IMS Application Development
Facility Il
Version2 Release 2

Application Development
Guide

Publication Number File Number

SH20-6595-01 S/370/4300-32

Program Number
5665-348

Second Edition (June 1986)

This edition applies to Version 2, Release 2 of the program
product IMS Application Development Facility II (5665-348), and
to all subsequent releases and modifications unless otherwise
indicated in new editions or Technical Newsletters.

Information in this publication is subject to change. Changes
will be published in new editions or technical newsletters.
Before using this publication, consult either your IBM
ystem/370 and 4300 Processors Bibliography (GC20-0001) or IBM
stem/370 and 4300 Processors Bibliography of Industry Systems
vstems and Application Programs (GC20-0370) to learn which
editions and technical newsletters are current and applicable.

(¥1{8:1(7,]

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available
outside the United States. Any reference to an IBM program
product in this document is not intended to state or imply that
only IBM's program products may be used. Any functionally
equivalent program products may be used instead.

Requests for copies of IBM publications should be made to your
IBM ;egresentative or to the IBM branch office serving your
locality.

A form for readers' comments has been provided at the back of
this publication. If this form has been removed, address
comments to:

IBM Corporation
Information Processing
Department 6DD

220 Las Colinas Blvd.
Irving, Texas 75039-5513

IBM may use or distribute any of the information you supply in
any way it believes appropriate without incurring any obligation
whatever. You may, of course, continue to use the information
you supply.

{gg600pyright International Business Machines Corporation 1985,

PREFACE

This manual is a procedural guide for the planning and development of
IMS Application Development Facility II Version 2 Release 2
applications.

This manual consists of thirteen chapters and five appendixes.

Chapter 1, "IMSADF II concepts and Overview" describes the end-user
perspective of IMSADF II.

Chapter 2, "static Rules and the Rules Generator™ contains a brief
list of Rules Generator statements and some major keywords.

Chapter 3, "sign-0On Security™ contains information pertaining to
security in the end-user environment.

Chapter 4, "The Auditor and the Audit Data Base™ describes the flow
of control in an IMSADF II application and how a developer can
specify the logic for data validation and manipulation.

Chapter 5, "Messagde Sending and Display"™ contains information about
messages to and from end-users.

Chapter 6, "Complex Transactions™ provides assistance and examples
of complex application processing.

Chapter 7, "Secondary Transactions and IMS/VS Message Routing™
describes how an IMSADF II transaction can cause another transaction
to be invoked.

Chapter 8, "special Processing™ explains how IMSADF Il standard
processing can be extended..

Chapter 9, "EXits" describes how the Auditor functions in Chapter 4
can be extended.

chapter 10, "Batch Processing” contains information regarding IMSADF
II batch applications.

Chapter 11, "Nonconversational Processing” provides assistance in
developing nonconversational applications.

Chapter 12, "HELP Facility" describes how a developer can provide
online HELP for the end-user.

Chapter 13, "National Language Support™ contains a description of
the National Language Support provided by IMSADF II.

The appendixes include:
Appendix A, "Sample system Rules Generator Statements"
Appendix B, "Alternate Twin Processing Techniques™
Appendix €, "Report Writing Example"
Appendix D, "Application Implementation”
Appendix E, "switching Betueen COBOL and IMSADF II Transactions™

Preface iii

RELATED PUBLICATIONS

IMSADF II PUBLICATIONS

. IMS Application Development Facility II Version 2 Release 2 General
Information, GH20-6591.

L IMS Application Development Facility II Version 2 Release 2 User
Reference, SH20-6592.

. IMS Application Development Facility II Version 2 Release 2
Installation Guide, SH20-6593.

U IMS Application Development Facility II Version 2 Release 2

Application Development Reference, SH20-6594.

L IMS Application Development Facility II Version 2 Release 2
Application Development Guide, SH20-6595.

. IMS Application Development Facility II Version 2 Release 2 Rules
Documentation User's Guide, SH20-6596.

[IMS Application Development Facility II Version 2 Release 2 Data
Dictionary Extension User's Guide, SH20-6597.

. IMS Application Development Facility II Version 2 Release 2 Master
Index, SH20-6599.

J IMS Application Development Facility II Version 2 Release 2
Introduction to Using the Interactive ADF, SH20-6601.

. IMS Application Development Facility II Version 2 Release 2
Interactive ADF Administration Guida, SH20-6602.

. IMS Application Development Facility II Version 2 Release 2 DATABASE
2 Application Specification Guide, SH20-6603.

. IMS Application Development Facility II Version 2 Release 2
Diagnosis Guide, LY20-6401.

OTHER PUBLICATIONS

. Information Management System/ Virtual Storage (IMS/VS) General
Information Manual, GH20-1260

. CICS General Information Manual, GC33-0155

iv IMSADF Il Application Development Guide

CONTENTS

Chapter 1. IMSADF II Concepts and Overview 1-1
The Terminal User's View 1-1
Option Menus 1-1
Key Selection 1-4
Data Display and Update 1-6
Transaction Modes 1-7
Menu Sequence and Additional Processing 1-8

Chapter 2. static Rules and the Rules Generator

Static Rules for Conversational Application Systems

The SYSTEM Statement 2-4
The SEGMENT Statement 2-4
The FIELD Statement 2-5
Key Fields 2-6
Decimal Fields 2-7
Date Fields 2-8
Controlling Display Screen Contents 2-8
Secondary Key Selection 2-12
The GENERATE Statement 2-14
Pseudo Segments 2-16
Summary of Syntax Conventions 2-16
Abbreviations 2-16
Managing Application Development and Maintenance

Chapter 3. Sign-On Security 3-1
Controlling Security Profiles Online 3-1
Creating the Security Profile 3-2
Using Batch Input of Dynamic Rules 3-6
Batch Input Layouts 3-6

PG - Project/Group Segment 3-6

SR - Employee User ID Segment 3-7

PR - Profile Authority Segment 3-7

2-1

2-17

Chapter 4. The Auditor and the Audit Data Base ¢-1

Auditing Fields 4-1
Requesting Audits 64-3
The Audit Data Base 4-4¢
Audit Operations 64-4¢
The High Level Audit Language 6-6

2-1

Basic Guidelines for Coding in the High Level Audit Language 4-7

Example 4-7
Data Descriptors 6-8
Additional Capabilities of the Auditor 64-9
Control Information 4-9
DL/I Calls 64-9
Table Handling 4-10
Subroutine Calls 4-11
Examples of Auditing (Application System SAMP)
Creating and Maintaining Audit Rules 4-12
Error Messages 6-16
Warning Messages 4-18
Automatic Field Assignment (AFA) 4-19
Example 4-20
Common Audits 6-20
Key Auditing 4-20
Editing Keys 6-21
Example ¢4-21
Controlling Secondary Key Selection 4-22
Example 6-22
Sequence of Auditing 64-23
KEY Call 4-23
PRELIM Call 6-24
PROCESS Call 6-24
Note on Separation of Calls 4-24
Summary of Rules Generator Operands for Auditing
User-Written Audit Routines 6-26
Batch Input of Dynamic Rules 6-26
Batch Input Layouts - Audit Data Base (Tables)

4-11

Contents

v

TN - Table Name 6-27
TA - Table Entry 6-27
Batch Input Layouts - Message Data Base 64-28
HD - Message Generation Header 6-28
SY - Message text 4-28

Chapter 5. Message Sending and Display 5-1
Message Maintenance 5-4
Automatic Message Sending 5-4
Example 5-6
Format Codes in Automatic Message Sending 5-7
Unconditional Automatic Message Sending 5-8
Example 5-8
Batch Input of Dynamic Rules 5-9
Batch Input Layouts 5-9
AH - Automatic Message Sending Header 5-9

AR - Auto Message Routing 5-10

HD - Message Generation Header 5-10

SY - Message Text 5-10

SD - Secondary Transaction Destination 5-11
LT - Logical Terminal Segment 5-11

UH - User Header Segment 5-11

Chapter 6. Complex Transactions 6-1
Tailoring the Data Display Screen 6-1
Physical Paging 6-3
Other Control Symbols 6-4
Storing Screen Image Definitions 6-6
Program Function Keys 6-7
Example 6-7
Sign-0n Screen 6-7
Example 6-8
Transaction Switching 6-9
Example 6-10
Sequence of Operations 6-10
Use of Exits 6-12
Multiple-Path Transactions 6-12
Delete Eligibility 6-13
Insert Eligibility 6-15
DL/1I Calls from the Auditor 6-16
How the DL/I Call Operation Works 6-17
Segment Flags 6-17
DL/I Call Expressions 6-19
The DL/I Call Functions 6-19
DL/1I Status Codes 6-23
Example 6-24
Selecting the PCB 6-24
Multiple Segment Occurrences (Twins) 6-25
Twin Processing Control 6-28
Primary Key Audit 6-29
Secondary Key Audit 6-30
Text Utility 6-31

Chapter 7. Secondary Transactions and IMS/VS Message Routing 7-1
Output Format Rule 7-1

Example 7-1
Output MFS 7-3

Example 7-3
Defining Message Sending Conditions 7-4

Controlling Message Sending Through the Auditor 7-5

Example 7-5

Message Routing 7-5

Chapter 8. Special Processing 8-1
Overall Flow 8-1
Static Rules 8-2
Screen Formatting 8-3
Program Calls 8-3
Return Code Conventions 8-4
Auditor Call 8-4
SEGUPDTE Call 8-5
SETFLAG Call 8-6
MAPPER Call 8-8
COPYSEG Call 8-9

vi IMSADF II Application Development Guide

Controlling Color and Extended Highlighting 8-9
Display Calls 8-10
DISPLAYP Call 8-11
Direct Control of Data Base I/0 8-12
Simple SEGHNDLR Calls 8-12
Key Manipulation Subroutines 8-1¢4
Advanced Data Base I/0 8-16
Extensions to the SEGHNDLR Call 8-16
SET Command Codes 8-17
Set Path Calls 8-18
Examples 8-18
Set Segment Search Arguments 8-19
Set Unqualification 8-20
Reset Call 8-20
Program Linkage 8-21
Linkage Conventions 8-22
SPA Fields 8-22
Return Codes 8-2¢
Special Processing Examples 8-25
Basic Special Processing Program 8-26
COBOL 8-26
PL/I 8-26
Multiple Iterations of Message Sending 8-27
IMS/VS Considerations 8-28

Chapter 9. Exits 9-1
Auditor Exit Routines 9-1
Parameters 9-2
Sample Audit Exit Routines 9-3
COBOL Routine 9-4
PL/I Routine 9-5
Data Descriptors 9-5
Design and Link-Edit of an Audit Exit Routine 9-6
COBOL Routine 9-6
PL/I Routine 9-7
Sign-0n and Sign-0ff Exits 9-7
Lockword Exit 9-8
Multiple National Languages 9-9
Non-IMSADF II Sign-On 9-11
Bypassing SYSID Checking 9-11
Sign-0ff Exit 9-11
Non-IMSADF II Sign-0ff 9-12
DL/I Exits 9-12
Direct Use of the IMS DL/I Interfaces 9-12

Chapter 10. Batch Processing 10-1
Transaction Format 10-1
Error Handling 10-3
Rules 10-4
Example 10-5
Creating Output and Reports 10-5
Page and Space Control 10-6
Message Control 10-6
Sign-0n Security 10-6
Optional Lockword Exit Processing in Batch Mode 10-7
Sign-off Exit in Batch Mode (Optional) 10-7
Checkpoints 10-8
Restart Processing 10-8
Special Processing 10-9
Return Codes 10-10
Batch Application Implementation Checklist 10-11
Batch Driver Completion Codes 10-12

Chapter 11. Nonconversational Processing 11-1
Static Rules and the Rules Generator 11-6
Static Rules for Nonconversational Application Systems 11-6
The SYSTEM Statement 11-8
The "SEGMENT Statement 11-8
The FIELD Statement 11-9
The GENERATE Statement 11-9
Pseudo Segments 11-10
Program Function Keys 11-10
Meaning of Field Modes 11-11
Summary of Syntax Conventions 11-11

Contents

vii

Dynamic Rules 11-12
Auditing Fields 11-14
Complex Transactions 11-14
Multi-Path Transactions 11-15
Delete Eligibility 11-16
Insert Eligibility 11-17
DL/I Calls From the Auditor 11-17
Transaction Switching 11-17
Secondary Transactions and IMS5/VS Message Routing 11-17
Nonresponse Transactions 11-18
Transaction Format 11-18
Rules 11-18
Example 11-19
Special Processing 11-19
Program Linkage 11-20
Return Codes 11-20
IMS/VS Considerations 11-21

Chapter 12. HELP Facility 12-1
Screen HELP Facility 12-1
Message HELP Facility 12-4
Creating HELP Text with Online Transactions 12-5
Creating HELP Text with Batch Transactions 12-9

Chapter 13. National Language Support 13-1
Overview 13-1
Developing A NLS Application 13-1
Static Rule and Screen Generation 13-1
Audit Logic Creation 13-2
User Message Creation 13-3
User Written Sign-0On Exit 13-4

Appendix A. Sample System Rules Generator Statements A-1

Appendix B. Alternate TWin Processing Techniques B-1
Static Rules B-1
High Level Audit Language Statements B-2

High Level Audit Language Statements B-3

Error Message B-6

Audit Exit B-6

Appendix C. Report Writing Example C-1
Static Rules C¢C-1

High Level Audit Language Coding C-3
Sample Qutput C-5

Appendix D. Application Implementation D-1
Transaction and Screen Design D-1
Ease of Maintenance D-3

Naming Conventions D-3
Moving from Test to Production D-4

Load Module Transfer D-4%

Using Multiple IMSADF II Systems D-4%
Static Audit Rules D-5

Appendix E. Switching Between COBOL and IMSADF II Transactions E-1
Switching from IMSADF II to COBOL E-1
Switching from COBOL to IMSADF II E-2

Switching to the Sign-0On Transaction E-2

Switching Directly to the Driver E-4

Index X-1

viii IMSADF II Application Development Guide

FIGURES

IMSADF II Standard Screen Sequence (Conversational) 1-1
Sign-0n Screen 1-1

Primary Option Menu Screen 1-2

Secondary Option Menu Screen 1-3

Primary Key Selection Screen 1-4

Sample Data Base 1-4

Secondary Key Selection Screen (Data Base Browsing) 1-5
Browsing at a Lower Level in the Data Base 1-6

Data Display Screen 1-6

Data Display Screen with Error Notification 1-7

Error Message Screen 1-8

Sequence of Screens (with Variations) 1-9
Conversational Rule Usage 2-2

Using Rules Generator Statements to Produce a Simple
Transaction 2-3

Data Types 2-5

Data Base to Illustrate Use of DISPLAY Operand 2-9

Data Display Screen for Root Maintenance Transaction 2-10
The Updated Secondary Option Menu 2-10

Data Display Screen for Dependent Segment Maintenance
Transaction 2-11

Primary Key Selection Screen for Root Maintenance
Transaction 2-11

Primary Key Selection Screen for Dependent Segment Maintenance
Transaction 2-12

Default Secondary Key Selection Screen 2-13

Tailored Secondary Key Selection Screen 2-14
Relationship Among Application Systems, Project/Groups, and
Users 3-1

Sign-0n Profile Data Base Structure 3-2

Selection for Defining a New Project/Group 3-3

Defining a New Project/Group 3-3

Defining a User ID 3-4

Creating a Profile 3-5

Where the Auditor is Invoked 64-2

Audit Data Base -- Field Audit Leg 64-4%

Operation Descriptor Segment Layout 4-5

Data Descriptor Segment Layout 6-8

A Table Named COUNTR 4-10

Audit Data Base Storage of Tables 64-10

Segments and Corresponding Transaction IDs 6-12
Inserting a Root Segment into the Audit Data Base 6-13
Defining an Operation Descriptor 6-13

Defining a Data Descriptor 6-14

Inserting a Root Segment in the Audit Data Base in Readiness to
Define Tables 6-14

Defining a Table Name 6-15

Creating Table Entries (One Line Per Entry) 4-15

Error Messages in the Message Data Base 64-16

Format of Message Segments 4-17

Layout of Mapping Information 4-17

Creating a Message Header 6-18

Inserting Message Text 64-18

AFA in the Audit Data Base 6-19

User Message Sending 5-1

User Message Display 5-2

Project Message Serding 5-2

Project Message Display 5-3

Project Message Collection in the Sign-On Profile Data Base 5-3
User Message Collection in the Message Data Base 5-3
Audit Data Base -- Message Leg 5-5

How Message Routing Information Fits into the Picture 5-5
Format of Message Routing Information 5-6

Defining a Message Routing Header 5-7

Adding Message Routing Information 5-8

GENERATE Statement for Tailored Data Display Screen 6-1
Tailored Data Display Screen 6-2

First Page of PR Transaction Display 6-3

U
“ .

o« .

=
N N O NRNNANN NN L e e e e e b b
[l T N T O A T I |
P

1
O W 00 NP NENFHOVNAUTID UGN -
. o o o

1
o o o

[|
o .

i
.

NN
| ==

I 1 PPPLPLDDLDPPUHUUULN W
1

ol |

« . .

[]
o o e o

[
« o e

|
VL UNFHOOUPLULWUN
.

[}
o e e e e

L | LI |
4

¢« e e o

S Dy
I

O | LTUBITLITUILIULITLILILT |
]

| 1= =t b b ot b ok et

| e
« e e

(SRS
[|

UNFHROOVRNAOUIPUNFRORINAUIAULN ~=HOVON
¢ e o o o o o o T o o o .

Figures ix

Second Page of PR Transaction Display 6-4
Defining Fields Using a Tabular Format 6-5
GENERATE Statement for Tailored Sign-On Screen 6-8
Tailored Sign-0On Screen 6-9
Where the Auditor is Invoked 6-11
Data Bases Used in Examples 6-12
Data Base, Showing Some Fields Used on Screens 6-14
Key Selection Screen in Delete Mode 6-15
Data Display Screen in Delete Mode 6-15
Layout of the Segment Area (in the SPA) 6-17
Segment Flag Processing 6-18
Flag Settings after a Successful Update 6-18
Data Base for DL/I Call Example 6-24
Data Display Screen for Twin Processing Transaction 6-25
User Has Altered Some Data and a Key 6-27
User has corrected the Key 6-27
User Has Entered Request M for Next Page 6-28
Text Utility Example Using the Audit Data Base 6-32
Layout of Routing Information 7-6
Creating a Routing Header 7-6
Message Routing to Multiple Terminals 7-6
Creating a Message Routing Detail Segment 7-7
Conversational Program Flow for Special Processing 8-1
Standard vs. Special Processing 8-2
SETFLAG Indicators 8-7
Mapping 8-8
Data Base for Defined Paths Examples 8-18
Control of Secondary Transaction Sending Via SPASECTX 8-24
Standard Prologue for PL/I Audit Exit Routines 9-3
Lockword Exit for Multilingual Applications 9-10
Installation Options versus Processing Environments 10-1
Sample Data Base 10-2
JCL for Batch Processing 10-3
Typical Output from Batch Processing 10-3
Nonconversational Display Screen 11-1
Requesting a Display by Entering Key Information 11-2
Data Display 1l1-2
Making an Amendment 11-3
A Validation Error Detected by the Auditor 11-3
Error Message 11-4
Entering an Amendment Without First Requesting a Display 11-4
Confirmation Message 11-5
Data Base Used in Examples 11-5
Using Rules Generator Statements to Produce a Simple
Nonconversational Transaction 11-8
11-11. The Dynamic Rules Data Bases 11-12
11-12. Using the Primary Option Menu to Select Transaction FA 11-13
11-13. Adding a Segment to the Audit Data Base 11-13
11-14. Data Bases Used in Examples 11-15
11-15. Special Processing Flow (Nonconversational Processing) 11-20
12-1. Screen HELP Segments in Message Data Base 12-1

12-2. HELP request on SAMPLE Sign-On Screen 12-2

12-3. HELP for SAMPLE Sign-On Screen 12-2

12-4. Sample of HELP not provided 12-3

12-5. Sample of error messages with HELP 12-4

12-6. Message Data Base 12-4

12-7. HE-HELP HEADER Generation Screen 12-5

12-8. HT-HELP Generation Screen (Page 1) 12-6

12-9. HT-HELP Generation Screen (Page 2) 12-7
12-10. MH-Message HELP Generation Screen 12-8

C-1. Sample Output Page C-5

1. Suggested Ordering of Design and Development Activities D-1
-2. Recommended Structure of Development Components D-2

[

¢ e e o e o

(o N N - N N e N N R N N)

| e R R = e R OO0V NNNN T L oo
1 TN = b e b b b 2 b b b ||

| DU T I |
OCVRNAVIPUNFDUNFEFNERPAUDPUNFRRPUNHROOVURBNAUIRUWUNROOVONONH
« . . e e o e e o o o e o e e o o s e e o e o

}
e e e e e

D)

b b bt e fd b b (b b b et b b b

Lo S T U N T I O T |

x IMSADF II Application Development Guide

CHAPTER 1. JIMSADF II CONCEPTS AND OVERVIEW

Using a standard IMSADF II conversational transaction driver, the
simplest and most commonly used, the end-user can step through a series
of displays, answering fill-in-the-blank questions and selecting items
from tailored menus. The sequence of menus and displays is shown in
Figure 1-1. After the user signs on and passes the security clearance,
option menus are displayed to allow selection of functions and
transactions. If necessary, the user is prompted to enter the key
information needed to retrieve the data to be displayed.

Sign—0n > Option ——>| Key ——>| Data
Menus Selection Display

Figure 1-1. IMSADF II Standard Screen Sequence (Conversational)

THE TERMINAL USER'S VIEW

You begin IMSADF II conversational processing by displaying the IMSADF
II Sign-0n screen as shown in Figure 1-2 where you enter your user ID
and project/group code.

S AMPLE PROBLEM

ENTER THE FOLLOWING SIGN-ON DATA AND DEPRESS ENTER
999999 -- USERID

Z -- PROJECT
Z -- GROUP
== LOCKWORD

OPTIONALLY, ENTER TRANSACTION DETAILS FOR DIRECT DISPLAY
OPTION: TRX: KEY:

Figure 1-2. Sign-0n Screen

IMSADF II checks your security profile to make sure you are authorized
to use this application system and to verify the mode (display, update,
insert, delete) that is permitted against available transactions. The
lockword (IMSADF II's term for password) will be checked by an
installation-defined exit, if implemented.

OPTION MENUS

Next, the Primary Option Menu, which lists functions available to the
user of this application system, appears (Figure 1-3).

Chapter 1. IMSADF II Concepts and Overview 1-1

PRIMARY MENU

OPTION: _ TRANSACTION MODE: IDENTIFIER:
KEY:

OPTIONS TRANSACTION MODES
A = PROJECT MESSAGE SENDING 1 - DELETE
B = PROJECT MESSAGE DISPLAY 2 - INITIATE
C = SESSION TERMINATION 3 - REMOVE
D = TRANSACTION SELECTION 4 - ADD
F = PROJECT 7 GROUP SWITCH 5 - UPDATE
H = USER MESSAGE SENDING 6 - RETRIEVE
I = USER MESSAGE DISPLAY

IDENTIFIER IS
TRANSACTION ID
PROJECT/GROUP
(NOT USED)

FOR OPTION
D

F
A,B,C,H,I

Figure 1-3. Primary Option Menu Screen

Function options A, B, H, and I, if they are available in this
application system, allow the user to send messages to and receive
messages from other users or project/groups.

If option F is available, the user may switch to another project/group
code, with a different security profile, without logging off and signing
back on to IMSADF II. This feature exists because, although a
project/group may use only one application system, a user may belong to
more than one project/group.

Option C is used to terminate this IMSADF II session.

The main option is D - Transaction Selection. If the user enters option
D, he must also select a transaction mode to indicate what is to be done
against the transaction. IMSADF II will check the user's authorization
to use the transaction mode chosen. The user's security profile will
list the lowest mode he is allowed to use for each transaction; that is,
if g use; gs authorized to use transaction mode 3, he may also use modes
4, » an .

If the two-character transaction ID is not known, the user can press
ENTER and receive a display of all transactions available in this system
with which he may work. This display, shown in Figure 1-4, is the
Secondary Option Menu.

1-2 IMSADF II Application Development Guide

SECONDARY OPTION SELECTION PAGE:
ACTION: (C=RETURN TO PRIMARY MENU; Q=EXIT TO SIGNON)
UPDATE MODE: SELECT:
KEY:
PA - PART SEGMENT
PD - STANDARD INFORMATION
IV - INVENTORY
CY - CYCLE COUNT
CD - CLOSE/DISBURSE INVENTORY

1
LAST

Figure 1-4. Secondary Option Menu Screen

If the user had entered the transaction ID on the Primary Option Menu
screen, the Secondary Option Menu screen would not have been displayed.
On either of these option menus, the user can enter a key as well. The
transaction uses this key to retrieve segments from the data bases. The
key is the concatenation of all the keys required to retrieve a segment
to be used in the transaction. Segment retrieval can also be carried
out under control of dynamic rules.

The user can also enter the OPTION, TRANSACTION MODE and ID, and KEY on
the Sign-0On screen to bypass all menus and go directly to the Data
Display screen.

Chapter 1. IMSADF II Concepts and Overview 1-3

KEY SELECTION

If the user is unable to enter the necessary concatenated key directly,
a function known as key selection is available. This function checks
the concatenated key, if one has been entered, and looks in the data
base for the segment occurrences specified. If the user has entered no
keys or has entered keys that are incomplete or inconsistent with what
is on the data base, IMSADF II will prompt the user to enter the correct
information.

First, the user is presented with a formatted request for the keys that
make up the concatenated key: the Primary Key Selection screen,
Figure 1-5.

S AMPLE PROBLEM
PRIMARY KEY SELECTTION SCREEN
UPDATE TRANSACTION: INVENTORY
OPTION: TRX: 5IV KEY:
*¥% ENTER THE FOLLOWING KEY INFORMATION %
PART NUMBER-

Figure 1-5. Primary Key Selection Screen

In this example, the segments each have two-character IDs that happen to
coincide with four of the transaction IDs in the application system.
This convention has a special significance: each of these four
transactions allows display and update of the correspondingly named
:ggmenti Z;us all those above it in the hierarchical path (see

igure 1-6).

PA
PARTROOT

PD Iv
STANINFO STOKSTAT

cYy
CYCCOUNT

Figure 1-6. Sample Data Base

Thus, the CY transaction prompts the user for the keys of the PA, 1V,
and CY segments in order to retrieve them for display and update, but

1-4 IMSADF II Application Development Guide

the PA transaction deals only with the root segment. These four
transactions provide a data base maintenance application.

The lowest level segment retrieved by a transaction in a hierarchical
path is known as the target segment. When a transaction involves
multiple hierarchical paths in one or more data bases, it is said to
have multiple target segments -- one for each path. When defining a
transaction, you will name the target segments. At execution time,
then, the user will be prompted to enter target segment keys, as well as
those o{ higher level segments, with a screen similar to that shown in
Figure 1-5.

If the user still cannot enter some or all of the keys, IMSADF II
provides a data base browsing capability as a standard part of the
application. You can restrict or eliminate the browsing capability when
you develop a transaction. If you include the browsing feature in a
transaction, IMSADF II will provide a Secondary Key Selection screen for
this purpose. Figure 1-7 and Figure 1-8 illustrate how browsing can be
allowed at different levels in the data base down to the target segment.
A transaction supporting many target segments can provide browsing at
every level in every path down to the target.

SECONDARY KEY SELECTTION
UPDATE TRANSACTION: INVENTORY
OPTION: F TRX: 5IV KEY: 02R>
SELECTION: PRESS ENTER TO VIEW ADDITIONAL SELECTIONS
PART NUMBER DESCRIPTION

1 02RC07GF273J RESISTOR

2 02106B1293P009 RESISTOR

3 02250236-001 CAPACITOR

4 02250239 TRANSISTOR

5 02250241-001 CONNECTOR

6 02250794 RESISTOR

7 02250796 SWITCH

8 02250891 SERVO VALVE

9 02252252-003 COUPLING

10 023003802 CHASSIS

11 023003806 SWITCH

12 023007228 HOUSING

13 023008027 CARD FRONT

14 023009228 CAPACITOR

15 023009270 HOUSING

16 023009280 HOUSING CONV

17 023013405-002 MOUNTING

18 023013412 COVER

Figure 1-7. Secondary Key Selection Screen (Data Base Browsing)

Chapter 1. IMSADF II Concepts and Overview 1-5

SECONDARY KEY SELECTTION

UPDATE TRANSACTION: INVENTORY
OPTION: TRX: 5IV KEY: 02RC07GF273J
SELECTION: %% ENTER A SELECTION NUMBER FROM THIS SCREEN %Xx
INVENTORY UNIT CURRENT ON TOTAL DISBURSEMENTS
LOCATION PRICE REQMNTS ORDER STOCK PLANNED UNPLANNED
1 00 AK24527 2.40 33 0 33 1 700
2 0028009126 .00 17 0 17 57 700
3 0028011126 .00 26 0 26 240 729

Figure 1-8. Browsing at a Lower Level in the Data Base

DATA DISPLAY AND UPDATE

Finally the user sees the data he has chosen on a Data Display screen
(Figure 1-9).

S AMPLE PROBLEM

UPDATE TRANSACTION: INVENTORY
OPTION: TRX: 5IV KEY: 02RCO7GF273J 0028009126

¥%x ENTER DATA FOR UPDATE xxx
PART NUMBER---- 02RC07GF273J DESCRIPTION---- RESISTOR
AREA-=-=====——u- 2 INV DEPT-===--- 80
PROJECT-======= 091 DIVISION-====~~ 26
UNIT PRICE----- .00 UNIT-=————————— 0000
ATTR COAP---=--- 0 ATTR PLANNED--- 0
ATTR COAD------ 0 STOCK DATE-—---- 516
LAST TRANS----- 517 RQMNTS CURRENT- 17
RQMNTS UNPLAN-- 0 ON ORDER-=====-- 0
TOTAL STOCK---- 17 DISB PLAN-===-- 57
DISB UNPLAN---- 700 DISB SPARES----]
DISB DIVERS---- 0

Figure 1-9. Data Display Screen

This is where changes are made to the data, if appropriate.

The user can also go directly to the Data Display screen from any of the
previous screens (Primary Option Menu, Secondary Option Menu, Primary
Key Selection, or Sign-0n) simply by entering all the necessary
information: the function option, transaction ID and mode, and
concatenated key.

1-6 IMSADF II Application Development Guide

The user may switch directly from this Data Display screen to the Data
Display screen for another transaction simply by entering a new
transaction ID and mode (next to TRX on the Data Display screen) and/or

a new concatenated key (next to KEY).

If the user is working with multiple target segments in a multiple-path
transaction, he may enter N on this screen (next to OPTION) to work
sequentially through the various target segments.

Finally, you can develop the transa
other segments in a transaction sim
displayed key fields (e.g., Part Number).

Transaction Modes

ction so that the user may display
ply by entering new keys over the

The transaction mode selected on the Primary Option Menu screen controls
what the user can do with the data seen on the Data Display screen.

Transaction mode 6, Retrieve, allows the user to look at the data; it

cannot be altered.

Transaction mode 5, Update, allows the user to update data and place the

new information in the data base.

However, certain data fields may be

defined as display only. Other data fields may be modifiable, but
subject to validation and other processing. The dynamic rules you
develop for the transaction will define which fields can be modified and

under what conditions.

IMSADF II will not allow a user to modify a field that is defined as
display only. If a user tries to place invalid values in a field,
IMSADF II will display a message and highlight the fields in error (see

Figure 1-10).

OPTION: TRX: 5IV KEY:

PART NUMBER---- 02RCO07GF273J
AREA----~--———- 2
PROJECT----~~-- 091

UNIT PRICE----- .00
ATTR COAP------ 0

ATTR COAD------ 0

LAST TRANS----- 117
RQMNTS UNPLAN-- 0
TOTAL STOCK---- 17
DISB UNPLAN---- 700
DISB DIVERS---- 0

SAMPLE

UPDATE TRANSACTION:
02RCO07GF273J
X% ENTER "E" TO DISPLAY ERROR OR WARNING MESSAGES XX

PROBLEM

INVENTORY

0028009126
DESCRIPTION---- RESISTOR
INV DEPT------- 80
DIVISION------- 26
UNIT-=---———ee 0000
ATTR PLANNED--- 0
STOCK DATE----- 516
RQMNTS CURRENT- 17
ON ORDER------- 0
DISB PLAN------ 57
DISB SPARES---- 0

Figure 1-10. Data Display Screen with Error Notification

If the user needs more information to correct the field, he may enter E
in the OPTION field to display additional error messages (Figure 1-11).

Chapter 1.

IMSADF II Concepts and Overview 1-7

ERROR MESSAGES
OPTION: PAGE: 001
LAST

1724 STOCK DATE - 516 - TO0 GREAT
1728 LAST TRANS - 117 - SHOULD BE AFTER STOCK DATE

Figure 1-11. Error Message Screen

The user then presses ENTER to return to the Data Display screen to
complete the updates.

Transaction mode 4, Add, is used mainly with transactions that have a
single target segment. Unless you define the transaction otherwise, the
user can insert only the target segment and amend the higher level
segments using this transaction mode. Generally, combinations of
insertions and amendments to segments in one or several paths are
handled with transaction mode 5 (Update).

Transaction mode 3, Remove, is used for deleting segments, but again is
used mainly on transactions that have a single target segment with an ID
equal to the transaction ID.

Transaction modes 1 and 2 are interchangeable with modes 3 and 4,
respectively. It is recommended that modes 3 and & be used rather than
1 and 2.

The Data Display screens shown in this section are in the default format
produced by the Rules Generator. You can use static rules to customize
the format of these screens when you develop a transaction.

MENU SEQUENCE AND ADDITIONAL PROCESSING
By simply adding to and subtracting from the IMSADF II standard

application architecture, you can very quickly and easily develop a wide
variety of transactions.

The sequence of menus and possible variations in that sequence are
summarized in Figure 1-12. The loop shown in Secondary Key Selection
indicates the possibility of browsing through several different levels
or paths in one or more data bases. The user can return to the Primary
Option Menu from any of the screens by entering OPTION €C. He can return
to the Sign-0n screen by entering OPTION Q.

The symbol X marks the points at which the user can go directly from one
transaction to a new transaction by altering the transaction mode and ID
fields on the screen. IMSADF II will switch to a key selection or Data
Display screen for the new transaction, depending on the information
supplied by the user.

1-8 IMSADF II Application Development Guide

SIGN I PRIMARY
ON OPTION
MENU

> SECONDARY
> OPTION
MENU

> PRIMARY —>H
> KEY II

—> SELECTION

>[x]
SECONDARY
KEY

>
> —
L >| SELECTION L5 DaTa —>
l >| DISPLAY
> < >
>

> DATA —>H
UPDATE .

Figure 1-12. Sequence of Screens (with Variations)

Transaction switching may also be controlled by dynamic rules written
when the transaction is developed. Chapter 4, "The Auditor and the
Audit Data Base" explains how such rules are written.

Chapter 1. IMSADF II Concepts and Overview 1-9

1-10 IMSADF II Application Development Guide

CHAPTER 2. STATIC RULES AND THE RULES GENERATOR

Static rules are used to define:

. The transactions within an application system

. The data base and its segments

. Which segments will be used in each transaction
. What data is to appear on the display screens

. The audit specifications and interrelationships that will be
required in a transaction

These rules are "static" because they are relatively stable and
unchanging. The IMSADF II Rules Generator, a utility similar to a
compiler, processes static rules and stores them as members in an 0S
partitioned data set (PDS).

STATIC RULES FOR CONVERSATIONAL APPLICATION SYSTEMS

Chapter 1, "IMSADF II Concepts and Overview" outlined the flow of menus
and screens that are a standard part of conversational application
systems. Figure 2-1 shows the types of rules used at each stage. Other
functions (such as text editing and batch and nonconversational
p;ocessing) use somewhat different rules and are discussed in later
chapters.

After providing the sign-on and option menus in each IMSADF Il
application system, the common module retrieves the rules it requires
according to the user's sign-on and subsequent selection of
transactions.

An application system contains one of each of the menu rules. The menu
rules are:

Primary Option Contains a list of the options (selected from A, B, C,
Menu Rule D, F, H, I) to be displayed on the Primary Option Menu
screen.

Secondary Option Contains a list of all transaction IDs in an

Menu Rule application system. IMSADF II reconciles this list
with the user's individual security profile to produce
the list of transactions that will appear on the
Secondary Option Menu screen.

The Primary Option Menu Rule and the Secondary Option Menu Rule must
thus be generated only once for an application system. Keep in mind,
though, that the Secondary Option Menu Rule must be updated whenever new
transactions are added to the application system.

Chapter 2. Static Rules and the Rules Generator 2-1

Primary Input
Sign—0n —> Key Transaction
Selection Rule
> Primary Primary >1 Secondary Input
Option Option Key Transaction
Menu Menu Rule Selection Rule
>| Secondary Secondary > Data Input Transaction Rule
Option Option Display Segment Handler Rule(s)
Menu Menu Rule Segment Layout Rule(s)
l
Figure 2-1. Conversational Rule Usage

Transactions are governed by the generalized application program, known
as a transaction driver. One or more of the remaining static rules are
built for each transaction or segment in an application system. These
rules are:

Defines the segments to be used in a transaction,
including a small amount of information about the kind
of processing to be performed against the data base.

Input
Transaction Rule

Segment Handler Contains the actual segment search arguments (5S5SAs)

Rule that IMSADF II needs to perform data base I/0 using
DL/I. dOne is produced for every data base segment to
be used.

Defines the fields in a segment, including their
length and format, and indicates whether any
validation or message sending is to be performed.

Segment Layout
Rule

Builds an Assembler program containing standard static
SQL calls and USER SQL calls.

Table Handler
Rule

Defines the columns in a DB2 table. It performs the
same function as the Segment Layout Rule.

Table Layout
Rule

There are six types of source statements to be submitted to the Rules

Generator. They are:

SYSTEM Defines the application system ID the user must give to obtain

the Sign-0n screen and sets general system parameters.

SEGMENT Defines the data base layout (similar to an IMS/VS DBD);

segments are usually defined in hierarchical order. There

must be a separate SEGMENT statement for every data base

segment used in a transaction.

FIELD Defines the key and data fields contained in a segment and

indicates how the fields are to be displayed on the screens in

which they appear.

GENERATE Has several uses:

. Defines transactions, controls the screen formats, and
identifies which data base segments are to be used

2-2 IMSADF II Application Development Guide

. Controls the generation of Segment Handler and Segment
Layout Rules (using information given in the SEGMENT and
FIELD statements)

[Facilitates maintenance of the list of transactions in the
application system by adding new transaction IDs into the
Secondary Option Menu Rule; creates a new Secondary Option
Menu Rule for a new application system

. Generates the Sign-0On screen and controls the Primary
Option Menu screen

. Requests link edit and preload performance options

RULE Provides control information to the Rules Generator for
entering Assembler language rules source.

Note: The RULE statement is not supported under the
Interactive Application Development Facility (IADF).

INCLUDE Provides a copy library facility that allows basic information
to be stored, retrieved, and augmented or overridden by
additional statements and parameters.

Figure 2-2 shows how these Rules Generator statements can be used to
produce a single transaction, PA, which allows display and update
(including insertion and deletion) of the PARTROOT segment (discussed in
Chapter 1, "IMSADF II Concepts and Overview").

//NAME JOB ACCNT,NAME,MSGLEVEL=1

/7/STEP1 EXEC 22276

//G1.SYSIN DD

SYSTEM SYSID=SAMP,PGROUP=ZZ, SOMTX=0R,
SHEADING='S AMP L E PROBLEM

SEGMENT ID=PA,LENGTH=50,NAME=PARTROOT,PARENT=0

FIELD ID=KEY,KEY=YES, LENGTH=17,NAME=PARTNUMB,
SNAME='PART NUMBER'
FIELD ID=DESC,LENGTH=20,P0SITION=27,

SNAME='PART DESCRIPTION'
GENERATE OPT=CVALL,TRXID=PA,

DBPATH=PA, TRXNAME="PART SEGMENT'
GENERATE OPT=SGALL
GENERATE OPT=SOM
GENERATE OPT=CVSYS
GENERATE OPT=STLE,PGMID=0R

Figure 2-2. Using Rules Generator Statements to Produce a Simple
Transaction

The JCL procedure ????6 executes the Rules Generator, where 2?22? is the
installed ADFID (the default is MFC1l; refer to the IMS Application

Development Facility II Version 2 Release 2 Installation Guide). This
procedure is supplied with IMSADF II.

The next sections describe the Rules Generator source statements shown
in Figure 2-2 and give information you need to start using them. Refer
to the IMS Application Development Facijlijty II Version 2 Release 2
Application Development Reference for detailed descriptions of the
various operands used in each type of statement.

Chapter 2. Static Rules and the Rules Generator 2-3

THE SYSTEM STATEMENT

SYSTEM

SYSID=SAMP,PGROUP=2Z, SOMTX=0R,
SHEADING='S AMP L E PROBLEM

The main o

SYSID

PGROUP

SOMTX

SHEADING

perands of this statement are described below.

Names the application system ID, the first four characters of
the program load module for this application. Required.

The DL/I PSB, where applicable, and the IMS/VS transaction
code, both have the same name as the program load module. The
first two characters of the application system ID must be
unique within the installation.

Name of project/group using this application system. This
code must be unique within the installation and should be
entered, together h with relevant user IDs and profiles, into
the Sign-0On Profile data base (see Chapter 3, "Sign-On
Security™). More than one project/group can use the same
application system. If PGROUP is omitted from the SYSTEM
statement, it must be specified on every GENERATE statement.

Defines the last two characters of the program load module for
this application (eg. SAMPTOR). Required.

Note: SOMTX on the GENERATE statement (QOPT=CVALL) overrides
the operand on the SYSTEM statement.

The heading that appears on the Sign-0On, Key Selection, and
Data Display screens.

THE SEGMENT STATEMENT

SEGMEN

T ID=PA,LENGTH=50,NAME=PARTROOT,PARENT=0

All of the
ID

LENGTH
NAME

PARENT

operands described below are required.

The two-character segment ID; must be unique within the
application system.

Segment length in bytes.

Name of segment to be used in segment search arguments for
DL/I calls. The same NAME value may be used for different
segment definitions with different IDs. Such definitions are
calledtaliases and are different views of the same data base
segment.

The two-character ID of the parent segment in the data base.
Root segments should have PARENT=0. DB2 tables and VSAM files
should also have PARENT=0.

2-4 IMSADF II Application Development Guide

THE FIELD STATEMENT
FIELD ID=KEY,KEY=YES, LENGTH=17,NAME=PARTNUMB,
SNAME='PART NUMBER®'
FIELD ID=DESC, LENGTH=20,POSITION=27,
SNAME='PART DESCRIPTION'
All FIELD statements must have an ID and a LENGTH.
ID Field ID; up to four characters; must be unique within the
segment. Required.
KEY Indicates whether or not the field is a key field. The
default is NO.
BYTES or Length of stored field in bytes. Required.
LENGTH
NAME Nan of field to be used in segment search arguments for DL/I
calls.
TYPE Defines data type (see Figure 2-3). The default is ALPHANUM.
Note that type NUMeric allows numeric characters 0 to 9 only
(not signs or decimal points) and is used rarely. Data used
for arithmetic operations by the Auditor (see Chapter 4, "The
Auditor and the Audit Data Base") must be DEC (zoned decimal),
PD (packed decimal), BIN (binary) or NUMeric.
START or Position of field in the segment. The default is the byte
POSITION immediately following the field defined in the preceding FIELD
statement; if this is the first FIELD statement in the
segment, the default is position 1.
SNAME The heading that appears with the field on the key selection
and Data Display screens.
Used for
. Arithmetic
Notation Abbreviation Meaning Operations
ALPHA C Alphabetic characters and NO
blank
ALPHANUM C Alphanumeric characters NO
BIN I Binary number YES!
BIT B Bit data NO
DATE DA or D Date NO
DBCS DB Double Byte Character Set NO
DEC DE or 2 Zoned decimal YES!
FLOAT F Floating point YES
HEX H or X Hexadecimal presentation NO
MIXED M Mixed EBCDIC and DBCS NO
Figure 2-3 (Part 1 of 2). Data Types

Chapter 2.

Static Rules and the Rules Generator

2-5

Used for

. . Arithmetic
Notation Abbreviation Meaning Operations
NUM N Numeric digits YES?2
PD P Packed decimal YES!
UDEC UD or UZ Unsigned zoned decimal YES?2
UPD up Unsigned packed decimal YES?2
VARCHAR v Variable length character NO

Figure 2-3 (Part 2 of 2). Data Types

Key Fields

Key fields are identified to IMSADF II by marking them KEY=YES in the
FIELD statement.

Processing with IMSADF II is simplest if every data base segment has a
unique key sequence field. This should be considered when designing
data bases for new applications. If existing data bases are involved
where non-keyed segments or segments with non-unique keys exist, seea
"Processing Non-Keyed Segments" in the IMS Application Development
Facility II Version 2 Release 2 Application Development Reference for a
discussion of the supported functions and processing capabilities for
those situations.

Key fields will be identified in the IMS/VS DBD as follows:
FIELD NAME=(xxxxxxxx,SEQ,U),START=..,BYTES=..

The key field may be defined to the IMSADF II Rules Generator in the
same way. If this is done, the KEY=YES operand is not required because
it is implied by the FIELD statement SEQ operand. The field must,
however, be given an ID. Here are two equivalent forms of the Rules
Generator statements for defining key fields:

FIELD NAME=(PARTNUM,SEQ,U),START=5,BYTES=25, ID=PTNO
FIELD NAME=PARTNUM,KEY=YES,P05=5,LENGTH=25,ID=PTNO

It is assumed here that the key field is alphanumeric and has a
displayed length (SLENGTH) equal to the stored length of 25 bytes.

The Rules Generator requires that every declared data base segment have
a key field identified in one of the two ways just shown. If the field
so identified to IMSADF II is a search field (and hence is defined in
the DBD without the SEQ operand value) rather than a unique key sequence
field, IMSADF II will still handle it, as long as:

. The segment is the lowest retrieved in its hierarchical path

J The search field contains unique values identifying each segment
occurrence

If a search field is being used, KASCEND=NO (key not ascending) must be
included in the Rules Generator SEGMENT statement.

If the search fields are not unique, it will not be possible to retrieve
more than the first segment occurrence with a particular search field
value through the standard key selection process. Such retrievals can

1 Displayed right justified, with leading minus sign when negative and
Wwith leading zeros suppressed.

2 Will not maintain sign if negative

2-6 IMSADF 11 Application Development Guide

be handled using the Auditor, as explained in Chapter 6, "Complex
Transactions."

It is possible to divide the key field into contiguous subfields. Then
the key selection and Data Display screens will show the subfields
instead of a single long key field for that segment. To achieve this,
define each subfield separately to the Rules Generator, each with
KEY=YES. (Do not code the overall key field.) At the same time, the
name by which the key field is defined in the DBD must be coded against
the SEGMENT statement, not against the fields. For example:

SEGMENT ID=PT,NAME=PARTROOT, LENGTH=100,PARENT=0,
KEYNAME=PARTNUM

FIELD ID=PTTP,KEY=YES,P05=5, LENGTH=10

FIELD ID=PTAS,KEY=YES, LENGTH=15

This definition will work against the same DBD as the previous example
but will format the keys differently.

Decimal Fields

When a zoned (DEC) or packed (PD) decimal field is displayed on a
screen, allowance is made for a sign and a decimal point. Therefore,
the default screen length (SLENGTH) for a field of length n is n+2
(TYPE=DEC) or 2n+l1 (TYPE=PD), even if there are no decimal places. If a
shorter or longer SLENGTH is specified, the value will be right
justified and leading zeros suppressed, with a floating minus sign for
negative numbers. If a shorter screen length than the default is
defined and a data value that is too long is encountered on the data
base during execution, asterisks will appear in the displayed value.

DEC and PD fields can have decimal points, defined on the FIELD
statement using the following operands:

DECIMAL The number of decimal places. The decimal point will be
displayed but not stored. Values entered by the user will
automatically be aligned to the decimal point position.

SDECIMAL The number of decimal places displayed; can be different from
the number assumed to be present by the implied decimal point
position.

If, for example, a field is defined as:

FIELD ID=FFFF,LENGTH=6, TYPE=DEC,DEC=2
it will be displayed on the screen as:

3 .10
(8 positions)

The user can amend the value by entering data in front of the old value
(without pressing EOF):

2 . & 3 .10
(8 positions)

Result:

2 . 40
(8 positions)

If a value that is too large to be stored is entered, an error message
appg:rs. This can happen if the user writes a digit in the sign
position:

12345 . 67
(8 positions)

Chapter 2. Static Rules and the Rules Generator 2-7

Date Fields

Data of TYPE=DATE is stored as "YYMMDD"™ on the data base and in the SPA.
Any manipulation or comparison of a TYPE=DATE field should refer to it
in this format, except when assigning a literal value in the audit
rules, when the form displayed should be used.

The format in which IMSADF II displays a TYPE=DATE field will depend on

the option selected by the installer of the product. The DATEFMT
operand of the DEFADF macro statement (refer to the IMS Application

Development Facility II Version 2 Release 2 Installation Guide) can have
one of five possible values:

DATEFMT=S International standard - YY-MM-DD

DATEFMT=B International standard with blank separator - YY MM DD
DATEFMT=U Former U.S. standard - MM/DD/YY

DATEFMT=E Former European standard with dot separator - DD.MM.YY

DATEFMT=0 0ld world standard - DD/MM/YY

When the user enters or amends a date field, it will be validated for a
correct month number (1-12), a correct day number, depending on the
month and including a check for leap year, and a numeric vear number.

controlling Display Screen Contents

Unless screen image is used (see Chapter 6, "Complex Transactions"), the
following operands are commonly used in the FIELD statement to produce
the Data Display screen:

SNAME Name to appear against the field on the Data Display screen.
For key fields, this name will also appear on the Primary Key
Selection screen. SNAME is also used for headings of Secondary
Key Selection Screen if SKLEFT and SKRIGHT have not been
specified.

MODE Sets the attributes for the field. These can be:
% - Modifiable (transaction modes 1-6)
5 - Modifiable (transaction modes 1-5)
6 - Nonmodifiable
7 - Modifiable but not displayed (e.g., for lockuwords)

The default for nonkey fields is modifiable (MODE=5). Key
fields are, by default, nonmodifiable (MODE=6). If a key field
is defined as MODE=5, the user can alter the key value
displayed; this has the same effect as altering the
corresponding value within the concatenated key field (which
appears near the top of the screen): a new transaction starts
and retrieves the segment with the new key.

DISPLAY Controls the contents of the Data Display screen. The fields
and segments defined may appear in several different
transactions and a particular field may be required in some and
not in others. A simple default exists which ties in with the
concept of the target segment; that is, the lowest level
segment in each hierarchical path retrieved by a transaction.
By default, the Data Display screen for a transaction will
include all the fields of the target segments and the key
fields of all the other segments in the hierarchical paths douwn
to the target segments.

The default values for MODE and DISPLAY operands can be altered for all
the fields in a segment by coding them on the SEGMENT statement. For
example, if MODE=5 and DISPLAY=YES are included on a SEGMENT statement,
all the fields (including keys) will be displayed and modifiable on
display screens for all transactions in which the segment is accessed.
Individual fields can still bear different values for these operands:
the values on the FIELD statements can override the SEGMENT values.

2-8 1IMSADF II Application Development Guide

An example should clarify the use of DISPLAY.

We will define two

transactions against the data base shown in Figure 2-64.

AKEY AAll AA22 AA33 AA
KEY=YES DISP=YES DISP=NO
BKEY BB11 BB22 BB33 BB
KEY=YES DISP=YES DISP=NO
Figure 2-4. Data Base to Illustrate Use of DISPLAY Operand

The Rules Generator statements are as follows:

SYSTEM SYSID=EXDI,PGROUP=PG,SOMTX=TT,SHEADING='D I S P L A Y S'

SEGMENT ID=AA,LENGTH=40, NAME=AAROOT,PARENT=0

FIELD ID=AKEY,KEY=YES,NAME=AASEGKEY, LENGTH=10, SNAME='R0OOT KEY'

FIELD ID=AALll,LENGTH=10,DISP=YES,SNAME="FIRST IN AA'

FIELD ID=AA22,LENGTH=10,DISP=NO,SNAME="SECOND IN AA'

FIELD ID=AA33,LENGTH=10,SNAME="THIRD IN AA"

SEGMENT ID=BB, LENGTH=40,NAME=BBDEPSEG, PARENT=AA

FIELD ID=BKEY,KEY=YES,NAME=BBSEGKEY, LENGTH=10,
SNAME='DEPENDENT KEY"'

FIELD ID=BB11,LENGTH=10,DISP=YES,SNAME="FIRST IN BB’

FIELD ID=BB22,LENGTH=10,DISP=NO, SNAME='SECOND IN BB'

FIELD ID=BB33,LENGTH=10,SNAME="THIRD IN BB’

¥NOW GENERATE THE SEGMENT RULES

GENERATE

SEG=(AA,BB),OPTIONS=SGALL

¥NOW GENERATE THE TRANSACTION RULES AND SCREENS

GENERATE
GENERATE

TRXID=R0O, TRXNAME='RO0OT SEG MAINT',DBPATH=AA,
OPTION=CVALL

TRXID=DE, TRXNAME='DEP SEG MAINT',DBPATH=BB,
OPTION=CVALL

¥NOW ADD THE NEW TRANSACTION IDs TO THE SECONDARY OPTION MENU RULE

GENERATE

OPT=SOM

The resulting Data Display screens (requested by the CVALL option) are
shown in Figure 2-5 and Figure 2-7, while the Primary Key Selection
screens (also requested by the CVALL option) are in Figure 2-8 and

Figure 2-9.

The Secondary Option Menu screen is formatted dynamically by the system
depending on the user's security profile and the Secondary Option Menu
Rule. The Secondary Option Menu screen will list all the transactions
in an application system available to that user, along with a brief
description obtained from the TRXNAME operand of the GENERATE statement.
GENERATE OPT=SOM adds the two new transactions to the existing list.
Assuming that the user is authorized to use them, the Secondary Option
Menu screen will look like the one in Figure 2-6, where XX and YY are
transactions already in the system.

Chapter 2. Static Rules and the Rules Generator 2-9

DISPLAYS

TRANSACTION: ROOT SEG MAINT
OPTION: TRX: KEY:

ROOT KEY----
FIRST IN AA-
THIRD IN AA-

Figure 2-5. Data Display Screen for Root Maintenance Transaction

SECONDARY OPTION SELECTION PAGE: 1
ACTION: (C=RETURN TO PRIMARY MENU; Q=EXIT TO SIGNON) LAST
KEY MODE: SELECT:

XX = A TRANSACTION ALREADY
YY - ANOTHER

RO ROOT SEG MAINT

DE DEP SEG MAINT

Figure 2-6. The Updated Secondary Option Menu

2-10 IMSADF II Application Development Guide

DISPLAYS

TRANSACTION: DEP SEG MAINT
OPTION: TRX: KEY:

FIRST IN AA---
DEPENDENT KEY-
FIRST IN BB---
THIRD IN BB---

Figure 2-7. Data Display Screen for Dependent Segment Maintenance
Transaction

DISPLAYS
PRIMARY KEY SELECTION S CREEN
TRANSACTION: ROOT SEG MAINT
OPTION: TRX: KEY:

ROOT KEY-

Figure 2-8. Primary Key Selection Screen for Root Maintenance
Transaction

Chapter 2. Static Rules and the Rules Generator 2-11

DISPLAYS
PRIMARY KEY SELECTTIGON S CREEN
TRANSACTION: DEP SEG MAINT
OPTION: TRX: KEY:

ROOT KEY-===--
DEPENDENT KEY-

Figure 2-9. Primary Key Selection Screen for Dependent Segment
Maintenance Transaction

Secondary Key Selection

Secondary key selection, a data base browsing capability, can be
provided as part of every IMSADF II transaction.

Browsing is available at every segment level and in every hierarchical
path accessed by a transaction. The screens themselves are formatted
dynamically by the key selection module but are controlled by certain
Rules Generator operands.

By default, IMSADF II will perform secondary key selection on dependent
segments but not on root segments. The format of the screen for
browsing through BB segments, following the example of the previous
section, is shown in Figure 2-10. Each line in the example shows the
key of one segment occurrence under a particular root key. The column
heading ("DEPENDENT") is derived from the SNAME of the key field but is
shortened to the length of the key field itself.

2-12 IMSADF II Application Development Guide

SECONDARY KEY SELECTION
RETRIEVE TRANSACTION: DEP SEG MAINT
OPTION: F TRX: 6DE KEY: AA124762BC
SELECTION: PRESS ENTER TO VIEW ADDITIONAL SELECTIONS

DEPENDENT
1 1234123412
2 1234123456
3 1234123478
% 1234567890
5 1234578912
6 1234588999
7 1234678901
8 1235123512
9 1235123513
10 1245678901
11 1345678901
12 1355567890
13 1446721622
14 1447000111
15 1501234567
16 15022242638
17 1611234567
18 2121487653

Figure 2-10. Default Secondary Key Selection Screen

The browsing function reads and displays the first 18 segment
occurrences under the given root key (already entered by the user) and
invites the user to press ENTER if there are more occurrences. The
maximum number of segment occurrences displayed will depend on the model
and type of display used. The screen format can be varied by means of
the following two SEGMENT statement operands.

SKSEGS Number of occurrences to be displayed on the Secondary Key
Selection screen. The default is 18 unless an extra line of
heading is requested, which reduces the default to 17. If a
value of zero is coded, no secondary key selection will be
performed for this segment type. The default value for root
segments is zero. Secondary key selection for root
segments, when requested via a nonzero value of SKSEGS,
supports partial or generic key retrieval.

SKLEFT and Fuller headings can be requested. One or two lines of

SKRIGHT column headings are allouwed, each up to 72 bytes in length.
The first character of the heading starts in column 9 of the
Secondary Key Selection screen. Define the first 36 bytes
of the heading as the value of SKLEFT and the second 36
bytes as the value of SKRIGHT. For a second line of
heading, code the operands again.

It is possible to request additional fields from the segment to be
displayed on the Secondary Key Selection screen beside the key on each
line. This is done on the FIELD statement by the RELATED=YES operand.

RELATED COL Defines the starting column number of the displavyed field
on each line. Column 1 is aligned with the first character
of the heading. By default, the key field starts in column
1 and each subsequent field starts 2 bytes after the end of
the previous one.

If the definition of the AA root segment in the example to request

browsing and define headings is amended, the following modifications
must be made to the Rules Generator statements:

Chapter 2. Static Rules and the Rules Generator 2-13

SEGMENT ID=AA,LENGTH=640, NAME=AAROOT,PARENT=0, SKSEGS=5,
SKLEFT='ROOT SEGMENT',SKRIGHT='TYPE OF',
SKLEFT=' KEY FIELD',SKRIGHT="MERCHANDISE'

FIELD ID=AKEY,KEY=YES,NAME=AASEGKEY,
LENGTH=10, SNAME="R0O0OT KEY',COL=2
FIELD ID=AA11l,LENGTH=10,DISP=YES, SNAME="FIRST IN AA'
FIELD ID=AA22,LENGTH=10,DISP=NO,SNAME="SECOND IN AA"‘,
RELATED=YES,COL=38
FIELD ID=AA33,LENGTH=10, SNAME="THIRD IN AA"

Figure 2-11 shows the Secondary Key Selection screen that results.

SECONDARY KEY SELECTTION

RETRIEVE TRANSACTION: ROOT SEG MAINT
OPTION: F TRX: 6RO KEY: AA
SELECTION: PRESS ENTER TO VIEW ADDITIONAL SELECTIONS
ROOT SEGMENT TYPE OF
KEY FIELD MERCHANDISE
1 AALL2646XXX COPPER
2 AAL2768XYX MILD STEEL
3 AA75924VUW ZINC
4 AA97284YZX MANGANESE
5 AB12478UUVU STAINLESS STEEL

Figure 2-11. Tailored Secondary Key Selection Screen

THE GENERATE STATEMENT

GENERATE OPT=CVALL, TRXID=PA,
DBPATH=PA, TRXNAME="PART SEGMENT'
GENERATE OPT=SGALL
GENERATE OPT=SO0M
GENERATE OPT=CVSYS
GENERATE OPT=STLE,PGMID=0R

This example includes five types of GENERATE statements. The OPTIONS
operand (OPT) determines which kind it is.

1. The first GENERATE statement (OPT=CVALL) generates a an IMSADF I1I
transaction. The DBPATH operand gives information about key
selection; in this case the PA segment is named. From the
definition of PA, the Rules Generator can produce the formatting
information required for the Primary and Secondary Key Selection
screens and the Data Display screen.

2. The second GENERATE statement (OPT=SGALL) generates all the segment
rules needed for all segments defined in this example before the
GENERATE statement is encountered.

3. The third GENERATE statement (OPT=SOM) adds the new transaction ID

(and the TRXNAME value) to the list of existing transaction IDs held
in the Secondary Option Menu Rule for this application system. If

2-14 IMSADF II Application Development Guide

this is the first time this application system has been defined, a
new rule will be created. Otherwise, the existing rule will be
amend?d or extended with the TRXID and TRXNAME values found in this
example.

4. The fourth GENERATE statement (OPT=CVSYS) generates the Primary
Option Menu Rule and the Sign-0n screen.

5. The last GENERATE statement (OPT=STLE) requests the link edit of an
application "mini-driver' program. The PGMID is the same as the
cluster code (SOMTX) parameter. This GENERATE statement is required
only once for each cluster code.

IMSADF II transactions are defined by the GENERATE statement with
OPT=CVALL. The main operands of this statement are described below.

TRXID Names the two-character transaction ID which is to appear on
the list on the Secondary Option Menu screen, The user invokes
the transaction by entering this code. Required.

TRXNAME Sets the descriptive name of the transaction that will appear
on the Secondary Option Menu screen, the Key Selection screens,
and (unless screen image is used) the Data Display screen.

DBPATH Defines the target segments of the transaction. These are the
segments for which the user will be prompted to enter key
information through key selection and which will be retrieved
and updated according to the transaction mode selected by the
user at the terminal.

TSEGS Names working storage areas (called pseudo segments) and data
base segments that are to be retrieved and updated under
control of dynamic rules.

DEVNAME Indicates the name of the terminal type to be used as assigned
during IMS/VS system definition. Possible values are 2 or Ann
where nn is a one- or two-digit number.

DEVTYPE 1Indicates the characteristics of the terminal as follows:

3270 display with a 24 x 80 screen

3278 model display with a 32 x 80 screen

3278 model display with a 43 x 80 screen

3278 model display with a 24 x 132 screen

3279 model 2B color display with a 24 x 80 screen
3279 model 3B color display with a 32 x 80 screen
3290 Information Display panel with a 62 X 160 screen
5555 Multi-station Display with a 24 x 80 screen

oI WN

Operands required to use screen image definitions and color or to change
the default processing against data base segments are described in
Chapter 6, "Complex Transactions."

The rules associated with segments (the Segment Layout and Segment
Handler rules) will be generated when the Rules Generator encounters the
following statement:

GENERATE OPT=SGALL

It should be placed after all SEGMENT statements in the input to the
Rules Generator.

Whenever new transactions (new TRXIDs) are created or descriptive names
(TRXNAMEs) are changed, the Secondary Option Menu Rule - which controls
the contents of the transaction list that appears on the Secondary
Option Menu screen - must be updated. The Rules Generator will do this
when it encounters the following statement:

GENERATE OPT=SOM
It should be placed after all transaction definitions.

The last two GENERATE statements are:

Chapter 2. Static Rules and the Rules Generator 2-15

GENERATE OPT=CVSYS
GENERATE OPT=STLE,PGMID=0R

The main operands of these statements are described below.

PGMID Defines the cluster code and hence the last two characters of
the IMS/VS transaction code. One of these GENERATE statements
must match the SOMTX operand value on the SYSTEM statement.
Any IMSADF II transaction that uses a different cluster code
must have SOMTX on the GENERATE (with TRXID) statement, thus
overriding the operand on the SYSTEM statement. There must be
a separate GENERATE PGMID statement for each different SOMTX
operand value. Required.

POMENU On the GENERATE OPT=CVSYS statement, selects from options (A,
B, C, D, F, H, I) to appear on the Primary Option Menu screen.
The default is all of them.

PSEUDO SEGMENTS

Sometimes it is necessary to define working storage in a transaction for
calculations or other data manipulation. Sometimes the fields in
working storage will be displayed and possibly updated by the user on
the Data Display screen. IMSADF II provides pseudo segments for this
purpose. They are defined to the Rules Generator similar to data base
segments but without key fields, without parents, and without NAME
operands. On the SEGMENT statement, TYPE=PS (pseudo segment) must be
specified. By default, the fields are displayed with MODE 5 but this
can be changed just as for data base segments. A pseudo segment which
resides in the conversational communications area is called a COMM
segment and is specified with TYPE=COMM on the SEGMENT statement.

In order to use a pseudo segment in a transaction it must be named in
the TSEGS operand of the GENERATE statement for that transaction. Here
is an example:

SEGMENT ID=CC,TYPE=PS

FIELD ID=CLOR, TYPE=DEC,LENGTH=7,SNAME="CLOSE ORDER'

GENERATE TRXID=UV,TRXNAME='PROCESS ORDERS',DBPATH=IV,TSEGS=CC,
OPTIONS=CVALL

SUMMARY OF SYNTAX CONVENTIONS

. Start in any column (1-71) and use columns 1 to 71.

. Leave one or more spaces between control statement keywords and
operands.

U Separate operands by commas with no intervening blanks.

L Separate comments from statements by one or more blank lines. An
asterisk in column 1 marks a comment line.

o Mark continuations by a commasblank combination. The next line can
start in any column (1-71).

L Do not continue multi-valued operands (using parentheses) over two
lines. Instead, close the parentheses and repeat the operand on the
next line: TSEGS=AA,TSEGS=BB is the same as TSEGS=(AA,BB).

ABBREVIATIONS

All keywords can be abbreviated to the minimum number of initial letters
that makes them unique. The following abbreviations are common.

. On the FIELD statement:

LENGTH - LEN SLENGTH - SL
TYPE - 1Y POSITION - POS
DECIMAL - DEC SDECIMAL - SDEC
SNAME - SN DISPLAY - DISP

2-16 IMSADF II Application Development Guide

RELATED - REL
L On the GENERATE statement:

OPTIONS - OPT
SEGMENTS - SEG
TSEGS - TSEG

DBPATH - DBP

ANAGING APPLICATION DEVELOPMENT AN AINTENANCE

It is important to organize source statements for an application system
so that it is easy to recreate them when it is time to move from test to
production. When a large application system is being developed by
several programmers, the allocation of transaction and segment IDs and
aliases must be controlled, and all programmers must be working with
common definitions.

Therefore a set of master rules should be prepared to define the layout
of all data base segments to be used. The master rules can then be used
to develop a basic set of data base maintenance transactions, one
transaction for every segment type. This will provide the bulk of the
input for more complex transaction definitions. Moreover, transactions
so developed are available as soon as the data base design is complete
and can be used for end user demonstrations, for loading test data, for
data base maintenance in production, and even for online data entry if
the volumes of data are suitable. Such data base maintenance
transactions often constitute a substantial part of the final
?ﬁgkgga§}on system and can be prepared in an extremely short time using

The master rules may be put into a copy library and copied into the
input stream (using the INCLUDE statement) for use in creating other
transactions. This will ensure that everyone will use a common set of
basic definitions where multiple transactions use common segments.

