
IMS DataPropagator for z/OS IBM

Customization Guide
Version 3 Release 1

 SC27-1214-00

IMS DataPropagator for z/OS IBM

Customization Guide
Version 3 Release 1

 SC27-1214-00

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page 422.

First Edition (October 2001) (Softcopy Only)

This edition applies to Version 3 Release 1 of IMS DataPropagator, 5655-E52, and to any subsequent releases until otherwise
indicated in new editions or technical newsletters. This edition is available in softcopy format only. The technical changes for this
edition are indicated by a vertical bar to the left of a change.

 Copyright International Business Machines Corporation 1991,2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 Contents

Preface . xii
| What is New in Version 3, Release 1 . xii
| Product Changes . xii
| Product Library Changes . xii

Terms Used in This Book . xiii
What You Should Know . xiii
What is in This Book . xiii
How to Read the Syntax Diagrams . xiv

Chapter 1. Introduction . 1
Segment, Field, and Propagation Exit Routines 1

Segment Exit Routine . 3
Field Exit Routine . 3
Propagation Exit Routine . 4

Propagation Exit Routine or IMS Data Capture Exit Routine 4
Overview of RUP and Exit Routine Processing 5
Overview of the HUP and Exit Routine Processing 7
Error Handling Logic of Exit Routines . 9
Exit Routine Relationship to DataRefresher . 9

Segment and Field Exit Routines . 9
Propagation Exit Routines . 10

DB2 Data Capture Subexit Routine . 10
EKYRESLB Dynamic Allocation Exit Routine . 11
General Considerations for Exit Routines . 11

A TSMF Callable Interface . 11
| EMF Callable Interface . 12
A User Asynchronous Programs . 12

Coding Exit Routines in High Level Languages 13
Preinitializing an HLL Environment . 13
Specifying LE/370 Runtime Options . 14

The //EKYLEOPT DD Statement . 14
The TRAP Runtime Option . 14

LE/370 and DPROP Installation . 14
Additional Requirements and Recommendations For COBOL 15
Additional Requirements and Recommendations For PL/I 15
Additional Requirements and Recommendations For C 15

Chapter 2. Segment Exit Routines . 17
Providing Required Mapping Logic in Segment Exits 19

Mapping Logic for IMS Segments With No Internal Segments 19
IMS-to-DPROP Mapping . 19
DPROP-to-IMS Mapping . 19

Mapping Logic for IMS Segments . 20
IMS-to-DPROP Mapping . 21
DPROP-to-IMS Mapping . 21

How To Write A Segment Exit Routine . 23
Interface Control Block . 23
IMS DB Segment Buffer . 24
DPROP Segment Buffer . 25

Buffers and Variable-Length Segments . 25

 Copyright IBM Corp. 1991,2001 iii

Before-Change IMS DB Segment Buffer . 26
64-Byte Anchor Area . 26
Interface Control Block DSECT . 27
Interface Control Block Field Descriptions . 33
Exit Routine Processing . 38
Return Codes and Error Handling Techniques 39

Return Codes . 39
Error Handling Techniques . 40

Saving Information Across Calls . 41
Updating Your Segment Exit Routine . 41
Tracing Your Exit Routine . 41
Differences Between Exit Routine Calls From DPROP or DataRefresher . . 42

Telling DPROP About Your Segment Exit Routine 43
PRs Entered Through DataRefresher UIM . 43
PRs Entered Into the MVG Input Tables . 43
Selective Suppression of Data Propagation 44

First Sample Segment Exit Routine . 45
Definitions for the First Sample Segment Exit Routine 68

DBDGEN Definitions . 69
PSBGEN Definitions . 69
CREATE TABLE Statement . 69
Using DataRefresher to Define the PR . 70

CREATE DXTPSB . 70
CREATE DXTVIEW . 72
DataRefresher UIM SUBMIT Command and EXTRACT Statement 72

Using DataRefresher for the Extract . 73
Defining the PR in the MVG Input Tables . 73

Second Sample Segment Exit Routine . 75
Definitions for the Second Sample Segment Exit Routine 88

DBDGEN Definitions . 88
PSBGEN Definitions . 88
CREATE TABLE Statements . 89
Using DataRefresher To Define the PR: CREATE DXTPSB 89
Using DataRefresher to Define the PR: CREATE DXTVIEW 91
Using DataRefresher To Define the PR . 91
Using DataRefresher For the Extract . 93
Defining the PR in the MVG Input Tables . 93

