME=EMPNO,KEY=YES

4-2 IMSADF II Application Specification Guide for DB2

— The Terminal operator enters: '%000% ' in the EMPNO display
area on the primary key selection screen.

Request for the KSELECT2 function to display all rows where
the EMPNO Column contains the character string '000°'.

— DB2 searches for EMPNO LIKE '%000% '. Note the trailing
blank.

DB2 SQL return code is SQLCODE=100.

— IMSADF II redisplays the primary key selection screen with
message: ADFE109 REQUESTED DATA NOT FOUND FOR GIVEN KEYS

— If the terminal operator enters: '%000%%' in the EMPNO
display area on the primary key selection screen.

— DB2 searches for EMPNO LIKE '%000%%'. No trailing blanks.
DB2 return code is SQLCODE=0.

— IMSADF II displays the rows on the secondary key selection
screen.

- A USER SQL secondary key selection browse function is invoked
instead of standard secondary key selection browse whenever the
terminal operator:

enters a partial key with a >, <, %, or _
or
enters an incorrect key
or
enters no key
and
the Table is eligible for secondary key selection
(SKSEGS>0), and the specified KSELECTn function
was defined in the Table Handler Rule.
and
SPASQLKS was set to a user defined KSELECTn
function in a primary key audit.

The setting of SPASQLKS in a primary key audit allows any of the
KSELECTn functions defined in the Table Handler Rule to be invoked,
including the standard KSELECT1, KSELECT2, and the USER SQL
KSELECTn. However, normally this technique is used to invoke only
the USER SQL KSELECTn functions.

Note: If a valid key is entered, the secondary key selection browse
function is not invoked even if a primary key audit has set
SPASQLKS. To ensure that a user defined secondary key selection
browse function is executed the primary key audit should also
invalidate the key.

If the WHERE clause includes other than the key columns, the primary key
audit must also set SPAWHERE to the name of the field holding the host
variables for the WHERE clause. The Secondary Key Selection modules
pass these host variables to the Table Handler Rule rather than the
Table key columns.

Each screen iteration during the secondary key selection browse process
is a separate transaction iteration. The selected rows of the Table
being browsed are retrieved for each screen iteration. This implies
that the WHERE clause should be defined so that each subsequent
iteration is positioned correctly into the Table, beyond the row
previously retrieved. A secondary key audit can be used to update the
fields containing the host variables in the WHERE clause so that
subsequent iterations are correct.

The standard secondary key selection browse functions KSELECT1 and
KSELECT2 have an ORDER BY clause associated with their SQL SELECT
statement. This ensures that the rows are displayed in an ordered
sequence.

Chapter 4. Execution Processing 6-3

All secondary key selection browse functions are variations of the
standard SQL statement CSELECT. The standard functions KSELECT1 and
KSELECT2 have >, <, or LIKE as the relational operator in the WHERE
clause and additional host variables for repositioning. The USER SQL
statements KSELECTn (n=3-9), have user defined WHERE clauses. At
execution the secondary key selection browse function DECLAREs a CURSOR,
OPENs the CURSOR, FETCHes rows until the secondary key selection page is
filled, and CLOSEs the CURSOR.

L Keyareas

Keyareas represent the data base form of the keys and are maintained
for DB2 tables to reflect the current values of Key columns.

Note: If the key input uses the IMSADF II COFIELD function with a
character data type, the terminal input is retained in the COFIELD
area of the SPA work area.

Key Columns can not be defined as null Columns. This implies that

indicator variables are not supported as host variables in WHERE
clauses.

SCREEN HANDLING

The input and display of DB2 Columns is handled in the same manner as
DL/I Fields. Key columns for DB2 Tables named in the DBPATH of an Input
Transaction Rule, are processed in the same manner as DL/I DBPATH keys.
If a key is changed on the transaction display screen, the transaction
is processed as a new transaction, that is, a request for a new set of
Table/Segment data.

The screen handler accepts a NULL value for input and output. NULL
Columns are displayed as all '-' (Hyphens). This is the same display
character used by DB2 SPUFI.

[When a user enters two or more consecutive hyphens into a Columns
display area and the Column is defined as allowing NULLs
(SQLNULL=YES,SQLIND=YES) then IMSADF II inserts a negative value
into the Columns associated Indicator Variable. Only one hyphen is
required for a single character Column display area.

J When a user enters data into a Column display area that contained
all hyphens (NULL representation) IMSADF II stores the data into the
Columns I/70 area and sets the Columns associated Indicator Variable
to zero. On a subsequent UPDATE the new Column value is changed in
the DB2 data base if the Column has been defined to IMSADF II as
eligible for update (SQLUPD=YES).

IMSADF II displays DB2 Columns on a screen with initialized values,

(that is, Columns in Tables defined as TSEGS, or Columns in Tables

defined in DBPATH for an INSERT transaction), as follows:

. Eligible for NULL Column: All '-' (Hyphens)

[TYPE=VARCHAR Columns: All ' ' blanks

o All other Column types: Underscores, blanks, or zero

When IMSADF II displays a fetched row all Columns on the screen are
displayed with their data base value.

DB2 data types of FLOAT and VARCHAR are processed for input and display.
FLOAT is displayed in scientific notation.

VARCHAR is allocated its maximum length on the screen and displayed
according to the current length.

. The "N' OPTION is not processed for DB2 Tables.

. The standard twin processing support is not available for DB2
Tables.

4-4¢ IMSADF II Application Specification Guide for DB2

AUDITOR

All Audit Phases are available for DB2 Table processing.

DB2 Table Columns are eligible for all three phases of auditing
(KEY-pre SQL call, PRELIM-before screen display, and PROCESS-after
screen input) as well as the three legs of auditing (Automatic Field
Assignment, Field Audit, and Messages).

All audit operations are available, except DL/I related operations.

All current audit operations, including arithmetic, data compares
and moves, encode-decode, subroutine branching, message sending,
dynamic screen attribute modification, transaction switching, are
available to DB2 Tables.

DB2 related audit operations

- The CONCAT and SUBSTR operations manipulating strings for field
types ALPHA, NUM, ALPHANUM and VARCHAR.

The CONCAT operation allows concatenation of two source fields
into a target field.

The SUBSTR operation operation can be performed two ways. Both
are move operations, with one performing the substringing on the
source field and the other performing the substringing on the
target field.

- The IMMEDIATE SQL Call is an audit operation comparable to the
IMMEDIATE DL/I Call audit operation. It can execute all SQL
calls specified in a Table Handler Rule.

After the Table Handler Rule executes the specified SQL function
the DB2 SQL return code, SQLCODE and SQLWARN, is tested. If the
SQLCODE is zero and SQLWARNO is blank, the NEXT TRUE branch is
taken.

Two additional operations are available to test the results of
the SQL call executed by the Table Handler Rule. These
operations allow the SQLCODE to be compared with a list of one
or more numeric constants, and SQLWARN to be compared with
either a blank or 'W' constant. SQLCODE = 0 and SQLWARNO =
blank implies no errors or warnings. Otherwise, error or
warning conditions exist.

- Two operations are available to customize the secondary key
selection browse function. They are only valid during primary
key audit and are used by secondary key selection browse.

The SPASQL operation sets the IMSADF II SPA fields, SPASQLKS, to
the number of the standard or user defined secondary key
selection browse function to be invoked.

The SPAWHERE operation sets the IMSADF II SPA field, SPAWHERE to
the name of the field that contains the host variables to be
used by the secondary key selection browse function being
invoked.

The field named in SPAWHERE should be updated, with a secondary
key audit after each FETCH. This is to accommodate
repositioning for subsequent secondary key selection iterations.

- Operations are available to test a DB2 Column for NULL or
Truncation status, or to set a field to NULL.

To test a column for NULL or Truncation or set a column NULL,
indicator variables must have been generated for the Table,
SQLIND=YES, and SQLNULL=YES must have been specified for the
Column.

Note: No operation has been defined to set a Column to not

NULL. In order to change a Column from NULL to not NULL, data
must be moved into the Column. Part of the logic associated

Chapter 4. Execution Processing 64-5

with data move operations is to set the indicator variable to
zero.

MESSAGE HANDLING

ERROR AND WARNING MESSAGES

The Auditor function of flagging a field in error or for warning message
applies to DB2 Columns. Appropriate error or warning messages are
displayed from the IMSADF II Message Data Base.

For DB2 SQL calls issued by the auditor that result in a field being
flagged in error, the Auditor maintains additional error information.
The DB2 SQL return code, SQLCODE and SQLWARN are saved. This
information can be used during message generation by specifying VARLISTé6
and VARLIST?7 for mapping in a user message.

ERROR PROCESSING

On return from a SQL call issued by a Table Handler Rule, the DB2 SQL
return code, SQLCODE, in the SQL Communications Area (SQLCA) is tested.

If the SQLCODE is 100, the basic DL/I logic for NOT FOUND is followed.
This implies a REQUESTED DATA NOT FOUND message, invocation of the
Secondary Key Selection browse function listing available rows, or an
IMS/VS ROLL call if the SQLCODE=100 is encountered during data base
update logic and the updates have been partially completed.

If the SQLCODE is < 0 is received, the current DL/I logic for PROCESSING
LOGIC error is followed. The current IMSADF II transaction is
terminated, an error screen is displayed, and control is returned to the
Primary Option Menu screen.

If the SQLCODE is >= 0 (except 100), processing continues.
If SQLWARNO and SQLWARN1l are set to 'W', indicating truncation,

processing continues. It is the IMSADF II application developers
responsibility to test for truncation.

4-6 IMSADF II Application Specification Guide for DB2

Figure 4-1 describes tha IMSADF II action and SQLCODE value.

SQLCODE ACTION

>=0 & -= 100 e Processing continues.

=100 e Conversational Environment
~REQUESTED DATA NOT FOUND message and keys in
error highlighted
-Secondary Key Selection Browse for list of rows
for selection
-Terminate Secondary Key Selection Browse,
display last Secondary Key Selection screen
-ROLL call and error screen (using Express IOPCB)
if 100 occurred and updates were in progress
¢ Nonconversational Environment
-REQUESTED DATA NOT FOUND message on Transaction
display screen
e Batch Environment
-REQUESTED DATA NOT FOUND message on Transaction
register and ERRMSG data set.
Transaction in error is written to the
ERRTRX data set.
<0 e Conversational Environment
-PROCESSING ERROR message with SQLCA appropriate
values and return to Primary Option Menu screen
* Nonconversational Environment
-PROCESSING ERROR message with SQLCA appropriate
values to a stand alone error screen. That is,
the segment display screen is not chained.
e Batch Environment
~PROCESSING ERROR message with SQLCA appropriate
values to transaction register and ERRMSG data
set. Transaction in error is written to the
ERRTRX data set.
* ALL Environments
~ROLL CALL if successful previous updates

Figure 4-1. SQLCODE and IMSADF II ACTION

OPTION: ERROR MESSAGES
ADFE225 No action - Processing error (DB2 STATUS=)

Figure 64-2. IMSADF II SQL Error Message (SQLCODE < 0)

Figure 4-2 shows the content of the error message generated when a SQL
call issued by a transaction driver, (not including SQL calls issued
through audit operations or the SQLHNDLR Call function) that results in
a DB2 SQL return code of less than zero, (that is, SQLCODE < 0). This
message is displayed on the error screen in conversational or
nonconversational environments. A similar error message is written to
the batch ERRTRX data set in the batch environment.

DATA BASE HANDLING

The IMSADF II standard data base update functions are performed
automatically after the PROCESS audit phase has been successfully
completed. Updates of DB2 Tables are performed with the IMSADF II
standard SQL statements CUPDATE, CDELETE, and INSERT.

Chapter 4. Execution Processing 6-7

CUPDATE - CURSOR UPDATE FOR SINGLE ROW

CURSOR UPDATE is the standard IMSADF II SQL statement used to update a
single row in a DB2 Table or View if allowed.

The CURSOR UPDATE function updates a row that has been previously
SELECTed and modified.

The CURSOR UPDATE function is used to FETCH a new copy of the row and
hold the cursor open. The SQL FOR UPDATE OF clause is specified on the
DECLARE CURSOR statement to allow the CURSOR to be referenced on the
subsequent UPDATE statement.

The row to be updated is FETCHed into an IMSADF II I/0 area.

If the IMSADF II data compare (DATACOMP) function is specified for the
Table, the row fetched into the IMSADF II I/0 area is compared with a
copy of the row saved in the SPA from when the row was initially
fetched. If data compare is only specified for a single Column
(DCFIELD), then only that Column was saved, and only that Column is
compared.

If data compare fails and no previous data base updates, (DL/I or DB2),
have occurred within this sync point, the transaction terminates with an
error message. A ROLL CALL is issued if previous data base updates have
occurred.

If data compare is successful, or the data compare function is not
specified for this Table, IMSADF II issues the UPDATE SQL call using the
WHERE CURRENT OF CURSOR clause, pointing at the modified row in the SPA.

Note: All DB2 Columns defined to IMSADF II as eligible for update
(SQLUPD=YES) are included in the SET clause of the SQL UPDATE statement.
Key columns are not eligible for Update.

The DB2 SQL return codes associated with the CUPDATE call are as
follows:

SQLCODE=0 Processing continues.

Redisplay the transaction display screen with the DATA
MODIFIED SUCCESSFULLY completion message.

SQLCODE<0 Processing terminates - DB2 error.
Display the PROCESSING ERROR message with the SQLCODE
mapped into the message. Redisplay the primary option menu

screen if no previous data base updates. Issue a ROLL CALL
and display error screen if previous data base updates.

SQLCODE=100 Processing terminates - data base error.
Issue a ROLL CALL and display error screen.

SQLCODE>0 and == 100 Processing continues - DB2 warning.
Redisplay the transaction display screen with the DATA
MODIFIED SUCCESSFULLY completion message.

CDELETE - CURSOR DELETE FOR SINGLE ROMW

CURSOR DELETE is the standard IMSADF II SQL statement used to delete a
single row from a DB2 Table.

The CURSOR DELETE function deletes a row that has been previously
SELECTed.

The row to be deleted is fetched into an IMSADF II I/0 area.
If the IMSADF II data compare (DATACOMP) function is specified for the
Table, the row fetched into the IMSADF II I/0 area is compared with a

copy of the row saved in the SPA when the row is initially fetched. If
data compare is only specified for a single Column (DCFIELD), then only

4-8 IMSADF II Application Specification Guide for DB2

that Column is saved in the SPA when the row is initially fetched and
only that Column is compared.

If data compare fails and no previous data base updates, (DL/I or DB2),
have occurred within this sync point, the transaction terminates with an
error message. A ROLL CALL is issued if previous data base updates have
occurred.

If data compare is successful, or the data compare function is not
specified for this Table, IMSADF II issues the DELETE SQL call using the
WHERE CURRENT OF CURSOR clause, pointing at the row in the SPA.

The DB2 SQL return codes associated with the CDELETE call are as
follows:

SQLCODE=0 Processing continues.

Redisplay the transaction display screen with the DATA
DELETED SUCCESSFULLY completion message.

SQLCODE<O Processing terminates - DB2 error.
Display the PROCESSING ERROR message with the SQLCODE
mapped into the message. Redisplay the primary option menu
screen, if no previous data base updates. Issue an IMS/VS
ROLL CALL if previous data base updates have occurred.

SQLCODE=100 Processing terminates - data base error.
Issue a ROLL CALL and display error screen.

SQLCODE>O and == 100 Processing continues - DB2 warning.
Redisplay the transaction display screen with the DATA
DELETED SUCCESSFULLY completion message.

INSERT - INSERT OF A SINGLE ROHW

INSERT is the standard IMSADF II SQL statement used to insert a single
row into a DB2 Table.

All Columns defined as eligible for insert (SQLISRT=YES) are included in
the VALUES clause of the SQL INSERT statement.

The DB2 SQL return codes associated with the INSERT call are as follows:
SQLCODE=0 Processing continues.

Redisplay the transaction display screen with the DATA
ADDED SUCCESSFULLY completion message.

SQLCODE<0 Processing terminates - DB2 error.

Display the PROCESSING ERROR message with the SQLCODE
mapped into the message. Redisplay the primary option menu
screen, if no previous data base updates. If previous data
base updates, issue an IMS/VS ROLL CALL.

SQLCODE>0 and == 100 Processing continues - DB2 warning.

Redisplay the transaction display screen with the DATA
ADDED SUCCESSFULLY completion message.

Notes:

1. An IMS/VS ROLL CALL is issued if a DL/I or S5QL data base update call
fails and previous updates have occurred within this sync point.

2. If SELECTed Columns are truncated, SQLWARNO and SQLWARN1l set to 'W'
by DB2, IMSADF II continues processing. The truncated data is
displayed as returned. It is the user's responsibility to test for
truncation and to determine if an error condition exists. Standard
Audit operations have been provided to test SQLWARN and to test

Chapter 4. Execution Processing 6-9

individual Columns for truncation. If truncation does occur the
user must determine if transaction logic (for example, suppress data
base updates) should be altered.

3. If the IMSADF II data compare (DATACOMP) function is specified, and
only a single Column (DCFIELD) is being compared, that Column should
not be defined as being eligible for NULL value. When the DCFIELD
is compared only the data area is compared. The associated
indicator variable is not compared.

4. Native SQL (static and dynamic) calls can also be issued by an Audit
Exit or Special Processing Routine.

RULE AND SPA WORKAREA HANDLING

The Table Handler Rule is loaded and invoked in the same manner as the
current DL/I Segment Handler Rules and is eligible for the PRELOAD rule
and Composite rules load module.

The requesting transaction driver passes the function, host variables
for the INTO and WHERE clauses, indicator variables, the SQL
communication area (SQLCA), and the address of DSNHLI, the language
interface entry point. In turn, the Table Handler Rule issues the
appropriate SQL calls and indicates the result.

The DB2 Tables/Views, defined to an IMSADF II transaction, are allocated
space in the SPA workarea in the same manner as current DL/I and pseudo
segments.

EXIT PROCESSING

A SQLHNDLR Call function is available to Audit exits and Special
Processing routines, similar in structure to the SEGHNDLR function
available for DL/I segments. A SQLHNDLR Call issued by the COBOL, PL/I
or Assembler exit passes the following parameters to the Table Handler
Rule:

Table ID

Label of function to Execute

Host Variables to describe the search values - optional
I/0 area - optional

SQLCA - optional

o ¢ 0o 0 O

4-10 IMSADF II Application Specification Guide for DB2

In PL/I:

CALL SQLHNDLR(ID,LABEL,{KEY,AREA,SQLCA});

In COBOL:

CALL '"SQLHNDLR' USING ID, LABEL, {KEY, AREA, SQLCA}.

Note:

1.

The IMSADF II MAPPER function does not map indicator variables into
a user's I/0 area. The IMSADF II COPYSEG function maps the entire
row, including indicator variables into a user's I/0 area.

The MAPPER function converts TYPE=FLOAT Columns to alphanumeric and
alphanumeric to FLOAT. The MAPPER function calculates the current
length of a TYPE=VARCHAR Column based on the length of the source
field when modified data is mapped into the SPA.

Audit exits or Special processing routines can also issue native SQL
calls. Optionally, the exit can then map the resulting row(s) into
the SPA workarea, using the MAPPER or COPYSEG function. The row is
then accessible for other IMSADF II functions.

The DL/I Exit available before and after each DL/I call is not
available for SQL calls.

Chapter 4. Execution Processing ¢4-11

4-12 IMSADF II Application Specification Guide for DB2

CHAPTER 5. INSTALLATION

There is one optional step in the IMSADF II installation process dealing
with additional DB2 support. This optional installation step must be
executed, if you choose to use the IMSADF II supplied RGLGEN Utility to
extract Rules Generator source from the DB2 catalog.

The RGLGEN Utility is linked with the DB2 TS0 Language Interface Module,
DSNELI by this step.

Refer to the RGLGEN Utility chapter for details on installing and using
this utility.

PL OBLEM

After the IMSADF II installation is completed, the following steps must
also 2edcomp1eted before the IMSADF II DB2 sample problem can be
executed.

The sample problem is composed of three IMSADF II transactions that are
defined in detail in appendixes B and C.

1. Create the IMSADF II Static Rules.

The Rules Generator source statements required to create all the
IMSADF II static rules are contained in the IMSADF.RULES.SOURCE
library, member RGLDB2S. The three required screen image source
megbggs are contained in the IMSADF.ADFIMG library, members EM, EX,
an .

Note:

L The DB2 Table processed by the three sample transactions is the
DB2 sample Employee Table, 'DSN8.TEMPL'. 1In order to access a
private copy of this table, change the SQLNAME operand on the
two Rules Generator TABLE statements to the new DB2 Table name.

[The Rules Generator Table and Column source statements for the
TABLE ID=EM can also be extracted from the DB2 Catalog. The
RGLGEN Utility should be executed and the created Table and
Column statements should be compared with the Table and Column
statements in source member RGLDB2S.

. The information contained on the SYSTEM statement in source
member RGLDB2S establishes that the three DB2 sample
transactions are clustered under IMS/VS transaction SAMPTOR.

The associated IMSADF II PROJECT/GROUP is Z2Z. This is the same
IMS/VS transaction and PROJECT/GROUP that the standard IMSADF II
sample problem uses.

[The last two GENERATE statements in source member RGLDB2S can be
go?@enged out if the standard IMSADF Il sample problem has been
efined.

2. Create the IMSADF II Dynamic Rules.

U Define gdditional transaction logic required to successfully
execute the IMSADF II DB2 sample transactions. Appendix B
contains samples of the required High Level Audit Language code.
This additional transaction logic should be added to the Audit
data base. No source has been provided.

. Optionally define transaction Help information. Transaction
help can be made available for all conversational transactions.
Appendix B contains a sample of transaction Help for the 'EM'
transaction. No source is provided.

Chapter 5. Installation 5-1

L Define additional error messages. The sample High Level Audit
Language for transaction 'ES' references error message 1000.
This message should be added to the Message data base.

[The three sample DB2 transactions 'EM', 'EX', and 'ES' must be
added to the ZZ Project/Group profile in the SIGNON/PROFILE data
base.