The master rules operands may be expanded or overridden by statements
following the included member. These overrides change or add parameters
necessary to generate the desired transactions. For example, the
INCLUDE library could contain the following two members:

. Member SAMPSYS:
SYSTEM SYSID=SAMP,PGROUP=ZZ,SOMTX=0R,
SHEADING='S AMP L E PROBLEM
GENERATE OPT=CVSYS
GENERATE OPT=STLE,PGMID=0R
L Member SAMPPA:

SEGMENT ID=PA,LENGTH=50,NAME=PARTROOT,PARENT=0

FIELD ID=KEY,KEY=YES, LENGTH=17,NAME=PARTNUMB,
SNAME='PART NUMBER'
FIELD ID=DESC, LENGTH=20,P05=27,

SNAME="PART DESCRIPTION'

The following input to the Rules Generator JCL procedure MFC1G would
incorporate these statements into a new transaction, in which the DESC
field is to appear (REL=YES) on the Secondary Key Selection screen:

INCLUDE SAMPSYS
INCLUDE SAMPPA
FIELD ID=DESC,REL=YES
GENERATE OPT=CVALL,TRXID=PA,
DBPATH=PA, TRXNAME="PART SEGMENT"
GENERATE OPT=SGALL
GENERATE OPT=S0M

The library containing the included members must be named in the MFC16G
JCL procedure with DDNAME equal to ADFLIB.

Chapter 2. Static Rules and the Rules Generator 2-17

2-18 IMSADF II Application Development Guide

CHAPTER 3. SIGN-ON SECURITY

The IMSADF II data bases can be in one of two formats. They can be
either DL/I hierarchical data bases or DB2 relational data bases. This
chapter describes the DL/I form of the Sign-on Profile Data Base.
Information about the maintenance of the DB2 data bases is found

Chapter %, "Dynamic Rules Data Bases™ of the IMS Application ngelogment
Facility II Version 2 Release 2 Application Development Reference.

The Sign-0On Profile Data Base is one of three IMSADF II data bases. The
rules stored in this data base are used to verify user ID, project/group
code, and application system ID when a user signs on to a conversational
application system. This data base also contains the user's security
profile, which is a list of transaction IDs (representing the
traasactions a user is allowed to access) and the mode (1-6) allowed for
each.

This data base is required in conversational application systems. Most
transactions using dynamic rules also require information stored in the
AuditBand ?essage Data Bases (see Chapter 4, "The Auditor and the Audit
Data Base™).

Entering rules into the Sign-On Profile Data Base should be the
responsibility of the person in charge of security, normally the data
base administrator.

CONTROLLING SECURITY PROFILES ONLINE

When signing on, the user enters a user ID and a two-character
project/group code. Figure 3-1 shows how users, project/groups, and
application systems interrelate.

5555 55595 Application Systems
PG PG PG Project/Groups
U U U U U Users

Figure 3-1. Relationship Among Application Systems, Project/Groups,
and Users

Each project/group can use only one application system, but an
application system can be used by many project/groups. In simple cases,
there will be a one-to-one correspondence between application system IDs
and project/group codes. Each must be unique in the installation. In
fact, the first two characters of the application system ID must be
unique. It is permissible for the project/group code to be equal to the
first two characters of the application system ID, although this may not
be in the best interests of security.

User IDs are different. The same user can be in several project/groups
using the same or different application systems; he can have a different
security profile in each project/group.

Figure 3-2 shows the structure of the Sign-0On Profile Data Base.

Chapter 3. Sign-0On Security 3-1

Project/group (key) PG
Description
Application system ID

User ID (key) SR Profile ID (key) PR
Employee name Number of entries

Profile ID List of transactions
Further information with modes

Figure 3-2. Sign-On Profile Data Base Structure

The actual profiles (lists of transactions and modes) are stored
separately from the user IDs because frequently many users will want the
same profile, and the data base administrator can avoid entering
duplicate information.

CREATING THE SECURITY PROFILE

You must sign on to an application system yourself in order to create
the sign-on authority for users. When IMSADF II is installed, the
Sign-0On Profile Data Base is already primed with authority for a user
(such as a data base administrator) to sign on.

A variety of transactions are provided in the ?7??? application system
(where ???? is the installed ADFID for which the default is MFC1).
Three are concerned with security maintenance:

PG - maintains the PG root segment

SR - maintains the user ID segment (SR)

PR - maintains the profile segment (PR)

After you sign on, a Primary Option Menu is displayved, on which you
enter:

OPTION: D TRANSACTION MODE: & IDENTIFIER: PG
KEY: QQ

to add project/group QQ. (QQ is the key value of a PG segment.) See
Figure 3-3.

3-2 1IMSADF II Application Development Guide

OPTION: D TRANSACTION MODE: 6
KEY: QQ

OPTIONS

PROJECT MESSAGE SENDING
PROJECT MESSAGE DISPLAY
SESSION TERMINATION
TRANSACTION SELECTION
PROJECT / GROUP SWITCH
USER MESSAGE SENDING
USER MESSAGE DISPLAY

HITMOOE>
uuuuunnan

PRIMARY MENU

IDENTIFIER: PG

TRANSACTION MODES

1 -

NP UN
L I I |

FOR OPTION
D

DELETE
INITIATE
REMOVE
ADD
UPDATE
RETRIEVE

IDENTIFIER IS
TRANSACTION ID
PROJECT/GROUP

F
A,B,C,H,I - (NOT USED)

Figure 3-3. Selection for Defining a New Project/Group

A Sign-0On Profile Data Base screen appears (see Figure 3-4).

OPTION: _ TRX: 4PG KEY:
%% ENTER DATA FOR ADD xxx
PROJECT/GROUP--- QQ

MAJOR SYSTEM ID- SAMP

SIGN-ON/PROFILE
ADD TRggSACTION: PROJECT GROUP

DESCRIPTION----- SAMPLE CHECKOUT

DATA

BASE

Figure 3-4. Defining a New Project/Group

Enter the application system that project/group QQ will use, and, if

desired, a descriptive name of that system.

Remember, this code must be

consistent with the PGROUP operand coded in the static rules on the

Rules Generator SYSTEM or GENERATE statements.

Otherwise, the

project/group will not be able to use the transactions. (Abends with

completion codes 806 will occur.)

Chapter 3. Sign-0On Security 3-3

Next, create the user ID. To do this, you must use transaction SR. To
switch directly to the SR transaction without going through the menus,
enter the following on the Sign-0On Profile Data Base screen:

TRX: 6SR KEY: QQ999999
This will define a user ID of 999999.

The screen in Figure 3-5 will appear.

SIGN-ON/PROFILE DATA BASE

ADD TRANSACTION: EMPLOYEE/USERID INFORMATION
OPTION: _ TRX: 4SR KEY: QQ999999
%% ENTER DATA FOR ADD Xxx
PROJECT/GROUP--- QQ

DESCRIPTION----- SAMPLE CHECKOUT
MAJOR SYSTEM ID- SAMP
USERID-=-=======~= 999999

EMPLOYEE NAME--- JANE SMITH
PROFILE ID------ AB
INFO--—------=--

Figure 3-5. Defining a User ID

Enter the required PROFILE ID and, if desired, the EMPLOYEE NAME. You
do not have to enter an actual list of authorized transaction IDs. INFO
is also optional: it can be used to store lockwords, which are handled
by the installation-defined lockword exit routine, if you use one (see
Chapter 9, "Exits").

Finally, create the actual profile. On the Sign-On Profile DB Control
screen enter:

TRX: &PR KEY: QQAB
to add a profile with ID AB under project/group QQ.

The screen in Figure 3-6 will appear.

3-4 IMSADF II Application Development Guide

SIGN-ON/PROFILE DATABASE

ADD DATABASE: SIGNON PROFILE SEGMENT: PROFILE DETAIL
OPTION: _ TRX: 4PR KEY: QQAB
ACTION: 1

*¥%% ENTER DATA FOR ADD %xx
PROJECT/GROUP--- QQ
PROFILE ID------ AB
NUMBER OF IDS--- 3
PROFILE LINE 1- PA4OPD40IV50
PROFILE LINE 2-
PROFILE LINE 3-
PROFILE LINE 64-
PROFILE LINE 5-

PROFILE LINE 6-
PROFILE LINE 7-
PROFILE LINE 8-
PROFILE LINE 9-
PROFILE LINE 10-
PROFILE LINE 11-
PROFILE LINE 12-

Figure 3-6. Creating a Profile

PROFILE LINE 1 contains the definition of a profile. Each entry is four
characters long, of form:

XXLT
where:
XX is the transaction ID

L is the level of authority (the lowest processing mode allowed; for
example, if L=5 then modes 5 and 6 are allowed). Possible levels
are 3, 4, 5, and 6.

Note: Transaction modes 1 and 2 are interchangeable with modes 3
and 4, respectively. It is recommended that authority levels 3 and
% be used rather than 1 and 2.

T controls whether the transaction ID is to appear on the Secondary
Option Menu screen. Allowed values are:

T=0,1,2 or blank - show this transaction ID on the Secondary Option
Menu screen

T=3 - do not show this transaction ID, but allow it to
be selected through audit rules or special
processing

Note: For a user in project/group AA to use these transactions, the
Rules Generator must have been run with PGROUP=QQ coded on the SYSTEM
statement or on the GENERATE statements for TRXID equal to PA, PD, and
IV. If project/group ZZ is also allowed to use this application system,
code extra GENERATE statements for the project/group 2Z.

The screen in Figure 3-6 has a second page of display for times when you
need more than 12 lines of profile (more than 180 transaction IDs). The
maximum number of transaction IDs in an application system is 300. To
see the second page, press ENTER. The data will not be sent to IMSADF
IT until you press ENTER again. To return to the first page from the
second, type Rl in the ACTION field at the top of the screen and press
ENTER. If you don't want to see the second page, then, after adding the
necessary information on the first page, press PFKEY 4 if the terminal
has program function keys. If the terminal does not have PF keys, type
El in the ACTION field at the top of the screen and press ENTER.

Chapter 3. Sign-0On Security 3-5

After creating the profile, type C in the OPTION field and press PFKEY &
(or type E1l in the ACTION field and press ENTER). The Primary Option
Menu screen will return.

:owtthe security profile is complete and the application system can be
ested.

USING BATCH INPUT OF DYNAMIC RULES

Dynamic rules can be entered in bulk using the batch processing
capability of IMSADF II. You may find this method of entry more
convenient when large numbers of rules must be coded. If the batch
input is kept in step with your online changes, it can be used again to
enter the rules into a production system when tests are complete.

Here is an example of batch input for a security profile:

Z EXEC 2??7B
//TRANSIN DD

MFC1B3PG6ZZ

MFC1B4PGZZSAMPLE PROBLEM SAMP
MFC1B4SRZZ999999PARTS USER AB
MFC1B4PRZZAB0G

PA30PD30IV30CY30

/%

Note: ?2??? is the installed ADFID (the default is MFC1).
As can be seen, each batch transaction begins with transaction code:
_ s55SBmtx
where:
§885 is the application system ID (in this case, MFC1)
B is a literal
m is the transaction mode (1 to 5)
tx is the transaction ID.

Input records must be 80-byte card images, with the transaction code in
column 1.

Note that whenever it is necessary to insert a root segment, it is
deleted beforehand. In this way the deck can be re-run as often as
necessary. On the first run, there will be error messages, since the
segments will not be found. These can be ignored. A complete
description of the batch transaction layouts is given below.

BATCH INPUT LAYOUTS

PG - ProjectsGroup Segment

Ccard Column Length Description
1 9 2 Project/group ID
11 26 Description of PG function
37 4 Application system ID
Sample:
MFC1B2PGQQSAMPLE CHECKOUT SAMP

3-6 IMSADF II Application Development Guide

SR - Employee User ID Segment

card cColumn Length Description
1 9 2 Key of project/group segment
11 6 Employee user ID
17 11 Employee name
28 2 Profile ID
30 8 Information (optional lockword)

Sample:
MFC1B4SRQQ999999J.SMITH AB

PR - Profile Authority Segment

card Column Length Description

1 9 2 Key of project/group segment
11 2 Profile ID
13

3 Number of transaction IDs

The following four positions are repeated 15 times per card (columns
1-60) on cards 2, 3, 4, 5, and 6.

1 1 2 Transaction ID
3 1 Level of authority (1-6)
4 1 Type of processing (0,1,2)
2 1 60 Transaction IDs and authority
3 1 60
4 1 60
5 1 60
6 1 60

Use the end of message characters to indicate end of data if fewer than
21 cards are specified. The end of message characters are defined at
installation time (DEFADF). The default is $$

Sample:

MFC1B4PRQQABO5
HD10SYS30PG10SR30PR30 $$

Chapter 3. Sign-0On Security 3-7

3-8 IMSADF II Application Development Guide

CHAPTER 4. THE AUDITOR AND THE AUDIT DATA BASE

The IMSADF II data bases can be in one of two formats. They can be
either DL/I hierarchical data bases or DB2 relational data bases. This
chapter describes the DL/I form of the Audit Data Base. Information
about the maintenance of the DB2 data bases can be found in Chapter 4 of

the IMS Application Development Facility II Version 2 Release 2

Application Development Reference.

Dynamic rules stored in the Audit Data Base are used to:

. Control validation of data field format and content

. Allow specification of calculation and logic operations
. manipulate keys and data

L Provide for additional security checking by key range or field
values

U Support table definition and transaction switching

This data base can be maintained online using application system MFC1,
or batch input can be used.

AUDITING FIELDS

Data validation, calculations and other processing against fields are
performed by the Auditor, a common module that is a part of the
transaction driver and is therefore included in all IMSADF II
transactions. The operations it performs are controlled by rules stored
in the Audit Data Base. 1In addition, certain operands must be coded on
Rules Generator statements to request that audit operations be
performed. If no such operands are present, the Auditor will simply
validate the data entered by the user according to the data type coded
on the Rules Generator FIELD statements. If errors are found, the
fields in error are highlighted on the screen, and the user is invited
to enter E to see the error messages (see Figure 1-10). Figure 4-1
illustrates the places the Auditor is called.

The Auditor can be called both during and after key selection, before
the Data Display screen is shown to the user. Auditing that takes place
during key selection is known as key audit. You can use a key audit to:
U Edit keys

U Cause a switch to another transaction based on the value of the key
that the user has entered

. Validate keys and impose security by key range and user ID or
terminal ID

. Alter or restrict the display of segments on the Secondary Key
Selection screen (data base browsing)

If errors are detected during key audit, the keys in error are

highlighted on the screen and the user is invited to enter E to display
the error messages.

Chapter 4. The Auditor and the Audit Data Base 4-1

Transaction Option Menus
is selected or
Another TRX

]

Auditor [> Primary
checks and Key <—>
edits keys Selection

Auditor l> Secondary
—[

selectively Key
edits display Selection

Auditor L Data <———>

edits and Display
derives data <
[I (If error)
Auditor > Data <
validates Update —>
and processes <_W
T (If user
enters more
l amendments)
> Confirmation <

Display
—[

Figure 64-1. Where the Auditor is Invoked

The next time the Auditor is called, is known as preaudit. This takes
place after the DBPATH segments have been retrieved through key
selection. Preaudit may be used to:

. Prevent some users from updating individual fields

U Convert certain data fields to a different format for viewing

. Initialize fields in a non-standard way

. Perform data base retrievals without using key selection for some or
all of the segments

When errors or warnings are detected during preaudit, the user is
prevented from viewing the Data Display screen. Instead, an Error
Message screen appears, and the user must return to the Primary Key
Salection screen without viewing the data.

4-2 IMSADF II Application Development Guide

The Auditor is called in transaction modes 1 to 5 after the user has
viewed the Data Display screen and pressed ENTER and before the
transaction driver issues DL/I calls to update the data bases. In
transaction modes 1 to 4, the Auditor is called even if the user has not
entered amendments. In transaction mode 5, the Auditor is called only
if the user has entered amendments on the Data Display screen. If
errors are found, the data base is not updated. When the user has
entered corrections, the Auditor is called again. Several iterations
can take place before the data bases are finally updated. If the user
enters OPTION C (session termination) before clearing the errors, no
updates are made.

After updates have been made successfully, the user may enter further
amendments. The Auditor then validates and processes them and further
data base updates can be performed.

The Auditor may be called in transaction mode 6 (Display) to carry out a
transaction switch (see Chapter 6, "Complex Transactions") or to meet
some unusual requirement. The PROCESS call of the Auditor will be
invoked in transaction mode 6 if fields of MODE=4 are included in the
traTgaction and if the user enters data into one or more of the MODE=4
fields.

REQUESTING AUDITS

The following operands on the Rules Generator FIELD statement determine
when audit operations are performed against that field.

(or AU=Y) Auditing is performed if the field is changed.

(or FA=Y) Forces the field to be audited by marking it as changed.
AUDIT=Y must also be coded for this to take effect.

(or PA=Y) Requests auditing on the preaudit pass.

REQ=Y The field must not be an initialized value. Initialized

values are either blanks or zeros depending upon the field
type. The user will be required to enter a
non-initialized value.

(or AS=YFPR) Equivalent to coding all four of the above operands.
Select from the values: Y-AUDIT, F-FAUDIT, P-PAUDIT,
R-REQ. Do not mix ASTATUS and the other operands (the
others will be ignored when ASTATUS is present).

(or KA=YES) Requests auditing during primary and secondary key
selection.
(or KA=PRIM) Requests auditing during primary key selection.

(or KA=SECO0) Requests auditing during secondary key selection.

Chapter 4. The Auditor and the Audit Data Base 6-3

THE AUDIT DATA BASE

The dynamic rules that control Auditor operations are stored in the
Audit Data Base or in the Static Audit Load Modules. Figure 4-2 shous
its structure, with the names of the segments in the field audit leg.
(The segments in the other legs will be considered later).

OPERATION
DESCRIPTOR

| | | |

DATA
DESCRIPTOR

Figure 6-2. Audit Data Base -- Field Audit lLeg

The operations to be performed against
or more operation descriptor segments;
descriptor segments. The root segment
only a key, which is based on the name

a data field are described in one
literal values are held in data
is an anchor point and contains
of the field to be audited.

The eight-character field name is:
SSXXFFFF

where:
1]

XX
FFFF

is the first two characters of the application system ID
is the segment ID
is the field ID

The key of the root segment has the form:

SSSSAAAASSXXFFFF
where:
6888 is the application system ID

AAAA is the audit group code
SSXXFFFF is the field name
The audit group code is used to request different sets of audit

operations against the same field in different transactions or for

di fferent project/groups. In many cases, such separation is not
necessary and a default value of YYYY is used throughout the system.
multiple audit group codes are needed, the AGROUP operand is added to
the GENERATE statements for the transactions that require it.

If

AUDIT OPERATIONS

The Auditor performs 12 types of operations:

J Comparisons

U Range and list checks

. Type checks

L Assignments (by field or segment)

U Arithmetic

o Checks and settings of control information
. DL/1 calls

. SQL calls

. Transaction switching

. Table look-up

J Subroutine calls

. Flow of control (iteration, GOTO)

4-6¢ IMSADF II Application Development Guide

The Auditor reads the rules in the Audit Data Base to determine wbat to
do. The operation instructions are stored in the operation descriptor
segments of the Audit Data Base. The layout is shown in Figure 4%-3.

2 2 8 2 2 4
Key Operation Related Next Next Message
Field| Code Field True False| Number

Figure 6-3. Operation Descriptor Segment Layout

Each operation descriptor segment has a key field, which is a
two-character sequence code. The first key field will normally be 01 or
AA.

The operation code is either one of a list of standard codes (see the
MS Application Development Facilit I Version Release 2 A ication
Development Reference) or a user code designating an operation by a
user-uwritten exit routine in COBOL, PL/I or Assembler.

Many operations require a second field, which is used to compare with
the audited field, to assign a value, to store intermediate results, or
for some other reason. This related field must be in a segment defined
to the transaction via the GENERATE statement. Related fields can be
pseudo segment or target segment fields. Fields in segments above
target segments in the same hierarchical paths can be related fields
provided the segments are included in the transaction. Such segments
are included in the transaction if they have at least one displayable
field. If such a segment has no displayed field but is required for
auditing, it can still be included by naming it explicitly in the DBPATH
operand of the GENERATE statement for the transaction. The Rules
Generator includes it in the transaction without making it a target
segment.

Several audit operations can be coded against one field. Each operation
is stored in an operation descriptor segment with a different key field
sequence number. As soon as one operation is complete, the Auditor
examines the next true and next false contents to decide what to do
next. These contain the key field of the next operation descriptor to
be performed. There is a logical branching capability. Many operations
return a true or false indicator which determines which of two key
sequence numbers to branch to next. A data comparison will be true if
the field is equal to the related field and false otherwise. If the
fields are equal, the Auditor will branch to the next true key sequence
number, which may be behind or in front of the present one.

The value 00 in the next true or false positions tells the Auditor that
validation on this field is complete, and it can start on the next field
marked for audit.

Within one segment, fields are audited in the order in which they are
coded in the Rules Generator. If the IMS/VS DB sequence field is
divided into several IMSADF II key fields, then the IMSADF II key fields
must be coded in DB order. Within a transaction, segments are audited
beginning at the highest level in the data base and working down each
hierarchical path. Paths are audited in the order in which their target
segments appear in the DBPATH operand of the GENERATE statement. Pseudo
segments are audited before data base segments, in the order in which
they appear in the TSEGS operand.

If processing for every audited field leads to a 00 next true or false
condition, the transaction can be completed.

Audit rules indicate errors by a blank next true or false position,
followed by a four-digit error message number. The audited field will
be redisplayed and highlighted. The message number is a reference to
Bh: agtual text, which is coded separately and stored in the Message
ata Base.

Chapter 4. The Auditor and the Audit Data Base 6-5

THE HIGH LEVEL AUDIT LANGUAGE

A compiler is provided to generate the audit rules in the appropriate i
format for storage in the Audit Data Base. The input to the compiler is
a series of statements in a high level audit language.

This language is somewhat like PL/I, although there are a great many

di fferences. The overall structure is inherited from the organization
of the Audit Data Base, with its use of data descriptor segments to hold
literal values and its separation of processing applicable to different
fields.

For that reason, each section of code - or program - is headed by the
FIELD statement. This gives the name of the audited field to which the
statements that follow will apply. The first FIELD statement submitted
to the compiler must be preceded by SYSID and SEGID statements giving
the application system ID and segment ID in which the audited field
occurs.

For example:

SYSID = SAMP
SEGID = IV
FIELD = STCK

would precede the definition of the Auditor processing against field
STCK in segment IV in application system SAMP. If the field MSTK in the
same segment were to be audited as well, the statements defining that
processing need only be preceded by:

FIELD = MSTK

In effect, these statements -- called headers -- define the key in the
Audit Data Base under which the rules are to be stored. In this case,
the generated key would be SAMPYYYYSAIVSTCK. If an audit group code
other than YYYY is used in the input to the Rules Generator, add:

AGROUP = AAAA
after the SYSID statement, where AAAA is the required audit group code.

Next, it is necessary to distinguish among the four calls of the
Auditor:

Key audit (the KEY call)
Preaudit (the PRELIM call)
Audit (the PROCESS call)
Tables (TABLES creation)

® o 0O

This is done by means of another header -- KEY, PRELIM, PROCESS, or
TABLES -- following the FIELD statement. Finally, referring to

Figure 4-2, there are three phases of the Audit Data Base into which the
operation descriptors can go. The field audit phase is identified in
the high level language as Pl.

Hence, the complete header information for audit processing against the
STCK field would be as follous:

SYSID = SAMP
SEGID = IV
FIELD = STCK
PROCESS

P1

After the header information, actual validation and processing
requirements must be specified. For a full description of the
capabilities of the high level audit language compiler, refer to the IMS
Application Development Facility II Version Release 2 A icatio
Development Reference.

6-6 IMSADF Il Application Development Guide

BASIC GUIDELINES FOR CODING IN THE HIGH LEVEL AUDIT LANGUAGE

Fields are referenced by their full eight-character names (of form
SSXXFFFF), except for the audited field (the field named in the
FIELD statement), which need only be referenced with the
four-character field ID.

Assignments and arithmetic operations are requested as illustrated
by these examples:

STCK = SAIVOSTK + STCK
SAIVMSTK = STCK 7 33.33
SAPADESC = 'LEFT HANDED WIDGET'

No nested or pecrenthesized expressions can be accepted. Only one
arithmetic operation per assignment statement is allowed.

Quoted literals may contain embedded quotes, each represented by two
quotation marks, but may not contain commas or right parentheses.

The syntax of the IF statement is illustrated by this example:

IF STCK > 50

SAIVMSTK = STCK % 1.5
ELSE

SAIVMSTK = SAIVOSTK - 2
ENDIF

To request that an error message to be sent to the user, code:
ERRORMSG = nnnn
where nnNnn is the four-digit error message number. The audited
field (i.e., that named in the preceding FIELD statement) will be
marked in error and highlighted on the screen.
To cause another field to be so marked, code:
SETERRMSG SSXXFFFF=nnnn
where SSXXFFFF is the name of the field to be marked in error.
After the ERRORMSG statement is executed, auditing of the field
terminates; after the SETERRMSG statement, processing continues with
the next statement.

E§I$erminate auditing for a field without error, code the statement

All tokens, whether names, literals or operations, must be separated
by spaces. Thus, equals signs and arithmetic operations must have a
blank space on each side.

Example

The field STCK must be less than or equal to MSTK and more than 0STK.
The Rules Generator statements are:

FIELD ID=STCK, TYPE=DEC,LENGTH=5, AUDIT=YES
FIELD ID=0STK, TYPE=PD, LENGTH=3
FIELD ID=MSTK, TYPE=DEC,LENGTH=5

Chapter 4. The Auditor and the Audit Data Base 6-7

The high level audit language coding is:

SYSID = SAMP
SEGID = IV
FIELD = STCK
PROCESS

Pl

IF STCK > SAIVMSTK
ERRORMSG = 9224

ENDIF

IF STCK <= SAIVOSTK
ERRORMSG = 9224

ENDIF

The operation descriptors that will be generated by the compiler for
placement in the Audit Data Base are as follows:

Audit root key: SAMPYYYYSAIVSTCK
Audit operation descriptors: 0102SAIVMSTK 029224
0202SAIVOSTKOO 9224

The fields are assumed to be in the IV segment in the SAMP application.
Audit operation code 02 returns true if the audited field is greater
than the related field. Error message 9224 will say: "Invalid stock
level amendment."

DATA DESCRIPTORS

Some audit operations require data values. These are coded as numerals
or as quoted alphanumeric literals. They are stored in data descriptor
segments beneath the relevant operation descriptor. For example, if it
is necessary to make sure that a field is in a constant range, code:

FIELD = STCK

PROCESS

P1

IF STCK NOT IN 900:1035
ERRORMSG = 9225

ENDIF

This will result in the following operation and data descriptors being
generated by the compiler:

Operation descriptor: 0121 00 9225
Data descriptor: 0001(900,1035)

Figure %-% shows the data descriptor format. If many values are needed,
multiple data descriptors can be created. The Auditor will convert the
data values to the data type of the audited or related field with
decimal point alignment and padding as appropriate.

4 24
Key Sequence Data Values
number (Value, value,...value)

Figure 6-4. Data Descriptor Segment Lavout

4-8 IMSADF II Application Development Guide

ADDITIONAL CAPABILITIES OF THE AUDITOR

Other important capabilities of the Auditor are described below.

CONTROL INFORMATION

By using the names reserved, it is possible to test and set system
information such as the logical terminal name, the user ID and
project/group currently signed on to the application, the application
system ID, and the transaction mode and ID. The reserved names are
LTERM, USERID, PGROUP, SYSID, MODE, and TRXID, respectively.

The attributes of a displayed field can also be set dynamically. For
example, you can set the STCK field in the IV segment to be highlighted
and nonmodifiable when the screen is displayed by coding PAUDIT=YES on
the Rules Generator FIELD statement and writing the following high level
audit language code:

SEGID = IV

FIELD = STCK
PRELIM

P1

STCK HILITE = ON
STCK UPDATE = OFF

It is possible to reposition the cursor dynamically, to set a field as
premodified (will be read in from the screen even if the user does not
change it), and to mark it as changed (causes the segment to be
updated). The respective keywords in the language are CURSOR,
PREMODIFY, and CHANGED. Setting a related field changed will cause the
related field to be audited if it is marked AUDIT=YES and occurs later
in the transaction than the field being audited.

For color terminals, colors and extended highlighting can be set using
thg keywords COLOR and XHILT. To make the STCK field blink in red,
code:

STCK COLOR =
STCK XHILT = BLINK

Allowed colors are PINK, BLUE, GREEN, RED, WHITE, YELLOW, and TURQUOISE.
Allowed extended highlighting options are UNDERSCORE, REVERSE, BLINK,
and DEFAULT (i.e., no highlighting).

DL/I CALLS

DL/I calls have a number of uses in auditing. One is to validate that a
value entered by a user is a key in a data base; another is to retrijeve
multiple segment occurrences (twins) (see Chapter 6, "Complex
Transactions™).

For example:

IF GU KEYFIELD IV NOT 0K

IF STATCODE NOT = 'GE,GB'

ENS?%LCALL = "AN UNEXPECTED ERROR HAS OCCURRED. CONTACT SYSTEM SUPPORT'
ENDIF

This will retrieve the IV segment with a DL/I call of GU (Get Unique).
In the event of failure, the DL/I status code returned can be examined
by using the special system name STATCODE. The status codes GE and GB
are normal "not found" conditions. If an abnormal condition has arisen,
the error message given will be sent to the terminal user; any data base
updates performed since the time the user entered the screen will be
undone, and the transaction will be terminated.

If segments are to be retrieved in this way, they must be coded in the

Rules Generator input and named in the TSEGS operand of the GENERATE
statement for the transaction.

Chapter 4. The Auditor and the Audit Data Base 6-9

TABLE HANDLING

Figure 4-5 shows a typical table consisting of multiple rows and two
columns.

Argument value
ché%ggters) chgigzgers)
B BELGIUM
CH SWITZERLAND
D GERMANY
DK DENMARK
E SPAIN
F FRANCE
GB GREAT BRITAIN
I ITALY
N NORWAY
NL NETHERLANDS
S SWEDEN
SF FINLAND
USA UNITED STATES

Figure 6-5. A Table Named COUNTR

Tables have six-character names. They must be stored in the Audit Data
Base separataly from the operation descriptors under special root
segment keys, as shown in Figure 4-6. Under one root segment (e.g.,
with key CENTRALALLTABLES), many different tables can be held.
Therefore, the fully qualified name of the table COUNTR would be
CENTRALALLTABLESCOUNTR in the example (22 characters in all). Eight
operations can be performed. Reference the appropriate table by quoting
either the 22-character full table name or a field containing the name
in the high level audit language statements. Encode/decode operations
can be performed, as well as table lookup.

|]]]

Table name (key)
Description

Argument
value

Figure 64-6. Audit Data Base Storage of Tables

6-10 IMSADF II Application Development Guide

In the example of country codes, the field CODE (PAUDIT=YES) in the
segment DA is to be decoded and the name of the country placed in field
CNAM in segment PS:

SEGID = DA
FIELD = CODE
PRELIM

P1

IanECODED CODE TO SAPSCNAM USING 'CENTRALALLTABLESCOUNTR' 0K
ENDIF

NOP means no operation. In this example we will take no special action
if the code is not in the table. It will simply appear blank.

SUBROUTINE CALLS

Sometimes several fields require similar series of operations to be
performed against them, and it is convenient to write the operation
descriptors and data descriptors once for all of them. This can be done
by placing them under a separate root segment key in the Audit Data Base
and branching to them. They thus constitute a subroutine. The name of
the subroutine is the 16-byte key of the root sagment under which it is
held; it may be in any form. The SUBNAME statement heads a subroutine.
Subroutines are called through the CALL statement.

aupgoge that the subroutine is named SAMPYYYYEDITDATE. It will be
eaded:

SUBNAME = 'SAMPYYYYEDITDATE'
It should use the same headers (KEY, PRELIM, PROCESS and Pl1, etc.) to
distinguish the different phases of the Auditor. These headers come
after the SUBNAME statement. The call statement would ba:

CALL 'SAMPYYYYEDITDATE'

The only parameter that can be passed is the audited field.

EXAMPLES OF AUDITING (APPLICATION SYSTEM SAMP)

. On the preaudit pass, limit user 172467 to access of part numbers
beginning with 025 to 999.

Significant Rules Generator statements:

SEGMENT ID=PA,...

FIELD ID=KEY,PAUDIT=Y,LENGTH=17,....
High level audit language:

SYSID = SAMP

SEGID = PA

FIELD = KEY

PRELIM

Pl

IF USERID = "1726467"
IF KEY < '025"
ERRORMSG = 0001
ENDIF
ENDIF

Generated segments:

Root key: SAMPYYYYSAPAKEY
Audit logic: 0116 0200 Is this pre-audit?
0268 0300 Is this 17264677
0001C172467)
0304 00 0001 Number <0257
0001C€025)

Chapter 4. The Auditor and the Audit Data Base 4-11

. Add change to existing stock; if negative, send error message.

Significant Rules Generator statements:

SEGMENT ID = 1IV,...
FIELD ID = CHA,TYPE=PD,LENGTH=5,DEC=2,AUDIT=YES
FIELD ID = STCK,TYPE=PD,LENGTH=5,DEC=2

High level audit language:

SYSID = SAMP

SEGID = IV

FIELD = CHA

PROCESS

Pl

ACCUM = ACCUM + CHA
ACCUM = ACCUM + SAIVSTCK

IF ACCUM < 0O
ERRORMSG = 0002
ELSE

SAIVSTCK = ACCUM
ENDIF

Generated segments:

Root key: SAMPYYYYSAIVCHA
Audit logic: 0150 02 Add CHA to ACCUM
0251SAIVSTCKO3 Add STCK to ACCUM
03A5 040002 Error if 0 > ACCUM
0001C0)
0663SAIVSTCKOO Move total to STCK

CREATING AND MAINTAINING AUDIT RULES

Transactions are provided in the application system MFCl to define and
amend each individual segment type in the Audit Data Base. The IDs are
shown in Figure 4-7. Any changes made this way will not be reflected in
the high level audit language statements that may have been written.
These must be altered separately.

GF

]
] | 1 |
AA FA MA TN
|] |]
DA DF DM TA|TV

Automatic Field Message Tables
Field Audits Sending

Assignment

Figure 64-7. Segments and Corresponding Transaction IDs

First, the GF transaction is invoked to create a root segment, as shown
in Figure 4-8.

4-12 IMSADF II Application Development Guide

AUDIT DATA BASE

ADD TRANSACTION: AUDIT GROUP/FIELD
OPTION: _ TRX: 4GF KEY: SAMPYYYYSAIVSTOK
%%% ENTER DATA FOR ADD xxx
SYSTEM ID/AUDIT GROUP- SAMPYYYY
FIELD NAME (SSXXFFFF)- SAIVSTOK

Figure 6-8. Inserting a Root Segment into the Audit Data Base

To add an operation descriptor for a field audit, change the TRX value
to 4FA and append the key value 01. In Figure 4-9, a range check is
being requested.

AUDIT DATA BASE

ADD TRANSACTION: FIELD AUDIT OPERATION DESC
OPTION: _ TRX: 4FA KEY: SAMPYYYYSAIVSTOKO1
%%% ENTER DATA FOR ADD x¥x
SYSTEM ID/AUDIT GROUP- SAMPYYYY
FIELD NAME (SSXXFFFF)- SAIVSTOK

SEGMENT SEQ-=--------=- 01
DESCRIPTOR CODE------- 02
RELATED FIELD---------

NEXT TRUE SEQ NO------ 00
NEXT FALSE SEQ NO----- _
MESSAGE #----------=-- 5100

Figure 64-9. Defining an Operation Descriptor

To define the data descriptor, change the TRX value to 4DF and append
0001 to the concatenated key to receive the display shown in Figure 4-10
on which the range values are entered.

Chapter 4. The Auditor and the Audit Data Base 6-13

AUDIT DATA BASE

ADD TRANSACTION: FIELD AUDIT DATA DESCRIPTOR
OPTION: _ TRX: 4DF KEY: SAMPYYYYSAIVSTOK010001
%%% ENTER DATA FOR ADD XX
SYSTEM ID/AUDIT GROUP- SAMPYYYY
FIELD NAME (SSXXFFFF)- SAIVSTOK

SEGMENT SEQ--~====-=—-- 01
DATA SEQ-------==—==—=- 0001
DATA-======——m oo (500,600)

Figure 6-10. Defining a Data Descriptor

To set up a table, a root segment under which to store tables must first
be created, as in Figure 4-11.

AUDIT DATA BASE

ADD TRANSACTION: AUDIT GROUP/FIELD
OPTION: TRX: 4GF KEY: CENTRALALLTABLES
*%% ENTER DATA FOR ADD xxx
SYSTEM ID/AUDIT GROUP- CENTRALA
FIELD NAME (SSXXFFFF)- LLTABLES

Figure 6-11. Inserting a Root Segment in the Audit Data Base in
Readiness to Define Tables

To enter a table name segment, change the TRX value to 4TN and append
;be six;c?g;acter table name REPLEN to the l6-character root key (see
igure 4- .

4-14¢ IMSADF II Application Development Guide

AUDIT DATA BASE

ADD TRANSACTION: TABLE NAME
OPTION: TRX: 4TN KEY: CENTRALALLTABLESREPLEN
%%% ENTER DATA FOR ADD xx
SYSTEM ID/AUDIT GROUP- CENTRALA
FIELD NAME (SSXXFFFF)- LLTABLES
TABLE IDENTIFIER------ REPLEN
TABLE NAME---=-=-===-- STOCK REPLENISHMENT

Figure 64-12. Defining a Table Name

Now alter the TRX value to 5AG. This leads to a text editing screen
(see Figure 4-13) on which actual table entries are entered.

AUDIT DATA BASE

UPDATE TRANSACTION: TABLE ARGUMENT TEXT
TRX: 5AG KEY: CENTRALALLTABLESREPLEN
OPTION: SEQlL: SEQ2:

ADFE007 NO TEXT SEGMENTS CURRENTLY EXIST
OPTIONS: C=TERMINATE, I=IGNORE CHANGES, Q=EXIT TO SIGNON,
DLET=DELETE SEQ1l TO SEQ2, POS=POSITION TO SEQL;

LT T T T R ——— 1--=-=--2 Dol Fommmmmmm g2l Bommm—m—e e P 7
1 HIGH 2.77 3
2 MEDIUM 8.00 10
3 LOW 30.00 30

Figure 6-13. Creating Table Entries (One Line Per Entry)

The one-character codes (1, 2, and 3) are the table arguments in this
example. The values each appear to consist of three separate items, but
to the Auditor they are a single character string. If you want to treat
them as separate values, you can define a pseudo segment.

Chapter 4. Tha Auditor and the Audit Data Base 4-15

For example:

SEGMENT ID=TW,TYPE=PS,DISP=NO

FIELD ID=DESC,LENGTH=10,DISP=YES

FIELD ID=THRS, LENGTH=10

FIELD ID=0RDQ, LENGTH=10

FIELD ID=FULL,LENGTH=30,PAUDIT=Y,P0S5=1

FIELD ID=THRP,LENGTH=5,DEC=2, TYPE=PD,PAUDIT=Y
FIELD ID=0RQP, LENGTH=5, TYPE=PD,PAUDIT=Y

Assuming that the type of inventory is a one-byte code in field INVC in
segment PD in system SAMP, the Auditor coding to retrieve the correct
table entry (and display the account description) and convert the
num?ers to a form in which they can be used for arithmetic is as
follows:

SYSID = SAMP
SEGID = TW
FIELD = FULL
PRELIM

Pl

IF DECODED SAPDINVC TO FULL USING 'CENTRALALLTABLESREPLEN' NOT 0K
ERRORMSG = 0604

ENDIF

¥ Convert THRS and ORDQ (character) to THRP and ORDP

SATWTHRP = SATWTHRS

SATWORDP = SATWORDQ

ERROR MESSAGES

As all the examples have shown, messages are numbered. In fact, the
four-digit numbers are unique within each application system. The full
identifier of a message is:

s$ssshnnn
where:

6688 is the application system ID
nnnn is the message number

Messages consist of the text to be displayed to the user when audit
errors occur, together with a list of field names in the transaction
when it is desired to show data values as well as literal text.

They are stored in the Message Data Base, which is one of the three
dynamic rules data bases. As shown in Figure 4-14, the message header
and message text segments are used to store error messages.
Iransactions HD and SY are used to create and maintain each segment
vpe.

HD Message
header
]
[]
SY Message
text

Figure 6-14. Error Messages in the Message Data Base

Figure 6-15 depicts the layout of these segments. An error message can
be up to 980 characters in length and occupy from 1 to 14 message text
segments. Message text sequence numbers begin with 00000001. Messages
of 70 characters or less need only one segment.

4-16 IMSADF II Application Development Guide

8 G 12 12 12 12 12
Key Msg. Mapping Mapping Mapping Mapping Mapping
ssssnnnn |length| info info info info info
Message Header (HD)
8
Sequence Text
no. (key)
Message Text (SY)
Figure 6-15. Format of Message Segments

Figure 4-16 shows the layout of the mapping information that defines

data fields t
8

o be included.

3 1

Field name
or VARLISTn

Position in
the message

Blank
space

Figure 6-16.

Space must be allowed when preparing the message text for the values
Decimal and packed decimal numbers are edited to allow for a
binary numbers also have an edited floating
Position numbers commence at 1.

requested.
decimal point
sign.

Layout of Mapping Information

and a sign;

Both field names and VARLIST names can be included in a message.
VARLIST names allow system information to be displaved in error

messages:

VARLIST1
VARLIST?2
VARLIST3
VARLIST4
VARLISTS
VARLISTé
VARLIST?

User ID

DB2 status code

DL/I status code
Transaction mode and ID (3 characters)

DB2 warning codes

Audited field name (8 characters)
Value of audited field

In Figure 4-17, a new message header is created.

Chapter 4.

The Auditor and the Audit Data Base

4-17

MESSAGE DATA BASE

ADD TRANSACTION: MESSAGE GENERATION HEADER
OPTION: TRX: 4HD KEY: SAMP1728
%%% ENTER DATA FOR ADD %xx
MESSAGE NUMBER ------- SAMP1728
MESSAGE LENGTH ------- 0070
FIELD NAME 1 --=====-- SAIVTDAY
MESSAGE OFFSET 1 ----- 014

FIELD NAME 2 ---------
MESSAGE OFFSET 2 -----
FIELD NAME 3 ---------
MESSAGE OFFSET 3 -----
FIELD NAME § ---------
MESSAGE OFFSET & —-----
FIELD NAME 5 ---------
MESSAGE OFFSET 5 -----

Figure 64-17. Creating a Message Header

In Figure 4-18, the message text is inserted with allowance for the
fields to be mapped in.

MESSAGE DATA A S E
UPDATE TRANSACTION: SYSTEM NESSAGE TEXT
TRX: 58Y KEY: SAMP17238
OPTION: SEQlL: SEQ2:

UPDATE
OPTIONS: C=TERMINATE, I=IGNORE CHANGES, Q=EXIT TO SIGNON,

DLET=DELETE SEQl TO SEQZ, POS POSITION TO SEQL;
RRARRAAR - 1= P e e J e e e e e Srmmmm———- 6-———=—=== 7
00000001 LAST TRANS - XXX - SHOULD BE AFTER STOCK DATE

Figure 64-18. Inserting Message Text

HWARNING MESSAGES

Sometimes it is necessary to warn the user of some unusual but not
critical situation, such as a very high discount or a low stock
position, but still allow the transaction to complete after the user has
had a chance to confirm the intention.

To display a warning message, write:

WARNMSG = nnnn

4-18 1IMSADF II Application Development Guide

in the high level audit language and set up a message of number nnnn in
the Message Data Base as for error messages.

The user will receive the display just as for error messages, but if
only warnings are present, he will be told to enter option U to complete
the transaction. Alternatively, the user can alter data, and auditing
will be done again to verify that the change has not upset another
validation requirement. The message leg (P2) will not be used until the
U option has been entered when there are warning messages.

A warning message must be associated with a field (as must an error
message) and only one such message (warning or error) can be associated
with one field. By default a warning message is associated with the
audited field (i.e., that named in the preceding FIELD header
statement).

To associate a warning message with another field, write:
WARNMSG SSXXFFFF = nnnn
where SSXXFFFF is the field name.

AUTOMATIC FIELD ASSIGNMENT (AFA)

Occasionally, in order to ensure that some audit processing is carried
out before the main field audits, it is necessary to place operation
descriptors and data descriptors in the left hand leg of the Audit Data
Base (see Figure 4-19).

AA | | [1
OPERATION
DESCRIPTOR

DA [[[[
DATA
DESCRIPTOR

Automatic Field Message (Tables)
Field Audit Sending
Assignment

Figure 64-19. AFA in the Audit Data Base

They are coded exactly like field audits, but they are preceded by the
header P0 instead of P1l. All the AFA rules for all fields in the
transaction are executed before any field audits are executed. This
fact is sometimes helpful in determining the sequence of audit
operations.

You must tell the Auditor to look for AFA rules by coding AFA=YES
against the Rules Generator FIELD statements for the fields requiring
it. If AFA=YES is coded, rules must be present and they will always be
executed, regardless of whether the field has been changed.

AFA rules can raise error messages just as field audits can. If errors
are detected during AFA, the Auditor continues to perform the field
audits and collects all the error messages together for a single
display. Fields in error are redisplaved and highlighted.

Chapter 4. The Auditor and the Audit Data Base 6-19

Example

When inserting a concatenated segment (a combined view of a logical
child and logical parent), it is an IMS/VS requirement that the
concatenated key of the logical parent be written in front of the
logical child and match the key field in the logical parent. An AFA can
be defined to move it from one position to another.

Significant Rules Generator statements:
SEGMENT ID=CT,...
FIELD ID=CKEY,KEY=YES, LENGTH=10, NAME=
FIELD ID=PKEY,LENGTH=10,P05=20,AFA=YES

High level audit language:

SYSID = SAMP
SEGID = CT
FIELD = PKEY
PROCESS
PO
IF MODE = ¢4

PKEY = SACTCKEY
ENDIF

Generated segments:

Audit root key (GF): SAMPYYYYSACTPKEY

Audit operation desc (AA): 0167 0200 Is this an insertion?
Audit data desc (DA): 0001C4)

Audit operation desc (AA): 0210SACTCKEYO00 Move CAT key to parent

The same effect can be achieved by using field audits and coding
AUDIT=YES, FAUDIT=YES on the PKEY field definition.

COMMON AUDITS

If several fields with the same ID in different segments in the same or
different application systems have identical auditing requirements
Cincluding preaudit, AFA and automatic message sending), they can use
common audit rules under a special root segment key in the Audit data
base. The key format is:

COMMONOOOOOOffff
where:

COMMONOO0OO0OO0 is a literal
fff is the field ID

To notify the Auditor that a field's audit rules are stored under such a
root segment key, code CAUDIT=YES on the Rules Generator FIELD
statement.

KEY AUDITING

By coding the KAUDIT operand on the Rules Generator FIELD statement, the
services of the Auditor can be requested during primary and secondary
key selection (the KEY call) as well as just prior to display (the
PRELIM call) and at update time (the PROCESS call).

The principal uses of this capability are:

U Editing keys

. Enforcing key range security

. Editing data on the Secondary Key Selection screen

J Preventing the user from viewing some segment occurrences on the
Secondary Key Selection screen

4-20 IMSADF II Application Development Guide

. Transaction switching (see Chapter 6, "Complex Transactions")

The processing to be performed during key audit can be specified in the
high level audit language. The primary key audit processing statements
are preceded by the header P0 while the secondary key audit statements
are preceded by Pl. This means that they go into the AFA leg and the
field audit leg, respectively, of the Audit Data Base.

Error messages can be produced during key audit by means of the ERRORMSG
statement. On an error condition, the Primary Key Selection screen is
redisplayed with the keys in error highlighted, and the user is invited
to enter E to display the error messages. This is the normal way to
enforce key range security. High level audit language statements can
check the user ID and logical terminal name, and refer to tables or
other data bases to complete the checking.

EDITING KEYS

Key fields (fields marked KEY=YES to the Rules Generator) can be edited
usigg k:y audit. There are two methods that can be used alone or in
combination:

. Split the key into subfields, as described in Chapter 2, "Static
Rules and the Rules Generator."

Each subfield is marked KEY=YES to the Rules Generator, but some of
them are to be set by audit processing instead of being entered by
the user. These are marked KDISP=NO to prevent their being shown to
or entered by the user. They will also be marked KAUDIT=PRIM to
cause primary key audit to be invoked.

. Where the editing is more than simple insertion or formatting,
gefine a pseudo segment and define one field for each key field to
e edited.

The field in the pseudo segment must be in the displayed format.
This pseudo segment field will be the one that the user enters on
the Primary Key Selection screen or in the concatenated key area of
any of the screens. The pseudo segment field is associated with the
key field by naming it as the value of the COFIELD operand on the
Rules Generator FIELD statement that defines the key field. Audit
logic must be coded to move what the user has entered from the
COFIELD into the key field during primary key selection. Additional
logic will be needed during secondary key selection to move from the
key or related field into the COFIELD in order to let the user see
it on the Secondary Key Selection screen and on the Data Display
screen.

Example

All the part numbers in the sample system begin with 02. To save the
user e:tering 02 every time, we amend the definition of the root
segment.

Significant Rules Generator statements:

SEGMENT ID=PA,PARENT=0,NAME=PARTROOT,LENGTH=50,
SKSEGS=18,KEYNAME=PARTKEY

FIELD ID=PK02, LENGTH=2,KAUDIT=PRIM,KDISP=NO,KEY=YES

FIELD ID=KEY,LENGTH=15,KEY=YES, SNAME="PART NUMBER"

FIELD ID=DESC, LENGTH=20,P05=27,DISP=YES,REL=YES,
SNAME='PART DESCRIPTION'

Chapter 4. The Auditor and the Audit Data Base 6-21

High level audit language:

SYSID = SAMP
SEGID = PA
FIELD = PKo02
KANAME = ALT
KEY

PO

PK02 = '02°

See "Note on Separation of Calls" on page 4-26¢ for a discussion of the
KANAME assignment. If KANAME = ALT is coded here, it must also be coded
on the Rules Generator GENERATE statement that defines the transaction.

CONTROLLING SECONDARY KEY SELECTION

Secondary key audit is requested by writing KAUDIT=SECO on the Rules
Generator FIELD statement that defines a key field (KEY=YES) or a
related field (REL=YES). The high level audit language statements are
headed by KEY and Pl. The code that follows these headers is performed
once for every segment occurrence until enough segments have been
retrieved to fill the secondary key selection screen or until an SKSDISP
= STOP statement is encountered.

When the user makes a selection by entering a selection number, that
segment is retrieved again; if COFIELD is specified for one or more
fields in the segment, the code is performed once more to ensure that
the keys will be formatted correctly.

If editing keys or data displayed on the Secondary Key Selection screen
is desired, audit processing can be used. A pseudo segment field must
be defined for each such field in the data base segment and associated
with it by being named in the COFIELD operand of the FIELD statement for
the data base field. The data base field must either be a key or a
related field.

Selectivity can be introduced on secondary key selection for security or
other reasons on the basis of data values. If the high level audit
language statement SKSDISP = OFF is executed, the segment occurrence
currently being processed is not shown and the next occurrence is
retrieved. IMSADF II will continue retrieving until enough unrejected
segment occurrences have been retrieved to fill the screen, or until
there are none left, or until the high level audit language statement
SKSDISP = STOP is encountered. The segment occurrence being processed
when the SKSDISP = STOP is encountered will not be displayed.

Example

Following the earlier example of table lookup for country codes, suppose
vou want to show the country name on the Secondary Key Selection screen
and at the same time prevent user ID 123456 from viewing segments with
country code DK. The rules would be thus:

Significant Rules Generator statements:

SEGMENT ID=DA,PARENT=...

FIELD ID=ABCD,LENGTH=5,KEY=YES

FIELD ID=CODE, LENGTH=3,REL=YES,KAUDIT=SECO, COFIELD=CNAM.PS
SEGMENT ID=PS,TYPE=PS (Pseudo Segment)

FIELD ID=CNAM, LENGTH=20

4-22 IMSADF II Application Development Guide

High level audit language:

SEGID = DA
FIELD = CODE
KANAME = ALT
KEY

Pl

IF USERID = '1236456"
IF CODE = 'DK'
SKSDISP = OFF
ENDIF
ENDIF
IFNDECODED CODE TO SAPSCNAM USING 'CENTRALALLTABLESCOUNTR' 0K
0

ENDIF

U E OF AUDITING

Audit operations are performed call by call, phase by phase. Within
each phase, they are carried out in a definite order, according to the
layout of the rules defined to the Rules Generator.

Within each segment, fields are audited in the order in which their
field statements are written. The order in which segments are audited
is determined by the following rules:

. Pseudo segment fields are audited before data base segment fields.
The order in which the pseudo segments are audited is determined by
the order in which they are named in the TSEGS operand of the
GENERATE statement that defines the transaction.

L Auditing for segments in the DBPATH takes place next. Each
hierarchical path is audited beginning with the highest level and
working down. If a segment is in more than one path, it will be
audited only in the first path. If no field from a segment is
displayed, the segment will not be loaded - and no auditing can be
done on it - unless it is named on the DBPATH operand. The paths
are augited in the order in which they are identified in the DBPATH
operand.

L Finally, data base segments are processed in the order in which they
are named in the TSEGS operand of the GENERATE statement that
defines the transaction.

KEY CALL

When key audit is requested for one or more fields, processing during
key selection is affected. IMSADF II works down each hierarchical path
identified in the DBPATH operand of the GENERATE statement that defines
the transaction. It goes through the following steps for each segment
in each hierarchical path:

. If the key field is marked KAUDIT=PRIM in the Rules Generator FIELD
statement, the Auditor is called to validate or edit the key entered
by the terminal user.

. IMSADF II attempts to retrieve the segment from the data base.

. If the retrieval fails and secondary key selection is allowed for
that segment (the default for non-root segments), IMSADF II goes
through secondary key selection.

. The Auditor is called for each segment occurrence if KAUDIT=SECO is
specified for any key or related field in that segment.

IMSADF II then performs the same steps for the next segment.

Chapter 4. The Auditor and the Audit Data Base 64-23

PRELIM CALL

When preaudit is requested for one or more fields, the Auditor will
perform the following steps prior to displaying the segment data in any
transaction mode.

JJ Perform automatic field assignment for fields marked AFA=YES and
PAUDIT=YES.

. Perform field audits for fields marked PAUDIT=YES.

. If any errors or warnings have occurred, display an error message
screen to the user, logically paged if necessary, and return to the
primary key selection screen.

o If there are no errors, execute the message leg of the Audit data
base, including automatic message sending, for those fields marked
MSG=YES and PAUDIT=YES.

PROCESS CALL
At update time (the PROCESS call) the Auditor will do the following:
. Check fields marked FAUDIT=YES and mark them as changed.

. Check whether required fields (REQ=YES) are non-initialized values
and mark them in error if they are. (See the discussion of the

REQUIRED operand in the IMS Application Development Facility II
Version 2 Release 2 Application Development Reference.)

. Perform automatic field assignment for fields marked AFA=YES.

. For fields marked as changed (e.g., by user input), verify numeric
content for TYPE=NUM, verify a valid month and day for TYPE=DATE,
and verify alphabetic content for TYPE=ALPHA.

. Perform field audits for fields marked AUDIT=YES and changed.

. If any of steps 2-5 have yielded error or warning messages,
redisplay the screen with the fields in error highlighted and the
message "ENTER 'E' TO DISPLAY ERROR OR WARNING MESSAGES."™

. If user enters E in the OPTION field, show the error and warning
messages, logically paging if necessary.

L If only warning messages were raised, allow user to enter option U
to continue on to the message leg and complete the transaction.

. N?en u§er enters corrections, redo all audit operations (starting at
step 2).

. When there are no errors, execute the message lag of the Audit Data
Base for those fields marked MSG=YES and changed.

Note: Step numbers 1-5 will be performed on a field by field basis
before proceeding on to step number 6. Any audit operations can be
performed here. The function is not restricted to automatic message
sending. For examplae, calculations, table manipulation, and DL/I
calls are allowed. However, no error error messages can be sent.

NOTE ON SEPARATION OF CALLS

Internally, the compiler keeps the coding for the three calls of
auditing separate by means of a coding convention. Unless this
convention is understood, unexpected results can sometimes occur.

Audit operation code 16 distinguishes between preaudit (PRELIM) and
update (PROCESS). When the compiler encounters the heading PRELIM, it
places an operation descriptor 16 on the Audit Data Base. This causes
the Auditor to branch to the PRELIM code at preaudit time and to the
PROCESS code at update time. However, if no PRELIM call is coded in the
high level audit language, the compiler does not generate an operation

4-24 IMSADF II Application Development Guide

descriptor with code 16. If PAUDIT=YES is nevertheless coded on the
Rules Generator FIELD statement, the Auditor will not be able to
distinguish between PRELIM code and PROCESS code and will perform all of
the PROCESS code both at preaudit time and at update time. This
consideration applies separately on each of the three legs of the data
base (AFA - P0, Field Audit - P1l, and Message - P2).

Therefore, whenever a field is marked PAUDIT=YES, it is wise to code all
three phases (P0, Pl, P2) in the PRELIM call.

For example:

SYSID SAMP

SEGID PA

FIELD DESC
PRELIM

PO

NOP

P1

¥ Actual code here

NOP

A similar convention is employed to separate key audit processing. In
this case audit operation descriptor F2 distinguishes between key audit
and the other calls. This convention is observed by default only when
KANAME = ALT is coded on the DEFADF macro (see the IMS Application
Development Facility II Version 2 Release 2 Installation Guide). If
this is not done, it must be requested by coding KANAME = ALT before the
processing logic, as shown in earlier examples of key auditing.
KANAME=ALT must also be coded on the Rules Generator GENERATE statement
that defines the transaction.

If these keywords are not coded, another convention for separation is
used, whereby all key audit logic is stored under a key of form:

KEYAUDITSSXXFFFF
where:
KEYAUDIT is a literal
SSXXFFFF is the name of the audited field
SUMMARY OF RULES GENERATOR OPERANDS FOR AUDITING

AUDIT=YES Executes field audits during Process call on fields
marked as changed.

FAUDIT=YES Forces an audit by marking field as changed (assumed
for key fields of segments retrieved via key
selection).

REQ=YES Field must have non-initialized values.

MSG=YES Uses message sending logic if field changed during
update and during preaudit if PAUDIT=YES.

AFA=YES Requests phase P0 during update call and during
preaudit if PAUDIT=YES.

PAUDIT=YES Causes field audit rules to be executed during preaudit
(prior to data display).

CAUDIT=YES Directs the Auditor to find the rules under the root

key COMMONOOOOOOffff where ffff is the field ID.
ASTATUS=YFRMAPC Equivalent to all of the above (in the same order).

Select from the seven possible values but do not mix

ASTATUS with the alternative individual operands.

KAUDIT=PRIM Requests primary key audit.

Chapter 4. The Auditor and the Audit Data Base 4-25

KAUDIT=SECO Requests secondary key audit.

KAUDIT=YES Requests both primary and secondary keyvaudit.
KDISP=NO Prevents the user from seeing or entering this key
field.

USER-WRITTEN AUDIT ROUTINES

Certain audit operation codes are reserved to allow vou to produce your
own operations by writing audit exits in COBOL, PL/I or Assembler.
These operation codes are:

70 to 99 and
W0 to 29
(70 total)

The AEXIT statement in the high level audit language must be used with
these codes.

When the Auditor encounters operation descriptors bearing one of these
codes, it branches to the exit routine, which performs processing,
accessing and assigning fields, and DL/I calls as desired. The exit
routine returns a trues/false indicator to the Auditor to enable it to
continue operation in the normal way. Chapter 9, "Exits" explains how
to implement exits.

BATCH INPUT OF DYNAMIC RULES

Dynamic rules can be entered in bulk in the Audit and Message data
bases. For the high level audit language, use the supplied JCL
procedure ??7?7AL.

Note: 22?2 is the installed ADFID (the default is MFCl).
For example:

7/ EXEC ?7?77AL
/7/INDATA DD x
SYSID = SAMP
SEGID = ..

etc.

/ %

For entering error messages, batch processing is usually more convenient
when large numbers of messages must be coded. It is then helpful to use
the online facilities to amend rules during testing and maintenance. If
batch input is kept in step with online changes, it can be used again to
enter the rules into a production system when tests are complete. The
production system can be implemented as a different application system
ID in the same facility libraries and data bases or in separate facility
libraries and data bases under a separate IMS5/VS control region.

Here is an example of batched input for an error message:

V4 EXEC 7?7?78

//TRANSIN DD *

¥NOW THE ERROR MESSAGE TEXT

MFC1B3HD

SAMP9400

MFC1B4HD

SAMP94000070SAPDPLRV034 SAPDCOMMO61

MFC1B4SYSAMP9400

00000001WARNING: PLANNED REVISION NUMBERC) IS LESS THAN COMM CODE(
/%

Note that whenever it is necessary to insert a root segment, it is
deleted beforehand. In this way the deck can be re-run as often as
necessary. On the first run there will be error messages, since the
segments will not be found. These can be ignored.

As can be seen, each batch transaction begins with transaction code:

4-26 IMSADF II Application Development Guide

)

ssssBmtx

where:

§88S is the application system ID (in this case MFC1)

B is a literal
m is the transaction mode (1 to 5)
tx is the transaction ID

Input records must be 80-byte card images, with transaction code in

column 1.

BATCH INPUT LAYOUTS - AUDIT DATA BASE (TABLES)

The following tables show the batch input layout for Audit Data Base

tables.

TN - Table Name

card Column Length Description
1 9 16 Key of GF segment
25 6 Key of TN segment
31 22 Table description
Sample:

MFC1B4TNSAMPYYYYSACDTABLTABLE1THIS IS

TA - Table Entry

card Column Length Description
1 9 16 Key of GF segment
25 6 Key of TN segment
31 8 Key of TA segment
2 1 70 Table value
Sample:

MFC1B4TASAMPYYYYSACDTABLTABLE11234

TABLE#1

(argument)

Note: This is the value for argument 1234.

Chapter 4. The Auditor and the Audit Data Base

4-27

BATCH INPUT LAYOUTS - MESSAGE DATA BASE

The following tables show the layout for batch input for an error

message.

HD - Message Generation Header
Card 1 has the HD transaction name MFC1B4HD.

Ccard Column Length Description
2 1 8 Application system ID and message number
9 % Message length
13 8 Field name to be mapped from
21 3 Offset in text where data is to be mapped
§§ 8 Mapping information for 1 to 5 data mappings
3 "
37 8 "
45 3 "
37 8 "
57 3 v
61 8 "
69 3 v
Sample:
MFC1B4HD

SAMP99990070SACDDIPU030

SY - Message text

card Column Length Description
1 9 8 Key of HD segment
2 1 8 Sequence number of SY segment
9 70 Message text
Sample:
MFC1B4SYSAMP9999

00000001DISBURSEMENT CODE INCORRECT (-) SPECIFY P OR U

4-28 IMSADF II Application Development Guide

CHAPTER 5. MESSAGE SENDING AND DISPLAY

The IMSADF II Dynamic Rules Data Bases can be in one of two formats.
They can be either DL/I hierarchical data bases or DB2 relational data
bases. This chapter describes the DL/I form of the data bases. For
additional information about the DB2 form of the IMSADF II Dynamic Rules
Data Bases, see Chapter 4 of the IMS Application Development Facility II
Version 2 Release .

ion ease 2 Application Development Reference.

Conversational applications allow the user to select options A, B, H and
I if they are included in the POMENU operand of the SYSTEM statement.
They are:

project message sending
project message display
user message sending
user message display

-

The functions are illustrated in the following figures. These are
information messages which are not sent directly to a terminal but are
collected in data bases to be viewed by the B and I options.

USsS ER MESSAGE SENDING
OPTION: SENDING TO: 999999

ENTER MESSAGE: TEST MESSAGE #1
MESSAGE SENT: TEST MESSAGE #1

Figure 5-1. User Message Sending

As can be seen in Figure 5-2 and Figure 5-4, the user can acknowledge
messages, which are then removed from the display. However, they are
still present on the data base and can be seen by means of OPTION D
(DISPLAY ALL MESSAGES).

Chapter 5. Message Sending and Display 5-1

US ER MESSAGE DISPLAY
USER KEY: 999999

OPTION: _ NUMBER(S): T0:

ALLOWABLE OPTIONS: "A' ACKNOWLEDGE MESSAGE NUMBER(S)
'B' BACK UP TO FIRST MESSAGE 'C' TERMINATE OPTION 'Q' EXIT TO SIGNON
'D' DISPLAY ALL MESSAGES 'F' FORWARD NUMBER OF MESSAGES

'U' DISPLAY ONLY UNACKNOWLEDGED MESSAGES (DEFAULT OPTION)

%% USER MESSAGES TO 999999 %xx

01 01/20/86 11:45 % TEST MESSAGE #1
02 11:45 % TEST MESSAGE #2
03 11:46 % TEST MESSAGE #3

Figure 5-2. User Message Display

PROJECT MESSAGE SENDING

OPTION: PROJECT/GROUP: ZZ
SENDING P/G: SAMPLE PROBLEM

ENTER MESSAGE TEXT: TEST MESSAGE # 1
MESSAGE SENT: TEST MESSAGE # 1

ENTER 'C' TO RETURN TO PRIMARY MENU OR 'Q' TO ENTER SIGNON

Figure 5-3. Project Message Sending

5-2 IMSADF II Application Development Guide

PROJECT MESSAGE DISPLAY

OPTION: _ NUMBER(S): TO: PROJECT/GROUP: SAMPLE PROBLEM
ALLOWABLE OPTIONS: 'C' TERMINATE OPTION
'Q' EXIT TO SIGNON 'A' ACKNOWLEDGE MESSAGE NUMBER(S)
'D' DISPLAY ALL MESSAGES 'F' FORWARD NUMBER OF MESSAGES

'U' DISPLAY ONLY UNACKNOWLEDGED MESSAGES (DEFAULT OPTION)
¥%% USER MESSAGES FROM SAMPLE PROBLEM X

01 12728776 17:22 % TEST MESSAGE #1
02 17:23 % TEST MESSAGE #2
03 17:24 % TEST MESSAGE #3
04 17:24 % TEST MESSAGE #4
05 17:25 % TEST MESSAGE #5

Figure 5-4. Project Message Display

IMSADF II uses its own data bases to hold the information messages.

Messages to project/groups go into the Sign-0n Profile Data Base, since

;t has ;oot segments keyed on project/group. Segment usage is shown in
igure 5-5.

Projects
Group

| 1

User ID Profile Message
Collection

Figure 5-5. groject Message Collection in the Sign-On Profile Data
ase

Messages to users go into the Message Data Base in a separate segment
type (see Figure 5-6). Before messages can be sent to a user in this
way, a header must be created; transaction UH (User Header) is provided
for the purpose in the MFC1 application system.

Header
]
l 1
Message Message
Text Collection

Figure 5-6. User Message Collection in the Message Data Base

Chapter 5. Message Sending and Display 5-3

MESSAGE MAINTENANCE

A batch utility is supplied to print messages and delete those that have
been acknowledged. An example of JCL to execute Message Maintenance as
an IMS/VS batch job is shown below. Similar JCL using the IMSBATCH
procedure may be used to execute Message Maintenance as a BMP
transaction.

To run under CICS/05/VS, the same DD statements must be added to the
CICS/705/7VS Startup Job Stream. For additional information on running
the IMSADF II batch driver under CICS5/05/VS, see the IMS Application

Development Facility II Version 2 Release 2 Application Development
Reference.

//MAINT JOB ACCNT,NAME,MSGLEVEL=1
//MAINT EXEC DLIBATCH,MBR=2???BDCT
/7/7MSGOUT DD SYSOUT=A

//PRINTER DD SYSOUT=A

//RSTRTIN DD DUMMY

//TRANSIN DD *

MFC1B3MM PG 2z YY XX W Vv
MFC1B3MM PG uu

MFC1B3MM USER 999999 888888

/%

Note:
For 222??, substitute the ADFID of your installed
system.