Third Sample Segment Exit Routine . 97

Chapter 3. Field Exit Routines . 110
How To Write A Field Exit Routine . 111

Interface Control Block . 112
User Format Buffer . 113
DPROP Format Buffer . 113
64-Byte Anchor Area . 114
Interface Control Block DSECT . 114
Interface Control Block Field Descriptions 118
Performing Data Conversions . 122
Exit Routine Processing . 122
Return Codes and Error Handling Techniques 123

Return Codes . 123
Error Handling Techniques . 124

Saving Information Across Calls . 124
Updating Your Field Exit Routine . 125

iv Customization Guide

Tracing Your Exit Routine . 125
Telling DPROP About Your Field Exit Routine 125

PRs Entered Through DataRefresher UIM 125
Defining the User Data Type . 125
Requesting Exit Routine Use . 126

PRs Entered into the MVG Input Tables . 126
First Sample Field Exit Routine . 127
Definitions for the First Sample Field Exit Routine 138

DBDGEN Definitions . 138
PSBGEN Definitions . 138
CREATE TABLE Statement . 138
Using DataRefresher to Define the PR . 139

CREATE DATATYPE . 139
CREATE DXTPSB . 140
CREATE DXTVIEW . 140
DataRefresher UIM SUBMIT Command and EXTRACT Statement . . . 140

Using DataRefresher for the Extract . 141
Defining the PR in the MVG Input Tables 141

Second Sample Field Exit Routine . 143

Chapter 4. Propagation Exit Routines . 153
Environment Considerations for a Propagation Exit Routine 153
How To Write A Propagation Exit Routine . 154

Supported DPROP Functions . 154
Propagation Exit Routine Interface . 155

Propagation Interface Control Block (PIC) 156
Interface Control Block Field Descriptions 160

Interface for HR Propagation . 163
The XPCB and XSDB Control Blocks . 165
XPCB DSECT . 165
XPCB Field Descriptions . 166
XSDB DSECT . 169
XSDB Field Descriptions . 169
The XPCBPCALL, XPCBCALL, and XSDBPHP Fields 170

Interface for RH-Propagation . 171
The HEC Control Block . 173
The QWHS and QWHC Control Blocks 175
The Table Description and Data Row Control Blocks 175
The Table Description and Data Row Header 178
The Table Description Data . 179
The Data Row Data . 181

Exit Routine Processing . 182
Calling Your Exit Routine . 182
Exit Routine Logic . 183

Return Codes and Error Handling Techniques 184
Return Codes . 184
Error Handling Techniques . 185

Saving Information Across Calls . 185
Updating Your Propagation Exit Routine . 185
Tracing Your Exit Routine . 185

Telling DPROP About Your Propagation Exit 186
Creating a PR Using DataRefresher . 186
Creating a PR Using the MVG Input Tables 187

Propagating Data To More Than One DB2 Table 188

 Contents v

Propagating Data To More Than One IMS Segment 188
Binding the PR . 188

First Sample Propagation Exit Routine . 188
Mapping Performed By the Sample Exit Routine 188
Sample Exit Routine Source Code . 189

Definitions For First Sample Propagation Exit 230
DBDGEN Definitions . 230
CREATE TABLE Statement . 230
Using DataRefresher to Define the PR . 231

CREATE DXTPSB . 231
CREATE DXTVIEW . 231
DataRefresher UIM SUBMIT Command and EXTRACT Statement . . . 232

Using DataRefresher For the Extract . 233
Defining the PR in the MVG Input Tables 233

Second Sample Propagation Exit Routine . 234
Mapping Performed by the Sample Exit Routine 234
Sample Exit Routine Source Code . 235

Definitions for Second Sample Propagation Exit 254
DBDGEN Definitions . 254
CREATE TABLE Statement . 254
Using DataRefresher to Define the PR . 255

CREATE DXTPSB . 255
CREATE DXTVIEW . 255
DataRefresher UIM SUBMIT Command and EXTRACT Statement . . . 256

Using DataRefresher for the Extract . 257
Defining the PR in the MVG Input Tables 257

Chapter 5. DB2 Data Capture Subexit Routine 259
How To Write a DB2 Data Capture Subexit Routine 260

DB2 Data Capture Subexit Routine Interface 260
64-Byte Anchor Area . 260
HEC Interface . 260

HEC Control Block DSECT . 262
The QWHS and QWHC Control Blocks 264
The Table Description and Data Row Control Blocks 264
The Table Description and Data Row Header 267
The Table Description Data . 269
The Data Row Data . 271