3. Create the DB2 Application Plan.

Part of the output created by the Rules Generator are two DB2 DBRMs.
The DB2 BIND process is invoked to combine these DBRMs into a DB2
Application Plan. The name of the Application Plan must be the same
as the IMS/VS transaction and PSB, (that is, SAMPTOR). The names of
the DBRMs that must be specified when the BIND process is invoked
are SAMPSEM, and SAMPSES.

Once these additional steps have been completed the IMSADF II DB2 sample
problem becomes a part of the standard IMSADF II sample problem.

DB2 APPLICATION PLAN RESTRICTION

IMSADF II Version 2 Release 2, in the CICS5/0S5/VS environment, has the
following restriction - all DB2 transactions for an IMSADF II SYSID must
be in the same application plan. This is accomplished by specifying the

game ciuster code (i.e., PGMID= and SOMTX= operands) to the Rules
enerator.

If DB2 Release 1 is used, the number of DB2 transactions per SYSID will
be limited by the total application plan size. This is because plans
are stored and loaded as a single unit of actual code. There is code in
the plan for each SQL statement, and plan size is dependent on the
number of tables referenced and the complexity of the user SQL
statements.

However, in DB2 Release 2, because of changes in the locking mechanism
and application plan segmentation, the above IMSADF II CICS,/0S5/VS
restriction will still apply, but more DB2 transactions per SYSID may be
used. Specifically, plans consist of more compact structures. Each SQL
statement, or set of cursor-related statements, creates a separate
control structure. Thus, virtual storage demands are relieved because
each control structure is smaller than the DB2 Release 1 application
plan. These control structures are loaded into virtual storage when the
program first executes the SQL statement. In addition, the control
structures are released from the Environmental Descriptor Manager (EDM)
pool based on the RELEASE value specified during the BIND. This
dgcreases demand for real storage and paging I/0 related to EDM pool
size.

5-2 IMSADF II Application Specification Guide for DB2

APPENDIX A. SAMPLE RULES GENERATOR SOURCE AND OUTPUT

This appendix contains Rules Generator source statements that define two
IMSADF II transactions that access both DL/I and DB2 data bases. It
also contains the Assembler Source statements output for the Table
Handler Rule created by the Rules Generator. These source statements
are used as input to the DB2 pre-compiler. The Rules Generator
dynamically invokes the DB2 pre-compiler prior to invoking the Assembler
and the Linkage Editor.

RULES GENERATOR SOURCE STATEMENTS

E3 3333333333333 333333 3333333383333 83333ttt ettty

* %

¥ APPLICATION DEFINITION - DLI PARTS DATA BASE - PA SEGMENT *

* DB2 DSN8 DATA BASE - EM TABLE *

* *

3636 36 3 36 96 2 36 36 3 3 I 26 6 36 36 36 96 26 36 6 36 96 9 6 3 36 J6 36 36 3 36 I 96 56 36 36 36 36 36 36 3 36 36 2 36 36 3 36 36 96 6 3 36 36 36 6 36 3 36 3 36 36 36 36 36 2 36 3¢ ¢ %

¥

SYSTEM SYSID=SAMP,DBID=PA, RULE ID CHARS
USRLANG=E, FORCE TO ENGLISH
SOMTX=0R, DEFAULT SECONDARY OPTION CODE
PCBNO=1, PCB NUMBER FOR DATA BASE
SHEADING='S AMPLE PROBLEM, GENERAL HEADING
SFORMAT=DASH, SCREEN FORMAT
PGROUP=2Z PROJECT GROUP

*

2696 36 36 36 26 96 6 36 3 3 26 26 36 3 3 36 26 6 36 26 26 26 6 6 3 36 96 6 36 36 36 26 I 36 36 36 36 26 56 3 36 36 36 36 3 36 36 36 36 36 3 36 26 3 36 36 3 36 36 36 6 6 36 36 26 26 2 36 X %

* ¥

* APPLICATION DEFINITION INPUT FOR PA ROOT SEGMENT *

* *

2636 36 96 36 3 26 6 3 J6 6 3 3 36 6 36 36 2 36 36 3 3 36 3 36 36 2 3 I 3 3 36 36 3 36 36 3 36 36 6 3 36 3 36 96 3 36 3 3 36 96 3 36 96 2 3 36 3 36 36 36 6 36 36 2 3 36 3¢ % %
*
SEGMENT ID=PA,PARENT=0,NAME=PARTROOT,LENGTH=50,S5KSEG=18
FIELD ID=KEY,LENGTH=17,KEY=YES,NAME=PARTKEY, SNAME='PART NUMBER'
FIELD ID=DESC,LENGTH=20,P05=27,SNAME="DESCRIPTION',REL=YES
*

636 26 X 3 I 26 X 3 I I K I I I X 3 KK K I I I I X I I I I I K 3K I I I I I I I K 3 I IE I 3 3 26 I 2 26 I 2626 2 0 2 XX K

* *
* TABLE: ID=EM DATE: 12725784 TIME: 00:04:29 *
* NAME=DSN8.TEMPL MEMBER=SAMPTBEM *
* *

3333333333333 3333333 3333333333333 3333333333333 3333333333333 33333333331

%

TABLE ID=EM,TYPE=TBL,SQLNAME="DSN8.TEMPL"',SQLIND=YES

COLUMN ID=0001,S5SQLNAME='EMPNO',SNAME='EMPNO',

, TYPE=C,LENGTH=006,SQLUPD=NO

COLUMN ID=0002,SQLNAME="FIRSTNME"',SNAME="FIRSTNME',
TYPE=V,LENGTH=012

COLUMN ID=0003,S5QLNAME="MIDINIT',SNAME="MIDINIT',
TYPE=C,LENGTH=001

COLUMN ID=0004,S5QLNAME="LASTNAME',SNAME="LASTNAME',
TYPE=V, LENGTH=015

COLUMN ID=0005,5SQLNAME="WORKDEPT',SNAME="WORKDEPT",
TYPE=C,LENGTH=003

COLUMN ID=0006,S5SQLNAME="PHONENO',SNAME="PHONENO"',
TYPE=C, LENGTH=004%, SQLNULL=YES

COLUMN ID=0007,S5SQLNAME="HIREDATE',SNAME='HIREDATE",
TYPE=P,LENGTH=004,SQLNULL=YES

COLUMN ID=0008,S5SQLNAME="'JOBCODE',SNAME="JOBCODE",
TYPE=P, LENGTH=002, SQLNULL=YES

COLUMN ID=0009,SQLNAME="EDUCLVL"',SNAME="EDUCLVL",
TYPE=I,LENGTH=002,S5SQLNULL=YES

COLUMN ID=0010,S5QLNAME="SEX',SNAME="'SEX"',
TYPE=C,LENGTH=001,SQLNULL=YES

COLUMN ID=0011,SQLNAME="BRTHDATE"', SNAME="BRTHDATE"',
TYPE=P,LENGTH=004,SQLNULL=YES

COLUMN ID=0012,SQLNAME="SALARY',SNAME="SALARY"',

Appendix A. Sample Rules Generator Source and Output A-1

TYPE=P, LENGTH=005,DEC=02,SQLNULL=YES
%
¥ FIELD MERGE INFORMATION FOR 'EM' KEY SELECTION AND AUDITS
*

COLUMN ID=0001,KEY=YES,SNAME='EMPLOYEE SEARCH DATA',COL=01
COLUMN 1ID=0004,RELATED=YES,COL=16

COLUMN ID=0005,RELATED=YES,COL=33

COLUMN ID=0012,RELATED=YES,COL=43

*

¥ SEGMENT OVERRIDE INFORMATION FOR 'EM' KEY SELECTION

*
TABLE OVERRIDE=ID,ID=EM, SKSEGS=15,

SKLEFT='EMPLOYEE LAST WORK",

SKLEFT="NUMBER NAME DEPT',

SKRIGHT=" SALARY?
*
2636 36 36 3 26 3 26 36 3 26 3 36 2 3 I 3 26 3 36 2 2 26 5 3 26 6 3 36 3 26 3 36 3 36 6 2 26 X 26 3 26 3 26 I 3 2 3 26 3 36 3 36 3 3 2 3 26 6 36 3 3 26 36 26 36 36 6 X %
* *
¥ PSEUDO SEGMENT TO HOLD 'EM' KSELECT3 WHERE CLAUSE HOST VARIABLE *
* x

3636 36 3 56 36 3 36 3 36 2 26 36 36 26 I 36 2 26 36 36 36 3 2 2 36 36 36 36 36 36 36 3 26 I 36 I 26 36 36 26 6 36 26 36 36 26 36 3 36 36 36 26 26 36 36 36 36 36 36 26 36 X 3 36 36 26 6 % %
*
SEGMENT ID=P1,TYPE=PS

FIELD ID=KS3,TYPE=C,LENGTH=09

FIELD ID=EMP#,TYPE=C,LENGTH=06,REDEF=KS3

FIELD ID=DEPT,TYPE=C,LENGTH=03,REDEF=KS3,0FFSET=6

33636 5 3 5 2 I 2K 2 I I I I I I I K 3 3 I3 X3 I I I K I IE I K I I I IE I I K I I I I I I I 3 I K X K I K KX

%
GENERATE SEGMENT LAYOUT AND HANDLER RULES FOR SEGMENT - PA *
GENERATE SEGMENT LAYOUT RULE FOR PSEUDO SEGMENT - P1 *
GENERATE TABLE LAYOUT RULE FOR DB2 TABLE - EM *
*
*

2636 36 26 X 96 X 26 36 X 6 3 26 3 36 3 X 3 X 3 3 36 36 2 36 X 26 2 I 3 I 36 23 26 36 3 3 2 36 5 I3 I 3 36 I X I 3 36 X 26 3 36 3 3 I 3 6 2 X 36 3 2 3 ¢ % %
*

GENERATE OPTIONS=(SEGL,SEGH),SEGMENT=PA

GENERATE OPTIONS=SEGL,SEGMENT=P1

GENERATE OPTIONS=TABL,TABLE=EM

*

3 36 26 26 5 36 3 36 3 X 2 3 26 2 36 I3 36 3 23 26 I 2 36 X 26 3 3 36 36 6 3 36 3 26 3 I 6 26 36 2 I 36 26 36 36 36 36 36 36 3 3 36 36 36 36 36 6 3 36 3 36 36 36 6 36 6 36 % %

X X X X X X X

%* *
* GENERATE A TABLE HANDLER RULE FOR TABLE - EM *
* *

96263 3 26 3 3 26 3 36 23 36 23 26 96 6 36 36 3 26 36 36 36 26 6 36 36 36 36 36 36 36 26 36 36 26 36 36 26 36 36 36 26 36 2 26 6 36 26 36 36 26 36 3 36 36 36 3 26 36 36 3 36 36 % %
%
GENERATE OPTIONS=TABH,TABLES=EM,SQLCALL=(DSQLCALL,KSELECT2),
SQLUSER=YES, ASMREQ=YES
KSELECT3 SELECT WHERE EMPNO >= :EMP#.P1 AND WORKDEPT = :DEPT.Pl
ORDER BY EMPNO ASC, WORKDEPT ASC

&SQLENDS

*

336 26 26 2 36 2 2 36 3 36 36 36 6 3 36 X 36 X I I 2 X I X 36 K 3 3 3 3 2 I 2 I 36 36 3 36 2 363 26 6 36 36 3 3 3 36 3 36 36 I 6 2 36 36 36 36 36 36 36 3 2 % %
* %
* GENERATE CONVERSATIONAL INPUT TRANSACTION RULE AND SCREENS *
% *

333333 3333333333 333333 3333333333333 333333333333 3333333333333,

%

GENERATE TRXID=EX,OPTIONS=CVALL,DBPATH=(PA,EM),TSEGS=(P1),
TRXNAME='DLI-PART s DB2-EMPLOYEE',DATACOMP=(EM),
DEVNAME=(2,A3,A4%),

DEVCHRS=(0,0,0),
DEVTYPE=(2,7,4),S5P0S5S=SIMAGE
'DB2 'SAMPLE 'P ROBLEM

&=1
&MODE TRANSACTION: 'DLI PART / 'DB2 EMPLOYEE
OPTION:&0PT TRX:&TRAN KEY:&KEY
&SYSMSG
&=1
DLI SEGMENT PART NUMBER---======—- &5KEY.PA
DESCRIPTION--======——- &5DESC.PA
&=2
DB2 TABLE EMPLOYEE NUMBER------- &50001.EM
FIRST NAME--—--=-——=—-- &50002.EM
MIDDLE INITIAL----=—-- &50003.EM

A-2 IMSADF II Application Specification Guide for DB2

LAST NAME----=--—=————- &50004.EM

*
*

DEPARTMENT NUMBER----- &50005.EM
PHONE EXTENSION-—------ &50006.EM
DATE HIRED--=--=-—==-=---- &50007.EM
JOB CODE---=—=======—=—- 450008 .EM
EDUCATION LEVEL--==--- &50009.EM
SEX-=—=m——m e m &50010.EM
BIRTH DATE------------ &50011.EM
SALARY--=—===mm——————— &50012.EM
&% 1 1 2 3 3 4 5 5
EX—mm 2-===- g-———-- G-————- 1-=m==- b Sttt 6----1---5
&% ID ¥SLEN *VROW *VCOL *VMODE *ASTATUSXKSEL*CLR¥*XHL
&:KEY.PA P
&:DESC.PA G
&:0001.EM KA P
&:0002.EM Y
&:0003.EM Y
&:0004.EM Y
&:0005.EM Y
&:0006.EM Y
&:0007.EM 6 Y
&:0008.EM 3 Y
&:0009.EM 5 Y
&:0010.EM Y
&:0011.EM 6 Y
&:0012.EM 10 Y
&ENDS
%
3 3 3 X 3 X 3 I I I I IE I I I I I I I I I K I I I I K I XX I X I I K IE I I I I I K I I X 3 X X X X K K I I XXX X X XK
* .
* GENERATE NONCONVERSATIONAL INPUT TRANSACTION RULE AND SCREENS
*

*

3636 36 3 3 3 3 I I I I I I I I I I I I I I I I KK HE I MK K, I I KK I I I I I K I I XX XK XX I I K KKK X%

%
GENERATE TRXID=NX,0PTIONS=T

PALL,DBPATH=(PA,EM),TSEGS=(P1),

TRXNAME='DB2 EMPLOYEE TABLE',MODNAME=SAMPNM,

DEVNAME=(2,A3,A4%),
DEVCHRS=(0,0,0),

DEVTYPE=(2,7,4),5P0S=SIMAGE

401 'D B2 'SAMPLE 'P ROBLEM

&MODE TRANSACTION: 'DLI PART - 'DB2 EMPLOYEE

ACTION:&ACTION TRX: &X

81 &SYSMSG

DLI SEGMENT PART NUMBER--========-- &5KEY.PA

DESCRIPTION--—======—= &5DESC.PA

&=

DB2 TABLE EMPLOYEE NUMBER------- &50001.EM

FIRST NAME-------—=—--- &50002.EM
MIDDLE INITIAL-------- &50003.EM
LAST NAME-----=--=—mm—- 450004 .EM
DEPARTMENT NUMBER----- &50005.EM
PHONE EXTENSION------- &50006.EM
DATE HIRED--=--=====-—- &50007 .EM
JOB CODE----=-======—= &50008.EM
EDUCATION LEVEL--—---- &50009.EM
SEX-=m—=-mmmm e &50010.EM
BIRTH DATE--=-=====—=-- &50011.EM
SALARY=-=—=——=——mmmmm o &50012.EM

& 1 1 2 3 3 4 5 5

2

&% ID XSLEN *VROW xVCoOL
:KEY.PA

:DESC.PA
:0001.EM
:0002.EM
:0003.EM
:0004.EM
:0005.EM
06.EM
.EM
.EM
.EM

R0 R0 Q0 RO QO QO RO RO RO RO O
. oo o

00
00
:00
00

coo
o 00~
U

Appendix A.

1 5
¥VMODE *ASTATUS*KSELXCLR*XHL

<A< <A< << TDT

Sample Rules Generator Source and Output

A-3

&:0010.EM Y

&:0011.EM 6 Y

&:0012.EM 10 Y

&ENDS

*

2656 36 36 3 36 3 3 36 3 36 3 X 26 3 X 36 3 36 36 I 36 3 36 6 36 36 X I 2 I 36 3 36 3 36 36 3 6 3 26 2 36 3 3 36 3 36 36 3 6 3 I 6 36 I 3 I6 3 I 36 3 36 6 X 36 X 36 36 3 %
% ¥
* GENERATE SECONDARY OPTION MENU %
* *

33 26 36 36 36 6 3 26 3 26 2 3 2 36 3 3 2 56 2 5 3 26 3 36 23 3 K 6 3 I 3 2 K 56 3 2 36 36 3 36 2 3 26 3 I 3 3 26 36 36 36 36 2 3 2 3 I 36 3 36 6 36 6 3 % %
%

GENERATE OPTIONS=SOM

*

b2 3.3.323.3.33.3.33.3.33 2333333233333 3333333 33.2.333.3333.3.333.3333333333333333333.3.33]

] %
* LINK CONVERSATIONAL AND NONCONVERSATIONAL DRIVERS *
* *

3636 36 36 26 36 6 3 36 36 3 26 3 3 26 3 3 36 36 3 3 I I 3 36 3656 36 36 36 36 3 36 26 3 26 6 3 26 36 3 I 2 3 36 26 3 36 36 26 36 3 36 2 36 I 26 36 36 36 36 36 26 26 36 36 X ¢
*

GENERATE OPTION=STLE,PGMID=0R

GENERATE OPTION=NCLE,PGMID=0R

*¥%% END OF DATA x*xx

TABLE HANDLER GENERATED ASSEMBLER SOURCE STATEMENTS

SEM TITLE 'TABLE HANDLER FOR IMSADF II TABLE ID -EM, SYSID -SAMP'
SAMPSEM CSECT
SPACE 2

2333333333 3333333333333 3333333333333 33333.333.3.3.3.333833333333.33.3.3.3.81

% %
% MODULE NAME: SAMPSEM *
* *
¥ DESCRIPTIVE NAME: TABLE HANDLER FOR TABLE ID -EM, SYSID -SAMP *
* *
% STATUS: GENERATED BY IMSADF II VERSION 2 RELEASE 1 *
* %
% FUNCTION: TO ISSUE SQL CALLS FOR DB2 TABLES DEFINED TO IMSADF *
* %
* MODULE TYPE: CSECT *
% PROCESSOR: DB2 PREPROCESSOR AND ASSEMBLER *
* ATTRIBUTES: SERIALLY REUSABLE *
* *
¥ INPUT: QCONTROL TABLE x
¥ 0 e *
* | SQLFUNC ADDRESS | *
* | IOAREA ADDRESS | *
* | KEYS ADDRESS | *
* SQLCA ADDRESS | *
* SQLCA-WS ADDRESS | *
* | DSNHLI ~ ADDRESS | %
¥ 0 mmemmmre e %
¥ QUTPUT: *
* %*
* COMPLETED SQL CALL *
* RETURN CODE (REGISTER 15) x
* %
* EXTERNAL REFERENCES: *
* %
¥ ROUTINES: DSNHLI *
* %
* DATA AREAS: TABLE I/0 AREA (DATA AND INDICATOR VARIABLES) *
* SEARCH VARIABLES (KEYS) *
* *
¥ CONTROL BLOCKS: SQLCA *
% *
133.3333.33333.3.333.33333333 333333333 33333333333 333333333333 333333333 38338
SPACE 2
RO EQU 0
R1 EQU 1
R2 EQU 2 SQL FUNCTION TO BE PERFORMED
R3 EQU 3 TABLE IOAREA
R4 EQU 4 TABLE IOAREA PLUS 4096
R5 EQU 5 SEARCH VARIABLES (KEYS)

A-4¢ IMSADF II Application Specification Guide for DB2

R6 EQU 6 SQLCA ADDRESS
R?7 EQU 7 SQLDA ADDRESS
R8 EQU 8 DSNHLI ADDRESS
R9 EQU 9 BASE
R10 EQU 10 BASE
R11 EQU 11 BASE
R12 EQU 12 BASE
R13 EQU 13 SAVE AREA
R14 EQU 14 RETURN ADDRESS
R15 EQU 15
WARNING EQU C'W’'
RCOO EQU 0
RCO8 EQU 8
RC21 EQU 21
RC22 EQU 22
RC23 EQU 23
RC24 EQU 24
EJECT
¥ TABLE EM IOAREA DSEC FOR HOST VARIABLES
SAMPEMO DSECT ,
AEM0001% DS CLOO6
AEM0002% DS H,CLO12
AEMO0003$ DS cLoo01
AEM0004$ DS H,CLO15
AEM0005$% DS CLOO3
AEMO0006$ DS CLOO4
AEM0007% DC PL004'9999999"
AEM0008$ DC PL002'999"
AEM0009S$ DS H
AEM0010$ DS CLO001
AEM0011$ DC PL00479999999"'
AEM0OO012% DC PL005'9999999.99"
¥ TABLE EM INDICATOR VARIABLES FOR HOST VARIABLES
DS H
DS H
DS H
DS H
DS H
AEMO0006a DS H
AEM0007a DS H
AEM0008a DS H
AEM0009a DS H
AEM0010a DS H
AEM0O011a DS H
AEMO0O12a DS H
¥ SEARCH VALUES FOR TABLE EM
SAMPEMK DSECT ,
AEMOO0O011 DS CLOOG CURRENT VALUE KEY 001
AEM00012 DS CLOO6 BASE VALUE KEY 001 FOR REPOSITIONING

¥ USER SEARCH VALUES FOR USER LABEL - KSELECT3

SAMPEMK3 DSECT

’

AP1EMP#3 DS CLO06
AP1DEPT3 DS cLoo3
EJECT
SAMPSEM CSECT
USING SAMPSEM,R15 TEMP BASE IN R15.
B SQLSTART BRANCH AROUND ID.
DC AL1(SQLSTART-%-1),C'SAMPEM &SYSDATE &SYSTIME®
SQLSTART DS 0H
STM R14,R12,12(R13) SAVE CALLERS REGS.
LA R14,SQLSAVE PICK UP SAVE AREA ADDR.
ST R14,8(,R13) SET FWD PTR.
ST R13,4(,R14) SET BKWD PTR.
LR R13,R14 R13 TO SAVE AREA.
LR R12,R15
DROP R15
SPACE
USING SAMPSEM,R12
SPACE
LA R15,RC00 INDICATE VALID FUNCTION
LM R2,R3,0(R1) PARAMETER ADDRESSES
LM R5,R8,8(R1) PARAMETER ADDRESSES
LR R4,R3 2ND BASE REG FOR TABLE IOAREA
A R4,=A(4096) STARTING ADDRESS FOR 2ND BASE REG

Appendix A.