Note card columns:
1 10 16 23 30 37 44

The example will print and delete messages for project/groups 22, YY,
XX, WW, VV, and UU and for user IDs 999999 and 888888. Instead of
coding individual requests, the following options may be used starting
in column 10 with no following codes:

ALLPG - all project/groups
ALLUS - all user IDs
ALL - all user IDs and projects/groups

Since the messages are on data bases, they are also accessible to
application programs and to ordinary IMSADF II transactions.

AUTOMATIC MESSAGE SENDING

In addition to having user and project messages entered by a terminal
user employing options A or H, they can be triggered automatically
during IMSADF II transactions. The messages are stored on the same data
bases and can be acknowledged and maintained in the same manner as user-
or project-sent messages. The format is slightly different: automatic
messages are date- and time-stamped.

Message sending is under the control of the Auditor, and it uses a
different pair of operation and data descriptor segments. These are
formatted like field audits, except that the message numbers have a

di fferent meaning. Figure 5-7 shows the message leg of the Audit Data
Base. Using the high level audit language compiler, : these message
leg rules are coded just like other audit logic, except that they are
headed P2 instead of Pl or P0. Online, they are maintained by
trzng:ctions MA and DM, which look exactly like their counterparts FA
an .

5-6¢ IMSADF II Application Development Guide

MA

OPERATION
DESCRIPTOR

DM

DATA
DESCRIPTOR

Message leg

Figure 5-7. Audit Data Base -- Message Leg

Whereas the message number provided sufficient information to send an
error message to the online terminal in field auditing, more information
must now be specified as to the destination of the messages. Therefore,
an extra link is introduced in the chain for the purpose of providing
routing information. Thus, an error message number (defined in the
ERRORMSG = statement of the high level audit language) linking FA
directly to HD, the message header, is replaced by a routing code or
information message number (defined in the INFOMSG = statement of the
high level audit language) which identifies a routing header (AH). (See
Figure 5-8.) AH and AR are simply the transactions that allow creation
and maintenance of the routing information. (In fact, AH and AR use the
same segment types in the Message Data Base as HD and SY. They rely on
a key format convention to keep them apart.)

(FA) MA
| |] |
DM
Routing Code
Message
Number
HD < -> AH Routing
Header
| |
] | |]
SY AR
Message Routing
Text Information

Figure 5-8. How Message Routing Information Fits into the Picture

The numbering and layout of messages (created with HD and SY) are the
same as for error messages, except that messages to user IDs are
restricted to 127 bytes. The message number, however, is now part of
the routing information, rather than being quoted in the audit operation
descriptor. The operation descriptor links to the routing header
through a routing code. Each routing header (AH) has a routing code
that consists of a two-digit number (01 to 99) that is unique within an
application system. The routing header key is of the form:

ssiitiinn

Chapter 5. Message Sending and Display 5-5

where:

ss
guin
nn

is the first two characters of the application system ID
is a literal
is the routing code

Beneath the routing header, which has no data, one or more routing
information segments are inserted. As Figure 5-9 shows, up to five

message numbers can be present. These messages will be sent to the
project/group or user ID coded (or to both if both are coded). The
sequence number will normally be 00000001. If several segments are
present, all the specified messages will be sent as coded.
8 2 4 4 4 4 4 6
Sequence Project/ |Msg Msg Msg Msg Msg User ID
number (key)|Group Number |Number |Number |Number |Number

Figure 5-9. Format of Message Routing Information

In the audit operation descriptors that request automatic message
sending, a two-digit routing code must pe defined instead of a
four-digit message number. A four-digit area is provided for
consistency of layout, however, and has the form:

0fnn

where:

0
f
nn

is a literal
is a format code which normally has the value 3
is the routing code, which must match a corresponding routing header

Format codes are explained in the next section.

The Auditor will execute operations coded in the message leg only if all
the following conditions are satisfied:

(]

All audits in the first and second legs for all fields have
completed without error (with user correction if necessary).

Any field requiring message leg operations is marked MSG=YES on the
Rules Generator FIELD statement.

The fields have been changed or are key fields (KEY=Y). The Auditor
performs message leg operations only on key fields or on fields that
have been changed (or marked as changed) by previous audits or by
FAUDIT=YES on the Rules Generator FIELD statement.

Example

When field MKDP in segment PD in the SAMP system is updated in the range
(1200,1400), send message 9375 to project/group XX.

Significant Rules Generator statements:

SEGMENT ID=PD,...
FIELD ID=MKDP, LENGTH=4,MSG=YES

High level audit language:

SYSID = SAMP
AGROUP = YYYY

SEGID = PD
FIELD = PLRV
PROCESS

P2

¥ AUTOMATIC MESSAGE SENDING
IF PLRV IN 1200 : 1400

5-6

INFOMSG = 0345
ENDIF

IMSADF II Application Development Guide

Message routing header (AH): SA####45
Message routing info (AR): 00000001 XX 9375

FORMAT CODES IN AUTOMATIC MESSAGE SENDING‘

The above example has the information message (INFOMSG) number, which is
of the form 0fnn, using format code f=3, which is the recommended usage.
The Auditor will be prompted to locate a message routing header with
format ss##t##inn. There are, in fact, four allowable formats for message
routing headers, each selected by a different format code:

Format Format of
Code AH Key
=0 spgmtxnn
f=1 ssifiis
=2 ssffipgit#
=3 ssi###nn

where:

§8 is the first two characters of the application system ID
8§ is the first character of application system ID
nn is the message routing code
P9 is the project/group currently signed on
mtx is the current transaction mode (1-6) and ID
is a literal

The screens to enter and maintain message routing information are shown
in Figure 5-10 and Figure 5-11. They are designed for format code f=0
for historical reasons.

MESSAGE DATA BASE

ADD TRANSACTION: MESSAGE ROUTING HEADER
OPTION: _ TRX: GAH KEY: SARE##45
¥%x ENTER DATA FOR ADD Xxx
SYSTEM ID---------- 5
PROJECT/GROUP-===~~ A%
MODE=========-=—-- #

SEGMENT ID--------- B4
MESSAGE GROUP CODE- 45

Figure 5-10. Defining a Message Routing Header

Chapter 5. Message Sending and Display 5-7

MESSAGE DATA BASE

ADD TRANSACTION: MESSAGE ADDRESS SEGMENT
OPTION: _ TRX: 4AR KEY: SAH###4500000001
%% ENTER DATA FOR ADD xxx
SYSTEM ID-=-=—=—=—-- S
PROJECT/GROUP-==~—~ AR
MODE-==~-====—m=—=- #
SEGMENT ID----—----- 3]
MESSAGE GROUP CODE- 45
SEQUENCE NUMBER---- 00000001

PROJECT/GROUP-—-—--~- XX
MESSAGE NUMBER 1--- 9375
MESSAGE NUMBER 2--- 0000
MESSAGE NUMBER 3~-- 000
MESSAGE NUMBER 4--- 000
MESSAGE NUMBER 5--- 000
USER HEADER-—--—----

ocooco

Figure 5-11. Adding Message Routing Information

UNCONDITIONAL AUTOMATIC MESSAGE SENDING

In the case of transactions that work on a single hierarchical path in a
data base, the target segment can be deleted by the user selecting
transaction mode 3 (or 1). If the user does not modify fields, but
merely presses ENTER to delete the segment, the Auditor will not have
any fields to audit unless some are marked FAUDIT on the Rules Generator
FIELD statement. But there may still be a message sending requirement
associated with the transaction rather than with a particular field.

To allow for this case, unconditional message sending is provided.
Routing information and message text must still be prepared but, instead
of writing audit rules for this case, simply code DAMSG=YES on the
transaction GENERATE statement. (DAMSG stands for Delete-Add Message).
The routing header key must then be defined in the format:

spamtx00
where:

6 is the first character of the application system ID
pg is the project/group currently signed on

mtx is the current transaction mode (3 or 1 for delete) and ID
00 is a literal

Example

When someone in project/group ZZ deletes (mode 3) a PA root segment
using the PA transaction in the SAMP system, send message number 9428 to
project/group XX.

Significant Rules Generator statement:

GENERATE TRXID=PA, TRXNAME='PART ROOT',
OPT=CVALL,PGROUP=ZZ,DAMSG=YES

Message routing header (AH): SZZ3PAQO
Message routing info (AR): 00000001 XX 9428

When segments are being added (transaction mode 4 or 2), unconditional
message sending can also be invoked by coding DAMSG=YES on the

transaction GENERATE statement and setting up a message routing header
with m=%¢ or 2 (e.g., SZZ4PA00). The message will be sent only during

5-8 IMSADF II Application Development Guide

add, however, if at least one field in the transaction is marked MSG=YES
on the Rules Generator FIELD statement and if at least one field is
changed (or marked as changed) during execution of the transaction. No
rules need be coded in the message leg of the Audit Data Base to achieve
unconditional message sending.

BATCH INPUT OF DYNAMIC RULES

Dynamic rules for automatic message sending can be entered in bulk using
batch input. You may find this method of entry more convenient when
large numbers of rules must be coded. Online facilities can then be
used to amend rules during testing and maintenance.

Below is an example of IMS5/VS batch for automatic message sending.

To run under CICS5/0S/VS, the same DD statements must be added to the
CICS/0S/VS Startup Job Stream.

//RULES JOB ACCNT,NAME,MSGLEVEL=1
/77 EXEC DLIBATCH,MBR=2???BDCT
//MSGOUT DD SYSOUT=A

//PRINTER DD SYSOUT=A

//RSTRTIN DD DUMMY

//TRANSIN DD *

¥THE ERROR MESSAGE TEXT

MFC1B3HD

SAMP9400

MFC1B4HD

SAMP94000070SAPDPLRV034 SAPDCOMM061
MFC1B4SYSAMP9400

00000001WARNING: PLANNED REVISION NUMBERC) IS LESS THAN COMM CODE()
7/ %

Note: ???? is the installed ADFID (the default is MFC1).
Note that whenever it is necessary to insert a root segment, it is
deleted beforehand. In this way, the deck can be rerun as often as
necessary. On the first run there will be error messages, since the
segments will not be found. These can be ignored.
Each batch transaction begins with a transaction code

ssSSBmtx
where:
8668 is the application system ID (in this case MFC1)

B is a literal

m is the transaction mode (1 to 5)

tx is the transaction ID
Input records must be 80-byte card images, with the transaction code in
column 1.
BATCH INPUT LAYOUTS
AH - Automatic Message Sending Header

Card cColumn Length Description

1 9 8 Conditions for automatic message sending
Sample:
MFC1B2AHM0O04IYO05

Chapter 5. Message Sending and Display 5-9

AR - Auto Message Routing

card Column Length Description

1 9 8 Key of AH segment
17 8 Sequence number of AR segment
25 2 Project/group to receive message
27 4 Message number
31 4 Message number
35 4 Message number
39 % Message number
43 4 Message number
47 8 6-character user ID

Sample:
MFC1B4AR00000001MX0901 999999

HD - Message Generation Header
Card 1 has the HD transaction name MFC1B2HD.
card Column Length Description

2 1 Application system ID and message number
Message length
Field name to be mapped from

O0ffset in text where data is to be mapped

-

(1 to 5 data mappings)

(7]
(7]
Gl 00 L 00 ¢t 00 (N 00 ¢ 08 00

Sample:
MFC1B2HD
SAMP99990070SACDDIPUO30
8Y - Message Text

card Column Length Description

1 9 8 Key of HD segment
2 1 8 Sequence number of SY segment
9 70 Message text
Sample:
MFC1B4SYSAMP9999

00000001DISBURSEMENT CODE INCORRECT (-) SPECIFY P OR U

5-10 IMSADF 1II Application Development Guide

SD - Secondary Transaction Destination

Card cColumn Length Description

1 9 8 Output Format Rule name (key)
17 8 Default destination
25 62 Comments for user information
2 1 71 Comments continued

Use the end of message characters to indicate end of data if a second
card is not used. The end of message characters are defined at
installation time (DEFADF). The default is $$.

Sample:

MFC1B2SDMFORPDO1I0OPCB LABOR ERRORS SECONDARY XACT $$
LT - Logical Terminal Segment

card cColumn Length Description

1 9 8 Key of SD segment
17 8 Entering LTERM (key)
25 8 Receiving LTERM #1
33 8 Receiving LTERM #2
41 8 Receiving LTERM #3
%9 8 Receiving LTERM #4
57 8 Receiving LTERM #5
65 8 Receiving LTERM #6
73 8 Receiving LTERM #7

2 1 8 Receiving LTERM #8

Use the end of message characters to indicate end of data if a second
card is not used. The end of message characters are defined at
installation time (DEFADF). The default is $9%.

Sample:

MFC1B4LTMFORPDO1L3277099L3286001I0PCB &%
UH - User Header Segment
Card Column Length Description

1 9 8 User ID (Key)

17 22 User's name

Sample:
MFC1B2UH999999 J.SMITH

Chapter 5. Message Sending and Display 5-11

5-12 IMSADF II Application Development Guide

CHAPTER 6. COMPLEX TRANSACTIONS

Chapter 2, "Static Rules and the Rules Generator" described transactions
that display and update multiple hierarchical paths in multiple data
bases. This chapter presents more advanced application functions and
deals gith arbitrary combinations of inserting, deleting, and replacing
segments.

Great use can be made of the ability to issue DL/I calls using audit
operations. In addition to giving control over complex updating, it
provides:

. data validation capability

. one method of processing twins (multiple segment occurrences)

° transaction switching under control of the Auditor

L tailoring the lavouts of the Segment Display and Sign-on screens

JAILORING THE DATA DISPLAY SCREEN

Figure 6-1 shows the Rules Generator statement necessary to produce the
screen shown in Figure 6-2.

GENERATE TRXID=ST, TRXNAME='STOCK MAINT',DBPATH=1V,
OPT=CVALL,SP0OS=SIMAGE

=1
STOCK MAINTENANCE TRANSACTION
2333333333 333333333323133213
&=1
OPTION &OPTION
TRX &TRAN
4oy FULL KEY &KEY
=1
"ENTER NEW PART NO. HERE
PART NUMBER &5KEY.PA DESCRIPTION: 86DESC
AREA &5AREA
REGION &5REGN
goq SITE &5SITE
=1
"FOLLOWING DATA CAN BE AMENDED
UNIT PRICE ON ORDER CURRENT STOCK
goq YSPRIC &50NOR &5STCK
&SYSMSG
NDS

Figure 6-1. GENERATE Statement for Tailored Data Display Screen

Chapter 6. Complex Transactions 6-1

STOCK MAINTENANCE TRANSACTION
262 36 K 36 6 3 X6 36 36 36 36 36 6 36 36 2 36 36 I 36 3 26 2 X 26 X %

OPTION

TRX 58T

FULL KEY 02AN960C10 147256874

ENTER NEW PART NO. HERE

PART NUMBER 02AN960C10 DESCRIPTION: SPROCKET

AREA 7

REGION 2568

SITE 74

FOLLOWING DATA CAN BE AMENDED

UNIT PRICE ON ORDER CURRENT STOCK
2.45 786 178

*¥%%x ENTER DATA FOR UPDATE »xx

Figure 6-2. Tailored Data Display Screen

To define the screen image layout for the Data Display screen, first
write the transaction GENERATE statement using the SPOS=SIMAGE operand.
Following this, write the screen image definition: that is, write each
line that will appear on the screen exactly the way vou want it to
appear. Each 80-byte line maps into one line on the screen. Don't use
sequence numbers on your screen image lines.

Write out literals exactly as they are to appear. If you want a literal
line to be highlighted on the screen, precede the line with a single
quotation mark (e.g., 'ENTER NEW PART NO. HERE).
Where data fields are to appear, indicate them using the form:

&NFFFF.XX
where:

& is a delimiter

n is the field mode. The field mode can be:

%4 - modifiable in transaction modes 1-6
5 - modifiable in transaction modes 1-5
6 - non-modifiable

7 - modifiable, but non-displayable

FFFF is the field ID

XX is the segment ID qualifier, which can be omitted only if the
field ID is unique in this Rules Generator run.

DISPLAY and MODE operands on FIELD or SEGMENT statements are ignored
when screen image is used.

Data fields used in a screen image must be in data base or pseudo
segments included in the transaction via the DBPATH or TSEGS operands of
the GENERATE statement.

6-2 IMSADF II Application Development Guide

You must include the following system fields in your screen image:
&0PTION The OPTION field. Abbreviation &0.

&SYSMSG The 70-character system message field (IMSADF II messages also
appear here).

You should include the following system fields unless you included
DTRAN=NO or DKEY=NO on the preceding GENERATE statement:

&TRAN The three-character transaction mode and ID. Abbreviation &T.
Required unless DTRAN=NO is coded on the GENERATE statement.
&KEY The fully concatenated key field. The default length is 50,

but it can be altered (from 1 to 100) by the MAXKEY operand of
the GENERATE or SYSTEM statement. Required unless DKEY=NO is
coded on the GENERATE statement.

The Rules Generator will place the system fields mentioned above on the
last two lines of the screen if you do not include them elsewhere.
Hence, if you code other fields on the last two lines and omit these
required fields, vou will receive error messages that indicate
overlapping fields.

PHYSICAL PAGING

You can request physical paging of a Data Display screen if you use
screen image. This is useful when you want to implement a transaction
that needs more than one screen of data. Transaction PR (which
maintains the security profiles), in application system MFC1l, contains
an example of physical paging. Figure 6-3 and Figure 6-% show the two
pages. The user receives the first page after key selection, performs
amendments, and presses ENTER to receive the second page.

SIGN-ON/PROFILE DATABASE

UPDATE DATABASE: SIGNON PROFILE SEGMENT: PROFILE DETAIL
OPTION: _ TRX: 5PR KEY: QQAB
ACTION: 1

%% ENTER DATA FOR UPDATE »%x

PROJECT/GROUP--- QQ

PROFILE ID------ AB

NUMBER OF IDS--- 3

PROFILE LINE 1- PA4OPD4OIV50
PROFILE LINE 2-

PROFILE LINE 3-

PROFILE LINE ¢4-

PROFILE LINE 5-

PROFILE LINE 6-

PROFILE LINE 7-

PROFILE LINE 8-

PROFILE LINE 9-

PROFILE LINE 10-

PROFILE LINE 11-

PROFILE LINE 12-

Figure 6-3. First Page of PR Transaction Display

On page 2 the user may write further data and then press ENTER again.

If there is another page, it will be displayed. The transaction is
scheduled to accept the data when the user enters the last page, when he
places the value El into the ACTION field and presses ENTER on any page,
or when he presses PF key & on any page.

Chapter 6. Complex Transactions 6-3

ACTION: 1
%% ENTER DATA FOR UPDATE x¥x

PROFILE LINE 13-
PROFILE LINE 14-
PROFILE LINE 15-
PROFILE LINE 16-
PROFILE LINE 17-
PROFILE LINE 18-
PROFILE LINE 19-
PROFILE LINE 20-

Figure 6-4. Second Page of PR Transaction Display

The user can return to the first page by typing R1 in the ACTION field
and pressing ENTER. However, if this is done, any data that has been
entered is lost. The first page is redisplaved without any amendments
that may have been made to it.

To request physical paging, code a screen image definition using the

control symbol &=P starting in column 1 to mark the start of the next
physical page. Each page must then include the system ACTION field,

defined as &ACTION (the three-character ACTION field).

Each page can include a &S5YSMSG field. However, if this is done, the
same data field cannot appear on multiple pages (unless you move data
into pseudo segments to get around this) and the &0OPTION, &TRAN, and
&KEY fields must be on the first page.

OTHER CONTROL SYMBOLS

&% in column 1 denotes a comment line
&=nn marks nn blank lines
&: begins the definition of a short field

Sometimes the definition of a field takes up more space than the field
jtself and so the screen is artificially restricted because there is not
enough room on a line to accommodate the field definition. In such
cases, define the fields in a fixed column, or tabular, format at the
end of the screen or physical page image in which they are to appear
(before &=P or &ENDS).

Restriction: Don't mix ordinary screen image definitions and tabular
definitions on the same line. Define each line entirely in screen image
or entirely in tabular format.

The tabular format of small field definitions can take time to set up
because you must make sure that everything is in the correct columns.
Therefore, if you are using a time sharing system, you should prepare a
small file with commented headings and delimiters marked out. This will
make it easier to find the correct columns. See Figure 6-5 for an
example. Once your file is prepared, you can merge it into your screen
image source file using an editor.

6-4 IMSADF II Application Development Guide

& 1 1 2 3 3 4 5 5
Ex3-——-—m- 2----- 8-===- G-————- 1-———=-- 8-——-=== 6----1---5
&% ID %SLEN %VROW xVCOL %VMODE *ASTATUSXKSELXCLR*HLT
&::ffff :6 : :25 :5 :PA :R : :
Figure 6-5. Defining Fields Using a Tabular Format
Note: An operand value may be started in any column within the range
specified as long as it is completed within the same range.
columns Operand Description
3-10 ID=ffff Identifies the field either by field ID and
FFff.xx segment ID or by NAME operand value on the FIELD
name statement.
12-16 SLEN=xxxx Display length of field.
18-22 VROW=xx Row on which field is to be displayed.
24-28 VCOL=xx Start column of the displayed field.
VCOL=SYMBOLIC A symbolic reference name may be used in place
NAME of row and column entries. The reference name
(1-6 characters with first character alphabetic)
is used in the screen image to specify that
application field location and then referenced
by the entry in the column value positions. The
row entry is left blank. For example:
%
SCREEN IMAGE HEADING
SCREEN LITERAL FOR FIELD UNIT. XX----- &A
SCREEN LITERAL FOR FIELD DATE. XX-=---- &B
*
&x ID ¥SLENXVROWXVCOL *VMODEXASTATUSXKSEL
&: UNIT A 5 A
&: DATE.YY B 6
*
*ENDS
This technique allows consecutive short fields
to be defined without specifying row and column
(e.g., &5&G&AA&BB). Reference field usage takes
precedaence over ADFNAME usage. If you use &A
for a data field, then you cannot use &A for the
ACTION field. 1Instead, vou could use &AC or
&ACT for the ACTION field.
31-36 VMODE=n Display mode; n can be:

G gi:playedx modifiable in transaction modes

5 gigplayed, modifiable in transaction modes

displayved, not modifiable

not displayed, but modifiable

Chapter 6. Complex Transactions 6-5

columns Operand Description

38-44 ASTATUS=FRPA Specifies audit parameters that apply to this
field on this transaction. The following
parameters may be included in the generated
Input Transaction Rule and can be entered in any

order.
F = FAUDIT=Y
R = REQUIRED=Y
P = PREAUDIT=Y
A = AFA=Y

Refer to the FIELD operands in the IMS
Application Developmen acili

Releas Application Deve ment Reference for
a description of these parameters.
46-49 KSEL=2 KSEL specifies key selection phase options which

override those on the FIELD statement for this
field in this particular transaction. Possible
values for Z are:

N Not a related field for this transaction
K Kay field displayed without auditing

KA Key field displayed with auditing

KN Key field audited but not displayed

KP Ke¥ field displayed with primary auditing
only

K8 Key field displayed with secondary auditing
only

R Related field without auditing
RS Related field with secondary auditing

51-53 CLR=x Specifies color. CLR is valid only if DEVTYPE=6
or 7 is coded on the GENERATE statement.
Possible values for X are:

Blue

Red

Pink
Green
Turquoise
Yellow
White

E<-0oTvAwW

55 HLT=y Requests extended highlighting. Possible values
for y are:

D Default (no extended highlighting)
B Blink

R Reverse

U Underscore

STORING SCREEN IMAGE DEFINITIONS

Instead of defining screen images directly in line with the rules, you
can store them in a library and call them in using the IMAGE operand of
the transaction GENERATE statement. The Rules Generator JCL must
include a DD card with ddname IMAGELIB pointing to the screen image
library. The advantages of doing this are:

. It allows sequence numbering of other Rules Generator input
. It makes it easy to rerun Rules Generator statements with ¥ signs in
column 1 preceding GENERATE statements (thus rendering them as

6-6 IMSADF II Application Development Guide

comments), a common practice when altering a few details for an
application to avoid regenerating unnecessarily large numbers of
rules.

The IMAGE operand names the library member that contains the screen
image for the transaction.

For example:

GENERATE TRXID=ST, TRXNAME='STOCK MAINT',DBPATH=IV,
OPT=CVALL,SP0OS=SIMAGE, IMAGE=SISAMPST

PROGRAM FUNCTION KEYS

By default in IMSADF II, program function (PF) keys 1, 2, and 3 are used
for logical paging (see Chapter 11, "Nonconversational Processing"), and
PF key 4 is used for physical paging.

For IMS/VS MFS, vou can define your own PF key usage on the Data Display
screen by coding PFKDATA=YES on the Rules Generator transaction GENERATE
statement. You also must provide a TSEGS operand to define a pseudo
segment. When the user presses a PF key (1-11), the number (01-11) will
be placed into the first field in the first pseudo segment named in the
TSEGS operand.

If yvou wish to allow more or fewer than 11 PF keys, code PFKNUMB=n on
the GENERATE statement (where n is between 1 and 36).

If you require values other than 01 to 36 to be mapped into the pseudo
segment field, omit the PFKNUMB operand and instead code PFKLIT=(kk),
where kk is the PF key literal for one key as described in the IMS/VS
Message Format Service (MFS) User's Guide. Code one PFKLIT operand for

every PF key number you wish to use. MFS permits two forms:

. PFKLIT=("abc"')
. PFKLIT=(1="abc"')

The advantage of the second form is that PF key numbers do not have to
be allotted sequentially. The Rules Generator does not check the
validity of the PFKLIT operand; that is done by MFS. The maximum length
allowed between the parentheses is 22 characters.

Example
Significant Rules Generator statements:

SEGMENT ID=PF,TYPE=PS
FIELD ID=PFKV,L=2,DISP=NO,AUDIT=YES (Receives PF key values)
GENERATE TRXID=PD,DBPATH=PD,OPTIONS=CVALL,
TRXNAME="STANDARD INFORMATION',
TSEGS=PF,PFKDATA=YES,PFKNUMB=24,
DEVNAME=(A3),DEVTYPE=(3)

The number (01 to 24) is placed in the PFKV field when the user presses
a PF key after viewing a Data Display screen. Audit rules or a special
processing routine can then act on the value, perhaps by initiating a
transaction switch.

SIGN-ON SCREEN

You can tailor the layout of the Sign-On screen for an application
system. You may also create a single Sign-0On screen that applies to all
IMSADF II application systems. Do this by including the SYSID system
field on the screen image. The user can then enter it at the same time
as he enters sign-on information. If SYSID is omitted from the image,
the default is the first four characters of the MOD name used with the
IMS/VS /FORMAT command.

To produce a tailored Sign-0On screen using a screen image definition,
code the operand SOIMAGE=YES on the Rules Generator GENERATE statement

Chapter 6. Complex Transactions 6-7

(with OPT=CVS5YS); then key in the screen image definition. Only the
following system fields may be defined for a Sign-On screen image.

L These are exclusive to the Sign-0n screen:

USERID six-character user ID
PROJECT one-character project code

GROUP one-character group code
LOCKWORD eight-character lockword (password)
SYSID four-character application system ID

. These are the same as on other screen images:

OPTION KEY LTNAME DATEL DATE3
TRAN SYSMSG TIME DATE2 DATE4

Refer to the SOIMAGE parameter in the IMS Application Development
Facility II Version 2 Release 2 Application Development Reference for
discussions on field modes.

Example

The GENERATE statement in Figure 6-6 will produce the screen shown in
Figure 6-7.

GENERATE OPT=CVSYS,SOIMAGE=YES

&=2
PLEASE ENTER YOUR USER ID, YOUR PROJECT
. AND GROUP CODES, AND YOUR PASSWORD
=2
USER ID: &USERID
PROJECT: &PROJECT
GROUP: &GROUP
4 PASSWORD: &LOCKWORD
&=
YOU MAY ENTER BELOW AN OPTION, A
g2 TRANSACTION MODE AND ID, AND A KEY

OPTION: &0 TRX: &T KEY: &KEY
IF YOU NEED HELP, PRESS ENTER
&ENDS

Figure 6-6. GENERATE Statement for Tailored Sign-On Screen

6-8 IMSADF II Application Development Guide

PLEASE ENTER YOUR USER ID, YOUR PROJECT
AND GROUP CODES, AND YOUR PASSWORD

USER ID:
PROJECT:

GROUP:
PASSWORD:

YOU MAY ENTER BELOW AN OPTION, A

TRANSACTICN MODE AND ID, AND A KEY

OPTION: TRX: KEY:
IF YOU NEED HELP, PRESS ENTER

Figure 6-7. Tailored Sign-0On Screen

TRANSACTION SWITCHING

The terminal user can amend the TRX area on the Data Display screen in
ordar to start another transaction. He can also alter the transaction
code (1-6) and the concatenated key. Any of these actions, alone or in
combination, will cause a fresh start of the selected transaction. The
user is next presented with a key selection or Data Display screen,
depending on whether or not the complete concatenated key has been
supplied.

You may also write code to request a transaction switch, using the
following assignment statements to determine the suwitching:

TRXID =
MODE =
SPAKEYID =

There are certain restrictions:

. Only a literal number (1 to 6) can appear to the right of the mode
assignment.

L Only a two-character literal enclosed in single quotation marks can
appear to the right of the TRXID assignment. If the literal must be
assigned from a field (e.g., entered from a screen or derived from a
table), an exit routine is needed.

. Only a field name can appear to the right of the SPAKEYID
assignment. Logic must be written to set up the concatenated key in
a pseudo segment.

. An exit routine is needed to pass data (other than the concatenated
key) (see "Use of Exits" on page 6-12).

. Setting SPAKEYID alone will have no effect. MODE and TRXID must
also be set to cause a switch, even if their values are not changed.

The TRXID, MODE, and SPAKEYID fields can also be the source of
assignment operations.

Appendix E, "Switching Between COBOL and IMSADF II Transactions" shows

techniques for switching between IMSADF II transactions and non-IMSADF
II COBOL transactions.

Chapter 6. Complex Transactions 6-9

Example

To switch from the PD to the IV transaction, the following statements in
the high level audit language would be suitable:

TRXID = "IV’

SAPSCKEY = SPAKEYID
SAPSIKEY = '0022A58722'
SPAKEYID = SAPSCKEY

where IKEY and CKEY are in the following pseudo segment:

SEGMENT ID=PS,TYPE=PS

FIELD ID=CKEY,L=33

FIELD ID=PKEY,L=17,P0S5=1
FIELD ID=IKEY,L=16,P05=18

SEQUENCE OF OPERATIONS

When transaction switching is requested through the Auditor, the switch
does not take place instantly, but at a predetermined time. Figure 6-8
illustrates the sequence.

Switching can be requested from any of three audit phases (KEY, PRELIM,
and PROCESS) and from any of the three legs (P00, P1l, P2). The Auditor
completes current processing before switching. In particular, this
means:

o During primary key audit, the logic specified for the current key
will be completed.

. During secondary key audit, the logic specified for the current key
will be completed.

o During the PRELIM phase (preaudit), all logic for all fields will be
completed (including the message sending), but the data will not be
displayed unless an error occurs.

. During the PROCESS phase, all logic for all fields will be
completed. If no error occurs, the transaction driver will update
the data bases and send any automatic messages and secondary
transactions before switching. The confirmation display (SEGMENT
MODIFIED SUCCESSFULLY) is bypassed.

6-10 IMSADF II Application Development Guide

Figure

Transaction
is selected

Auditor
checks and
edits keys

Audi tor
selectively
edits display

Audi tor
edits and
derives data

Auditor
validates
and processes

6-8.

Option Menus

or
Another TRX .

|

Y]

Primary
Key
Selection

il

Secondary
ey
Selection

il

Data
Display

<

1

Data
Update

|

Confirmation
Display

Where the Auditor is Invoked

Chapter 6.

Complex Transactions

6-11

USE OF EXITS

You can enhance the capabilities of the Auditor by writing additional
functions in COBOL, PL/I or Assembler. These functions are invoked by
the AEXIT statement in the high level audit language.

One use for exits is to pass information, other than the concatenated
key, when switching transactions. The program must move the data into a
field in the SPA named SPAFLDSG. An example of such a program appears
in Chapter 9, "Exits." A similar program is needed in the receiving
transaction.

The length available in SPAFLDSG is set by means of the COMMLEN operand
on the Rules Generator GENERATE statement (with OPT=CVALL) that defines
the transaction. The maximum is constrained by the size of the SPA.
Additionally, an installation option can set the communication area at
sign-on time. 1If your installation uses this option, the value you give
to the Rules Generator must be as large as you need plus whatever is
used at sign-on. (The IMS Application Development Facility II Version 2
Release 2 Installation Guide contains an appendix that shows how to
calculate the SPA size.) The program can find out the size of the
COMMLEN setting by examining the SPACOMLN field in the SPA.

If you want to switch to a transaction named in a field rather than a
literal, you need an exit to move the field value into SPACGTRX in the
SPA. A dummy value must also be assigned to the TRXID system field to
cause IMSADF II to take notice of SPACGTRX.

For example, you cannot write:
TRXID = SAPSNEWT

You must write:
TRXID = 'XX'

IF AEXIT 71 SAPSNEWT RETURN TRUE
ENDIF

and write exit routine number 71 in COBOL, PL/I or Assembler to move the
value of SAPSNEWT, the related field, into SPACGTRX.

MULTIPLE-PATH TRANSACTIONS

As you know, standard processing transactions are defined via the
GENERATE statement of the Rules Generator.

For example:

GENERATE TRXID=PI, TRXNAME='PARTS INFORMATION',
OPT=CVALL,DBPATH=(CY,0R), TSEGS=(WO,PD)

The segments named in the DBPATH operand are defined in preceding
SEGMENT statements and are the target segments of the transaction. The
data base layouts assumed are shown in Figure 6-9. WO is the ID of a
pseudo segment.

PA cu

PD Iv OR

Figure 6-9. Data Bases Used in Examples

6-12 IMSADF II Application Development Guide

If any field from the CU segment is displayed (via the DISP=YES operand
on a FIELD or SEGMENT statement or by inclusion in the screen image),
the CU segment will be included in the transaction and will be updated
if data is changed by the online user or by audit rules. The same
applies to the PA and IV segments. If no field from a segment is
displayed but audit logic is required to access or update it, include
the segment in the DBPATH thus:

DBPATH=(CY,IV,0R)

The target segments are still CY and OR because they are the lowest in
each hierarchical path. Collectively, the segments named or implied by
the DBPATH operand are called DBPATH segments. The user is prompted for
their keys by key selection and together their keys constitute the
concatenated key of the transaction.

Segments named in TSEGS are either pseudo segments or data base segments
to be retrieved by the Auditor under control of audit rules or by a
special processing program.

Updating of DBPATH segments is controlled by the transaction mode
selected by the user. (Modes 1 and 2 are interchangeable with 3 and 4,
respectively.)

Mode 5: The user is prompted by key selection to enter keys of existing
DBPATH segments and the segments are displayed. If he changes
data, the changed segments will be updated on the data base.

If auditing changes data, those segments will also be updated.
The Auditor is invoked only if the user changes some data on
the screen.

Mode %: The user is prompted by key selection to enter keys of existing
nontarget DBPATH segments but is required to enter the key of
at least one target segment that does not exist on the data
base so that it can be inserted. For the other target segments
he can enter an existing key or one that does not exist. 1If
the user changes data, changed segments are replaced and new
segments are inserted. Again, auditing changes also lead to

segments being updated (replaced or inserted). The Auditor is
invoked whether the user changes some data on the screen or
not.

Mode 3: The user is prompted by key selection to enter keys of existing
DBPATH segments. For transactions with a single target
segment, the Auditor will be called and the segment will be
deleted regardless of whether the user changes data on the
screen. If the user or the Auditor changes data in other
segments, they will be replaced.

For transactions with multiple target segments, mode 3 is just like mode
5, except that in mode 3 the Auditor will be called (and can therefore
cause updates) whether the user changes data or not.

DELETE ELIGIBILITY

To define a transaction that deletes segments other than the target
segment in a single path transaction, you must:

o Define delete eligibility against those segments

[Code DL/I calls through the audit operation to delete the segments
Use the DLET operand on the transaction GENERATE statement.

In the following example the audit rule checks for a transaction mode of
3 before deleting. The audited field is a nondisplayed dummy field in
the pseudo segment WO. The user receives the display with the message

ZRESS ENTER TO DELETE DATA. When he does so, the CY and OR segments are
eleted.

Chapter 6. Complex Transactions 6-13

Significant Rules Generator statements:

SEGMENT ID=W0, TYPE=PS, LENGTH=1,DISP=NO

FIELD ID=DUMY, LENGTH=1, AFA=YES

GENERATE TRXID=0M, TRXNAME='ORDER MAINT',
OPT=CVALL,DBPATH=(PD,CY,0R),
TSEGS=WO,DLET=(CY, 0R)

High level audit language:

SYSID = SAMP
SEGID = WO
FIELD = DUMY
IF MODE = 3

IF DLET KEYFIELD CY NOT 0K
ERRORMSG = 1025
ENDIF

IF DLET KEYFIELD OR NOT 0K
ERRORMSG = 1025
ENDIF

ENDIF

Note: The related field KEYFIELD is a special value recognized by the
DL/I call audit operation as meaning the key of the segment already
retrieved.

If an attempt is made to delete a segment using the audit operation and
the segment is not eligible for deletion, the deletion is not done, the
audit operation returns false, and a DL/I status code of AM is set.

The deletion is not performed immediately; the operation merely sets a
flag. The transaction driver performs the deletion later when it
performs any other data base updates.

Segments named in the DLET operand must be DBPATH or TSEGS segments.

To complete the example, Figure 6-10 shows some fields.

PA cu
Part number (key) Customer no.
Description (key)
Customer name
]
PD ' 1v ' OR
Std. info key Inventory locn. Order no. (key)
Make dept., etc. (key) Quantity
Stock level, etc.

cY '

Cycle no. (key)
Physical count
Book count

Figure 6-10. Data Base, Showing Some Fields Used on Screens

Figure 6-11 and Figure 6-12 show how the Key Selection and Data Display
screens for the order maintenance transaction appear in delete mode.

6-14 IMSADF II Application Development Guide

S AMPLE PROBLEM
PRIMARY KEY SELECTION SCREEN
DELETE TRANSACTION: ORDER MAINT
OPTION: TRX: 30M KEY:
%% ENTER THE FOLLOWING KEY INFORMATION X%
PART NUMBER- 02RCO07GF273J

00---=w———m- 00
AREA-=------- 2

INV DEPT---- 80
PROJECT----~- 091
DIVISION---- 26
FILLER-~=---
20—====————— 20
CUSTOMER NO- CcCl2CC
ORDER NO---- 12345

Figure 6-11. Key Selection Screen in Delete Mode

S AMPLE PROBLEM

DELETE TRANSACTION: ORDER MAINT

OPTION: TRX: 30M KEY: 02RCO07GF273J 0028009126 20CC12CC12345
%% PRESS ENTER TO DELETE DATA xxx

PART NUMBER---- 02RC07GF273J DESCRIPTION---- RESISTOR

AREA----====mm- 2 INV DEPT-=----- 80

PROJECT-======= 091 DIVISION-=-==-=- 26

UNIT PRICE----- .00 UNIT--=-—— 0000

ATTR COAP------ 0 ATTR PLANNED--- 0

ATTR COAD------ 0 STOCK DATE----- 516

LAST TRANS----- 517 RQMNTS CURRENT- 17

RQMNTS UNPLAN-- 0 ON ORDER-==-=--- 0

TOTAL STOCK---- 17 DISB PLAN------ 57

DISB UNPLAN---- 700 DISB SPARES---- 0

DISB DIVERS---- 0 PHYS COUNT-=--- 19

BOOK COUNT-=---- 0 CUSTOMER NO---- CCl2CC

CUSTOMER NAME - SMITH & SON ORDER NO-====-- 12345

QUANTITY-=====-~- 3

Figure 6-12. Data Display Screen in Delete Mode

INSERT ELIGIBILITY

Insert eligibility has nothing to do with DL/I insert calls from audit
operations which can be coded regardless of insert eligibility. Insert
eligibility alters key selection and data base updating to allow
insertions of DBPATH segments (target or not) in any transaction mode
except 6. Segments are made eligible through the ISRT operand of the
transaction GENERATE statement.

Mode 6: No updates are performed in this mode. However, if a key is
not entered for a DBPATH segment that has insert eligibility,
and if no occurrences exist for that segment, key selection
Wwill proceed to the Data Display screen.

Chapter 6. Complex Transactions 6-15

Mode 5: During key selection the user is prompted to enter keys of
DBPATH segments. If a segment is eligible for insertion, he is
free to enter a key that does not exist on the data base. If
he does and proceeds to enter data into it, the segment will be
inserted. For an existing key, the segment will be replaced.

Mode %: The restriction on inserting several segments in a path does
not apply. If an eligible segment is to be inserted, all its
dependents can be inserted at the same time, whether marked for
eligibility or not.

Mode 3: As in mode 5, the eligible segments can be inserted or replaced
depending on the keys entered by the user.

In the order maintenance example (Figure 6-10, Figure 6-11, and
Figure 6-12), the transaction generated (without the ISRT operand) will
behave as follows:

Mode 5: Any of the six segments can be replaced by amendments from the
terminal.

Mode 4: The PA, IV, and CU segments can be replaced while the target
segments PD, CY, and OR can be inserted or replaced, depending
on the keys entered by the user, but provided at least one is
inserted.

Mode 3: Audit operations will delete CY and OR. Other segments will be
replaced if changed by the user.

If you code ISRT=PD on the GENERATE statement, it will behave as
follows:

Mode 5: Any segment can be replaced. The PD segment can be inserted or
replaced.

Mode 4: The ISRT operand makes no difference.

Mode 3: CY and OR will be deleted. PD may be inserted or replaced.
PA, IV, and CU may be replaced.

If you code ISRT=(PA,PD) on the GENERATE statement, it will behave
differently. Such a transaction is unlikely to be used in any mode
except 4%:

Mode 64: The PA, PD, IV, CY, and OR segments can all be inserted at once
while the CU segment can also be replaced.

For a transaction like this (insert eligibility on a high level
segment), you should impose a security level of 4 in the Sign-On Profile
data base and educate the user to use mode % only. View the transaction
as 40M, rather than as OM in mode 4.

DL/I CALLS FROM THE AUDITOR

This section explains how to perform DL/I calls under control of audit
rules and when to use this function. The main uses are:

. Processing twins (multiple segment occurrences)

o Validating data received from the screen against other data bases
(e.g., valid customer number entered)

. Controlling segment deletions (this is the only way to delete
segments other than the target segment of a single path transaction)

. Controlling segment insertions (used as a supplement or an
alternative to using insert eligibility)

[Retrieving or updating segments without key or search fields that
identify them uniquely

6-16 IMSADF II Application Development Guide

HOW THE DL/I CALL OPERATION HORKS

Segments to be retrieved by a DL/I Auditor call must have space reserved
for them in the segment area (within the SPA). This is done by means of
the TSEGS operand of the GENERATE statement. The layout shoun in

Figure 6-13 is the result of the following transaction definition based
on the sample data base (Figure 6-9 on page 6-12):

GENERATE TRXID=IM, TRXNAME='INVENTORY',
OPT=CVALL,DBPATH=PD,

TSEGS=1V
Key of PA
Data of PA

Key of PA | key of PD

Data of PD

Key of PA] key of IV

Data of 1V

Figure 6-13. Layout of the Segment Area (in the SPA)

As shown, one place is reserved for each segment type. (Twin processing
is explained in "Multiple Segment Occurrences (Twins)™ on page 6-25.)
IMSADF II keeps the concatenated key of each segment separately. The
user is prompted for the keys of the DBPATH segments through key
selection. At preaudit time, therefore, the concatenated keys of PA and
PD are already set up and the segments are loaded. The concatenated key
of IV is not defined - not even the root key portion - and must be
supplied by audit rule processing before the segment can be retrieved.
As shown in earlier examples, the related field coded in the DL/I call
statement contains the concatenated key.

Whenever a segment is successfully retrieved, whether through key

selection, by a DL/I Auditor call, or by means of special processing,

;he concatenated key is set up in the appropriate area as illustrated in
igure 6-13.

The concatenated key of a segment consists of the concatenated key of
its parent, followed by the key of the segment itself. After a DL/I
call, the concatenated key of the segment is returned by DL/I in an area
area known as the key feedback area (in the PCB). From the KEY=YES
operands on the Rules Generator FIELD statements IMSADF Il determines
the length of the parent's concatenated key within the key feedback area
and moves it into the IMSADF II concatenated key area for that segment
ID. It then moves the key of the segment itself from the actual segment
data area.

segment Flags

In addition to the key and the data, IMSADF II maintains three flags
associated with each data base segment. These are the delete,
retrieved, and changed flags. They determine the update processing
performed by the IMSADF II transaction drivers. They can be set by the
indicator setting statements in the high level audit language.

Chapter 6. Complex Transactions 6-17

For example:

PD CHGEFLAG = ON
PD RTRVFLAG = OFF
CY DLETFLAG = ON

In the above example, segment PD has its changed flag set on and its
retrieved flag off, while CY has its delete flag set on.

Figure 6-14 summarizes the action of the transaction driver when
processing the segment flags and performing data base updates. (See
"Multiple-Path Transactions" on page 6-12 for a review of the treatment
of the target segment in transactions that have a single target
segment.)

Changed | Retrieved | Delete

Flag Flag Flag Resultant Action
OFF OFF OFF No action

OFF OFF ON No action /7 Error
OFF ON OFF No action

OFF ON ON Segment deleted
ON OFF OFF Segment inserted
ON OFF ON No action 7/ Error
ON ON OFF Segment replaced
ON ON ON Segment deleted

Figure 6-14. Segment Flag Processing

The DL/I update calls issued through the high level audit language
without the immediate (IMMED) option merely set these flags; they do not
cause the segments to be updated until the transaction driver reaches
that point in its processing.

After an update has taken place, the flags are reset to avoid a
repetition of the call. Figure 6-15 shows the flag settings after a
successful update has been performed.

Resultant Settings
Action Changed Retrieved Delete
Flag Flag Flag
Segment deleted OFF OFF OFF
Segment inserted OFF ON OFF
Segment replaced OFF ON OFF

Figure 6-15. Flag Settings after a Successful Update

The flags will be reset in this way after any update; that is, whether
caused by a DL/I Auditor call with the IMMED option, by a special
processing or audit exit routine, or by the transaction driver itself as
a result of the flag settings (normally after auditing is complete).

6-18 1IMSADF II Application Development Guide

DL/I CALL EXPRESSIONS

The format of a DL/I call in the high level audit language is as
follows:

IF function <IMMED> keyfield segid <NOT> 0K

The possible functions are the DL/I call functions explained in the next
section.

The optional keyword IMMED is used in association with update functions
(ISRT, REPL, HREP, DLET, HDEL) to indicate that the function is to be
performed immediately. Otherwise, the operation is performed later by
the transaction driver.

The keyfield is the name of a field containing the key to be used in the
operation. If the special name KEYFIELD is used, this means: use the
key value already saved by IMSADF II in the concatenated key area.

The segid is the ID of the segment against which the operation is to be
performed.

0K or NOT OK is coded to determine the next statement to be performed,
depending on the outcome of the DL/I operation. If the operation is is
successful (blank status code) and 0K is coded, the statement after the
IF will be performed.

NOTE: VSAM files (KSDS) in the IMS/VS environment are treated like root
only DL/I data bases. In the CICS/05/VS environment, IMSADF II
simulates the DL/I interface using CICS file control commands.
Irrespective of the environment, the developer's view for the support of
VSAM files is the same as that for a root only DL/I data base. DL/I
calls against VSAM files defined either in DBPATH or TSEGS can be coded
in HLAL. The format of the DL/I call expression is the same as above
for VSAM files except that only the following DL/I calls can be coded
for VSAM files:

DLET GHU GNQ GU1 ISRT
GHN GHUU GU HDEL REPL
GHNQ GN GUU HREP SGN

For ESDS files in the CICS/0S5/VS environment, only the ISRT command can
be coded.

THE DL/I CALL FUNCTIONS

The exact use made of the concatenated key in the DL/I call, whether it
is in a related field or KEYFIELD, depends on the function being
paerformed. The main functions are listed below.

Function Meaning Description

GU Get Unique Uses the entire concatenated key to retrieve the
segment with key equal to the one specified and
under parents with keys equal to those specified.
If two segments have the same key value, this
function always retrieves the first.

GUU Get Unique Uses only the parent portion of the concatenated

Unqualified key to retrieve the first segment occurrence under
pairents with keys equal to those specified.

Chapter 6. Complex Transactions 6-19

Function
GN

GNQ

ISRT

Meaning
Get Next

Get Next
Qualified

Insert

Description

Use after a GU or GUU call to retrieve the next
occurrence of the same segment type, or the first
occurrence of a dependent segment type. The call
uses only the parent portion of the concatenated
key, which will normally be the same as that used
in a previous, successful GU or GUU call. The
system will only move forward in the data base to
satisfy the call, but will never go beyond the
parent having the specified key. The GN function
only works within one execution of the
transaction. If the audits finish, the screen is
displayed, the user enters amendments and more
auditing is performed, the data base position
should be re-established with a GU call before a
GN is issued. IMSADF II retains the concatenated
key across such steps in a conversation, but DL/I
loses its position in the data base.

Uses the entire concatenated key to retrieve a
segment with key equal to the one specified under
parents with keys equal to those specified. Like
GN, it moves forward in the data base and should
be preceded by a GU or GUU call. It is a way of
retrieving segment occurrences that have the same
(non-unique) keys.

Uses only the parent portion of the concatenated
key to insert the segment under the parent with
key equal to that specified. The segment being
inserted contains its own key. If it is a
concatenated segment, it will contain the logical
parent's key twice and they must be equal (DL/I
requirement).

With IMMED option:

If the IMMED (immediate) option is used on the
DL/I call statement, the operation is performed at
once.

Without IMMED option:

The segment is not inserted immediately. It is
flagged and inserted later by the transaction
driver. The Auditor sets the segment's
concatenated key in the segment area from the
value in the key field named in the DL/I call. It
turns the segment retrieved flag off and the
changed flag on. Hence, it is not possible to
insert multiple occurrences of the same IMSADF Il
segment ID without the IMMED option. Segment
aliases must be defined for this purpose. (See
"Multiple Segment Occurrences (Twins)" on

page 6-25.)

6-20 IMSADF II Application Development Guide

Function
DLET

HDEL

Meaning
Delete

Delete with
DL/I Get
Hold

Description

Uses the entire concatenated key to delete the
segment with key and parent keys equal to those
specified. The DLET audit operation will return
false and will not be performed unless the segment
is eligible for deletion (via the DLET operand of
the GENERATE statement for the transaction). The
Auditor will return a status code of AM when DLET
eligibility has not been specified.

With IMMED option:

The operation is performed immediately. It must
be preceded by a Get Hold call (GHU, GHUU, GHN, or
GHN). This is a DL/I requirement. That call
supplies the key information for the deletion. Do
not code a key field name other than KEYFIELD with
this operation (it will be ignored). The HDEL
call (with IMMED option) combines a GHU with a
DLET IMMED.

Without IMMED option:

A delete flag is set and the actual operation is
performed later. Do not code a key field name
other than KEYFIELD with this operation (it will
be ignored). The concatenated key in the IMSADF
Il segment area will always be used. The
transaction driver performs a Get Unique call with
the Hold option (GHU) immediately prior to the
actual DL/I DLET call (this is a DL/I
requirement).

Uses the entire concatenated key to delete the
segment with key and parent keys equal to those
specified. The DLET audit operation will return
false and will not be performed unless the segment
is eligible for deletion (via the DLET operand of
the GENERATE statement for the transaction). The
Auditor will return a status code of AM when DLET
eligibility has not been specified.

With IMMED option:

The operation is performed immediately. First, a
DL/I GHU (Get Hold Unique) call is issued, using
the key supplied in the DL/I call statement. That
call supplies the key information for the delete
(DL/I DLET) call, which is performed immediately.
This call normally is used to delete a segment
that has not previously been retrieved.

Note: 1If the segment has been previously
retrieved KEYFIELD will always be used.
Otherwise, the concatenated key passed in the key
field will be used. To override the key of an
HDEL call to a retrieved segment, turn off the
RETRIEVE flag prior to the call.

Without IMMED option:

The HDEL call without the IMMED option is
identical to the DLET call.

Chapter 6. Complex Transactions 6-21

Function
REPL

HREP

Meaning

Replace

Replace with
DL/1I Get
Hold

Description

There is seldom a need to code this function as
the transaction driver will automatically replace
segments retrieved by the Auditor and by special
processing programs if they are changed.

With IMMED option:

The operation is performed immediately. It must
be preceded by a Get Hold call (GHU, GHUU, GHN, or
GHN). This is a DL/I requirement. That call
supplies the key information for the replace. Do
not code a key field name other than KEYFIELD with
this operation (it will be ignored). The HREP
call (with IMMED option) combines a GHU with a
REPL IMMED.

Hithout IMMED option

If the REPL call is coded, it uses the entire
concatenated key, but the segment changed flag is
turned on. Do not code a key field name other
than KEYFIELD (it will be ignored). The
transaction driver performs the GHU and REPL calls
to DL/I later.

The transaction driver will automatically replace
segments retrieved by the Auditor and by special
processing programs if those segments are changed
or marked as changed. It may sometimes be useful
to do it under control of audit rules. This will
be true if further DL/I operations are needed
against the same segment ID before the transaction
driver can perform the update (i.e., before the
Auditor terminates).

With IMMED option:

The operation is performed immediately. First, a
DL/I GHU (Get Hold Unique) call is issued, using
the kay supplied in the DL/I call statement. That
call supplies the key information for the replace
(DL/I REPL call), which is performed immediately.

Note: If the segment has been previously
retrieved KEYFIELD will always be used.
Otherwise, the concatenated key passed in the key
field will be used. To override the key of an
HREP call to a retrieved segment, turn off the
RETRIEVE flag prior to the call.

Without IMMED option:

The HREP call without the IMMED option is
identical to the REPL call.

Other DL/I call functions are available. You can use the Get Next
within Parent (GNP) function, but its operation is equivalent to GN
because of the way IMSADF II uses the parents' keys. (All S$SAs above
the lowest level are qualified.)

6-22 IMSADF II Application Development Guide

Two others may be of use in certain circumstances:

Function Meaning Description
GUl Get Unique Does not use the concatenated key. (Code KEYFIELD
First as the related field.) Retrieves the first
occurrence of the segment in the data base.
SGN Sequential Does not use the concatenated key. (Code KEYFIELD
Get Next as the related field.) Use after GUl, GU or GUU.

Retrieves the next occurrence of the segment_in
the data base, crossing hierarchical boundaries as
necessary.

DL/I STATUS CODES

All the retrieval operations return true if the segment is retrieved and
false otherwise. Similarly, all the update operations (REPL, HREP,
DLET, HDEL, ISRT) with the IMMED option return true if the operation
succeeds (non-blank status code from DL/I) and false otherwise. Delete
calls without the IMMED option return true if the segment is eligible
for deletion and false otherwise. Insert and replace calls without the
IMMED option always return true. Invalid DL/I status codes during data
base updates are the responsibility of the transaction driver unless the
IMMED option is used, in which case the programmer must handle them,
usually by issuing the ROLL call.

After unsuccessful Get calls, it will be necessary to check DL/I status
codes to determine if the failure was due to a normal condition (such as
"segment not found") or an abnormal condition (resulting from an error
in a rule or an IMS/VS DBD or PSB).

The reserved name STATCODE in the high level audit language can be used
to test a DL/I status code.

For example:
IF STATCODE = 'GE'

A list of status codes can be quoted, separated by commas. (See the
high level audit language coding in the example below.)

The most common DL/I status codes are listed below. A full list appears

in the IMS/VS Application Programming Reference Manual (SH20-9026).

Code Cause
GE Segment not found. Can occur after any Get call.

GB End of data base encountered and segment not found. Can occur
after Get Next calls.

GA Segment found but hierarchical boundary crossed when using SGN
function. DL/I Auditor call operation returns true in this case.

AC Segment NAME or PARENT operands in Rules Generator statements
inconsistent with PCB.

AK Field name or segment KEYNAME operands in Rules Generator
statements inconsistent with FIELD statements in DBD.

AM Segment sensitivity or processing options in PCB inconsistent with
call. This can be caused by allowing path calls at the PCB level
but restricting them on certain segments. AM can also be received
if DLET call is issued against a segment that has no DLET
eligibility.

The DL/1 status code can be included in an error message by using the
name VARLIST1l as described under "Error Messages™ on page 4%-16.

Chapter 6. Complex Transactions 6-23

Example

. Read all twin occurrences of a target segment (TS) and accumulate a
field (VALU).

. Upon completion, insert a new segment (NS) containing the
accumulated total in another data base.

. The key of the new segment is derived from a field in the root
segment (FLD1).

Figure 6-16 shows the data base used in this example.

FLD1 Root Segment (RS)
FLD1 Target Segment (TS)
KEY TOTL New Segment (NS)

Figure 6-16. Data Base for DL/I Call Example

Significant Rules Generator statements:

SEGMENT ID=RS, ...
FIELD ID=FLD1,PAUDIT=YES,...

GENERATE TRXID=AC,TRXNAME='ACCUMULATION',
OPT=CVALL,DBPATH=TS,
TSEGS=NS

High level audit language:

SYSID = 555§
SEGID = RS
FIELD = FLD1

¥ MOVE TARGET SEGMENT FIELD TO TOTAL
SSNSTOTL = SSTSVALU
% LOOP ACCUMULATING TOTAL
GETLOOP:IF GN KEYFIELD TS 0K
SSNSTOTL = SSNSTOTL + SSTSVALU
GOTO GETLOOP
ENDIF
IF STATCODE -= "GE,GB'
ERRORMSG = 7777
ENDIF
SSNSKEY = FLD1
IF ISRT SSNSKEY NS OK
NOP
ENDIF

SELECTING THE PCB

By default, a DL/I call against a segment will use the PCB indicated by
the value of the PCBNO operand on the Rules Generator SEGMENT statement
(or on the SYSTEM statement). If it is necessary to reset the PCB
number dynamically, code the statement:

XX PCBNUM = yyy

where xx is the segment ID and yyy is the PCB number (maximum 120)
relative to the first application data base PCB in the PSB. The number
YYy can be a literal or a field containing a numerical value.

The new PCB number will be applied not only to the specified segment xx

but to every segment in the transaction that uses the same PCB as xx.
The change wWill remain in force until a new IMSADF II transaction starts

6-24 IMSADF II Application Development Guide

(i.e., when the user changes OPTION, TRX or a key on the screen or @hen
the Auditor or a special processing program causes a transaction switch)
or until another PCBNUM statement resets it.

MULTIPLE SEGMENT OCCURRENCES (THWINS)

Sometimes it is necessary to allow a user to display and update multiple
occurrences of a segment on the same screen. The TWINS keyword on the
GENERATE OPT=CVALL statement can be used to do this, as the following
example shows.

Using the sample data base, a transaction to display and update multiple
occurrences of the IV segment will be defined. The Data Display screen
is illustrated in Figure 6-17.

INVENTORY MAINTENANCE

ADFE220 ENTER AMENDMENTS OR OPTION 'M' TO SEE MORE DATA
OPTION: TRX: 5IN KEY: 02AN960C10 00 AA16511
PART NUMBER: 02AN960C10 DESCRIPTION: WASHER

T T I o o o o o T o o o o o T T e e e - e e e S e e e e e = e v e S o e e e o v o e e - - - - -
e e e e e T T -

INVENTORY UNIT REQUIREMENTS TOTAL
LOCATION PRICE CURRENT STOCK
00 AAl6511 1.22 131 126
00 AK2877F .00 88 88
00 2222222 2.50 300 540

Figure 6-17. Data Display Screen for Twin Processing Transaction

This screen design allows for three occurrences of the inventory
segment. The root segment displayed in Figure 6-17 has four occurrences
of the inventory segment beneath it. IMSADF II therefore causes the
message ENTER AMENDMENTS OR OPTION 'M' to SEE MORE DATA to be displayed.

Since IMSADF II reserves space in the segment area (in the SPA) for only
one occurrence of each segment ID, vou must define aliases in order to
hold multiple occurrences. The easiest way to do this is to set up the
definition once in a library and employ the Rules Generator INCLUDE
statement to copy the definition several times under different segment
IDs. The library member consists of FIELD statements like these:

FIELD ID=ILOC,KEY=YES, LENGTH=16,P05=1,SLENGTH=10

FIELD SLENGTH=10,ID=PRIC,LENGTH=9,P05=21, TYPE=DEC,DEC=2
FIELD ID=REQC,LENGTH=7,P05=90, TYPE=DEC

FIELD ID=STCK,LENGTH=7,P05=114, TYPE=DEC

This member will be stored in a library (PDS), referenced by the ADFLIB
DD name which may be added to the Rules Generator JCL procedurae MFC1G.

Chapter 6. Complex Transactions 6-25

If three segment occurrences are to be displayed, three segment aliases
must be defined as follows:

SEGMENT ID=1I1,PARENT=PA,NAME=STOKSTAT,LENGTH=160
INCLUDE MEMBER=INVTWIN
SEGMENT ID=I2,PARENT=PA,NAME=STOKSTAT,LENGTH=160
INCLUDE MEMBER=INVTWIN
SEGMENT ID=13,PARENT=PA,NAME=STOKSTAT,LENGTH=160
INCLUDE MEMBER=INVTWIN

INVTWIN is the name of the member that contains the above segment
definition.

The GENERATE and screen image definitions are given belowu:

GENERATE TRXID=IN,DBPATH=I1,TWINS=(I1,I2,I3),0PT=CVALL,
TRXNAME="INVENTORIES',SPOS=SIMAGE

&=1
'INVENTORY INFORMATION
&=2
&SYSMSG
&=1
OPTION: &OPT TRX:&TRAN KEY:&KEY
&=1
PART NUMBER: &5KEY.PA DESCRIPTION: &6DESC.PA
&=1
&=1
INVENTORY UNIT REQUIREMENTS TOTAL
LOCATION PRICE CURRENT STOCK
&5IL0C.1I1 &5PRIC.I1 &5REQC.I1 &§5STCK.I1
&5IL0C.I2 &5PRIC.I2 &5REQC.I2 &55TCK.I2
&5IL0OC.I3 &5PRIC.I3 &5REQC.I3 &5STCK.I3
&ENDS

Notice that the first twin segment appears in the DBPATH operand and is
the target segment of this transaction. 1Its key appears as the
concatenated key on the screen.

As with other data display screens, the user can amend data and cause
the segments to be updated. In addition, the user can change a key.
Changing the key of a DBPATH segment on a screen causes a fresh start to
the transaction. Altering the key of a twin segment, however, (whether
the first twin or not) causes a new segment occurrence to be inserted.
In effect, this is a segment copy operation. The application developer
can restrict this capability as desired by setting a mode of 6
(non-modifiable) against the key field on the screen image definition.

In Figure 6-18, the user has altered data on the third line, to cause
the segment to be replaced, and has changed the key on the second line.
gnzorgunately, the new key entered duplicates one that is already on the
ata base.

6-26 IMSADF II Application Development Guide

INVENTORY MAINTENANCE

ADFD133 DUPLICATE KEY ON DATA BASE: 00 28009126
OPTION: TRX: 5IN KEY: 02AN960C10 00 AAl6511
PART NUMBER: 02AN960C10 DESCRIPTION: WASHER

-.-——.-_—-—-_------—-..-...___..-__-—__———-—-—--——-.._—--------_-—---—-—-:—

INVENTORY UNIT REQUIREMENTS TOTAL
LOCATION PRICE CURRENT STOCK
00 AAl6511 1.22 131 126
00 28009126 .00 88 88
00 2222222 2.50 195 540

Figure 6-18. User Has Altered Some Data and a Key

In Figure 6-19, the user corrects the key on the second line, causing
that segment to be copied and the data to be inserted under the new key.

INVENTORY MAINTENANCE

x%% DATA MODIFIED SUCCESSFULLY %X
OPTION: TRX: 5IN KEY: 02AN960C10 00 AAl6511
PART NUMBER: 02AN960C10 DESCRIPTION: WASHER

o L S L L L L L L E L L L C T T T o o o o o o o o o o o o o o o v e =0 20 o e e o e o o e e o e o o e e e e o e - = - - -

INVENTORY UNIT REQUIREMENTS TOTAL
LOCATION PRICE CURRENT $TOCK
00 AAl6511 1.22 131 126
00 AK2877F .00 88 88
00 22009126 .00 88 88

Figure 6-19. User has corrected the Key

The application developer can stop IMSADF II from performing this
validity check on the key by coding DTWINC=NO on the transaction
GENERATE statement. The check is performed, by default, by the Auditor.
The check is performed, by default, by the Auditor after it has carried
out all the field audits (Pl leg), before starting work on the message
leg (P2). By making the checks at that point, it can detect any changes
to twin keys caused by audit operations or by MAPPER calls made by exits
or sp:cial processing routines. These calls cause twin saegments to be
inserted.

Chapter 6. Complex Transactions 6-27

Note that in the case of non-twin segments (i.e., segments not named in
the TWINS operand) a MAPPER call that changes a key will cause a segment
to be inserted but a move performed via an audit operation will not.

Next the user enters M in the option field in order to receive the next
page, seen in Figure 6-20. The user now has space to enter further
segments. This paging process can go on as long as necessary. Option R
will cause a return to the first twin segment occurrence.

INVENTORY MAINTENANCE

%% ENTER DATA FOR UPDATE Xxx
OPTION: TRX: 5IN KEY: 02AN960C10 00 2222222
PART NUMBER: 02AN960C10 DESCRIPTION: WASHER

. e - e = - - o - v o S W e W s e e M S e e G e M N S T e W G e e W W Wm e e R W me Wm M YW W M W m M Mmoo e

INVENTORY UNIT REQUIREMENTS TOTAL
LOCATION PRICE CURRENT STOCK
00 2222222 2.50 195 540
00 28009126 2.00 630 688

0 0

Figure 6-20. User Has Entered Request M for Next Page

THIN PROCESSING CONTROL

Although many functions are provided as standard, statements are
provided in the high level audit language to assist in developing extra
logie, such as for deleting segments. Conventional subscripting through
PL/I arrays or COBOL OCCURS clause items is not provided in IMSADF II
but something similar is provided with the SETTWIN, SETARRAY, DOTWIN,
and ENDTWIN statements.

A group of statements delimited by DOTWIN and ENDTWIN will be repeated
according to the numbers specified on the DOTWIN statement. Prior to
the DOTWIN, a SETTWIN statement defines the twin segments against which
the repeated statements are to be executed.

For example, to retrieve two segments using the aliases I2 and I3, code:

SYSID = SAMP
SEGID = TW
FIELD = FLAG
PRELIM

P2

SETTWIN = 'I12,I3'

DOTWIN =1 TO 2
IF GN SAPAKEY I2 0K
ENDIF

ENDTWIN

Any reference to I2 or to a field in I2 will be interpreted as a
reference to the current segment for the iteration.

If it were necessary in this application to allow the user to delete
segments by entering the letter D against any line, it would be
necessary to define an array in a pseudo segment. Suppose the fields
DFL1, DFL2, and DFL3 are defined on the screen for this purpose. A
pseudo segment would be defined.