Exit Routine Processing . 271
Calling Your Exit Routine . 271
Exit Routine Logic . 272

Return Codes . 272
Saving Information Across Calls . 273
Updating Your DB2 Data Capture Subexit Routine 273

Telling DPROP About Your Subexit Routine 273
Sample DB2 Data Capture Subexit Routine 273
Definitions for Sample DB2 Data Capture Subexit Routine 294

DPROPGEN Definitions . 294
CREATE TABLE Statement for Source Table 295
CREATE TABLE Statement for Mirror Table 295

vi Customization Guide

Chapter 6. EKYRESLB Dynamic Allocation Exit Routine 297
Interface Control Block . 298
Exit Routine Processing . 300
Return Codes . 301
Telling DPROP about The EKYRESLB Dynamic Allocation Exit 301
Sample EKYRESLB Dynamic Allocation Exit 301

A Chapter 7. TSMF Callable Interface . 314
A TSMF Callable Interface Parameters . 314
A Calling the TSMF Callable Interface from PL/I 315
A Calling the TSMF Callable Interface from COBOL 317
A Return Codes from the TSMF Callable Interface 318

Q Chapter 8. EMF Callable Interface . 319
Q EMF Callable Interface Parameters . 319
Q Calling the EMF Callable Interface from COBOL 320
Q Return Codes from the EMF Callable Interface 320

A Chapter 9. User-Implemented Asynchronous Data Propagation
A (USER-ASYNC) . 322
A Implementation Based on IMS Asynchronous Data Capture Function 322
A Implementation Based on User-Written IMS Data Capture Exit 323
A Developing Your Asynchronous System . 324
A Setting Up Your Asynchronous System . 324
A Calling the RUP . 325
A Programming languages supported . 325
A Handling the Changed Data . 325
A Propagation Failures . 325
A Sync Point Processing . 326
A Splitting the IMS Data . 326
A Writing A Selector Program . 326
A Writing A Sender Program . 326
A Writing A Receiver Program . 327
A Interface Used to Call the RUP . 327
A Error Handling . 337
A Calling the Housekeeping Module EKYZ800X 338
A Supported Environments and Restrictions 340
A JCL Requirements . 340
A Binding a DB2 Plan for the Receiver . 341
A Installation Considerations: Asynchronous Data Propagation 341
A The Status Change Utility (SCU) . 341
A Multiple MVS Images . 341
A Database Maintenance . 342
A Recovering the DPROP Directory . 342

Appendix A. Calling the Trace Module . 343
Trace Module Interface . 343
Parameter list . 343
Trace Request Block (TRB) . 344

TRB Field Descriptions . 346
Trace Element Descriptor (TED) . 346

TED Field Descriptions . 350

Appendix B. Sample Segment Exit Control Blocks 352

 Contents vii

Sample Segment Exit Control Block for COBOL 353
Sample Segment Exit Control Block for PL/I 358
Sample Segment Exit Control Block for C . 363

Appendix C. Sample Field Exit Control Blocks 368
Sample Field Exit Control Block for COBOL 369
Sample Field Exit Control Block for PL/I . 373
Sample Field Exit Control Block for C . 377

Appendix D. Sample Propagation Exit Control Blocks 381
Sample Propagation Exit Control Blocks for COBOL 382

COBOL Propagation Exit Interface (PIC) 382
COBOL DL/I Capture Interface (XPCB and XSDB) 387
COBOL HUP Exit Communication Block (HEC) 391
COBOL IFC Copyarea for IFCIDS 0185 . 393

Sample Propagation Exit Control Blocks for PL/I 397
PL/I Propagation Exit Interface (PIC) . 397
PL/I (RUP) DL/I Capture Interface . 401
PL/I HUP Exit Communication Block . 404
PL/I IFC Copyarea for IFCIDS 0185 . 406

Sample Propagation Exit Control Blocks for C 409
C Propagation Exit Interface (PIC) . 409
C (RUP) DL/I Capture Interface . 413
C HUP Exit Communication Block . 416
C IFC Copyarea for IFCIDS 0185 . 418

Notices . 422
Programming Interface Information . 423
Trademarks . 424

Bibliography . 425
The IMS DataPropagator for z/OS Version 3 Release 1 Library 425
Other Books Referenced in This Book . 425