Sample Rules Generator Source and Output A-5

1 R15,=V(ADSNHLI) GET ADDRESS OF ADSNHLI

ST R8,0(,R15) SAVE DSNHLI ADDRESS
3636 36 26 36 36 2 26 36 36 26 2 6 3 26 5 3 26 36 36 26 26 36 3 J 36 3 36 26 36 36 36 36 36 I 36 36 36 36 3 26 6 36 36 I 36 36 36 36 36 3 36 36 36 6 3 3 36 36 3 3 36 6 36 36 2 36 3¢ %
* *
* LOCATE REQUESTED FUNCTION *
* *

t33.3.3.3.3.3.3.2.33.3.3.3.3.3.3.3.23.35.333.3.3.3.3.3.33 3333833

LA R9,BRANCHT LOOP THROUGH BRANCH TABLE
LOoOP1 L R10,8(R9) ADDR OF SQL ROUTINE

cLC 0(8,R9),0(R2) FUNCTION TO BE PERFORMED

BER R10 EXECUTE SQL CALL

LA R9,12(R9) GET NEXT ENTRY

CcLC 0(8,R9),=C'FFFFFFFF' LAST ENTRY

BNE LOOP1 NOT THE LAST - CONTINUE SEARCH

LA R15,RC08 INDICATE FUNCTION NOT VALID
RETURN L R13,4(,R13) RESTORE CALLERS R13

LM RO,R12,20(R13) RESTORE CALLERS RO-R12

L R14,12(R13) GET RETURN POINT

BR R1¢ & RETURN

USING SAMPEMO,R3 SQL TABLE IOAREA

USING SAMPEMO+4096,R% 2ND BASE REG FOR TABLE IOAREA

USING SAMPEMK,R5 SQL SEARCH VALUES - ASSUME STANDARD

USING SQLCAD,Ré6 SQLCA

USING SQLDSECT,R7? SQLCA EXTENSION

SPACE

DC C'SEMSAVE " ID TO TABLE HANDLER RULE
SQLSAVE DC . 18AC0) SAVE AREA

EJEC
t33.3.33.3.3.33.3.333.3.3333.23333333.333333.333333333.8.333.3.33.3383338 3083 3 2 0 230220
% %*
* BRANCH TABLE *
%* 3

t3.3.33.3.3.3.3.3.3.3.3.3.33.33.3.33.3.3.3.3.3.3.3.33.3.3.33.33.3333.3.3.3.3.3.3.2.2.3.3.3.3.2.5.3. 3.3 5.2 2 3333 3.3.3.3.3 3

BRANCHT DS 0D BRANCH TABLE

DC C'CSELECTO',A(CSELECTO) SEQUENTIAL SELECT WITH CURSOR

DC C'CSELECTC',A(CSELECTC) SEQUENTIAL SELECT CLOSE CURSOR

DC C'INSERT '",ACINSERT) INSERT SINGLE ROW

DC C'CUPDATEO',A(CUPDATEO) OPEN CURSOR FOR UPDATE (1 ROW)

DC C'CUPDATEU',A(CUPDATEU) UPDATE FOR UPDATE CURSOR

DC C'CUPDATEC',A(CUPDATEC) CLOSE UPDATE CURSOR

DC C'CDELETEO',ACCDELETEQO) OPEN CURSOR FOR DELETE (1 ROW)

DC C'CDELETED',A(CDELETED) DELETE FOR DELETE CURSOR

DC C'CDELETEC',A(CDELETEC) CLOSE DELETE CURSOR

DC C'KSELEC10',A(KSELEC10)> SEQUENTIAL SELECT WITH CURSOR

DC C'KSELEC1F",A(KSELEC1F) FETCH WITHIN KSELECT CURSOR

DC C'KSELEC1C',A(KSELECIC) CLOSE KSELECT CURSOR

DC C'KSELEC20',A(KSELEC20) SEQUENTIAL SELECT WITH CURSOR

DC C'KSELEC2F',A(KSELEC2F) FETCH WITHIN KSELECT CURSOR

DC C'KSELEC2C',A(KSELEC2C) CLOSE KSELECT CURSOR

DC C'KSELEC30',A(KSELEC30) LABEL FOR USER KSELECT OPEN

DC C'KSELEC3F',A(KSELEC3F) LABEL FOR USER KSELECT FETCH

DC C'KSELEC3C',A(KSELEC3C) LABEL FOR USER KSELECT CLOSE

DC C'FFFFFFFF',AC0) END OF BRANCH TABLE FLAG

SPACE
SC100 DC Frio0*

EJECT
133.3.33.3.333333.33.33.3.3.33.3.333.3.33.3.3.33.3.3333.3.3.33.3.3.33.3.3.3.3.3. 3333353333 33333322323
* %
* CSELECTO FOR TABLE EM *
% %

2636 36 36 3 3 36 36 2 3 36 3 36 2 36 2 3 36 X 3 2 36 3 56 K 2 3 23 I I 3 36 3 26 3 36 36 36 I 3 2 3 36 3 36 3 36 6 3 I 6 36 3 I I 3 36 3 I 2 5 3¢ X I 3 X ¢ X
CSELECTO EQU *

BALR R1l1,0

USING %,R11

USING %+4095,R10

USING %+8190,R9

USING %+12285,R8

LA R10,4095(R11)

LA R9,4095(R10)

LA R8,4095(R9)

EXEC SQL X
DECLARE CSELECT CURSOR FOR X
SELECT X
EMPNO » X

A-6 IMSADF II Application Specification Guide for DB2

LA
B

DROP
DROP
DROP
DROP
LTORG
EJECT

FIRSTNME
MIDINIT
LASTNAME
WORKDEPT
PHONENO
HIREDATE
JOBCODE
EDUCLVL
SEX
BRTHDATE
SALARY
FROM
DSN8.TEMPL
WHERE
EMPNO
=:AEM00011
SQL

OPEN CSELECT

R14,15,5QL
RETURN

CODE
SQLCODE < 0

SQLCODE,SC100

RETURN

SQL

FETCH CSEL
INTO
:AEMOO0O1S
:AEM0002S
+AEMO003S
:AEM0004S
:AEM0005$
:AEM0006S:
:AEMO0007S$:
:AEM0008S$:
:AEM0009S:
:AEM0010S:
:AEMOO11S:
:AEM0O012G:
R15,RC21
RETURN

R8

R9

R10

R11

SQLCODE = 100
ECT

AEM0006a
AEMO0073
AEM00O08a
AEM0009a
AEMO0010a
AEMOOl1a
AEMOO12a
SELECT/FETCH FUNCTION

t333.3333333331313333333333333333.333333333333323 3332033023303 0322302 03 T3t

CSELECTC FOR TABLE EM

96 26 56 36 96 36 3 J6 6 2 36 26 56 3 26 36 6 36 I 3 3 36 36 3 36 6 3 36 6 2 36 3 3 36 36 3 36 36 2 3 I 3 3 36 3 3 36 I 6 2 36 3 3 36 6 3 36 6 3 3 36 3 3 36 6 2 36 36 6 % %
CSELECTC EQU

*
*
%

%*

11)
0)
)

ECT

*
*
*

1333333133131 31333333333333333333333333332.332.33.883823.330 2323 3030 2E st 0T 02

%*
*
x

LE EM

*
*
*

133.3.3333333333333333333.333333332.033.383 3333333328823 333ttt R syt E

BALR R11,0
USING %,R11
USING %+4095,R10
USING %+8190,R9
USING %+12285,R8
LA R10,4095(R
LA R9,4095(R1
LA R8,4095(R9
EXEC SQL

CLOSE CSEL
B RETURN
DROP R8
DROP R9
DROP R10
DROP R11
LTORG
EJECT
INSERT FOR TAB
INSERT EQU x

Appendix A.

Sample Rules Generator Source and Output

A-7

BALR R11,0

USING %,R11

USING %+64095,R10
USING %+8190,R9
USING %+12285,R8

LA R10,4095(R11)
LA R9,4095(R10)
LA R8,4095(R9)

EXEC SQL X
INSERT INTO X
DSN8.TEMPL X
(X
EMPNO ’ X
FIRSTNME ’ X
MIDINIT ’ X
LASTNAME ’ X
WORKDEPT ’ X
PHONENO ’ X
HIREDATE ’ X
JOBCODE ’ X
EDUCLVL ’ X
SEX ’ X
BRTHDATE ’ X
SALARY X
) X
VALUES (X
:AEMO0O1S » X
:AEM00029S » X
:AEMOO003$ » X
:AEMO0004S » X
:AEM0005$ » X
:AEM0O006S:AEMO006Q » X
:AEMO007$:AEM00073 » X
:AEMO008S:AEMO0083 » X
:AEM0009$:AEMO0093 » X
:AEM0010$:AEMO0103 » X
:AEMO011$:AEMO0113 » X
:AEM0012$:AEMO0012] X
)

B RETURN

DROP R8

DROP R9

DROP R10

DROP R11

LTORG

EJECT

323 22222333333 330338333333333338338333 333 38333333333333313333231%
* *
* CUPDATEO FOR TABLE EM *
% *

2636 36 3 36 96 2 2 36 36 6 X 36 6 3 X 26 I 3 36 36 36 X 36 36 36 3 36 3 36 36 3 36 36 36 36 3 96 36 3 36 6 3 36 26 36 3 26 3 3)6 2 6 26 36 2 3 36 36 3 X 36 36 6 36 36 36 3 3¢ %
CUPDATED EQU *
BALR R11,0
USING %,R11
USING %+4095,R10
USING %+8190,R9
USING %+12285,R38
LA R10,4095(R11)
LA R9,4095(R10)
LA R8,4095(R9)
EXEC sSQlL
DECLARE CUPDATE CURSOR FOR
SELECT
EMPNO
FIRSTNME
MIDINIT
LASTNAME
WORKDEPT
PHONENO
HIREDATE
JOBCODE
EDUCLVL
SEX
BRTHDATE

HAEAHKXKHKAHKXKAHKK KKK

DI R Y

A-8 IMSADF II Application Specification Guide for DB2

SALARY
FROM
DSN8 . TEMPL
WHERE
EMPNO
=:AEM00011
FOR UPDATE OF
FIRSTNME
MIDINIT
LASTNAME
WORKDEPT
PHONENO
HIREDATE
JOBCODE
EDUCLVL
SEX
BRTHDATE
SALARY
EXEC SQL
OPEN CUPDATE
ICM R14,i5,5QLCODE
BM RETURN SQLCODE < 0
CLC SQLCODE,SC100
BE RETURN SQLCODE = 100
EXEC SQL X
FETCH CUPDATE X
INTO X
:AEM0001$ »X
:AEM0002$ » X
:AEM0003$ »X
:AEM00064$ »X
tAEM0005$ »X
:AEMO006S: AEM00063 »X
:AEM0007$:AEM0007a » X
:AEM0008S: AEM00 083 » X
:AEM0009$:AEM0009a » X
:AEM0010$:AEM00103 » X
:AEM0011$:AEM0011d » X
:AEM0012$:AEM00123
B RETURN
DROP R8
DROP R9
DROP R10
DROP. R11
LTORG
EJECT
133333333333 23333333333333323333333333.333133313333333183113313%133%3133%338
% *
* CUPDATEU FOR TABLE EM *
% %
t333.333333333333333313333333323333333333131313313333313311333311111313133133 1
CUPDATEU EQU
BALR R11,0
USING X,R11
USING %+4095,R10
USING %+8190,R9
USING %+12285,R8
LA R10,4095(R
LA R9,4095(R1
LA R8,4095(R9
EXEC SQL
UPDATE
DSN8. TEMPL
SET
FIRSTNME
= AEM0002$
MIDINIT
=:AEM0003$
LASTNAME
=:AEM0004$
WORKDEPT
=:AEM0005$
PHONENO
=:AEM0006$: AEM00063

D I)

MXOXHRKIHRKAKAHK IR K AKX KKK XK KK

1D
0)
)

~ ~ - -

HAEXHKAHKXKAHK XK AKX XK

-

Appendix A. Sample Rules Generator Source and Output A-9

LA
B

DROP
DROP
DROP
DROP
LTORG
EJECT

HIREDATE
=:AEM0007$:AEM00072
JOBCODE
=:AEM0008$:AEM0008Q
EDUCLVL
=:AEM0009$:AEM0009

SEX

=:AEMO010$:AEM0010a
BRTHDATE
=:AEM0011$:AEMO00113
SALARY
=:AEM0012$:AEM00123
WHERE CURRENT OF CUPDATE
R15,RC22 UPDATE FUNCTION RETURN CODE
RETURN

R8

RY

R10

R11

~ ~ ~ ~

-

HKIEHKAXK XXX KKK XX

3333322233233 3333388823 33323333833383333333333833 3333331123388

*
*
%

CUPDATEC FOR TABLE EM

X 36 26 36 3 3 36 3 H 3 26 2 X6 3K 3 I 3 26 36 3 6 3 I X K I X I X 36 2 2 36 X I X 36 6 36 36 I 36 3 36 2 36 3 36 36 3 36 3 3 36 36 36 3 36 36 36 36 36 36 3 36 6) 6 36 6 %
CUPDATEC EQU

BALR
USING
USING
USING
USING
LA

LA

LA
EXEC

B
DROP
DROP
DROP
DROP
LTORG
EJECT

*

R11,0

%,R11
¥+6095,R10
*%+8190,R9
*+12285,R8
R10,4095(R11)
R9,4095(R10)
R8,4095(R9)
SQL

CLOSE CUPDATE
RETURN

R8

R9

R10

R11

%
*
%*

L3323 32253223333 23333323333333333333332333333323333233313333131311311313

*
%
*

CDELETEO FOR TABLE EM

%
*
%

22636 26 26 36 X X6 36 26 5 36 36 6 36 36 6 3 36 36 6 3 36 6 X 36 26 3 36 36 36 3 36 36 36 3 2 3 36 2 X 3 96 6 2 36 36 3 26 96 3 X 36 6 3 36 36 3 3 36 36 3 36 6 3 36 36 6 3 % %
CDELETEO EQU

A-10

BALR

USING
USING
USING
USING

%*

R11,0

%,R11
*¥+4095,R10
*¥+8190,RS
%+12285,R8
R10,4095(R11)
R9,4095(R10)
R8,4095(R9)
SQL

DECLARE CDELETE CURSOR FOR
SELECT

EMPNO
FIRSTNME
MIDINIT
LASTNAME
WORKDEPT
PHONENO
HIREDATE
JOBCODE
EDUCLVL

SEX
BRTHDATE
SALARY

FROM

IMSADF II Application Specification Guide for DB2

TN M Y YW WY YN YN e

HKAEHKAKXKAXKHKHKXXKRXK KX XXX

DSN8 . TEMPL X
WHERE X
EMPNO X
=:AEM00O011
EXEC SQL X
OPEN CDELETE
ICM R14,15,SQLCODE
BM RETURN SQLCODE < 0
CLC SQLCODE,SC100
BE RETURN SQLCODE = 100
EXEC SQL X
FETCH CDELETE X
INTO X
:AEMOO0O01S y X
:AEM0002$ » X
:AEMO003$ » X
tAEM0004S ,» X
:AEMO0O05S » X
:AEM0006S:AEMO00063 , X
:AEMO007$:AEMO007Q y X
:AEM0008$:AEM0008d y X
:AEMO0009S:AEM0009d ,y X
:AEMO0010S$:AEMO010Q » X
:AEMOO11S$:AEMO00113 y X
:AEM0012$:AEM00123
B RETURN
DROP RS8
DROP RS9
DROP RI10
DROP R11
LTORG
EJECT
1 3.23.2.33.333333333333.33.33333333333333333333.333.3333323133333333.233.3333.0.2.1.
* %
* CDELETED FOR TABLE EM *
* *
t3.33.23.3.3.3.3.3.333.33.33.3.33.33.33.3.3.3.33333.3333333.333.3333333.233.33.3333333.3.232.3.330.3.8
CDELETED EQU *
BALR R11,0
USING %,R11
USING %+4095,R10
USING %+8190,R9
USING %+12285,R8
LA R10,4095(R11)
LA R9,4095(R10)
LA R8,4095(R9)
EXEC SQL X
DELETE X
FROM X
DSN8.TEMPL X
WHERE CURRENT OF CDELETE
LA R15,RC24 DELETE FUNCTION RETURN CODE
B RETURN
DROP RS
DROP R9
DROP R10
DROP RI11
LTORG
EJECT
1 3.3.3.3.3.33.33333333333333.333333323332333333333133331.33331333.33333.3333.3883.8
% %
* CDELETEC FOR TABLE EM *
% *
1 3.3.3.3.33.3.3323.33333333333333333.33333333333333.3.3333333233.33333333333.33331323
CDELETEC EQU *
BALR RI11,0
USING %,R11
USING %+4095,R10
USING %+8190,R9
USING %+12285,R8
LA R10,4095(R11)
LA R9,4095(R10)
LA R8,4095(R9)
EXEC SQL X
Appendix A. Sample Rules Generator Source and Qutput A-11

CLOSE CDELETE

B RETURN

DROP RS8

DROP RS9

DROP R10

DROP R11

LTORG

EJECT
32656 2 X 2 26 X X X K 26 X 3 X 2 36 I 26 3 3 2 I 36 26 X X 6 I 36 36 36 X 3 3 6 36 26 36 3 3 3 6 2 36 36 3 3 3 3 6 26 26 36 3 3 2 3 I 2 2 5 3 2 J) 36 3 X %
* *
* KSELEC10 FOR TABLE EM %
* *

b i 232333 3233333333333 3333333333333 333333333333333333333333331333%333331%
KSELEC10 EQU *
BALR R11,0
USING %,R11
USING %+4095,R10
USING %+8190,R9
USING %+12285,R8
LA R10,4095(R11)
LA R9,4095(R10)
LA R8,4095(R9%)
EXEC SQL
DECLARE KSELECT1 CURSOR FOR
SELECT
EMPNO
FIRSTNME
MIDINIT
LASTNAME
WORKDEPT
PHONENO
HIREDATE
JOBCODE
EDUCLVL
SEX
BRTHDATE
SALARY
FROM
DSN8.TEMPL
WHERE

(

EMPNO

>= :AEMO00011
)

ORDER BY
EMPNO ASC
EXEC SQL
OPEN KSELECT1
B RETURN
DROP R8
DROP R9
DROP R10
DROP R11
LTORG
EJECT
336 X 36 J6 6 X 26 96 6 2 36 26 6 X I 26 3K 36 36 6 26 36 6 3 36 36 36 3 36 36 3 36 36 36 3 36 36 3 36 36 3 36 36 36 36 36 36 36 36 36 36 36 36 3 36 36 36 3 36 36 36 I 36 36 3 36 36 36 3¢ %
* *
¥ KSELEC1F FOR TABLE EM %
* *
3696 36 36 K X J 2696 36 56 2 3 K 36 26 36 56 36 3 3 H 36 26 6 3 3 3 36 36 36 36 36 36 26 36 36 36 36 3 26 3 36 36 36 3 26 36 36 36 3 36 36 2 36 3 36 3 36 6 36 6 36 96 36 6 6 6 % % %
KSELECL1F EQU %
BALR R11,0
USING %,R11
USING %+4095,R10
USING %+8190,R9
USING %+12285,R8
LA R10,4095(R11)
LA R9,4095(R10)
LA R8,4095(R9)
EXEC SQlL
FETCH KSELECT1
INTO
:AEM0001S
:AEMO002¢%

DR R T T T

KX HKHKKRKIKHKHKK K KKK KKK KKK

XXX XX

. v

A-12 IMSADF II Application Specification Guide for DB2

B
DROP
DROP
DROP
DROP
LTORG
EJECT

AEMO0003$
AEMO0004$
AEMO005$
AEMO006$:AEM0006Q
AEMO0007$:AEMO007
AEM0008$:AEM00083
AEMO009$:AEMO009a
AEMO010S:AEM0010a
AEMO011$:AEMO0011d
AEM0012$:AEM00123

RETURN

R8

R9

R10

R11

MXEXHKXXXXXX

36 36 3 3 3 2 3 3 2 X6 3 X 6 X 36 36 36 26 36 26 26 36 26 26 26 I 36 I I 2 26 36 X 2 X6 26 36 26 26 26 36 26 26 26 26 26 36 I K I I 3 3 3 3 3 3 36 26 36 36 26 36 36 36 26 36 36 3 X %

*

* KSELEC1C FOR TABLE EM

*

%*
*
*

3 26 36 3 5 3 3 X 3 26 2 X X I X X 3 26 I X 2 K 3 I 3 2 I X I 3 I 3 3 I X I 3 I I 3 I I 36 I 3 I I X I 3 K I I I 3 X I 3 I I 3 I K 3 2 I 3 5 % X%

KSELEC1C EQU
BALR
USING
USING
USING
USING

EJECT

%

R11,0

*%,R11
%¥+4095,R10
*¥+8190,R9
%+12285,R8
R10,4095(R11)
R9,4095(R10)
R8,4095(R9)
SQL

CLOSE KSELECT1
RETURN

R8

R9

R10

R11

3333333333333 333333333.33333331333333.333.3333383 3333330333333 2EsE e

*

% KSELEC20 FOR TABLE EM

*

%
%
%

133331331333 33313333333333333333333333333333333.33333333333333333333.82.880

KSELEC20 EQU
BALR
USING
USING
USING
USING

Appendix A.