6-28 1IMSADF II Application Development Guide

SEGMENT ID=TW, TYPE=PS

FIELD ID=DFL1,BYTES=1,FAUDIT=YES,MSG=YES
FIELD ID=DFL2,BYTES=1,FAUDIT=YES,MSG=YES
FIELD ID=DFL3,BYTES=1,FAUDIT=YES,MSG=YES

The transaction GENERATE statement would have TSEGS=TW coded. The flags
can be declared through the SETARRAY statement. For example:

SYSID = SAMP
SEGID = TW
FIELD = DFL1
PROCESS

P2

SETTWIN = 'I1,12,I3"
SETARRAY = SATWDFL1
DOTWIN =1 TO 3
IF DFL1 = 'D'
IF DLET IMMED KEYFIELD I1 0K
NOP
ENDIF
ENDIF
ENDTWIN

The maximum number of segments permitted in a SETWIN statement is 100.
The DOTWIN statement can name fields that contain the numbers (must be
decimal, packed or binary) and need not start at one; the range must not
exceed the number of twins.

The SETARRAY statement implicitly declares an array by identifying the
first field. That field must be defined on a Rules Generator FIELD
statement, which must be followed by enough other FIELD statements in
the s:me segment or pseudo segment to satisfy the range of the DOTWIN
iterations.

Both the twin segments and the segment containing the array fields must
be named in the TSEGS operand or the TWINS operand (or named or implied
in the DBPATH operand) of the transaction GENERATE statement.

PRIMARY KEY AUDIT

Primary key audit can be used on the first segment named in the TWINS
operand just as on any DBPATH segment.

The COFIELD facility can be used also to edit the key entered by the
user on the primary key selection screen or into the concatenated key
area on any screen. The primary key audit logic is responsible for
performing this editing.

Primary key audit or COFIELD are not permitted on twin segment IDs other
than the first one named in the TWINS operand value. No SETTWIN,
SETARRAY or DOTWIN statements are to be used in key audit.

Where twins other than the first require editing of keys, this should be
done with audit rules in the PROCESS phase.

Thf following example assumes that a pseudo segment has been defined as
follows:

SEGMENT ID=TW,TYPE=PS

FIELD ID=FLAG,LENGTH=1 TO CONTROL SK AUDIT
FIELD ID=KEY1l,LENGTH=10 COFIELD

FIELD ID=KEY2,LENGTH=10 DISPLAYED FORM OF KEY
FIELD ID=KEY3,LENGTH=10 DISPLAYED FORM OF KEY

The first twin segment Il now has the following keyword settings.

SEGMENT ID=I1,PARENT=PA,NAME=STOKSTAT,LENGTH=160

FIELD ID=ILOC,KEY=YES,LENGTH=16 ,NAME=STOCKEY,KAUDIT=Y,
COFIELD=KEY1.TW,PAUDIT=YES,AUDIT=YES, FAUDIT=YES

FIELD ID=PRIC,SLENGTH=10,LENGTH=9,P05=21, TYPE=DEC,DEC=2

FIELD ID=REQC,LENGTH=7,P05=90, TYPE=DEC

FIELD ID=STCK,LENGTH=7,P0S=114,TYPE=DEC

Chapter 6. Complex Transactions 6-29

The transaction is defined now as follows, with the pseudo segment
fields on the screen image. ‘

GENERATE TRXID=IN,DBPATH=(I1),0PT=CVALL,
TRXNAME="INVENTORIES',SPOS=SIMAGE,DLET=(I1,12,1I3),
TWINS=(I1,12,1I3),

TSEGS=TW
&=1
*INVENTORY INFORMATION
&=2
&SYSMSG
&=1
OPTION: &OPT TRX: &TRAN KEY: &KEY
&=1
PART NUMBER: &5KEY.PA DESCRIPTION: &6DESC.PA
&=1
&=1
INVENTORY UNIT REQUIREMENTS TOTAL
LOCATION PRICE CURRENT STOCK
&5KEY1.TW &5PRIC.I1 &5REQC.I1 &55TCK.I1
&5KEY2.TW &5PRIC.I2 &5REQC.I2 &55TCK.I2
&5KEY3.TW &5PRIC.I3 &5REQC.I3 &55TCK.I3
&ENDS

The following audit logic is responsible for moving the pseudo segment
fields entered by the user into the corresponding data base key fields.

KEY
PO
¥ PRIMARY KEY AUDIT MOVES COFIELD TO KEY FIELD OF FIRST TWIN
SAI1ILOC = SATWKEY1
PROCESS
Pl
* AUDIT MOVES THE DISPLAYED TWIN KEYS TO THEIR DATA BASE FORMS
SETARRAY = SATWKEY1
SETTWIN = 'I1,I2,I3"
DOTWIN =1 70 3
IF SATWKEY1 CHANGED = ON
SAI1ILOC = SATWKEY1
ENDIF
ENDTWIN

SECONDARY KEY AUDIT

Just as secondary key audit can be used to limit the display of segment
occurrences on the secondary key selection screen, so it can be used on
the data display screen with twins. In fact, secondary key selection is
no: Perfgrmed for twins, since that function is performed in twin
retrieval.

When writing secondary key audit rules for twins, do not use SETTWIN,
SETARRAY or DOTWIN. MWrite the rules to apply to the first twin segment
ID. IMSADF II will automatically repeat the rules when retrieving
subsequent segments.

The following example illustrates how to prevent one key value from
being displayed and to stop retrieval at the first key beginning with 9.

KEY
P1
¥ SECONDARY KEY AUDIT EXCLUDES OCCURRENCE 22332233
IF SAI1ILOC = '22332233"
SKSDISP = OFF
ELSE
¥ SECONDARY KEY AUDIT STOPS RETRIEVAL WHEN A KEY STARTS WITH 9
IF SAILILOC = '9"
SKSDISP = STOP
ENDIF
ENDIF

If COFIELD is used for key editing as discussed under primary key audit,
a secondary key audit routine is also needed to move the key value of

6-30 IMSADF II Application Development Guide

the first twin back into the pseudo segment field. A preaudit is also
needed to do the same for all the other twins.

The following example completes the picture for COFIELD and twins,
showing the audit rules needed to move from the data base form to the
displayed form in the pseudo segment.

KEY

Pl
¥ SECONDARY KEY AUDIT EXCLUDES OCCURRENCE 22332233
IF SAI1ILOC = '22332233"
SKSDISP = OFF
ELSE
% SECONDARY KEY AUDIT STOPS RETRIEVAL WHEN A KEY STARTS WITH 9
IF SAI1lILOC = '9°
SKSDISP = STOP
ELSE
* FIRST TWIN KEY NEEDED FOR CONCATENATED KEY.
* USE FLAG TO PREVENT OTHER TWIN KEYS OVERLAYING IT.
IF SATWFLAG = " !
SATWKEYLl = SAIlILOC
SATWFLAG = '1°
ENDIF
ENDIF
ENDIF
PRELIM
Pl
¥ RESET FLAG USED IN SECONDARY KEY AUDIT
SATWFLAG = ' !
¥ PREAUDIT MOVES THE TWIN KEY FIELDS TO THEIR DISPLAYED FORMS
SETARRAY = SATWKEY1
SETTWIN = 'I1,I2,I3"
DOTWIN =1 T0 3

IF SAI1ILOC -= " '
SATWKEY1 = SAIlILOC
ENDIF
ENDTWIN

Notice the use of a flag field. The secondary key audit processing is
performed against each twin segment. The flag is used to ensure that
only the key of the first twin is moved into the COFIELD. During
preaudit, this flag is reset ready for a later re-retrieval should the
user enter the M or R options or cause insertions or deletions.

TEXT UTILITY

The text utility function exists to handle multiple segment occurrences
with certain restrictions:

. Segments must be dependent and have a textual format

. Segment key fields are no more than 20 bytes

U A single data field does not exceed 77 bytes

. Total segment length including key and data must be 78 bytes or less

Several segments in the IMSADF II dynamic rules data bases are of this
kind. An example is the audit data descriptor segment.

Figure 6-21 shows the screen. The user reaches ijt by entering OPTION D
and TRANSACTION MODE 5 on the Primary Option Menu. He will be prompted
for a transaction ID and a parent key by the Secondary Option Menu and
by key selection if he does not enter them on the Primary Option Menu.

Chapter 6. Complex Transactions 6-31

AUDIT DATA BASE

UPDATE TRANSACTION: FA DATA DESCRIPTOR TEXT
TRX: 5D2 KEY: SAMPYYYYSSRSFLD1
OPTION: _ SEQ1: SEQ2:
UPDATE

OPTIONS: C=TERMINATE, I=IGNORE CHANGES, Q=EXIT TO SIGNON,
DLET=DELETE SEQ1l TO SEQ2, POS=POSITION TO SEQl;

#H - l-——————— 2-=====

01 CO 02

02 36KEYFIELDO0304%

03 C4SSNSTOTLO2

04 37 05 7777

05 11SSNSKEY 06 1111

06 36SSNSKEY 0700

07 01 00

Figure 6-21. Text Utility Example Using the Audit Data Base

Here are the Rules Generator statements that built this transaction.
First the operation descriptor segment is defined:

SEGMENT ID=FA,LENGTH=28,NAME=MFFAARO1L,
KEYNAME=MFFAKEYF,PARENT=GF

FIELD ID=SEQ#,LENGTH=2,KEY=YES,REQ=YES,DISP=YES,
MODE=5, SNAME="SEGMENT SEQ'
FIELD ID=DCDE, SNAME="DESCRIPTOR CODE',LENGTH=2,REQ=YES,REL=YES
FIELD ID=RFLD,SNAME="RELATED FIELD',LENGTH=8
FIELD ID=NTRU, SNAME="NEXT TRUE SEQ NO',LENGTH=2,REL=YES
FIELD ID=NFLS,SNAME="NEXT FALSE SEQ NO',LENGTH=2,REL=YES
FIELD ID=MSG#,SNAME="MESSAGE #',LENGTH=4

The GENERATE statement to define a text utility transaction is similar
to an ordinary transaction GENERATE statement. Here is a standard
processing transaction GENERATE statement:

GENERATE TRXID=DF, TRXNAME='FIELD AUDIT DATA DESCRIPTOR',
OPT=CVALL,DBPATH=FA

Here is the text utility transaction definition:

GENERATE TRXID=D2,TRXNAME='FA DATA DESCRIPTOR TEXT',
OPT=TUALL,DBPATH=FA

Other GENERATE statements (OPT=CVSYS, SOM, STLE, SGALL) for text utility

are the same as for standard processing, as are the IMS/VS transaction
and PSB definitions.

6-32 IMSADF II Application Development Guide

CHAPTER 7. SECONDARY TRANSACTIONS AND IMS/VS MESSAGE ROUTING

This chapter describes secondary transactions and message routing in an
IMS/VS environment. The analogous facilities in a CIC5/70S5/VS
environment are described in "Secondary Transaction - Output Message
Routing” in IMS Application Development Facility II Version 2 Release 2

Application Development Reference.

IMS/VS provides facilities for application programs to send messages to
terminals, identified by logical terminal name, and to programs,
identified and invoked by a transaction code. It is required that
transaction codes differ from logical terminal names in the IMS/VS
system definition so that the same application programming conventions
can be used for both.

IMSADF II invokes the IMS/VS functions when requested to do so by
appropriate rules. Messages can be sent to transaction programs written
in normal COBOL, PL/I, Assembler or FORTRAN as well as to transactions
implemented using IMSADF II. The receiving, or secondary, transactions
can be batch message processing programs (BMPs) or nonconversational
message processing programs (MPPs) but not conversational MPPs. For
message switching between conversational transactions, see

Chapter 6, "Complex Transactions."

If a conversational IMSADF II transaction sends a message to a secondary
transaction (nonconversational), the conversation continues without the
end user being aware of the secondary transaction. This is because the
secondary transaction is executed asynchronously and cannot communicate
with the end user's terminal as long as the conversation remains active
(e.g., until the user signs off).

To request message sending to terminals (e.g., printers, displays) or to
secondary transactions, three items of information must be supplied:

. The format and content of the message.

This is done via an Output Format Rule or via a GENERATE statement
with OPT=0MFS.

. The conditions under which the message is to be sent.

This is done by means of the STX operand on the transaction GENERATE
statement or by audit rules.

L3 The routing of the message; that is, to which transactions or
terminals it is to be sent.

gouting information must be placed in the IMSADF II Message Data
ase.

QUTPUT FORMAT RULE

The format and content of a message to be sent to a transaction (IMSADF
II or not) are defined through the Rules Generator. An OQutput Format
Rule is defined by a SEGMENT statement with TYPE=OUT. Special FIELD
statement operands permit text and system information, as well as data
fields, to be included in a message. The data fields are derived from
fields in the transaction, in data base or pseudo segments.

Example
SEGMENT ID=FS,LENGTH=38, TYPE=0UT
FIELD TEXT="SAMPB0O5C 5SC',LENGTH=12
FIELD ID=KEY,SEGID=PA,LENGTH=17
FIELD ID=KEY,SEGID=PD,LENGTH=2, TYPE=DEC
FIELD ID=INVC,SEGID=PD,LENGTH=1
FIELD KWNAME=SPAMANNO

Chapter 7. Secondary Transactions and IMS/VS Message Routing 7-1

The full name of the Output Format Rule is of the form:
sSORXX01
where:

8s is the first two characters of the application system ID
OR is a literal

XX is the output segment ID

0l is a literal (note letter 0, number 1)

As the example shows, textual portions of the message are defined with
the TEXT operand of the FIELD statement. System information is included
in the message by means of the KWNAME operand.

Here is a list of KWNAME operand values with their default lengths.
These may be varied by use of the LENGTH operand. All are alphanumeric
unless otherwise stated.

NAME LENGTH DESCRIPTION

SPATERM % Terminal no: T# = a literal and nn = bytes 7
and 8 of the logical terminal name if those
bytes are numeric; otherwise nn is blank

SPAMANNO 6 User ID signed on

SPAUSER 11 Name of user signed on (from Sign-0On Profile
Data Base)

SPAPROJ 1 First byte of project/group signed on

SPAGROUP 1 Second byte of project/group signed on

SPATRX 3 Current transaction mode and ID

SPATRXCD 1 Current transaction mode

SPATRXSG 2 Current transaction ID

SPAKEYID 255 Concatenated key for current transaction

SPAERMSG 50 Field that contains system message displayed
to end user

SPASHOTR 8 IMS/VS transaction code in progress

SPATRANS 8 IMS/VS transaction code at beginning of SPA

SPASYSID 4 Application system ID

SPADATE 5 Date user signed on (Julian date: YYDDD)

SPASIGNON 6 Time user signed on (HHMMSS)

SPALTERM 8 End user's logical terminal name

SPACGTRX 3 New transaction mode and ID requested by
special processing program

In the example, the layout of the message begins with text defining an
IMS/VS transaction code. This is standard IMS5/VS practice when sending
messages to secondary transactions, so that the receiving program sees
the message in the format in which terminal messages are received. In
this case, the receiving program is an IMSADF II nonconversational
application, which also requires the three-character transaction mode
and ID as shown. See Chapter 11, "Nonconversational Processing™ for a
fuller explanation of transaction codes.

The layout of the message must be defined to suit the receiving program.

7-2 IMSADF 1I Application Development Guide

Data fields in the message have the SEGID operand to indicate which
segment in the sending transaction each field is coming from. In the
same Rules Generator run there must be fields with the same IDs defined
in data base or pseudo segments with IDs matching the value of SEGID.
Thus, statements like the following will be present:

SEGMENT ID=PA, LENGTH=50,PARENT=0, NAME=PARTROOT

FIELD ID=KEY,LENGTH=17,KEY=YES,NAME=PARTKEY

SEGMENT ID=PD, LENGTH=85,PARENT=PA, NAME=STANINFO

FIELD ID=KEY,LENGTH=2,KEY=YES, TYPE=DEC, NAME=STANKEY
FIELD ID=INVC,LENGTH=1,P05=21

These segments must be present in the transaction that sends the message
described by the output segment FS.

OUTPUT MFS

Messages sent to a terminal can be implemented using the facilities
described above. However, you must write your own MFS statements if the
receiving terminal requires the use of the IMS/VS Message Format
Service.

The Rules Generator will generate an Output Format Rule and the required
MFS source statements for sending messages to printers when a GENERATE
statement is coded as follows:

GENERATE OPT=0MFS,SP0S=SIMAGE,
ORID=xx,PRINTER=p

where:

XX is the output segment ID
p is the printer terminal type

The xx value will be used to refer to the message in the transaction
that sends it. It should be different from the ID of any segment.

Note: Do not define a SEGMENT statement with TYPE=0UT with this segment
ID; the Rules Generator will build an Output Format Rule from the
GENERATE OPT=0MFS statement.

The p value can be as follows:

1 3J270P model 1 (119 characters per line)
2 3270P model 2 (119 characters per line)
3 SCS1 printer (131 characters per line)

If the PRINTER operand is omitted, MFS statements are generated for a
display terminal. In this case, the DEVNAME and DEVTYPE operands can be
coded to select the appropriate device type for formatting. The
GENERATE OPT=0MFS statement must be followed by an image of the output
like a screen image. Since printer lines are wider than 80 bytes, each
line to be printed is represented by two lines in the image. The first
66 bytes of a printed line are represented by one line in the image and
the remaining bytes (53 or 65) by the succeeding line in the image.

The screen image that defines a printed format can include fields from
segments defined in this Rules Generator run. These segments must be
present in the transaction that sends the message.

The image can use the tabular form. It cannot include the system fields
or the KWNAME operand values listed in the previous section.

Example

The following printer image refers to fields in the PA and PD segments.
Notice that the space control lines &=n must be followed by a second

line because each pair of lines corresponds to one line in the image.
Comment lines (beginning &%), however, are not treated in pairs.

Chapter 7. Secondary Transactions and IMS/VS Message Routing 7-3

GENERATE OPT=0MFS, SPOS=SIMAGE,
ORID=AV,PRINTER=2

PART STATUS
&% THE NEXT 2 LINES ARE A PAIR

&=5

PART NUMBER: &6KEY.PA
&4

INVENTORY CODE: &6INVC
&ENDS

DEFINING MESSAGE SENDING CONDITIONS

The transaction that sends the message is defined with the usual
GENERATE statement but with an extra operand indicating that IMS/VS
message sending is required. Here is an example:

GENERATE TRXID=PM, TRXNAME='PART MAINTENANCE',
OPT=CVALL,DBPATH=PD,
STX=(TRX,F$,0K,4)

The STX operand reads: send a secondary transaction (TRX) message, of
format FS, if the transaction terminates without error (0K) when adding
a new data base segment (transaction mode 4).

The full definition is:
STX=(MFS ,xx [,0K][,ER] ,mode)
TRX

where,

MFS means use an MFS Message Output Descriptor (MOD) named ssORxx01,
the full name of the Output Format Rule. (Note the literals -
letters OR and letter 0 numeral 1.) The MFS may be generated with
a GENERATE OPT=0MFS statement, or you may code it in accordance
with this naming convention.

TRX means do not use MFS. The message is going to a secondary
transaction or a terminal that does not require MFS.

XX is the ID of the TYPE=0UT segment that defines the message format
or is the value of the ORID operand on a GENERATE OPT=0MFS
statement.

OK means send the message if the transaction terminates without
error.

ER means send the message if the transaction terminates with an
error. In standard processing the error can be an invalid DL/I
status code received when attempting to update the data base or an
error condition during preaudit. An Auditor error during the
update phase does not count, since the user is expected to correct
the error and allow the transaction to complete successfully.

mode is the transaction mode (1 to 6) in which the transaction must be
used in order for the message to be sent. If, for instance, the
message should be sent in modes 4 and 5, code two similar STX
operands on the same GENERATE statement, one with n=¢ and the
other with n=5. If n=0, all the modes (1-6) are implied.

One or both of 0K or ER may be coded with the mode, which is then

required. When both are coded, the message will be sent whether the
transaction terminates successfully or not.

7-4 IMSADF II Application Development Guide

CONTROLLING MESSAGE SENDING THROUGH THE AUDITOR

It is also possible to control message sending through the Auditor. In
that case, the 0K, ER, and mode operands values should not be present at
all.

To control message sending through the Auditor, simply code the
statement SEND 'ssORxx01', naming the intended Output Format Rule within
the quotes. The operation code can be used in any of the three Audit
data base legs during preaudit or the update phase. The function is
quite separate from automatic message sending.

Messages will not normally be sent at the time the Auditor processes the
SEND statement but later, under the control of the transaction driver,
after data base updates have been performed. The values of any fields
included in messages will be the values at the time they are sent.

If you want to send a message at the time the Auditor processes the SEND
statement, it should be written with the immediate option thus:

SEND IMMED 'ssORxxol'.

If a message is to be sent using the message routing capability of
IMS/VS Multiple Systems Coupling (MSC), code the DIRECT statement thus:

DIRECT 'ssORxxol' TO "msclink!'

where msclink is the name of the MSC link. The IMS/VS Application
Programming Manual (SH20-9026) explains the use of MSC.

Example
If the inventory code falls below 7, send an immediate secondary
transaction to check stock levels and print a change in part status
message.
Significant Rules Generator statement:
GENERATE TRXID=PM, TRXNAME='PART MAINTENANCE',
OPT=CVALL,DBPATH=PD,
STX=(TRX,FS),STX=(MFS,AV)

High level audit language:

SYSID = SAMP
SEGID = PD
FIELD = INVC
IF INVC < 7

SEND IMMED 'SAQORFSO1'
SEND 'SAORAVO1®
ENDIF

Up to 60 secondary transaction or output terminal messages can be sent
by a transaction. The STX operand can be coded many times on the
GENERATE statement and many Output Format Rules may be used.

MESSAGE ROUTING

You must tell IMSADF II where to send the message if MFS is used to
format a message to a terminal. This is indicated in the STX operand of
the GENERATE statement. Message destinations will be either transaction
codes or logical terminal names.

Routing information is stored in the Message Data Base. A routing

header must be created for each Output Format Rule. Figure 7-1 shows
its layout. The full name of the Output Format Rule is the key.

Chapter 7. Secondary Transactions and IMS/VS Message Routing 7-5

8 8 62

Full name of Destination logical
Qutput Format Rule terminal or secondary Comments
ssORxx01 transaction code

Figure 7-1. Layout of Routing Information

Figure 7-2 illustrates the online transaction for creating and
maintaining the routing header.

MESSAGE DATA BASE
ADD DATABASE: MESSAGE SEGMENT: HEADER
OPTION: TRX: 4SD KEY: SAORFSO1
%%% ENTER DATA FOR ADD %xx
IF NO INPUT LOGICAL TERMINAL NAMES ARE TO BE ADDED TO
THIS MOD THEN PLEASE ENTER THE DEFAULT ALTERNATE TERMINAL
PCB NAME AS THE DESTINATION FOR ALL MESSAGES, OR PLACE
IN THE FIELD THE KEY WORD -IOPCB- TO INDICATE THAT THE
MESSAGE SHOULD BE SENT BACK TO THE INPUT LOGICAL TERMINAL

PCB.
INPUT TRANS MOD NAME ------ SAORFSO1
DEFAULT ALTERNATE PCB -==--- SAMPBOSC
COMMENTS --- INITIATE A STOCK CHECK

Figure 7-2. Creating a Routing Header

For certain message sending applications it is necessary to direct
messages to different terminals depending on which terminal originated
the transaction. Typically, a number of terminals at one location will
require printout on a local printing terminal while terminals elsewhere
wish their printout to be directed differently. To support such message
routing, detail segments can be placed under the routing header in the
Message Data Base (see Figure 7-3).

SD
Qutput Format Rule name (key)
Secondary Default logical terminal
Destination Comments
LT
Originating logical terminal (KEY)
Logical Alternate logical terminal, IMS/VS
Terminal Transaction name or IOPCB

Figure 7-3. Message Routing to Multiple Terminals

7-6 IMSADF II Application Development Guide

MESSAGE DATA BASE

ADD DATABASE: MESSAGE SEGMENT: LOGICAL TERMINAL

OPTION: TRX: 4LT KEY: SAORFS011L3277099

*%% ENTER DATA FOR ADD xxx
THIS SEGMENT DESCRIBES THE DESTINATION OF FROM 1 TO 8
SECONDARY TRANSACTIONS. THE DESTINATION NAME MAY BE
A LOGICAL TERMINAL NAME, AN IMS TRANSACTION NAME, OR
IT MAY BE THE KEY WORD -IOPCB-. IF -IOPCB- IS SPECI-
FIED, THE MESSAGE WILL BE ROUTED BACK TO THE INPUT
TERMINAL. THERE MUST BE 1 LTERM SEGMENT FOR EACH
DEFINED LOGICAL TERMINAL USING THIS FACILITY.

INPUT TRANS MOD NAME -------- SAORFSO1

INPUT LOGICAL TERMINAL NAME - L3277099

ALTERNATE TERMINAL 1 NAME --- L3286001
ALTERNATE TERMINAL 2 NAME ---
ALTERNATE TERMINAL 3 NAME ---
ALTERNATE TERMINAL 4 NAME ---
ALTERNATE TERMINAL 5 NAME ---
ALTERNATE TERMINAL 6 NAME ---
ALTERNATE TERMINAL 7 NAME ---
ALTERNATE TERMINAL 8 NAME ---

Figure 7-4. Creating a Message Routing Detail Segment

For each logical terminal that can originate the transaction, a detail
segment is set up with the originating logical terminal name as key and
with the destination logical terminal names (up to eight are allowed) as
data. Figure 7-4¢ jillustrates the LT transaction that creates and
maintains the detail segments. If the system is performing message
sending and finds no detail segment with key equal to the originating
logical terminal name, it sends the message to the destination logical
terminal name in the routing header, which is thus the default
destination.

Once again, the same segment types in the Message Data Base are being
used but the message text, automatic message sending, and user message
header segments are kept apart from the IMS/VS message routing headers
by the key value naming convention.

Chapter 7. Secondary Transactions and IMS/VS Message Routing 7-7

7-8 1IMSADF II Application Development Guide

CHAPTER 8. SPECIAL PROCESSING

Previous chapters have described how to develop transactions by writing
static and dynamic rules. Processing controlled solely by rules is
known as "standard processing."

Special processing is an extension to standard processing. Special
processing routines (SPRs) are written in COBOL, PL/I, or Assembler.
They are executed under the control of the transaction driver, but
perform functions that the transaction driver cannot do. Rules are
coded to control the transaction driver in much the same way for special
as for standard processing.

Special processing is used for complex, application-dependent logic for
which audit rules are too cumbersome. The Auditor does not provide
nested array manipulation. Therefore, coding that applies to nested
groups of repeated fields or segments must be coded repetitively for
each occurrence with different names.

OVERALL FLOW

The end user does not have to distinguish between standard and special
processing transactions. On the Primary or Secondary Option Menu he
selects a transaction ID; the system takes care of switching to the
correct program if the transaction is defined as special processing on
the Rules Generator GENERATE statement.

Figure 8-1 shows how the system switches to a unique transaction driver
for each special processing routine. (Compare Figure 8-1 to Figure 2-1
on page 2-2.)

MFC1TOM ssssVix or ssssTcce
(Common Module) (Transaction Driver)

/FORMAT ssss

Primary
Sign—0n —> Key
Selection
Primary >| Secondary
Option Key
Menu Selection
Secondary > Data
Option Display
Menu
|
SS5S5S application system

tx = transaction ID

Figure 8-1. Conversational Program Flow for Special Processing
Although switching to the transaction driver is transparent to the user,
the transaction itself may not behave exactly like standard processing.

To begin with, key selection is optional: the program may retrieve
segments directly without the user interaction provided by key

Chapter 8. Special Processing 8-1

selection. The program may depart from the usual convention of
displaying data, receiving amendments, and performing updates. Most
commonly, however, it will use all the functions of standard processing
and simply perform extra computations and updates at the time the
transaction driver performs its updates. Figure 8-2 shows how the
program can be invoked (using the BYPASS operand of the GENERATE
statement).

standard Processing special Processing

Option menus

|

Optionally, no key selection
>Key selection (KEYSL=N0).|
<

|

>Transaction driver —— > Optional call to SPR

<——————————1_________ (BYPASS=YES).
Return code tells transaction

driver what to do next.

1

DISPLAY

1

>Transaction driver
receives updates —— > Call SPR.
< Return code tells transaction
driver what to do next

|

>Auto message and
secondary transaction
sending

—>] DISPLAY

Figure 8-2. Standard vs. Special Processing

STATIC RULES

On the GENERATE statement for the transaction, code the following
additional operands: :

SPECIAL=YES Requests special processing.

BYPASS=YES Bypass the initial screen display and call the special
processing routine (see Figure 8-2). The SPR may request
the transaction driver (via a return code) to continue
with screen display. Preaudit processing is performed
prior to calling the SPR.

BYPASS=NO Do not call the SPR before screen display. (This is the
default.) The program will always be called during
update (in transaction modes 1 to 5 - not in mode 6 which
has no update phase) regardless of the BYPASS operand.

KEYSL=YES Requests Primary and Secondary Key Selection for the

DBPATH segments. The default is YES if a DBPATH is coded
and NO if not.

8-2 IMSADF II Application Development Guide

LANG=COBOL Programming language in which the SPR is written. COBOL
PL/I is the default. ASMINT means Assembler.
ASMINT

For example:

GENERATE TRXID=WI, TRXNAME='WORKING INVENTORY',
OPT=CVALL,DBPATH=(PD,1IV),
TSEGS=(WC,WX),SPECIAL=YES,
LANG=PL/I,BYPASS=YES,KEYSL=YES

This GENERATE statement could be coded for the sample problem data base
introduced in Chapter 1, "IMSADF II Concepts and Overview." The
special processing routine will rely on key selection to retrieve
inventory and standard information segments (IV, PD, and PA) but will
retrieve a work center segment (WC) from another data base under its ouwn
control before the screen is displayed. It does this itself because the
key field must be derived from data in the part record through a complex
calculation.

The TSEGS operand is used to reserve space in the segment area (in the
SPA) for segments to be retrieved outside key selection. WX is a pseudo
segment ID; these too can be used in special processing.

SCREEN_ FORMATTING

Just as in standard processing there is one screen layout for each
transaction ID. The screen can have the default layout (SP0S=AUTO0) or
use screen image (SPOS=SIMAGE).

There is one difference in default screens for special processing and it
concerns the default modes of fields in data base segments (DBPATH or
TSEGS). If MODE is not specified on the SEGMENT or FIELD statement, it
is assumed to be 6 (nonmodifiable) for all fields. For standard
processing, the default mode is 6 for keys and 5 (modifiable) for
others. Pseudo segment fields still default to mode 5.

The reason for the difference is that special processing routines do not
always update all the data base segments displayed; updates are under
program control. The user should be allowed to amend data base fields
on the screen only if the corresponding data base updates will be
performed.

PROGRAM CALLS

A special processing routine is entitled to use the services available
to the transaction driver itself. Normally, it does not perform direct
DL/I or DB2 calls although that is possible. It can rely on key
selection to retrieve segments specified in DBPATH. It can also request
the transaction driver to update all segments or tables (DBPATH and
TSEGS) that are changed or marked as changed. Using these services, it
is easy to write a program that performs the functions of standard
processing. Such a program is given later. For most applications it is
advantageous to begin with a copy of this base program and write
enhancements to it rather than set out from scratch.

The following is a subset of the call services available to a special
processing routine. For a full list, refer to the IMS Application
geveloement Facility II Version 2 Release 2 Application Development
eference.

SEGUPDTE Requests the transaction driver to perform the data base
updates as if in standard processing, replacing changed
segments or tables (including those changed by the SPR),
inserting and deleting according to the rules and taking
auditing into account.

SETFLAG Controls the operation of the SEGUPDTE routine or the

transaction driver by setting the segment changed, retrieved,
and delete flags.

Chapter 8. Special Processing 8-3

AUDITOR Auditing will be done during the update phase only if the SPR
calls for it. On the phase prior to display (BYPASS=YES),
preaudit will be performed after the transaction driver has
loaded the DBPATH segments but before the SPR is invoked.
Therefore, the SPR should not call the Auditor in the preaudit
phase.

MAPPER When the program needs to access data in segments, it calls
the Mapper. The selection of fields required by the program
is defined in a "mapping segment." Thus, the program only
receives or sends those fields with which it is concerned and
is independent of the layout of the segments. It is not even
concerned with the hierarchical relationships and keys of the
segments if key selection and the SEGUPDTE call are used.

SEGHNDLR If the data base retrievals and updates performed by the
transaction driver and DL/I Auditor calls are not enough, the
special processing routine can issue DL/I calls through the
IMSADF II segment handler. These calls are at the same level
as DL/I Auditor calls; keys are passed in the call but the
program need not handle DL/I segment search arguments (5S5As).
Several subroutine calls are available, however, to allow the
SPR to manipulate keys and SSAs if necessary.

SQLHNDLR This call allows DB2 tables to be processed in the same manner
the SEGHNDLR call above processes DL/I segments. The call
references precoded static SQL functions in a Table Handler
Rule.

DISPLAY The SPR can write to display screens and printer terminals
using the DISPLAYA, DISPLAYL, DISPLAYE and DISPLAYP calls.
This is in addition to sending secondary transactions.

Each call sets a return code, which must be checked by the special
processing routine. The return code is placed in a communication field
SPARTNCD. This is one of several fields wherein the program
communicates with the transaction driver or subroutines. These fields
are declared in a COPY or INCLUDE member which is provided with the
product and is to be compiled into each SPR. This member defines the
SPA (scratch pad area) which is used as a general communication and work
area by IMSADF II. It is passed to the SPR on entry as a parameter by
the transaction driver. See "Program Linkage" on page 8-21.

RETURN CODE CONVENTIONS

The SPR sets a return code to the transaction driver using the Operation
System Convention. For example, to set a return code of 8:

In COBOL: MOVE 8 TO RETURN-CODE.
GOBACK.

In PL/I: CALL PLIRETC(8);
RETURN;

In Assembler: LA 15,8
BR 14

AUDITOR CALL

In COBOL: CALL "AUDITOR'.
In PL/I: CALL AUDITOR;

All AFA, field auditing, and message leg rules (PO, Pl, and P2) will be
executed for all fields appropriately marked, just as in standard
processing. The SPR should check the return code (SPARTNCD). If audit
errors occur, a return code of 8 or more will be set. In that case, the
SPR should return to the transaction driver, setting a return code of 8,
which will cause the error message display to proceed as in standard
processing. The fields in error will be highlighted and the user may
enter E to view the messages. When he corrects the errors, the
transaction driver will call the program again, and it should call the
Auditor. This loop can be repeated as nften as necessary.

8-4 IMSADF II Application Development Guide

See "Return Codes™ on page 8-2% for a complete list of return codes that
XhS-EPR can set. The codes that can be returned in SPARTNCD from the
uditor are:

Code Meaning

0
§

12

16

All audits successful. No messages to send.

All audits successful. Messages exist for the transaction driver
to send. This means that the Auditor has set a flag that will
cause the transaction driver to perform automatic message sending
when control is returned to it.

TRX mode or TRXID changed.

Warning messages. The Auditor has found one or more warning
messages and no errors. The SPR should return control to the
transaction driver with return code 8 to display the warning
messages. If the user enters U on the message screen, the SPR is
recalled with 99 in SPARTNCD. The SPR can then perform the
appropriate updates. If the user does not enter U, the segment
display screen is redisplayved for additional modification.

Data failed audit. The Auditor has found an error in the
validation of one or more fields. The SPR should return control
to the transaction driver at once with return code 8 to display
the error notification messages.

Audit descriptor not found. The field was marked for auditing,
but the expected audit rule was not present. The SPR should
return control to the transaction driver at once with return code
8 to display the error notification and messages.

Field not found during automatic field assignment. A field
specified for automatic field assignment in the Input Transaction
Rule was not present in a Segment Layout Rule currently in the
SPA. Correct the discrepancy between the rules.

SEGUPDTE CALL

In COBOL: CALL 'SEGUPDTE'.
In PL/I: CALL SEGUPDTE;

Segments or tables changed or added by the user at the terminal, by the
Auditor, or by the SPR using the Mapper are replaced or inserted.
Segments or tables marked for insertion, deletion or replacement by DL/I
Auditor calls are inserted, deleted, or replaced, respectively. If the
DATACOMP operand has been coded on the GENERATE statement for the
transaction, the segments named in that operand value will first be
retrieved and compared with their original values saved in the SPA prior
to display. If any of them are unequal, no data base updates will be
performed.

If the SEGUPDTE subroutine encounters an invalid DL/I or DB2 status code
while performing updates, and if it has already updated some data
successfully (a partial update situation), it issues a DL/I ROLL call.
This will undo the updates performed by SEGUPDTE and by the SPR in the
current execution; a message is sent to the user's terminal and he must
sign on and start again. Return is not made to the SPR in this case.

Chapter 8. Special Processing 8-5

The codes that can be returned in SPARTNCD from the SEGUPDTE call are:

Code Meaning

-4 Segment/Table Handler Rule not found in Batch Driver Rule.
Successful completion.

4 Nonblank status code returned from a DL/I call but no updates vet
performed. The SPR should return control to the transaction
driver at once with return code 28 to display the error message.

12 Data compare (DATACOMP) failure in conversational processing.

16 No segments or tables have been changed or marked for deletion.
Therefore, no updates have been performed.

SETFLAG CALL

Deleting and inserting segments with the SEGUPDTE call takes place under

the control of rules defining insert and delete eligibility and DL/I

Auditor calls. These rules are explained in Chapter 6, "Complex

Transactions.” It is also possible for the SPR to control this activity

by setting flags. A SETFLAG call is provided for the purpose and should

be issued before the SEGUPDTE call.

Most commonly, the SETFLAG call will be used to mark a segment for
deletion. The call then takes the following form:

In COBOL: CALL 'SETFLAG' USING ID.
In PL/I: CALL SETFLAG (ID);

where ID is the two-character segment ID to be marked for deletion.
The SETFLAG call is:

In COBOL: CALL 'SETFLAG' USING ID, FLAG, SETTING.
In PL/I: CALL SETFLAG (ID, FLAG, SETTING);

where:
ID is a two-character segment ID to have indicator set.
FLAG is one character that defines which indicator is to be set:

D delete flag (the default)
R retrieved flag

SETTING is one character that defines how the indicator should be set:

0 off (the default with R)
1 on (the default with D)

Return codes are:
code Meaning

0 Successful completion.

% A dependent of the flagged segment has been changed but will be
deleted if SEGUPDTE is called without turning off the delete
indicator.

8 Segment is not eligible for deletion.

Along with the delete and retrieved indicators, a "segment changed"

indicator is used to determine how the data base segments are to be
updated.

8-6 IMSADF II Application Development Guide

The DL/I functions performed, based on the corresponding flag settings,
are:

DL/I Function Flags
Delete delete flag on + retrieved flag on
Insert changed flag on + retrieved flag off
Replace changed flag on + retrieved flag on

SETFLAG must be used to cause deletion of segments. The GENERATE
statement DLET operand is used to define which segments are eligible for
deletion. SETFLAG also must be used when an existing segment is mapped
into the segment area after having been retrieved directly into the
user's program area. This is necessary because the Data Mapper will
turn off the retrieved flag if a key field is changed in order to set up
for an insert. This technique will not work on segments specified in
the DATACOMP operand of the GENERATE statement. In order to save the
original data for comparison, the segment must be retrieved into the SPA
(via DBPATH or TSEGS).

Figure 8-3 summarizes when these indicators are set on or off:

Indicator setting condition

changed flag ON . Auditing (value moved to a field)
Input from Data Display screen
L Mapping if field is changed

changed flag OFF . Successful DL/I call via SEGHNDLR or
SEGUPDTE
delete flag ON L SETFLAG routine

. Delete call from the Auditor

delete flag OFF . SETFLAG routine
o Successful DL/I delete call via
SEGHNDLR or SEGUPDTE

retrieved flag ON . If segment initially loaded by the
transaction driver

J Successful retrieval into segment
area or insert from segment area via
Auditor, SEGHNDLR or SEGUPDTE

. SETFLAG routine

retrieved flag OFF . Successful DL/I delete call via
Auditor, SEGHNDLR or SEGUPDTE

. Key changed when mapping into
segment area

. SETFLAG routine

Figure 8-3. SETFLAG Indicators

Chapter 8. Special Processing 8-7

MAPPER CALL

The Mapper's purpose is to insulate the special processing routine from
the actual layout of fields and segments in the segment area (within the
SPA). To this end, one or more views of the data can be defined. These
views are known as mapping segments and consist of fields selected from
those in the segment area. When the routine requires access to data, it
calls the Mapper, quoting the identifier of a mapping segment. As shoun
in Figure 8-4, individual fields will then be moved by the Mapper into a
working storage area defined in the routine and passed as a parameter in
the Mapper call.

PA Working storage in
KEY DESC segment special processing
routine
W AREA INVD PROJ
< >
DIV FILL PRIC UNIT Iv KEY AREA PRIC
segment
COAP

Figure 8-4. Mapping

The mapping segment is defined using the Rules Generator.
For example:

SEGMENT ID=MM, TYPE=MAP

FIELD ID=KEY,SEGID=PA, LENGTH=17
FIELD ID=AREA,SEGID=IV,LENGTH=1
FIELD ID=PRIC,SEGID=IV,LENGTH=5,TYPE=PD,

DEC=2,RDONLY=YES

This definition must appear in the same Rules Generator run as the
definitions of the PA and IV segments themselves. The RDONLY operand is
used to restrict the routine's ability to amend fields. If the routine
calls the Mapper and requests that this mapping segment be moved from
working storage to the segment area, the price (PRIC) field will not be
m:ved. It can, however, be mapped from the segment area to working
storage.

The data declarations required within the routine are as follows:
In COBOL:

WORKING-STORAGE SECTION.
77 MAPID PICTURE XX VALUE 'MM'
77 TO-WORKAREA PICTURE $9(9) COMP VALUE 0.
77 FROM-WORKAREA PICTURE S$9(9) COMP VALUE 1.
01 MAPAREA
03 PART-NUMBER PICTURE X(17).
03 AREA PICTURE X.
03 PRICE PICTURE $9(7)V99 COMP-3.

In PL/I:

DCL (TO_WORKAREA INIT(0),FROM_WORKAREA INIT(1)) BIN FIXED(31),
01 MAPAREA,
03 PART_NUMBER CHAR(17),
03 AREA CHAR(1),
03 PRICE DEC (9,2);

The calls to move to working storage will be:

In COBOL: CALL 'MAPPER' USING MAPID, MAPAREA, TO-WORKAREA.
In PL/I: CALL MAPPER ('MM', MAPAREA, TO_WORKAREA);

As the example illustrates, the data declarations in the SPR must be
consistent with the layout of the mapping segments. Conversion will be
performed between a mapping segment and the fields in the segment area
if the data types differ. The fields can be in data base or pseudo
segments. The two-character ID is enough to identify the mapping

8-8 1IMSADF II Application Development Guide

segment in the call. The MAPPER subroutine is able to locate the rule,
which can be link-edited with the SPR (see "Program Linkage™ on

page 8-21) or will otherwise be loaded from the static rules library at
the time of the call. Mapping segment IDs must be unique with the
application system and must differ from data base and pseudo segment
IDs.

The Mapper sets a return code in SPARTNCD.

Code Meaning

0 Successful completion.

4 Conversion error. The SPR should return to the transaction driver
at once with return code 8 to display the error notification and
message.

COPYSEG CALL

A function similar to MAPPER is available to simplify coding when a
whole data base segment or pseudo segment must be copied into or out of
a special processing routine work area. In that case, no mapping
segment need be defined. Simply code a COPYSEG call quoting the ID of
the segment to be copied.

Using coding similar to!that for the MAPPER call, copy the IV segment
into a working storage area named WORKA as follows:

In COBOL: CALL 'COPYSEG' USING SEGID, WORKA, TO-WORKAREA.
In PL/I: CALL COPYSEG ('IV',WORKA,TO_WORKAREA);

In COBOL, SEGID would be in the WORKING-STORAGE SECTION as:
77 SEGID PICTURE XX VALUE 'IV'.

CONTROLLING COLOR AND EXTENDED HIGHLIGHTING

To alter the color of a field dynamically, issue a SETCOLOR call. To
alter ?n extended attribute, use SETXHILT. The forms of these calls are
as follows:

In COBOL: CALL 'SETCOLOR' USING FIELDID, RED.
CALL 'SETXHILT' USING FIELDID, BLINK.

In PL/I: CALL SETCOLOR ('SAPDMKDP','RED');
CALL SETXHILT ('SAPDMKDP','BLINK');

For COBOL, the following data declarations are needed:

WORKING-STORAGE SECTION
77 RED PICTURE X(3) VALUE 'RED'.
71 BLUE PICTURE X(4) VALUE 'BLUE"'.
etc.
77 BLINK PICTURE X(5) VALUE 'BLINK'.
77 UNDERSCORE PICTURE X(10) VALUE 'UNDERSCORE'.
etc.
77 FIELDID PICTURE X(8) VALUE 'SAPDMKDP'.

The first parameter is the eight-character name of the field to be set.
The second parameter is the color or attribute. Possible colors are
RED, BLUE, GREEN, RED, YELLOW, TURQUOISE, and WHITE. Possible
attributes are BLINK, UNDERSCORE, REVERSE, and DEFAULT.

Chapter 8. Special Processing 8-9

DISPLAY CALLS

The SPR can send a message to either the input logical terminal or an
alternate logical terminal when operating in conversational or
nonconversational mode. This message can be up to 20 lines per logical
page. The Terminal Message Writer module will unblock the message at 79
characters per line. Any word that will not fit on a line will be moved
to the next line. This implies that the last (79th) character on each
line must be a blank. Multiple calls can be made to the module during
one output sequence.

The call sequences for the Terminal Message Writer are:
In COBOL:

CALL 'DISPLAYL' USING MSGAREA, HDR, OPTION.
CALL 'DISPLAYA' USING MSGAREA, HDR, OPTION, LTERM.
CALL 'DISPLAYE' USING MSGAREA, HDR, OPTION.

In PL/I:

CALL DISPLAYL (MSGAREA,HDR,OPTION);
CALL DISPLAYA (MSGAREA,HDR,OPTION,LTERM);
CALL DISPLAYE (MSGAREA,HDR,OPTION);

where:

DISPLAYL ?esds)the message to the input logical terminal (using the
0PCB).

DISPLAYA Sends the message to the logical terminal named in LTERM.

DISPLAYE Sends the message via the express terminal PCB. The output
destination will be the input logical terminal for
conversational and response nonconversational transactions.
For nonresponse, nonconversational transactions, the output
destination will be the printer defined in the second
alternate PCB.

MSGAREA Names the area in which the current portion of the message
resides. This area has two fields: a halfword containing the
length of the message text followed by the message text.

HDR Names a 60-character area containing a message header to be
displayed with this portion of the text.

OPTION Is a halfword that specifies the type of call currently being

made.

1 = First part of message plus header. Option is set to

0 after this call.

2 = Llast call with remainder of message text.

3 = Last call without additional message text.
OTHER = Add message text to the output previously received.

LTERM Is the logical terminal name of the device to receive the

output.

If the message generated is to be displayed to the transaction user
(through the IOPCB), a return code of 12 or 32 (conversational mode
only) should be returned to the transaction driver. The terminal user
can read the screen being displayed, then press the PAl key to display
successive screens. Under conversational processing, the terminal user
may then redisplay the original screen by pressing ENTER.

8-10 IMSADF II Application Development Guide

The Terminal Message Writer returns the following codes in SPARTNCD:

code Meaning

0 Successful completion.

4 Nonblank status from IMS/VS when sending message. Status is in
SPADLIST.

12 3rd input parm does not have last parm indicator on. Check format
of CALL.

DISPLAYP CALL

The SPR can send a message to a 328473286 printer when operating in
either conversational or nonconversational mode. This message can
contain a variable number of lines per page. The Terminal Message
Writer module will unblock the message at 119 characters per line.
Multiple calls can be made to the module during one output sequence.

The call sequence is:

In COBOL: CALL 'DISPLAYP' USING MSGAREA, HDR, OPTION, LTERM.
In PL/7I: CALL DISPLAYP (MSGAREA,HDR,OPTION,LTERM);

where:

MSGAREA Names the area in which the current portion of the message
resides. The format of this area is a halfword containing the
length of the message text followed by the message text.

HDR Names a 60-character area containing a message header to be
displayed for this message. The header line contains the
60-character message header, a sequential page number, and the
last two characters of the entering LTERM. If the message
header area contains blanks, no header line will be printed.

OPTION Is a halfword that specifies the type of call currently being
made. Possible values are:

1 = First part of message plus header. OPTION is set to
0 after this call.

= Last call with remainder of message text.

2
3 = Last call without additional message text.
4 = Message text followed by a new page.

5

= New page.
OTHER = Add message text to the output previously received.
LTERM Is the eight-character printer LTERM name of the device to

receive the output.

Each new page designation (OPTIONS 4 and 5) will cause the remaining
text to be printed. Four lines with an asterisk (%) in column 1 will
then be printed, followed by the header. The new page option does not
contain carriage control information to physically skip the printer to a
new page. If the header area is blank, it will not be printed. This
allows the SPR control over the length of an output page.

Chapter 8. Special Processing 8-11

Return codes from this routine are:

Code Meaning

0 Successful completion.

% Nonblank status from IM5/VS when sending message. Status is in
SPADLIST.

12 4th input parm does not have last parm indicator on. Check format
of CALL.

16 Nonblank status from IMS/VS on CHNG. Status is in SPADLIST:
LTERM name is probably invalid.

DIRECT CONTROL OF DATA BASE I/0

Data base retrievals can be performed by the transaction driver for the
DBPATH segments in a transaction. DL/I Auditor calls can also retrieve
segments identified in the TSEGS operand of the GENERATE statement. In
addition, the special processing routine can retrieve segments using
calls to SEGHNDLR. These can work like DL/I Auditor calls when the
segments are identified in the TSEGS operand; alternatively, the SPR can
request that its own defined I/0 areas be used.

Data base updates will be performed by the SEGUPDTE call. The SPR can
control insertions and deletions through the SETFLAG call. DL/I Auditor
calls that request updates merely set flags in the same way. The
special processing routine is also allowed to request immediate data
base updates by calling SEGHNDLR.

SIMPLE SEGHNDLR CALLS

IMSADF II maintains the concatenated key of each DBPATH and TSEGS
segment in the segment area. The segments retrieved by the transaction
driver or by DL/I Auditor calls will have their concatenated keys
already set up; the SEGHNDLR call need not specify a key. If the SPR is
retrieving a segment for the first time, however, it must supply a fully
concatenated key, although for the unqualified calls (GUU, GN and ISRT)
only the parent portion of the concatenated key is used.

The simple call format is as follows:

In COBOL: CALL 'SEGHNDLR' USING ID, FUNC, KEY, OPER.
In PL/I: CALL SEGHNDLR (ID,FUNC,KEY,0PER);

where:
ID is the two-character ID of the segment to be processed.

FUNC is the DL/I or IMSADF II function code. The main ones are GU,
GUU, GNQ, GN, ISRT, DLET, REPL.

KEY is the key of the segment. Can be omitted if the OPER parameter
is also omitted. If this parameter is present, the field in the
program containing the key value will be updated with the key of
the actual segment retrieved.

OPER is a two-character code indicating how the KEY parameter is to be
used. The first character can have two values:

F the KEY parameter contains the fully concatenated key of the
segment.

P the KEY parameter contains only the segment key without its

parents' keys. Cannot be used in the first DL/I operation
against this segment.

8-12 IMSADF II Application Development Guide

The second character can have the following two values:
E find a segment with key equal to that specified.

6 find a segment with key greater than that specified but still
under the parent with key equal to that specified in the
concatenated key.

If this parameter is omitted, it defaults to FE.
The DL/I function codes are as follows:
Code Meaning Function

GU Get Unique Uses the entire concatenated key to retrieve the
segment with key equal to the one specified and
under parents with keys equal to those specified.
If two segments have the same key value, this
function always retrieves the first.

GUU Get Unique Uses only the parent portion of the concatenated
Unqualified key to retrieve the first segment occurrence under
parents with keys equal to those specified.

GN Get Next Use after a GU or GUU call to retrieve the next
occurrence of the same segment type. The call
uses only the parent portion of the concatenated
key, which will normally be the same as that used
in a previous successful GU or GUU call.

The system will only move forward in the data base
to satisfy the call but will never go beyond the
parent having the specified key. The GN function
only works within one execution of the
transaction. If the SPR finishes, the screen is
displayed, the user enters amendments and the SPR
is called again, the program must re-establish the
data base position with a GU call before a GN is
issued. IMSADF II retains the concatenated key
across such steps in a conversion, but DL/I loses
its position in the data base.

GNQ Get Next Uses the entire concatenated key to retrieve a
Qualified segment with key equal to the one specified under
parents with keys equal to those specified. Like
GN, it moves forward in the data base and should
be preceded by a GU or GUU call. It is a way of
retrieving segment occurrences that have the same
(nonunique) keys.

ISRT Insert Uses only the parent portion of the concatenated
key to insert the segment under parents with keys
equal to those specified. The segment being
inserted contains its own key. If it is a
concatenated segment, it will contain the logical
parent's key twice and they must be equal (DL/I
requirement). The segment is inserted
immediately.

DLET Delete Must be preceded immediately by a Hold version of
a Get call (GHU, GHUU, GHN or GHNQ). The DLET
call itself does not use the concatenated key but
the Ge: Hold call does, in exactly the same way as
the Get calls without Hold. The segment is
deleted immediately and is not checked for delete
eligibility.

Chapter 8. Special Processing 8-13

Code Meaning Function

REPL Replace Must be preceded immediately by a Get Hold call,
just like DLET. The segment is replaced in the
data base right away.

HDEL (GHU+DLET) Performs both a GHU and a DLET call but does not
give the SPR the chance to look at the
re-retrieved segment.

HREP (GHU+REPL) Performs both a GHU and a REPL call but does not
let the SPR have the re-retrieved segment.

The DATACOMP operand has no effect on segments updated through the
SEGHNDLR call. The program is now responsible for checking the content
of a re-retrieved segment for possible outside interference before
updating it.

The SEGHNDLR call sets the following return codes in SPARTNCD:
code Meaning

0 DL/I call successfully completed.

4 A nonblank status code has been returned from DL/I and may be
found in the SPADLIST field of the SPA communication area.

"DL/I Status Codes™ on page 6-23 lists the most common DL/I status

codes. If the status is unexpected, the program should return to the

transaction driver at once with return code 28 to display an error

message.

KEY MANIPULATION SUBROUTINES

Subroutines are provided to manipulate the concatenated keys retained in

the segment area. Using these subroutines can simplify the actual

SEGHNDLR calls. If the concatenated key is set up with a SETKEY call,

the SEGHNDLR call need not have the KEY parameter.

The four subroutines are:

GETKEY Moves either the fully concatenated key or the partial key
(i.e., the key of the segment without its parents) into a
program-supplied work area.

SETKEY Sets either the fully concatenated key or the partial key in
the segment area (in the SPA)

ZEROKEY Sets the full or partial key in the segment area to binary
zeros.

GETKINFO Retrieves three or four full words of information:
. OFFSET in concatenated key to key of this segment
. LENGTH of the key of this segment
. PCB# from the Rules Generator SEGMENT statement
. PCBADDR - the optional parm to receive the PCB address

8-14 IMSADF II Application Development Guide

The call formats to invoke these routines are:
In COBOL:
CALL 'GETKEY' USING ID, KEYA, ;.

CALL 'SETKEY' USING ID, KEYA, ;.
CALL 'ZEROKEY' USING ID, ;.

CALL 'GETKINFO' USING ID, OFFSET, LENGTH, PCB#[, PCBADDRI.
In PL/I:
CALL GETKEY (ID,KEYA,F);
P

CALL SETKEY (ID,KEYA,F);
P
CALL ZEROKEY (ID,;)i

CALL GETKINFO (ID,OFFSET,LENGTH,PCB#[,PCBADDR]);
where:
ID is the two-character segment ID

KEYA is the area in the user's program to or from where the key is to
be moved

F is a full key (default if not supplied)
P is a partial key

OFFSET, LENGTH, PCB#, and PCBADDR are the same as defined in the
discussion of entry points above.

There are four possible return codes:
Code Meaning
0 Successful completion of routine.

4 Segment not found or key-only segment in SPA on a GETKEY, SETKEY,
or ZEROKEY call. Key-only segment on a GETKINFO call. A key-only
segment is a segment in the Input Transaction Rule to maintain
hierarchical information about the concatenated key. It has no
segment area in the SPA, no displayable fields, and no auditing.
It $gég§5 because it is a parent of a segment specified in DBPATH
or .

8 Only OFFSET and LENGTH returned on a GETKINFO call. (The segment
is not in the SPA, but a Segment Handler Rule is available for the
user to perform data base calls into or out of a segment area
defined in the user program - the user must supply all six
parameters on a SEGHNDLR call - see below.)

12 Segment is not a data base segment.

Chapter 8. Special Processing 8-15

ADVANCED DATA BASE I/0

To use the facilities described in this section, you must be familiar
with DL/I as described in the IMS5/VS Application Programmer's Reference
Manual.

Five calls are provided to allow the SPR to amend or replace the SSAs
supplied by IMSADF II. These extended data base setup routines are
described below.

SETCC Set up IMS/VS data base command codes on each data base level.

SETPATH Set up a path call (retrieve/update more than one segment in a
single call) on segments defined in the SPA segment area. The
I/0 area may be in the user's SPR but the segments must be
defined in the INTR.

SETSSA Set up user segment search arguments.
SETUNQ Unqualify some number of data base levels.
RSETSEGH Reset the effect of any previous setup calls.

For all calls except SETSSA, the specified segment ID must have a
Segment Handler Rule. For SETSSA, if the specified segment ID is
defined in the Input Transaction Rule (via DBPATH or TSEGS), I/0 is
allowed tos/from the segment area as long as path call command codes are
not present in the 55As.

SETCC, SETPATH, and SETUNQ can be issued against the same segment ID and
will have a cumulative effect.

These are setup routines. The actual data base I/0 is not invoked until
a SEGHNLDR call is issued against the same segment ID. The settings
remain in effect until a setup call with a different segment ID is
issued or a RSETSEGH call is issued.

EXTENSIONS TO THE SEGHNDLR CALL
The full form of this call is as follows.

In COBOL: CALL 'SEGHNDLR' USING ID, FUNC, KEY, OPER, PCBNO, AREA.
In PL/I: CALL SEGHNDLRC(ID,FUNC,KEY,OPER,PCBNO,AREA);

where:

PCBNO is a fullword (PL/I: BIN(31); COBOL: PICTURE S9(9) COMP.)
giving the number of the user data base PCB in the PSB. The
number can be from 1 to 120. If this parameter is not used, the
default is the PCBNO operand value from the Rules Generator
SEGMENT statement. Alternatively, the actual PCB address (not a
PL/I pointer) may be passed in this parameter.

AREA is an I/0 area defined in the SPR's working storage. If the
segment requested is not a DBPATH or TSEGS segment, this
parameter must be provided. Otherwise it is optional and the
segment area in the SPA will be used if AREA is not present.

When any of the six parameters is coded, all parameters that precede it
must also be coded.

The Get Next within Parent DL/I calls are supported with SEGHNDLR.
However, they are worth using only in conjunction with the extended
setup calls, since otherwise all 55As above the lowest level are
qualified. The following function codes are allowed:

GNP - Get Next within Parent, lowest level SSA unqualified.

GNPQ - Get Next with Parent, lowest level S5SA qualified.

GHNP - Get Hold Next within Parent, lowest level S$SA unqualified.
HNPQ - Get Hold Next within Parent, lowest level SSA qualified.

Two additional functions can be given in a SEGHNDLR call. The format of
the call is altered to be the following:

8-16 IMSADF II Application Development Guide

In COBOL: CALL 'SEGHNDLR' USING ID, FUNC, PCBNOL,AREA].
In PL/I: CALL SEGHNDLR (ID,FUNC,PCB#[,AREA]);

The additional functions are:

'GUl ' GET UNIQUE - position to first segment in the data base
"SGN ' GET NEXT - sequential get next processing

No SS5As are passed to IMS/VS for the GUl or SGN function if the ID is
blank (' '). When the call completes successfully, the Input
Transaction Rule is scanned to see if the retrieved segment is defined
in it. If so, the ID is passed back to the user; otherwise, the ID
field is blanked.

For the SGN function, if the ID is not blank and the segment is defined
in the Input Transaction Rule, one unqualified SSA is passed to IMS/VS
for the data base call. This SSA contains the DBD segment name (defined
to IMSADF II by the Rules Generator parameter, NAME). This allows
sequential processing of a single segment type. The SGN function is
useful for a report application, where the SGN call could be followed by
a MAPPER call to access pertinent data base fields.

A status code of GA or GK may be returned on a SGN call or on a call
after a SETSSA. The return code to the user will be zero in these cases
since a segment is returned to the caller.

The segment handler returns the following return codes in SPARTNCD:
Code Meaning
0 DL/I call successfully completed.

4 Nonblank status code from IMS/VS. The status has been placed in
SPADLIST. The appropriate error message number that is specified
by the Segment Handler Rule is placed in the COMSG field of the
segment handler communication area. A return code to the
transaction driver of 28 will cause this message to be displayed
or printed.

SET COMMAND CODES

SETCC is used to set one or two command codes per data base level. If a
path call command code is encountered, the SPA segment work area cannot
be used for data base I/0. A check is made at SEGHNDLR call time to
make sure that the caller supplies an area for the data base I/0 if any
path call command codes were given in the SETCC call. The SETPATH call
can be used in conjunction with the SETCC call in order to use the SPA
segment work area for path calls.

Note: This allows three command codes per data base level.
The format of the SETCC call and its parameters is:

In COBOL: CALL 'SETCC' USING TID, ARRAY1l [,ARRAY2].
In PL/I: CALL SETCC (TID,ARRAY1[,ARRAY21);

where:

TID is the target segment ID (i.e., the target of this call, not of
the transaction). A Segment Handler Rule must exist for this
segment.

ARRAY1l is a 15-byte array that contains the first command code for up
to 15 data base levels. A blank or binary zero indicates that a
command code is not to be used on the associated level.

ARRAY2 is the same as ARRAYl except that this array is for the second
command code. This parameter is optional.

Chapter 8. Special Processing 8-17

SET PATH CALLS

SETPATH is used to set up a path call operation against a target segment
that is defined in the Input Transaction Rule. If all of the requested
segment IDs are in a defined path of loadable segments, the SPA segment
area can be used for the data base I/0 area. Otherwise, an area must be
supplied in the subsequent SEGHNDLR call. When the SPA segment area is
used, any loadable segments in the defined path that are not indicated
in a SETPATH parameter will be retrieved on retrieval calls. This is
done to keep the correct position of each segment in the segment area.
This means that only the target segment ID must be given in order to
retrieve a defined path.

The format of the call is:

In COBOL: CALL 'SETPATH' USING TID [, ID1, ...IDnl.
In PL/I: CALL SETPATH (TIDL,ID1,...IDnl);

where:
TID is the target segment ID.
ID1-IDNn are IDs of other segments in the path that require some action.

A return code of %4 indicates that the SPA segment area cannot be used
for the data base I/O0.

Figure 8-5. Data Base for Defined Paths Examples

The defined paths are controlled by the DBPATH and TSEGS parameters on
the GENERATE statement of the Rules Generator. The following examples
show what the defined paths will be for the segments shouwn in
Figure 8-5.
Examples
1. DBPATH=(B,D,E),TSEG=(F,H)
The paths, as defined to IMSADF II, will be:
1-A,B 2-C,D 3-E 4-F 5-G,H
2. DBPATH=(E,B,D)
The paths, as defined to IMSADF II, will be:
1-A,C,E 2-B 3-D
3. DBPATH=(C,D,A,B,E)
The paths, as defined to IMSADF II, will be:
1-A,C,D 2-B 3-E
In example 1, if either segment A or C has no displayable data, it will

become a key-only segment in the Input Transaction Rule (no segment
space is reserved for it in the SPA segment work area). But, if a

8-18 IMSADF 11 Application Development Guide

segment is listed in DBPATH or TSEGS, space for that segment will be
reserved in the segment area. I/0 in the SPA segment area is allowed
only when all requested segments are contained within one path and they
are not key-only segments.

In example 2, a SETPATH(D,C,A) would result in segment area I/0 not
being allowed (return code of 4). But, the path could be accessed by
using an I/0 area in the user's SPR.

caution: If a delete is done immediately after a path retrieval that
HOLDs segments, the following steps should be taken to ensure that the
correct segment is deleted:

1. Issue a SETPATH call that specifies only the ID of the segment to be
deleted.

2. Issue a SEGHNDLR call specifying the same ID and the DLET function.

SET SEGMENT SEARCH ARGUMENTS

Segment search arguments for DL/I calls can be set up for SEGHNDLR calls
through the SETSSA routine. When the segment name in the last S5SA
matches a segment name in a Segment Layout Rule loaded for this
transaction, the SPA segment area can be used for data base I/0 as long
as path call command codes are not present in the user's $5As. In order
for a Segment Layout Rule to be loaded, it must be defined in the Input
Transaction Rule. MWhen a match cannot be made on the last SSA segment
name, the user is notified via a return code and the TID field is
blanked out. Also, I/0 cannot be done in the segment area.

The call format is:

In COBOL: CALL 'SETSSA' USING TID, SSAlL, SSA2, ..., SSAnl.
In PL/I: CALL SETSSA(TID,SSA1[,SS5A2,...,55Anl);

where:

TID is the target segment ID. Will be set to blanks on return
if not found in the Input Transaction Rule.

§SAl...88An are DL/I segment search arguments to be used in subsequent
SEGHNDLR calls. These must conform to IMS/VS DL/I
specifications. They are not validated by IMSADF II.

Each time this routine is called, all previous setups (of any type) are

cleared and only the effects of the last call will apply to the next

SEGHNDLR call. Use the alternative form of the SEGHNDLR call:

In COBOL: CALL 'SEGHNDLR' USING ID, FUNC, PCBNOL, AREAI.
In PL/I: CALL SEGHNDLR(ID,FUNC,PCBNOL,AREA]);

The return codes for SETSSA are:
Code Meaning

0 Successful completion.

4 TID blanked out, input value not found in Input Transaction Rule.
8 TID reset to match ID associated with Segment Layout Rule that

matched segment name in last user SSA. This occurs only if the
TID and SSA segment names do not correspond.

Chapter 8. Special Processing 8-19

SET UNQUALIFICATION

SETUNQ is used to unqualify segment search arguments at desired levels.
The segment name and any command codes that have been set up will not be
affected by this routine. The unqualification takes place where the
begin qualification character, '(', would appear in the 55A, i.e., after
any command codes that SETCC has set up.

The call format is:

In COBOL: CALL 'SETUNQ' USING TID, ARRAY.
In PL/I: CALL SETUNQ(TID,ARRAY);

where:

TID is theDtarget segment ID. A Segment Handler Rule must exist for
this ID.

ARRAY ;s an array of 15 characters that corresponds to levels in a data
ase.

The character 'U' will cause the associated level to be unqualified on
subsequent SEGHNDLR calls. If any other character is specified, the
level will be qualified or unqualified in the usual manner (controlled
by the function given in SEGHNDLR call).

RESET CALL

RSETSEGH clears any previous data base setup calls. This is done
automatically in the following cases:

] A new TID in either a set call or a SEGHNDLR call.

. A gETPATH call after a SETCC call that contained path call command
codes.

. A SETSSA call.

. SETCC, SETPATH, or SETUNQ call after a SETSSA call.
. On a subsequent SETCC, SETPATH, or SETUNQ call.

The format is:

In COBOL: CALL 'RSETSEGH'.
In PL/I: CALL RSETSEGH;

No parameters are required.

8-20 IMSADF II Application Development Guide

PROGRAM LINKAGE

A special processing routine is called by the transaction driver and
must therefore be named according to IMSADF 1II standards. The name has
the form:

ssssUtx
where:

€658 is the application system ID
U is a literal
tx is the transaction ID

When the program has been compiled, it should be link-edited with an
interface module, known as a mini-driver, which dynamically links to the
transaction driver at execution time. This service will be performed by
the Rules Generator in a special run. JCL and control statement
examples are given below.