Glossary of Terms and Abbreviations . 426

Index . 435

viii Customization Guide

 Figures

1. Sequence of Conversion by Segment and Field Exit Routines 2
2. RUP Processing for Generalized Mapping 6
3. RUP Processing for User Mapping . 6
4. HUP Processing for Generalized Mapping Logic 8
5. HUP Processing for User Mapping . 9
6. Interface Control Block Parameters for Segment Exits 23
7. Interface Control Block for a Segment Exit Routine 28
8. First Sample Segment Exit Routine (Assembler) 46
9. DBDGEN Definition . 69

10. PSBGEN Definition . 69
11. CREATE TABLE Statement . 70
12. CREATE DXTPSB Statement . 71
13. CREATE DXTVIEW Statement . 72
14. DataRefresher UIM SUBMIT Command and EXTRACT Statement 72
15. Using DataRefresher for the Extract: INITDEM and USE DXTPSB Control

Statements . 73
16. Defining the PR in the MVG Input Tables 74
17. Second Sample Segment Exit Routine (COBOL) 77
18. DBDGEN Definition . 88
19. PSBGEN Definition . 88
20. CREATE TABLE Statements . 89
21. Using DataRefresher to Define the PR: CREATE DXTPSB 90
22. Using DataRefresher to Define the PR: CREATE DXTVIEW 91
23. Using DataRefresher to Define the PR: DataRefresher UIM SUBMIT

Command and EXTRACT Statement . 92
24. Using DataRefresher for the Extract: INITDEM and USE DXTPSB Control

Statements . 93
25. Defining the PR in the MVG Input Tables 95
26. Third Sample Segment Exit Routine (PL/I) 98
27. Interface Control Block Parameters for Field Exits 112
28. Interface Control Block for a Field Exit Routine 115
29. Sample Field Exit Routine (Assembler) 128
30. DBDGEN Definition . 138
31. PSBGEN Definition . 138
32. CREATE TABLE Statement . 139
33. CREATE DATATYPE Definition . 139
34. CREATE DXTPSB Definition . 140
35. CREATE DXTVIEW Definition . 140
36. DataRefresher UIM SUBMIT Command and EXTRACT Statement . . . 141
37. Using DataRefresher for the Extract: INITDEM and USE DXTPSB

Control Statements . 141
38. Defining the PR in the MVG Input Tables 143
39. Second Sample Field Exit Routine (COBOL) 144
40. Interface Control Block for a Propagation Exit Routine 157
41. XPCB and XSDB Control Block Structures 164
42. Extended Program Communication Block (XPCB) 166
43. Extended Segment Data Block (XSDB) 169
44. Exit Routine Action Based on the XPCBPCALL Field Value 170
45. Exit Routine Action Based on the XPCBPCALL, XPCBCALL, and

XSDBPHP Field Values . 171

 Copyright IBM Corp. 1991,2001 ix

46. HEC, QWHS, QWHC, Table Description and Data Row Control Block
Structures . 172

47. HUP Exit Communication Block . 174
48. Table Description and Data Row Control Blocks 177
49. Values of QW0185ST and Their Meanings 181
50. Overview of the Propagation Performed By the Exit Routine 189
51. Mapping of IMS Source Fields to DB2 Target Columns 189
52. First Sample Propagation Exit Routine (Assembler) 190
53. DBDGEN Definition . 230
54. CREATE TABLE Statement . 231
55. CREATE DXTPSB Statement . 231
56. CREATE DXTVIEW Statement . 232
57. DataRefresher UIM SUBMIT Command and EXTRACT Statement . . . 232
58. Using DataRefresher For the Extract: INITDEM and USE DXTPSB

Control Statements . 233
59. DSNTEP2 SQL Statements Required to Define the PR in the MVG Input

Tables . 234
60. Overview of the Propagation Performed By the Exit Routine 234
61. Mapping IMS Source Fields to DB2 Target Columns 235
62. Second Sample Propagation Exit Routine (C) 236
63. DBDGEN Definition . 254
64. CREATE TABLE Statement . 255
65. CREATE DXTPSB . 255
66. CREATE DXTVIEW Statement . 256
67. DataRefresher UIM SUBMIT Command and EXTRACT Statement . . . 256
68. Using DataRefresher for the Extract: INITDEM and USE DXTPSB

Control Statements . 257
69. DSNTEP2 SQL Statements . 258
70. HEC, QWHS, QWHC, Table Description and Data Row Control Block