*

R11,0

*,R11
*¥+4095,R10
%+8190,R9
¥+12285,R8
R10,4095(R11)
R9,4095(R10)
R8,4095(R9)
SQL

DECLARE KSELECT2 CURSOR FOR
SELECT

EMPNO
FIRSTNME
MIDINIT
LASTNAME
WORKDEPT
PHONENO
HIREDATE
JOBCODE
EDUCLVL

SEX
BRTHDATE
SALARY

FROM
DSN8.TEMPL
WHERE

(
EMPNO

Sample Rules Generator Source and OQutput

T R R TR I R Y

HMAHKAHKAXKHKIMHKHKKHK KKK KKK KKK

A-13

LIKE :AEM00012 AND X
EMPNO X
>= :AEM00011 X
) X
ORDER BY X
EMPNO ASC
EXEC SQL X
OPEN KSELECT2
B RETURN
DROP R3
DROP R9
DROP R10
DROP R11
LTORG
EJECT
3696 36 36 36 3 26 26 36 36 36 36 3 2 26 36 36 36 36 3 26 36 36 36 3 3 36 36 56 36 3 36 26 36 3 3 3 3 36 K 3 3 K 36 36 6 3 K 36 36 36 6 3 K 36 96 6 6 2 I 36 96 6 2 2 I 6 6 36 % %
* %
X KSELEC2F FOR TABLE EM :
¥

326 36 36 36 36 26 36 26 36 36 36 36 26 3 36 36 36 H K 36 36 36 36 3 3 36 36 36 3 36 26 36 36 3 3 36 6 36 3 3 3 36 36 3 2 3 36 36 36 3 3 K 36 36 6 2 I I 36 36 6 3 2 26 36 6 6 X ¥
KSELEC2F EQU *

BALR R11,0

USING %,R11

USING %+4095,R10

USING %+8190,R9

USING %+12285,R8

LA R10,4095(R11)

LA R9,4095(R10)

LA R8,4095(R9)

EXEC SQL X
FETCH KSELECT2 X
INTO X
:AEMO001$ » X
:AEMO0002$ » X
:AEM0003$ » X
:AEM000GS » X
:AEM0O005$ » X
:AEM0006$:AEMO006Q » X
:AEMOO007$:AEMO00073 » X
:AEM0008%5:AEM0008D » X
:AEM0009$:AEM0009 » X
:AEM0010$:AEM0O010 » X
:AEM0011$:AEM00113 v X
:AEM0012$:AEMO0123
B RETURN
DROP RS8
DROP R9
DROP R10
DROP R11
LTORG
EJECT
E33.3.3333.33333333333333333333333333338333333333333333333.33383 33383338 8¢3
* %
* KSELEC2C FOR TABLE EM *
* %*

X 36 36 3 36 36 6 36 36 36 2 36 36 36 36 36 36 26 36 36 36 I 36 3 I 36 3 36 36 3 36 3 6 3 36 3 36 36 6 3 36 36 3 36 36 3 36 3 3 36 36 3 36 36 6 3 36 36 3 36 36 3 36 6 36 36 36 6 % 3¢ %
KSELEC2C EQU *

BALR R11,0

USING x,R11

USING %+64095,R10

USING %+8190,R9

USING %+12285,R8

LA R10,4095(R11)

LA R9,4095(R10)

LA R8,4095(R9)

EXEC SQL X
CLOSE KSELECT2

B RETURN

DROP RS

DROP R9

DROP R10

DROP R11

LTORG

A-14 IMSADF II Application Specification Guide for DB2

EJECT
36 7€ 3 36 I I 36 26 2 X 36 3 3 I JE 36 I I 2 I 36 36 I 3 I I 3 I I 3 I HE I I 3 I I 3 I I 3 X I H I I H I I 3 I H 26 I X 2 I 3 I I H I 26 I X I 6 2 % X%

% *
* KSELEC30 FOR TABLE EM :
*

969696 26 26 96 26 26 96 96 26 26 36 26 96 2 96 I I I 36 36 36 6 6 6 6 6 3 3 36 3 36 36 36 36 36 36 36 26 36 36 26 26 36 26 26 26 96 36 36 26 36 36 36 6 36 56 36 36 36 36 36 3 36 3 3 6 6 % %
KSELEC30 EQU *
BALR R11,0
USING %,R11
USING %+4095,R10
USING %+8190,R9
USING %+12285,R8
LA R10,4095(R11)
LA R9,4095(R10)
LA R8,4095(R9)
USING SAMPEMK3,R5
EXEC sSQl
DECLARE KSELECT3 CURSOR FOR
SELECT
EMPNO
FIRSTNME
MIDINIT
LASTNAME
WORKDEPT
PHONENO
HIREDATE
JOBCODE
EDUCLVL
SEX
BRTHDATE
SALARY
FROM
DSN8.TEMPL
WHERE EMPNO >= :AP1EMP#3 AND WORKDEPT = :AP1DEPT3
ORDER BY EMPNO ASC, WORKDEPT ASC
EXEC SQL
OPEN KSELECT3
B RETURN
DROP R8
DROP RS9
DROP R10
DROP R11
LTORG
EJECT
3696 36 36 3 36 36 36 36 36 36 3 36 36 26 36 36 3 36 36 36 36 36 3 36 36 36 36 36 3 36 36 36 36 36 36 36 36 26 36 36 36 36 36 36 6 36 36 36 36 36 6 36 6 3 3 36 36 6 6 36 3 2 26 36 36 36 % 6 % %
% *
* KSELEC3F FOR TABLE EM ¥
* %
3636 36 96 36 36 36 36 36 36 36 36 36 36 36 36 3 36 36 36 36 36 26 26 26 26 26 96 96 36 36 36 36 36 36 3 36 36 36 36 36 36 26 36 26 36 26 36 26 36 26 26 26 3 6 36 36 6 36 6 6 36 36 36 3 36 36 36 3 X %
KSELEC3F EQU x
BALR R11,0
USING *,R11
USING %+4095,R10
USING %+8190,R9
USING %+12285,R8
LA R10,4095(R11)
LA R9,4095(R10)
LA R8,4095(R9)
USING SAMPEMK3,R5

DR TR TR T I I

HKOHKHKEKAEKRKRKHKAHKKRK KKK KX KKK

EXEC SQL X

FETCH KSELECT3 X
INTO X
:AEMO001$ » X
tAEM0002$% » X
:AEMO003S » X
:AEMO0004$ » X
AEMO00059% » X
AEM0006$:AEM0006Q » X
AEM0007$:AEM00073 s X
tAEM0008$:AEM0008a » X
:AEM0009S:AEM0009Q » X
AEM0010$:AEM0010a » X
AEM0011$:AEM00113 » X
AEM0012$:AEM00122

Appendix A. Sample Rules Generator Source and Output A-15

B
DROP
DROP
DROP
DROP
LTORG
EJECT

RETURN
R8

R9

R10
R11

t333.3333333333333333.33.3333333333333333333233333333333333333333333 3333231

KSELEC3C FOR TABLE EM

t33.333.33.23333.3.33.33.3.333333333.3333333333333333333333.33333333333333.8.333.333

*
%*
*

KSELEC

SQLCAD
*
%*

*
*

MFC1ED

DSNHLI

*

ADSNHL

A-16

3C EQU
BALR
USING
USING
USING
USING
LA
LA
LA
USING
EXEC

B
DROP
DROP
DROP
DROP
LTORG
EJECT
DSECT
EXEC

SN CSECT
DS
ENTRY
EQU
ESING

DROP
BR

ENTRY
I DC
END

IMSADF II Application Specification Guide for DB2

*

R11,0

*,R11
%¥+4095,R10
*¥+8190,R9
¥+12285,R8
R10,6095(R11)
R9,4095(R10)
R8,4095(R9)
SAMPEMK3,R5
SQL

CLOSE KSELECT3
RETURN

R8

R9

R10

R11

éQL INCLUDE SQLCA

OH

DSNHLI

*

%,15

15, ADSNHLI
15

15

ADSNHLI
Fl0!

*
*
*

DSNHLI INTERFACE - ADSNHLI CONTAINS

THE ADDRESS OF THE SINGLE COPY OF
DFSLI0O00 C(ENTRY POINT - DSNHLI)
IN LOAD MODULE ???2?V50.

CSECT FOR DSNHLI (NOTHING ELSE)

TELL LKED ABOUT IT
GET IN HERE

BASE IS R15 TO FIND THE VCON
LOCATE THE DSNHLI ADDRESS
FORGET R15, IT'S NOT USABLE NOW
GO TO DSNHLI AND RETURN TO

MAIN TABLE HANDLER RULE CSECT

APPENDIX B.

SPECIFICATION EXAMPLE

To demonstrate the potential use of IMSADF II accessing DB2 data bases,
Three transactions are defined using
the DB2 distributed Employee Table (DSN8.TEMPL).

reference the following examples.

The first transaction

'EM'

provides FETCH, UPDATE,

functions for a row of the Employee Table.

Additionally,

the 'EM'

key selection browsing against the Employee Table.

Note:

all employees in the Table

INSERT, and DELETE

all employees in a requested work department in the Table

all employees in the table that satisfy the LIKE PREDICATE entered,

(that is,

%000%%

or 000)

EMPNO Column in ascending sequence.

The second transaction 'ES'
Table using the DB2 built in functions,

displayed for 3 derived Columns,

AVG(SALARY) based on WORKDEPT,

The third transaction

lEXI

COUNT,
COUNT of employees,
SEX or EDUCLVL.

demonstrates that both DL/I and DB2 data $ag
is

SUM, and AVG.
SUM(SALARY), and

All secondary key selection browse displays are ordered by the

provides 3 simple queries on the Employee

transaction provides several types of secondary

Values are

be displaved and updated from the same transaction display screen.
transaction processes the Employee Table using the same Table Layout and

Table Handler Rules defined in the 'EM'

Appendix C,
associated with the first two sample transactions,

DB2 EMPLOYEE TABLE DEFINITION

transaction.

"Sample Problem"™ on page C-1 contains the screen flow
EM and ES.

Following is the DB2 Sample Problem Employee Table definition:
CREATE TABLE DSN8.TEMPL

(EMPNO
FIRSTNME
MIDINIT
LASTNAME
WORKDEPT
PHONENO
HIREDATE
JOBCODE
EDUCLVL
SEX
BRTHDATE
SALARY

CHAR(6),
VARCHAR(12)
CHAR(1),
VARCHAR(15)
CHAR(3),
CHAR(4),
DECIMAL

DECIMAL

VALIDPROC DSN8EAV1
EDITPROC DSNBEAE1
IN DSN8DAPP.DSNBSEMP ;

CREATE UNIQUE INDEX DSN8.XEMPL1
ON DSN8.TEMPL
(EMPNO ASC) CLUSTER;

CREATE INDEX DSN8.XEMPL2
ON DSN8.TEMPL
(WORKDEPT ASC) ;

NOT
NOT
NOT
NOT
NOT

Appendix B.

NULL,
NULL,
NULL,
NULL,
NULL,

Specification

Example

B-1

To extract Rules Generator source statements from the DB2 catalog for
the DSN8.TEMPL Table use the IMSADF II RGLGEN utility. Refer to the
RGLGEN Utility chapter for complete details.

Enter the following information on the IADF RGLGEN GENERATION panel to
invoke the RGLGEN Utility.

------------------------ RULES SOURCE FROM DB2 CATALOG =-======----ecmemeceee———-

COMMAND ===> SCROLL ===> PAGE
Available Commands: CAN Cancel LOC Locate a given member RES Reset

SYSID ===> SAMP PGROUP ===> PG LEVEL:1

DB2 Subsystem Name ===> DSN IMSADF II ADFCOLUMNID TABLE =
ISPF Library: DB2 Plan Name S
PROJECT ===> tsouser
GROUP =z==> adfdb2
TYPE ===> tabh
Other partitioned Data Set:
. DATA SET NAME ===
Line Commands: Inn Insert, DnNn Delete, RN Repeat, MNNn Move, Cnn Copy
Command Member Name DB2 Table or View Name IMSADF II Table ID
vee YDSN8.TEMPL' EM
KX MM KKK KRR XXXX XXX BOTTOM OF DATA I X X X X X X 5 X X X X X X X X 3 2 5 % %) %

==> Y (YIN)
==> RGLGEN

Figure B-1. Rules Source from DB2 Catalog Panel

In this example the output from the RGLGEN Utility is stored as member
SAMPTBEM in the specified partitioned data set 'TSOUSER.ADFDB2.TABH'.
The optional SYSADF.ADFCOLUMNID Table is used to create the IMSADF II
Column ID's.

RULES GENERATOR INPUT

The following represents the Rules Generator input stream used to define
the three sample DB2 transactions.

NOTE: The Rules Generator source statements required to create the
following sample DB2 transactions are supplied when IMSADF II is
installed.

The IMSADF.RULES.SOURCE library, member RGLDB2S contains the Rules
Generator source.

The IMSADF.ADFIMG library, members EM, ES, and EX contain the
associated screen image source.

The Rules Generator source statements for the Employee Table are
included in the RGLDB2S source member. However, one of the purposes
of this appendix is to demonstrate using the RGLGEN Utility.
Therefore this appendix shows the source being included using the
Rules Generator INCLUDE function.

The source extracted from the DB2 catalog is not complete. The
FIELD MERGE and SEGMENT OVERRIDE functions of the Rules Generator
are used to complete the definition of the DSN8.TEMPL Table.

B-2 IMSADF II Application Specification Guide for DB2

}3333333333331333313333.33333333333333332333232.833.2.3.333.2833.5.33.32333.38 338

% %*
* APPLICATION DEFINITION - DLI PARTS DATA BASE - PA SEGMENT *
* DB2 DSN8 DATA BASE - EM TABLE *
* *
133.3.333.3333313333.3333333333333.3.2.33333.3.33.33333.3.333.33.3333.33..2 22333233 2.8 8
*
SYSTEM SYSID=SAMP,DBID=PA, RULE ID CHARS
USRLANG=E, FORCE TO ENGLISH
SOMTX=0R, DEFAULT SECONDARY OPTION CODE
PCBNO=1, PCB NUMBER FOR DATA BASE
SHEADING='S AMP L E PROBLEM, GENERAL HEADING
SFORMAT=DASH, SCREEN FORMAT
PGROUP=2Z PROJECT GROUP
*
133.333333333333333333 333333333333 3333333333333 3332 b et ey
%* *
* APPLICATION DEFINITION INPUT FOR PA ROOT SEGMENT *
* *

9656 3K 2 96 6 3 36 36 36 26 36 56 2 2 36 6 26 36 56 36 36 3 36 36 36 3 36 36 3 36 36 36 36 6 3 36 6 3 2 36 6 3 3 6 3 36 36 3 3 36 3 3 3 3 3 3 6 36 3 36 36 X 36 2 36 X 36 6 % %
*
SEGMENT ID=PA,PARENT=0,NAME=PARTROOT,LENGTH=50,S5KSEG=18

FIELD ID=KEY,LENGTH=17,KEY=YES,NAME=PARTKEY, SNAME='PART NUMBER'

FIELD ID=DESC,LENGTH=20,P05=27,SNAME="DESCRIPTION",REL=YES

*

INCLUDE MEMBERS=(SAMPTBEM)

%X%% expansion follows
}1323331233333.3332333333333333%33313%1333333333333333333333333333333333333.01

% *
* TABLE: ID=EM DATE: 12725784 TIME: 00:04:29 *
* NAME=DSN8 .TEMPL MEMBER=SAMPTBEM %
* %

*X*X******X*X*XXX***XX****X******XXX*XXX*X***XX*X**X**X**XXX*****X*X*XX

TABLE ID=EM,TYPE=TBL,SQLNAME="DSN8.TEMPL',SQLIND=YES

COLUMN ID=0001,SQLNAME="EMPNO',SNAME="EMPNO"',
TYPE=C,LENGTH=006,SQLUPD=NO

COLUMN ID=0002,SQLNAME='FIRSTNME',SNAME="FIRSTNME',
TYPE=V,LENGTH=012

COLUMN ID=0003,SQLNAME="MIDINIT',SNAME='MIDINIT',
TYPE=C,LENGTH=001

COLUMN ID=0004,SQLNAME="LASTNAME"',SNAME="LASTNAME",
TYPE=V,LENGTH=015

COLUMN ID=0005,SQLNAME="WORKDEPT"',SNAME="WORKDEPT",
TYPE=C,LENGTH=003

COLUMN ID=0006,SQLNAME="PHONENO',SNAME="PHONENO"',
TYPE=C,LENGTH=004,SQLNULL=YES

COLUMN ID=0007,S5SQLNAME="HIREDATE"',SNAME="HIREDATE",
TYPE=P,LENGTH=004,SQLNULL=YES

COLUMN ID=0008,SQLNAME="'JOBCODE',SNAME='JOBCODE",
TYPE=P,LENGTH=002,SQLNULL=YES

COLUMN ID=0009,SQLNAME='EDUCLVL"',SNAME="EDUCLVL"',
TYPE=I,LENGTH=002,SQLNULL=YES

COLUMN ID=0010,SQLNAME='SEX"',SNAME="SEX"',
TYPE=C,LENGTH=001,SQLNULL=YES

COLUMN ID=0011,SQLNAME="BRTHDATE',SNAME="BRTHDATE"',
TYPE=P,LENGTH=004,SQLNULL=YES

COLUMN ID=0012,SQLNAME='SALARY',SNAME="SALARY"',
TYPE=P,LENGTH=005,DEC=02,SQLNULL=YES

X%¥ expansion ends

*
¥ FIELD MERGE INFORMATION FOR 'EM' KEY SELECTION
*
COLUMN ID=0001,KEY=YES,SNAME="'EMPLOYEE SEARCH DATA',COL=01
COLUMN ID=0004,RELATED=YES,COL=16 ¥¥related field on sks
COLUMN ID=0005,RELATED=YES,COL=33 X%Xralated field on sks
COLUMN ID=0012,RELATED=YES,COL=43 ¥¥related field on sks
*
¥ SEGMENT OVERRIDE INFORMATION FOR 'EM' KEY SELECTION
*
TABLE OVERRIDE=ID,ID=EM,SKSEGS=15,
SKLEFT="EMPLOYEE LAST WORK',
SKLEFT='NUMBER NAME DEPT',

Appendix B. Specification Example B-3

SKRIGHT="' SALARY!
PSEUDO SEGMENT DEFINITION - P1

IF the user defined secondary key selection KSELECT3 SQL function
is specified, the fields in this pseudo segment represent the
Host Variables defined in the KSELECT3 WHERE clause.

A key audit is used to move values to these fields.

SEGMENT ID=P1l,TYPE=PS
FIELD 1ID=KS3,TYPE=C,LENGTH=09
FIELD ID=EMP#,TYPE=C,LENGTH=06,REDEF=KS3
FIELD ID=DEPT,TYPE=C,LENGTH=03,REDEF=KS3,0FFSET=6

TABLE DEFINITION - ES
This Table defines a VIEW of the DB2 Sample Employee

Table (DSN8.TEMPL). The defined Columns are derived
using DB2 functions.

XX XK X X X X X X

This Table is processed by the "ES' transaction. It
demonstrates the use of USER defined SQL functions.

NOTE: This VIEW definition does not exist in the DB2
catalog. The RGLGEN Utility cannot be used.

Even though no key is required for processing this Table,
IMSADF II still requires that a key field be defined.

SQLNULL=YES is specified for the derived Columns based
on the SALARY Column because the SALARY Column in the
DSN8.TEMPL Table is defined eligible for the NULL value.

ID=ES, TYPE=TBL,SQLNAME="DSN8.TEMPL',SQLIND=YES

COLUMN ID=ECNT,TYPE=I,LENGTH=04,SQLNAME="COUNT(%)"

COLUMN ID=SSAL,TYPE=P,LENGTH=07,DEC=2,SQLNAME="SUM(SALARY)"',
SQLNULL=YES

COLUMN ID=ASAL,TYPE=P,LENGTH=05,DEC=2,S5SQLNAME="AVG(SALARY)"',
SQLNULL=YES

FIELD ID=DKEY,TYPE=P,LENGTH=05,REDEF=ASAL,KEY=YES

PSEUDO SEGMENT DEFINITION - P2

KKXKXKKXKKXKXKNKNKIXIKIKIXKIKIXKDIKIXKXX

—
>
[o~]
~
m

The fields in this pseudo segment represent the Host Variables
required to process the 3 USER defined SQL WHERE clauses in
the ES Table Handler Rule.

A process audit is used to trigger the USER defined SQL
functions in the ES Table Handler Rule.

SEGMENT ID=P2,TYPE=PS
FIELD ID=DEPT,TYPE=C,LENGTH=03,AUDIT=YES
FIELD 1ID=JOBC,TYPE=P,LENGTH=02,AUDIT=YES
FIELD ID=EDUL,TYPE=I,LENGTH=02,AUDIT=YES

3333333323233 33333333333 23333333333.33.333333333333333333383131333383¢8

%*
GENERATE SEGMENT LAYOUT AND HANDLER RULES FOR SEGMENT - PA *
GENERATE SEGMENT LAYOUT RULE FOR PSEUDO SEGMENT - P1, P2 *
GENERATE TABLE LAYOUT RULE FOR DB2 TABLE - EM, ES *
*
*

XK XK XK XK XXX XXX

XK XK XK X X X X

2696 36 3 36 36 36 3 36 36 36 3 26 36 3 36 I 3 3 36 3 36 36 3 3 36 36 3 36 36 36 36 36 36 36 36 36 3 36 36 36 3 36 36 X 36 36 36 26 36 36 36 36 26 36 6 26 26 6 X6 26 36 36 26 36 26 3¢ %
%

GENERATE OPTIONS=(SEGL,SEGH),SEGMENT=PA

GENERATE OPTIONS=SEGL,SEGMENTS=(P1,P2)

GENERATE OPTIONS=TABL,TABLES=(EM,ES)

The following GENERATE OPTION=TABH Builds a Table Handler Rule
for Table ID 'EM'. One user defined SQL function is specified.
The LABEL indicates it is to be used during Secondary Key
Selection browse.