For COBOL:

/77COMPILE EXEC COBUC,PARM.COB="BUF=40K,DECK,NOLOAD,NORESIDENT, ENDJOB, NODYN"
/7/7COB.SYSPUNCH DD DSN=IMSADF.PROGRAM.OBJ(SAMPUTT),DISP=0LD
/77COB.SYSLIB DD DSN=IMSADF.MACLIB.ASM,DISP=SHR
IDENTIFICATION DIVISION.
PROGRAM-ID
SAMPUTT.
..etc.
7/7LKED EXEC 7?7776
/77G1.SYSLIB DD
Va4 DD
Va4 DD DSN=SYS1.COBLIB,DISP=SHR
SYSTEM SYSID=SAMP
GENERATE OPT=SPLE,PGMID=TT,MAPTABLE=(MM,M0),
SHTABLE=PD

For PL/I:

//7COMPILE EXEC PLIXC

//PLI.SYSPUNCH DD DSN=IMSADF.PROGRAM.OBJ(SAMPUTT),DISP=0LD

//PLI.SYSLIB DD DSN=IMSADF.MACLIB.ASM,DISP=SHR

¥PROCESS X, NEST, DECK, OFFSET, OPT(2), SIZE(MAX), MACRO
SAMPUTT: PROCEDURE (SPA);
DCL PLIXOPT CHAR(50) VAR STATIC EXTERNAL
INITC'NOCOUNT,NOFLOW, NOREPORT,NOSTAE,NOSPIE);
DCL (AUDITOR,MAPPER,SEGUPDTE,SEGHNDLR) ENTRY OPTIONS(ASSEMBLER);

/% ALL SUBROUTINES USED MUST BE DECLARED THUS ¥/

..etc.
/7/LKED EXEC 2?7?76
/7/G1.SYSLIB DD
V4 DD
/7 DD DSN=SYS1.PLIBASE,DISP=SHR

SYSTEM SYSID=SAMP
GENERATE OPT=SPLE,PGMID=TT,MAPTABLE=(MM,M0)
SHTABLE=PD, LANG=PL/I
/77

Notes:
1. 2222 is the installed ADFID (the default is MFC1).

2. These JCL examples assume that the RGLIB=0 option was used on the
DEFADF macro during installation (see the IMS Application

Development Facility II Version 2 Release 2 Installation Guide). If

your installation uses RGLIB=L, you must link-edit the program into
IMSADF.RULLIB before the Rules Generator link-edits it again.

In the above samples, the transaction ID is TT. The GENERATE statement
operands or values are as follows:

OPT=SPLE special processing link-edit (conversational transaction).

Chapter 8. Special Processing 8-21

PGMID the transaction ID.
MAPTABLE mapping segment IDs quoted in MAPPER calls.
SHTABLE segment IDs quoted in SEGHNDLR calls.

If MAPTABLE or SHTABLE is not coded, the system will load the
corresponding rules at the time they are used. This is preferable when
testing mapping segment rules to avoid the need to relink-edit when
changes are necessary. In production use MAPTABLE and SHTABLE, unless
:hglmapping rules and Segment Handler Rules are in the IMSADF II preload
able.

LINKAGE CONVENTIONS

When the SPR receives control, it is passed a number of parameters but
Wwill normally require only the first, which is the SPA, used as a
general communication and work area by IMSADF II. Here is the complete
list of parameters passed:

SPA

segment handler communication area (COMOPT)
Audit data base PCB

Message data base PCB

application system data base PCBs

e & 0 00

There will be as many application system data base PCBs as are present
in the PSB. Following them, for conversational and nonconversational
programs, will be the following additional PCBs:

[I/0 terminal PCB
. alternate terminal PCB
. express terminal PCB

The programming conventions to receive the SPA are now given:
In COBOL:

LINKAGE SECTION.

COPY SPACOBOL.

PROCEDURE DIVISION USING SPADSECT.
In PL/I:

SAMPUTT: PROCEDURE (SPA);

DCL SPA BIN(31);

%INCLUDE SPAPLI;

SPAPTR=ADDR(SPA);
SPA FIELDS

A number of fields are provided to enable the SPR to communicate with
the transaction driver and with subroutines.

Field Size Description
SPAFIRST Half Word Set to zero by the transaction driver on the
Binary initial call to the SPR for a transaction.

Since the SPR can iterate with the driver any
number of times by appropriate setting of the
return code, this field can be used to keep
track of which iteration is being processed.
The batch driver also sets SPAFIRST to (-1) on
the End-of-File call.

8-22 IMSADF II Application Development Guide

Field
SPARTNCD

SPADLIST

SPAERMSG

SPAKEYID

SPASECTX

SPACGTRX

SPAMANNO
SPALTERM
SPAPROJ

Size
Full Word
Binary

Character 2

Character
50

Character
255

Hal fword
Binary

Character 3

Character 6
Character 8

Character 1

Description

Contains the return code from subroutine calls;
is not used to pass a return code to the
transaction driver.

Contains the DL/]I status code returned from a
SEGHNDLR call.

Can be used to display a program-generated
message on the message line of the Data Display
screen in conversational or nonconversational
processing. The program can place a message in
this field and return to the transaction driver
with a return code of 3. This causes the Data
Display screen to be displayed with that
message. When the batch transaction driver is
in control, the message will be printed on the
system printer. When the nonconversational
driver is operating as a nonresponse
transaction, the message will be printed on a
328473286 printer.

Contains the fully concatenated keys (as
displayed) of all target segment paths (DBPATH)
built during key selection or entered with the
transaction in nonconversational or batch
processing. The program may use portions of
this key to access other data base segments in
SEGHNDLR calls.

Requests that a secondary transaction be
generated by the conversational or
nonconversational driver.

Figure 8-6 shows how the setting of SPASECTX
ties in with the coding of the STX operand of
the GENERATE statement. (In this figure, NO
means a transaction was not sent; YES means a
transaction was sent.) In standard processing,
the transaction driver sends secondary
transactions for STX=0K at normal termination
and the STX=ER ones on abnormal termination. 1In
special processing, the program determines when
the error transactions will be sent and when the
normal ones will go.

Contains the next standard or special processing
transaction ID that will be processed by the
conversational transaction driver. The special
processing routine sets this to the ID that
logically steps the end user to the next
function to be performed. The format of
SPACGTRX is MXX where M is mode and XX is the
ID. Entering the mode and ID in this field and
returning to the transaction driver (with a
return code of 5) will cause IMSADF II to
proceed as if the terminal user had modified the
TRX field on the Data Display screen. At the
same time, the program can set SPAKEYID with the
same effect as the end user modifying the KEY
field on the screen.

User ID signed on.
User's logical terminal name.

Project signed on.

Chapter 8. Special Processing 8-23

Field Size Description
SPAGROUP Character 1 Group signed on.
SPATRXCD Character 1 Current transaction mode (1 to 6).

SPAUTILY Character A programmer-maintained area in the SPA, the
length of which is contained in the field
SPACOMLN, and is defined by the COMMLEN keyword
on the GENERATE statement. This area is
preserved across conversational transaction
switches. If a subsequent transaction requires
a larger area, the current area will be
extended. If a subsequent transaction requires
a smaller area, the length remains unchanged.

SPAFLDSG Character Same offset in the SPA as SPAUTILY. Can be used
to access the programmer-maintained area in the

SPA.
SPACOMLN Halfword The length of the area addressed by SPAUTILY.
Binary If this field contains binary zeros, no

programmer-maintained area exists in the SPA.

Signalled
by Auditor
(sTX not
SPASECTX STX=0K STX=ER STX=(0K,ER) 0K or ER)
=0 NO NO NO NO
=1 YES NO YES YES
=2 NO YES YES YES
=3 YES YES YES YES

Figure 8-6. Control of Secondary Transaction Sending Via SPASECTX

RETURN CODES

The special processing routine sets a return code to the transaction
driver to tell it what to do next. The return code must be set through
the usual operating system method (COBOL: RETURN-CODE, PLs/I: PLIRETC,
Assembler: Register 15), not in SPARTNCD. The following return codes
apply to the conversational transaction driver. Batch and
nonconversational SPR return codes are listed in Chapter 10, "Batch
Processing” and Chapter 11, "Nonconversational Processing."

code Transaction Driver Action
0 Return to Primary Option Menu.

1 Perform automatic message sending and send secondary transactions
(according to the setting of SPASECTX), then call the SPR again.
Using this return code, the SPR can call the Auditor and trigger
message sending several times during one execution of the
transaction. See "Multiple Iterations of Message Sending” on
page 8-27 for an example.

2 Display the screen. If the user enters amendments, recall the
SPR; this process can be repeated as often as necessary.

3 Display the screen with the message that the SPR has placed in
SPAERMSG. As for return code 2, the user can enter amendments,
causing the SPR to be called again.

4 Display the screen with the message SPECIAL PROCESSING
SUCCESSFULLY EXECUTED and continue as for return code 2 and 3.

8-24 IMSADF II Application Development Guide

If return codes 2, 3 or 4, which are normal returns, are used, the SPR
must be capable of being executed more than once if the user enters
amendments more than once. The SPR can keep a count of the number of
times it has been called if SPAFIRST is used. Every time the user
changes the concatenated key or the transaction mode or ID on the
screen, the transaction driver will reset SPAFIRST to zero. This way,
the SPR can tell whether it is in the first or a subsequent iteration.

5

12

24

28

32

Switch to the new transaction mode and ID placed in SPACGTRX using
the concatenated key in SPAKEYID. The present transaction is
terminated without an acknowledgement to the end user. The next
thing he sees is the Key Selection or Data Display screen for the
new transaction. The security profile is checked and the user
will be shown the Secondary Option Menu if he is not authorized to
use the new transaction, which may be standard or special
processing Wwith the same or a different cluster code.

Display the screen with the message ENTER "E" TO DISPLAY ERROR

MESSAGES and highlight fields in error after auditing. If the

user enters E, display the error messages without calling the SPR.

ghenAEBeTuser enters amendments, call the SPR, which should recall
e ITOR.

The SPR has sent messages to the screen using the DISPLAYL call.
The operation is similar to the display of error messages after
the user has entered E. The first page of messages, with heading,
will be displaved; the user can obtain subsequent pages by
pressing PAl. When he presses the ENTER key, the Data Display
screen will appear.

Issue a DL/I ROLL call to back out any data base updates performed
by the SPR during this execution. The transaction is terminated,
the user receives a message and he must sign on again.

The SPR has received a bad return code from a SEGHNDLR or SETUPDTE
call. Display the error message set up by the segment handler.
When the user sees the message, all he can do is press ENTER to
return to the Primary Option Menu.

The SPR has sent messages to the screen using the DISPLAYL call
but, unlike return code 12, is terminating the transaction. The
user can page using PAl, but when he presses ENTER, he returns to
the Primary Option Menu. The processing with return code 28 and
32 is similar to that used to display error messages during
preaudit, where the user is prevented from viewing the data.

SPECIAL PROCESSING EXAMPLES

In these examples, a basic program that reproduces the functions of
standard processing (apart from transaction modes 1 to 3) is presented
after a specific example is given.

Chapter 8. Special Processing 8-25

BASIC SPECIAL PROCESSING PROGRAM

COBOL

PROCEDURE DIVISION USING SPADSECT.
AUDIT.
CALL '"AUDITOR'.
IF SPARTNCD > 4 THEN GO TO RC-8-GOBACK. NOTE AUDIT ERRORS.
SEGUPDTE.
CALL 'SEGUPDTE'.
IF SPARTNCD 0 THEN PERFORM NORMAL-MSG.
IF SPARTNCD 4 THEN GO TO RC-28-GOBACK. NOTE DB ERRORS.
IF SPARTNCD 12 THEN GO TO DATACOMP.
IF SPARTNCD 16 THEN
MOVE 'x%x NO MODIFICATION MADE X%x' TO SPAERMSG.
MOVE 3 TO RETURN-CODE.
GOBACK.
NORMAL-MSG
IF SPATRXCD = '4'
MOVE '"%xx SEGMENT ADDED SUCCESSFULLY »xx"'
TO SPAERMSG.
IF SPATRXCD = '5°"
MOVE '¥%% SEGMENT MODIFIED SUCCESSFULLY xx*
TO SPAERMSG.
DATACOMP.
MOVE 'SOMEONE HAS CHANGED THE DATA - PLEASE RESTART'
T0 SPAERMSG.
MOVE 3 TO RETURN-CODE.
GOBACK. NOTE USER MUST ALTER TRX OR KEY OR ENTER OPTION C.
RC-8-GOBACK.
MOVE 8 TO RETURN-CODE.
GOBACK. NOTE ALLOW USER TO CORRECT ERROR.
RC-28-GOBACK.
MOVE 28 TO RETURN-CODE.
GOBACK. NOTE DISPLAY ERROR MSG AND GO TO P O M.

PL/1

SPAPTR=ADDR(SPA);
AUDIT: CALL AUDITOR;
IF SPARTNCD > 4 THEN GOTO RC_8_RETURN;/*AUDIT ERRORS¥/
SEGUPDTE: CALL SEGUPDTE;
IF SPARTNCD=0 THEN DO;
IF SPATRXCD='4"' THEN
SPAERMSG="%%% SEGMENT ADDED SUCCESSFULLY xx';
IF SPATRXCD='5" THEN
NgPAERMSG='xx* SEGMENT MODIFIED SUCCESSFULLY Xx¥';
E 3
IF SPARTNCD=4 THEN GOTO RC_28_RETURN;/%DB ERRORS¥/
IF SPARTNCD=12 THEN GOTO DATACOMP;
IF SPARTNCD=16 THEN
SPAERMSG="%%%N0 MODIFICATIONS MADExX¥';
CALL PLIRETC(3); RETURN;
DATACOMP: SPAERMSG='SOMEONE HAS CHANGED THE DATA - PLEASE RESTART';
CALL PLIRETC(3); RETURN;
7% USER MUST ALTER TRX OR KEY OR CHANGE OPTION x/
RC_8_RETURN: CALL PLIRETC(8); RETURN;
/% ALLOW USER TO CORRECT ERROR %/
RC_28_RETURN: CALL PLIRETC(28); RETURN;
E*DDISPLAY ERROR MESSAGE AND GO TO P.0O.M. ¥/
ND;

The above program is not called prior to segment display and BYPASS=NO
must be coded on the GENERATE statement for the transaction. The
program is given here as a basis from which to write special processing
routines.

8-26 IMSADF II Application Development Guide

MULTIPLE ITERATIONS OF MESSAGE SENDING

Sometimes it may be necessary to invoke automatic message sending or
send a secondary transaction several times during the course of
executing an SPR. For example, a program may retrieve several segment
occurrences (twins), call the Auditor to trigger message or transaction
generation and then replace the segment. Messages and transactions are
sent only when the SPR returns to the transaction driver. It is
therefore necessary to make repeated uses of return code 1 to ask the
transaction driver to perform the sending and immediately call the SPR
again. The SPAFIRST field must be used to keep track.

In COBOL:
MOVE 1 TO SPASECTX. NOTE SECONDARY TRANSACTION CONDITIONS.

CALL 'SEGHNDLR' USING SG, GHN.
IF SPADLIST = GE GO TO LOOP-END. NOTE SEG NOT FOUND.
IF SPARTNCD > 0 GO TO RC-28-GOBACK.
PERFORM MANIP. NOTE DATA MANIPULATION (NOT SHOWN).
CALL 'AUDITOR®'.
IF SPARTNCD > 4 GO TO RC-8-GOBACK. NOTE ERRORS.
IF SPARTNCD = 4 GO TO RC-1-GOBACK. NOTE MSGS.
RESUME.
MOVE 1 TO SPAFIRST.
CALL 'SEGHNDLR' USING SG, REPL.
IF SPARTNCD > 0 GO TO RC-28-GOBACK.
GO TO LOOP.
RC-1-GOBACK.
MOVE 100 TO SPAFIRST.
MOVE 1 TO RETURN-CODE. GOBACK.
LOOP-END.
etc.

The very first statement in the PROCEDURE DIVISION must be:
IF SPAFIRST=100 GO TO RESUME.
The WORKING-STORAGE definitions required are:

77 SG PICTURE XX VALUE 'SG"'.
77 GHN PICTURE X(4) VALUE 'GHN ',
77 GE PICTURE XX VALUE 'GE’'.
77 REPL PICTURE X(4) VALUE 'REPL"'.

In PL/I:

SPASECTX=1; /%SECONDARY TRANSACTION CONDITIONS/
LOOP: CALL SEGHNDLR ('SG','GHN ');

IF SPADLIST='GE' THEN GOTO LOOP_END;/%SEG NOT FOUNDX/
IF SPARTNCD > 0 GOTO RC_28_RETURN;

CALL MANIP; /% DATA MANIPULATION SUBROUTINE»/
CALL AUDITOR;

IF SPARTNCD > 4 THEN GOTO RC_8_RETURN; /%ERRORSX/
IF SPARTNCD = 4 THEN GOTO RC_1_RETURN; /%MSGSx/
RESUME: SPAFIRST = 1;

CALL SEGHNDLR('SG','REPL'");

IF SPARTNCD > 0 THEN GOTO RC_28_RETURN;

GOTO LOOP;
RC_1_RETURN: SPAFIRST=100;

CALL PLIRETC(1); RETURN;

LOOP_END:

..etc.

The very first statement in the program must be:

IF SPAFIRST=100 THEN GOTO RESUME;

Chapter 8. Special Processing 8-27

IMS/VS CONSIDERATIONS

Each special processing transaction ID must have an associated IMS/VS
transaction code with name

5555VixX
where:

€588 is the application system ID
V is a literal
tx is the transaction ID

The Rules Generator GENERATE OPT=SPLE statement will produce an
executable load module with the same name (ssssVtx). A PSB with the
same name must also be provided. Apart from the difference in name, the
coding of the PSB and IMS/VS system definition macros is the same as for
standard processing. Brief details appear in Chapter 2, "Static Rules
and the Rules Generator."™ For more information consult the IMS
Application Development Facility II Version 2 Releas Application

Development Reference.

There is an alternative convention. Refer to the discussion of the
GENERATE statement DYNAMIC=YES option in the IMS Application Development
acility II Version 2 Release 2 Application Development Reference.

8-28 1IMSADF II Application Development Guide

CHAPTER 9. EXITS

IMSADF II provides exits that allow you to enhance the capabilities of
functions supplied with the product or to tailor functions to vour
particular requirements.

AUDITOR EXIT ROUTINES

You can extend the capabilities of the Auditor by supplying routines
that perform additional operations. Such operations may include
performing calculations involving many fields and handling DL/I calls
not supported by the Auditor DL/I call facility, such as Get Last and
Get Previous (using SETCC calls to set command codes).

To invoke an exit routine with the high level audit language, use the
AEXIT keyword, followed by one of the operation codes from 70 to 99 and
from WO to Z9 that are reserved for exit routines. Since an exit
routine returns a true or false indicator, it is invoked within an IF
statement. For example:

IF AEXIT 75 RETURN = FALSE
ABCD = 1
ENDIF

This will cause the Auditor to call the routine to perform the desired
function. The exit routine must return to the Auditor with a true,
false, or error indicator. The Auditor will continue with the next
statement, which can be NOP (no operation) or any other statement in the
language, according to the logic of the IF statement in the case of a
true or false return. If the exit sets an error indicator, the Auditor
will terminate processing for that field and go on to the audit rules
for the next field (if any).

The exit routine can be written in COBOL, Assembler or PL/I and is
entitled to use all the subroutine calls available to a special
processing routine except for the AUDITOR and the DISPLAYL calls. It
has access to the SPA and should use those communication fields
(SPARTNCD, SPADLIST, etc.) in the same way. Linkage, however, is
different since the program is called by the Auditor, not the
transaction driver. The exit routine receives a different set of
parameters and does not set a return code. Hence, it cannot alter the
transaction flow to the same extent as an SPR. In particular, it cannot
request a return to the Primary Option Menu; it cannot set any return
codes (other than the truesfalse indicator); and it cannot request a
switch to a new transaction ID.

The exit routine can, however, access and update data fields using the
MAPPER and therefore is not restricted to accessing an audited or a
related field.

In addition, it can mark fields in error using the SETERROR call. This
has the same effect as the ERRORMSG statement in the high level audit
language but is not restricted to the audited field. Refer to the IMS
Application Development Facility II Versio Release 2 Application
Development Reference for information on the SETERROR call.

Chapter 9. Exits 9-1

PARAMETERS

The following parameters are passed to the exit routine:

. The audited field

. The audited field's descriptor in the Segment Layout Rule

. The audit operation code - a 2-byte code (70 to 99 or WO to Z9)
U The Audit Data Base PCB used to retrieve data descriptors

. COMOPT

. The truesfalse indicator

U The function indicator telling which of the three Audit data base
legs is being interpreted

U The scratch pad area
L A list of application data base PCBs in Assembler language format
U The concatenated key of the audit operation descriptor segment

L The related field, if specified in the AEXIT statement (or in the
operation descriptor); otherwise, the audited field is passed again

U The related field descriptor in the Segment Layout Rule or a repeat
of that for the audited field if there is no related field

. The data descriptor area

. 3 dummy parameters

. Addr(IOPCB)

¢ Addr(ALTIOPCB)

o Addr(EXPIOPCB)

] Addr(count of user data base PCB's)
. Addr(user PCB 1)

.

. Addr(user PCB 120)

A related field, if required, is specified in the AEXIT statement of the
high level audit language. For example:

IF AEXIT 75 SAPDMKDP RETURN = FALSE
ABCD = 3
ENDIF

Sample coding to receive these parameters appears in "Sample Audit Exit
Routines™ on page 9-3.

In PL/I a standard prologue for PL/I audit exit routines can be defined

as shown in Figure 9-1 (the sample in the next section includes the
prologue using the statement: %INCLUDE AUDEXSET;).

9-2 IMSADF II Application Development Guide

/%¥INCLUDED TEXT - SET UP FOR USER WRITTEN AUDIT EXIT IN PL/I %/
/%MUST BE PRECEDED BY INCLUDE SPAPLI x/
DCL (Al,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13) BIN FIXED(31);
DCL AUDITED_FIELD CHAR(17) BASED(P1), /%RE-DEFINE AS NECESSARY ¥/
FIELD_DESC CHAR(1) BASED(P2),
OPCODE CHAR(2) BASED(P3),
AUDIT_PCB CHAR(1) BASED(P4),
COMOPT CHAR(1) BASED(P5), /% could be CHAR(130) %/
TRUE_FALSE_ERROR BIT(8) BASED(P6),
FUNCTION_INDIC CHAR(1) BASED(P7),
PCBLIST CHAR(1) BASED(P9),
COKEY CHAR(1) BASED(P10),
RELATED_FIELD CHAR(17) BASED(P11), /% RE-DEFINE AS NECESSARY %/
RELATED_FIELD_DESC CHAR(1) BASED(P12),
01 DATADESC BASED(P13),
02 DDLEN BIN(C31),
02 AREA,
03 DDSEQNO CHAR(4),
03 DDDATA CHAR(24); /% DATA DESCRIPTOR DATA %/
DCL (SEGHNDLR,GETKEY,MAPPER) ENTRY OPTIONS(ASSEMBLER);
DCL PLIXOPT CHAR(50) VAR STATIC EXTERNAL
INITC"NOCOUNT,NOFLOW, NOREPORT ,NOSTAE,NOSPIE");
DCL (FROM_WORKAREA INIT(1), TO_WORKAREA INIT(0)) BIN FIXED(31
DCL (TRUE INIT('1'B), FALSE INIT('0'B), ERROR INIT('11'B)) BI
P1=ADDR(A1);
P2=ADDR(A2);
P3=ADDR(A3);
P4=ADDR(A4%);
P5=ADDR(A5);
P6=ADDR(A6);
P7=ADDR(A7);
SPAPTR=ADDR(A8);
P9=ADDR(A9);
P10=ADDR(A10);
P11=ADDR(All);
P12=ADDR(A12);
P13=ADDR(A13);
TRUE_FALSE_ERROR = TRUE;
/% APPLICATION CODING BEGINS HERE x/

Figure 9-1. Standard Prologue for PL/I Audit Exit Routines

)3
T(8);

SAMPLE AUDIT EXIT ROUTINES

This sample application continues one begun in "Transaction Switching”
on page 6-9. If the receiving transaction is in standard processing, it
Will need an audit exit to accept the message information passed to it
and moze it into appropriate fields in the SPA by means of a mapping
segment.

JCL is included in the samples below. The subroutines are written to

the static rules load library, which is the most suitable place from
which to combine them with the Auditor.

Chapter 9. Exits 9-3

COBOL Routine

//7EXEC COBUCL,PARM.COB="BUF=40K,DECK, NOLOAD,
77 APOST,NOSEQ,LIB,NORES,NODYN,NOENDJOB",
V4 PARM.LKED='REUS,NCAL,LET,LIST,XREF"
7//COB.SYSLIB DD DSN=IMSADF.ADFMAC,DISP=SHR
/7/7COB.SYSIN DD *
IDENTIFICATION DIVISION.
PROGRAM-ID.
AUDEX70.
DATE-COMPILED. JUNE 19,1982.
REMARKS.
AUDIT EXIT SUBROUTINE TO RECEIVE INFORMATION FROM A
TRANSACTION SWITCH.
ENVIRONMENT DIVISION
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 MAP-INFO-IN PICTURE XX VALUE 'OM'. NOTE MAPPING SEGMENT.
77 TO-WORKAREA PICTURE 59(9) COMP VALUE 0.
77 FROM-WORKAREA PICTURE 59(9) COMP VALUE 1.

77 FALSE PICTURE X VALUE LOW-VALUES.
01 TRUEINIT PICTURE S9(9) COMP VALUE 128.
01 TRUEDEF REDEFINES TRUEINIT.

02 FILLER PICTURE XXX.

02 TRUE PICTURE X.
01 ERINIT PICTURE S9(9) COMP VALUE 192.
01 ERDEF REDEFINES ERINIT.

02 FILLER PICTURE XXX.

02 ER PICTURE X.
LINKAGE SECTION.
77 AUDITED-FIELD PICTURE X(17). NOTE REDEFINED AS NECESSARY.
77 FIELD-DESC PICTURE X.
77 AUDIT-DESC PICTURE XX.
77 AUDIT-PCB PICTURE X.
77 COMOPT PICTURE X.
77 TRUE-FALSE-ER PICTURE X
77 FUNCTION-INDIC PICTURE X.
77 PCBLIST PICTURE X.
77 COKEY PICTURE X.
77 RELATED-FIELD PICTURE X(17). NOTE REDEFINE AS NECESSARY.
77 RELATED-FIELD-DESC PICTURE X.
01 SPADSECT COPY SPACOBOL.
01 DATADESC.

02 DDLEN PICTURE $9(9) COMP.
02 DDAREA OCCURS XX. NOTE XX SHOULD BE AT LEAST AS

LARGE AS THE MAXIMUM # OF DATA DESC.

03 DDSEQNO PICTURE XXXX.
03 DDDATA PICTURE X(24). NOTE DATA DESCRIPTOR DATA.

PROCEDURE DIVISION USING AUDITED-FIELD, FIELD-DESC, AUDIT-DESC,
AUDIT-PCB, COMOPT, TRUE-FALSE-ER, FUNCTION-INDIC, SPADSECT,
PCBLIST, COKEY, RELATED-FIELD, RELATED-FIELD-DESC,
DATADESC.
MOVE TRUE TO TRUE-FALSE-ER.
CALL 'MAPPER' USING MAP-INFO-IN, SPAFLDSG, FROM-WORKAREA.
IF SPARTNCD 0 MOVE FALSE TO TRUE-FALSE-ER.

//LKED.SYSLMOD DD DSN=IMSADF.RULLIBCAUDEX70),DISP=0LD

9-4 IMSADF II Application Development Guide

PL/I Routine

7/ EXEC PLIXCL,PARM.LKED="REUS,NCAL,LET,LIST,XREF"'
//PLI.SYSLIB DD DSN=IMSADF.ADFMAC,DISP=SHR
//PLI.SYSIN DD x
*¥ PROCESS X,NEST,LOAD,OFFSET,0PT(2),SIZE(MAX),MACRO;
AUDEX70: PROC(A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13);
/¥ SAMPLE AUDIT EXIT %/
%ZINCLUDE SPAPLI;
%ZINCLUDE AUDEXSET;
CALL MAPPER ('OM',SPAFLDSG, FROM_WORKAREA);
éF SPARTNCD > 0 THEN TRUE_FALSE_ERROR = FALSE;
ND;
//LKED.SYSLMOD DD DSN=IMSADF.RULLIB(AUDEX70),DISP=0LD

DATA DESCRIPTORS

When an audit exit is called, it can also receive data descriptor
segments, which can be used to pass application specific parameters to
it. The call to the exit is augmented with the PASS keyword in the high
level audit language.

For example:

IF AEXIT 70 PASS 'OM' RETURN = TRUE
ABCD = 2
ENDIF

This sample exit routine could be made to receive the ID of the mapping
saegment in this way instead of making it a literal in the program.

To retrieve data descriptor details, the exit routine must check to see
if they have been passed in the 13th parameter (as they will be if
static audit rules are in use) or if a SEGHNDLR call must be made. The
count field at the beginning of the 13th parameter will be set to minus
one if the data is to be retrieved from the data base.

In a data base retrieval, data may be retrieved from any of the three
legs; therefore, the appropriate data descriptor segment ID (DA, DF or
DM) must also be retrieved. Here is some sample coding:

In COBOL:

IF FUNCTION-INDIC=1 MOVE 'DA' TO DD.

IF FUNCTION-INDIC=2 MOVE 'DF' TO DD.

IF FUNCTION-INDIC=3 MOVE 'DM' TO DD.

IF DDLEN < 0

CALL 'SEGHNDLR' USING DD, GUU, COKEY, FE, AUDIT-PCB, AREA.

In WORKING-STORAGE SECTION.

77 DD PICTURE XX

77 GUU PICTURE X(4) VALUE 'GUU .

77 FE PICTURE XX VALUE 'FE"'.

In PL/I:

DCL DD CHAR(2);
IF FUNCTION_INDIC=1 THEN DD='DA';
IF FUNCTION_INDIC=2 THEN DD='DF';
IF FUNCTION_INDIC=3 THEN DD='DM';
IF DDLEN < 0 THEN
CALL SEGHNDLR(DD,'GN ',COKEY,'FE',AUDIT_PCB,AREA);

The DL/I status code (SPADLIST) should be checked for 'GE' (segment not
found) when retrieving a variable number of data descriptors.

The other identifiers quoted in the above samples are parameters passed

to the exit routine by the Auditor. The data descriptor value will be
in the field DDDATA.

Chapter 9. Exits 9-5

DESIGN AND LINK-EDIT OF AN AUDIT EXIT ROUTINE

Normally, a separate routine is written to handle each of the required
operation codes (in range 70-99 and W0-29). The Auditor, however,
invokes a single exit for all these operation codes. Therefore, you
might want to write a general exit routine that examines the operation
code passed to it and calls the appropriate subroutine. Such a routine
is given belouw.

The sample routine shown allows for 10 subroutines, one for each of the
codes 70 to 79. It is most common to provide a single audit exit
routine for the entire installation, but you may have a different one in
each application system, or even for each cluster code. The sample
routine is accompanied by JCL that shows how to link-edit the exit
routine with the Auditor. The routine is designed to allow new
subroutines to be added by means of a link-edit up to the chosen limit
of 10. Simply rerun the following job stream to include new modules to
process di fferent audit operation codes.

COBOL Routine

// EXEC COBUC,PARM.COB='BUF=40K,DECK,NOLOAD,NODYN,
/77 APOST,NOSEQ,LIB,NORES,NOENDJOB'
//C0OB.SYSLIB DD DSN=IMSADF.ADFMAC,DISP=SHR
7/7COB.SYSIN DD x
IDENTIFICATION DIVISION
PROGRAM-ID.
AUDEXIT.
DATE-COMPILED.MAY 1,1979.
REMARKS.
AUDIT EXIT.
ENVIRONMENT DIVISION.

CONFIGURATION SECTION.
SOURCE-COMPUTER.IBM-370.
OBJECT-COMPUTER.IBM-370.

DATA DIVISION.
%INKAGE SECTION.

7 Al PICTURE X.
77 A2 PICTURE X.
77 OPCODE PICTURE XX.
77 A4 PICTURE X
77 A5 PICTURE X.
77 A6 PICTURE X.
77 A7 PICTURE X.
77 A8 PICTURE X
77 A9 PICTURE X.
77 Al0 PICTURE X.
77 All PICTURE X.
77 Al12 PICTURE X.

77 Al13 PICTURE X.
PROCEDURE DIVISION USING A1, A2, OPCODE, A4, A5, A6, A7,

A8, A9, Al0, All, Al2, A1l3,
IF OPCODE = '70' CALL 'AUDEX70' USING

Al, A2, OPCODE, A4, A5, A6, A7, A8, A9, Al0, All, Al12, Al3.
IF OPCODE = '71' CALL 'AUDEX71' USING

Al, A2, OPCODE, A4, A5, A6, A7, A8, A9, A10, All, Al2, Al3.
IF OPCODE = '72' CALL 'AUDEX72' USING

Al, A2, OPCODE, A4, A5, A6, A7, A8, A9, A10, All, Al2, Al3.
IF OPCODE = '73' CALL 'AUDEX73' USING

Al, A2, OPCODE, A4, A5, A6, A7, A8, A9, A10, All, Al12, Al3.
IF OPCODE = '74' CALL 'AUDEX74' USING

Al, A2, OPCODE, A4, A5, A6, A7, A8, A9, Al0, All, Al2, Al3.
IF OPCODE = '75' CALL 'AUDEX75' USING

Al, A2, OPCODE, A4, A5, A6, A7, A8, A9, Al0, All, Al12, Al3.
IF OPCODE = '76' CALL 'AUDEX76' USING

Al, A2, OPCODE, A4, A5, A6, A7, A8, A9, Al0, All, Al2, Al3.
IF OPCODE = '77' CALL 'AUDEX77' USING

Al, A2, OPCODE, A4, A5, A6, A7, A8, A9, A10, All, Al2, Al3.
IF OPCODE = '78" CALL 'AUDEX78' USING

Al, A2, OPCODE, A4, A5, A6, A7, A8, A9, A10, All, Al2, A1l3.
IF OPCODE = '79' CALL 'AUDEX79' USING

Al, A2, OPCODE, A4, A5, A6, A7, A8, A9, Al0, All, Al2, Al3.

9-6 IMSADF II Application Development Guide

IF OPCODE = '80' CALL 'AUDEX79' USING
Al, A2, OPCODE, A4, A5, A6, A7, A8, A9, Al0, All, Al2, Al3.

7/ EXEC 7?7276
//G1.SYSLIB DD
V4 DD
/77 DD DSN=SYS1.COBLIB,DISP=SHR

SYSTEM SYSID=SAMP,LOPTPARM='XREF,REUS,LET"

GENERATE OPT=STLE,PGMID=0R,AEXIT=AUDEXIT
7/ %

Note: ?2?2? is the installed ADFID (the default is MFC1).

PL/I Routine

7/ EXEC PLIXC
//PLI.SYSLIB DD DSN=IMSADF.ADFMAC,DISP=SHR
//PLI.SYSIN DD ¥
% PROCESS X,NEST,DECK,OFFSET,0PT(2), SIZE(MAX),MACRO;
AUDEXIT: PROC(A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13);
/% AUDIT EXIT - CALLS APPROPRIATE SUBROUTINE BASED ON THE AUDIT %/
/% DESCRIPTOR CODE 70 - 79 %/
DCL (Al1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13) BIN FIXED(31);
DCL OPCODE PIC '99' BASED(P3);
DCL C(AUDEX70,AUDEX71,AUDEX72,AUDEX73,AUDEX74,
AUDEX75,AUDEX76, AUDEX77, AUDEX78,AUDEX79) ENTRY EXTERNAL;
DCL ENTRIES (70:79) ENTRY VARIABLE
INIT (AUDEX70,AUDEX71,AUDEX72,AUDEX73,AUDEX74%,
AUDEX75, AUDEX76 , AUDEX77,AUDEX78, AUDEX79);
DCL PLIXOPT CHAR(50) VAR STATIC EXTERNAL
INITC"'NOCOUNT,NOFLOW, NOREPORT,NOSTAE,NOSPIE");
P3=ADDR(A3);
CALL ENTRIES(OPCODE) (A1,A2,A3,A6G,A5,A6,A7,A8,A9,A10,A11,A12,A13);
END;
/7 EXEC 77776
//G1.SYSLIB DD
/77 DD
/77 DD DSN=5YS1.PLIBASE,DISP=SHR
7/G1.SYSIN DD %
SYSTEM SYSID=SAMP,LOPTPARM="XREF,REUS,LET"
GENERATE OPT=STLE,PGMID=0R,AEXIT=AUDEXIT,ALANG=PL/I
/%

Note: 1?2?22 is the installed ADFID (the default is MFC1).

SIGN-ON AND SIGN-OFF EXITS

These exits are for security purposes. The sign-on, or lockword, exit
is provided for installation-defined checking of lockwords when users

sign on to IMSADF II conversational application systems. The exit is

optional; if it is not implemented, end users will not be required to

enter lockwords.

The sign-off exit is called when a user terminates a session by entering
OPTION C on the Primary Option Menu. It is not called if the
conversation is terminated abnormally or with an IMS/VS /EXIT command
(the facilities of IMS/VS must be used to achieve that - refer to the
IMS/VS Installation Guide for information about abnormal conversational
termination exit routines).

The sign-off exit is also called when the user chooses OPTION F
(project/group switch) on the Primary Option Menu. This option permits
users to switch to different application systems, if they are
authorized, without having to sign on and enter a new lockword. The
exit routine can provide additional control over the use of this option.
(It can be disabled entirely within an application system by use of the
POMENU operand of the Rules Generator GENERATE OPT=CVSYS statement.)

For information on sign-on and sign-off exit processing in batch
processi?g, refer to "Optional Lockword Exit Processing in Batch Mode”
on page -7.

Chapter 9. Exits 9-7

LOCKHWORD EXIT

The IMSADF II Sign-0On screen provides an eight-character alphanumeric
field for entering a lockword. Verification of the lockword is achieved
through a user-written program (Assembler, COBOL or non-main PL/I
procedure) that is called by the sign-on module (MFC1TOM). Parameters
that are passed to the user lockword module are:

Register Content

1 Address of PARMLIST
14 Return address
15 Entry point address of user LOCKWORD module

The PARMLIST consists of the following:

WORD 1 = ADDR (INPUT)

WORD 2 = ADDR (ERRMSG)

WORD 3 = ADDR (SPA)

WORD 4 = ADDR (DBPCB)

WORD 5 = ADDR (SRSEG)

WORD 6 = ADDR (IOPCB)

WORD 7 = ADDR (ALTPCB)

WORD 8 = ADDR (EXPPCB)

WORD 9 = ADDR (USER DBPCB LIST)

INPUT is an 80-byte input area from the Sign-0On screen that includes the
employee number, project/group, lockword, and application system ID.

Input
Layout .
Position Name Length Descriptlon
1 ILTH 2 Reserved
3 121 1 Reserved
4 122 1 Reserved
5 IMANS 6 Entered employee number
11 IPJ 1 Entered project
12 IGP 1 Entered group
13 ILW 8 Entered lockword
21 IOM 8 Reserved
29 ISC 4 Application system ID from screen definition

ERRMSG is a 44-byte area used to hold any error message data that is to
be displayed to the terminal user.

SPA is the scratch pad area for the active conversation. The layout of
theSSXA is included in IMSADF.MACLIB.ASM as member name SPAASM, SPAPLI,
or SPACOBOL.

DBPCB is the first or only data base PCB that vou provide. To add the
PCB to the IMSADF II PSB, punch out PSB ????TOM, from library
IMSADF.PSBSRC. Add the desired PCB after the Sign-0On Profile PCB
(DBDNAME MFDPSPO01) and prior to the PSBGEN statement. Perform the
ZSngNtngB????TOM. The lockword user exit routine will now have access
o a .

SRSEG is the SR segment retrieved from the Sign-on Profile data base.
User DBPCB LIST is the address of a list of user data base PCBs which
you may use in the lockword exit, including the first but not limited to
one. To add those PCBs to the ????TOM PSB, follow instructions for
DBPCB above.

Note: 1?2?? is the installed ADFID (the default is MFC1).

Parameters are returned to the sign-on module in Register 15 and, if
appropriate, an error message in ERRMSG. The expected values in
Register 15 are:

R15 = 0 LOCKWORD OKAY

9-8 IMSADF II Application Development Guide

R15 # 0 LOCKWORD ERROR, MESSAGE IN ERRMSG

The calling module's registers must be saved upon entry to the LOCKWORD
module and restored to their original contents prior to returning to the
caller.

If the user lockword program accesses 05/VS data sets, the data sets
referenced should be identified in the IMS/VS message region job stream.

Note: IMSADF II supplies a dummy lockword exit called MFC1EGl. You
must replace this exit with your own exit.

] If you write your exit in COBOL or ASSEMBLER, its name must be
MFClE01l. Compile the exit and link it with any subroutines you
require in IMSADF.RULLIB.

U If you write your exit in PL/I, it is recommended that its name be
MFC1EO1.

See the IMS Application Development Facility II Version 2 Release 2

Installation Guide for more information.

There are several reasons for installing a lockword exit that are
considered at this time.

Multiple National Languages

If you use National Language Support processing and have more than one
language installed (see the ALTLANG parameter on the DEFADF macro), you
may wish to have application display screens and messages in the
alternate language instead of the primary language. IMSADF II support
for multilingual applications depends on your implementation of a Sign
On exit to define a correspondence between a language and SYSID. Refer
to the IMS Application Development Facility II Version 2 Release 2
Installation Guide for more information on the ALTLANG parameter and the
installation of multiple languages.

Note: It is a good idea for the implementer to define a multilingual
signon screen through the Rules Generator screen image capability.

The signon module sets a new field, SPAULANG, in the SPA with the
default language code for the installation and calls the lockword exit.
Your code in the lockword exit module can override and set the SPAULANG
value and the SPASYSID value as appropriate for the detected SYSID. If
th:y dg EOt correspond, the screen text and application messages will
not match.

On return from the lockword exit, the Signon module validates the
SPAULANG value against the languages defined at installation time in the
USRLANG and ALTLANG keywords of DEFADF. It sets the common screen
prefix in SPAMFSPF, which is either the first two characters of ADFID or
SYSID named for the corresponding language. If the SPAULANG value is
invalid, the prefix used is that of ADFID. Selection of the eight
common IMSADF II screens is done using the SPAMFSPF value set at Signon.

Notes:

1. The value you set in the lockword exit is NOT changed after you do a
Project/Group switch (since the lockword exit is not invoked), and
therefore the new application is processed in the same language as
the previous one.

2. If English is used as an alternate language, then a blank (hex '40')
wWwill be used to validate SPAULANG for English rather than an 'E'.
Refer to Figure 9-2 on page 9-10 for an example.

Refer to Chapter 13, "National Language Support™ for additional
information on National Language support.

Chapter 9. Exits 9-9

MFC1E01: PROCCINSCREN, ERRMSGAR,SPA,UDBPCB,SRSEG, IOPCB,ALTPCB,
EXPPCB,USRDBLST);

/X% XSTART—OF-SPECIFICATIONXX%XMMAKKHHMNINH KKK ER KN NER RN ERENHRRNRNNRNN K/

/ %

/¥ MODULE NAME: MFC1EO1

/%

/% DESCRIPTIVE NAME: MULTILINGUAL LOCKWORD EXIT

/%

/% FUNCTION: THIS IS A SAMPLE LOCKWORD EXIT TO HANDLE MULTILINGUAL
/% APPLICATIONS. IT CHECKS SYSIDS AND SETS LANGUAGE CODES
/% BASED ON THE SYSID THAT IS FOUND.

/%

/% ENTRY POINT: MFClEO1

/%

/% INPUT: (PARAMETERS EXPLICITLY PASSED)

/%

7% SYMBOLIC NAME: SPA
/% DESCRIPTION: CONTAINS THE SYSID AND USER LANGUAGE CODE

/% SYMBOLIC NAME: SRSEG
/% DESCRIPTION: USER ID SEGMENT AREA

/% QUTPUT:

/% SYMBOLIC NAME: SPAULANG
/% DESCRIPTION: SET TO APPROPRIATE LANGUAGE CODE

/% SYMBOLIC NAME: SPASYSID
/% DESCRIPTION: SET TO ALIAS SYSID IF NECESSARY

/% EXIT NORMAL:
7% RETURN CODE: 0

7% EXIT ERROR: NONE

/%XXEND-OF—-SPECIFICATION %X K K X I I I X X I I I I X X 3 I I 2 X 3 36 56 5 % X X ¥ %%/

QINCLUDE SYSLIB(SPA);
SPAPTR = ADDR(SPA); /7% ATTACH MAP TO PARAMETER AREA
DCL SRSEG CHAR(44); 7% USER ID SEGMENT AREA

DCL 1 SYSIDTAB(18),
2 LANGCODE CHAR(1) /% LANGUAGE CODE PART OF VALUE
'{':'J',‘J','J','J';'J', 7% JAPANESE

INIT(
T, oy, /7% ENGLISH
'F','F','F', 7% FRENCH
'G','G','G', /% GERMAN
'‘P','P','P"), /% PORTUGUESE
2 THESYSID CHAR(4) 7% SYSID PART OF VALUE
INITC'KANJ', "KATA', "HIRA', "FMIO', 'TATE', "JAPA',
'MFC1','SAMP', 'BANK"', /7% ENGLISH
"FREN', 'FRED', "FRAN', /% FRENCH
'GERM"', 'KLAU"', 'CHRI", 7% GERMAN
'PORT', "LAUR', "BRAZ"); /% PORTUGUESE
DCL ILANG FIXED BINARY(15); 7% WORK COUNTER FOR SEARCHES
LAggCHK:

DO _ILANG = 1 TO DIM(SYSIDTAB); /% LOOK THROUGH ENTIRE TABLE
IF SPASYSID = THESYSID(ILANG) THEN

DO; 7% FOUND THE SYSID
SPAULANG = LANGCODE(CILANG); /% SET LANGUAGE CODE
GOTO ENDLANG; /% NO NEED FOR MORE, GET 0UT
END;
END;
ENDLANG: 7% LEAVE LANGUAGE CHECK CODE
RETURN CODE(0);

END;

Figure 9-2. Lockword Exit for Multilingual Applications

9-10 IMSADF II Application Development Guide

%/
X/

%X/
X/
x/
x/

Non-IMSADF II Sign-On

Another way you may use the Sign on exit is to control screen flow after
processing for the current application is complete. A field called
SPAMODSI has the four-character MOD name of the signon screen placed in
it. At conversational termination, this value plus the transaction
trailer (TRXTRLTR) is inserted to the IOPCB. If you have another screen
that you wish to present, write a lockword exit (or add to a current
one%; pl:cing vour value in SPAMODSI. There are two requirements you
must meet:

1. The MFS MOD name cannot be longer than 4 characters.

2. There must be separate ones for each ADFID, since the transaction
trailer is appended to the MOD name.

Bypassing SYSID Checking

The SYSID check is made after return from the lockuword exit. If the

SYSID field in the project group segment is blanked in your exit, no

SYSID check is done. This allows SYSID checking to be bypassed under
control of the lockword exit or without intervention of the lockword

exit for those installations where this is necessary.

SIGN-OFF EXIT

A user exit may be invoked at sign-off to a conversation (that is, when
the terminal user enters OPTION C on the Primary Option Menu or Q in
most other screens). The user-written exit is invoked by the IMSADF II
conversational sign-off module, MFC1T99. The exit can be written in
COBOL, PL/I or Assembler. The parameters passed to the sign-off exit
are:

ADDR(SPA)
ADDR(DBPCB)
ADDR(NEWPG)

SPA is the scratch pad area for the active conversation. The SPA layout
;;A;gﬁluded in IMSADF.ADFMAC.ASM as member name SPACOBOL, SPAPLI or

DBPCB is a data base PCB that you must add to the PSB ???7T799. To add
the PCB to the IMSADF II PSB, punch out the PSB ??77799, from library
IMSADF.PSBSRC and add the new PCB just prior to the PSBGEN statement.
iﬂntt$§BPSBGEN for 2?7?2799 and the sign-off exit will have access to

a .

Note: ???? is the installed ADFID (the default is MFC1).

NEWPG is the newly signed-on project/group when OPTION F is entered on
the Primary Option Menu. NEWPG is two characters in length.

Npen OPTION C is entered, the following information is available in the

SPA:
SPACHGPG = 0 (1 bit)
SPAPROJ = project (1 character)
SPAGROUP = group (1 character)
SPAMANNO = user ID (6 characters)
gpin OPTION F is entered, the following information is available in the
SPACHGPG =1 (1 bit)
SPAPROJ = old project (1 character)
SPAGROUP = old group (1 character)
SPAMANNO = user ID (6 characters)
NEWPG = new project/group (2 characters)

Register 15 is checked upon return to the termination module, MFC1T99.
A value of 0 in Register 15 indicates an OK condition. A nonzero value
indicates an error condition and the error message is expected in

Chapter 9. Exits 9-11

SPAERMSG. The Sign-0On screen will be displayed with the error message
in SPAERMSG.

Note: IMSADF II supplies a dummy sign-off exit called MFC1E99. You
must replace this exit with your own exit.

U If you write your exit in COBOL or Assembler, its name must be
MFC1E99. Compile the exit and link it with any subroutines you
require in IMSADF.RULLIB.

. If you write vour exit in PL/I, it is recommended that its name be
MFC1E99.

See the IMS Application Development Facility II Version 2 Release 2
Installation Guide for more information.

NON-IMSADF _II SIGN-OFF

A way you may use the Sign off exit is to control screen flow after
processing for the current application is complete. A field called
SPAMODSI has the four-character MOD name of the signon screen placed in
it. At conversational termination this value plus the transaction
trailer(TRXTRLR) is inserted to the IOPCB. If you have a different
screen to display following signoff, write a lockword exit(or add to a
current one), placing your value in SPAMODSI. There are two
requirements you must meet:

1. The MFS MOD name cannot be longer than 4 characters.

2. There must be separate ones for each ADFID, since the transaction
trailer is appended to the MOD name.

You may update SPAMODSI in either sign on or sign off exit, but
remember that the sign off exit takes precedence. In fact, a
different screen may be requested based on transaction processing
from the one named at sign on time.

DL/I EXITS

It is possible to write an exit routine that is invoked by IMSADF II
every time a DL/I call is issued, whether to an application data base or
to an IMSADF II data base.

The routine is invoked before and after the call and can therefore
perform installation-standard editing, extra security checking, PCB
switching in support of large data bases partitioned by key, and writing
of audit trails.

Refer to the IMS Application Development Facili Version Release
Application Development Reference for details.

DIRECT USE OF THE IMS DL/I INTERFACES

The user exits (sign-on, sign-off, DL/I, and audit) as well as a special
processing routine can use the IMS/VS database call interfaces ASMTDLI,
CBLTDLI, and PLITDLI. Assembler and COBOL programs can use either
ASMTDLI or CBLTDLI. A PL/I program can use any one of the three
interfaces. A PL/I program uses ASMTDLI or CBLTDLI it must declare the
interface as ASSEMBLER:

DECLARE ASMTDLI ENTRY OPTIONS (ASSEMBLER);

or

DECLARE CBLTDLI ENTRY OPTIONS (ASSEMBLER);
If a PL/I program uses PLITDLI it should not be declared as
ASSEMBLER:
DECLARE PLITDLI ENTRY:;

Any modification of the database or PCB positioning is not known by
IMSADF II and is the user's responsibility.

9-12 1IMSADF II Application Development Guide

CHAPTER 10. BATCH PROCESSING

IMSADF II supports batch processing for entering bulk data or updating
or maintaining data bases. Examples of the input format appear in
Chapter 4, "The Auditor and the Audit Data Base." Batch input is useful
for initial data entry and for maintaining a copy to be passed to the
production system. There is no reporting or data display capability
unless special processing programs are uwritten. The output listing
contains the input data itself plus confirmation or error messages.

Rules developed for use in the online system can also be applied to
batch processing with only a few alterations. The same audit and
message rules (but without secondary key audit or secondary
transactions), the same sign-on security, and the same Rules Generator
SYSTEM, SEGMENT, and FIELD statements (with extra operands on FIELD
statements) can be used.

The batch driver reads input records from the TRANSIN file, acts on them
by updating application system data bases and optionally writing
automatic messages on the Message Data Base, and lists the input records
wWwith messages on the printer.

In an IMS/VS environment, the driver can be run as a BMP (batch message
processing) program, which means that it accesses the data bases through
the online IMS/VS control region instead of directly. The BMP method
must be used when the data bases are online to terminal users. Only a
change to the JCL is needed to switch from IMS/VS batch to BMP or vice
versa.

When DB2 is your data base access method, DB2 must be invoked under the
auspices of a transaction subsystem (IMS/VS or CICS/0S5/VS); there are
no batch attachment facilities. Figure 10-1 describes the available
tvypes of processing based on your IMSADF II installation choices.

INSTALLATION IMS IMS IMS CICS
ENVIRONMENT BATCH BMP MPP TRAN
IMS/DL/I X X X

IMS/DB2 X X
CICS/DL/I X

CICS/DB2

Figure 10-1. Installation Options versus Processing Environments

TJRANSACTION FORMAT

The batch transaction driver is designed to behave like the online
facility as far as possible; Input records are treated as transactions.
An eight-character transaction code is followed by variable keys and
data, the layout of which must conform with the definition given to the
Rules Generator. A single batch input stream (TRANSIN) may consist of
many transactions, each occupying one or more input records.

The records can be in one of two formats:

. Variable or fixed length records up to 255 bytes long. Each record
begins with an 8-byte transaction code, and all the input keys and
data for one transaction are present in one record.

. Fixed length 80-byte card images where one or more 80-byte records
are necessary to contain the input keys and data for one
transaction. In this case, a transaction can occupy up to 25
records (2,000 bytes). The number of 80-byte records required for a
transaction is defined in the Rules Generator GENERATE statement for

Chapter 10. Batch Processing 10-1

that transaction (using the CNT operand). Any individual
transaction that needs fewer records than the CNT number must be
terminated by end message characters defined in installation
(default $$).

Each transaction begins with an eight-character transaction code of
form:

§55sBmtx

where:

§888 is the application system ID
B is a literal

m is the transaction mode (1-5) with the same meaning as online.
Mode 6 is allowed in special processing.

tX is the transaction ID
If an input field contains blanks, it is not mapped to the data base or
pseudo segment. However, a data base field may be blanked in one of two
ways:

. The input field contains a '"#' in the first position followed by
blanks to fill out the field, or

U The entire input field contains underscore ('_') characters.

For example, suppose that two batch transactions are defined against
part of the sample data base illustrated in Figure 10-2.

PA
PARTROOT

|
|]

PD 1v
STANINFO STOKSTAT

cY
CYCCOUNT

Figure 10-2. Sample Data Base

The PA transaction can update part descriptions; PD can update a
four-digit field, the make department, in the dependent segment.
Typical input transactions to add a new part number, alter an existing
make department, and delete a part number are shown belou.

10-2 IMSADF II Application Development Guide

/7/SAMP JOB ACCNT,NAME,MSGLEVEL=1

//BATCH EXEC DLIBATCH,MBR=SAMPBDPP,RGN=728K
//DI21PART DD DSN=IMSVS.DI21PART(PRIME),DISP=0LD
//DI21PARO DD DSN=IMSVS.DI21PARO,DISP=0LD
//PRINTER DD SYSOUT=A

//RSTRTIN DD DUMMY

//TRANSIN DD x

SAMPB4PA02X4CV76BQE LEFT HANDED WIDGET
SAMPB5PD03B276 021728
SAMPB3PAG7C37X26

/%

Figure 10-3. JCL for Batch Processing

In this example, the program being executed is a version of the batch
transaction driver especially tailored by the Rules Generator process
the PA and PD transactions in the SAMP system. The next section
explains how to write rules to tailor the batch transaction driver.

Typical output from the above input is shown in Figure 10-4¢.

PAGE 00001 SAMPLE DATA BASE 04705779
TIME=16:38:328
RECORD # 00001 SAMPB4PA02X4CV76BQE LEFT HANDED WIDGET
TRANSACTION # 00001 xxx SEGMENT ADDED SUCCESSFULLY %Xx
RECORD # 00002 SAMPB5PD03B276 021728
TRANSACTION # 00002 9325 MAKE DEPARTMENT OUTSIDE ALLOWED RANGE
RECORD # 00003 SAMPB3PA47C37X26
TRANSACTION # 00003 xx* SEGMENT DELETED SUCCESSFULLY %%

%%% END OF INPUT »xx

Figure 10-4. Typical Output from Batch Processing

The second transaction was not completed because of an error detected by
audit rules.

ERROR HANDLING

If an auditing, data base, or other error occurs during batch
processing, the batch transaction driver sets a nonzero return code
which can be checked using the condition code facility (COND) of JCL.
This does not apply to a BMP.

To make it easier for the user of a batch system to locate and correct
transactions in error, the batch driver JCL can be supplemented with two
optional DD cards:

. ERRTRX will contain a copy of those input transactions that were
found to be in error. After they are corrected, the transactions in
this file can be resubmitted.

U ERRMSG will contain a listing of the transactions in error with the
associated error messages.

Chapter 10. Batch Processing 10-3

RULES

As for online conversational processing, the Rules Generator expects
SYSTEM, SEGMENT, FIELD and GENERATE statements. SYSTEM and SEGMENT
statements can be used unaltered to define batch applications. FIELD
statements require the additional operands shown below.

FLDPOS The starting position of the field in any batch transaction in
which the field is used. The first available position is 9
(11 for variable length TRANSIN records). If more than one
card image makes up a transaction, the first position in the
second card is 81 and so on. FLDPOS is used in conjunction
with the DISPLAY operand value to provide compatibility with
online conversational transactions using the default screen
layouts (SP0S=AUT0). When generating a batch transaction vou
Wwill include only those fields that would be displaved in the
equivalent online conversational transaction screen. This
means that the field is in the batch transaction only if
FLDPOS is specified and DISPLAY=YES is either specified or
implied by default.

ILENGTH The input length of the field, if this differs from the LENGTH
operand value.

ITYPE The input data type. The default is alphanumeric. Allowed
values are the same as those for the TYPE operand. Data
conversions wWill be performed.

These operands are ignored when generating rules for online
conversational applications; therefore, the same definitions can be used
to create a batch system that is equivalent to the online system and
that can be used as a backup.

As for conversational processing, GENERATE statements for segments and
transactions are required. Those for segments are the same and need not
be repeated. Those for transactions differ from their online
conversational counterparts as follows:

OPTIONS Specify OPT=BAIT (Batch Input Transaction Rule) for a batch
transaction.

CNT The number of input records making up one transaction. The
default is 1, allowing a fixed or variable record format of up
to 255 bytes in length. If CNT is greater than 1, the input
recogds must be 80 bytes and of fixed length. The CNT maximum
is 25.

Various activities for conversational processing, such as building
menus, are unnecessary in batch processing. However, a link edit must
be performed to build a tailored transaction driver able to process a
particular set of batch transactions. The result of the link edit is a
program that can be invoked using the JCL shouwn in the example above.
The Segment Handler Rules required during the execution of the driver
are included in the link edit. Consequently, the batch driver link edit
request should be the last GENERATE statement in the Rules Generator
input. The following operands on the GENERATE statement are relevant to
link editing a batch driver:

OPTIONS Specify BDLE (batch driver link edit).

PGMID A two-character ID that determines the name of the resultant
executable program, which has the form:
XXXXBDID
where:

€588 is the application system ID
BD is a literal
ID is the value of the PGMID operand

SHTABLE List of all data base segments (DBPATH including all higher
levels and TSEGS) used in all transactions to be processed by

10-4 IMSADF II Application Development Guide

this batch transaction driver program. Must be complete but
must not name pseudo segments.

ITTABLE Complete list of standard processing transaction IDs to be
processed by this batch transaction driver program.

PHEADING The heading to appear on the transaction listing at execution
time. May be up to 60 characters and must be enclosed in
quotation marks. Optional.

WTOMSG A message to be written to the system operator at start of
execution. May be up to 60 characters and must be enclosed in
quotation marks. The operand may be coded twice to send a
longer message. Optional.

WTORMSG A message that invites the system operator to stop the program
before it has finished by replying STOP. May be up to 60
characters and must be enclosed in quotation marks. If he
replies STOP, the driver will complete the current
transaction, copy the remaining input records to a file
(TRANSOUT), and terminate. The saved file may then be used as
input (TRANSIN) to a later run that completes the work. The
operand may be coded twice to send a longer message.

Optional.

SIGNON A value of YES stipulates that the first input record to any
execution of this batch transaction driver program must be a
valid sign-on. (Discussed below.)

CHKPT A value of YES requests checkpointing for this batch driver
execution. (Discussed below.)
FREQ Specifies the number of valid (syntactically correct)

transactions to be processed between checkpoints.

Example

Here are the Rules Generator statements that define the batch
application shown in the previous example:

SEGMENT PARENT=0,ID=PA,NAME=PARTROOT,LENGTH=50
FIELD ID=KEY,LENGTH=17,KEY=YES,NAME=PARTKEY, FLDP0S=9
FIELD ID=DESC,LENGTH=20,P05=27,FLDP0S=26

SEGMENT ID=PD,NAME=STANINFO,LENGTH=85,PARENT=PA
FIELD ID=KEY,LENGTH=2,KEY=YES,NAME=STANKEY, FLDP0S=26
FIELD ID=MKDP,LENGTH=4,P05=48,FLDP05=28

GENERATE OPT=SGALL

GENERATE OPT=BAIT,TRXID=PA,DBPATH=PA

GENERATE OPT=BAIT,TRXID=PD,DBPATH=PD

GENERATE OPT=BDLE,PGMID=PP,SHTABLE=(PA,PD),ITTABLE=(PA,PD)

Note: The GENERATE statements for the segments are shown although these
are not necessary if the segment rules have previously been generated
for online use.

CREATING OUTPUT AND REPORTS

When the batch transaction driver executes as a BMP, any secondary
transactions and IMS/VS messages are sent via IMS/VS. In a batch
region, however, the messages are written to an output data set with DD
name SECTRX. It is thus possible to create output and reports under the
control of the high level audit language, using the SEND IMMED
'ssORxx01' statement described in Chapter 7, "Secondary Transactions and
IMS/VS Message Routing." An example of this facility is given in
Appendix C, "Report Writing Example."

Chapter 10. Batch Processing 10-5

PAGE AND SPACE CONTROL

The output listing, from the batch execution, prints all transaction
input plus any error, warning or informational messages. The spacing in
this report can be controlled by statements placed in the input stream.
These control statements are:

EJECT Causes the page to eject after the statement is encountered.
The format is: EJECT (column 2-6).

SKIP nn Causes the report to skip after the statement is encountered.
The number specified in nn can be 1 to 99. The format is:
SKIP nn (column 2-5 and 7-8).

MESSAGE CONTROL

The messages generated during a batch execution can be expanded through
the insertion of a Message Control statement in the input stream. This
statement causes additional information to be mapped into some of the
error messages. The format is:

MSG=(n,m)
where:
MSG ;ndicates that this is a Message Control statement (columns
-%)
n specifies option 1 (0, 1, or 2)
m specifies option 2 (1 or 2)

The statement can be coded with either the n option, or n and m. The
allowable parameters are:

0 no additional expansion of the message. This is the default
and is the format if message control is not used.

1 specifies that data base error messages (not found and already
exists) will have the segments keys mapped into the message.

2 specifies that error and warning message will be expanded to
show the name of the field in error and its contents.

SIGN-ON SECURITY
transaction nust Sracada sty othar transottion during input. The Format

SIGNON pg userid lockword
where:

SIGNON indicates that this is a sign-on transaction (columns 1-6)

pg is the project/group (columns 8-9)
userid is the user ID (columns 11-16)

lockuword is optional: if specified, you must supply a lockword exit
(columns 18-25)

For example:
SIGNON YY 999999
IMSADF II makes sure that the user ID and project/group are permitted to

use the application system ID of the batch transaction driver program
and restricts the use of transactions according to the security profile.

10-6 IMSADF II Application Development Guide

There is also a SIGNOFF transaction (coded in columns 1-7). This is
useful when batch input to a run is merged from several sources. Each
submitter of transaction input should have a SIGNON at the start and a
SIGNOFF at the end to prevent the next submitter running undar the first
sign-on.

If any errors are detected during SIGNON processing, an error message is
printed and the transactions are flushed until a valid sign-on is
encountered.

OPTIONAL LOCKWORD EXIT PROCESSING IN BATCH MODE

The submitter may be required to include a lockword in the SIGNON
transaction record. Verification is achieved through an exit routine in
Assembler, PL/I, or COBOL that is called by the batch transaction
driver. The parameters that are passed to the lockword exit are the
same in batch as in conversational processing. Therefore, the
discussion of lockword processing in Chapter 9, "Exits" applies to batch
processing with the following exceptions:

For PL/I lockuword exits:

o To incorporate the lockword exit routine with the batch driver, the
batch driver rule must be relinked, including the appropriate
link-edit CHANGE statement.

. To incorporate a non-main PL/I procedure as an exit, the following
Linkage Editor control statements are required:

INCLUDE OBJLIB(LOCKUPGM)
CHANGE MFC1EO01(LOCKUPGM)
INCLUDE OBJLIB(MFCLEO1P)
CHANGE MFC1EOLC(MFCIEO1P)
INCLUDE SYSLMOD(ssssBDxx)

ENTRY MFC1T09
NAME ssssBDxx(R)
where:

XX is the batch driver rule ID
8888 is the application system ID

If your sign-on exit was written on COBOL or Assembler, it was
incorporated automatically by SMP in load module ????BXXX. Since that
module is included in a batch transaction driver link-edit, the exit now
exists in your batch transaction drivers under the name MFC1E01.

SIGN-OFF EXIT IN BATCH MODE (OPTIONAL)

An exit routine can be written to be invoked at sign-off time in batch
processing if sign-on is used. "Sign-off time" occurs when a SIGNOFF or
another SIGNON transaction is encountered, or at end-of-file on TRANSIN.

The parameters passed to the sign-off exit are the same as in
conversational processing, with the following exceptions.

U The parameter ADDR(NEWPG) is set to zero since it does not apply to
batch. The information available in the SPA is the same that is
available when OPTION C is entered in conversational mode.

For PL/I lockword exits:

. To include a sign-off exit with the batch driver, the batch driver
r:l: must be relinked, including the appropriate link-edit CHANGE
statement.

. To incorporate a non-main PL/I procedure as an exit, the following
linkage editor control statements are required:

INCLUDE OBJLIB(signoff exit)

CHANGE MFC1lE99(signoff exit)
INCLUDE OBJLIB(MFC1E99P)

Chapter 10. Batch Processing 10-7

CHANGE MFC1E99C(MFC1E99P)
INCLUDE SYSLMOD(ss55BDXX)

ENTRY MFC1T09
NAME 5555BDxx(R)
where:

XX is the batch driver rule ID
6658 is the application system ID

If your sign-off exit was written on COBOL or Assembler, it was
incorporated automatically by SMP in load module ????BXX. Since that
module is included in a batch transaction driver link-edit, the exit now
exists in your batch transaction drivers under the name MFC1E9S$.

CHECKPOINTS

Checkpoints will be taken at intervals during batch processing if
CHKPT=YES is specified on OPT=BDLE statement to the Rules Generator.
Then, each time the batch transaction driver program is executed,
checkpoints will be taken under the following conditions:

U CHKPT transaction (consisting of the word CHKPT in columns 1 to 5)
included in the input stream. This may occur at any time during
processing, but it must not occur within a data base transaction.