Structures . 261
71. HUP Exit Communication Block . 263
72. Table Description and Data Row Control Blocks 266
73. Values of QW0185ST and Their Meanings 270
74. Sample DB2 Data Capture Subexit Routine (Assembler) 274
75. DPROPGEN Definition . 295
76. CREATE TABLE Statement for Source Table 295
77. CREATE TABLE Statement for Mirror Table 296
78. Interface Control Block for EKYRESLB Dynamic Allocation Exit Routine 299
79. Sample EKYRESLB Dynamic Allocation Exit 302

A 80. Parameters passed to the TSMF callable interface 314
A 81. TSMF Callable Interface, Declarations for PL/I 315
A 82. TSMF Callable Interface, Call from a PL/I Program 316
A 83. TSMF Callable Interface, Declarations for COBOL 317
A 84. TSMF Callable Interface, Call from a COBOL Program 317
Q 85. Parameters passed to the EMF callable interface 319
Q 86. EMF Callable Interface, Declarations for COBOL 320
Q 87. EMF Callable Interface, Call from a COBOL Program 320
A 88. HR Asynchronous Propagation With the IMS Asynchronous Data
A Capture Function . 323
A 89. HR Asynchronous Propagation With a User-Written IMS Data Capture
A Exit Routine . 324
A 90. The XPCB and XSDB Control Block Structure 329
A 91. Extended Program Communication Block (XPCB) 331
A 92. Extended Segment Data block (XSDB) 334

x Customization Guide

A 93. INQY ENVIRON Output Area . 336
94. Trace Request Block . 345
95. Example of Formatted Trace . 347
96. Trace Element Descriptor . 349
97. COBOL Interface Control Block for a Segment Exit Routine 353
98. PL/I Interface Control Block for a Segment Exit Routine 358
99. C Interface Control Block for a Segment Exit Routine 363
100. COBOL Interface Control Block for a Field Exit Routine 369
101. PL/I Interface Control Block for a Field Exit Routine 373
102. C Interface Control Block for a Field Exit Routine 377
103. COBOL Propagation Exit Interface . 382
104. COBOL DL/I Capture Interface . 387
105. COBOL HUP Exit Communication Block 391
106. COBOL IFC Copyarea for IFCIDS 0185 393
107. PL/I Propagation Exit Interface . 398
108. PL/I (RUP) DL/I Capture Interface . 401
109. PL/I HUP Exit Communication Block . 404
110. PL/I IFC Copyarea for IFCIDS 0185 . 406
111. C Propagation Exit Interface . 410
112. C (RUP) DL/I Capture Interface . 414
113. C HUP Exit Communication Block . 417
114. C IFC Copyarea for IFCIDS 0185 . 419

 Figures xi

 Preface

This book explains how to customize IMS DataPropagator (IMS DPROP) and is
intended for use by system programmers.

| This softcopy book is available only in PDF and BookManager formats. This book
| is available on the z/OS Software Products Collection Kit, SK3T-4270. You can
| also get the most current versions of the PDF and BookManager formats by going
| to the IBM Data Management Tools Web site at
| www.ibm.com/software/data/db2imstools and linking to the Library page.

| What is New in Version 3, Release 1
| IMS DataPropagator (IMS DPROP) Version 3, Release 1 presents improvements to
| both the product and the product library.

| This edition, which is available in softcopy format only, includes technical and
| editorial changes.

| Product Changes
| IMS DataPropagator V3.1 provides a new, MQSeries-based asynchronous
| (MQ-ASYNC) propagation of IMS database changes to DB2 tables. With
| MQ-ASYNC enterprises can implement both:

| � Near Real Time Propagation - With Near Real Time propagation, the delay
| between the update of the IMS database and the update of the DB2 tables can
| often be as short as a couple of seconds.

| � Point-In-Time Propagation - With Point-In-Time propagation, the data content of
| the DB2 tables matches the IMS database content at a previous clearly
| identified logical point in time. For example, an enterprise may decide that the
| content of the DB2 tables will match the following point in times: the logical end
| of a business day, the logical end of a business month, or the end of a specific
| IMS jobstream that updated the IMS databases.

| Product Library Changes
| The Version 3.1 library has been updated with information about MQSeries
| asynchronous propagation. There are now three Administrators Guides, one for
| each primary mode of propagation:

| � IMS DPROP Administrators Guide for MQSeries Asynchronous Propagation

| � IMS DPROP Administrators Guide for Log Asynchronous Propagation

| � IMS DPROP Administrators Guide for Synchronous Propagation

| There is also a new book, IMS DataPropagator for z/OS: Concepts, which provides
| a conceptual description of data propagation.

| Special change indicators are used to identify information that is specific to
| LOG-ASYNC, MQ-ASYNC, and synchronous propagation:

| � Q identifies information specific to MQ-ASYNC propagation.
| � A identifies information specific to LOG-ASYNC propagation.

xii Copyright IBM Corp. 1991,2001

| � S identifies information specific to synchronous propagation.