THE SQLCALL operand implies that the following standard

XK XK X X X X X

B-4 IMSADF II Application Specification Guide for DB2

¥ IMSADF II SQL functions are included in the Table Handler Rule -
¥ (CSELECT, INSERT, CUPDATE, CDELETE, KSELECT1, and KSELECT2).

*
GENERATE OPTIONS=TABH, TABLES=EM,SQLCALL=(DSQLCALL,KSELECT2),
SQLUSER=YES, ASMREQ=YES
KSELECT3 SELECT WHERE EMPNO >= :EMP#.P1 AND WORKDEPT = :DEPT.P1
ORDER BY EMPNO ASC, WORKDEPT ASC
&SQLENDS
*

¥ The following GENERATE OPTION=TABH builds a Table Handler Rule

¥ for Table ID 'ES'. 3 USER defined SQL functions are specified.

*

¥ No standard IMSADF II SQL functions are defined for this Table.

*

GENERATE OPTIONS=TABH,TABLES=ES,SQLCALL=NONE,SQLUSER=YES,ASMREQ=YES
DEPTSELC SELECT WHERE WORKDEPT = :DEPT.P2

JOBCSELC SELECT WHERE JOBCODE = :JOBC.P2

EDULSELC SELECT WHERE EDUCLVL >= :EDUL.P2

&SQLENDS
*

¥ The following GENERATE OPTION=CVALL builds a conversational
¥ Input Transaction Rule and MFS source for the Primary Key

¥ Selection and Transaction display screens for the EM

¥ Transaction.

*

GENERATE TRXID=EM,OPTIONS=CVALL,DBPATH=(EM),TSEGS=(P1),
TRXNAME='DB2 EMPLOYEE TABLE',
DEVNAME=(2,A3,A4),

DEVCHRS=(0,0,0),

DEVTYPE=(2,7,4),5P0S=SIMAGE
) ‘DB 2 'SAMPLE ' ROBLEM

&=
&MODE TRANSACTION: 'DB2 'EMPLOYEE 'TABLE
OPTION:&0PT TRX:&TRAN KEY:&KEY
21 &SYSMSG
es1 EMPLOYEE NUMBER------- &50001.EM

FIRST NAME------------ &50002.EM

MIDDLE INITIAL-------- &50003.EM

LAST NAME------"——----- &50004.EM

DEPARTMENT NUMBER----- &50005.EM

PHONE EXTENSION------- &50006 .EM

DATE HIRED-----==-==-= &50007.EM

JOB CODE------====—m—- &50008.EM

EDUCATION LEVEL------- &50009.EM

SEX=====——=—————————— &50010.EM

BIRTH DATE----=--===—- &50011.EM

SALARY------------———~ &50012.EM
&% 1 1 2 3 3 4 5 5
ENmmm———— 2=-——-- 8——==- Gmm———— 1--=-m- 8——-—-==-= 6----1---5
&% ID *SLEN *VROW *VCOL *VMODE *ASTATUS*KSELXCLR»XHL
&:0001.EM KA P
&:0002.FEM Y
&:0003.EM Y
&:0004.EM Y
&:0005.EM Y
&:0006.EM Y
&:0007.EM 6 Y
&:0008.EM 3 Y
&:0009.EM 5 Y
&:0010.EM Y
&:0011.EM 6 Y
&:0012.EM 10 Y
&ENDS
*
¥ The following GENERATE OPTION=CVALL builds a conversational
¥ Input Transaction Rule and MFS source for the Transaction
¥ display screen for the ES Transaction.
*

The ES Transaction is defined without Key Select Functions.

GENERATE TRXID=ES,OPTIONS=CVALL,KEYSL=NO,TSEGS=(ES,P2),DTRAN=NO,
DKEY=NO, TRXNAME="DB2 EMPLOYEE STATISTICS',

X X

Appendix B. Specification Example

B-5

DEVNAME=(2,A3,A4),

DEVCHRS=(0,0,0),

DEVTYPE=(2,7,4),SP0S=SIMAGE

'D B 2 'SAMPLE '"P ROBLEM
"EMPLOYEE 'STATISTICS
&=1
OPTION:&0PT
- &SYSMSG
COUNT OF EMPLOYEES TOTAL SALARY AVERAGE SALARY
- &6ECNT.ES &6SSAL.ES &6ASAL.ES
&_gNTER ONE OF THE FOLLOWING:
BY NORKOgEPARTMENT—-——: &4DEPT.P2
JOB CODE (1 TO 60)-: &4JOBC.P2
OR

EDUCATION LEVEL----: &4EDUL.P2

11 = LESS THAN HIGH SCHOOL

12 = HIGH SCHOOL

16 = COLLEGE DEGREE

18 = MASTERS DEGREE

20 = P.H.D.
&% 1 1 2 3 3 4 5 5
N 2-=--=-- 8-——---- G ———— l-=-===-- 8§-=--==—- 6----1---5
&% ID XSLEN *VROW *VCOL *VMODE *ASTATUSXKSEL*CLR*XHL
&:ECNT.ES 5 Y U
&:SSAL.ES Y U
&:ASAL.ES Y U
&:DEPT.P2 R R
&:JOBC.P2 R R
&:EDUL.P2 R R
&ENDS
¥
¥ The following GENERATE OPTION=CVALL builds a conversational
¥ Input Transaction Rule and MFS source for the Primary Key
¥ Selection and Transaction display screens for the EX
¥ Transaction.
*
¥ This transaction allows both DL/I and DB2 data to be displayed
¥ and updated from the same transaction display screen.
*
GENERATE TRXID=EX,OPTIONS=CVALL,DBPATH=(PA,EM),TSEGS=(P1),

TRXNAME='DLI-PART / DB2-EMPLOYEE',DATACOMP=(EM),
DEVNAME=(2,A3,A%),
DEVCHRS=(0,0,0),
DEVTYPE=(2,7,4),5P0S=SIMAGE
'D B2 'S AMPLE 'P ROBLEM

&=1
&MODE TRANSACTION: 'DLI PART / 'DB2 EMPLOYEE
OPTION:&0PT TRX:&TRAN KEY:&KEY
. &SYSMSG
&=
DLI SEGMENT PART NUMBER----====—-- &5KEY.PA
DESCRIPTION-=-=======~~- &5DESC.PA
DB2 TABLE EMPLOYEE NUMBER------- &50001.EM
FIRST NAME----=-==—==—= &50002.EM
MIDDLE INITIAL---=-=--- &50003.EM
LAST NAME------—===w—- &50004.EM
DEPARTMENT NUMBER-=--- &50005.EM
PHONE EXTENSION------- &50006.EM
DATE HIRED---=--====—-- &50007.EM
JOB CODE---=-—==-=———— &50008.EM
EDUCATION LEVEL--==--- &50009.EM
SEX-m=—=mm— o &50010.EM
BIRTH DATE--=======m-= §50011.EM
SALARY--=--==m————— e &50012.EM
&% 1 1 2 3 3 4 5 5
E¥——m— 2===== 8==m= Gm———- l-————- - Sttt 6-——-=-1---5

&% ID ¥SLEN *VROW *VCOL *VMODE *ASTATUS*KSEL*CLR¥*XHL
: . P
&:DESC.PA G

B-6 IMSADF II Application Specification Guide for DB2

.

zoooooooooooo
TJO0OO000O00000000
VRO OO0O0O0O00O0O
NHooOﬁNO\UIJ.\uNI—
n1 m
= 4 =
O IO
[B i e B o e e o e o

[K2

GENERATE the Secondary Option Menu Rule

ENERATE OPTIONS=SOM

GENERATE the SIGNON screen and Primary Option Menu Rule
ENERATE OPTIONS=CVSYS

GENERATE the Conversational Mini-Driver

&:
&:
&:
&:
&:
&:
&:
&:
&:
&:
&:
&:
&
*
*
%
G
*
*
%
G
%*
*
%*
GENERATE OPTIONS=STLE,PGMID=0R

Appendix B. Specification Example B-7

TRANSACTION HELP FACILITY

The following is an example of the IMSADF II HELP facility for the EM
transaction. The HELP facility is available in conversational
processing, to describe the purpose and input requirements for the
currently displayed screen. HELP is invoked through the entry of '?' in
the OPTION field. The screen on which the '"?' is entered will determine
which help text will be retrieved and displayed.

This example will be displayed if a '"?' were entered in the OPTION field
on either the Primary or Secondary key selection screen for the EM
transaction. The second page of this example will be displayed if the
user presses the PFl key.

¥FOLLOWING IS THE HELP DATA TO BE ENTERED IN THE MESSAGE DATA BASE
¥REPRESENTED BY BATCH DRIVER INPUT

MFC1B4HESAMPPEMa
MFC1B4HTSAMPPEMa0001
HELP FOR TRXTID EM
DB2 SAMPLE PROBLEM
KEY SELECTION SCREENS
%
PRIMARY KEY SELECTION
%
EMPLOYEE SEARCH DATA
ENTRY ACTION
NNNNNN WHERE N IS 0 to 9 - EMPLOYEE DATA IS
DISPLAYED ON TRANSACTION DISPLAY
NNNNN> OR < WHERE N IS 1 TO 5 NUMBERS - SECONDARY KEY

SELECTION WITH EMPLOYEES STARTING WITH
THE PARTIAL KEY AND GREATER

N OR % WHERE N IS 1 to 5 NUMBERS - SECONDARY KEY
SELECTION WITH EMPLOYEES WITH THESE CORRECT
PARTIAL VALUES

DNNN WHERE D INVOKES USER DEFINED KSELECT3 -
D INDICATES DISPLAY ALL EMPLOYEES IN THE
NNN DEPARTMENT ON THE SECONDARY KEY
SELECTION BROWSE SCREEN

PRESS PF1 TO DISPLAY NEXT PAGE $$
MFC1B4HTSAMPPEM®0002
HELP F OR TRXID
DB2 SAMPLE PRGO

*
SECONDARY KEY SELECTION
*

THE SECONDARY KEY SELECTION SCREEN DISPLAYS EMPLOYEE INFORMATION.
IN A TABULAR FORM. A SELECTION MAY BE MADE FROM THE CURRENT PAGE,
THE NEXT PAGE MAY BE DISPLAYED, OR THE TRX AND KEY CAN BE CHANGED
TO SWITCH TO A NEW TRANSACTION.

*

EMPLOYEE LAST WORK SALARY
N NUMBER NAME DEPT
NN .

EM
BLEM

B-8 IMSADF II Application Specification Guide for DB2

HIGH LEVEL AUDIT LANGUAGE

The following are samples of High Level Audit Language required to

execute the 'EM', 'ES' and 'EX!

EM and EX Transactions

Test to see if the User enters a
Employee Number field, (SAEMO0001
USER defined KSELECT3 function.

¥ HIGH LEVEL AUDIT LANGUAGE FOR THE DB2 EM AND EX TRANSACTIONS

SYSID = SAMP

XPANDLBLS = YES

AGROUP = YYYY

SEGID = EM

FIELD = 0001

¥ FIELD 0001 = Ds2 COLUMN EMPN
KEY

%

* PRIMARY KEY AUDIT
*

PO
IF SAEM0001 = NONS$
%*
SAP1DEPT SUBSTR SAEMOO

SAP1EMP# = '000000"
SPASQL = KSELECT3

SPAWHERE = SAP1KS3
ENDIF
SECONDARY KEY AUDIT

'D$SSSS!T

X X X
-

1
SAP1EMP# = SAEMO0O0O01

transactions.

'D' in the first position of the

). If he has then set up to invoke the

0

TEST FOR D IN 1ST POSITION
012 : 3

MOVE DEPT NUMBER TO PSEUDO SEGMENT

USE KSELECT3 FOR SEC KEY SEL
SET KSELECT3 HOST VARIABLES

SAVE FETCHED EMPNO FROM SEC KEY
FOR REPOSITIONING OF NEXT SCREEN

Appendix B.

Specification Example

B-9

ES Transaction

Invoke one of the three USER defined SQL functions defined in the ES

Table Handler Rule based on the terminal input.

If the Work Department field is not blank then invoke the DEPTSELC

function. If the Job Code field is not zero then invoke the JOBCSELC

function. If the Education Level field is not zero then invoke the
EDULSELC function.

¥ HIGH LEVEL AUDIT LANGUAGE FOR THE DB2 ES TRANSACTION

SYSID = SAMP
XPANDLBLS = YES
AGROUP = YYYY

SEGID = P2
FIELD = DEPT
PROCESS

Pl

IF DEPT NE ' '
IF SQL DEPTSELC SAP2DEPT ES NOT 0K
IF SQLCODE = 100
§;§$RMSG 'EMPLOYEE STATS REQUEST COMPLETED - NO HITS®
ELSE
ERRORMSG
ENDIF
ELSE
SAP2JOBC
SAP2EDUL
ENDIF
ENDIF

*
FIELD = JOBC
PROCESS
k1
IF JOBC NE 0
IF 5QL JOBCSELC SAP2JOBC ES NOT OK
IF SQLCODE = 100
%;éERMSG 'EMPLOYEE STATS REQUEST COMPLETED - NO HITS®
T
ELSE
ERRORMSG
ENDIF
ELSE
SAP2DEPT
SAP2EDUL
ENDIF
ENDIF
*
FIELD = EDUL
PROCESS
P1
IF EDUL NE O
IF SQL EDULSELC SAP2EDUL ES NOT 0K
IF SQLCODE = 100
SPAERMSG = '"EMPLOYEE STATS REQUEST COMPLETED - NO HITS'
EXIT
ELSE
ERRORMSG
ENDIF
ELSE
SAP2DEPT
SAP2J0BC
ENDIF
ENDIF

NOTE: Error message 1000 must be defined to the IMSADF II system.

1000

niu

1000

1000

"
o

B-10 IMSADF II Application Specification Guide for DBZ2

THE BIND PROCESS

Prior to executing a DB2 transaction the associated Table Handler Rules
must be defined to DB2 by creating an Application Plan.

The two Table Handler Rules defined in this example are shown here being
BINDed into one DB2 Application Plan, (SAMPTOR). When IMSADF II
tragsactions EM, EX, or ES are executed this DB2 Application Plan is
used.

The following information to create the SAMPTOR Application Plan is
supplied to the DB2I BIND Panel.

DSNEBPO02 BIND
===>
ENTER THE DBRM LIBRARY NAME(S):
1 DBRMLIBl ===> '@bz.dbrmlib' 2 PASSWORD1 ===>
3 DBRMLIB2 ===> '"imsadf.adfdbrm' 4 PASSWORD2 ===>
5 DBRMLIB3 ===> 6 PASSWORD3 ===>
7 DBRMLIB4 ===> 8 PASSWORDG ===>
ENTER THE MEMBER NAME(S) TO BE BOUND IN THIS PLAN:
9 ==:=> sampsem 12 ===> 15 ===> 18 ===>
10 ===> sampses 13 ===> 16 ===> 19 ===>
11 ===> 14 ===> 17 ===> 20 ===>
SPECIFY OPTIONS AS DESIRED:
21 PLAN NAME ===> samptor Enter desired plan name.
22 ACTION ON PLAN ===> add Enter ADD or REPLACE.
23 RETAIN EXECUTION AUTH. ===> yes Enter YES to retain user list.
24 PLAN VALIDATION TIME ... ===> bind Enter RUN or BIND.
25 ISOLATION LEVEL ===> c¢s Enter RR or CS.
26 MESSAGE LEVEL ===> j Enter I, W, E, or C.
27 DB2 NAME ===> dsnh Enter DB2 subsystem name.
PRESS: ENTER to process END to exit HELP for more information

Figure B-2. DB2I Bind Panel Input

Appendix B. Specification Example B-11

B-12 IMSADF II Application Specification Guide for DB2

APPENDIX C. SAMPLE PROBLEM

The sample problem shown here is derived from the Specification Example
defined in the previous appendix.

This sample problem screen flow demonstrates conversational transactions
accessing and updating a DB2 Table.

Following is the scenario of execution time screens:

S AMPLE PROBLEM

ENTER THE FOLLOWING SIGN-ON DATA AND DEPRESS ENTER
999999 -- USERID

Z -- PROJECT
Z -- GROUP
== LOCKWORD

OPTIONALLY, ENTER TRANSACTION DETAILS FOR DIRECT DISPLAY
OPTION: d TRX: 6em KEY:

Figure C-1. Sign-on Screen

Upon entry of USERID, PROJECT/GROUP, OPTION and TRX enough information
has been provided to IMSADF II to bypass the Primary and Secondary
Option menu screens. The next screen displayed is the Primary Key
Selection screen for TRXID 'EM', Employee Data.

Appendix C. Sample Problem C-1

S AMPLE PROBLEM
PRIMARY KEY SELECTTION S CREEN
RETRIEVE TRANSACTION: DB2 EMPLOYEE TABLE
OPTION: TRX: 6EM KEY:
%% ENTER THE FOLLOWING KEY INFORMATION xx
EMPLOYEE SEARCH DATA-

Figure C-2. Primary Key Selection, Transaction EM

Enter the required Employee Search Data Key.

In this example the terminal operator does not know what is required and
instead enters a '?' in the OPTION field.

SAMPLE PROBLEM
PRIMARY KEY SELECTTIGON S CREEN
RETRIEVE TRANSACTION: DB2 EMPLOYEE TABLE
OPTION: ? TRX: 6EM KEY:
¥% ENTER THE FOLLOWING KEY INFORMATION x
EMPLOYEE SEARCH DATA-

Figure C€-3. Primary Key Selection, Transaction EM, HELP REQUEST
By entering a '?' in the OPTION field the terminal operator has
requested the IMSADF II HELP facility for the EM transaction.

Upon entry of the HELP request, the HELP panel is displayed.

C-2 IMSADF II Application Specification Guide for DB2

HELP F OR TRXID EM

DB2 S AMPLE PROBLEM

KEY SELECTTIG ON SCREENS
PRIMARY KEY SELECTION
EMPLOYEE SEARCH DATA

ENTRY ACTION

NNNNNN WHERE N IS 0 TO 9 - EMPLOYEE DATA IS
DISPLAYED ON TRANSACTION DISPLAY

NNNNN> OR < WHERE N IS 1 TO 5 NUMBERS - SECONDARY KEY

SELECTION WITH EMPLOYEES STARTING WITH
THE PARTIAL KEY AND GREATER

N OR % WHERE N IS 1 TO 5 NUMBERS - SECONDARY KEY
SELECTION WITH EMPLOYEES WITH THESE CORRECT
PARTIAL VALUES

DNNN WHERE D INVOKES USER DEFINED KSELECT3 -
D INDICATES DISPLAY ALL EMPLOYEES IN THE
NNN DEPARTMENT ON THE SECONDARY KEY
SELECTION BROWSE SCREEN

PRESS PF1 TO DISPLAY NEXT PAGE

OPTION: PAGE:

001

Figure C€-4. HELP Screen, Transaction EM

ppontentry, the Primary Key Selection screen is displayed again for
input.

S AMPLE PROBLEM
PRIMARY KEY SELECTTION S CREEN
RETRIEVE TRANSACTION: DB2 EMPLOYEE TABLE
OPTION: TRX: 6EM KEY:
%% ENTER THE FOLLOWING KEY INFORMATION *x
EMPLOYEE SEARCH DATA- da00

Figure C-5. Primary Key Selection, Transaction EM

By entering dal00 the terminal operator has requested that Secondary Key
ig%ection Browse be invoked to display all employees from department

Upon entry, the Secondary Key Selection Browse screen is displayed.

Appendix C. Sample Problem C-3

SECONDARY KEY SELECTTION

RETRIEVE TRANSACTION: DB2 EMPLOYEE TABLE
OPTION: TRX: 6EM KEY: DAOO
SELECTION: PRESS ENTER TO VIEW ADDITIONAL SELECTIONS
EMPLOYEE LAST WORK SALARY
NUMBER NAME DEPT
1 000010 HAAS A0O 52750.00
2 000110 LUCCHESSI A0O 46500.00
3 000120 O'CONNELL A0O 29250.00

Figure C-6. Secondary Key Selection, Transaction EM BY WORKDEPT

The information required is often contained in the related fields
displayed on this screen, and there is no need to go to the transaction
display screen.

SECONDARY KEY SELECTTION

RETRIEVE TRANSACTION: DB2 EMPLOYEE TABLE
OPTION: k TRX: 6EM KEY: DAOO
SELECTION: PRESS ENTER TO VIEW ADDITIONAL SELECTIONS
EMPLOYEE LAST WORK SALARY
NUMBER NAME DEPT
1 000010 HAAS A0O 52750.00
2 000110 LUCCHESSI A0O 46500.00
3 000120 O'CONNELL A0O 29250.00

Figure C-7. Secondary Key Selection, Transaction EM BY WORKDEPT

The terminal operator enters 'k' in the OPTION field to return to the
Primary Key Selection screen.

C-4 IMSADF II Application Specification Guide for DB2

S AMPLE PROBLEM
PRIMARY KEY SELECTTION S CREEN
RETRIEVE TRANSACTION: DB2 EMPLOYEE TABLE
OPTION: TRX: 6EM KEY:
%% ENTER THE FOLLOWING KEY INFORMATION
EMPLOYEE SEARCH DATA- 0003>

Figure C-8. Primary Key Selection, Transaction EM

Upon redlsplay of the Primary Key Selection screen, a request is made
for a generic search on the employee numbers beginning with 0003. The
resulting Secondary Key Selection browse screen follows:

SECONDARY KEY SELECTTION

RETRIEVE TRANSACTION: DB2 EMPLOYEE TABLE
OPTION: F TRX: 6EM KEY: 0003>
SELECTION: 4 PRESS ENTER TO VIEW ADDITIONAL SELECTIONS
EMPLOYEE LAST WORK SALARY
NUMBER NAME DEPT
1 000300 SMITH Ell 17750.00
2 000310 SETRIGHT Ell 15900.00
3 000320 MEHTA E21 19950.00
4 000330 LEE E21 25370.00
5 000340 GOUNOT E21 23840.00

Figure C-9. Secondary Key Selection, Transaction EM BY EMPNO

From the Secondary Key Selection screen, selection 4 is made to proceed
to the Transaction Display screen.