] A predefined frequency of input data base transactions is met. This
frequency is specified in the FREQ=nnnnn operand of the GENERATE
statement.

. A combination of the first two conditions.

RESTART PROCESSING

Restart processing may be performed with the batch transaction driver.
Data base backout, however, is not performed. The IMS/VS data base
backout utility must be performed for any DL/I data base updates after
the last checkpoint prior to restarting the job.

Restart processing may be triggered by a data set with DDNAME RSTRTIN.
The record format of this data set is fixed length, 80 characters. The
format of the command is:

RSTRT CHKPTID ABENDNO
where:
RSTRT is the command (columns 1-5)

CHKPTID is the ID of the checkpoint at which restart is to begin
(columns 7-14).

ABENDNO if specified, indicates the starting input record number of a
transaction which is to be skipped (possibly a transaction
causing a previous abend) (columns 16-20). Optional.

The format is nnnnn. This number will appear on the batch
output listing when the input record is printed.

In an IMS/VS environment, you may alternatively trigger restart
processing by specifying the checkpoint ID in the EXEC PARM statement.
See the IMS/VS Application Programming Reference Manual and IMS/VS
System Programming Reference Manual for further information.

10-8 IMSADF II Application Development Guide

SPECIAL PROCESSING

Both standard and special processing are supported in batch. A Special
Processing Routine (SPR) receives control in the same manner as during
online processing and is passed a communication work area having exactly
the same layout as the SPA. The SPR can call subroutine services such
as the MAPPER and SEGUPDTE in the same way. All the calls except
DISPLAY are available to it. When the SPR terminates, it passes a
return code to the batch transaction driver to tell it what to do. The
return codes are equivalent to those for online processing where
possible. The batch transaction driver performs automatic message
sending on return from the SPR when appropriate rules are present.

BYPASS Specify BYPASS=YES for a special processing Batch Input
Transaction Rule (GENERATE OPT=BAIT) when the batch
transaction driver is to make two calls to the special
processing routine. The first call is made after the DBPATH
segments have been returned and the second is made after the
input transaction data mapper has mapped the changed field
igto the SPA work area for batch processing. The default is
NO.

Certain special processing routines open and use their own DCBs. These
DCBs can be closed by the special processing routines through a final
maintenance call that is made available when EOF=Y is coded on the
GENERATE OPT=BAIT statement. For this maintenance call, the batch
transaction driver calls the special processing routine when an
end-of-file condition is encountered on the TRANSIN data set. The only
parameter passed to the special processing routine is the address of the
SPA. The SPAFIRST field in the SPA will contain the value -1.

Batch special processing uses the following operands on the GENERATE
OPT=BDLE statement:

SPTABLE A list of all special processing transactions to be processed
by this batch transaction driver program. The Rules
Generator will link-edit the programs with the batch
transaction driver. They must all be present with correct
names (of form ssssUtx, where tx is the transaction ID) in
the OBJLIB data set, which must be available to the Rules
Generator.

SHTABLE The list should include all segment IDs referenced in
SEGHNDLR calls by all programs identified in SPTABLE.

MAPTABLE Mapping segments used in the special processing routines
should be listed.

Chapter 10. Batch Processing 10-9

RETURN CODES
code Transaction Driver Action
0,2 Read next transaction.

1 Generate secondary transactions as required according to the
setting of SPASECTX. Return control immediately to the SPR.

Qutput the message in SPAERMSG and read next transaction.

Dutput SPECIAL PROCESSING COMPLETED SUCCESSFULLY and read next
transaction.

8 Output the audit error message and read next transaction.
12 SPR has written the error message already. Read next transaction.
2% Issue ROLL call to back out any updates. Pseudo abend caused.

28 Generate and print error message returned from the segment
handler. Read next transaction.

32 Read next transaction.

XX Invalid return code (XX=other). Message written; batch
transaction driver sends return code of %4

Notes:

1. The error message is specified by a message number in the COMSG
field of the segment handler communication area.

2. Return code 100 is an internal return code meaning that the special
processing routine could not be found. DO NOT USE THIS VALUE.

10-10 IMSADF II Application Development Guide

BATCH APPLICATION IMPLEMENTATION CHECKLIST

Please refer to Figure 10-1 on page 10-1 for environment-related
information.

1. Generate any special processing routines to handle complex logic
according to the specifications provided in "Special Processing” on
page 10-9. Generate the special processing interface data module
table, MAPTABLE, to indicate mapping requirements, via the GENERATE
statement with OPTIONS=BDLE and MAPTABLE=mapids.

2. Generate rules and data bases to define transaction message
processing. The rules to include are:

U Input Transaction Rules (OPTION=BAIT)
. Segment Handler and Segment Layout Rules (OPTION=SGALL)
. Batch Driver Rule (OPTION=BDLE)

3. If auditing and automatic message sending are required, generate
appropriate information in the Audit and Message Data Bases.

4. Link-edit the batch transaction driver with the Batch Driver Rule
and, if special processing is used, with the special processing
routines, the special processing interface routine (SPIR), and the
special processing interface data module. The GENERATE statement
Titt OST{ONS=BDLE causes the Rules Generator to perform the

ink-edit.

5. Generate a PSB containing the PCBs for DL/I data base access.
6. Prepare a job stream for batch execution (if appropriate).

7. Prepare the TRANSIN sequential data set to contain transaction
records to be processed.

8. Add the APPLCTN macro to the IMS/VS system definition if the program
is to be executed as a BMP progranm.

9. For CICS/0S5/VS, update the following tables as appropriate:
. DFHPPT
. DFHPSB (DL/I only)
o DFHDBD (DL/I only)
Note: See the IMS Application Development Facilit I Version

Release 2 Installation Guide for DFHDCT entries required for

execution of a batch driver in a CICS/0S/VS environment.

Chapter 10. Batch Processing 10-11

BATCH DRIVER COMPLETION CODES
Condition codes returned by the batch transaction driver are listed
below. The actual code returned during a batch run wWwill be the highest
value encountered during processing. In most cases, a message
describing the problem will follow the transaction or record in error.
Exceptions are noted. Condition code values of 60 or less indicate that
processing continued. Condition codes greater than 80 indicate that
processing was terminated when the error condition was encountered.
code Explanation
0 Successful processing — no errors encountered
4 Special processing routine wrote or set up a message (i.e.,
returned code 3, 12 or 28). Message could be a successful
completion, an error message, or no more checkpoints allowed (see
message).
8 Syntax error in input record
12 Audit error
16 Data mapper error
20 DL/I error
26 Input Transaction Rule or other rule not found (see message)
40 Soft Stop - operator keyed in STOP (no message given)
£ Unknown return code from special processing routine
60 Sign-on/sign-off error encountered
76 End of data reached on TRANSIN before restart complete
80 Error occurred during checkpoint
84 Rule(s) not in library, message indicates which
88 DCB characteristics of TRANSIN unacceptable
92 Error encountered during restart

96 TRANSIN, TRANSOUT, or RSTRTIN could not be opened, message
indicates which

100 PRINTER could not be opened (no message given)

10-12 IMSADF II Application Development Guide

CHAPTER 11 ONCONVERSATIONAL PROCESSING

Under CICS/0S5/VS, the nonconversational display screen is obtained by
entering:

Tttt xxxxxxxx
where,
tttt

is a one- to four-character transaction code defined to CICS/05/VS
which will give control to IMSADF II.

AXXXXXXX

is the one- to eight-character Output Format Rule name for the
desired transaction. (See the MODNAME operand of the GENERATE

statement in the IMS Application Development Facility II Version 2

Release 2 Application Development Reference.)

Under IMS/VS, the nonconversational display screen is obtained by
entering the IMS/VS /FORMAT command. Enter /FOR XxxXXXXxxX and press the
ENTER key to display the desired screen, where xxxxxxxx is the
appropriate IMS/VS MFS modname.

INVENTORY INFORMATION
PARTS DATABASE

MODE: (3-REMOVE, 4-ADD, 5-UPDATE, 6-DISPLAY) ACTION: 1
EETER PART NUMBER:

: AREA: INV DEPT:
PROJECT: DIVISION: FILLER:
FOLLOWING CAN BE UPDATED
REQMNTS UNPLANNED: DISB UNPLANNED:

FOLLOWING ARE FOR INFORMATION ONLY
DESCRIPTION:
ON ORDER: TOTAL STOCK:

Figure 11-1. Nonconversational Display Screen

The user must now select one of the transaction modes and enter key
information, as in Figure 11-2.

Chapter 11. Nonconversational Processing 11-1

INVENTORY INFORMATION
PARTS DATABASE

MODE: 6 (3-REMOVE, 4-ADD,5-UPDATE,6-DISPLAY) ACTION: 1
ENTER PART NUMBER: 02AN960C10

00: 00 AREA: 2 INV DEPT: 80
PROJECT: 091 DIVISION: 26 FILLER:

FOLLOWING CAN BE UPDATED

REQMNTS UNPLANNED: DISB UNPLANNED:

FOLLOWING ARE FOR INFORMATION ONLY

DESCRIPTION:

ON ORDER: TOTAL STOCK:

Figure 11-2. Requesting a Display by Entering Key Information

If mode 6 (Display) is entered, data will be displayed on a screen like
the one in Figure 11-3.

INVENTORY INFORMATION
PARTS DATABASE

MODE: 6 (3-REMOVE, 4-ADD,5-UPDATE, 6-DISPLAY) ACTION: 1
ENTER PART NUMBER: 02AN960C10

00: 00 AREA: 2 INV DEPT: 80
PROJECT: 091 DIVISION: 26 FILLER:

FOLLOWING CAN BE UPDATED

REQMNTS UNPLANNED: 0 DISB UNPLANNED: 700

FOLLOWING ARE FOR INFORMATION ONLY
DESCRIPTION: WASHER
ON ORDER: 0 TOTAL STOCK: 17

Figure 11-3. Data Display

If the user changes the mode to 5, he can amend the data (as shown in
Figure 11-4), and the data base will be updated.

11-2 IMSADF II Application Development Guide

INVENTORY INFORMATION
PARTS DATABASE

MODE: 5 (3-REMOVE, 4-ADD,5-UPDATE,6-DISPLAY) ACTION: 1
ENTER PART NUMBER: 02AN960C10

00: 00 AREA: 2 INV DEPT: 80
PROJECT: 091 DIVISION: 26 FILLER:

FOLLOWING CAN BE UPDATED

REQMNTS UNPLANNED: 0 DISB UNPLANNED: 1200

FOLLOWING ARE FOR INFORMATION ONLY
DESCRIPTION: WASHER
ON ORDER: 0 TOTAL STOCK: 17

Figure 11-4. Making an Amendment

When you define the rules for this format, certain fields may be defined
as display only, while others may be subject to validation and other
processing before the data base will be updated. These rules are
interpreted by the Auditor, a part of the transaction driver. If errors
are detected during these validation checks, the user is informed, as
shown in Figure 11-5; the field in error is highlighted.

INVENTORY INFORMATION
PARTS DATABASE

MODE: 5 (3-REMOVE, 4-ADD,5-UPDATE, 6-DISPLAY) ACTION: 1
ENTER PART NUMBER: 02AN960C10

00: 00 AREA: 2 INV DEPT: 80
PROJECT: 091 DIVISION: 26 FILLER:

FOLLOWING CAN BE UPDATED

REQMNTS UNPLANNED: 0 DISB UNPLANNED: 1200

FOLLOWING ARE FOR INFORMATION ONLY
DESCRIPTION: WASHER
ON ORDER: 0 TOTAL STOCK: 17

AUDITOR ERRORS - MESSAGES ON NEXT LOGICAL PAGE

Figure 11-5. A Validation Error Detected by the Auditor

If the user needs more information to correct the error, he presses PF
key 1, or types =+1 in the ACTION field and presses ENTER to display
error messages. Figure 11-6 shows an example.

Chapter 11. Nonconversational Processing 11-3

ERROR MESSAGES
ACTION: 1
1234 DISB PLANNED 1200 TOO HIGH

Figure 11-6. Error Message

To complete the updates, the user presses PF key 2 or types ==1 in the
ACTION field and presses ENTER. The display screen will return.

ACTION: =+1 (PF key 1) means show the next logical page; ACTION: =-1 (PF
key 2) means show the previous logical page; ACTION: =1 (PF key 3) means
show the first logical page, which is the one containing the data.

It is not necessary to display data before updating it. On the first
display screen, the user can enter mode 5, the key fields, and the
amendments, as shown in Figure 11-7.

INVENTORY INFORMATION
PARTS DATABASE

MODE: 5 (3-REMOVE, 4-ADD,5-UPDATE, 6-DISPLAY) ACTION: 1
ENTER PART NUMBER: 02AN960C10

00: 00 AREA: 2 INV DEPT: 80
PROJECT: 091 DIVISION: 26 FILLER:

FOLLOWING CAN BE UPDATED

REQMNTS UNPLANNED: DISB UNPLANNED: 120

FOLLOWING ARE FOR INFORMATION ONLY

DESCRIPTION:

ON ORDER: TOTAL STOCK:

Figure 11-7. Entering an Amendment Without First Requesting a Display

Again, if errors are detected, the user will be informed as shown in
Figure 11-5 and Figure 11-6.

11-4¢ IMSADF II Application Development Guide

When updates are successful, final confirmation will appear, as shown in
Figure 11-8.

INVENTORY INFORMATION
PARTS DATABASE

MODE: 5 (3-REMOVE, 4~ADD,5-UPDATE, 6-DISPLAY) ACTION: 1
ENTER PART NUMBER: 02AN960C10

00: 00 AREA: 2 INV DEPT: 80
PROJECT: 091 DIVISION: 26 FILLER:

FOLLOWING CAN BE UPDATED

REQMNTS UNPLANNED: 0 DISB UNPLANNED: 120

FOLLOWING ARE FOR INFORMATION ONLY
DESCRIPTION: WASHER
ON ORDER: 0 TOTAL STOCK: 17

¥%% SEGMENT MODIFIED SUCCESSFULLY xXx

Figure 11-8. Confirmation Message

This sample transaction works against the data base shown in

Figure 11-9. Each segment has a two-character ID. The example given
permits display and update of the PA and IV segments; the key fields the
user is required to enter are the keys of these segments.

PA

PD Iv

cY

Figure 11-9. Data Base Used in Examples

The lowest level segment retrieved by a transaction in a hierarchical
path is known as the target segment. When a transaction involves
multiple hierarchical paths in one or more data bases, it is said to
have multiple target segments - one for each path. When defining a
transaction, you will name the target segments.

Transaction modes 3 and 4 treat target segments differently from other
segments. Mode 4 will insert a new occurrence of the target in the data
base. If mode 4 were used in the example, the user would enter an
existing part number and a new inventory key. He would enter data to go
into the inserted segment at the same time. Again, the Auditor would
verify the data, and a confirmation display like the one in Figure 11-8
would appear, with the message %%% SEGMENT ADDED SUCCESSFULLY %% .

Transaction mode 3 is used for deleting segments. However, it is used
mainly on transactions with a single target segment. Thus, if used in
the sample transaction, mode 3 would delete the IV segment. A
multiple-path transaction may also delete segments. However, such a

Chapter 11. Nonconversational Processing 11-5

function is under control of audit rules (rules in the Audit Data Base)
and is not restricted to mode 3.

The example above illustrates a single transaction with a single target
segment. The transaction has a two-character ID; this ID is hidden from
the terminal user.

For single path transactions, a simple convention is that transaction ID
equals target segment ID. You can then define a set of data base
maintenance transactions, one for each segment type. These can later be
supplemented by more complex transactions.

Therefore, to perform data base maintenance (including test data
creation) against the sample data base, transactions PA, PD, IV and CY
would be defined.

Transactions are collected together into application systems. An
application system is given a four-character ID. Like the transaction
ID, this ID is not visible to the user, but it must be assigned. The ID
for the sample application system used here is SAMP.

STATIC RULES AN HE RULES GENERATOR

An IMSADF II transaction consists of a generalized application program
controlled by rules. Static rules are used to define:

. The transactions within an application system

o The data base and its segments

. Which segments will be used in each transaction
. what data is to appear on the display screens

o The audit specifications and interrelationships that will be
required in a transaction

These rules are "static" because they are relatively stable and
unchanging. The IMSADF II Rules Generator, a utility like a compiler,
processes static rules and stores them as members in an 05 partitioned
data set (PDS).

The next section describes the various types of static rules. The

statements you will use to submit these rules and other instructions to

the Rules Generator will be introduced in the following section.

IMSADF II retrieves the rules required according to the user's sign-on

and subsequent selection of transactions.

STATIC RULES FOR NONCONVERSATIONAL APPLICATION SYSTEMS

The following static rules are required for every transaction:

Input Defines the segments to be used in a transaction,

Transaction Rule including a small amount of information about the kind
of processing to be performed against the data base.

gufput Format Tells the transaction driver what fields to display.
ule

11-6 IMSADF II Application Development Guide

The following static rules are required for every data base segment to

be used:

Segment Handler Contains the actual segment search arguments (S5SAs)

Rule that IMSADF II needs to perform data base I/0 using
DL/I. One is produced for every data base segment to
be used.

Segment Layout Defines the fields in a segment, including their

Rule length and format, and indicates whether any
validation or message sending is to be performed.

Table Handler Builds an Assembler program containing standard static

Rule SQL calls and USER SQL calls.

Table Layout Defines the columns in a DB2 table. It performs the

Rule same function as the Segment Layout Rule.

There are
Generator.

SYSTEM

SEGMENT

FIELD

GENERATE

RULE

INCLUDE

Figure 11-

produce a

six types of source statements to be submitted to the Rules
They are:

Defines the application system ID and sets general system
parameters.

Defines the data base layout (similar to an IMS/VS DBD);
segments are usually defined in hierarchical order. (Data
bases are defined implicitly through the PCBs.) There must be
a separate SEGMENT statement for every data base segment used
in a transaction.

Defines the key and data fields contained in a segment and
indicates how the fields are to be displaved on the screens in
which they appear.

Has several uses:

. Defines transactions, controls screen formats, and
identifies which data base segments are to be used

. Controls the generation of Segment Handler and Segment
Layout Rules (using information given in the SEGMENT and
FIELD statements)

. Requests link edit and preload performance options

Provides control information to the Rules Generator for
entering Assembler language rules source.

Note: The RULE statement is not supported under the
Interactive Application Development Facility (IADF).

Provides a copy library facility that allows basic information
to be stored, retrieved, and augmented or overridden by
additional statements and parameters.

10 shows how these Rules Generator statements can be used to
single transaction, PA, which allows display and update

(including insertion and deletion) of the PARTROOT sagment.

Chapter 11. Nonconversational Processing 11-7

//NAME JOB

//STEP1 EXEC 22276

SYSTEM SYSID=SAMP, SOMTX=0R

SEGMENT ID=PA, LENGTH=50, NAME=PARTROOT,PARENT=0

FIELD ID=KEY,KEY=YES, LENGTH=17, NAME=PARTNUMB

FIELD ID=DESC, LENGTH=20,P0S5=27

GENERATE OPT=NCLE,PGMID=0R

GENERATE OPT=TPALL, TRXID=PA,DBPATH=PA,SP0S=SIMAGE,MODNAME=PARTROOT,
IMAGE=PARTROOT

GENERATE OPT=SGALL

Figure 11-10. Using Rules Generator Statements to Produce a Simple
Nonconversational Transaction

The JCL procedure ?7??6 executes the Rules Generator, where 222? is the
installed ADFID (the default is MFC1l; refer to the IMS Application

Development Facility II Version 2 Release 2 Installation Guide). This
procedure is supplied with IMSADF II.

The next sections describe the Rules Generator source statements shown
in Figure 11-10 and give information you need to start using them.
Refer to the IMS Application Development Facility II Version 2 Release
Application Development Reference for detailed dascriptions of the
various operands in each type of statement.

The SYSTEM Statement

SYSTEM SYSID=SAMP, SOMTX=0R

The main operands of this statement are as follows:

SYSID Names the application system ID, the first four characters of
the program load module for this application. Required.

The DL/I PSB, where applicable, and the IMS5/VS transaction
code, both have the same name as the program load module. The
first two characters of the application system ID must be
unique within the installation.

SOMTX Defines the last two characters of the program load module for
this application (SAMPTOOR, in this case).

Note: SOMTX on the GENERATE statement (OPT=TPALL) overrides
the operand on the SYSTEM statement.

The SEGMENT Statement

SEGMENT ID=PA,LENGTH=50,NAME=PARTROOT,PARENT=0

The following operands are required for data base segments:

ID The two-character segment ID; must be unique within the
application system.

11-8 1IMSADF II Application Development Guide

LENGTH Segment length in bytes.

NAME Name of segment to be used in segment search arguments for
DL/I calls. The same NAME value may be used for different
saegment definitions with different IDs. Such definitions are
called aliases and are different views of the same data base
segment.

PARENT The two-character ID of the parent segment in the data base.
Root segments should have PARENT=0. DB2 tables and VSAM files
also should have PARENT=0.

The FIELD Statement

FIELD ID=KEY,KEY=YES, LENGTH=17,NAME=PARTNUMB
FIELD ID=DESC, LENGTH=20,P05=27

All FIELD statements must have an ID and a LENGTH.

ID Field ID; two to four characters; must be unique within the
segment.

KEY Indicates whethar or not the field is a key field. The
default is NO.

BYTES or Length of stored field in bytes.

LENGTH

NAME NaT? of field to be used in segment search arguments for DL/I
calls.

START or Position of field in the segment. The default is the byte

POSITION immediately following the field defined in the preceding FIELD
statement; if this is the first FIELD statement in the
segment, the default is position 1.

KEY FIELDS: See "Key Fields" on page 2-6.

DECIMAL FIELDS: See "Decimal Fields" on page 2-7.

DATE FIELDS: See "Date Fields" on page 2-8.

The GENERATE Statement

GENERATE OPT=NCLE,PGMID=0R

GENERATE OPT=TPALL,TRXID=PA,DBPATH=PA,SP0S=SIMAGE,
MODNAME=PARTROOT, IMAGE=PARTROOT

GENERATE OPT=SGALL

This examp
The OPTION

When setti
GENERATE

le includes three of the four types of GENERATE statement.
S (OPT) operand determines which kind it is.

ng up an application system, you need the following statement:

OPT=NCLE,PGMID=0R

Chapter 11. Nonconversational Processing 11-9

The main operand of this statement is:

PGMID Defines the last two characters of the program load module for
this application.

Notae: SOMTX on the GENERATE statement (OPT=TPALL) overrides
the operand on the SYSTEM statement.

The PGMID value must match the SOMTX operand value on the SYSTEM
statement, or the GENERATE statement with OPT=TPALL must include a SOMTX
value to override the operand on the SYSTEM statement, and there must be
a separate GENERATE (with PGMID) statement for each different SOMTX
operand value.

Transactions themselves are defined by the GENERATE statement with
OPT=TPALL. The main operands of this statement are as follows:

TRXID Names the two-character transaction ID.

DBPATH Defines the target segments of the transaction. These are
the segments for which the user will enter key information
and which will be retrieved and updated according to the
transaction mode selected by the user at the terminal.

SPOS=SIMAGE Indicates that a screen image definition is to be used.
MODNAME Sets the name of the display screen.

IMAGE Names the member of the screen image library (a PDS with
DDNAME IMAGELIB) containing the screen image.

The Segment Layout and Segment Handler Rules will be generated when the
Rules Generator encounters the following statement:

GENERATE OPT=SGALL

;t s?ould be placed after all SEGMENT statements in the Rules Generator
input.

PSEUDO SEGMENTS

It may be necessary to define working storage in a transaction for
calculations or other data manipulation. Sometimes the fields in
working storage will be displayed and updated by the user on the display
screen. IMSADF II provides pseudo segments for this purpose. They are
defined to the Rules Generator like data base segments, but without key
fields, without parents, and without NAME operands. By default, the
fields are displayed with MODE=5, but this can be changed just as for
data base segments.

A pseudo segment is identified with a GENERATE statement (OPT=TPALL)
using the operand TSEGS. For example:

SEGMENT ID=CC, TYPE=PS

FIELD ID=CLOR, TYPE=DEC, LENGTH=7

GENERATE OPT=SGALL

GENERATE TRXID=UV,DBPATH=IV,TSEGS=CC,O0PT=TPALL,SP0S=SIMAGE,
MODNAME=INVEN

PROGRAM FUNCTION KEYS

The support of program function (PF) keys in nonconversational
processing is more extensive than that described in Chapter 6, "Complex
Transactions.” There is another option that allows IMS/VS commands
(e.g., /FORMAT) to be entered when the user presses a PF key. (There is
no analogous function for CICS BMS.)

To select this option, code PFKDATA=NO on the transaction GENERATE
statement, do not use PFKNUMB, and code a PFKLIT operand for each PF key
usage desired. Again, the Rules Generator will not check the validity
of the PFKLIT value. (MFS rules must be followed.) For example:

11-10 IMSADF 1I Application Development Guide

Significant Rules Generator statement:

GENERATE TRXID=UV,DBPATH=IV,O0PT=TPALL,
SPOS=SIMAGE,MODNAME=INVEN,
PFKLIT=(5="/FOR SAMP "),
PFKLIT=(10="'/FOR MFCl1 ')

MEANING OF FIELD MODES

Nonconversational display screen formats are somewhat different from
conversational screen formats. Only the information held on the screen
will be saved from one transaction to the next. Therefore, IMSADF II
must be able to read in keys and other required data from the display
device whether these were saved from a previous display or just entered
by the user. This is done for all fields by including the MODE=5
operand on the FIELD statement (or in the screen image definition).
This makes the field both modifiable and premodified.

Note: "Premodified" means that data will be read in from the screen
whether or not the user has amended it.

It is not required that all data be entered every time. O0ften, only
keys and one or two fields are needed. By making all fields premodified
(MODE=5), IMSADF II will treat them as changed, invoke the Auditor, and
issue DL/I calls to update the corresponding data base segments even if
these are not actually changed by the user. No DL/I calls to update
data base segments are issued by IMSADF II when the transaction mode is
6 (Display); however, DL/I calls can still be made through the Auditor.
The Auditor is not invoked after mapping the screen into the SPA when
the tra:§action mode is 6 unless a field with MODE=4 is specified in the
ransaction.

A field with MODE=¢ will not be premodified. Data in field of MODE=4%
will be read in only if the user enters data into it. In addition, for
compatibility with conversational processing, a field of MODE=4¢ will be
modifiable even in transaction mode 6. If the user specifies a MODE=%
field on the screen, the Auditor will be called. Using the Auditor in
this way in transaction mode 6 can be useful for transaction switching
or for unusual processing requirements.

If the transaction mode is not 6, all MODE=5 fields and modified MODE=4
fields will be mapped from the screen into the SPA. The Auditor will be
invokeg and IMSADF II will issue DL/I calls to update data base
segments.

For transaction mode 6, only pseudo segment fields that are MODE=5 or
modified MODE=4 will be mapped from the screen to the SPA. No
displayable DBPATH fields will be mapped, whatever their field mode.
The Auditor will be invoked if a MODE=4¢ field was specified. No DL/I
calls to update data base segments will be issued by IMSADF II.

SUMMARY OF SYNTAX CONVENTIONS

U Start in any column (1-71) and use columns 1 to 71.
. Leave a space between control statement keywords and operands.

° Separate comments from statements by one or more blank lines. An
asterisk in column 1 marks a comment line.

U Mark continuations with a commasblank combination. The next line
can start in any column (1-71).

. Do not continue multi-valued operands (using parentheses) over two
lines. Instead, close the parentheses and repeat the operand on the
next line: OPT=(INTR,SEGD),0OPT=KEYD is the same as
OPT=(INTR,SEGD,KEYD).

Chapter 11. Nonconversational Processing 11-11

DYNAMIC RULES

When IMSADF II is installed, three data bases are set up that contain
dynamic rules. These data bases are maintained online or in batch using
an application system provided with the product. They are referenced
during the execution of application systems developed using IMSADF II.

The three data bases are shown in Figure 11-11.

Data Base Description

Sign-on Profile For nonconversational applications, this data base
is used only to collect information messages for
batch printing.

Audit Controls validation of data field format and
content; allows specification of calculations,
logic operations, and data manipulation; provides
for additional security checking by key range or
field values; and supports table definition.

Message Used mainly in conjunction with rules in the Audit
Data Base. Contains text and format of error
messages and information.

Figure 11-11. The Dynamic Rules Data Bases

Most functions needing dynamic rules require information from both the
Audit and Message Data Bases. Applications can be implemented, however,
without using dynamic rules at all.

Entering rules into these data bases is part of application development
and maintenance and will therefore normally be done by the same person
that writes the static rules. Dynamic rules can be entered through
batch utilities that accept statements in a high level audit language

gnd compile them into a form in which they can be loaded onto the data
ases.

An application system is provided with IMSADF II for the purpose of
creating and maintaining dynamic rules online through IMS/VS. This
system treats the IMSADF II dynamic rules data bases as if they were
application data bases. It is implemented using conversational
procefsing and is hence used somewhat differently from the previous
example.

Suppose you want to create a segment in the Audit Data Base having a key
of SAMPYYYYSAIVSTOKO1. Figure 11-12 shows how to request this. Only
OPTION D (Transaction Selection) and OPTION C (Session Termination) need
be used to update the data bases for nonconversational transactions.

The transaction modes are the same as in conversational transactions.
Transaction ID FA is one of many that exist in this application system.
If a transaction ID is not entered, a menu describing all valid
transaction IDs will be shown to enable you to make a selection. Data
base browsing capabilities, as described in Chapter 1, "IMSADF Il
Concepts and Overview,"™ can also be used.

11-12 IMSADF II Application Development Guide

PRIMARY MENU

OPTION: D TRANSACTION MODE: & IDENTIFIER: FA
KEY: SAMPYYYYSAIVSTOKO1

OPTIONS TRANSACTION MODES
A = PROJECT MESSAGE SENDING 1 - DELETE
B = PROJECT MESSAGE DISPLAY 2 = INITIATE
C = SESSION TERMINATION 3 - REMOVE
D = TRANSACTION SELECTION 4 - ADD
F = PROJECT / GROUP SWITCH 5 - UPDATE
H = USER MESSAGE SENDING 6 - RETRIEVE
I = USER MESSAGE DISPLAY

IDENTIFIER IS
TRANSACTION ID
PROJECT/GROUP
(NOT USED)

FOR OgTION

F
A,B,C,H, I

Figure 11-12. Using the Primary Option Menu to Select Transaction FA

When you press ENTER, a Data Display screen will appear (see
Figure 11-13). Data entered here will go onto the data base.

AUDIT DATA BASE

ADD TRANSACTION: FIELD AUDIT OPERATION DESC
OPTION: TRX: GFA KEY: SAMPYYYYSAIVSTOKO1
*¥%x% ENTER DATA FOR ADD Xxx
SYSTEM ID/AUDIT GROUP- SAMPYYYY
FIELD NAME (SSXXFFFF)- SAIVSTOK

SEGMENT SEQ-=--------~- 01
DESCRIPTOR CODE------- 02
RELATED FIELD---------

NEXT TRUE SEQ NO------ 00
NEXT FALSE SEQ NO-----
MESSAGE #----------—-- 9100

Figure 11-13. Adding a Segment to the Audit Data Base

To return to the Primary Option Menu, enter OPTION C on the screen. On
the Primary Option Menu, OPTION C will terminate the session.

The entries in Figure 11-13 are explained in Chapter 4, "The Auditor and
the Audit Data Base." The next section will introduce that chapter.

Chapter 11. Nonconversational Processing 11-13

AUDITING FIELDS

Data validation, calculations, and other processing against fields are
performed by the Auditor, which is a part of the transaction driver.
The operations it performs are controlled by rules stored in the Audit
Data Base. In addition, there are certain operands to be coded on Rules
Generator statements to request that audit operations be performed. If
no such operands are coded, the Auditor will simply validate the data
entered by the user according to the data tvpe coded on the Rules
Generator FIELD statements. If errors are found, the fields in error
are highlighted and the user is invited to select the next logical page
to see the error messages, as described in Chapter 1, "IMSADF I1I
Concepts and Overview."

The Auditor may be called both during and after key selection, before
the data display is shown to the user. The phase of auditing that takes
place during key selection is known as key audit.

You can use this phase to edit keys, to cause a switch to another
transaction based on the value of the key that the user has entered, and
to validate keys and impose security by key range and user ID or
terminal ID. If errors are detected during key audit, the keys in error
are highlighted, and the user is invited to select the next logical page
to display the error messages.

In conversational processing, the Auditor can also control secondary key
selection (data base browsing). That function is not available in
nonconversational processing.

The next phase of auditing is termed preaudit. This takes place after
the DBPATH segments have been retrieved through key selection. Here, it
may be necessary to prevent some users from updating individual fields,
to convert certain data fields to a different format for viewing, to
initialize fields in a nonstandard way, or to perform data base
retrievals for some or all of the segments. Again, error messages are
on the next logical page.

The Auditor is called in transaction modes 1 to 5 after preaudit, before
the transaction driver issues DL/I calls to update the data bases.
errors are found, the data base is not updated. When the user has
entered corrections, the Auditor is called again and all audit rules are
performed once more. Several iterations can take place before the data
bases are finally updated.

After the updates have been made successfully, it is possible for the
user to enter further amendments. The Auditor then validates and
processes them and further data base updates can be performed.

If one or more fields of MODE=4 have been defined (so that they are not
premodi fied), the user can enter data in them, even in transaction mode
6. The presence of a MODE=4 field will cause the Auditor to be called
in the PROCESS phase, as well as in key audit and preaudit.

Read Chapter 4, "The Auditor and the Audit Data Base" and
Chapter 5, "Message Sending and Display" for more information.

COMPLEX TRANSACTIONS

This chapter has already described transactions that display and update
multiple hierarchical paths in multiple data bases. This section
presents more advanced application functions and deals with arbitrary
combinations of inserting, deleting, and replacing segments.

Issuing DL/I calls during audit operations gives control over complex

updating as well as providing an important capability in data validation
and a method of processing twins (multiple segment occurrences).

11-16¢ IMSADF II Application Development Guide

MULTI-PATH TRANSACTIONS

As vou know, standard processing transactions are defined via the
GENERATE statement of the Rules Generator. For example:

GENERATE TRXID=PI,OPT=TPALL,DBPATH=(CY,0R),
TSEGS=(W0,PD),SP0S=SIMAGE, IMAGE=SAMPPI

The segments named in the DBPATH operand are defined in preceding
SEGMENT statements and are the target segments of the transaction. The
data base layouts assumed are shown in Figure 11-14. WO is the ID of a
pseudo segment.

PA cu

1 |

PD IV

Figure 11-16¢. Data Bases Used in Examples

If any field from the CU segment is displayed (by inclusion in the
screen image), the CU segment will be included in the transaction and
will be updated if data is changed by the online user or by audit rules.
The same applies to the PA and IV segments. If no field from a segment
(e.g., IV) is displayed, but audit logic will be required to access or
update it, include the segment in the DBPATH thus:

DBPATH=(CY,IV,0R)

The target segments are still CY and OR as they are the lowest in each
hierarchical path. Collectively, the segments named or implied by the
DBPATH operand are called DBPATH segments. The user must enter their
keys when using the transaction and together their keys constitute the
concatenated key of the transaction.

Segments named in TSEGS are either pseudo segments or data base segments
to be retrieved by the Auditor under control of audit rules or by a
special processing program. The keys of data base TSEGS are mapped from
the sgfien input prior to any required primary key audits and/or
preaudits.

Updating of DBPATH segments is controlled by the transaction mode
selected by the end user. (1 and 2 are interchangeable with 3 and &,
respectively.)

Mode 5: The user must enter keys of existing DBPATH segments and the
segments are displayed. If he changes data, the changed
segments will be updated on the data base. If auditing changes
data, those segments will also be updated.

Mode G&: The user must enter keys of existing nontarget DBPATH segments
and the key of at least one target segment that does not exist
on the data base so that it can be inserted. For the other
target segments, he can enter an existing key or one that does
not exist. If the user changes data, changed segments are
replaced and new segments are inserted. Again, auditing
ghang:sd?lso lead to segments being updated (replaced or
inserted).

Mode 3: The user must enter keys of existing DBPATH segments. For
transactions with a single target segment, the Auditor will be
called and the segment will be deleted regardless of whether or
not the user changes data on the screen. If the user or the
Auditor changes data in other segments, they will be replaced.

Chapter 11. Nonconversational Processing 11-15

For transactions with multiple target segments, mode 3 is just like mode
5, except that in mode 3 the Auditor will be called (and can therefore
cause updates) whether or not the user changes data.

DELETE ELIGIBILITY

To define a transaction that deletes segments other than the target
segment in a single path transaction, you must:

. Define delete eligibility against those segments
. code DL/I calls through the audit operation to delete the segments
Use the DLET operand on the GENERATE statement for the transaction.

In the following example the audit rule checks for a transaction mode of
3 before deleting. The audited field is a nondisplayved dummy field in
the pseudo segment WO. The user receives the display with the message
PRESS gNTER TO DELETE DATE. When he does so, the CY and OR segments are
deleted.

Significant Rules Generator statements:

SEGMENT ID=WO0, TYPE=PS, LENGTH=1,DISP=NO

FIELD ID=DUMY, LENGTH=1,AFA=YES

GENERATE OPT=SGALL

GENERATE TRXID=0M,OPT=TPALL,DBPATH=(PD,CY,0R),MODNAME=0RDMAINT,
TSEGS=W0,DLET=(CY,0R),SP0OS=SIMAGE, IMAGE=0RDMAINT

High level audit language:

SYSID = SAMP

SEGID = WO

FIELD = DUMY

IF MODE = 3
IF DLET KEYFIELD CY 0K
NOP
ENDIF
IF DLET KEYFIELD OR 0K
NOP

ENDIF
ENDIF

Generated operation descriptors:

Audit root key: SAMPYYYYSAWODUMY

Audit operation desc: 0167 0200 TRANSACTION MODE=3
Audit data desc.: 0001(C3)

Audit operation desc: 0236KEYFIELDO3 1025 DELETE CY SEGMENT
Audit data desc: 0001(CCY,DLET)

Audit operation desc: 0336KEYFIELDOO 1025 DELETE OR SEGMENT
Audit data desc: 0001(OR,DLET)

Note: The related field KEYFIELD is a special value recognized by the
DL;I_calé audit operation as meaning the key of the segment already
retrieved.

If an attempt is made to delete a segment using the audit operation and
the segment is not eligible for deletion, the deletion is not done, the
audit operation returns false and a DL/I status code of AM is set.

The deletion is not performed immediately; the operation merely sets a

flag which is later acted on by the transaction driver when performing

any other data base updates.

Segments named in the DLET operand must be DBPATH or TSEG segments.

11-16 1IMSADF II Application Development Guide

INSERT ELIGIBILITY

Insert eligibility has nothing to do with DL/I insert calls from audit
operations, which can be coded regardless of insert eligibility. Insert
eligibility alters data base updating to allow insertions of DBPATH
sagments (target or not) in any transaction mode except 6. Segments are
mzd: eligible through the ISRT operand of the transaction GENERATE
statement.

Mode 5: The user must enter keys of DBPATH segments, but if a segment
is eligible for insertion, he is free to enter a key that does
not exist on the data base. If he does and proceeds to enter
data into it, the segment will be inserted. For an existing
key, the segment will be replaced.

Mode %: All modifiable segments can be inserted regardless of insert
eligibility.

Mode 3: As in mode 5, the eligible segments can be inserted or replaced
depending on the keys entered by the user.

DL/I CALLS FROM THE AUDITOR

See "DL/I Calls from the Auditor™ on page 6-16. The examples given
there apply to nonconversational processing, except that the transaction
GENERATE statements:

. Must be coded OPT=TPALL instead of OPT=CVALL

. Must be accompanied by screen image definitions (SPOS=SIMAGE)

TRANSACTION SWITCHING
See "Transaction Switching” on page 6-9.

In nonconversational processing, the means for passing keys and data
from one transaction to the next is different. The SPAKEYID keyword is
not used; neither is it necessary to write an exit routine to pass data.
However, an exit is still required if the new TRXID must be set from a
pseudo segment field rather than a literal.

Keys and data are passed by virtue of a naming convention. IMSADF II
compares the field names (segment ID plus field ID) in the old
transaction with those in the new by comparing the relevant rules. For
those names that match, the values are mapped across with any necessary
conversions. This applies to keys and to data.

The display screen of the new transaction is then presented to the user
Iof compéetion; when the user presses ENTER, the new transaction is
riggered.

SECONDARY TRANSACTIONS AND IMS/VS MESSAGE ROUTING

The description in Chapter 7, "Secondary Transactions and IMS/VS Message
Routing” applies to nonconversational processing.

In addition, a message can be sent back to the input logical terminal
immediately by coding the special destination IOPCB in the routing
information placed in the Message Data Base. This is required only for
nonresponse-type transactions.

Chapter 11. Nonconversational Processing 11-17

NONRESPONSE TRANSACTIONS

A different kind of nonconversational transaction can be implemented
with IMSADF II. This is the kind that does not send a response back to
the originating logical terminal or, at least, does not send a response
back in the same format as the input.

Under &ims, any output message from such a transaction must be generated
using the secondary transaction facility described in

Chapter 7, "Secondary Transactions and IMS/VS Message Routing.™

?essggef, such as Auditor error messages, are sent to a printer logical
erminal.

Under CICS/05/VS, any output message from such a transaction is sent to
the devige associated with the Transient Data queue that triggered the
ransaction.

Nonresponse transactions can be entered directly from a terminal but is
more suitable to use in transactions triggered from other transactions.

TRANSACTION FORMAT

Each transaction begins with a 12-character transaction mode and
identifier of the form:

sssT0cc mtx
where:

€558 is the application system ID
TO is a literal (in a BMP use BO0)
cc is the cluster code
m is the transaction mode 1 to 6 (preceded by a blank space)
tX is the transaction ID

Chapter 7, "Secondary Transactions and IMS/VS Message Routing™ gives
examples of rules to trigger a secondary transaction. An example of the
actual transaction message would be:

SAMPTO0SC 55C02AN9724686370241023

RULES

As for all other types of processing, the Rules Generator expects
SYSTEM, SEGMENT, FIELD, and GENERATE statements. The SYSTEM and SEGMENT
statements are the same as for response transactions. The FIELD
statements require the following additional operands:

FLDPOS Starting position of the field in any nonresponse (or batch)
transaction in which the field is used. First available
position is 13.

ILENGTH The input length of the field, if this differs from the LENGTH
operand value.

ITYPE The input data type. The default is alphanumeric. Allowed
values are the same as those for the TYPE operand. Data
conversions will be performed.

These operands will be ignored when rules for response transactions are
gelagkgegerated; therefore, the same definitions can be used to create
o inds.

As for all types of processing, GENERATE statements for segments and
transactions are required. Those for segments are the same and need not
be repeated. Those for transactions differ from response transactions
in that no screen image is defined and no MFS statements are produced by
the Rules Generator. Therefore, no SP0S operand is coded and OPT=TPIT
(Teleprocessing Input Transaction Rule) must be requested.

11-18 1IMSADF II Application Development Guide

Example

Suppose that the SC transaction needs to retrieve the PA and PD segments
in the sample data base. The keys of these segments are in the
transaction. The data field is to be read into a pseudo segment. The
Rules Generator statements are as follows:

SYSTEM SYSID=SAMP,SOMTX=0R,ASMLIST=NOGEN
SEGMENT PARENT=0,ID=PA,NAME=PARTROOT,LENGTH=50
FIELD ID=KEY,LENGTH=17,KEY=YES,NAME=PARTKEY, FLDP0S=13
FIELD ID=DESC,LENGTH=20,P05=27,FLDP0S=26
SEGMENT ID=PD,NAME=STANINFO,LENGT=85,PARENT=PA
FIELD ID=KEY,LENGTH=2,KEY=YES,NAME=STANKEY,FLDP0S=30
SEGMENT ID=WW,TYPE=PS
FIELD ID=IW,LENGTH=1,FLDP0S=32
GENERATE SEG=(PA,PD),0PT=(SEGH,SEGL)
GENERATE SEG=WWC,O0PT=SEGL
GENERATE TRXID=SC,DBPATH=PD,O0PT=TPIT,TSEG=WW

SPECIAL PROCESSING

Processing controlled solely by rules is known as "standard processing."
Special processing is provided as an extension to standard processing.
Special processing routines (SPRs) are written in COBOL, PL/I, or
Assembler. They are executed under the control of the transaction
driver, but perform functions that the transaction driver cannot. Rules
are coded to control the transaction driver in much the same way for
special as for standard processing.

The principal use of special processing is for complex, application
dependent logic for which audit rules are too cumbersome. For example,
the Auditor does not provide array manipulation. Coding that applies to
repeated fields or segments must be coded repetitively for each
occurrence with different names.

The special processing routine is invoked after the DBPATH segments have
been retrieved and the data has been moved in from the screen.
Figure 11-15 shows the overall flow.

On the GENERATE statement for the transaction, code the follouwing
additional operands:

SPECIAL=YES Requests special processing.
LANGUAGE=COBOL Programming language in which the SPR is written.
KEQ%NT COBOL is the default; ASMINT means Assembler.

The description of special processing in Chapter 8, "Special
Processing," beginning at "Program Calls" on page 8-3, is applicable to
nonconversational processing.

Chapter 11. Nonconversational Processing 11-19

Standard Processing special Processing

[> User enters

keys & data

T
Key au?it

v
Transaction driver
retrieves segments

v
Preaudit
v
Transaction driver moves
data from screen > Call SPR.
Return code tells transaction
6 driver what to do next

Auto message and secondary
transaction sending

> Display

Figure 11-15. Special Processing Flow (Nonconversational Processing)

PROGRAM LINKAGE

"Program Linkage"™ on page 8-21 applies to nonconversational processing
except that on GENERATE statements that request a link edit, OPT=TPLE
must be coded instead of OPT=SPLE.

RETURN CODES

The return codes passed by the SPR to the transaction driver also
differ. The SPR sets the return code to tell the transaction driver
what to do next. The return code must be set through the usual
Operating System method (COBOL: RETURN-CODE, PL/I: PLIRETC, Assembler:
Register 15), not in SPARTNCD.

Code Transaction Driver Action

1 Generate secondary transactions as required according to the
setting of SPASECTX. Control is immediately returned to the
special processing routine.

3 Print (to printer LTERM) the message in SPAERMSG if this is a
nonresponse Input Transaction Rule. Display the message in
SPAERMSG according to Output Format Rule specifications if this is
a response Input Transaction Rule. Read the next message.

4 Print (to printer LTERM) SPECIAL PROCESSING SUCCESSFULLY COMPLETED
if this is a nonresponse Input Transaction Rule. Display the
message if this is a response Input Transaction Rule according to
Qutput Format Rule specifications. Read the next message.

11-20 IMSADF II Application Development Guide

5 The transaction ID named in SPACGTRX is set up as the next
transaction ID to be processed. The display screen associated
with the ID in SPACGTRX will be displayed and will contain only
the fields defined in the Input Transaction Rule of the current
transaction.

8 Print (to printer LTERM) or display audit error message and read
next message.

12 SPR has generated a message. Read next message.
24 Issue ROLL call to back out any updates. Pseudo ABEND caused.

28 Generate and print (to printer LTERM) or display the error message
returned from the segment handler and read next transaction.

32 Read the next message.

Note: Secondary transaction generation is invoked for any of the above
return codes if SPASECTX is set to a nonzero value.

IMS/VS CONSIDERATIONS

Each special processing transaction ID must have an associated IMS/VS
transaction code with name:

§668TOtX
where:

€858 is the application system ID
T0 is a literal
tX is the transaction ID

The Rules Generator GENERATE OPT=TPLE statement will produce an
executable load module with the same name (ssssTOtx). A PSB (or DB2
plan) with the same name must also be provided. Apart from the
difference in name, the coding of the PSB and IMS/VS system definition
macros is the same as for standard processing. For more information

consult the S A ication Development Facili Versi Releas

Application Development Reference.

Chapter 11. Nonconversational Processing 11-21

11-22 IMSADF II Application Development Guide

CHAPTY 1 E FACILIT

A HELP facility is available to the user of IMSADF II conversational
processing. Under this facility the user may define and invoke HELP
text relating to either the current processing screen or error and
warning message(s). The HELP text is stored in the Message Data Base
and is available, upon operator request, to the following screens:

. Sign-0On

. Primary Option Menu

. Secondary Option Menu

. Primary and Secondary Key Selection

. Segment Display

o Text Utility

. Error Display (Resulting from Audit/Deformatting Errors)

SCREEN HELP FACILITY
Each of the above screens (except the Error Display) may have a tailored
d:scrig?ion of function and input requirements displayed upon the entry
of a "?'.
. In the USERID, PROJECT, or GROUP fields of the Sign-0n screen,
. In the OPTION field of the Primary Option Menu, Primary Key
Seéection. Secondary Key Selection, Segment Display, Text Utility
an
. In the SELECT field of the Secondary Option Menu screen.

The HE and HT segments are used to store Screen HELP text. The HT
segment may contain up to 20 lines of text plus a header.

HEADER
HE
MFHDMS01
HELP
TEXT
HT
MSHTMSO01

Figure 12-1. Screen HELP Segments in Message Data Base

Each system has its own set of tailored HELP screens. Each transaction
may have HELP text describing the Segment Display screen and HELP text
describing the Primary/Secondary Key selection screens.

Chapter 12. HELP Facility 12-1

When a '?' is entered on a screen,

OPTION:

OPTIONALLY,

S AMPLE PROBLEM

ENTER THE FOLLOWING SIGN-ON DATA AND DEPRESS ENTER

P USERID
-- PROJECT
-= GROUP
== LOCKWORD

ENTER TRé$SACTION DETAILS FOR DIRECT DISPLAY

TRX: K

Figure 12-2. HELP request on SAMPLE Sign-0On Screen

either the HELP screen is displayed:

OPTION:

USERID
PROJECT
GROUP
LOCKWORD

DATA ENTRY IS
OPTION -
TRX -

KEY -

HELP FOR SAMP SIGNON

PAGE: 001
LAST

DATA ENTRY IS REQUIRED FOR THE FOLLOWING FIELDS:

ENTER 999999
ENTER Z
ENTER Z
NOT USED

OPTIONAL IN THE FOLLOWING FIELDS:

VALUES A,B,D,H,I ARE ALLOWED

VALUE IS MXX, WHERE M IS TRANSACTION MODE

AND XX IS THE TRANSACTION ID. THIS IS VALID

ONLY IF OPTION D IS ALSO SELECTED. ENTRY OF

TRX WILL DISPLAY THE PRIMARY KEY SELECTION SCREEN.
IF OPTION 'D' AND TRX 'MXX' ARE ALSO ENTERED

THE NEXT SCREEN DISPLAYED IS THE

SEGMENT DISPLAY SCREEN IF THE KEY VALUE IS FOUND
IN THE DATA BASE.

PRESS ENTER TO RETURN TO THE SIGN-ON SCREEN.

Figure 12-3. HELP for SAMPLE Sign-0On Screen

12-2 IMSADF II Application Development Guide

or, if HELP text is not provided, an informational message is displayed:

HELP INFORMATION IS NOT PROVIDED FOR THIS SCREEN.

OPTION: PAGE: 001
LAST
$$

Figure 12-4. Sample of HELP not provided

Chapter 12. HELP Facility 12-3

MESSAGE HELP FACILITY

Error and warning messages in the Message Data Base may have HELP text
associated with them. HELP is invoked through the entry of a '?' in the
Option field of either the Error screen or the screen creating the
error. The Error screen is displayed showing all error or warning
messages followed by their corresponding HELP text.

ERROR MESSAGES

1222 THIS IS A SAMPLE ERROR MESSAGE WITH HELP

THIS IS THE 1ST LINE OF HELP FOR USER MESSAGE NUMBER SAMP1222
THIS IS THE 2ND LINE OF HELP FOR USER MESSAGE NUMBER SAMP1222
THIS IS THE LAST LINE OF HELP FOR USER MESSAGE NUMBER SAMP1222
1333 THIS IS A SAMPLE ERROR MESSAGE WITHOUT HELP

HELP INFORMATION FOR THIS MESSAGE IS NOT AVAILABLE

ADFD070 THIS IS A SYSTEM MESSAGE WITH HELP

THIS IS HELP TEXT FOR MESSAGE ADFDO070

OPTION: PAGE:

001

LAST

Figure 12-5. Sample of error messages with HELP

Message HELP text is maintained as one or more child segments (MH) of
the last error or warning message text segment(s) (SY).

HEADER

HD

MESSAGE
TEXT

SY

MESSAGE
HELP TEXT

MH

Figure 12-6. Message Data Base

12-4 IMSADF II Application Development Guide

CREATING HELP TEXT WITH ONLINE TRANSACTIONS

Three conversational transactions are provided to allow the creation of
screen and message HELP text.

Transaction 'HE' creates the header segment for the screen HELP text.
HELP Header (HE) (Alias of HD - Seament Lenagth = 78 bytes)
Position Length Data Type Data Description

1 8 alphanum Segment sequence field (key)
9 70 reserved.

The key of the HE segment is formatted according to the screen for which
the HELP text is created.

KEY FORMAT. ASSOCIATED SCREEN
S$SSSESOQ or ?7?27ES03 Signon Screen. The ????ES03 format is used when

a general signon screen is used and the
Application SYSTEM ID is not vet input.

$SSSEOMD Primary Option Menu

SSSSESMd Secondary Option Menu

§555PXXd Primary and Secondary Key Selection
88SSHXXd Segment Display and Text Utility
where:

ssss is the application system id

???? is the installed ADFID

xx is the currently processed transaction id
E,P,H,d are constants to indicate the HELP function

The 'HE' transaction screen allows for entry of a formatted key as
follows.

MESSAGE DATA BASE

ADD TRANSACTION: HELP HEADER
OPTION: TRX: 4HE KEY: MFC1ESOa
%%% ENTER DATA FOR ADD xxx
HELP HEADER KEY- MFC1ES0a

Figure 12-7. HE-HELP HEADER Generation Screen

Chapter 12. HELP Facility 12-5

Transaction "HT' creates the HELP text for the screen HELP facility.
screen HELP Text (HT) Layout (Segment Length = 1644 bytes)

Position Length Data Type Data Description

1 4 alphanum segment sequence field (key)
5 60 alphanum header for line 1 of each page.
The following represents 20 lines on the HELP screen.

65 79 alphanum text that represents line 5
144 79 alphanum text that represents line 6
223 79 alphanum text that represents line 7
302 79 alphanum text that represents line 8
381 79 alphanum text that represents line 9
460 79 alphanum text that represents line 10
539 79 alphanum text that represents line 11
618 79 alphanum text that represents line 12
697 79 alphanum text that represents line 13
776 79 alphanum text that represents line 14
855 79 alphanum text that represents line 15
934 79 alphanum text that represents line 16

1013 79 alphanum text that represents line 17
1092 79 alphanum text that represents line 18
1171 79 alphanum text that represents line 19
1250 79 alphanum text that represents line 20
1329 79 alphanum text that represents line 21
1408 79 alphanum text that represents line 22
1487 79 alphanum text that represents line 23
1566 79 alphanum text that represents line 2%

The 'HT' transaction screen allows for entry of up to 20 lines of HELP
text plus a screen header. Multiple HT segments may be added.

Note that the HEADER need only be specified in the first HT segment.

The HT screen in Figure 12-8 demonstrates input to build HELP text for
the Sign-0n screen for application system SAMP.

MESSAGE DATA BASE

ACTION: 1
ADD TRANSACTION: SCREEN HELP TEXT
OPTION: TRX: &GHT KEY: SAMPES0a0001
%% ENTER DATA FOR ADD %xx
HELP HEADER KEY-========———-- : SAMPESOa

KEY FORMATS

ssssESQ0ad SIGNON SCREEN
???2ES0Q SIGNON SCREEN WITHOUT SYSID
ssssEOMa PRIMARY OPTION MENU
ssssESMa SECONDARY OPTION MENU
ssssPXXa PRIMARY/SECONDARY KEY SELECTION
sss5sHXX® SEGMENT DISPLAY/TEXT UTILITY

MESSAGE HELP SEQUENCE------ : 0001

HEADER: HELP FOR SAMP SIGNON

PRESS ENTER TO PROCEED TO NEXT PAGE. PFK4 OR ACTION E1 TO PROCESS.

Figure 12-8. HT-HELP Generation Screen (Page 1)

12-6 IMSADF II Application Development Guide

LOCKWORD - 1 TO 8 CHARACTERS

MESSAGE DATA BASE

ACTION: SCREEN/TRANSACTION HELP TEXT PAGE 2
Tg$55égN0N SCREEN ALLOWS A TERMINAL USER TO GAIN ACCESS TO THE SAMP APPLICATION
T
DATA ENTRY IS REQUIRED FOR THE FOLLOWING FIELDS:
USERID - 1 70 6 CHARACTERS
PROJECT = 1 CHARACTER
GROUP = 1 CHARACTER

DATS ENTRY IS

OPTIONAL IN THE FOLLOWING FIELDS:

PTION VALUES A,B,D,H,I ARE ALLOWED

TRX - VALUE IS MXX, WHERE M IS TRANSACTION MODE AND XX IS THE
TRANSACTION ID. THIS IS VALID ONLY IF OPTION D IS ALSO
SELECTED. ENTRY OF TRX WILL DISPLAY THE PRIMARY KEY
SELECTION SCREEN.

KEY - IF OPTION 'D' AND TRX 'MXX' ARE ALSO FILLED IN, THE NEXT

SCREEN DISPLAYED IS THE SEGMENT DISPLAY SCREEN IF THE
KEY VALUE WAS FOUND IN THE DATA BASE.

PRESS ENTER TO RETURN TO SIGNON SCREEN.$$

PRESS ENTER TO PROCESS. ACTION R1 TO RETURN TO PAGE 1.
%% ENTER DATA FOR ADD XX

Figure 12-9.

HT-HELP Generation Screen (Page 2)

If an HT segment is not filled, the end of message characters should be

specified after the last valid character.

End of message characters are

defined in installation time (DEFADF). The default is $$.

Transaction '"MH' creates the HELP text for the error or warning

maessages.

Error Message HELP Text (MH) (Segment Length = 250 bytes)
Position Length Data Type Data Description

1 4 alphanum segment sequence field (key)
5 reserved
14 79 alphanum text that represents one line on
the error/warning screen.
93 79 alphanum text that represents one line on
the error/warning screen.
172 79 alphanum text that represents one line on

the error/warning screen.

The "MH' transaction screen allows for entry of up to 3 lines of HELP
text. Multiple MH segments may be added.

Chapter 12. HELP Facility 12-7

MESSAGE DATA BASE

ADD TRANSACTION: MESSAGE HELP TEXT
OPTION: TRX: 4MH KEY: SAMP9999000000010001
¥%x% ENTER DATA FOR ADD xxx
MESSAGE NUMBER (SSSSNNNN)° SAMP9999
MESSAGE LENGTH (SY)=-=====: 0070

FIELD MAPPING (FIELD NAME=SSXXFFFF)
FIELDl----OFFSET1 FIELD2----0OFFSET2 FIELD3----OFFSET3 FIELD4----OFFSET4
SACDDIPU 030 000 000 000
FIELD5-~--0FFSET5

000
MESSAGE TEXT
MESSAGE NUMBER (SY) —--—===-- : 00000001
MESSAGE TEXT:
DISBURSEMENT CODE INCORRECT (X) SPECIFY P OR U

MESSAGE HELP TEXT
MESSAGE HELP SEQUENCE----: 0001
MESSAGE HELP TEXT: .
The stock disbursement code must indicate whether the order was
planqgg or gsglggned. valid characters to indicate the disbhursement
are or .

Figure 12-10. MH-Message HELP Generation Screen

12-8 1IMSADF 11 Application Development Guide

CREATING HELP TEXT WITH BATCH TRANSACTIONS

Dynamic rules for HELP text can be entered using batch input. This may
be more convenient for input of a large number of HELP screens. You may
refer to "Batch Input of Dynamic Rules" on page 5-9 in

Chapter 5, "Message Sending and Display" for a general discussion of
updating the Message Data Base in batch. The batch input layouts for
HELP text are:

HE - Screen HELP Header

Card _cColumn Length Description
1 9 8 Key of HE segment

Sample:
MFC1B2HESAMPESOQ
HT - Screen HELP Text
Card Column __ Lenqgth Description
1 9 8 Kay of HE segment
17 4 Key of HT segment
2 1 60 Header for HELP Screen
3 1 79 Text for Screen HELP
4 1 79 Text for Screen HELP
5 1 79 Text for Screen HELP
6 1 79 Text for Screen HELP
7 1 79 Text for Screen HELP
8 1 79 Text for Screen HELP
9 1 79 Text for Screen HELP
10 1 79 Text for Screen HELP
11 1 79 Text for Screen HELP
12 1 79 Text for Screen HELP
13 1 79 Text for Screen HELP
14 1 79 Text for Screen HELP
15 1 79 Text for Screen HELP
16 1 79 Text for Screen HELP
17 1 79 Text for Screen HELP
18 1 79 Text for Screen HELP
19 1 79 Text for Screen HELP
20 1 79 Text for Screen HELP
21 1 79 Text for Screen HELP
22 1 79 Text for Screen HELP
Sample:
MFC1B2HTSAMPES030001

THIS IS THE HEADER FOR THE SAMPLE SIGNON SCREEN HELP TEXT.
THIS IS LINE 1 OF THE HELP TEXT.

THIS IS LINE 2 OF THE HELP TEXT.

THIS IS THE LAST LINE OF THE HELP TEXT$$$$.

Note: 1If cards 4 through 22 are not needed the end of data characters
should be entered twice.

Chapter 12. HELP Facility 12-9

MH - Message HELP Text

Ca Colum nat scriptio
1 9 8 Key of HD segment
17 8 Key of Last SY segment under this HD segment
25 % Key of MH segment
2 1 79 Text for Message HELP
3 1 79 Text for Message HELP
4 1 79 Text for Message HELP

Sample:

MFC1B4MHSAMP9999000000010001

THIS IS LINE 1 OF THE ERROR HELP TEXT.

THIS IS THE LAST LINE OF THE ERROR HELP TEXT$$$$.

Note: 1If cards 3 or 4 are not needed the end of data characters should
be entered tuwice.

12-10 IMSADF II Application Development Guide

CHAPTER 13. NATIONAL LANGUAGE SUPPORT

OVERVIEW

IMSADF II supports the generation and execution of multi-language
applications. The following languages are translated and provided as
standard support:

] English

U French

. German

] Japanese

U] Korean

. Portuguese
. Spanish

U Swedish

In addition, language components based on English are provided which may
be modified for language requirements beyond the supplied languages.
National Language Support (NLS) is visible to the terminal end user via
screens and messages. It is not intended to cover all areas where the
applic:tion developer is involved, such as static and dynamic rule
definition.

At installation, a default language and optionally a set of alternate
languages are specified for each ADFID. Each alternate language is
associated with a SYSID. For each language specified at installation a
complete set of system messages, base screens and Rules Generator screen
definition modules are installed. These components are available to the
application developer and the end user for NLS implementation. IMSADF
Il allows the same transaction code to execute across different SYSIDs.
By assigning each SYSID to a different language the end user can view
the transaction under the language of his choice.

DEVELOPING A NLS APPLICATION

Developing an application with multiple language support follows
essentially the same steps as any standard application. Static and
dynamic rules must be generated, messages must be created and screens
must be built. The remainder of this section discusses only those areas
which deviate from the normal generation definitions or online
procedures.

static Rule and Screen Generation

The main difference in this area is the requirement that each screen be
shown with screen literals in the appropriate language. Literals are
provided from two sources. First is the user defined field names
derived from either the SNAME parameter or Screen Image. These are
under the control of the developer and so require no special action.

The IMSADF II supplied literals on the other hand must be in the
appropriate language. A separate Rules Generator module for each
specific language is included at installation. A new keyword USRLANG is
provided to define the appropriate language to the Rules Generator.
Refer to the description of USRLANG in the IMS Application Development
acilit I Version Release 2 A ication e nt Reference. If
USRLANG is not specified, the installation defined default language is
used. USRLANG may be defined for the entire generation run in the
SYSTEM statement or by transaction in the GENERATE statement.

Chapter 13. National Language Support 13-1

Since the same transaction may be required to run under more than one
language, a new keyword, ALIAS, is implemented to allow renaming of
Segment Layout and Segment Handler rules under more than one SYSID. The
standard naming convention of these rules is ssss---- where ssss is
SYSID and ---- varies depending upon the rule. The ALIAS keyword on the
GENERATE statement allows the rule to be renamed with different SYSIDs.
Although this feature is implemented for NLS, it can also be used with
}ransactions running under different SYSIDs which have the same

anguage.

Following is an example of the generation of an application in two
languages (German and French).

SYSTEM SYSID=AAAA,...... 2 een

SEGMENT ID=01,...5.cc0cccreecrecerens

FIELD ID=Z201,...5ccepeeereacrans

FIELD ID=2Z202, .. .0 ccereverencrons

FIELD ID=Z2Z03, .. .5 cesecereccrcns

FIELD ID=ZZ04, ...rccereeerncerans

GENERATE OPTION=SGALL,SEGMENT=01,ALIAS=BBBB

GENERATE OPTION=CVALL,TRXID=Al,...,...,USRLANG=G,SP0OS=SIMAGE

.......... screen image for German SCre@nN.....cceceeeevecsses

.......... SCreen IMAgE .« .iiieereeesocessassnssassossasansas

.......... SCreeN TMAGE .« .vteeeeeeeeesosssssssssnssosssnsss

GENERATE OPTION=CVALL,TRXID=A1,USRLANG=F,SYSID=BBBB,

.......... screen image for French screen........cccivveeenes

cttecreces SCre@Nn TMATE ..vveeerrrrorsossssssssssssscssans

.......... SCreen TMAGEt eieserrsescsssssssssssensssse
In this example SYSID AAAA is defined as a German application system and
BBBB is a French application system. The first GENERATE builds Segment
Layout and Segment Handler rules with the names:

AAAASRO1 alias BBBBSRO1 Segment Layout rule

AAAASOL alias BBBBSO01 Segment Handler rule
The second generate builds an Input Transaction Rule with the name
AAAAPGAl plus the MFS for the Segment Display and Primary Key Selection
screens for German. The last generate builds an Input Transaction Rule
with the name BBBBPGAl plus the MFS for the Segment Display and Primary
Key Selection screens for French.
Audit Logic Creation
Since the same transaction may execute under more than one SYSID, it is
important to provide a technique which allows audit logic and edits to
be written once and accessed from either language. This can be
accomplished by writing the audit logic in subroutines which can be
called from audits under each SYSID. For example; the transaction Al
generated above may have an audit requirement to check each field in
segment 01 for valid data. If errors are found the appropriate error
messages(s) should be displayed.

SUBNAME = SUBROUTINEO0O00O0O1
PARMNAME = BASE

PROCESS

13-2 IMSADF II Application Development Guide

PO
IF AA012Z01 = 9999
ERRORMSG = 0001
ENDIF
IF AA012Z202 = 9999
ERRORMSG = 0002
ENDIF
RETURN
The subroutine tests fields 2201 and 2202 for valid data and sets the
aTThar the Garman audit (SYSIDSAARA) or tha Franch wedis (SvSibianmss
SYSID = AAAA

AGROUP = 0001

SEGID = 01
FIELD = ZzZ01
PROCESS

PO

CALL 'SUBROUTINEO0OOOO1'

SYSID = BBBB
AGROUP = 0001
SEGID = 01
FIELD = 2201
PROCESS
PO
CALL 'SUBROUTINE0000O1"'

User Message Creation

Error and Warning messages are created and maintained under the SYSID to
which they apply. This is the same technique used in a single-language
environment. If a multilingual transaction is implemented, the same
message must be added to the Message Data Base under each SYSID, in the
appropriate language. In the above example messages 0001 and 0002 must
be added under the key AAAA0001,AAAA0002 for German and
BBBB0001,BBBB0002 for French. Then, depending upon which language is in
::fect when the error is detected, the correct message will appear on

e screen.