Appendix C. Sample Problem C-5

DB 2 SAMPLE ~ PROBLEM

RETRIEVE TRANSACTION: DB2 EMPLOYEE TABLE
OPTION: TRX: 6EM KEY: 000330

EMPLOYEE NUMBER------- 000330

FIRST NAME--===-=--—---- WING

MIDDLE INITIAL--=--=---

LAST NAME--------—---—- LEE

DEPARTMENT NUMBER----- E21

PHONE EXTENSION--=---- 2103

DATE HIRED----=-=-====- 760223

JOB CODE-=-========———- 55

EDUCATION LEVEL------- 14

SEX---mmommmm e e e e M

BIRTH DATE--=-=--======-- 410718

SALARY=-===-----oommm 25370.00

Figure C€-10. Transaction Display Screen, Transaction EM

Because the transaction mode selected is 6 "RETRIEVE', updating is not
allowed. If the transaction mode is changed to 5 'UPDATE', this same
screen is used for updates.

DB2 S AMPLE PROBLEM

RETRIEVE TRANSACTION: DB2 EMPLOYEE TABLE
OPTION: TRX: 6@s KEY: 000330

EMPLOYEE NUMBER------- 000330

FIRST NAME------------ WING

MIDDLE INITIAL--------

LAST NAME------------- LEE

DEPARTMENT NUMBER----- E21

PHONE EXTENSION------- 2103

DATE HIRED-------=---- 760223

JOB CODE-=======-=---~ 55

EDUCATION LEVEL------- 14

SEX=====-mmmmm e M

BIRTH DATE--=======--- 410718

SALARY=-=====m—mmmm e 25370.00

Figure C-11. Transaction Display Screen, Transaction EM

From the 'EM' Transaction Display Screen the terminal operator changes
the TRX field to 6ES. Internally IMSADF II switches to the 'ES!
transaction. The 'ES' transaction does not have a key selection phase.
The 'ES' transaction display screen is shown.

C-6 IMSADF II Application Specification Guide for DB2

DB2 S AMPLE PROBLEM
EMPLOYEE STATISTICS

OPTION:

COUNT OF EMPLOYEES TOTAL SALARY AVERAGE SALARY
0 __________________________
ENTER ONE OF THE FOLLOWING:
BY WORK DEPARTMENT
OR
JOB CODE (1 TO 60): 0
OR

EDUCATION LEVEL :
LESS THAN HIGH SCHOOL

11 =

12 = HIGH SCHOOL

16 = COLLEGE DEGREE
18 = MASTERS DEGREE
20 = P.H.D.

Figure C€-12. Transaction Display Screen, Transaction ES

To request Employee Statistics by WORK DEPARTMENT enter a department
number and PRESS enter.

DB2 S AMPLE PROBLEM
EMPLOYEE STATISTICS

OPTION:

COUNT OF EMPLOYEES TOTAL SALARY AVERAGE SALARY
0

ENTER ONE OF THE FOLLOWING:
BY WORK DEPARTMENT : aoo
JOBOEODE (1 TO 60): 0
EDU02$ION LEVEL

11 = LESS THAN HIGH SCHOOL
12 = HIGH SCHNOL

16 = COLLEGE DEGREE

18 = MASTERS DEGREE

20 = P.H.D.

Figure C€-13. Transaction Display Screen, Transaction ES

The terminal operator enters department number A0O0.

Appendix C. Sample Problem

c-7

DB2 S AMPLE PROBLEM
EMPLOYEE STATISTICS

OPTION:
COUNT OF EMPLOYEES TOTAL SALARY AVERAGE SALARY
3 128500.00 42833.33
ENTER ONE OF THE FOLLOWING:
BY NORKOgEPARTMENT : AOO
JOB CODE (1 TO 60): 0

OR
EDUCATION LEVEL :
LESS THAN HIGH SCHOOL

11 =

12 = HIGH SCHOOL

16 = COLLEGE DEGREE
18 = MASTERS DEGREE
20 = P.H.D.

Figure C€-14. Transaction Display Screen, Transaction ES by DEPT A00

The ES Transaction Display screen is redisplayed with Employee
Statistics for department A0O.

DB2 S AMPLE PROBLEM
EMPLOYEE STATISTICS

OPTION:

COUNT OF EMPLOYEES TOTAL SALARY AVERAGE SALARY
3 128500.00 42833.33
ENTER ONE OF THE FOLLOWING:
BY WORK DEPARTMENT
OR
JOB CODE (1 TO 60): 55
OR

EDUCATION LEVEL :
11 = LESS THAN HIGH SCHOOL

12 = HIGH SCHOOL

16 = COLLEGE DEGREE
18 = MASTERS DEGREE
20 = P.H.D.

Figure C€-15. Transaction Display Screen, Transaction ES by DEPT A0O0

The terminal operator blanks out WORK DEPARTMENT and enters 55 in the
JOB CODE to request statistics for all employees with a job code of 55.

C-8 1IMSADF II Application Specification Guide for DB2

DB2 S AMPLE PROBLEM
EMPLOYEE STATISTICS

OPTION:

COUNT OF EMPLOYEES TOTAL SALARY AVERAGE SALARY
9 250170.00 27796.66
ENTER ONE OF THE FOLLOWING:
BY NORKogEPARTMENT
JOB CODE (1 TO 60): 55
OR

EDUCATION LEVEL :
LESS THAN HIGH SCHOOL

11 =

12 = HIGH SCHOOL

16 = COLLEGE DEGREE
18 = MASTERS DEGREE
20 = P.H.D.

Figure C-16. Transaction Display Screen, Transaction ES by JOBCODE 55

The resulting Data Display shows the count of employees, total salary
and average salary for job code 55.

DB2 S AMPLE PROBLEM
EMPLOYEE STATISTICS

OPTION:

COUNT OF EMPLOYEES TOTAL SALARY AVERAGE SALARY
9 250170.00 27796 .66
ENTER ONE OF THE FOLLOWING:
BY NORKOEEPARTMENT
JOBOEODE (1 TO 60): 0

EDUCATION LEVEL

: 16
= LESS THAN HIGH SCHOOL

11 =

12 = HIGH SCHOOL

16 = COLLEGE DEGREE
18 = MASTERS DEGREE
20 = P.H.D.

Figure C€-17. Transaction Display Screen, Transaction ES by JOBCODE 55

The terminal operator enters a zero in the JOB CODE field and enters a
16 in the EDUCATION LEVEL field to request statistics for all employees
with an education level of 16.

Appendix C. Sample Problem C-9

DB2 S AMPLE PROBLEM
EMPLOYEE STATISTICS

OPTION:

COUNT OF EMPLOYEES TOTAL SALARY AVERAGE SALARY
12 321335.00 26777.92

ENTER ONE OF THE FOLLOWING:
BY WORK gEPARTMENT
0
JOBOgODE (1 7O 60): 0

EDUCATION LEVEL :
= LESS THAN HIGH SCHOOL

11 =

12 = HIGH SCHOOL

16 = COLLEGE DEGREE
18 = MASTERS DEGREE
20 = P.H.D.

Figure C€-18. Transaction Display Screen, Transaction ES by EDUCLVL 16

The resulting Data Display shows the count of employees, total salary
and average salary for education level 16.

C-10 IMSADF II Application Specification Guide for DB2

APPENDIX D, BTS IN AN IMS/VS - DB2 ENVIRONMENT

The IMS/VS Batch Terminal Simulator (BTS), program product number
5668-948, Release 2, supports the tracing of SQL calls in a format
similar to that of DL/I calls. Refer to the IMS/VS BTS Program
Reference and Operations Manual, SH20-5523, for complete details.

To run BTS as a batch job, a DFSESL DD statement must be added to the
BTSBMP procedure.

To run BTS in TS0 foreground, add an ALLOC command for the DFSESL data
set.to the BTS CLIST. Execute the BTS CLIST and specify the KW(BMP)
option.

BTS INPUT COMMANDS
The BTSIN data set is used to input BTS command statements.

./D DDOF=327029

.70 DB=YES Q=YES ATR=NO

/T TC=MFC1T01 MBR=MFC1TOM SPA=6000 LANG=ASM TYPE=MSG PLC=20
./T TC=MFC1T02 MBR=MFC1TOM SPA=6000 LANG=ASM TYPE=MSG PLC=20
/T TC=MFC1T03 MBR=MFC1TOM SPA=6000 LANG=ASM TYPE=MSG PLC=20
./T TC=MFC1T99 MBR=MFC1T99 SPA=6000 LANG=ASM TYPE=MSG PLC=20
./T TC=SAMPTOR MBR=SAMPTOR SPA=6000 LANG=ASM TYPE=MSG PLC=20
/T TC=LTERM3 MDL=2

./T TC=I0OPCB MDL=2

Figure D-1. Sample BTSIN Data for an IMSADF II - DB2 Transaction

Appendix D. BTS in an IMS/VS - DB2 Environment D-1

BTS OUTPUT

¥%x¥% SQL CALL- FUNC=CALL, , RTRNCD= 0000 X
ot e C e EEEE e = R - Rt
RDIIN = H SAMPSES # I 8 8 v

028001ECDDECE4107F1B3800002000FBOOFCOAQE
08800E2147252033BD6C090106420A8C0A8CO050F
INPUT VARS = 0 v v *
00020F00003500000E00003500360E0000350036
0008100004C1000015D204C504C3159204CC04C5

OUTPUT VARS = D L
00010C00006D0000
0000140307B30000

BTS0096I DB2 SQL CALLS = 00001

Figure D-2. BTS SQL Trace

This figure displays the BTS SQL trace output produced, when the IMSADF
II sample transaction 'ES', defined in appendices B and C, executes the
DEPTSELC SQL function.

RTRNCD For each SQL statement traced the RTRNCD presents the SQL return
code from the SQLCA.

RDIIN The first forty bytes of the RDIIN are displayed (fixed
portion). The RDIIN precedes each run time SQL statement in a
compilation. Bytes 37 and 38 contain the SQL statement number,
andtcan be used to identify this statement in a compilation
listing.

VARS INPUT and/or OUTPUT VARS contain the host variables referenced
in the SQL statement.

. The first four bytes contain the length of the displayed
area.

L3 Twelve bytes are displayed for each variable:

- Host Variable type - 2 bytes
- Host Variable length - 2 bytes
- Host Variable address - 4 bytes

- Host Variable Indicator address - 4 bytes

Refer to the variable part of the RDIIN in a compilation
listing.

D-2 IMSADF II Application Specification Guide for DB2

APPENDIX E. IMSADF II TRACE FACILITY

A trace capability is provided as part of IMSADF II which can be used
for detailed tracing of internal control and flow module by module.

Reference the IMS Application Development Facility II Version 2 Release
2 Diagnosis Guide for complete details on using the IMSADF II trace
facility.

If tracing is required for an IMSADF II transaction that accesses DB2
Tables/Views through the Table Handler Rule interface set the IMSADF II
trace options as follows:
FLOW=Y, EXTEND=Y,MODULES=(MFC1V095)
The traces in module MFClV09S display:
. Parameters passed to MFC1V095
. Parameters MFC1V09S passes to the Table Handler Rule
e SQL Communication Area

. Data Compare information

If tracing is required while executing the RGLGEN Utility, set the
IMSADF II trace options as follows:

FLOW=Y, EXTEND=Y,MODULES=(MFC1Y25)
The traces in module MFC1lY25 display:
. Parameters passed to MFC1Y25
o SQL Communication Area

J MFC1Y25 return codes and data areas

Appendix E. IMSADF II Trace Facility E-1

E-2 IMSADF II Application Specification Guide for DB2

APPENDIX F. RGLGEN UTILITY LINK-EDIT PLAN

MFC1Y25
MFClY35
MFC1Y36
MFC1Y37
MFC1v38
MFC1V39
MFClv48
MFC1Al6
DSNELI

RGLGEN

?2??? is the installed ADFID in effect at link-edit time.

is the
IMSADF
RGLGEN
RGLGEN
RGLGEN
RGLGEN
IMSADF
IMSADF
IMSADF
IMSADF

Utility link-edit load module name.

PROGRAM-NAME on the TS0 RUN command.
ITI installation options, control block
Utility Main Routine

Utility Message Building

Utility Message Text

Utility Message Tailoring

II DDNAME Checker

II Trace Interface

II PDS Access Function

II Date Time Routine

DB2 TS0 Language Interface

Additional modules: Optionally loaded if required

MFC1v40
222?FLLNM

IMSADF
IMSADF

II Trace Qutput Function

II Trace Control Function

Appendix F. RGLGEN Utility Link-edit Plan

This

F-1

F-2 1IMSADF II Application Specification Guide for DB2

INDEX

special Characters

&SQLENDS 2-8, 2-18, 2-21
#COLS Rules Generator parameter 2-25

A

zggormal termination codes 3-12
Sea IMSADF II
ADFDUMP DD 3-8
ADFSQLHO DD 2-25
ADFSQLHW DD 2-25
ADFU0O08 3-9, B-2
Application Plan 2-8, 2-21, 2-34, 2-38,
2—39’ 2'40; 4'1
See also DB2 application plan
AREA parameter 2-36, 4-10
arithmetic expressions 1-3, 2-2, 2-3,
2-4, 2-5
ASC operand value 2-5, 2-17
assembler 6-10
audit exit 2-7, 2-37
native SQL 1-1, 1-3, 2-21, 2-38,
2-40, 4-11
SQLHNDLR 2-7, 2-8, 2-10, 2-18, 2-34,
2-35, 2-36, 4-1, 6-10
audit logic 1-1
audit operation 1-1, 2-4, 2-5, 2-6,
2'7) 2‘8) 2'10' 2-18) 2-23’ 2-33: 4-5,
4-7, 4-9
auditor 2-20, 2-33, 2-34, 4-5, 64-6
authorization 2-3, 2-38, 3-1

batch-BMP 2-24
Batch Terninal Simulator (BTS) D-1
bind process
See DB2 bird process
BIT 2-4
boundary alignment 2-7, 2-8

c

catalog
See DB2
CDELETE operand value 2-9, 2-10, 2-13,
2-23, 4-7, 4-9
See also table handler rule
CHAR 2-6
CLOSE 2-19, 2-20
CLOSE CURSOR 2-11, 2-13, 2-14, 2-17,
2'20; 4-1) 4“2' 4'4
COBOL 2-21, 2-35, 4-10

COLUMN 1-1, 2-1, 2-5, 2-12, 2-16, 2-19,
2_20} 2_21) 2_321 2_33’ 3‘1) 3_11’ 4_4'
4-8, 4-9

column - set null value 2-32

column - test null value 2-32

column - test truncation 2-32

Column I/0 area 2-11, 4-4

Column name 1-3, 2-4¢, 2-5, 2-9, 2-19,
2-21

COLUMN statement 1-1, 2-2, 2-3, 2-4%,
2-5, 2-7, 2-22, 2-25

composite rule 2-24, 4-10

CONCAT audit operation 2-26, 4-5

concurrency control mechanism

See DB2 Locking

conversational 2-18, 2-23, 2-24, 2-40,
-7, A-2

COPYSEG 1-2, 2-7, 2-21, 2-34, 64-11

correlation name 2-3

count 1-3

CREATE 1-2, 3-6

CSELECT operand value 2-9, 2-10, 2-11,
2-20, 6-1, 6-4

See also table handler rule

CUPDATE operand value 2-9, 2-10, 2-12,

2-23, 64-8
See also table handler rule

CURSOR 1-2, 2-10, 2-19, 2-20, 4-8

CURSOR DELETE 2-8, 2-10, 2-13, 4-8

CURSOR SELECT 2-8, 2-10, 2-11, 2-16,
4-2

cursor stability 1-3

CURSOR UPDATE 2-8, 2-10, 2-12, 4-8

CVALL operand 2-3

D

data base
DB2 2-4, 2-33, 2-34, 4-4
DL/I 2-4
relational 1-1
data base delete 2-14, 2-23
data base insert 2-12
data base request module - DBRM 2-8,
2-25, 2-39, 3-6, 5-2, B-11
data base retrieval 2-8
data base update 1-2, 2-8, 2-10, 2-13,
2-23, 2-28, 2-34, 4-6, 4-8, 64-9
Data Compare 2-10, 2-12, 2-13, 2-21,
2-28, 2-34, 4-8, 4-10
DATACOMP operand 2-12, 2-13, 2-23,
2-28, 2-34, 4-8, 4-10
DBPATH operand 2-3, 2-4, 2-11, 2-23,
2-30, 2-34, 2-37, 4-1, 4-2, 64¢-4
DBRMLIB DD 2-25
DB2
application plan 1-3, 2-8, 2-21,
2_34; 2-38) 2_39} 2—40; 3-7; 3-10)
4‘1; 5_2; 8_11
CICS5/05/VYS restriction 5-2
authorization 2-3, 2-38, 3-1
bind process 1-2, 1-3, 2-8, 2-16,
2-381 2"39’ 3-7) 3‘10; 5‘2; B'll
BIND panel 2-39
BIND/REBIND/FREE menu panel 2-39

Index X-1

X-2

DB2I option 2-38
DB2I option panel 2-38
ISPF-MVS primary option menu

panel 2-38

catalog 2-5, 3-1, 3-2, 3-3, 3-11,
5-1
column 1-1, 2-5, 2-12, 2-19, 2-25,
2-26, 2-33, 2-37, 4-4%, 4-5, 6-6,
4-8, 4-9
column - set null value 2-32
column - test null value 2-32
column - test truncation 2-32
column name 1-3, 2-4, 2-5, 2-9,
2-19, 2-21, 2-37
composite INDEX 2-¢4
cursor stability 1-3
data base management system 1-1

Data Base Request Module - DBRM 2-8,
2-25, 2-39, 3-6, 3-7, 3-10, 5-2,
B-11

data types

CHAR 2-6
DECIMAL
FLOAT 1-2,
4-4, 4-11
INTEGER 2-6,
SMALLINT 2-6,

VARCHAR 1-2,
4-11

DCLGEN 2-21, 3-1

DSNHLI VCON 4-10

DSN8.TEMPL A-1

indicator variables
2-9, 2-12, 2-21,
4'6' 4‘10; 4‘11

join 1-3, 2-3

locking 1-3

naming conventions

null value 1-2, 2-2, 2-4,
2-26, 2-29, 4-4, 4-5, 6-10

page 1-3

pre-compiler 2-8, 2-21, 2-25,
2-36

row 1‘1) 2-3’ 2'4' 2'11; 2‘12»
2'14; 2‘15; 2'16) 2'20) 2'23}
4'1) 4-2; 4‘3) 4—61 4'8) 4-9)

scheduling 1-3, 2-38

sort 1-3, 2-16

SQL communication area
2-35, 2-36, 2-37, 6-6,

SQL Return Codes 2-14, 2-28, 2-30,
2-33, 2-36, 2-37, 4-1, 4-3, 4-5,
4-6, 4-7, 4-8, 4-9

SQLCODE 2-28, 2-30, 2-33, 2-36,
2-37, 3-13, 4-1, 4-3, 4-5, 64-6,
4-8, 4-9

SQLWARN 2-28, 2-29, 2-30, 2-33,
2-36, 2-37, 3-13, 4-1, 4-5, 4-6,

SUBSYSTEM NAME 3-9

table 1-1, 2-33, 2-34, 3-10, 6-10

auditor 2"27: 2'309 2-31’ 4-5
execution 4-1, 4-2, 4-4, 6-7
generate operands 2-7, 2-8, 2-9,
2-23, 2-2%
name 1-3
restrictions 1-4
standard functions 2-11,
2‘13’ 2'149 2-15, 2‘16'
statement 2-1, 2-2, 2-3,
table name 2-9, 2-37
correlation name 2-3
join 1-3, 2-3
2-3
2"2)

2-6 -7

y 2
2‘4) 2‘6) 2-7’ 2_26)
2-7
2-7
2-6, 2-7,

2-26, 4-4,

1-2 2-2,

» 2-5,
2-32, 2-33,

4—4'

2-40, 3-10,

2‘5;

3-11
2‘12)

2'34!
2-13,

2-34,
4-11

2-28,
4-10

2‘30)

4"7)

4-9

2-12,
4‘8’ 4-9
2-4

qualified name

unqualified name 2-3

table space 1-3
truncated 2-2,

4-9
view 1'1: 2'1,
2-12, 2-15, 2-16,
4—1' 4‘8' 4—10
View name 2-9
DB2PRINT DD 2-25
DB2TERM DD 2-25
DCFIELD 4-8, 4-10
DCLGEN 2-21
DECIMAL 2-6, 2-7
DECLARE CURSOR 2-11,
2"20; 4_1} 4-2’ 4"4)
DELETE 1-1, 2-1, 2-3, 2-4, 2-8, 2-10,
2"13) 2‘15) 2'19) 2’237 2'34) 4'9
DELETE operand value 2-9, 2-10, 2-15
See also table handler rule
DESC operand value 2-5, 2-17
distinct 1-3, 2-1, 2-11, 2-20
DL/I exit 1-4, 6-11
DL/I segment 2-23, 4-10
DLET operand 2-23
driver link-edits
DSECT
See rules generator
DSN TSO command 3-1, 3-8
DSNELI - TS0 language interface
See RGLGEN Utility
DSNHLI VCON 4-10
DSN8.TEMPL 5-1, B-1
DSQLCALL operand value 2-9
See also table handler rule
dynamic rules 5-1
dynamic SQL 1-1, 1-3, 4-1, 4-10

2-29) 2'32:

2-2’ 2'3, 2-7,
2-27, 2-34,

2‘9’
3"’10’

2-13, 2-164, 2-17,
4-8

2-24

Employee Table
See DSN8.TEMPL
END DSN subcommand 3-9
Error Messages 2-30, 3-10, 3-11,
4-1, 4-6, 4-7, 4-8, 4-9, 5-2
EXECUTE 3-1
execution processing 4%-1
assembler 6-10
auditor 6-5, 6-6
arithmetic operations
CONCAT 64-5
data compares 4-5
data moves 6-5
dynamic screen attribute
modification 6-5
encode-decode 4-5
immediate SQL call
key selection browse
message sending 6-5
primary key audit 4-5
subroutine 6-5
SUBSTR 4-5
transaction switching 6-5
VARCHAR 4-5
COBOL 4-10
data base handling 6-7
CDELETE - CURSOR DELETE for
single row 4-8
CUPDATE - CURSOR UPDATE for
single row 4-8
INSERT - INSERT of a single
row 4-9
exit processing 6-10

3-12,

4-5

4-5
4-5

IMSADF II Application Specification Guide for DB2

4-5, 4-6,

AREA 4-10

audit exit 6-10, 4-11

KEY 464-10

LABEL 4-10

spefial processing routine 6-10,
4-11

SQLCA 46-10

SQLHNDLR call 4-10
table ID 4-10
key selection
COFIELD 4-4
keyareas 6-4
primary key saelection 64-1, 4-2
secondary key selection
browse 4-2
message handling 6-6
error messages 4-6, 4-7
error processing 4-6
VARLIST6 4-6
VARLIST? 4-6
warning messages 4-6
PL/I 4-10
rule and SPA workarea handling 64-10
screen handling 6-4¢
signon and menus 4-1
SPASQL 4-5
SPASQLKS 4-5
SPAWHERE 4-5
SQL return codes 4-5, 4-6
SQLCODE 4-5, 4-6
SQLWARN 6-5, 64-6

FETCH 2-11, 2-13, 2-14, 2-17, 2-19,
2-20, 2-31, 2-34, 2-36, 4-1, 4-2, 64-4,
4‘5; 4‘8

FIELD 4-4

See also COLUMN, rules generator

FIELD statement 1-1, 2-4

FtO?I 1-2, 2-4, 2-6, 2-7, 2-26, 4%-4%,

FOR UPDATE OF 2-13, 2-20, 64-8

FROM tablename 2-11, 2-13, 2-14, 2-17

FUNC 2-35

G

GENERATE statement 2-1, 2-7, 2-18,
2-21, 2-22, 2-23, 2-24%
facility data bases 2-24
GRANT 3-1
GROUP BY 1-4

H

help facility 5-1, B-8, C-2
See also IMSADF II Transaction,
Sample Problem
HI value 2-5, 2-18
high level audit language 1-1, 2-12,
2-13, 2-14, 2-15, 2-18, 2-20, 2-26,
5-1, B-9
arithmetic operations 2-26, 4-5
CONCAT 2-26, 4-5

CONCAT example 2-26
data compares 2-26, 4-5
data moves 2-26, 4-5
DB2 column - set null value 2-32
DB2 column - test null value 2-32
DB2 column - test null value
example 2-32
DB2 column - test truncation 2-32
DB2 column - test truncation
example 2-33
dynamic screen attribute
modification 2-26, 4-5
encode-decode 2-26, 4-5
FLOAT 2-26
immediate SQL call 2-27, 4-5
label 2-27, 2-28
0K 2-28
sSQL 2-27
SQLCODE 2-28, 2-33
SQLWARN 2-28, 2-33
tableid 2-28
immediate SQL call example 2-28
interrogate SQLCODE 2-28
interrogate SQLCODE example 2-30
interrogate SQLWARN 2-28
interrogate SQLWARN example 2-30
KEYFIELD 2-28, 2-31
message sending 2-26, 4-5
null value 2-26
SETERROR 2-33
SETFLAG 2-28
SPASQL 2-20, 4-5
SPASQLCD 2-30, 2-36, 2-37
SPASQLKS 2-16, 2-30, 4-2, 6-3, 4-5
SPAWARN 2-30, 2-36, 2-37
SPAWHERE 2-20, 4-3, 6-5
subroutine 2-26, 4-5
SUBSTR 2-27, 4-5
SUBSTR example 2-27
transaction switching 2-26, 6-5
USER SQL - key selection browse 2-30
SPASQL 2-30, 2-31
SPASQL example 2-31
SPAWHERE 2-31
SPAWHERE example 2-32
VARCHAR 2-26, 4-5
host variable 2-4, 2-11, 2-16, 2-19,
2'21; 4'3) 4'4; 4'10
auditor processing 2-28, 2-29, 2-31,
2-33, 4-5
format 2-20
naming convention 2-9
null processing 2-12
SQLHNDLR 2-35

IADF
See Interactive Application
Development Facility
IBM DATABASE 2
See DB2
Ip 1-1, 2-7, 2-8, 2-9, 2-12, 2-20,
2‘21} 2‘23; 2’25) 2'28; 2'35; 2-37'
3'9) 3-10) 3'11, 4-10
ID operand 2-22
IKJEFT01 program 3-8
immediate SQL call audit
operation 2-27, 4-5
IMS Application Development Facility 11
See IMSADF II

Index X-3

IMS/VS ROLL call 4-6,
IMS/VS transaction name
IMSADF 11
audit exit 2-7, 2-37
native SQL 1-1, 1-3,
2-40, 4-11
SQLHNDLR 2-7, 2-8,
2-34, 2-35, 2-36,
audit logic 1-1
1-1)
2-18,

4-8, 4-9
2-40
2-217

2-10,
4-1, 4-1

2-4)
2-23,

audit operation
2-7) 2_8) 2'10)
4-5, -7, 6-9
driver 2-24¢, 2-28
dynamic rules 5-1
function
auditor 2-20,
4-6
COFIELD 4-4
COPYSEG 1-2, 2"7:
4-11
data base delete 2-14,
data base insert 2-12
data base retrieval 2-8
data base update 1-2, 2-8,
2-13, 2-23, 2-28,
4-9
Data Compare 2-10,
2-21, 2-28, 2-34,
DL/I exit 1-¢
immediate SQL call 2-27,
IMS/VS ROLL call 4-6, 4-8,
key selection browse 1-2,
2_4’ 2'5; 2‘8) 2-10} 2”16;
2-18, 2-19, 2-20,
4'1’ 4-2) 4-31 4‘5, 4-6
MAPPER 1-2, 2-7, 2-21,
N option 1-4, 64-4
primary key audit 2-4,
2-20, 2-30, 4-2, 4-3,
Primary Key Selection
-1, 4-2
rules documentation 2-37
secondary key audit 2-20,
%4-2, 4-3, 6-5
SEGUPDTE call 2-28, 2-34%
SQLHNDLR call 1-1,
2-12, 2-13, 2-14,
2-20, 2-23, 2-34,
4-10
standard processing 2-%,
2-10
standard TWIN processing 1
ID 1-1, 2-7, 2-8, 2-9, 2-12,
2'21’ 2'23) 2‘25; 2‘28) 2‘37;
3-10, 3-11
KEY 1-1, 2-3, 2-4, 2-5, 2-10,
2-15, 2-16, 2-18, 2-22, 2-34
naming conventions 1-1, 2-9,
non-standard SQL statements
2-1¢, 2-15, 2-19, 2-27, 2-34,

2-33, 2-34,

2‘12’
4-8, 4-1

4-5

special processing routine 2-

binding 2-38
native SQL 1-1, 2-21,
2-40, 6-11
SQLHNDLR 2-8, 2-10, 2-18,
2-35, 2-36, 4-1, 64-10
standard SQL statement 2-23
standard SQL statements 2-10,
2-12, 2-13, 2-19, 2-27, 2-30,
2-35, 4-4, 4-7, 4-8, 64-9
static rules 5-1
trace facility 3-8, E-1
transaction 4-10
conversational 4-7,

1"‘3,

A-2

X-6

2'5)
2‘33’

2-21, 2-

2‘34; G-
2'13!

2-21, 2-
2-34,
2-16,

2-10,

2-8, 2-
2-15) 2-
2-37, 64-

2'38’

2'18}

0
2-61

4-5,

34,

2-23

2-10,
6} 4_8’

0

4-5

4-9
2‘3)

2-17,
30,

6-11

2‘12:

2-31,

10,
18,
1, 4'7)

2'8)

-4’ 4-6
2‘20’
3_9)
2'12’

2-40

2-10,

2-35
7

2-37,
2—34 »

2-11,
2_34’

driver 2-4, 2-7, 2-8, 2-12, 2-21,
2-23, 2-28, 2-33, 2-34, 2-35,
2-40, 4-10
EM B-1, B-9, C-1
ES B-1, B-10, C-7
EX B-1
help facility 5-1, B-8, C-2
nonconversational 64-7, A-3
sample 5-1, B-1
text utility 1-2, 1-4
USER SQL statement 1-3, 2-8, 2-9,
2-10, 2-18, 2-19, 2-20, 2-21, 2-27,
2-30, 2-34, 2-35, 4-3, 64-%
INCLUDE SQLCA 2-35, 2-36
INDEX 1-2, 2-4, 2-16, 3-6, 4-1
indicator variables 1-2, 2-2, 2-5, 2-9,
2‘1%) 2‘21, 2_32) 2’33} 4“4) 4"6p 4'10,
4-1
informational messages 3-11, 3-12
input transaction rule 2-3, 2-23, 2-34%,
2-37, 4-6
INSERT 1-1, 1-3, 2-1, 2-2, 2-3, 2-4,
2“5; 2‘8) 2‘12; 2-19' 2‘34, 3‘1' 4-41
4-9
INSERT operand value 2-9, 2-10, 2-12,
4-7
See also table handler rule
installation 5-1
INTEGER 2-6, 2-7

Interactive Application Development
Facility - IADF
RGLGEN Utility 3-1, 3-9, B-2
RGLGEN Utility GENERATION panel
ADFCOLUMNID TABLE 3-10
DB2 PLAN NAME 3-10
DB2 SUBSYSTEM NAME 3-9
ISPF Library 3-10

member name 3-10
PGROUP 3-9
ssssTBxx 3-10
SYSID 3-9

table ID 3-10

table name 3-10
interrogate SQLCODE and SQLWARN 2-28
interrogate SQLWARN 2-28
INTO 2-11, 2-12, 2-13, 2-14, 2-17,
2-21, 4-10]
ISPF Library 3-10
ISRT operand 2-23

JCL
Join

2-25'
1'3;

3'7’
2-3

3-8

K

KEY 1-1, 2-3, 2-5, 2-10, 2-12, 2-15,
2‘16' 2'18’ 2‘22; 2'34) 2-35’ 4‘10
Key column 2-9, 2-14, 2-15, 2-16, 2-17,
2-20, 2-21, 2-28, 2-30, 2-31, 4-1, 4-2,
4-3, 6-4, 4-8
KEY operand 2-4%, 2-5
key selection browse
2-5, 2-8, 2-10, 2-16,
2‘20: 2'21' 2'30) 4-1;

4-6
KEYFIELD 2-28, 2-31

1-2, 2'3) 2-6,
2-17, 2-18, 2-19,
4-2, 6-3, 4-5,

IMSADF II Application Specification Guide for DB2

KSELECTn 2-16, 2-19, 2-20, 2-30, 2-31,
4_2} 4_3’ 4-4

See also table handler rule
KSELECTT 2-9, 2-10, 2-16, 2-17, 2-30,
4-2, 4-3

See also table handler rule
KSELECT2 2-9, 2-10, 2-16, 2-17, 2-30,
4-2, 4-3

See also table handler rule

LABEL 2-8, 2-18, 2-20, 2-21, 2-37, 4-10
LENGTH operand 2-6, 2-22

LIKE predicate 2-4¢, 2-9, 2-11, 2-16,
2-17, 2-18, 2-21, 2-30, 4-2, 6-4

L0 value 2-5, 2-18

locking 1-3

MAPPER 1-2, 2-7, 2-21, 2-34, 64-11
MEMBER 3-10, 3-11
Member Name 3-10
MERGE statement 2-5
message
error 2-30, 3-10, 3-11, 4-1, 4-6,
4-7; 4_8; 4_9' 5_2
generation 2-33
informational 3-11
VARLIST 2-33
VARLIST1 2-33
VARLIST6 2-30, 2-33, 4-6
VARLIST? 2-30, 2-33, 4-6
warning 2-30, 3-11, 4-6
MFC1V09S E-1
MFC1Y25D 3-6, 3-10

N

N option 1-4, 4-4
NAME 3-10
naming conventions 1-1, 2-9, 2-40, 3-10
DB2 application plan name 2-40
IMS/VS PSB name 2-40
IMS/VS transaction name 2-40
IMSADF II transaction driver
name 2-40
native SQL 2-21, 2-36, 2-38, 2-40, 4-1,
4-10
NOALIGN assembler parameter 2-7, 2-8
non-standard 5QL statements 2-10, 2-14,
2-15, 2-19, 2-27, 2-34, 2-35
See also table handler rule
nonconversational 2-24, 2-40, 4-7, A-3
NONE operand value 2-9
See also table handler rule
null value 1-2, 2-2, 2-%, 2-5, 2-12,
2‘26) 2'29; 2'32) 4‘4) 4'5, 4-10

0

OFFSET operand 2-7

open 1-3, 2-19, 2-20

OPEN CURSOR 2-11, 2-13, 2-14, 2-17,
2-20, 6-2, 4-4

OPTIONS operand 2-7, 2-8, 2-18, 2-21,
2-23

ORDER BY 1-2, 2-5, 2-17, 6-3
OVERRIDE statement 2-2, 2-3, 2-5

page 1-3

PARMS TSO 3-8

PGROUP 3-9

PL/I 2-21, 2-35, 4-10

POSITION operand 2-7

preload rule 2-24, 4-10

primary key audit 2-4¢, 2-16, 2-20,
2-30, 4-2, 4-3, 4-5

Primary Key Selection 2-10, 2-12, 4-1,
4-2

PSB 1-3, 2-38, 2-40

pseudo segment 2-20, 2-21, 4-10

Q

qualified name 2-3, 2-5

R

REDEFINE operand 2-7
relational operator 2-4, 2-5, 2-9,
2‘11) 2‘16' 2'19; 2‘21’ 2‘30) 4'2; 4'4
Return Codes 2-14, 2-21, 2-28, 2-30,
2-33, 2-36, 2-37, 3-12, 4-1, 4-3, 4-5,
4-6, 4-7, 4-8, 4-9
RGLDB2S
See rules generator
See sample problem
RGLGEN Utility 1-1, 3-1, B-2, E-1, F-1
abnormal termination codes 3-12
DBRM 3-6, 3-7, 3-10
DB2 application plan 3-7
DB2 authorization 3-1
DB2 bind process 3-7
DB2 catalog 3-1, 3-2, 3-3, 5-1
Dgf;ning IMSADF II Column ID 3-4,
dependencies 3-1
description 3-1

DSNELI 3-6
IADF 3-1, 3-9
input

ADFCOLUMNID TABLE 3-10
DB2 PLAN NAME 3-10
DB2 SUBSYSTEM NAME 3-9

ID 3-11

ISPF Library 3-10
MEMBER 3-10, 3-11
member name 3-10
NAME 3-10

Index X-5

RGL
RGL
RGL
ROL

ROW

2_
4-.

X-6

PGROUP 3-9
RGLGENI 3-9
ssssTBxx 3-10
SYSID 3-9
table ID 3-10
table name 3-10
Installation 3-6
link-edit plan F-1
DSNELI - TS0 language
interface 5-1, F-1
MFC1Y25 E-1, F-1
message
error 3-10, 3-11, 3-12
identification header 3-12
informational 3-11, 3-12
warning 3-11, 3-12
message parameters
adfcolumnid 3-13
column.name 3-13
creator 3-13
ddname 3-13
function 3-13
invalid.parm 3-13
membername 3-13
offset 3-13
sqlcode 3-13
sqlwarn 3-13
string 3-13
table.id 3-12
table.name 3-12
message text 3-13
MFC1Y25D 3-6, 3-7, 3-10
output 3-11
return codes 3-12
sample problem 5-1
Specification Example B-2
SYSADF.ADFCOLUMNID 3-1, 3-4, 3-6,
3-9, 3-10, 3-11
SYSIBM.SYSCOLUMNS 3-1, 3-2
SYSIBM.SYSINDEXES 3-1, 3-3
SYSIBM.SYSKEYS 3-1, 3-3
Trace Facility E-1
TS0 3-1, 3-7
ADFDUMP 3-8
Application Program 3-1
background 3-1, 3-7, 3-8, 3-9,
3-11, 3-12
commands 3-7, 3-8
DB2 attachment 3-1
DSN 3-1, 3-8
END 3-9
foreground 3-1, 3-7, 3-8, 3-9,
3-11, 3-12
IKJEFT01 3-8
JCL 3-7, 3-8
PARMS 3-8
program parameters 3-7, 3-8
RGLGENI 3-8
RGLGENO 3-8, 3-10, 3-11
RGLGENT 3-8, 3-11
RUN 3-1, 3-8
STEPLIB 3-8
SYSPRINT 3-1, 3-8, 3-11, 3-12
SYSTSIN 3-8
terminal monitor program 3-1,
3-12
userid 3-10
GENI DD 3-8, 3-9
GENO DD 3-8, 3-10, 3-11
GENT DD 3-8, 3-11
L call 4—6} 4_8; 4“9
1-1, 2-3, 2-4, 2-11, 2-12, 2-13,
14’ 2-15' 2'16) 2’20) 2'23; 2-34;
1, 4-2, 4-3, 4-6, 4-8, -9, 6-11

rules generator

#COLS parameter 2-25

ADFSQLHO DD 2-25

ADFSQLHW DD 2-25

assembler 2-7, 2-8, 2-21, 2-25
boundary alignment 2-7, 2-8
Column I/0 area 2-11

column operands

ID 2-22

KEY 2-3, 2-4, 2-5, 2-10, 2-12,
2-15, 2-22

LENGTH 2-6, 2-22

OFFSET 2-7

POSITION 2-7
REDEFINE 2-7
SQLISRT 2-4, 2-5, 2-19, 2-20,

2-22, 4-9
SQLNAME 1-3, 2-5, 2-22, 2-25,
3-11

SQLNULL 1-2, 2-2, 2-5, 2-12,
2'20, 2'21: 2'22
SQLORD 2-5, 2-17, 2-22
SQLUPD 2-5, 2-15, 2-19, 2-20,
2-22
START 2-7
TYPE 2-4, 2-6, 2-7, 2-22
COLUMN statement 1-1, 2-1, 2-2,
2-4, 2-5, 2-7, 2-22, 2-25, 3-11
composite rule 2-24, 6-10
DBRMLIB DD 2-25
DB2 pre-compiler 2-8, 2-21, 2-25,
2-34, 2-36
DB2PRINT DD 2-25
DB2TERM DD 2-25
driver link-edits 2-24
DSECT 2-7, 2-8, 2-9
Execution Procedure 2-24%
FIELD 1-1
See also rules generator COLUMN
field statement 2-4¢
See also rules generator column
statement
generate operands
CVALL 2-3
DATACOMP 2-12, 2-13, 2-23, 2-28,
2-34) 4-8' 4"10
DBPATH 2-3, 2-4, 2-11, 2-23,
2-30, 2-34, 2-37, 4-1, 4-2, 4-4
DLET 2-23

2‘3)

ISRT 2-23
OPTIONS 2-7, 2-8, 2-18, 2-21,
2-23

SEGMENTS 2-23
SHTABLE 2-24
SQLCALL 2-8, 2-9, 2-10, 2-16,

2-22
SQLUSER 2-8, 2-9, 2-18, 2-21,
2-22, 2-28

TABLES 2-7, 2-9, 2-18, 2-21
TSEGS 2-23, 2-37
GENERATE statement 2-1, 2-7, 2-18,
2-21, 2-22, 2-23, 2-24
input transaction rule 2-3, 2-23,
2-34, 2-37
linkage editor 2-8, 2-24%
MERGE statement 2-5
non-standard SQL statements 2-10,
2-14, 2-15, 2-19, 2-27, 2-34, 2-35
Operand Values
ASC 2-5, 2-17
BIT 2-4
DESC 2-5, 2-17
FLOAT 2-4¢, 2-6
SGALL 2-23

IMSADF II Application Specification Guide for DB2

TABH 2-8, 2-18, 2-21
TABL 2-7
TBL 2-1, 2-5, 2-37
VARCHAR 2-6, 2-7
OVERRIDE statement 2-2, 2-3, 2-5
preload rule 2-24, 4-10
segment handler rule 1-1, 2-23,
2-24, 2-33, 2-37, 4-10
segment layout rule 1-1, 2-23, 2-37
segment statement 1-1, 2-1, 2-3,
2-18
See also table statement
source
Appendix A A-1
Appendix B B-2
RGLDB2S - sample source 5-1
SQLIND 4-4, 4-5
SQLNULL 4-4, 4-5
SQLUPD 64-4¢, 4-8
standard SQL statement 2-23
standard SQL statements 2-10, 2-11,
2-12, 2-13, 2-19, 2-27, 2-30, 2-34,
2-35, 4-4, 4-7, 4-8, 4-9
SYSTEM statement 2-1, 2-25
table handler rule 1-1, 2-1, 2-2,
2-3, 2-4, 2-5, 2-7, 2-9, 2-24, 2-25,
4-5, 6-10
binding 1-3, 2-38, 2-40
execution 4-1, 4-2, 4-6
layout A-4
naming convention 2-40
rules documentation 2-37
SQLHNDLR 2-34, 2-35, 2-37
summary 2-21, 2-22
USER SQL 2-31, 4-3
table I/0 area 2-2, 2-7, 2-11, 2-21,
2-31, 2-34, 2-35, 2-36
table layout rule 1-1, 2-2, 2-7,
2-8, 2-19, 2-23, 2-37
TABLE operands
ID 2-22
SKSEGS 2-3, 2-16, 2-18, 2-22,
2-30, 2-31, 4-2, 4-3
SQLDIST 2-1, 2-11, 2-20, 2-22
SQLIND 2-1, 2-2, 2-5, 2-12, 2-20,
2-21, 2-22
SQLISRT 2-2, 2-12
SQLNAME 1-3, 2-2, 2-3, 2-22,
2-25, 3-11
SQLUPD 2-3
TYPE 2-1) 2'5: 2'22) 2'37
TABLE statement 1-1, 2-1, 2-2, 2-3,
2-18, 2-20, 2-21, 2-22, 2-25, 4-2
TSEGS 4-4
USER SQL statement 1-3, 2-8, 2-9,
2-10, 2-18, 2-19, 2-20, 2-21, 2-27,
2-30, 2-34, 2-35, 4-3, 4-4
RUN DSN subcommand 3-1, 3-8

sample problem 5-1, A-1, B-1, C-1

DB2 application plan
data base request module -
DBRM 5-2
DB2 bind process 5-2

dynamic rules
error messages 5-2
high level audit language 5-1
signon/profile 5-2
transaction help facility 5-1