The system supplied messages are loaded during installation under the
installed ADFID (default language) and each SYSID assigned to an
alternate language. These SYSIDs may or may not coincide with the
SYSIDs later associated with an application system. Each language will
have one installed SYSID, which contains the supplied system messages,
and as many application system SYSIDs as desired.

Chapter 13. National Language Support 13-3

If in the above example the system was installed with a default language
of German under ADFID of GERM and an alternate language of French under

: ?ISID of FREN the message would appear in the Message Data Base as
ollows:

. GERMxxxx Supplied system messages in German
] FRENxxxx Supplied system messages in FRENCH
U AAAAXXXX User Error/Warning messages in German
. BBBBxxxx User Error/Warning messages in French

User Written Sign-On Exit

The link between a SYSID and the appropriate language is under the
control of the application developer through a user written Sign-on
Lockword exit. This exit is required if more than one language is used
under one ADFID.

The exit is responsible for setting a one-byte field in the SPA named
SPAULANG. This field is set to the default or alternate language id
associated with the current SYSID. In addition the SPASYSID field can
be set depending upon input from one of the Sign-on screen fields. In
either case it is the responsibility of the exit to maintain a correct
SPASYSID, SPAULANG correspondence. If the exit does not set SPAULANG
the default id is used. In the above example the exit should be written
to set SPAULANG as follows:

Entered SYSID Exit sets SPAULANG
AAAA G
BBBB F
FREN F
GERM G (or do not set)

Upon return from the exit IMSADF II will validate the language ID
against those defined at installation and use it to retrieve the
appropriate base screen formats. This allows all screens, IMSADF II
supplied and user created, to display in the correct language.

During transaction execution, the display of an IMSADF II system error

will cause a test to be made between SPAULANG and the installed default

language ID. If they are not equal the ID in SPAULANG will be checked

:gainst the alternate language IDs to determine the correct language for
e message.

Note: The language ID set in the exit is NOT changed during a Project
Group switch, since the exit is not invoked. The new application will
therefore use the same language as the previous one.

Additional information on lockword exits and an example of an exit for

multiglg languages may be found under "Multiple National Languages™ on
page 9-9.

13-4 IMSADF II Application Development Guide

PPEN SAMPLE SYSTEM RULES GEN R TEMENT

The following source statements build the sample problem application
system (SAMP), which is supplied with the product and forms the basis of
all the examples that appear in this document.

33,3333 3233333823333 3232333333333 330333 333333333233333 3338333833023 0

* APPLICATION DEFINITION INPUT STATEMENTS FOR PARTS DATA BASE
3636 36 36 96 36 36 36 36 56 56 3 J6 26 6 3 3 36 3 3 96 36 36 3 36 56 36 36 6 36 3 I 36 36 96 6 36 36 3 36 36 36 36 36 36 26 36 36 36 36 36 36 36 26 3 5 26 36 36 36 36 6 3 36 6 36 36 36 36 3 %

SYSTEM SYSID=SAMP,DBID=PA, RULE ID CHARS
USRLANG=E, ENGLISH
SOMTX=0R, DEFAULT SECONDARY OPTION CODE
PCBNO=1, PCB NUMBER FOR DATA BASE
SHEADING='S AMP L E PROBLEM, GENERAL HEADING
SFORMAT=DASH, SCREEN FORMAT
PGROUP=2Z PROJECT GROUP

GENERATE OPTION=SIGN, REQUEST CONVERSATIONAL SIGNON

DEVNAME=(2),
DEVCHRS=(0),
DEVTYPE=(2)

GENERATE OPTION=POM,POMENU=ABCDFHI REQUEST PRIMARY OPTION MENU
t 3333333333333 33113333313333311333311333333133333311333133313313333331%
% PARTS DATA BASE PSEUDO SEGMENT

*

%* PA ch

*

*

*

* MAPPING SEGMENT

%

* PD IV

* M1

*

%

% cY

*

*

1333333333333 333333333333 33 3333333333333 333333333.3333323333333.33.33333.833

* APPLICATION DEFINITION INPUT FOR ROOT SEGMENT
36 56 3 36 36 36 3 36 36 6 3 36 36 36 36 36 26 36 36 36 36 36 36 26 6 36 36 3 3 3 36 36 3 3 36 36 3 36 36 36 36 36 6 3 36 26 36 36 36 36 3 36 6 3 3 3 36 6 36 36 X 36 3 3 56 36 36 36 6 % %

SEGMENT LEVEL=1,ID=PA,NAME=PARTROOT,LENGTH=50,
SKSEG=18 PART SEGMENT
FIELD ID=KEY,LENGTH=17,P05=1,KEY=YES,NAME=PARTKEY,
SNAME="PART NUMBER',DISP=YES
FIELD ID=DESC,LENGTH=20,P05=27,SNAME="DESCRIPTION',DISP=YES,REL=YES

tE33.33323383333383338333232333283 8

* APPLICATION DEFINITION INPUT FOR STANDARD INFORMATION SEGMENT
9636 36 36 36 36 6 36 36 36 3 I6 36 36 36 36 6 36 36 36 36 36 36 36 36 36 36 36 363 36 36 3 26 36 36 36 2 36 36 I 26 36 3 36 96 36 3 3 96 36 36 36 36 3 36 3K 36 3 3 3K 36 3 36 6 3 K 6) 3 %

SEGMENT ID=PD,PARENT=PA,NAME=STANINFO,LENGTH=85
* SNAME='STANDARD INFORMATION'
FIELD ID=KEY,LENGTH=2,P05=1,KEY=YES,NAME=STANKEY,DISP=NO,
SNAME='KEY FIELD'
FIELD ID=PRCD,LENGTH=2,P05=19,SNAME="PROC CODE',DISP=YES
FIELD ID=INVC,LENGTH=1,SNAME="INVENTORY CODE',DISP=YES
FIELD ID=PLRV,LENGTH=2,SNAME='PLAN REV NO',DISP=YES
FIELD ID=MKDP,LENGTH=4,P05=48, SNAME="MAKE DEPT',DISP=YES
FIELD ID=COMM,LENGTH=4,P05=54,SNAME="'COMM CODE',DISP=YES
FIELD ID=RISP,LENGTH=2,P05=62,TYPE=DEC,SNAME='RIGHT MAKE TIME',
DISP=YES,SLENGTH=2
FIELD ID=WRSP,LENGTH=2,P05=71,TYPE=DEC,SNAME="WRONG MAKE TIME',
DISP=YES,SLENGTH=2

Appendix A. Sample System Rules Generator Statements A-1

F6 € 26 3 36 3 I 3 X6 I H 26 I HE 26 I 3 X X I 2 I I 3 I I 36 I I 36 26 I I 36 I 2 56 I 3 J6 I 3 I I 36 26 I X X6 I 3 X6 I 36 26 I X 26 I I 36 26 3 26 I 5 26 36 X % %

*

APPLICATION DEFINITION INPUT FOR INVENTORY SEGMENT

36 36 36 2 2 I I 3 3 X 2 I I 3 X I X I I I H 3 3 I I I 3 3 36 I I I 3 3 3 3 I I I X 5 26 I I 3 X 2 26 I I 3 X 26 X6 26 I 6 I HE 3 26 26 I I 36 26 26 26 %

SEGMENT

FIELD

FIELD
FIELD

FIELD
FIELD
FIELD
FIELD
FIELD

FIELD
FIELD

FIELD

FIELD
FIELD

FIELD
FIELD

FIELD
FIELD

FIELD

FIELD
FIELD

FIELD
FIELD

FIELD
FIELD

FIELD
FIELD

FIELD

ID=IV,PARENT=PA,NAME=STOKSTAT,KEYNAME=STOCKEY,LENGTH=160,
SNAME="INVENTORY',

SKLEFT='INVENTORY UNIT CURRENT ',
SKLEFT='LOCATION PRICE REQMNTS ',
SKRIGHT=" ON TOTAL DISBURSEMENTS ',

SKRIGHT=' ORDER STOCK PLANNED UNPLANNED'
ID=W,LENGTH=2,P05=1,KEY=YES,SNAME='00"',DISP=NO,
COL=1,SLENGTH=2 ‘
ID=AREA,LENGTH=1,KEY=YES, SNAME="AREA"',DISP=YES,COL=3,REQ=NO
Ig;INVD,LENGTH=2»KEY=YES.SNAME='INV DEPT',DISP=YES,COL=4,
REQ=NO
ID=PROJ,LENGTH=3,KEY=YES, SNAME="PROJECT',DISP=YES,COL=6,REQ=NO
ID=DIV,LENGTH=2,KEY=YES,SNAME="DIVISION',DISP=YES,COL=9,REQ=NO
ID=FILL,LENGTH=6,KEY=YES,SNAME="FILLER',DISP=NO,COL=11,REQ=NO
ID=PRIC,LENGTH=9,P05=21,TYPE=DEC,DEC=2,SLENGTH=9,
SNAME="UNIT PRICE',DISP=YES
éD;ﬁPsg.LENGTH=7,POS=23,TYPE=DEc,DEC=2,RELATED=YES.COL=19.
I =

ID=UNIT,LENGTH=4,P05=35,SNAME="UNIT',DISP=YES
ID=COAP,LENGTH=3,P0S=51, TYPE=DEC, SNAME="'ATTR COAP',DISP=YES,
SLENGTH=3
ID=PLAN,LENGTH=3,TYPE=DEC,P05=54,
SNAME="'ATTR PLANNED',DISP=YES,SLENGTH=3
ID=COAD,LENGTH=1,P05=57,SNAME='ATTR COAD',DISP=YES
gEESDAY,gENGTH=3,SNAME='STOCK DATE',DISP=YES,P0S=72,

GTH=
ID=TDAY,LENGTH=3, TYPE=DEC, SNAME="LAST TRANS',DISP=YES,
SLENGTH=3
ID=REQC, LENGTH=7,P05=90, TYPE=DEC,SLENGTH=7,
SNAME="'RQMNTS CURRENT',DISP=YES
ID=RREQ,LENGTH=5,P05=92, TYPE=DEC,RELATED=YES,COL=29,DISP=NO
ID=REQU, LENGTH=7 ,TYPE=DEC,P05=98,SLENGTH=7,
SNAME="RQMNTS UNPLAN',DISP=YES
ID=0ONOR, LENGTH=7,P05=106, TYPE=DEC,SNAME='0ON ORDER',
DISP=YES,SLENGTH=7
ID=RONO,LENGTH=5,P05=108, TYPE=DEC,RELATED=YES,C0OL=38,DISP=NO
ID=STCK, LENGTH=7,TYPE=DEC,P05=114,SLENGTH=7,
SNAME='TOTAL STOCK',DISP=YES
ID=RSTC, LENGTH=5,P05=116, TYPE=DEC,RELATED=YES,COL=47,DISP=NO
ID=DIPL,LENGTH=7,TYPE=DEC,P05=122,SLENGTH=7,
SNAME="DISB PLAN',DISP=YES
ID=RDIP,LENGTH=5,P05=124, TYPE=DEC,RELATED=YES,COL=56,DISP=NO
ID=DIUN, LENGTH=7,TYPE=DEC,P05=130,S5LENGTH=7,
SNAME='DISB UNPLAN',DISP=YES
ID=RDIU,LENGTH=5,P05=132, TYPE=DEC,RELATED=YES,COL=65,DISP=NO
ID=DISP,LENGTH=7, TYPE=DEC,P05=138,SLENGTH=7,
SNAME='DISB SPARES',DISP=YES
ID=DIDV,LENGTH=7,TYPE=DEC,P05=146,SLENGTH=7,
SNAME='DISB DIVERS',DISP=YES

3636 36 36 26 2 2 I 3 2 3 26 2 I I I X X 26 I I I I 3 X6 36 2 2 I 3 3 26 I I 2 3 X 36 I I I 3 X 26 96 I I X 3 26 I I 3 3 36 36 36 I 6 2 36 3 56 26 36 36 36 26 26 X 6

*

APPLICATION DEFINITION INPUT FOR CYCLE COUNT SEGMENT

3 36 3 I X 2 2 I I I I I K X I X X I I I I X X X I I I I I I K 2 6 2 I I 6 26 X 3 X 26 26 26 6 X6 I 3 6 2 6 2 6 € 6 3 3 3 3 2 X6 € 6 6 € 36 6)6 ¢

*

A=

SEGMENT
FIELD

FIELD
FIELD

ID=CY,PARENT=IV,NAME=CYCCOUNT,LENGTH=25

SNAME="CYCLE COUNT'
ID=KEY,LENGTH=2,P05=1,KEY=YES,NAME=CYCLKEY,
SNAME='20",DISP=N0O,REQ=YES
ID=CNTA,LENGTH=7, TYPE=DEC, SNAME="PHYS COUNT',SLENGTH=7
ID=STCK, LENGTH=7, TYPE=DEC,P0S=11,SLENGTH=7,
SNAME="BOOK COUNT'

2 IMSADF II Application Development Guide

36 56 36 36 26 2 I 2 3 3 36 36 I I I 3 36 36 36 26 26 I 2 3 X6 36 26 I 26 36 26 26 I 2 I 36 26 26 I 3 3 36 26 I I 3 36 I€ I I 3 3 26 26 I€ 26 I I 36 X I I I 3 3 3 2 X 2 3 ¢

* PSEUDO SEGMENT FOR SPECIAL PROCESSING
36 36 36 36 96 36 36 36 36 3 36 36 36 3 36 36 6 36 26 36 36 36 36 26 6 6 X 26 H 36 36 6 26 26 36 36 36 36 3 36 26 36 3 36 36 6 36 36 6 H 36 36 6 26 2 26 96 3 36 36 6 36 I 36 36 36 X6 3¢ 3¢ ¢

SEGMENT ID=CD, TYPE=PS *CLOSE/DISBURSE INVENTORY'
FIELD ID=CLOR,L=7,TYPE=DEC,SNAME='CLOSE ORDER',DISP=YES,SL=7
FIELD ID=CLST,L=7,TYPE=DEC,SNAME="STOCK INCR',DISP=YES,SL=7
FIELD ID=DQTY,L=7,TYPE=DEC,SNAME="DISBURSE QTY',DISP=YES,SL=7
FIELD ID=DIPU,L=1,AUDIT=YES,SNAME="PLANNED/UNPLAN"',DISP=YES

363 3 36 26 3 36 2 € 36 2 3 36 I 3 3 I 2 26 I 26 26 I 6 X 26 2 X6 I I 26 2 3 26 I 3 I I 3 I I 36 26 I 36 36 36 3 I 3 2 I 6 3 26 I 36 I I 3 I I J I 3 2 I 36 26 X %

* MAPPING SEGMENT FOR SPECIAL PROCESSING
36 36 36 36 36 3 3 36 36 3 36 36 36 6 36 26 H 6 X6 I X K 36 6 6 36 26 36 36 36 6 36 36 2 3 36 I JE 3 26 36 36 3 36 36 2 36 36 36 26 26 36 6 6 36 26 6 36 36 H 6 36 2 36 36 36 36 3 3¢ %

SEGMENT ID=M1,TYPE=MAP

FIELD ID=CLOR,LEN=4,TYPE=BIN,SEGID=CD
FIELD ID=CLST,LEN=6,TYPE=BIN,SEGID=CD
FIELD ID=DQTY,LEN=4,TYPE=BIN,SEGID=CD
FIELD ID=ONOR,LEN=4%,TYPE=BIN,SEGID=IV
FIELD ID=STCK,LEN=4,TYPE=BIN,SEGID=1IV
FIELD ID=DIPL,LEN=64,TYPE=BIN,SEGID=IV
FIELD ID=DIUN,LEN=4,TYPE=BIN,SEGID=IV
FIELD ID=DIPU,LEN=1,SEGID=CD

133333131313 33131313313383313313333333333333333333.333333.33333 333828223333

* GENERATE RULES FOR STANDARD SEGMENT PROCESSING
3636 3 36 36 3 3 36 36 3 36 36 36 X 36 36 2 36 36 36 26 X 36 36 56 X6 2 I 2 36 I 36 3 3 I 3 36 36 36 36 36 36 36 3 36 6 3 36 36 6 36 36 36 36 36 36 36 6 36 36 6 36 I 36 3 36 36 ¢ 3 X ¢

GENERATE SEGMENT=(PA,PD,IV,CY),0PTIONS=(SEGL,SEGH)
GENERATE TRXID=PA,DBPATH=PA,OPTIONS=CVALL,
TRXNAME="PART SEGMENT',
DEVNAME=(2),
DEVCHRS=(0),
DEVTYPE=(2)

GENERATE TRXID=PD,DBPATH=PD,0PTIONS=CVALL,
TRXNAME='STANDARD INFORMATION',
DEVNAME=(2),

DEVCHRS=(0),
DEVTYPE=(2)

GENERATE TRXID=IV,DBPATH=IV,O0PTIONS=CVALL,
TRXNAME="INVENTORY',

DEVNAME=(2),
DEVCHRS=(0),
DEVTYPE=(2)

GENERATE TRXID=CY,DBPATH=CY,OPTIONS=CVALL,
TRXNAME="CYCLE COUNT',
DEVNAME=(2),

DEVCHRS=(0),
DEVTYPE=(2)

13333313313 333333333333383313383333333.833833833233333823383 3333833228201

%* GENERATE RULES FOR SPECIAL PROCESSING
3636 36 36 36 36 36 36 36 36 2 36 36 36 36 36 36 6 3 36 36 36 36 X6 36 6 36 26 36 36 36 26 36 K 3 96 6 36 I6 96 36 3 36 36 36 36 3 3 36 26 36 36 3 36 36 36 36 I 36 6 36 36 36 36 36 36 36 36 36 % X

GENERATE SEGMENT=(M1,CD),0PTIONS=SEGL

GENERATE TRXID=CD,TSEG=(CD,PD),DBPATH=IV,BYPASS=YES, LANGUAGE=ASMINT,
OPTIONS=CVALL,SPECIAL=YES,KEYSL=YES,
TRXNAME="'CLOSE/DISBURSE INVENTORY',
DEVNAME=(2),
DEVCHRS=(0),
DEVTYPE=(2)

1333313133331 333333333333333333331313333333333330 3838383838333 382820282

* GENERATE SECONDARY OPTION MENU
3636 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 3 36 I 36 26 36 26 2 36 2 36 3 26 36 2 6 36 26 € 36 I 36 36 3 I€ 6 3 6 3 I€ 36 I 6 3 36 6 I J6 36 36 3 3 J& 2 26) X6 36 26 X % X

GENERATE OPTIONS=SOM,UPDATE=N,
LINKREQ=YES LINK-EDIT PRECEDING RULES 1.3
GENERATE OPTION=STLE,PGMID=0R,LINKLIB=PGMLOAD
GENERATE OPTION=SPLE,PGMID=CD, LANGUAGE=ASMINT,MAPTABLE=(M1),
AEXIT=USERAUDT,
SHTABLE=(PD,IV),LINKLIB=PGMLOAD

Appendix A. Sample System Rules Generator Statements A-3

A-64¢ IMSADF II Application Development Guide

APPENDIX B. ALTERNATE TWIN PROCESSING TECHNIQUES

Chapter 6, "Complex Transactions"™ gave guidelines for implementing twin
processing applications using enhanced automatic twin processing
functions. This appendix contains static rules, dynamic rules, and
audit exit (in COBOL) for an alternate, user-written method of
processing twin segments. These rules are intended to illustrate
techniques rather than provide a complete application.

STATIC RULES

The static rules given illustrate the need to define aliases of the
segment IV that is to be retrieved and updated in multiple occurrences
on a single Data Display screen. These aliases are named I1, I2, I3,
I4, and I5. The first three are actually displaved and are therefore in
the screen image; the last two are used as working storage by the logic
of the audit rules given later.

7/ EXEC MFC1G
36 36 26 26 3 J6 I JE 36 K J6 3 3 36 2 36 3 3 I HE 2 I 2 26 3 26 36 6 36 3 3 I 3 I6 3 36 I 3 36 3 I 3 3 36 36 36 6 36 36 36 36 36 36 36 6 3 I 6 36 6 6 26 3 I 6 36 36 2 36 3¢ %

¥ APPLICATION DEFINITION INPUT STATEMENTS FOR PARTS DATA BASE
262636 36 3K 3 36 26 26 36 36 6 26 36 26 I I I 2 3 36 I I 36 I 36 2 3 I 36 96 56 6 36 3 36 26 36 36 36 33 36 26 36 36 36 36 36 3 96 2 36 36 36 36 36 36 36 2 36 36 36 36 36 3 2 3¢ ¢ ¢

SYSTEM SYSID=SAMP,DBID=PA, RULE ID CHARS
SOMTX=0R, DEFAULT SECONDARY OPTION CODE
PCBNO=1, PCB NUMBER FOR DATA BASE
SHEADING='S AMP L E PROBLEM, GENERAL HEADING
SFORMAT=DASH, SCREEN FORMAT
PGROUP=22Z PROJECT GROUP

3636 2 36 96 3 X 36 26 6 3 J6 36 3 36 36 I 3 36 J6 36 3 36 36 96 36 36 36 36 3 36 26 36 36 36 36 36 36 36 36 36 36 96 6 36 36 26 6 36 26 6 36 36 J6 26 3 3 36 26 6 26 36 2 26 36 6 6 36 96 % %
¥ PARTS DATA BASE

PA

PD Iv

X XK XK X X X X X

i3 33 2232233333333 33 8332333338333 33333333333333333323313313333333%18

* APPLICATION DEFINITION INPUT FOR ROOT SEGMENT
3626 3K 36 36 6 6 36 36 36 2 3 J6 I6 2 I 36 36 36 H 36 96 36 I 36 26 36 36 36 3 36 36 36 3 36 36 36 36 36 36 36 36 2 36 36 36 3 36 36 K 2 K 36 36 6 X 26 36 3 X6 I 2 26 36 6 6 X% X ¢

SEGMENT LEVEL=1,ID=PA,NAME=PARTROOT,LENGTH=50,
SKSEG=18 PART SEGMENT
FIELD ID=KEY,LENGTH=17,P0S=1,KEY=YES,NAME=PARTKEY,
SNAME='PART NUMBER',DISP=YES,REL=YES
FIELD ID=DESC,LENGTH=20,P05=27,SNAME="DESCRIPTION',DISP=YES,REL=YES

i 3232303232233 333333333233 33333333333333 333333 333333333333311313311

* APPLICATION DEFINITION INPUT FOR INVENTORY SEGMENT
D696 36 X 26 26 6 X 26 6 3 X 36 I 6 X 36 I 6 3 36 36 6 3 36 3 3 3 36 3 X 2 36 3 3 36 36 3 36 36 36 36 3 3 3 36 36 36 6 36 I H X 3 I 26 3 3 36 3 5 3 3 X 3 36 96 6 2 % %€

SEGMENT ID=I1,PARENT=PA,NAME=STOKSTAT,LENGTH=160
FIELD ID=ILOC,KEY=YES, LENGTH=16,NAME=STOCKEY,
AUDIT=YES THE AUDIT LOOP CHECKS OTHER TWINS ALSO
FIELD ID=PRIC,SLENGTH=10,LENGTH=9,P05=21, TYPE=DEC,DEC=2
FIELD ID=REQC,LENGTH=7,P05=90, TYPE=DEC
FIELD ID=STCK,LENGTH=7,P05=114, TYPE=DEC
SEGMENT ID=12,PARENT=PA,NAME=STOKSTAT,LENGTH=160
FIELD ID=ILOC,KEY=YES, LENGTH=16,NAME=STOCKEY
FIELD ID=PRIC,SLENGTH=10,LENGTH=9,P05=21, TYPE=DEC,DEC=2
FIELD ID=REQC,LENGTH=7,P0S=90, TYPE=DEC
FIELD ID=STCK,LENGTH=7,P05=114, TYPE=DEC

Appendix B. Alternate Twin Processing Techniques B-1

SEGMENT ID=I3,PARENT=PA,NAME=STOKSTAT,LENGTH=160

FIELD ID=ILOC,KEY=YES, LENGTH=16 ,NAME=STOCKEY

FIELD ID=PRIC,SLENGTH=10, LENGTH=9,P05=21,TYPE=DEC,DEC=2
FIELD ID=REQC,LENGTH=7,P05=90, TYPE=DEC

FIELD ID=STCK,LENGTH=7,P05=114, TYPE=DEC

SEGMENT ID=I4,PARENT=PA,NAME=STOKSTAT,LENGTH=160

FIELD ID=ILOC,KEY=YES, LENGTH=16 ,NAME=STOCKEY

FIELD ID=PRIC,SLENGTH=10,LENGTH=9,P05=21, TYPE=DEC,DEC=2
FIELD ID=REQC,LENGTH=7,P05=90, TYPE=DEC

FIELD ID=STCK, LENGTH=7,P05=114, TYPE=DEC

SEGMENT ID=I5,PARENT=PA,NAME=STOKSTAT,LENGTH=160

FIELD ID=ILOC,KEY=YES, LENGTH=16,NAME=STOCKEY

FIELD ID=PRIC,SLENGTH=10,LENGTH=9,P05=21, TYPE=DEC,DEC=2
FIELD ID=REQC,LENGTH=7,P05=90, TYPE=DEC

FIELD ID=STCK, LENGTH=7,P05=114, TYPE=DEC

2322232223033 32333 333333 33333333383333333333333333383 83338

* GENERATE RULES FOR TWIN PROCESSING
26 36 36 26 36 26 I 2 I 3 3 I 3 26 6 3 36 3 H J6 J 36 3 36 I 2 36 3 26 36 36 I6 2 3 36 3 36 3 36 3 36 36 3 36 6 26 6 36 36 2 36 26 36 36 6 36 36 6 36 I 36 36 36 36 6 36 6 3 3¢ 6 %

SEGMENT ID=TW, TYPE=PS
FIELD ID=FLAG,LENGTH=1,PAUDIT=YES,AUDIT=YES,FAUDIT=YES,MSG=YES
FIELD ID=SKEY,LENGTH=17 SAVED PARENT KEY
FIELD ID=CKEY,LENGTH=33,P05=19 CONCATENATED KEY
FIELD ID=PKEY,LENGTH=17,P05=19 PARENT KEY
FIELD ID=DKEY,LENGTH=16,P05=36 DEPENDENT SEG KEY
FIELD ID=FKEY,LENGTH=16 KEY OF FIRST SEGMENT (FOR POSN.)
FIELD ID=KEY1l,LENGTH=16 SAVED KEYS
FIELD ID=KEY2,LENGTH=16
FIELD ID=KEY3,LENGTH=16

GENERATE TRXID=IN,DBPATH=PA,OPT=CVALL,
TRXNAME="'INVENTORIES',SP0S=SIMAGE,DLET=(I1,12,13),
TSEGS=(TW,I1,I2,I3,I4,I5),CURSOR=FLAG

"INVENTORY INFORMATION

&=1

&=2

&SYSMSG

REQUEST: &5FLAG

OPTION: &OPT TRX: &TRAN KEY: &KEY

&=1
. iART NUMBER: &5KEY.PA DESCRIPTION: &6DESC.PA
&=1
INVENTORY UNIT REQUIREMENTS TOTAL
LOCATION PRICE CURRENT STOCK
&5IL0C.I1 &5PRIC.I1 &5REQC.I1 &55TCK.I1
&5IL0C.I2 &5PRIC.I2 &45REQC.I2 &55TCK.I2
&éaggOC.IS &5PRIC.I3 &5REQC.I3 &55TCK.I3

36 36 € 3 I I I I I I I I I I I I I I I 2 36 26 2 26 I 3 36 36 36 I I I I I I I I I 26 26 26 26 36 26 I I I 3¢ I 3¢ 36 3¢ 26 2 I I I I 26 26 26 I 36 36 3 3 Y6 36 3 3 %

GENERATE OPTIONS=SGALL

GENERATE OPTIONS=CVSYS

GENERATE OPTIONS=SOMSS
7/ EXEC MFSUTL,COND.S1=(0,LT)
//751.SYSIN DD DSN=&&MFS,DISP=(OLD,DELETE)
/’7/

HIGH LEVEL AUDIT LANGUAGE STATEMENTS

As suggested in Chapter 4, "The Auditor and the Audit Data Base,™ a NOP
(no operation) is included in the Pl part of the PRELIM phase to avoid
possible problems of mixing with the PROCESS phase.

The logic of the first section is as follows:
. Retrieve the first segment with a GUU call. The code at label

RETRIEVE is also invoked via a branch out of the PROCESS phase when
the user enters the "R" (Retrieve) request.

B-2 1IMSADF II Application Development Guide

. At label NEXTSEGS, the following occurrences are retrieved with GN
calls. That label can also be reached by a branch out of the
PROCESS phase when the user enters the "M" (More) request or when
the segments must be re-retrieved for a redisplay to the user.

. Finally, the I4 occurrence is retrieved so that the user can be told
whether more occurrences are present.
HIGH LEVEL AUDIT LANGUAGE STATEMENTS

¥ TWIN PROCESSING
¥ PRE-AUDIT PHASE

RETRIEVE SEGMENTS STARTING WITH GUU CALL

SYSID = SAMP
AGROUP = YYYY
SEGID = TW
FIELD = FLAG
PRELIM

P1

NOP

P2
¥ FIRST GET PARENTS CONCATENATED KEY

SATWPKEY = SAPAKEY
¥ SAVE IT

SATWSKEY = SAPAKEY
¥ GUU CALL IS ISSUED DURING PRE-AUDIT.
¥ IT IS ALSO ISSUED DURING UPDATE PASSES IF USER
¥ ENTERS "R" OR IF FIRST SEGMENT DISPLAYED HAS BEEN DELETED
RETRIEVE: IF GUU SATWPKEY Il 0K

SATWKEY1 = SAI1lILOC

ELSE
SATWKEYLl = '
GOTO ENDRETR

ENDIF '

¥ RETRIEVE THE SECOND AND SUBSEQUENT SEGMENTS
% BEGIN BY SAVING THE FIRST KEY FOR LATER POSITIONING
NEXTSEGS: SATWFKEY = SAI1ILOC
SETTWIN = 'I2,I3"
SETARRAY = SATWKEY2
DOTWIN = 1 70 2
IF GN SATWPKEY I2 0K
SATWKEY2 = SAI2ILOC

ELSE
SATWKEY2 = "' '
GOTO ENDRETR
ENDIF
ENDTWIN

¥ THIS LAST IS A CHECK FOR MORE SEGMENTS THAN CAN BE SHOWN ON 1 SCREEN
IF GN SATWPKEY I4 0K
ELgPAERMSG = "ENTER REQUEST: "M"™ TO VIEW MORE INVENTORY'
E
GOTO ENDRETR
ENDIF
¥ NO MORE TO RETRIEVE - TERMINATE UNLESS UNEXPECTED DL/I STATUS CODE
ENDRETR: IF STATCODE -= 'GE, '
GOTO DLIERROR
ENDIF
FLAG = "_°

The PROCESS phase code to perform the updates is placed in the message
leg (P2) because it must be performed only after the validation in the
field audit leg (Pl) has been completed.

First, we insert the root segment if the user has invoked mode 4. In
this mode, multiple occurrences can be inserted under the root at the
same time as the root. Next, the generalized updates against the first
twin Il are performed. This code allows for three cases of changing the
?ngng$f?ted by comparing the entered key (SAI1ILOC) with the saved key

. Where the user blanks an existing key, the segment will be deleted.

. Where the user alters an existing key, the old segment will be
deleted and the same data inserted under the new key.

Appendix B. Alternate Twin Processing Techniques B-3

. Where the user enters a key into a previously blank area, the new
segment is inserted.

PROCESS
P2
IF MODE = 4
* MUST INSERT ROOT SEGMENT BEFORE INSERTING DEPENDENTS
IF ISRT IMMED
KEYFIELD PA NOT OK
GOTO DLIERRUP
ENDIF
ENDIF
SATWPKEY = SATWSKEY
UPDATE CYCLE - REPEATED AS NECESSARY.
LOGIC IS TO HANDLE DELETIONS AND INSERTIONS; REPLACE CALLS
ARE PERFORMED BY THE SEGUPDTE CALL FROM AUDIT EXIT 71
SETTWIN = "I1,I2,I3"
SETARRAY = SATWKEY1
DOTWIN =1 70 3
% IF USER HAS ALTERED KEY OF SEGMENT, MUST BE A DLET AND/OR ISRT
IF SATWKEY1l -= SAI1ILOC

X X X

* IF SEGMENT KEY WAS NON-BLANK BEFORE DISPLAY,
¥* MUST BE A COPY (DLET + ISRT) OR A STRAIGHT DLET.
IF SATWKEYl == "
IF HDEL IMMED KEYFIELD I1 NOT OK
GOTO DLIERRUP
ENDIF
ENDIF
* IF USER HAS ENTERED NON- BLANK KEY, INSERT SEGMENT
IF SAILILOC =-= '
IF ISRT IMMED SATWPKEY I1 NOT OK
GOTO DLIERRUP
ENDIF
* RESET SAVED FIRST KEY FOR POSITIONING IF THIS ONE IS LOWER

IF SAILILOC < SATWFKEY
SATWFKEY = SAIlILOC
ENDIF
ENDIF
ENDIF
ENDTWIN

Now we call an audit exit routine that invokes the IMSADF II service
routine SEGUPDTE. It will update those segments that need to be
replaced. It will not do anything to the segments that have already
been inserted or deleted since their flags will have been reset by those
operations. If an unexpected DL/I status code is encountered by
SEGUPDTE, it will issue a ROLL call to undo all changes made in this
IMS/VS transaction scheduling.

Next we re-initialize the segment areas and re-retrieve the segments.
We can cope with the user requesting "M"™ or "R" at the same time as
updates are performed.

% CALL SEGUPDTE TO PERFORM REPLACE CALLS
IF AEXIT 71 RETURN = FALSE
GOTO DLIERRUP
ENDIF
GET CONCATENATED KEY OF LAST SEGMENT
SATWPKEY = SATWSKEY
SATWDKEY = SAI3ILOC
¥ NOW RESET SEGMENT AREAS PRIOR TO RE-RETRIEVAL
INITSEGS 'I1,12,13°
SATWKEY1 ' '
SATWKEY?2 ' '
SATWKEY3 ' '
IF USER HAS REQUESTED MORE SEGMENTS, POSITION THE PCB ON THE LAST
SEGMENT PREVIOUSLY DISPLAYED
IF FLAG = 'M'
IF GU SATWCKEY I4 0K
NOP
ENDIF
THE FOLLOWING MESSAGE WILL BE OVERLAID BY THE ENTER M MESSAGE
UNLESS WE REACH THE END OF THE TWIN CHAIN

X

X X

X X

B-4 IMSADF II Application Development Guide

SPAERMSG = 'ENTER REQUEST R: TO RETURN TO THE FIRST DISPLAY'
* RETRIEVE NEXT SEGMENT, WHICH IS TO BE DISPLAYED NOW
SATWPKEY = SATWSKEY
IF GN SATWPKEY Il 0K
SATWKEY1 = SAIlILOC

ELSE
SATWKEYLl = * !
* IF THERE IS NO NEXT SEGMENT, ENSURE RE-POSITIONING WILL BE AT
* THE END OF THE TWIN CHAIN UNLESS THE USER MAKES AN INSERTION

SATWFKEY = '9999999999999999"
GOTO ENDRETR
ENDIF
GOTO NEXTSEGS
ENDIF
¥ IF USER REQUESTS RETURN TO FIRST DISPLAY, GO AND ISSUE GUU CALL
IF FLAG = 'R’
GOTO RETRIEVE
ENDIF
OTHERWISE DISPLAY FROM FIRST OCCURRENCE ON PREVIOUS DISPLAY
SAVED IN FKEY AND POSSIBLY AMENDED BY INSERTIONS OF LOWER KEY VALUE
SATWPKEY = SATWSKEY
SATWDKEY = SATWFKEY
IF GU SATWCKEY Il 0K
SATWKEY1 = SAI1ILOC
GOTO NEXTSEGS
ENDIF
¥ IF FIRST OCCURRENCE NOT FOUND, TRY NEXT
SATWPKEY = SATWSKEY
SATWDKEY = SATWFKEY
IF GN SATWCKEY I1 0K
SATWKEYLl = SAIlILOC
GOTO NEXTSEGS
ENDIF
IF THIS FAILS, PERFORM GUU
SATWPKEY = SATWSKEY
GOTO RETRIEVE
¥ ALWAYS ISSUE ROLL CALL IF ANY DL/I ERRORS
DLIERROR: NOP
DLIERRUP: NOP
- RSB#CALL = 'UNEXPECTED DATA BASE ERROR. CONTACT SYSTEM SUPPORT'
ENDIT:

X XK

x

The following illustrates that the validation, consisting of a check
that we are not inserting a duplicate key, can be applied to every
occurrence even though only the first twin's key is marked AUDIT=YES in
the Rules Generator input.

*

ADFID = MFC1
SYSID = SAMP
AGROUP = YYYY
SEGID = 11
FIELD = ILOC
PROCESS

Pl

¥ PERFORM VALIDITY CHECKING FOR ALL TWIN SEGMENT ALIASES
SETTWIN = 'I1,I12,I3"
SETARRAY = SATWKEY1
DOTWIN =1 70 3
* IF KEY CHANGED AND NON-BLANK, CHECK VALIDITY
IF SATWKEY1l -= ILOC
IF ILOC -=" '
* IF DUPLICATE KEY, SEND ERROR MESSAGE
SATWDKEY = ILOC
IF GU SATWCKEY I5 0K
ERRORMSG = 9801
ENDIF
ENDIF
ENDIF
ENDTWIN

Appendix B. Alternate Twin Processing Techniques B-5

ERROR MESSAGE

The error message need be defined only once for the twins because the
special value VARLIST5 can be used to put the value of the field in
error into the message. This will contain the appropriate twin
occurrence.

/77 EXEC MFC1B

//TRANSIN DD x

¥ AUDIT ERROR MESSAGES

MFC1B1HD

SAMP9801

MFC1B2HD

SAMP98010070VARLIST5024

MFC1B4SYSAMP 9801

00000001FOR INVENTORY LOCATION THERE IS ALREADY AN ENTRY
7/

AUDIT EXIT

The following COBOL audit exit routine invokes the IMSADF II service
routine SEGUPDTE to replace those segments that have been changed. This
saves having to write the data base replace (REPL) calls in the high
level audit language and overcomes the limitation that it is impossible,
in the audit language, to test whether a segment has been changed.

Normally, the SEGUPDTE service routine would be called by the
transaction driver after all the audits have been completed. It would
be too late in this case, however, since the audit rules cause the
segments to be re-retrieved after the updates.

//EXSUB EXEC COBUC,
/7 PARM.COB=(NORES,NODYN,NOENDJOB,LIB,APOST,NOSEQ,
77 'SIZE=450000,BUF=128K")
//COB.SYSLIN DD DSN=IMSADF3.PROGRAM.OBJ(CAUDTEXIT),DISP=0LD
7/COB.SYSLIB DD DSN=IMSADF3.MACLIB.ASM,DISP=SHR
//COB.SYSIN DD x
IDENTIFICATION DIVISION.
PROGRAM-ID.
UPDTEXIT.
DATE-COMPILED. JULY 20,1982.
REMARKS.
AUDIT EXIT ROUTINE TO UPDATE DATA BASES.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SQURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.
DATA DIVISION.
WORKING-STORAGE SECTION.

77 DD PICTURE XX.
77 GUU PICTURE X(4) VALUE 'GUU .
77 FE PICTURE XX VALUE 'FE'.
77 FALSE PICTURE X VALUE LOW-VALUES.
01 TRUTH1 PICTURE 9(4) COMP VALUE 128.
01 TRUTH2 REDEFINES TRUTH1.
03 FILLER PICTURE X.
03 TRUE PICTURE X.
01 DATA-DESC.
03 KEY-FIELD PICTURE X(4)
03 LEFT-PAREN PICTURE X(1).
03 SEGID PICTURE X(2).
03 COMMA-POS1 PICTURE X(1).
03 FLAG PICTURE X(1).
03 COMMA-P0S2 PICTURE X(1).
03 SETTING PICTURE X(1).
03 RIGHT-PAREN PICTURE X(1).
03 FILLER PICTURE X(28).
LINKAGE SECTION.
77 AUDITED-FIELD PICTURE X(17).
77 FIELD-DESC PICTURE X.
77 AUDIT-DESC PICTURE XX.
77 AUDIT-PCB PICTURE X.
77 COMOPT PICTURE X.

B~-6 IMSADF II Application Development Guide

77 TRUE-FALSE PICTURE X.

77 FUNCTION-INDIC PICTURE X.
77 PCBLIST PICTURE X.
77 COKEY PICTURE X.
77 RELATED-FIELD PICTURE X(255).

77 RELATED-FIELD-DESC PICTURE X.
COPY SPACOBOL.
PROCEDURE DIVISION USING AUDITED-FIELD,
FIELD-DESC, AUDIT-DESC,
AUDIT-PCB, COMOPT, TRUE-FALSE, FUNCTION-INDIC, SPADSECT,
PCBLIST, COKEY, RELATED-FIELD, RELATED-FIELD-DESC.
IF AUDIT-DESC NOT = '71' THEN GOBACK.
CALL 'SEGUPDTE'.
MOVE TRUE TO TRUE-FALSE.
IF SPARTNCD > 0 MOVE FALSE TO TRUE-FALSE.
IF SPARTNCD = 16 MOVE TRUE TO TRUE-FALSE.
GOBACK.
7/ EXEC MFC16
//Gl.SCREENS DD DISP=(,DELETE)
7/G1.SYSLIB DD
/77 DD
/77 DD DSN=SYS1.COBLIB,DISP=SHR
SYSTEM SYSID=SAMP
GENERATE OPTIONS=STLE,PGMID=0R,AEXIT=UPDTEXIT
//

Appendix B. Alternate Twin Processing Techniques

B-7

B-8 1IMSADF II Application Development Guide

APPENDIX C. REPORT WRITING EXAMPLE

Chapter 10, "Batch Processing"™ gives guidelines for creating output and
reports. This appendix contains the static and dynamic rules for that
example, and a sample of the results.

These rules are provided merely as examples of how to implement report
writing using IMSADF II. They are intended to illustrate techniques
rather than provide a complete application.

Becausa the sample requires the IMS/VS-supplied PARTS data base, the

sample problem is not applicable to a CICS/DB2 installation. It may be
invoked only as a BMP in the IMS/DB2 environment.

STATIC RULES

The static rules given illustrate the need to define segments with
TYPE=0UT for formatting headings and detail lines.

/7 EXEC MFC1G

3636 36 3 3 € 36 36 X 56 3 3 I 26 36 X 2 I 36 36 36 3 6 I 36 36 56 3 6 I I 26 3 3 3 I I I6 26 X6 3 I I 36 I6 36 6 3¢ 36 I€ 36 36 3 3¢ I I6 36 JE I I I 26 26 36 3 3 ¢ 2 2 3 3 %

* APPLICATION DEFINITION INPUT STATEMENTS FOR PARTS DATA BASE
336 3 3 36 3 3 36 6 3 36 36 36 36 36 36 36 3 36 36 96 36 J6 36 6 36 36 6 36 26 I 36 I 2 6 36 36 36 3 36 36 36 36 36 36 26 36 36 6 26 26 96 6 6 3 X6 I 26 3 36 36 3 26 3 36 36 3¢ 3 ¢

SYSTEM SYSID=SAMP,DBID=PA, RULE ID CHARS
SOMTX=0R, DEFAULT SECONDARY OPTION CODE
PCBNO=1, PCB NUMBER FOR DATA BASE
SHEADING='S AMP L E PROBL EM, GENERAL HEADING
SFORMAT=DASH, SCREEN FORMAT
PGROUP=ZZ PROJECT GROUP

36 36 36 36 96 6 3 36 36 6 36 36 36 6 3 3 36 2 26 26 36 X 36 36 26 56 3 36 6 36 36 I 36 36 36 36 36 36 36 36 36 26 36 36 JE J6 6 3 26 J6 I 3 3 I I 3 36 I 6 3 36 36 3 3 36 6 26 36 36 6 % X
¥ PARTS DATA BASE

PD Iv

XX X X X X X X
—_—

311333133133 331133331113333113333133233332333 3333333333333 333 320022030033

* APPLICATION DEFINITION INPUT FOR ROOT SEGMENT
26 36 6 36 36 36 2 3 36 36 36 36 36 6 36 36 6 3 36 I 2 3 36 I I 3 3 36 36 36 36 36 3 36 36 36 3 36 36 6 3 36 36 3 36 I 6 3 I6 I JE HE 26 36 36 2 3 I I) I 3 3¢ 36 2 3 36 2 3 3¢ X ¢

SEGMENT LEVEL=1,ID=PA,NAME=PARTROOT,LENGTH=50,
SKSEG=18 PART SEGMENT
FIELD ID=KEY,LENGTH=17,P0S=1,KEY=YES,NAME=PARTKEY,
SNAME='PART NUMBER',DISP=YES,REL=YES
FIELD ID=DESC,LENGTH=20,P05=27,SNAME="DESCRIPTION',DISP=YES,REL=YES

36 5 36 36 36 36 I I 3 36 36 26 I I 6 2 36 I I I 2 26 26 26 I6 I I 3 36 26 I I I 3 JE 26 26 I 3 3 36 36 I I I 3 36 26 I I I 3 3 I I I HE 36 I I I I I 3 26 2 I ¢ 36 3 3 X

* APPLICATION DEFINITION INPUT FOR INVENTORY SEGMENT
3636 3 36 96 36 3 36 36 6 3 36 36 36 36 I6 6 3 3 I 6 X K 36 2 36 I 36 I 6 6 36 I 6 3 36 3 3 3 36 6 3 36 36 6 3 36 3 3 36 6 3 36 I6 6 36 26 36 6 3 I I 5 36 3 o 3¢ 3¢ 3¢

SEGMENT ID=IV,PARENT=PA,NAME=STOKSTAT,KEYNAME=STOCKEY,LENGTH=160,
* SNAME="INVENTORY',

SKLEFT='INVENTORY UNIT CURRENT ',
SKLEFT='LOCATION PRICE REQMNTS *,
SKRIGHT=' ON TOTAL DISBURSEMENTS ',

SKRIGHT=' ORDER STOCK PLANNED UNPLANNED'
FIELD ID=W,LENGTH=2,P0S5=1,KEY=YES,SNAME="00"',DISP=NO,
COL=1,SLENGTH=2
FIELD ID=AREA,LENGTH=1,KEY=YES,SNAME='AREA"',DISP=YES,COL=3,REQ=NO
FIELD ég;l:gb,LENGTH=2,KEY=YES,SNAME='INV DEPT',DISP=YES,COL=4,
FIELD ID=PROJ,LENGTH=3,KEY=YES,SNAME='PROJECT',DISP=YES,COL=6,REQ=NO

Appendix C. Report Writing Example C-1

FIELD ID=DIV,LENGTH=2,KEY=YES,SNAME='DIVISION',DISP=YES,COL=9,REQ=NO
FIELD ID=FILL,LENGTH=6,KEY=YES,SNAME="FILLER',DISP=NO,COL=11,REQ=NO
FIELD ID=PRIC,LENGTH=9,P05=21,TYPE=DEC,DEC=2,SLENGTH=9,
SNAME="'UNIT PRICE',DISP=YES
FIELD ID=RPRI,LENGTH=7,P05=23,TYPE=DEC,DEC=2,RELATED=YES,COL=19,
DISP=NO
FIELD ID=UNIT,LENGTH=4,P05=35,SNAME="UNIT',DISP=YES
FIELD ID=COAP,LENGTH=3,P05=51,TYPE=DEC,SNAME="ATTR COAP',DISP=YES,
SLENGTH=3
FIELD ID=PLAN,LENGTH=3,TYPE=DEC,P0S5=54,
SNAME="ATTR PLANNED',DISP=YES,SLENGTH=3
FIELD ID=COAD,LENGTH=1,P05=57,SNAME="ATTR COAD',DISP=YES
FIELD IEESDAY.LENGTH=3.SNAME='STOCK DATE',DISP=YES,P0S=72,
S GTH=3
FIELD ID=TDAY,LENGTH=3,TYPE=DEC,SNAME="LAST TRANS',DISP=YES,
SLENGTH=3
FIELD ID=REQC,LENGTH=7,P05=90,TYPE=DEC,SLENGTH=7,
SNAME='RQMNTS CURRENT',DISP=YES
FIELD ID=RREQ,LENGTH=5,P05=92,TYPE=DEC,RELATED=YES,COL=29,DISP=NO
FIELD ID=REQU,LENGTH=7,TYPE=DEC,P05=98,SLENGTH=7,
SNAME="RQMNTS UNPLAN',DISP=YES
FIELD ID=0ONOR,LENGTH=7,P05=106,TYPE=DEC,SNAME="0ON ORDER',
DISP=YES,SLENGTH=7
FIELD ID=RONO,LENGTH=5,P05=108, TYPE=DEC,RELATED=YES,COL=38,DISP=NO
FIELD ID=STCK,LENGTH=7,TYPE=DEC,P05=114,SLENGTH=7,
SNAME='TOTAL STOCK',DISP=YES
FIELD ID=RSTC,LENGTH=5,P05=116, TYPE=DEC,RELATED=YES,COL=47,DISP=NO
FIELD ID=DIPL,LENGTH=7,TYPE=DEC,P05=122,SLENGTH=7,
SNAME='DISB PLAN',DISP=YES
FIELD ID=RDIP,LENGTH=5,P05=124%,TYPE=DEC,RELATED=YES,COL=56,DISP=NO
FIELD ID=DIUN,LENGTH=7,TYPE=DEC,P05=130,SLENGTH=7,
SNAME="DISB UNPLAN',DISP=YES
FIELD ID=RDIU,LENGTH=5,P05=132, TYPE=DEC,RELATED=YES,COL=65,DISP=NO
FIELD ID=DISP,LENGTH=7,TYPE=DEC,P05=138,SLENGTH=7,
SNAME='DISB SPARES',DISP=YES
FIELD ID=DIDV,LENGTH=7,TYPE=DEC,P05=146,SLENGTH=7,
SNAME='DISB DIVERS',DISP=YES

26 36 36 36 26 6 3 2 36 6 5 3 96 6 2 3 I 26 6 3 I 26 3 36 26 6 3 36 I 36 36 36 36 3 3 36 I 3 3 36 36 3 36 I 6 36 36 36 3 36 36 36 3 36 I€ I JE I I J6 6 3 I6 J6 3 36 I€ 36 36 36 3¢ %
* PSEUDO SEGMENT FOR REPORT WRITING
26 36 36 36 36 96 36 36 36 36 36 36 36 36 36 36 36 96 6 36 36 26 6 36 J6 36 36 36 36 26 3 36 36 3 3 26 I 3 36 36 36 3 36 36 36 36 36 36 6 3 36 I 3 X6 36 3 26 26 I I6 6 36 26 I6 36 36 26 36 26 2 ¢ %
*
SEGMENT ID=RP,TYPE=PS
FIELD ID=FLAG,L=1,DISP=NO,AFA=YES USED AS AN AUDIT FIELD
FIELD ID=PAGE,L=3,DISP=NO, TYPE=PD PAGE NUMBER
FIELD ID=LINE,L=3,DISP=NO,TYPE=PD LINE NUMBER
FIELD ID=TOTS,L=5,DISP=NO,TYPE=PD TOTAL STOCK

3636 3636 96 6 3 3 36 6 3 26 36 26 6 3 36 26 6 36 36 3 36 I I 2 36 I 3 3 I 36 3 3 36 6 3 3 36 36 3 2 I 2 3 36 I6 3 3 I 6 3 26 J6 3 2 26 36 3 36 36 I6 6 2 3 J6 6 36 36 6 %
* OUTPUT FORMAT RULES FOR HEADERS AND REPORT DETAIL LINE
2656 5 36 96 6 6 3 I 3 2 36 26 X 3 I6 36 3 3 I 6 3 3 I 2 36 I I 6 2 36 6 36 36 26 3 36 26 6 3 36 26 3 3 36 36 3 3 36 6 3 36 36 6 3 36 36 2 3 36 36 6 3 36 36 36 3 36 ¢ %
¥
SEGMENT ID=H1,TYPE=0UT FIRST HEADER
FIELD TEXT='1 ',LEN=10
FIELD TEXT='REPORT ON PART NU',LEN=17
FIELD TEXT='MBERS AND ',LEN=10
FIELD TEXT='STOCK LEVELS IN THE ',LEN=20
FIELD TEXT="'SAMPLE DATA BASE ',LEN=20
FIELD TEXT=' PAGE',LEN=20
FIELD ID=PAGE,LEN=5,S9EGID=RP
SEGMENT ID=H2,TYPE=0UT SECOND HEADER

FIELD TEXT='0 ',LEN=10

FIELD TEXT='PART NUMBER ',LEN=17
FIELD TEXT=! ',LEN=10

FIELD TEXT='DESCRIPTION ',LEN=20

FIELD TEXT='INVENTORY LOCATION ',LEN=20
FIELD TEXT='TOTAL STOCK',LEN=11
SEGMENT ID=H3,TYPE=0UT THIRD HEADER

FIELD TEXT="? ',LEN=10

FIELD TEXT='===e—e——oe—- ', LEN=17
FIELD TEXT=! ',LEN=10

FIELD TEXT='-==—mem———— ',LEN=20
FIELD TEXT='==—--==memmmm e — e ',LEN=20
FIELD TEXT='==========- ',LEN=11

c-2 ;MSADF I1 Application Development Guide

SEGMENT ID=DL,TYPE=0OUT PART NUMBER DETAIL LINE

FIELD TEXT=' ',LEN=10
FIELD ID=KEY,LEN=17,SEGID=PA
FIELD TEXT=" ',LEN=10

FIELD ID=DESC,LEN=20,SEGID=PA
SEGMENT ID=DI,TYPE=0UT INVENTORY DETAIL LINE

FIELD TEXT=' ', LEN=20
FIELD TEXT=' ',LEN=17
FIELD TEXT=' ',LEN=20

FIELD ID=AREA,LEN=1,SEGID=IV
FIELD ID=INVD,LEN=2,SEGID=IV
FIELD ID=PROJ,LEN=3,SEGID=1V
FIELD ID=DIV,LEN=2,SEGID=IV
FIELD TEXT=' ',LEN=12
FIELD ID=STCK,LEN=11,SEGID=IV
SEGMENT ID=TL,TYPE=OUT INVENTORY TOTAL LINE

FIELD TEXT=" ',LEN=20
FIELD TEXT=" ',LEN=17
FIELD TEXT=' ', LEN=20
FIELD TEXT=' ',LEN=20

FIELD ID=TOTS,LEN=11,SEGID=RP
SEGMENT ID=TM,TYPE=0UT INVENTORY TOTAL MARKER

FIELD TEXT="' ',LEN=20
FIELD TEXT=' ', LEN=17
FIELD TEXT=' ',LEN=20
FIELD TEXT="' ',LEN=20
Eﬁgép TEXT='===========',EN=11

T

3696 36 3 6 I I I I I I I I I I I I I I I 3¢ I I I I I I I I I I 36 I I I I I I 2 IE I I H H I IE I I I I I I I I I I I I I I I I I I I H K H H K H ¥

% GENERATE RULES FOR BATCH STANDARD SEGMENT PROCESSING
36 36 36 36 36 96 6 36 36 96 36 36 36 36 36 36 36 6 36 36 36 6 36 36 96 36 36 96 36 3 36 36 36 36 36 36 36 36 36 36 36 36 36 6 JE 26 36 26 I6 36 6 36 26 36 3K 36 36 I 36 6 36 36 36 36 36 3¢ 36 36 36 3¢ 3¢ ¢

GENERATE OPT=SGALL

GENERATE BATCH INPUT TRANSACTION RULE

GENERATE TRXID=RP,TSEGS=(RP,PA,IV),
OPTIONS=BAIT,
STX=(TRX,H1),STX=C(TRX,H2),STX=C(TRX,H3),STX=(TRX,DL),
STX=(TRX,TM),STX=(TRX,TL),STX=(TRX,DI)

GENERATE SAMPBDO1 LOAD MODULE

GENERATE OPTIONS=BDLE,PGMID=01,0FRTABLE=(H1,H2,H3,DL,TM,TL,DI),

SHTABLE=(PA,IV),ITTABLE=RP,LDRULE=YES,SLRTABLE=(RP),
PHEAD='BATCH REPORT WRITER EXAMPLE'

X XK X

X X X

IGH VEL AUDIT LANGUAGE CODIN

The logic consists of a loop through the root segments (PA) with a
nested loop through the inventory segments (IV). A subtotal is printed
of the stock levels of each part. Line and page counts are used to
control pagination. The above segments of TYPE=0UT each begin with an
ASA control character to cause spacing and page ejection.

SYSID = SAMP
AGROUP = YYYY

SEGID = RP
FIELD = FLAG
PROCESS

PO

¥ LOOP READING PA SEGMENTS FROM THE SAMPLE DATA BASE,
¥ PRINTING THEM USING SEND IMMED UNTIL A STATUS CODE OF
¥ GB (END OF DATA BASE) IS FOUND.
SARPPAGE = 0 SARPLINE = 50
SARPTOTS = 0
SWITCH1 = ON
¥ THE LOOP THROUGH PA SEGMENTS IS TERMINATED BY THE EXIT STATEMENT
DO WHILE SWITCH1 = ON

IF GN KEYFIELD PA NOT 0K

IF STATCODE = 'GB’
EXIT

Appendix C. Report Writing Example C-3

ELSE
ERRORMSG = 9999
ENDIF
ENDIF
IF SARPLINE >= 50
* PAGE THROW AND HEADERS
SARPLINE = 0 SARPPAGE = SARPPAGE + 1
SEND IMMED 'SAORH101'
SEND IMMED 'SAORH201'
SEND IMMED 'SAORH301'
ENDIF
¥ PRINT DETAIL LINE
SEND IMMED 'SAORDLO1'
SARPLINE = SARPLINE + 1
SWITCH2 = ON
COUNTERL = 0
LOOP THROUGH DEPENDENT SEGMENTS (IV)
LOOP TERMINATED WHEN SWITCH2 = OFF
DEPENDENT SEGMENTS COUNTED IN COUNTER1
DO WHILE SWITCH2 = ON
IF GN SAPAKEY IV NOT 0K
IF STATCODE = 'GB,GE"
SWITCH2 = OFF
END OF IV SEGMENTS.
IF THERE WERE IV SEGMENTS, SHOW TOTAL AND RESET IT.
IF COUNTER1 > 0
SEND IMMED 'SAORTMO1'
SEND IMMED 'SAORTLO1l'
SEND IMMED 'SAORTMO1'
SARPLINE = SARPLINE + 3
SARPTOTS = 0 COUNTER1 = 0
ENDIF
ELSE
ERRORMSG = 9999
ENDIF
ELSE
* PRINT INVENTORY DETAIL LINE AND MAINTAIN TOTAL
SEND IMMED 'SAORDIO1'
SARPLINE = SARPLINE + 1
COUNTER] = COUNTER1 + 1
SARPTOTS = SARPTOTS + SAIVSTCK
ENDIF
ENDDO
ENDDO

X X X

X X

C-4 IMSADF II Application Development Guide

SAMPLE OUTPUT
Sample output for transaction SAMPB5RP is shown in Figure C-1.

REPORT ON PART NUMBERS AND STOCK LEVELS IN THE SAMPLE DATA BASE PAGE 1

PART NUMBER DESCRIPTION INVENTORY LOCATION TOTAL STOCK
02AN960C10 WASHER
AA16511 126
AK2877F 88
28009126 680
894
02CK05CW181K CAPACITOR
VF52906 0
25900326 660
25910926 _ 8
668
02CSR13G104KL KR1J50KS
DB7455R 14
SK21713 4
25502526 14
32
02JAN1IN976B DIODE CODE-A
25509126 17
17
02M516995-28 SCREW
AA16511 30
BA16515 8
FF5546D 43
25910926 100
181
02N51P3003F000 SCREW
25906026 360
360
02RCO7GF273J RESISTOR
AK24527 33
28009126 17
28011126 26
76
02106B1293P009 RESISTOR
25900326 1055
25906026 0
25910926 320
1375

——— . - ——— -
SSSSCSo=S=ZS==

Figure C-1. Sample Output Page

Appendix C. Report Writing Example C-5

C-6 1IMSADF II Application Development Guide

PPENDIX D. APPLICATION IMPLEMENTATION

The recommendations in this appendix relate to activities that precede
and succeed application development. These recommendations must not be
regarded as rigid. They must be evaluated for their applicability in
each situation.

TRANSACTION AND SCREEN DESIGN

In order to maximize programmer productivity with IMSADF II and deliver
function to the user as quickly as possible, the application prototyping
capability of IMSADF II should be exploited to the fullest. This
entails a somewhat different phasing of design and development
activities, making use of a "master rules" concept.

Figure D-1 illustrates how an operational application system, capable of
data base inquiries and maintenance and providing full updating
capabilities, can be implemented on the basis of a completed data base
design. Details on how to do this are presented in the first chapters
of this manual. The more advanced functions described in later chapters
can then be used for the complex application requirements.

Feasibility Study

Data Analysis Systems Analysis
]

Data Base Design
]

Master Rules Prototype
Application Development

|
Data Validation Coding
]

A
v

Master Rules Desiogn of Other
Application Screens/Logic
Implementation (where needed)

Screen Image
Definitions

|
Complex Logic Coding
I

Full Application
System Implementation

Figure D-1. Suggested Ordering of Design and Development Activities

Appendix D. Application Implementation D-1

Figure D-2 shows the recommended structure of these components.

component

Recommended Structure

Segment
definitions

For each data base segment. a member should be created
containing FIELD statements that define field ID, key
attributes, position, length, data type and SNAME.

Master rules

There should be one member in a PDS containing the
master rules for an application system. It should:

. reference the segment definitions by means of
INCLUDE statements

L define one transaction per data base segment,
using default screens

. request the Sign-0On and Primary Option Menu
screens

Sign-on and

Profiles should be maintained by the person

security responsible for security.
profiles
Complex Any transaction not in the master rules is considered

transactions
and screen
images

complex for the purposes of this discussion. It is
recommended that one source statement member be
maintained in a PDS for every complex transaction.
The member will contain:

. a SYSTEM statement

. a GENERATE statement that defines the transaction
(with the TRXID option)

. a screen image or reference (IMAGE keyword) to a
screen image

. SEGMENT statements referring to any segments in
the master rules that are used by this
transaction, together with INCLUDE statements

o any FIELD statements needed to override field
definitions included as a result of INCLUDE
statements

. any pseudo segment or alias segment definitions

. a GENERATE OPT=S0MSS statement

Figure

D-2

D-2 (Part 1 of 2).

Recommended Structure of Development
Components

IMSADF II Application Development Guide

component Recommended Structure

High level If there are any audit rules that apply to a field
audit wherever it is used in an application system

language (generally validation rules), these should be kept in
statements one member. All other audit rules are best viewed as

part of a transaction. All audit operations that
apply to a transaction should be coded in a member
that is named in association with that transaction. A
suggested format for the name is:

§55SAAtX
where:

6888 is the system ID
AA is a literal
tx is the transaction ID

It is suggested that this same name be used for the
audit group and that a separate audit group code be
used for each transaction. This means that AGROUP =
AAtx should be coded at the start of each member after
SYSID = ssss. AGROUP=AAtx must also be coded on the
corresponding Rules Generator statement, GENERATE

TRXID=tx.
Messages and These should be separated by transaction, just as
message audit rules are separated, with a member containing
rules systemwide messages.

Figure D-2 (Part 2 of 2). Recommended Structure of Development
Components

EASE OF MAINTENANCE

To ensure that application systems are maintainable, it is essential
that several components be kept in step. These components are most
easily maintained in source statement form. They are:

L Rules Generator statements
J high level audit language statements

. messages and message rules in the form in which they can be
submitted to the IMSADF II batch utility

. sign-on and security profiles

The decision left open in the above discussion is whether to allow
auditing in the master rules. IMSADF II permits you to distinguish
between audit rules that validate a field wherever it is used and audit
rules that control application logic. The above recommendations allow
systemwide auditing of a field to be associated with the master rules.
S:ﬁh an approach will be appropriate in some installations and not in
others.

NAMING CONVENTIONS

IMSADF II already has extensive naming conventions. The only purpose of
applying further conventions is to avoid clashes in usage of the same
name. In large projects where several individuals are developing parts
of an application system, conventions are needed to allocate:

transaction IDs

IDs for pseudo segments, mapping segments, aliases, and twins
message numbers

automatic message headers

Appendix D. Application Implementation D-3

IADF has naming conventions for all the components listed above. If
your installation is not using IADF, it is suggested that a simple
convention on name and number range be adopted. The project leader
should allocate ranges of the above IDs and numbers to individual
developers.

MOVING FROM TEST TO PRODUCTION

It is recommended that IMSADF 1I application systems be transferred from

test to production at the source statement level. IADF's migration
feature can be used to do this. If the recommendations given in "Ease
of Maintenance™ on page D-3 are followed there will be a set , of

three source statement members for each complex transaction plus the
security profiles. The three source member types are:

] Rules Generator source statements
U high level audit language statements
. messages and message rules in batch input form

For static rules, move all source statements and members of the INCLUDE
libraries into a production source library and rerun the Rules Generator
on the production system.

For dynamic rules, transfer the high level audit language statements
into the production source library and rerun the compiler to load the
audit rules in the Audit Data Base. Maintain and transfer the message
rules in source form as submitted to the batch utility (JCL procedure
MFC1B) and transfer this source file also from test to production. Then
rerun the batch utility on the production system to load them on to the
Message Data Base. Do the same to load the tables in the Audit Data
Base. Finally, run the utility to make the audit rules static (see
"Static Audit Rules"™ on page D-5).

If the security profiles are the same in test and production, they could
be transferred in the same way. Normally, however, these would be
different and would be set up separately on the production system by the
data base administrator.

During subsequent application maintenance, the smallest unit of transfer
between test and production would be the set of three source statement
members that define a transaction.

LOAD MODULE TRANSFER

If source level transfer is impractical in your installation, then load
module transfer of rules produced by the Rules Generator is possible.
The person responsible must be aware of which rules load modules are
required to make up a transaction so that it is possible to check for
completeness.

A static audit rule load module can be transferred in the same way as
other load modules. Messages and message rules, however, must still be
transferred in source form unless a user-written utility program can be
made available to copy from the Message Data Base.

Particular care must be exaercised to ensure that the Secondary Option
Menu Rule load module does not get out of step if two members of a
development project attempt to implement new transactions on the same
day. It would be appropriate for the person responsible for security
profiles to maintain the Secondary Option Menu Rule as well.

USING MULTIPLE IMSADF II SYSTEMS

The simple way to install IMSADF II and to separate test from production
is to have IMS/VS separately installed for test and production (on the
§am: g{ :gparate CPUs) and install IMSADF II separately on each IMS/VS
installation.

If this cannot be done and the test and production systems are to reside
on the same installation of IMS/VS, then the multiple IMSADF II

capability, documented in the IMS Application Development Facility II

D-4 IMSADF II Application Development Guide

Versjon 2 Release 2 Application Development Reference, will be needed to

ensure separation of the test IMSADF II from the production IMSADF II.

Installing IMSADF II in this way is not normally the responsibility of

those who develop applications, but there are certain effects that must
be allowed for.

Each separate IMSADF II will be given a separate ADFID. A possible
standard is to use the ADFID of MFC1 for testing and MFC2 for
production. Then the production JCL procedure names will all begin with
MFC2 instead of MFC1l; the input to the batch driver for the IMSADF II
dynamic rules data bases will likewise begin with MFC2 instead of MFC1.
An additional statement must be placed in front of the SYSID statement
to the high level audit language compiler. In our case, for the
production system, that would be:

ADFID = MFC2
The default value for ADFID is MFC1.