Output
Table Handler Rule A-4
Rules Generator Input B-2
source
RGLDB2S - sample problem 5-1
Rules Generator Statements A-1,
B-2
Specification Example
Application Plan B-11
Bind Process B-11
Data Base Request Module -
DBRM B-11
DSN8.TEMPL Definition B-1
EM transaction B-1, C-1
ES transaction B-1, C-7
EX transaction B-1
High Level Audit Language B-9
IADF B-2
RGLGEN Utility B-2
SAMPTOR B-11
Transaction Help B-8
static rules
DSN8.TEMPL 5-1, A-1, B-1
IMS/VS Transaction - SAMPTOR 5-1
Project/Group - ZZ 5-1
RGLDB2S - sample source 5-1
RGLGEN Utility 5-1
screen image source 5-1
SAMPTOR 5-1, B-11
scratch pad area
See SPA
secondary key audit 2-20, 2-31, 4-2,
4'3’ 4-5
SEGMENT 2-1, 2-23, 2-3¢
See also TABLE
segment handler rule 2-23, 2-24, 2-33,
2-37, 4-10
segment layout rule 2-23, 2-37
SEGMENT statement 1-1, 2-1, 2-3, 2-18
See also table statement
SEGMENTS operand 2-23
SEGUPDTE call 2-28, 2-34
SELECT 1-1, 2-23, 4-9
cursor 2‘11) 2‘12) 2'13) 2-149 4-8
key selection 1-2, 2-16, 2-17, 4-2,
4-3
rglgen 3-1
rules generator 2-1, 2-4, 2-5, 2-8,

2-10
SQLHNDLR 2-34
USER sQL 2-19, 2-20, 2-21

SELECT operand value 2-9, 2-10, 2-14
See also table handler rule
SET clause 1-3, 2-3, 2-4, 2-5, 2-12,
2-15, 2-19, 2-20, 4-8
SETERROR audit operation 2-33
SETFLAG audit operation 2-28
SGALL operand value 2-23
SHTABLE operand 2-24
signon/profile
See sample problem
SKSEGS operand 2-3, 2-16, 2-18, 2-22,
2-30, 2-31, 4-2, 64-3
SMALLINT 2-6, 2-7
sort 1-3, 2-16
SPA 1-1, 1-3, 2-7, 2-21, 2-23, 2-30,
2-34, 2-35, 2-36, 4-1, 4-2, 4-4, 4-5,
4—8; 4'10: 4'11
SPASQL 2-20, 2-30, 2-31, 4-5
SPASQLCD 2-30, 2-36, 2-37, 4-1
SPASQLKS 2-16, 2-30, 4-2, 4-3, 4-5
SPAWARN 2-30, 2-36, 2-37, 4-1
SPAWHERE 2-20, 2-31, 4-3, 4-5
special processing routine 2-7

Index X-7

binding 2-38
native SQL 1-1, 1-3, 2-21, 2-37,
2-40, 6-11
SQLHNDLR 2-8, 2-10, 2-18, 2-34,
2-35, 2-36, 4-1, 4-10
arithmetic expressions 1-3, 2-2,
2-3, 2-4, 2-5
authorization statements 1-3
CLOSE 2-19, 2-20
CLOSE CURSOR 2-11, 2-13, 2-14, 2-17,
2-20, 4-1, 6-2, 4-4
control statements 1-3
count 1-3
create 1-2, 3-6
cursor 1-2, 2-10, 2-19, 2-20, 4-8
CURSOR DELETE 2-8, 2-10, 2-13, 4-8
CgRgOR SELECT 2-8, 2-10, 2-11, 2-16,
CURSOR UPDATE 2-8, 2-10, 2-12, 4-8
data definition 1-3
DECLARE CURSOR 2-11, 2-13, 2-14,
2-17, 2-20, 4-1, 4-2, 4-4, 4-8
DELETE 1-1, 2-1, 2-3, 2-4, 2-8,
2-%0, 2-13, 2-15, 2-19, 2-23, 2-34,
distinet 1-3, 2-1, 2-11, 2-20
dynamic 1-1, 1-3, 6-1, 4-10
execute 3-1
FETCH 2-11, 2-13, 2-14, 2-17, 2-19,
2-20, 2-31, 2-34, 2-36, 4-1, 4-2,
4'4’ 4'5) 4‘8
FOR UPDATE OF 2-13, 2-20, 4-8
FROM tablename 2-11, 2-13, 2-14,
2-17
grant 3-1
group by 1-4
host variable 2-4, 2-11, 2-16, 2-19,
2-21, 4-3, 6-4, 64-10
auditor processing 2-28, 2-29,
2-31, 2-33, 4-5
format 2-20
naming convention 2-9
null processing 2-12
SQLHNDLR 2-35
INCLUDE SQLCA 2-35, 2-36
index 1'2r 2‘4) 2‘169 3‘6) 4‘1
INSERT 1-1, 1-3, 2-1, 2-2, 2-3, 2-4,
2-5, 2-8, 2-12, 2-19, 2-34, 3-1, 4-9
INTO 2-11, 2-12, 2-13, 2-14, 2-17,
2-21, 4-10
language usage 1-2
LIKE predicate 2-4, 2-9, 2-11, 2-16,
2-17, 2-18, 2-21, 2-30, 4-2, 4-4
native 1-1, 1-3, 2-21, 2-36, 2-38,
2-40, 4-1, 4-10
open 1-3, 2-19, 2-20
OPEN CURSOR 2-11, 2-13, 2-14, 2-17,
2-20, 4-2, 4-4
order by 1-2, 2-5, 2-17, 4-3
relational operator 2-4%, 2-5, 2-9,
2-11, 2-16, 2-19, 2-21, 2-30, 4-2,
4-4
Return Codes 2-14, 2-33, 2-36, 2-37,
4-1, 4-3, 4-5, 4-6, 4-7, 4-8, 4-9
SELECT 1-1, 2-23, 4-9
curgor 2-11, 2-12, 2-13, 2-14,
G-
key selection 1-2, 2-16, 2-17,
4-2, -3
rglgen 3-1
rules generator 2-1, 2-4, 2-5,
2-8, 2-10

IMSADF II Application Specification

SQLHNDLR 2-34
USER SQL 2-19, 2-20, 2-21
SET clause 1-3, 2-3, 2-4%, 2-5,
2-15, 2-19, 2-20, 4-8
static 1-1, 2-8, 4-1, 4-10
subselect 1-4
TABLE DECLARATION statement 2-21
union 1-4¢
UPDATE 1-1, 1-3, 2-15, 2-23, 4%-4%
cursor 2-12, 4-8
restrictions 2-5
rglgen 3-1
rules generator
2-8, 2-10
SQLHNDLR 2-34,
USER SQL 2-19
VALUES clause 1-3,
2-19, 2-20, 4-9
WHERE clause 1-1,
indexes 2-4
key selection 1-3, 2-5, 2-9,
2-16, 2-17, 2-31, 4-2, 4-3
SQLHNDLR 2-35
Standard functions 2-11,
2-14, 2-15
USER sqQL 2-8, 2-18, 2-19,
2-21, 2-28
WHERE CURRENT OF CURSOR 2-13,
%4-8, 4-9
SQL communication area 2-28, 2-30,
2-35, 2-36, 2-37, 4-6, 64-10
SQLCA parameter 2-36, 4-10
SQLCALL functions 2-10, 2-11
See also table handler rule
SQLCALL operand 2-8, 2-9,
2-22
See also table handler rule
SQLCODE 2-28, 2-30, 2-33, 2-36,
3’13) 4-1; 4“3; 4—5) 4'61 4'7)
SQLDIST operand 2-1, 2-11,
SQLFUNC 2-8, 2-18, 2-19, 2-20, 2-21
SQLHNDLR call 1-1, 2-8, 2-10, 2-12,
2-13, 2-14, 2-15, 2-18, 2-20, 2-23,
2‘34; 2-37' 4'1, 4'7' 4‘10
format 2-35
ID 2-37
LABEL 2-37
parameters
AREA 2-36, 4-10
FUNC 2-35
KEY 2-35, 4-10
LABEL 4-10
SQLCA 2-36, 4-10
table ID 2-35, 4-10
TLR 2-36

2-1,
2-36
2-4, 2-5,
2-10, 4-10

2'3)

4-8:

SQLIND operand 2-1, 2-2, 2-5, 2-12,

2-20, 2-21, 2-22, 4-4, 64-5

SQLISRT operand 2-2, 2-4, 2-5,
2-19, 2-20, 2-22, 4-9

SQLNAME operand 1-3, 2-2, 2-3, 2-5,
2-22, 2-25, 3-11

SQLNULL operand 1-2, 2-2, 2-5,
2-20, 2-21, 2-22, 4%-4%, 4-5
SQLORD operand 2-5, 2-17, 2-22
SQLUPD operand 2-3, 2-5, 2-15,
2-20, 2-22, 64-4, 64-8

SQLUSER operand 2-8, 2-9, 2-18,
2-22, 2-28

See also table handler rule

SQLWARN 2-28, 2-29, 2-30, 2-33,
2-37, 3-13, 4-1, 4-5, 4-6, 4-9
ssssTBxx 3-10

standard processing 2-4%, 2-8, 2-10

Guide for DB2

2'121

2‘4)

2‘12:

2-13}
2-20,
2‘14}

2‘10, 2‘16r

2-37 »
2-20, 2-22

2-12'

2-12,

2'19:
2-21,

2'36,

standard SQL statements 2-10, 2-11,
2-12, 2-13, 2-19, 2-23, 2-27, 2-30,
2-34) 2'35; 4'4; 4-7) 4'8) 4-9

See also table handler rule

standard TWIN processing 1-4, 6-4

START operand 2-7

static rules 5-1

static SQL 1-1, 2-8, 6-1, 4-10

STEPLIB DD 3-8

subselect 1-4¢

SUBSTR audit operation 2-27, 4-5

SYSADF.ADFCOLUMNID 3-1, 3-4, 3-6, 3-9,
3-10, 3-11

SYSIBM.SYSCOLUMNS 3-1, 3-

SYSIBM.SYSINDEXES 3-1, 3-

SYSIBM.SYSKEYS 3-1, 3-3

SYSID 2-25, 3-9

SYSPRINT DD 3-1, 3-8, 3-11, 3-12

SYSTEM statement 2-1, 2-25

SYSTSIN DD 3-8

2
3

T

TABH operand value 2-8, 2-18, 2-21
TABL operand value 2-7
TABLE 1-1, 1-4, 2-1, 2-2, 2-3, 2-7,
2-11, 2-12, 2-13, 2-14, 2-15, 2-16,
2-20, 2-21, 2-23, 2-33, 2-35, 3-1, 3-6,
3-10) 4—4) 4'8) B_l
table handler rule 1-1, 2-24, 2-25,
4-5, 6-10
binding 1-3, 2-38, 2-40
execution 4-1, 4-2, 4-6
Key column 2-9, 2-14, 2-15, 2-16,
2-17, 2-20, 2-21, 2-28, 2-30, 2-31
layout A-¢4
naming convention 2-40
non-standard SQL statements 2-10,
2-14, 2-15, 2-19, 2-27, 2-34, 2-35
rules documentation 2-37
rules generator 2-1, 2-2, 2-3, 2-4,
2-5, 2-7, 2-9
rules generator operands
OPTIONS 2-8, 2-18, 2-21
sQLCALL 2-8, 2-9, 2-10, 2-16,

2-22
SQLUSER 2-8, 2-9, 2-18, 2-21,
2-22, 2-28

TABLES 2-8, 2-9, 2-18, 2-21
SQL functions
CURSOR DELETE 2-8, 2-10, 2-13,

4-8
CURSOR SELECT 2-8, 2-10, 2-11,
2-16

CURSOR UPDATE 2-8, 2-10, 2-12,

DELETe 2-8, 2-15
INSERT 2-8, 2-12, 64-9
SELECT 2-8, 2-14, 2-20
UPDATE 2-8, 2-15
SQLCALL functions 2-9, 2-10, 2-11
SQLCALL operand
CDELETE 2-9, 2-10, 2-13, 2-23,
4‘7; 4-9
CSELECT 2-9, 2-10, 2-11, 2-20,
4-1, 4-4
CngATE 2-9, 2-10, 2-12, 2-23,
DELETE 2-9, 2-10, 2-15
DSQLCALL 2-9
INSERT 2-9, 2-10, 2-12, 4-7

KSELECTn 2-16, 2-19, 2-20, 2-30,
2-31
KSE%ECTI 2-9, 2-10, 2-16, 2-17,
2-30
KSELECT2 2-9, 2-10, 2-16, 2-17,
2-30
NONE 2-9
SELECT 2-9, 2-10, 2-14
UPDATE 2-9, 2-10, 2-15
SQLHNDLR 2-34, 2-35, 2-37
standard SQL statements 2-10, 2-11,
2-12, 2-13, 2-19, 2-23, 2-27, 2-30,
2-34, 2-35, 4-4, 4-7, 4-8, 4-9
summary 2-21, 2-22
USER SQL 2-31, 4-3
USER SQL statement 2-10, 2-18, 2-19,
2-21, 2-27, 4-3, 4-4
&SQLENDS 2-8, 2-18, 2-21
LABEL 2-8, 2-18, 2-20, 2-21
SQLFUNC 2-8, 2-18, 2-19, 2-20,

2-21
WHERE clause 2-8, 2-18, 2-19,
2-20, 2-21

table I/0 area 2-2, 2-7, 2-11, 2-21,
2-31, 2-34, 2-35, 2-36
table layout rule 1-1, 2-2, 2-7, 2-8,
2-19, 2-23, 2-37
table name 2-9
correlation name 2-3
join 1-3, 2-3
qualified name 2-3
unqualified name 2-2, 2-3
table space 1-3
TABLE statement 1-1, 2-1, 2-2, 2-3,
2-18, 2-20, 2-21, 2-22, 2-25, 4-2
TABLES operand 2-7, 2-9, 2-18, 2-21
TBL operand value 2-1, 2-5, 2-37
text utility 1-2, 1-4
TLR parameter 2-36
trace facility 3-8, E-1
truncated 2-2, 2-29, 2-32, 4-5, 4-6,
6-9
TSEGS operand 2-23, 2-37, 4-4
TS0 2-38, 2-40
See also RGLGEN Utility
TS0 language interface - DSNELI
See RGLGEN Utility
TYPE operand 2-1, 2-4, 2-5, 2-6, 2-7,
2-22, 2-37

UNION 1-4
unqualified name 2-2, 2-3, 2-5
UPDATE 1-1, 1-3, 2-15, 2-23, 4-4
cursor 2-12, 4-8
restrictions 2-5
rglgen 3-1
rules generator 2-1, 2-3, 2-4, 2-8,
2-10
SQLHNDLR 2-34, 2-36
USER SQL 2-19
UPDATE operand value 2-9, 2-10, 2-15
See also table handler rule
USER SQL - key selection browse 2-30
USER SQL statement 1-3, 2-8, 2-9, 2-10,
2-18, 2-19, 2-20, 2-21, 2-27, 2-30,
2-34, 2-35, 4-3, 6-6
See also rules generator
See also table handler rule
Userid TS0 3-10

Index X-9

v W

VALUES clause 1-3, 2-4¢, 2-5, 2-12, warning messages 2-30, 3-11, 3-12, 4-6
2-19, 2-20, 4-9 WHERE clause 1-1, 2-10, 4-10
VARCHAR 1-2, 2-6, 2-7, 2-26, 4-4, 4-5, indexes 2-4

6-11 key selection 1-3, 2-5, 2-9, 2-16,
VARLIST 2-33 2-17, 2-31, 4-2, 4-3

VARLIST1 2-33 SQLHNDLR 2-35

VARLISTé 2-30, 2-33, 4-6 Standard functions 2-11, 2-13, 2-14,
VARLIST? 2-30, 2-33, 4-6 2-15

VIEW 1-1, 2-1, 2-2, 2-3, 2-7, 2-12, USER SQL 2-8, 2-18, 2-19, 2-20,
2-15, 2-16, 2-35, 3-10, 4-8 2-21, 2-28

See also TABLE WHERE CURRENT OF CURSOR 2-13, 2-14,

View name 2-9 4-8, %-9

X-10 IMSADF II Application Specification Guide for DB2

Staples can cause problems with automated mail sorting equipment.

Note:

Please use pressure sensitive or other gummed tape to seal this form.

IMS Application Development Facility Il Version 2 Release 2
DATABASE 2 Application Specification Guide
SH20-6603-01

You may use this form to communicate your comments about this publication, its organization, or
subject matter, with the understanding that IBM may use or distribute whatever information you
supply in any way it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author’s department for whatever review and action, if any,
are deemed appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system, to
your IBM representative or to the IBM branch office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name, company, mailing address, and date:

READER'’S
COMMENT
FORM

What is your occupation?

Number of latest Newsletter associated with this publication:

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may majl directly to the address

in the Edition Notice on the back of the title page.)

SH20-6603-01

Reader's Comment Form

Fold and tape Please Do Not Staple Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

Fold and tape

..ll
oM

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Department 8D8

220 Las Colinas Boulevard

Irving, Texas 756039-5513

Please Do Not Staple

IN THE
UNITED STATES

e ——————_—_— e —————————_— e —————_———————_—_———_—— e — 3UIT BUO|Y PO 10 }ND = —

Fold and tape

wawdojanag uonedlddy S|

Il Aupoey

L0-€099-02HS @pIND uoneolyloeds uoneolddy z 3ISvAVIVA ¢ 9ses|dy g UOISIaN

Staples can cause problems with automated mail sorting equipment.
Please use pressure sensitive or other gummed tape to seal this form.

————— ————— ———— —a— —-—
—— —— T (e S o St e e S S o S s o S S T S ——{——————— —— ——— ——— —— ——— — ——— —T——— {— {—— w— — ——— —— —— —

Note:

IMS Application Development Facility Il Version 2 Release 2 READER'S
DATABASE 2 Application Specification Guide COMMENT
SH20-6603-01 FORM

You may use this form to communicate your comments about this publication, its organization, or
subject matter, with the understanding that IBM may use or distribute whatever information you
supply in any way it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author’s department for whatever review and action, if any,
are deemed appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system, to
your IBM representative or to the IBM branch office serving your locality.

Possible topics for comment are:
Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name, company, mailing address, and date:

What is your occupation?

Number of latest Newsletter associated with this publication:

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the address
in the Edition Notice on the back of the title page.)

SH20-6603-01

Reader’s Comment Form

Fold and tape

Fold and tape

..ll
oM

Please Do Not Staple

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Department 8D8

220 Las Colinas Boulevard

Irving, Texas 75039-5513

Please Do Not Staple

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

e T e e o e e e e e e o e e e e e e e e e e e e e e U] BUO|Y PIOH IO IND) = e — =

Fold and tape

Il Aujoeq wswdojaneg uonediddy S|

apInY uoneoyioads uonedlddy g ISYAVIVA Z 9Ses|dy g UOISISA

L0-€099-02HS

Publication Number
SH20-6603-01

File Number
S/370/4300-32

Program Number
5665-348

SH20-6603-01

	0001.tif
	0002.tif
	0003.tif
	0004.tif
	0005.tif
	0006.tif
	0007.tif
	0008.tif
	0009.tif
	0010.tif
	0011.tif
	0012.tif
	0013.tif
	0014.tif
	0015.tif
	0016.tif
	0017.tif
	0018.tif
	0019.tif
	0020.tif
	0021.tif
	0022.tif
	0023.tif
	0024.tif
	0025.tif
	0026.tif
	0027.tif
	0028.tif
	0029.tif
	0030.tif
	0031.tif
	0032.tif
	0033.tif
	0034.tif
	0035.tif
	0036.tif
	0037.tif
	0038.tif
	0039.tif
	0040.tif
	0041.tif
	0042.tif
	0043.tif
	0044.tif
	0045.tif
	0046.tif
	0047.tif
	0048.tif
	0049.tif
	0050.tif
	0051.tif
	0052.tif
	0053.tif
	0054.tif
	0055.tif
	0056.tif
	0057.tif
	0058.tif
	0059.tif
	0060.tif
	0061.tif
	0062.tif
	0063.tif
	0064.tif
	0065.tif
	0066.tif
	0067.tif
	0068.tif
	0069.tif
	0070.tif
	0071.tif
	0072.tif
	0073.tif
	0074.tif
	0075.tif
	0076.tif
	0077.tif
	0078.tif
	0079.tif
	0080.tif
	0081.tif
	0082.tif
	0083.tif
	0084.tif
	0085.tif
	0086.tif
	0087.tif
	0088.tif
	0089.tif
	0090.tif
	0091.tif
	0092.tif
	0093.tif
	0094.tif
	0095.tif
	0096.tif
	0097.tif
	0098.tif
	0099.tif
	0100.tif
	0101.tif
	0102.tif
	0103.tif
	0104.tif
	0105.tif
	0106.tif
	0107.tif
	0108.tif
	0109.tif
	0110.tif
	0111.tif
	0112.tif
	0113.tif
	0114.tif
	0115.tif
	0116.tif
	0117.tif
	0118.tif
	0119.tif
	0120.tif
	0121.tif
	0122.tif
	0123.tif
	0124.tif
	0125.tif
	0126.tif
	0127.tif
	0128.tif
	0129.tif
	0130.tif
	0131.tif
	0132.tif
	0133.tif
	0134.tif
	0135.tif
	0136.tif
	0137.tif
	0138.tif
	0139.tif
	0140.tif
	0141.tif
	0142.tif
	0143.tif
	0144.tif
	0145.tif
	0146.tif
	0147.tif
	0148.tif