To ensure separation, the installer of IMSADF II will use IMS/VS
capabilities to schedule the test and production versions into separate
IMS/VS message processing regions. In addition, the Rules Generator
SYSTEM statement operands MFSTRLR and TRXTRLR must be coded on the
production version of the application's static rules. MFSTRLR and

TRXTRLR are documented in the IMS Application Development Facili
Version 2 Release 2 Application Development Reference. See the IMS

ication Deve ment Facilit Version Release 2 Installation
Guide for complete details on installing multiple IMSADF Il systems.

-

STATIC AUD RULES

When an application system is in production, it is not necessary to have
the Auditor retrieve audit rules from the data base every time a
transaction is used. A utility is provided to read a set of audit rules
from the data base and combine them into a single load module which can
be held in the static rules library. Hence, the Auditor need load only
a single member to obtain all the rules needed in the transaction,
rather than performing many DL/I calls. (It is possible to eliminate
even the load operation by using the preload facility documented in the
MS Application Development Facility II Version 2 Release Application

Development Reference.)

Here is an example of running the utility, with JCL:

/7/UTILITY EXEC ??77%B

//CARDOUT DD DSM=&&CARDS,UNIT=SYSDA,DISP=(NEW,PASS),
7/ SPACE=(TRK,(1,1))

//TRANSIN DD %

MFC1B6AM SAMPYYYY BANKYYYY

/%

//RULESGEN EXEC MFCG1
7/SYSIN DD DSN=&&CARDS,DISP=(OLD,DELETE)

Note: ?2??? is the installed ADFID (the default is MFC1).

Note the format of the control card: a code MFC1B6AM followed by a
space, followed by up to six 8-byte identifiers of the form:

SSSSAAAA
whera:

8888 is the application system IN
AAAA is the audit group code

If more than six identifiers are needed, code more cards, each beginning
MFC1B6AM. The end product, after running the Rules Generator procedure

(MFC1G), is a set of load modules named with the 8-byte identifiers. If
key audits are created using KNAME=ALT, the above applies.

When audit rules for key auditing are stored in the Audit Data Base

under root keys that begin KEYAUDIT, a single, installation-wide load
module named KEYAUDIT will be produced from the static audit rules

Appendix D. Application Implementation D-5

utility. The control card to be submitted to the MFC1B procedure in
this case would be:

MFC1B6AM KEYAUDIT

By running the first JCL step and directing the CARDOUT data set to the
printer, a useful listing of the audit rules may be obtained.

The Auditor will obtain rules from the data base unless directed to use
a load module by coding the LRULE=YES operand on the GENERATE statement
for a transaction or on the SYSTEM statement (to the Rules Generator).
If the default audit group code (YYYY) is used, there will be one static
audit rule per application system. In large, complex applications
separate audit group codes - and hence separate - rules for different
transactions or groups of transactions will simplify application
maintenance.

Subroutines and tables can also be in static form. If coding in a
static audit rule refers to tables or subroutines, these should also be
in static audit rules (not necessarily in the same load module) in order
to obtain best performance. However, if the Auditor cannot find a
static audit rule load module, and LRULE=ALT was coded on the GENERATE
statement, it will look for the appropriate rule on the audit data base.

D-6 1IMSADF II Application Development Guide

APPENDIX E. SWITCHING BETWEEN COBOL AND IMSADF II TRANSACTIONS

e e SR LAL LA LA LA S sl A AN Lol AN N N EAYalAXah AN R M4

It is possible to cause an IMSADF II transaction to switch to a
non-IMSADF II IMS/VS conversational message processing programming
(MPP). Such a program can also switch to an IMSADF II transaction.

This is done with the IMS/VS "conversational program-to-program switch."

SWITCHING FROM IMSADF II TO COBOL

This is achieved by link-editing the non-IMSADF II MPP with the same
name as an IMSADF II transaction mini-driver. An IMSADF II transaction
switch will then cause an IMS/VS conversational program-to-program
switch to the MPP. The IMSADF II transaction switch can be initiated by
a user at the terminal altering the TRXID area on the Data Display
screen or under the control of audit rules or a special processing
program.

The sample COBOL programs (MPPs) shown below are link-edited to fit in
with the sample application system (SAMP). They are associated with the
IMSADF II transaction IDs SW and RS and therefore are named:

ss8ssTCC
where:

6888 is the application system ID
T is a literal
cc is the cluster code (SOMTX operand value)

The following GENERATE statements are necessary to cause these two
TRXIDs to be entered into the Secondary Option Menu Rule:

GENERATE TRXID=SW,DBPATH=PA,SOMTX=SW,O0PTION=INTR
GENERATE TRXID=RS,DBPATH=PA,SOMTX=RS,0PTION=INTR
GENERATE OPTIONS=SO0M

In addition, the SW and RS TRXIDs must be added to the Sign-0n Profile
Authority segment (PR) with entries such as SW53RS53, where the final 3
in each 4-byte entry indicates that these TRXIDs are not to appear on
the Secondary Option Menu screen.

The following high level audit language statements cause IMS/VS to
switch to the programs named SAMPTSW or SAMPTRS.

SYSID = SAMP

AGROUP YYYY
SEGID = PA
FIELD = KEY
PRELIM

Pl

IF TRXID = 'PA’
TRXID = '"SW'
ENDIF

IF TRXID = 'CY!
TRXID = 'RS'
ENDIF

Note: PAUDIT=YES must be coded on the FIELD statement that defines the
KEY field in the PA root segment.

Appendix E. Switching Between COBOL and IMSADF II Transactions E-1

SUITCHING FROM COBOL TO IMSADF II

The COBOL programs (MPPs) shown below are named so that they can receive
control from an IMSADF II transaction. They are both designed to switch
to an IMSADF II transaction through the IMS/VS conversational
program-to-program switch.

There are two techniques:

. Switching to the sign-on transaction
L3 Switching directly to the driver

SWITCHING TO THE SIGN-ON TRANSACTION
This is the simpler of the two techniques. It has some disadvantages:

. No information can be transmitted to the target IMSADF II
transaction in the SPA communication area (SPAFLDSG) for use by an
audit exit or special processing routine.

. Two IMS/VS message switches will take place to get to the IMSADF II
Data Display screen. This is a performance overhead.

The technique is to pass to the sign-on transaction (27?7701 where ?77??
is the ADFID) a message that looks to IMSADF II like a Sign-On screen
entered at a user terminal. The COBOL program must supply the IMSADF II
application system ID, the user ID, and the project/group code. 1In
addition it can supply the lockword, OPTION, TRXID, and KEY fields. The
program must also set the data portion of the SPA to binary =zeros.

The layout of the message is as follows:

LL (2) Message length (92)
zz (2) Binary zero
USERID (6) User ID
PGROUP (2) Project/group
LOCKWORD (8) Lockword
FILLER (8) Spaces
SYSID (4) Application system ID
FILLER (4) Spaces
NLINES (2) Number of lines on screen
(in character form, e.g., 26)
OPTION (1) Option (e.g., D)
TRXID (3) IMSADF II transaction ID (e.g., 5PD)
KEY (50) Concatenated key

The following program is intended as an illustration of how to use the
technique.

IDENTIFICATION DIVISION.
PROGRAM-ID.
SAMPTRS.
AUTHOR.
IMSADF II.
DATE-WRITTEN.
1982.
REMARKS .
THIS SKELETON PROGRAM SWITCHES TO THE IMSADF II SIGNON
SCREEN VIA THE IMS/VS MESSAGE QUEUE, THUS SIMULATING A USER
SIGNING ON. IN THE MESSAGE IT PASSES, IT SETS THE IMSADF II
APPLICATION SYSTEM ID, THE USER ID, PROJECT/GROUP, OPTION,
TRXID AND CONCATENATED KEY FIELDS. THE SPA IS SET TO LOW
VALUES TO SIMULATE THE START OF A CONVERSATION.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER.
IBM-370.
OBJECT-COMPUTER.
IBM-370.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

E-2 1IMSADF II Application Development Guide

DATA DIVISION.
FILE SECTION.
WORKING-STORAGE SECTION.

77

77

GU PIC XXXX VALUE ‘GU .

ISRT PIC XXXX VALUE '"ISRT'.

CHNG PIC XXXX VALUE 'CHNG'.

DISP-STAT PIC X(12) VALUE SPACES.
LT-5YS PIC X(12) VALUE 'LT-SYS-ERR.'.
DA-SYS PIC X(12) VALUE 'DA-SYS-ERR.'.
ALT-SYS PIC X(12) VALUE YALT-SYS-ERR.'.

COPY SPACOBOL.

01

01

03

03
03

FILLER PIC X(29967).

SPA-START REDEFINES SPADSECT.
FILLER PIC X(12).
SPA-INIT PIC X(31755).

MSG.
MSG-LL PIC 9(4) COMP VALUE 92.
MSG-ZZ PIC 9(4) COMP VALUE 0.
MSG-USERID PIC X(6).
MSG-PGROUP PIC X(2).
MSG-LOCKWORD PIC X(8).
FILLER PIC X(8) VALUE SPACES.
MSG-SYSID PIC X(4).
FILLER PIC X(4) VALUE SPACES.
MSG-NLINES PIC X(2) VALUE '24".
MSG-OPTION PIC X(1).
MSG-TRXID PIC X(3).
MSG-KEY PIC X(50) VALUE SPACES.

LINKAGE SECTION.

01

88
88

01
88
88
01
88
88
01

88
88

LT-PCB.

02 LTERM PIC X(8).
02 FILLER PIC XX.

02 LT-STATUS PIC XX.
Q-EMPTY VALUE 'QC'.
LT-0K VALUE ' '

02 FILLER PIC X(12).
ALT-PCB1l.

02 FILLER PIC X(10).
02 ALT-STAT1 PIC XX,
AQ-EMPTY1l VALUE 'QC".
ALT-0K1 VALUE ' !

02 FILLER PIC X(12).
ALT-PCB2.

02 FILLER PIC X(10).
02 ALT-STAT2 PIC XX.
AQ-EMPTY2 VALUE 'QC"'.
ALT-0K2 VALUE " !

02 FILLER PIC X(12).
ADFWK-PCB.

02 FILLER PIC X(10).
02 ADFW-STATUS PIC XX.
ADF-NOTFND VALUE 'GE'.
ADFW-0K VALUE ' '.

PROCEDURE DIVISION.

ENTRY 'DLITCBL' USING LT-PCB, ALT-PCB1, ALT-PCB2, ADFWK-PCB.

RE START.

NOTE xx% RETRIEVE SPA FROM IMS/VS.
CALL 'CBLTDLI' USING GU LT-PCB SPADSECT.
IF Q-EMPTY GO TO RE-EXIT.
IF NOT LT-0K MOVE LT-SYS TO DISP-STAT GO TO DISPLY-STAT.
DISPLAY 'RESTART PROGRAM EXECUTING'.
APPLICATION CODING FINISHES HERE.

Appendix E. Switching Between COBOL and IMSADF II Transactions

PREP-SWITCH.

* NOTE %% NOW PREPARE SPA AND MESSAGE FOR SWITCH TO ADF.
MOVE LOW-VALUES TO SPA-INIT.
MOVE 'MFC1TO01 ° TO SPATRANS.

MOVE 'SAMP' TO MSG-SYSID.
MOVE '999999' TO MSG-USERID.
MOVE 'Z2Z2" TO MSG-PGROUP.
MOVE SPACES TO MSG-LOCKWORD.
MOVE 'D' TO MSG-OPTION.
MOVE '5PD" TO0 MSG-TRXID.

MOVE '02AN960C10' TO MSG-KEY.
* NOTE %% SET ALT PCB DESTINATION TO SIGNON TRANSACTION.
CALL 'CBLTDLI' USING CHNG ALT-PCB1 SPATRANS.
IF NOT ALT-0Kl1 MOVE ALT-SYS TO DISP-STAT GO TO DISPLY-STAT.
* NOTE %% INSERT SPA TO TRANSACTION REQUESTED BY AUDIT EXIT.
CALL 'CBLTDLI' USING ISRT ALT-PCB1 SPADSECT.
IF NOT ALT-0K1 MOVE ALT-SYS TO DISP-STAT GO TO DISPLY-STAT.
* NOTE %xx% INSERT MSG TO TRANSACTION REQUESTED BY AUDIT EXIT.
CALL "CBLTDLI' USING ISRT ALT-PCB1 MSG.
IF NOT ALT-0K1 MOVE ALT-SYS TO DISP-STAT GO TO DISPLY-STAT.
* NOTE %x% RETURN TO ADF.
GO TO RE-EXIT.
DISPLY-STAT.
* NOTE %x% THIS PARAGRAPH DISPLAYS DL/1 STATUS INFO
* IN THE EVENT OF AN ERROR.
DISPLAY 'TERM STATUS = ' LT-STATUS 'DB-STATUS ="
ADFW-STATUS 'PROG-STATUS = ' DISP-STAT.
RE-EXIT.
GOBACK.

The link-edit control statements required are:

ENTRY DLITCBL
NAME SAMPTRS(R)

SWITCHING DIRECTLY TO THE DRIVER

This is the more efficient of the two techniques. It has some
disadvantages:

. The COBOL program must set flags depending on whether the target
IMSADF II transaction requires key selection, special processing or
text utility; this is information that IMSADF II derives from the
Secondary Option Menu Rule.

L It can only be used when the COBOL program itself was invoked by a
switch from IMSADF II. This is because IMSADF II must format the
SPA or the IMSADF II Work Data Base correctly.

The COBOL program (MPP) receives the SPA as formatted by IMSADF II and
determines from the length whether it is a full SPA or short SPA (28
bytes) requiring retrieval from the Work Data Base. The program can use
and alter data in the communication area (SPAFLDSG).

In order to switch back to IMSADF II, it must perform the following flag
setting in the SPADSECT:

. Set the new IMS/VS transaction code in SPATRANS and SPASHOTR.
o Set the new IMSADF II TRXID in SPACGTRX and SPATRX.

. Move binary zero into SPAFIRST, SPARTNCD, SPASECTX, SPAPGOPT,
SPABITS, and SPASWITH.

. Set SPASEGUT to binary zero and then set three bits within it,
depending on whether the next IMSADF II transaction:

- requires key selection (SPASPUTL)

- uses special processing (SPASEGUT)

- uses text utility (SPATXTUT)

In COBOL, these bits are set by adding appropriate powers of 2 (as
shown in the sample program below).

E-4¢ IMSADF 11 Application Development Guide

Finally, the program must issue the IMS/VS CHNG and ISRT calls to
complete the switch, as documented in the IMS/VS Application Programming

Manual.

The following program is intended as an illustration of how to use the
technique. (It assumes that IMSADF II sign-on has been performed to set
up the SPA and/or the Work Data Base.)

IDENTIFICATION DIVISION.
PROGRAM-ID.

SAMPTSW.
AUTHOR.

IMSADF 1II.
DATE-WRITTEN.

THIS SKELETON PROGRAM RECEIVES CONTROL FROM AN IMSADF II
TRANSACTION VIA AN IMS/VS CONVERSATIONAL PROGRAM TO PROGRAM
SWITCH AND READS THE SPA AND, IF NECESSARY, THE ROOT SEGMENT
OF THE IMSADF II WORK DATA BASE. CODE COULD BE INSERTED AT
THIS POINT TO PERFORM THE DESIRED APPLICATION PROGRAM
FUNCTIONS. FOLLOWING THE APPLICATION CODE, THIS SKELETON
PROGRAM SETS THE NECESSARY SWITCHES AND TRANSACTION CODES
IN THE SPA AND WORK DATA BASE, THEN UPDATES THE WORK DATA
BASE AND INSERTS THE SPA TO THE MESSAGE QUEUE. 1IMS/VS WILL
THEN SCHEDULE THE NEXT IMSADF II TRANSACTION.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER.
IBM-370.
OBJECT-COMPUTER.
IBM-370.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
DATA DIVISION.
FILE SECTION.
WORKING-STORAGE SECTION.
77 GU PIC XXXX VALUE ‘'GU ',
77 ISRT PIC XXXX VALUE 'ISRT'.
77 REPL PIC XXXX VALUE 'REPL'.
77 CHNG PIC XXXX VALUE 'CHNG'.
77 GHU PIC XXXX VALUE 'GHU '.
77 DISP-STAT PIC X(12) VALUE SPACES.
77 LT-SYS PIC X(12) VALUE 'LT-SYS-ERR.'.
77 DA-SYS PIC X(12) VALUE 'DA-SYS-ERR.'.
77 ALT-SYS PIC X(12) VALUE 'ALT-SYS-ERR."'.
* THE FOLLOWING FLAGS ARE NEEDED FOR REQUESTING KEY SELECTION,
* SPECIAL PROCESSING AND TEXT UTILITY.
77 SPASEGUT-I PIC 9(4) COMP VALUE 2048.
77 SPASPUTL-I PIC 9(4) COMP VALUE 256.
77 SPATXTUT-I PIC 9(4) COMP VALUE 32.
:1 SSE$MENT SEARCH ARGUMENTS FOR WORK DATA BASE.
SAL.
02 SSA1-SEG PIC X(19) VALUE 'ADFWORKI(LTERMNME ="'.
02 SSAL1-KEY PIC X(8).
02 SSA1-QUAL PIC X VALUE ')'.
01 SSA2.
02 SSA2-SEG PIC X(8) VALUE 'ADFWORK1'.
02 FILLER PIC XX VALUE * '.
* SAVE AREA FOR SMALL IMS SPA.
01 IMS-SPA PIC X(28) VALUE SPACES.
* IF WORK DATA BASE USED, MUST ALLOW FOR PRECEDING 8 BYTE KEY.
01 ADFWK-AREA.
03 ADFWK-KEY PIC X(8).
COPY SPACOBOL.
05 MYAREA REDEFINES SPAFLDSG PIC X.
* NOTE xx% IF COMMLEN IS DEFINED, THE USER DATA FROM OR TO
* AN AUDIT EXIT WILL BE IN SPAFLDSG.
03 FILLER PIC X(29967).
01 SPA-START REDEFINES SPADSECT PIC X(28).

Appendix E. Switching Between COBOL and IMSADF II Transactions E-5

LINKAGE SECTION.

01

88
88

01
88
38
01
88
88
01

88
38

LT-PCB.

02 LTERM PIC X(8).
02 FILLER PIC XX.

02 LT-STATUS PIC XX.
Q-EMPTY VALUE 'QC"'.
LT-0K VALUE " ',

02 FILLER PIC X(12).
ALT-PCBl.

02 FILLER PIC X(10).
02 ALT-STAT1 PIC XX.
AQ-EMPTY1 VALUE 'QC'.
ALT-0K1 VALUE * ',
02 FILLER PIC X(12).
ALT-PCB2.

02 FILLER PIC X(10).
02 ALT-STAT2 PIC XX.
AQ-EMPTY2 VALUE 'QC"'.
ALT-0K2 VALUE ' ',
02 FILLER PIC X(12).
ADFWK-PCB.

02 FILLER PIC X(10).
02 ADFW-STATUS PIC XX.
ADF-NOTFND VALUE 'GE'.
ADFW-0K VALUE ' .

PROCEDURE DIVISION.

ENTRY 'DLITCBL' USING LT-PCB, ALT-PCB1, ALT-PCB2, ADFWK-PCB.

RE-START.

*

*

%*

%
PREP-SWITCH.

%*

KK XK XK XK XK XK X

X

*

NOTE %% RETRIEVE SPA FROM IMS/VS.

CALL 'CBLTDLI' USING GU LT-PCB SPADSECT.

IF Q-EMPTY GO TO RE-EXIT.

IF NOT LT-0K MOVE LT-SYS TO DISP-STAT GO TO DISPLY-STAT.

NOTE %% IS SMALL SPA FOUND, RETRIEVE FROM WORK DATA BASE.

IF SPALEGTH = 28 PERFORM READ-ADFWRK THRU END-READ-ADFWRK.
APPLICATION CODING STARTS HERE.

DISPLAY 'SWITCH PROGRAM EXECUTING'.

APPLICATION CODING FINISHES HERE.

NOTE %% NOW PREPARE SPA AND WORK D-B FOR RETURN TO IMSADF II
MOVE ZERO TO SPAFIRST SPARTNCD SPASECTX SPAPGOPT.
MOVE LOW-VALUES TO SPABITS SPASWITH. _
NOTE %x% IN THIS EXAMPLE, WE SWITCH TO THE CD TRXID.
MOVE 'SAMPVCD ' TO SPATRANS SPASHOTR.
MOVE '5CD' TO SPACGTRX SPATRX.
NOTE %% TO SET BITS ON IN COBOL, ADD THE OPTIONS.
THESE OPTIONS TELL THE DRIVER WHETHER THE NEXT TRX
(1) REQUIRES KEY SELECTION (SPASPUTL-I)
(2) USES SPECIAL PROCESSING (SPASEGUT-I)
(3) USES TEXT UTILITY (SPATXTUT-I).
NOTE %% THE CD TRANSACTION USES KEY SELECTION AND
SPECIAL PROCESSING.
COMPUTE SPASWITH-R = SPASPUTL-I + SPASEGUT-I.
NOTE %%x IF SMALL SPA IN USE, REPLACE WORK DATA BASE SEG.
IF IMS-SPA NOT = SPACES
PERFORM REPL-ADFWRK THRU END-REPL-ADFWRK.
NOTE %%% SET ALT PCB DESTINATION TO NEW TRANSACTION.
CALL 'CBLTDLI' USING CHNG ALT-PCB1 SPATRANS.
IF NOT ALT-0K1 MOVE ALT-SYS TO DISP-STAT GO TO DISPLY-STAT.
NOTE %%% INSERT SPA TO NEW TRANSACTION
CALL '"CBLTDLI' USING ISRT ALT-PCB1 SPADSECT.
IF NOT ALT-0K1 MOVE ALT-SYS TO DISP-STAT GO TO DISPLY-STAT.
NOTE %% RETURN TO ADF.
GO TO RE-EXIT.

DISPLY-STAT.

*
%*

NOTE %%% THIS PARAGRAPH DISPLAYS DL/1 STATUS INFO
IN THE EVENT OF AN ERROR.

DISPLAY 'TERM STATUS = ' LT-STATUS 'DB-STATUS = '

ADFW-STATUS 'PROG-STATUS = ' DISP-STAT.

RE-EXIT.
GOBACK.
E-6 IMSADF II Application Development Guide

READ-ADFWRK. '
* NOTE xx% COPY 28 BYTE SPA INTO SEPARATE AREA
% BEFORE READING FROM WORK DATA BASE.
MOVE SPA-START TO IMS-SPA.
* NOTE xxx USE IOPCB LTERM NAME AS KEY FOR WORK D-B.
MOVE LTERM TO SSA1-KEY.
* NOTE *xx RETRIEVE ROOT SEGMENT OF WORK D-B.
CALL 'CBLTDLI' USING GHU ADFWK-PCB ADFWK-AREA SSA1l.
IF NOT ADFW-O0K MOVE DA-SYS TO DISP-STAT GO TO DISPLY-STAT.
END-READ-ADFWRK.
REPL-ADFWRK.
* NOTE %%% NOW REPLACE WORK D-B ROOT SEGMENT.
CALL "CBLTDLI' USING REPL ADFWK-PCB ADFWK-AREA S5S5A2.
IF NOT ADFW-0K MOVE ALT-SYS TO DISP-STAT GO TO DISPLY-STAT.
* NOTE x*xx COPY 28 BYTE SPA BACK FROM SEPARATE AREA.
MOVE IMS-SPA TO SPA-START.
END-REPL-ADFUWRK.

The link-edit control statements required are:

ENTRY DLITCBL
NAME SAMPTSW(R)

Appendix E. Switching Between COBOL and IMSADF II Transactions

E-7

E-8 1IMSADF II Application Development Guide

A

acknowledging messages 5-1
ACTION field 6-4
adding data 1-8
ADFID 2-3, 3-2, 11-8, D-5
AEXIT parameter 9-1
AEXIT statement 4-26, 6-12
AFA
See automatic field assignment
AFA operand 46-19
AGROUP operand 4-4
aliases 2-4%, 11-9, B-1, D-2
controlling 2-17
ALTLANG 9-9
APPLCTN macro 10-11
application systems
adding new transactions 2-2
conversational 1-1, 2-1
rule usage 2-2
creating a single Sign-On screen 6-7
ID 2-4, 3-1, 7-2, 11-8
maintaining 2-3, 2-17, D-3
managing 2-17
master rules D-2
nonconversational
static rules 11-6
required static rules 2-1
arithmetic operations 2-5
assignment statements 6-9
ASTATUS operand 6-3
a;dit data base 3-1, 4-1, 64-4, 11-12,
-4
automatic field assignment leg 4-19
batch input layouts 6-27
field audit leg 6-4
field audit phase 6-6
message leg 5-4
storage of tables 6-10
audit group code 4-6, D-3, D-6
default value 4-4
AUDIT operand 4-3, 4-9, B-5
audit operation codes 64-26
audit rules 7-1, 11-6, D-3, D-4
creating 6-12
date fields 2-8
generating 4-6
maintaining 6-12
auditing operations
DL/I calls 4-9
examples 6-11
requesting 4-3
sequence %-5, 4-23
auditor 4-1) 4—3) 8‘4, 9'1; 11-3
controlling message sending 7-5
exit routines 9-1
nonconversational processing
phases 6-2, 6-6
role in transaction switching 6-10
sequence of operations 6-11
setting system information 4-9
types of operations ¢64-4
auditor call 8-4
return codes 8-5
authority level 3-5
automatic field assignment 4-19

11-14

automatic message sending 5-4
batch input 5-9
format codes 5-7
sample coding 5-6, 5-8
unconditional 5-8

batch driver link edit 10-4
batch input 64-26
layouts 5-9
sample coding 5-9
batch input transaction rule 10-4¢
batch message processing 7-1, 10-1
batch processing 5-9, 10-1
checkpoints 10-8
completion codes 10-12
creating output 10-5
EJECT 10-5
error handling 10-3
FIELD statement operands 10-4
implementation checklist 10-1
lockword exit 10-7
message control 10-6
messages 5-4
MSG 10-6
page control 10-6
restart processing 10-8
rules 10-4
sample JCL 5-4
security profiles
sign-off exit 10-7
sign-on security 10-6
SKIP 10-5
space control 10-6
special processing 10-9
return codes 10-10
batch transaction driver 10-1
BLINK parameter 6-9
BMP
See batch message processing
browsing 1-5, 1-8, 2-12, 2-13, 64-1
BYPASS operand 8-2, 10-9
bypassing option menus 1-3
BYTES operand 2-5, 11-9

1

3-6, 10-6

c

calculations 2-16, 4-1
CALL statement 4-11
CAUDIT operand 4-20
changed flag 6-17, 8-7
CHANGED parameter 6-9
changing data 1-6, 1-7
checkpoints 10-8
CHGEFLAG parameter 6-18
CHKPT operand 10-5, 10-8
CICS

startup job stream 5-4
cluster code 2-15, 2-16
CNT operand 10-2, 10-4
COFIELD operand 64-21

Index X-1

color defining

controlling 8-9 message sending conditions 7-¢
possible colors 8-9 delete eligibility 6-13
COLOR parameter 64-9 nonconversational processing 11-16
COMM 2-16 delete flag 6-17, 8-7
comment lines 6-4% deleting data 1-8
COMMLEN 6-12 deleting segments 6-13
COMMLEN operand 6-12, 8-24 dependent segments 2-12
common audits 64-20 designing audit exit routines 9-6
common module 2-1, 4-1 detail segments 7-6, 7-7
comparing data 4-5 DEVNAME operand 2-15, 7-3
compiler 6-6, D-¢ DEVTYPE operand 2-15, 7-3
completion codes DIRECT statement 7-5
batch processing 10-12 DISPLAY 8-4
complex transactions 6-1 DISPLAY operand 2-8, 2-9, 6-2, 10-4
nonconversational processing 11-14 display terminal 7-3
concatenated key 1-4, 6-3, 6-13 DISPLAYA 8-4, 8-10
control symbols 6-4% DISPLAYE 8-4%, 8-10
controlling displaying messages 5-1
color 8-9 DISPLAYL 8-4, 8-10, 9-1
data base I/0 8-12 DISPLAYP 8-4, 8-11
highlighting 8-9 return codes 8-12
message sending 7-5 DKEY operand 6-3
copy facility 2-3, 2-17, 11-7 DL/I 4-3, 4-9
COPYSEG call auditor calls 6-16
special processing 8-9 example 6-24%
CURSOR parameter 6-9 nonconversational

processing 11-17
call expressions 6-19
call functions
D DLET 6-21, 8-13
GN 6-20, 8-13
GNQ 6-20, 8-13

DAMSG operand 5-8 GU 6-19, 8-13
data bases GUU 6-19, 8-13
browsing 1-5, 1-8 GUl 6-23
sample 1-4 HDEL 6-21, 8-14
data comparisons 6-5 HREP 6-22, 8-14
data descriptors 6-4, 4-8, 9-5 ISRT 6-20, 8-13
defining 6-13 REPL 6-22, 8-14
layout 4-8 SGN 6-23
Data Display screen 1-6, 2-4, 2-5, 2-7, special processing 8-7
2-8, 2-9, 2-10, 2-11, 2-14, 2-15, 4-1, exit routines 9-12
4-3 status codes 4-9, 6-14, 6-23, 7-4,
default format 1-8 B-¢
defining PF keys 6-7 DLET 6-21, 8-13
physical paging 6-3 DLET operand 6-13, 8-7, 11-16
tailoring 6-1, 6-2 DLETFLAG parameter 6-18
transaction switching 6-9 DTRAN operand 6-3
data manipulation 2-16 DTWINC operand 6-27
data types 2-5 dynamic rules 1-7, 2-15, 64-1
DATACOMP operand 8-5, 8-7, 8-14 batch input 6-26, 5-9
date 7-2 controlling transaction
date fields 2-8 sWwitching 1-9
validation 2-8 nonconversational 11-12
DATEFMT parameter 2-8 segment retrieval 1-3

DATE1 field 6-8

DATE2 field 6-8

DATE3 field 6-8

DATE4 field 6-8 E

DBPATH operand 2-14, 2-15, 6-5, 64-23,
6-2, 6-12, 8-18, 11-10

DBPATH segments 64-2, 6-13, 6-17, 11-15 editing keys 6-21
inserting 6-15 encode/decode operations 6-10
updating 6-13 end user
DD statements 5-4 ID 3-1, 3-4, 7-2
decimal fields 2-7 name 7-2
DECIMAL operand 2-7 viewpoint 1-1
DEFADF macro 4-25 EOF operand 10-9
parameters ERRMSG 10-3
DATEFMT 2-8 error message number 5-5
RGLIB 8-21 Error Message screen 1-8, 6-2
DEFAULT parameter 6-9 error messages 1-7, 2-7, 64-1, 4-7,
defined paths 8-18 %4-16, 4-19, 4-21, 6-3

X-2 IMSADF II Application Development Guide

batch input 6-26
nonconversational processing 11-3
twin processing B-6
ERRORMSG statement 4-7, 5-5, 9-1
ERRTRX 10-3
ESDS 6-19
VSAM 6-19
EXIT statement 6-7
exits 1‘1) 3‘4’ 4"5’ 4'26; 6—12' 9-1
designing 9-6
DL/I 9-12
link-editing 9-6
sample B-4, B-6
sample routines 9-3
sign-off 9-7
sign-on 9-7

FAUDIT operand 64-3, 5-6
FIELD statement 2-2, 2-5, 4-1, 7-1,
11-7, 11-9, D-2
high level audit language 4-6
operands
abbreviations 2-16
AFA 4-19
ASTATUS 4-3
AUDIT 4‘3' 4‘9} B—S
BYTES 2-5, 11-9
CAUDIT 4-20
COFIELD 4-21
DECIMAL 2-7
DISPLAY 2-8, 6-2, 10-4
FAUDIT 6-3, 5-6
FLDPOS 10-4, 11-18
ID 2-5, 11-9
ILENGTH 10-4, 11-18
ITYPE 10-4, 11-18
KAUDIT 4-3, 64-20, 4-21, 4-22
KDISPLAY 4-21
KEY 2-5, 2-6, 2-7, 4-21, 5-6,
6-17, 11-9
KWNAME 7-2, 7-3
LENGTH 2-5, 7-2, 11-9
MODE 2-8, 2-16, 4-3, 6-2, 8-3,
11-11
MSG 5-6, 5-9
NAME 2-5, 11-9
PAUDIT 64-3, 64-9, 64-25
POSITION 2-5, 11-9
RDONLY 8-8
RELATED 2-13
RELATED COL 2-13
REQUIRED 4-3
SDECIMAL 2-7
SEGID 7-3
SEQ 2-6
SLENGTH 2-6, 2-7
SNAME 2-5, 2-8, 2-12
START 2-5, 11-9
TEXT 7-2
TYPE 2-5, 2-7, 2-8
fields
auditing sequence 4-5
data types 2-5
date 2-8
decimal 2-7
ID 2-5
key 2-5, 2-6
length 2-5
modes 2-8, 2-16, 4-3, 6-2

nam

pos
flags
FLDPOS
format
FREQ o
functi

e 4-4

ition 2-5

6-17

operand 10-4, 11-18

codes 5-6, 5-7
perand 10-5, 10-8

on options 1-2, 2-1, 2-16, 5-1

G
GENERATE statement 2-2, 2-14, 11-7,
11-9) 11‘18; D-2
operands
abbreviations 2-17
AGROUP 4-4

BYPASS 8-2, 10-9

CHKPT 10-5, 10-8

CNT 10-2, 10-4

COMMLEN 6-12, 8-24

DAMSG 5-8

DATACOMP 8-5, 8-7, 8-14
DBPATH 2-14, 2-15, 4-5, 64-23,
6-2, 6-12, 8-18, 11-10, 11-15
DEVNAME 2-15, 7-3

DEVTYPE 2-15, 7-3

DKEY 6-3

DLET 6-13, 8-7, 11-16

DTRAN 6-3

DTWINC 6-27

EOF 10-9

FREQ 10-5, 10-8

IMAGE 6-6, 11-10

ISRT 6-15, 11-17

ITTABLE 10-5

KANAME 4-25

KEYSL 8-2

LANGUAGE 8-3, 11-19

LRULE D-6

MAPTABLE 8-22, 10-9, 10-11

MAXKEY 6-3

MODNAME 11-10

OPTIONS 2-4, 2-9, 2-14, 2-15,
2'16, 6-32, 7‘1) 7-3, 7-4; 8-21'
8‘%8; 10‘4) 10‘9» 10‘11; 11'9’
D_

ORID 7-4

PFKDATA 6-7, 11-10

PFKLIT 6-7, 11-11

PFKNUMB 6-7

PGMID 2-15, 2-16, 8-22, 10-4,
11-10

PGROUP 3-3, 3-5

PHEADING 10-5

POMENU 2-16, 5-1, 9-7

PRINTER 7-3

SHTABLE 8-22, 10-4, 10-9
SIGNON 10-5, 10-6

SOIMAGE 6-7, 6-8

SOMTX 2-4, 2-16, 11-8, 11-10
SPECIAL 8-2, 11-19

SPOS 6-1, 6-2, 8-3, 11-10
SPTABLE 10-9

$STX 7-1, 7-4, 7-5, 8-23
TRXID 2-15, 11-10

TRXNAME 2-9, 2-15

TSEGS 2-15, 2-16, 4-5, 4-9, 4-23,
6-2, 6-7, 6-13, 6-17, 8-3, 8-12,
8-18, 11-10

USRLANG 9-9, 13-1

WTOMSG 10-5

WTORMSG 10-5

Index X-3

GETKEY 8-14
GETKINFO 8-14

GN 6
GNQ
GROUP
GU 6
GUU
GU1

=20 »

-19y

8-13
6-20, 8-13
field 6-8
8-13
6-19, 8-13
6-23

HDEL

6-21, 8-14

HDR 8-10

headers

high

AEXIT statement

4-6
level audit language
4_26 »

D‘s;
6-12,

batch input 6-26

CALL statement
CHGEFLAG parameter
coding guidelines
description

DI

DL/I call

DL

ERRORMSG statement 64-7,

4-11
6-17
4-7
7-5

6-18

4-6
RECT statement
6-19
ETFLAG parameter
5-5

EXIT statement 6-7

field audit phase

FI

headers
IF statement 4-7,

6-6
4-6

9-1

ELD statement
4-6

INFOMSG statement 5-5

KANAME statement

4-22, 4-25

KEY 4-6

message leg header
MODE parameter

5-4
6-9

NOP B-2

PASS parameter
PCBNUM parameter

9-5
6-24

PRELIM 4-6

PROCESS

PO
Pl

4-6
4-19
4-6

P2 4-19
report writing C-3

RTRVFLAG parameter

6-17

SEGID statement 6-6

SEND IMMED statement
SEND statement
SETERRMSG statement

7-5
4-7

7-5

SKSDISP statement 4-22

SPAKEYID parameter
STATCODE parameter

6-9
6-23

SUBNAME statement 6-11
SYSID statement 6-6

transaction switching example
TRXID parameter

tw

6-10
6-9
in processing B-2

WARNMSG statement 4-19

highl

ighting

controlling 8-9

po
HREP

X-4

ssible attributes 8-9

6-22, 8-14

IMSADF II Application Development Guide

ID operand 2-4, 2-5, 11-8, 11-9
IF statement 4-7, 9-1
ILENGTH operand 10-4, 11-18
IMAGE operand 6-6, 11-10
IMS/VS
/EXIT command 9-7
/FORMAT command 6-7
checkpointing 10-8
data base definition
Message Format Service
message routing 7-1
headers 7-7
sample coding 7-%
multiple systems coupling (MSC)
program—-to-program switch E-1
special processing
considerations 8-28
transaction code 2-4, 2-16, 7-2,
11-8
INCLUDE statement 2-3, 2-17, 11-7,
indicator setting statements 6-17
INFOMSG statement 5-5
5-5
11-6

2-6

6-7, 7-3, 7-4

7-5

D-2

information message number

information messages 5-1

input transaction rule 2-2,

insert eligibility 6-15
nonconversational processing

inserting DBPATH segments 6-15

IOPCB 11-17

ISRT 6-20, 8-13

ISRT operand 6-15, 11-17

ITTABLE operand 10-5

ITYPE operand 10-4, 11-18

11-17

JCL

message maintenance 5-4

K

KANAME statement 64-22, 4-25

KASCEND operand 2-6

KAUDIT operand 64-3, 4-20, 4-21,

KDISPLAY operand 6-21

KEY 4-6

key audit 4-1, 4-6, 64-20,

KEY call 4-6, 6-20
auditing sequence 4-23

key feedback area 6-17

6-8
2‘8’

4-22

11-14, D-5

KEY field 6-3, 6-4,

key fields 2-5, 2-6,

4-5, 6-3
subfields 2-7
unique 2-6

key manipulation subroutines
GETKEY 8-14
GETKINFO 8-14
SETKEY 8-14
ZEROKEY 8-1¢4

KEY operand 2-5, 2-6, 2-7,

6-17, 11-9

key selection 1-4, 2-6,

2-15, 4-1, 6-17

2-12, 2-13,

8-14

4_21' 5‘6)
2'12' 2-14)

controlling 6-22
screens 1-4, 1-5
KEYFIELD 6-19
KEYNAME operand 2-7
KEYSL operand 8-2
KSDS 6-19
VSAM 6-19
KWNAME operand 7-2, 7-3

LANGUAGE operand 8-3, 11-19
LENGTH operand 2-6, 2-5, 7-2, 11-9
link-editing
audit exit routines 9-6
lockword 1-1, 3-4
lockword exit 9-7, 10-7
LOCKWORD field 6-8
lockword module 9-8
logic operations 4-1
logical branching 64-5
logical paging
PF keys 6-7
logical terminal names 7-2, 7-5, 7-7
LRULE operand D-6
LTERM 8-10
LTERM parameter 4-9
LTNAME field 6-8

MAPPER 8-4, 8-8, 9-1
return codes 8-9
mapping information
layout 4-17
mapping segments 8-8
MAPTABLE operand 8-22, 10-9, 10-11
master rules 2-17, D-1, D-2
overriding 2-17
MAXKEY operand 6-3
menus
rules 2-1
sequence 1-1, 1-8
message data base 3-1, 4-5, 4-16, 5-3,
7-1, 7-5, 7-6, 7-7, 11-12, D-4
Message Format Service 6-7
message output descriptor 6-7, 7-4
message header 4-16, 5-5
segment layout 64-17
message number 64-5, 5-5
message output descriptor 6-7, 7-4
message processing programs 7-1, E-1
message routing 7-1
nonconversational processing 11-17
message text 4-16
segment layout 6-17
messages 6-3, D-3
acknowledging 5-1
automatic 5-4, 5-8
displaying 5-1
error 2-7, 6-3, 11-3, B-6
maintenance 5-4
receiving 1-2
routing 7-5
routing to multiple terminals 7-6
sending 1-2, 5-1
MFC1 3-2
MFC1G 2-17, 6-25

MFC1TOM 9-8, 9-9
MFC1T99 9-11
MFSTRLR operand D-5
mini-driver 2-15
MOD
See message output descriptor
MODE operand 2-8, 2-16, 6-2, 8-3, 11-11
MODE parameter 6-9, 6-9
modes

field 2-8, 2-16, 4-3, 6-2
transaction 1-1, 1-2, 1-7, 2-15,
3-1) 3_5' 4_3) 6_3) 6'13, 6‘15' 7‘2;
7-4, 11-15
MODNAME operand 11-10

MPP

See message processing programs
MSG operand 5-6, 5-9
MSGAREA 8-10
multiple IMSADF II systems D-4
multiple-path transactions 6-12, 11-5
multiple systems coupling (MSC) 7-5
multiple target segments 6-13

N

NAME operand 2-4, 11-9
naming conventions D-3
National Language Support 9-9
next false 6-5
next true 6-5
NLS
See National Language Support
language
See National Language Support
nonconversational processing 11-1
adding segments 11-5
auditing fields 11-14
complex transactions 11-14
delete eligibility 11-16
deleting segments 11-5
DL/I auditor calls 11-17
dynamic rules 11-12
field modes 11-11
insert eligibility 11-17
message routing 11-17
nonresponse transactions 11-18
PF keys 11-10
program linkage 11-20
pseudo segments 11-10
secondary transactions 11-17
special processing 11-19
static rules 11-6
syntax conventions 11-11
transaction switching 11-17
nonresponse transactions 11-18
NOP B-2

0

operands
abbreviations 2-16
GENERATE statement
POMENU 5-1
USRLANG 9-9, 13-1
SYSTEM statement
USRLANG 9-9, 13-1
operation codes 64-5, 9-1
operation descriptors 4-4

Index X-5

defining 64-13
layout 4-5
OPTION 8-10
OPTION field 6-3, 6-4, 6-8
option menus
bypassing 1-3
Primary Option Menu
See Primary Option Menu screen
Secondary Option Menu
See Secondary Option Menu screen
sequence 1-1, 1-8
options
function 1-2
OPTIONS operand 8-21, 11-9
BAIT 10-4
BDLE 10-4, 10-9, 10-11
CVALL 2-4, 2-9, 2-14
cVsYs 2-15, 2-16
OMFS 7’1, 7'3’ 7-4
SGALL 2-14, 2-15
SoOM 2-9, 2-15

SOMSS D-2

SPLE 8-21, 8-28

STLE 2-15

TPALL 11-8, 11-10, 11-17
TPIT 11-18

TPLE 11-20

TUALL 6-32

ORID operand 7-4
output format rule 7-1, 7-3, 7-4, 7-5,
11-6
sample coding 7-1
output segment 7-3
ID 7-3

p

paging 3-5
PARENT operand 11-9
parent segments 6-17
PARMLIST 9-8
PASS parameter 9-5
password
See lockword
PAUDIT operand 6-3, 4-9, 4-25
PCB number
modifying 6-24
PCBNO operand 6-24
PCBNUM parameter 6-24
PF keys
defining usage 6-7
logical paging 6-7
nonconversational processing 11-10
physical paging 6-3, 6-7
PFKDATA operand 6-7, 11-11
PFKLIT operand 6-7, 11-11
PFKNUMB operand 6-7
P?TID operand 2-15, 2-16, 8-22, 10-4,
-10
PGROUP operand 2-4%, 3-3, 3-5
PGROUP parameter 6-9
PHEADING operand 10-5
physical paging 6-3
PF keys 6-7
POMENU operand 2-16, 5-1, 9-7
POSITION operand 2-5, 11-9
preaudit 4-2, 4-6, 6-17, 7-4, 8-2,
11-14
PRELIM 6-2, 4-6
PRELIM call 4-6, 4-20
auditing sequence 6-24

X-6 IMSADF II Application Development Guide

PREMODIFY parameter 6-9
Primary Key Selection screen 1-4, 2-%,
2-5, 2-7, 2-8, 2-9, 2-11, 2-12, 2-14,
2-15, 64-2
primary option menu rule 2-1, 2-15
Primary Option Menu screen 1-1, 1-8,
2‘11 2‘3: 2—16' 3“2) 3'6: D-Z
printer 7-3
sample coding 7-4%
PRINTER operand 7-3
PROCESS 4-6
PROCESS call 4-6, 6-20
auditing sequence 4-24%
PROCESS phase 11-14
program calls 8-3
program linkage
conventions 8-22
nonconversational processing 11-20
SPA fields 8-22
special processing 8-21
program-to-program switch E-1
PROJECT field 6-8
Project Message Display screen 5-3
’roject Message Sending screen 5-2
project/group 2-%, 3-1, 7-2
switching 1-2
pseudo segments 2-15, 2-16, 4-5, 6-7,
6'10; 6'13, 11‘10; D-2
auditing sequence 4-5

PO 4-19

PL 4-6

P2 4-19
R

RDONLY operand 8-8
RELATED COL operand 2-13
related field 4-5
RELATED operand 2-13
removing data 1-8
REPL 6-22, 8-14, B-6
report writing
high level audit language C-3
sample output C-5
static rules C-1
REQUIRED operand 4-3
restart processing 10-8
retrieved flag 6-17, 8-7
retrieving
data 1-7
segments 1-3, 6-17
return codes 11-20
auditor call 8-5
batch special processing 10-10
conventions 8-4
DISPLAYP call 8-12
MAPPER call 8-9
SEGHNDLR call 8-14
SEGUPDTE call 8-6
SETFLAG call 8-6
SETSSA call 8-19
special processing 8-4, 8-24
terminal message writer 8-11
REVERSE parameter 6-9
RGLIB parameter 8-21
ROLL 6-23, B-4
root segments 2-12, 4-4, 5-9, 11-9
creating 6-12
key 6-4
routing code 5-6
routing header 5-5, 7-6

defining 5-7
routing information

adding 5-8
layout 7-6
routing information segments 5-6
RSETSEGH 8-16, 8-20
RTRVFLAG parameter 6-18
rule generator 1-8, 2-1
sample statements 2-16
syntax conventions 2-16
RULE statement 2-3, 11-7
rules generator 3-3, 64-1, 7-1, 11-6

JCL for storing screen images 6-6
JCL procedure 2-17
sample statements 2-3, 2-9, 2-13,
2-17, 11-8
source statements
sample problem A-1
summary of operands 64-25
S
sample problem
source statements A-1
scratch pad area 6-12, 6-17, 7-2, 8-4,
9-1’ 9-8) 9-11
screen images 11-17, D-2
defining

Data Display screen 6-2
Sign-0n screen 6-7
example 6-1, 6-8
fixed column format 6-4
optional system fields 6-3
requesting physical paging 6-4
required system fields 6-2, 6-4
storing definitions 6-6
tabular format 6-4
screens
Data Display
See Data Display screen
Error Message 1-8
Primary Key Selection
See Primary Key Selection screen
Primary Option Menu
See Primary Option Menu screen
Secondary Key Selection
See Secondary Key Selection screen
Secondary Option Menu
See Secondary Option Menu screen
sequence 1-8, 1-9
Sign-0n
See Sign-0On screen
Sign-0n Profile Data Base
See Sign-0n Profile Data Base
screen
special processing 8-3
SDECIMAL operand 2-7
search fields 2-6

secondary key selection 2-13

Secondary Key Selection screen 1-5,
1-8, 2-4, 2-5, 2-7, 2-13, 2-14, 2-15,
2-17, 6-1

secondary option menu rule 2-1, 2-3,
2-9, 2-15

Secondary Option Menu screen 1-3, 2-1,
2‘9; 2_10; 2"15

secondary transactions 7-1

nonconversational processing 11-17

sample coding 7-5
special processing 8-24
security 1-1, 3-1

checking 6-1

maintenance transactions 3-2
security profiles 1-1, 1-2, 2-1,
3-1, D-2, D-4

controlling online 3-1

2'9)

controlling using batch input 3-6

creating 3-2, 3-4
SEGHNDLR 8-4, 8-12
extensions 8-16
return codes 8-16
SEGID operand 7-3
SEGID statement 64-6
segment flags 6-17
segment handler 8-4
segment handler rule 2-2,
segment layout rule 2-2,
segment search arguments
SEGMENT statement 2-2,
11-7, 11-8, 11-18, D-2
operands
DISPLAY 2-8, 6-2
ID 2-4, 11-8
KASCEND 2-6
REYNAME 2-7
LENGTH 2-4, 11
MODE 2-8, 6-2,
NAME 2-4, 11-9
PARENT 2-6, 11-
PCBNO 6-24
SKLEFT 2-13
SKRIGHT 2-13
SKSEGS 2-13
TYPE 2-16, 7-1,
segments 2-14
adding 11-5
auditing sequence
controlling IDs
data descriptors
DBPATH 4-2
defining D-2
deleting 6-13, 11-5
dependent 2-12
ID 1-4, 2-4, 11-8
length 2-4, 11-9
name 2-4
operation descriptors
parent 6-17
required static rules

2-15,
2‘15)
2-2, 2'4}
2-4, 2-15,

9
-3
9

7-4, C-1

4-5
2-17
4-6

4-4
2-2

retrieving 1-3, 6-17
root 2-12
target 1-5, 6-12

SEGUPDTE 8-3, 8-5, 8-12, B-4, B-6
return codes 8-6
selecting transactions 1-2

SEND IMMED statement 7-5

SEND statement 7-5
sending messages 5-1

SEQ operand 2-6

sequence code 4-5
sequence of auditing 6-23

sequence of screens 1-1, 1-8, 1-9
session termination 1-2
SETCC 8-16, 8-17, 9-1

SETCOLOR 8-9
SETERRMSG statement 6-7
SETERROR 9-1
SETFLAG 8-3, .8-6, 8-12

return codes 8-6
SETKEY 8-14
SETPATH 8-16, 8-18
SETSSA 8-16

return codes 8-19

setting system information 64-9

SETUNQ 8-16

Index X-7

11-7
11-

7
11-9
6'12'

SETXHILT 8-9

SGN 6-23

SHEADING operand 2-%

SHTABLE operand 8-22, 10-4, 10-9
sign-off exits 9-7, 9-11, 10-7
sign-on exits 9-7

sign-on module 9-8

sign-on profile data base 2-%, 3-1,
3-2) 5-3) 7_2) 11‘12

Sign-0On Profile Data Base screen 3-3,

3-4, 6-3
sign-on profiles D-2
Sign-0On screen 1-1, 1-8, 2-3, 2-4,
2-15, D-2
exclusive system fields 6-7
tailoring 6-7, 6-9
SIGNOFF transaction 10-7
SIGNON operand 10-5, 10-6
SIGNON transaction 10-6
SKLEFT operand 2-13
SKRIGHT operand 2-13
SKSDISP statement 4-22
SKSEGS operand 2-13
SLENGTH operand 2-6, 2-7
SNAME operand 2-5, 2-8, 2-12
SO0IMAGE operand 6-7, 6-8
SOTT}ooperand 2-4, 2-15, 2-16, 11-8,
1 -
source statements 7-3
organizing 2-17
SPACGTRX 6-12, 7-2, 8-23
SPACOMLN 8-24
SPADATE 7-2
SPADLIST 8-23, 9-5
SPAERMSG 7-2, 8-23, 9-12
SPAFIRST 8-22, 8-27
SPAFLDSG 6-12, 8-24%
SPAGROUP 7-2, 8-24
SPAKEYID 7-2, 8-23
SPAKEYID parameter 6-9
SPALTERM 7-2, 8-23
SPAMANNO 7-2, 8-23
SPAPROJ 7-2, 8-23
SPARTNCD 8-4%, 8-23
SPASECTX 8-23, 8-24
SPASHOTR 7-2
SPASIGNON 7-2
SPASYSID 7-2
SPATERM 7-2
SPATRANS 7-2
SPATRX 7-2
SPATRXCD 7-2, 8-2%
SPATRXSG 7-2
SPAULANG 9-9
SPAUSER 7-2
SPECIAL operand 8-2, 11-19
special processing 7-2, 8-1
advanced data base I/0 8-16
auditor call 8-4
batch 10-9
return codes 10-10
controlling data base I/0 8-12
COPYSEG call 8-9
defined paths 8-18
DISPLAY calls 8-10
DISPLAYP call 8-11
IMS/VS considerations 8-28
key manipulation 8-14
key selection 8-1
MAPPER call 8-8
multiple message sending 8-27
nonconversational 11-19
overall flow 8-1
program calls 8-3

X-8 IMSADF II Application Development Guide

program linkage 8-21
conventions 8-22
SPA fiaelds 8-22
return codes 8-4%, 8-24
RSETSEGH call 8-20
sample programs 8-25
COBOL 8-26
PL/I 8-26
screen formatting 8-3
secondary transactions 8-24
SEGHNDLR call 8-12
extensions 8-16
SEGUPDTE call 8-5
SETCC call 8-17
SETCOLOR call 8-9
SETFLAG call 8-6
SETKEY call 8-14
SETPATH call 8-18
SETSSA call 8-19
SETUNQ call 8-20
SETXHILT call 8-9
static rules 8-2
summary of uses 8-1
SP0S operand 6-1, 6-2, 8-3, 11-10
SPTABLE operand 10-9
SSAs
See segment search arguments
START operand 2-5, 11-9
STATCODE parameter 6-23
static rules 2-1, 3-3
conversational 2-1
customizing screen formats 1-8
nonconversational 11-6
report writing C-1
special processing 8-2
twin processing B-1
status codes 6-9, 6-14, 6-23
STX operand 7-1, 7-4, 7-5, 8-23
subfields 2-7
SUBNAME statement 64-11
subroutine calls 4-11

switching transactions 1-7, 1-9, 4-1,

6-9, 11-17, E-1

example 6-10

sequence of operations 6-10
syntax conventions 2-16

nonconversational processing 11-11

SYSID field 6-7, 6-8
SYSID operand 2-4, 11-8
SYSID parameter 6-9
SYSID statement 64-6
SYSMSG field 6-3, 6-4, 6-8
system fields
ACTION 6-4
DATE1 6-8
DATE2 6-8
DATE3 ¢6-8
DATE4 6-8
exclusive to Sign-On screen 6-8
GROUP 6-8
KEY 6-3, 6-4, 6-8
LOCKWORD 6-8
LTNAME 6-8
OPTION 6-3, 6-4, 6-8
optional in screen images 6-3
PROJECT 6-8
required in screen images 6-2
SYSID 6-7, 6-8
SYSMSG 6-3, 6-4, 6-8
TIME 6-8
TRAN 6‘3: 6‘4y 6-8
TRXID 6-12
USERID 6-8

SYSTEM statement 2-2, 2-4, 11-7, 11-8,

11-18, D-2
operands 2-4
LRULE D-6
MFSTRLR D-5
PCBNO 6-24
PGROUP 2-4, 3-3, 3-5
POMENU 5-1

SHEADING 2-4

SOMTX 2-4, 2-15, 2-16, 11-8,
l1-10

SYSID 2-4, 11-8

TRXTRLR D-5

USRLANG 9-9, 13-1

table handler rule 2-2, 11-7
table handling 6-10
table layout rule 2-2, 11-7
table lookup 6-10
tables
setting up 64-14
tailoring
Data Display screen 6-1
Sign-0n screen 6-7
target segments 1-5, 2-8, 2-15, 4-5,
6-12, 11-5, 11-10, 11-15
multiple 1-7, 6-13
terminal message writer 8-10
terminal name 7-2
terminal user
ID 3-1, 3-4, 7-2
name 7-2
viewpoint 1-1
terminals
characteristics 2-15
types 2-15
terminating the session 1-2
TEXT operand 7-2
text utility 6-31
time 7-2
TIME field 6-8
TRAN field 6-3, 6-6, 6-8
transaction codes 5-9, 7-5
transaction drivers 2-2, 4-1
batch 10-1
transactions
complex 2-17, 6-1
controlling IDs 2-17
generating 2-14
I? 21—2, 1-4, 2-1, 2-15, 3-1, 3-5,
maintaining 2-17
maintaining security 3-2

modes 1-1, 1-2, 1-7, 2-15, 3-1, 3-5,

4-3, 6-3, 6-13, 6-15, 7-2, 7-4,
11-15
multiple-path 1-7, 6-12, 11-5
name 2-15
nonresponse 11-18
required static rules 2-2
selecting 1-2

switching 1-7, 1-9, 4-1, 6-9, 11‘17;

E-1
example 6-10
sequence of operations 6-10
TRANSIN 10-1

TRANSOUT 10-5

TRXID field 6-12

TRXID operand 2-15, 11-10

TRXID parameter 6-9, 6-9

TRXNAME operand 2-9, 2-15

TRXTRLR operand D-5

TSEGS operand 2-15, 2-16, 4-5, 4-9,

4—23) 6-2) 6-7’ 6_131 6“17; 8’3; 8“12;

8-18, 11-10

twin processing B-1
high level audit language B-2
static rules B-1
text utility function 6-31

TYPE operand 2-5, 2-7, 2-8, 2-16, 7-1,

7-4, C-1

u

UNDERSCORE parameter 6-9
updating data 1-6, 1-7
user

ID 3‘1) 3‘41 7_2

name 7-2

viewpoint 1-1
user audit operation codes 6-26
User DBPCB List 9-8
user headers 5-3
User Message Display screen 5-
User Message Sending screen 5-
USERID field 6-8
USERID parameter 6-9
USRLANG operand 9-9, 13-1

2
1

v

validation 4-1, B-5, D-3
VARLIST names 6-17

VSAM 6-19
ESDS 6-19
KSDS 6-19

W

warning messages 6-18
WARNMSG statement 6-19
working storage 2-16
WTOMSG operand 10-5
WTORMSG operand 10-5

X

XHILT parameter 6-9

b4

ZEROKEY 8-14

Index X-9

IMS Application Development Facility Il Version 2 Release 2
Application Development Guide
SH20-6595-01

You may use this form to communicate your comments about this publication, its organization, or
subject matter, with the understanding that IBM may use or distribute whatever information you
supply in any way it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author’s department for whatever review and action, if any,

are deemed appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system, to
your IBM representative or to the IBM branch office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name, company, mailing address, and date:

READER'S
COMMENT
FORM

What is your occupation?

Number of latest Newsletter associated with this publication:

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the address

in the Edition Notice on the back of the title page.)

SH20-6595-01

Reader’s Comment Form

——— e e e e e m —— 3UIT] BUO|Y PIO 4O IND =

Fold and tape Please Do Not Staple Fold and tape

|
NO POSTAGE :
NECESSARY |
IF MAILED 1
IN THE |
UNITED STATES |
I
IE— |
e |
BUSINESS REPLY MAIL E— |
I |

]
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. e — :
I |

|
POSTAGE WILL BE PAID BY ADDRESSEE: :

]
International Business Machines Corporation E— l
Department 8D8 e —
220 Las Colinas Boulevard s |
Irving, Texas 75039-5513 — |
|
|
|
|
I
|
.. |

Fold and tape Please Do Not Staple ~old and tape

oM

IMS Application Development Facility Il Version 2 Release 2
Application Development Guide
SH20-6595-01

You may use this form to communicate your comments about this publication, its organization, or
subject matter, with the understanding that IBM may use or distribute whatever information you
supply in any way it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author’s department for whatever review and action, if any,

are deemed appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system, to
your IBM representative or to the IBM branch office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name, company, mailing address, and date:

READER’S
COMMENT
FORM

What is your occupation?

Number of latest Newsletter associated with this publication:

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the address

in the Edition Notice on the back of the title page.)

SH20-6595-01

Reader’s Comment Form

——— e e e e e m —— 3UIT] BUO|Y PIO 4O IND =

Fold and tape Please Do Not Staple Fold and tape

|
NO POSTAGE :
NECESSARY |
IF MAILED 1
IN THE |
UNITED STATES |
I
IE— |
e |
BUSINESS REPLY MAIL E— |
I |

]
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. e — :
I |

|
POSTAGE WILL BE PAID BY ADDRESSEE: :

]
International Business Machines Corporation E— l
Department 8D8 e —
220 Las Colinas Boulevard s |
Irving, Texas 75039-5513 — |
|
|
|
|
I
|
.. |

Fold and tape Please Do Not Staple ~old and tape

oM

IMS Application Development Facility I Version 2 Release 2
Application Development Guide
SH20-6595-01

You may use this form to communicate your comments about this publication, its organization, or
subject matter, with the understanding that IBM may use or distribute whatever information you
supply in any way it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author’s department for whatever review and action, if any,

are deemed appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system, to
your IBM representative or to the IBM branch office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name, company, mailing address, and date:

READER'S
COMMENT
FORM

What is your occupation?

Number of latest Newsletter associated with this publication:

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the address

in the Edition Notice on the back of the title page.)

SH20-6595-01

Reader’s Comment Form

——— e e e e e m —— 3UIT] BUO|Y PIO 4O IND =

Fold and tape Please Do Not Staple Fold and tape

|
NO POSTAGE :
NECESSARY |
IF MAILED 1
IN THE |
UNITED STATES |
I
IE— |
e |
BUSINESS REPLY MAIL E— |
I |

]
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. e — :
I |

|
POSTAGE WILL BE PAID BY ADDRESSEE: :

]
International Business Machines Corporation E— l
Department 8D8 e —
220 Las Colinas Boulevard s |
Irving, Texas 75039-5513 — |
|
|
|
|
I
|
.. |

Fold and tape Please Do Not Staple ~old and tape

oM

IMS Application Development Facility I Version 2 Release 2
Application Development Guide
SH20-6595-01

You may use this form to communicate your comments about this publication, its organization, or
subject matter, with the understanding that IBM may use or distribute whatever information you
supply in any way it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author’s department for whatever review and action, if any,

are deemed appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system, to
your IBM representative or to the IBM branch office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name, company, mailing address, and date:

READER'S
COMMENT
FORM

What is your occupation?

Number of latest Newsletter associated with this publication:

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the address

in the Edition Notice on the back of the title page.)

SH20-6595-01

Reader’s Comment Form

——— e e e e e m —— 3UIT] BUO|Y PIO 4O IND =

Fold and tape Please Do Not Staple Fold and tape

|
NO POSTAGE :
NECESSARY |
IF MAILED 1
IN THE |
UNITED STATES |
I
IE— |
e |
BUSINESS REPLY MAIL E— |
I |

]
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. e — :
I |

|
POSTAGE WILL BE PAID BY ADDRESSEE: :

]
International Business Machines Corporation E— l
Department 8D8 e —
220 Las Colinas Boulevard s |
Irving, Texas 75039-5513 — |
|
|
|
|
I
|
.. |

Fold and tape Please Do Not Staple ~old and tape

oM

Printed in U.S.A.

SH20-6595-01

	0001.tif
	0002.tif
	0003.tif
	0004.tif
	0005.tif
	0006.tif
	0007.tif
	0008.tif
	0009.tif
	0010.tif
	0011.tif
	0012.tif
	0013.tif
	0014.tif
	0015.tif
	0016.tif
	0017.tif
	0018.tif
	0019.tif
	0020.tif
	0021.tif
	0022.tif
	0023.tif
	0024.tif
	0025.tif
	0026.tif
	0027.tif
	0028.tif
	0029.tif
	0030.tif
	0031.tif
	0032.tif
	0033.tif
	0034.tif
	0035.tif
	0036.tif
	0037.tif
	0038.tif
	0039.tif
	0040.tif
	0041.tif
	0042.tif
	0043.tif
	0044.tif
	0045.tif
	0046.tif
	0047.tif
	0048.tif
	0049.tif
	0050.tif
	0051.tif
	0052.tif
	0053.tif
	0054.tif
	0055.tif
	0056.tif
	0057.tif
	0058.tif
	0059.tif
	0060.tif
	0061.tif
	0062.tif
	0063.tif
	0064.tif
	0065.tif
	0066.tif
	0067.tif
	0068.tif
	0069.tif
	0070.tif
	0071.tif
	0072.tif
	0073.tif
	0074.tif
	0075.tif
	0076.tif
	0077.tif
	0078.tif
	0079.tif
	0080.tif
	0081.tif
	0082.tif
	0083.tif
	0084.tif
	0085.tif
	0086.tif
	0087.tif
	0088.tif
	0089.tif
	0090.tif
	0091.tif
	0092.tif
	0093.tif
	0094.tif
	0095.tif
	0096.tif
	0097.tif
	0098.tif
	0099.tif
	0100.tif
	0101.tif
	0102.tif
	0103.tif
	0104.tif
	0105.tif
	0106.tif
	0107.tif
	0108.tif
	0109.tif
	0110.tif
	0111.tif
	0112.tif
	0113.tif
	0114.tif
	0115.tif
	0116.tif
	0117.tif
	0118.tif
	0119.tif
	0120.tif
	0121.tif
	0122.tif
	0123.tif
	0124.tif
	0125.tif
	0126.tif
	0127.tif
	0128.tif
	0129.tif
	0130.tif
	0131.tif
	0132.tif
	0133.tif
	0134.tif
	0135.tif
	0136.tif
	0137.tif
	0138.tif
	0139.tif
	0140.tif
	0141.tif
	0142.tif
	0143.tif
	0144.tif
	0145.tif
	0146.tif
	0147.tif
	0148.tif
	0149.tif
	0150.tif
	0151.tif
	0152.tif
	0153.tif
	0154.tif
	0155.tif
	0156.tif
	0157.tif
	0158.tif
	0159.tif
	0160.tif
	0161.tif
	0162.tif
	0163.tif
	0164.tif
	0165.tif
	0166.tif
	0167.tif
	0168.tif
	0169.tif
	0170.tif
	0171.tif
	0172.tif
	0173.tif
	0174.tif
	0175.tif
	0176.tif
	0177.tif
	0178.tif
	0179.tif
	0180.tif
	0181.tif
	0182.tif
	0183.tif
	0184.tif
	0185.tif
	0186.tif
	0187.tif
	0188.tif
	0189.tif
	0190.tif
	0191.tif
	0192.tif
	0193.tif
	0194.tif
	0195.tif
	0196.tif
	0197.tif
	0198.tif
	0199.tif
	0200.tif
	0201.tif
	0202.tif
	0203.tif
	0204.tif
	0205.tif
	0206.tif
	0207.tif
	0208.tif
	0209.tif
	0210.tif
	0211.tif
	0212.tif
	0213.tif
	0214.tif
	0215.tif
	0216.tif
	0217.tif
	0218.tif
	0219.tif
	0220.tif
	0221.tif
	0222.tif
	0223.tif
	0224.tif
	0225.tif
	0226.tif
	0227.tif
	0228.tif
	0229.tif
	0230.tif
	0231.tif
	0232.tif
	0233.tif
	0234.tif
	0235.tif
	0236.tif
	0237.tif
	0238.tif
	0239.tif
	0240.tif
	0241.tif
	0242.tif
	0243.tif
	0244.tif
	0245.tif
	0246.tif
	0247.tif
	0248.tif
	0249.tif
	0250.tif
	0251.tif
	0252.tif
	0253.tif
	0254.tif
	0255.tif
	0256.tif
	0257.tif
	0258.tif
	0259.tif
	0260.tif
	0261.tif
	0262.tif
	0263.tif
	0264.tif
	0265.tif
	0266.tif