Terms Used in This Book
The following terms are synonymous in this book:

� File and data set

� DXT and DataRefresher

Unless a specific version or release is referenced, these terms refer to either of
the following products:

– DXT Version 2 Release 5
– DataRefresher Version 1 or higher

� Databases that have been quiesced or set to READONLY status.

In all cases, these terms refer to either or both of the following:

– Any propagatable database, except for DEDBs, that has been set to
READONLY status.

– DEDBs that have been taken offline with a /DBR command

| References to DataRefresher and DXT in this book refer to only host activities.
| This book assumes that you will use batch and command statements, not the
| DataRefresher workstation component.

| Selector and Receiver (capitalized) refer to the IMS DPROP Selector and Receiver
| features. However, selector and receiver (not capitalized) refer to user-created
| functions.

| IMS DPROP books use the term “child” instead of the term “dependent.” For
| example, IMS DPROP books use the terms “child table” and “child rows” instead of
| DB2 terms “dependent table” and “dependent rows.” The term “child” is used so
| that terms for IMS and DB2 are similar.

What You Should Know
This book assumes you understand what data propagation is and the business
reasons for propagating data. Information on these topics is in IMS DPROP An
Introduction.

This book also assumes you have a basic understanding of IMS, DB2, and
DataRefresher concepts and functions.

What is in This Book
| The Version 3.1 Customization Guide provides information on how to write exit
| routines for your IMS DPROP system. It contains sample segment, field, and
| propagation exit routines that you can use. It also describes how to design and
| develop programs required to implement asynchronous propagation. The chapters
| are as follows:

| � Chapter 1, “Introduction” on page 1

| � Chapter 2, “Segment Exit Routines” on page 17

 Preface xiii

| � Chapter 3, “Field Exit Routines” on page 110

| � Chapter 4, “Propagation Exit Routines” on page 153

| � Chapter 5, “DB2 Data Capture Subexit Routine” on page 259

| � Chapter 6, “EKYRESLB Dynamic Allocation Exit Routine” on page 297

| � Chapter 7, “TSMF Callable Interface” on page 314

| � Chapter 8, “EMF Callable Interface” on page 319

| � Chapter 9, “User-Implemented Asynchronous Data Propagation
| (USER-ASYNC)” on page 322

| It also includes the following appendixes:

| � Appendix A, “Calling the Trace Module” on page 343

| � Appendix B, “Sample Segment Exit Control Blocks” on page 352

| � Appendix C, “Sample Field Exit Control Blocks” on page 368

| � Appendix D, “Sample Propagation Exit Control Blocks” on page 381

How to Read the Syntax Diagrams
The following rules apply to the syntax diagrams used in this book:

Arrow symbols

Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.

��─── Indicates the beginning of a statement.

───� Indicates that the statement syntax is continued on the next line.

�─── Indicates that a statement is continued from the previous line.

───�� Indicates the end of a statement.

Diagrams of syntactical units other than complete statements start with the
�─── symbol and end with the ───� symbol.

Conventions

� Keywords, their allowable synonyms, and reserved parameters, appear in
uppercase for MVS and OS/2 platforms, and lowercase for UNIX platforms.
These items must be entered exactly as shown.

� Variables appear in lowercase italics (for example, column-name). They
represent user-defined parameters or suboptions.

� When entering commands, separate parameters and keywords by at least
one blank if there is no intervening punctuation.

� Enter punctuation marks (slashes, commas, periods, parentheses, quotation
marks, equal signs) and numbers exactly as given.

� Footnotes are shown by a number in parentheses, for example, (1).

� A ␣ symbol indicates one blank position.

Required items
Required items appear on the horizontal line (the main path).

xiv Customization Guide

��──REQUIRED_ITEM──��

Optional Items
Optional items appear below the main path.

��──REQUIRED_ITEM─ ──┬ ┬─────────────── ──────────────────────────────────��
 └ ┘─optional_item─

If an optional item appears above the main path, that item has no effect on the
execution of the statement and is used only for readability.

 ┌ ┐─optional_item─
��──REQUIRED_ITEM─ ──┴ ┴─────────────── ──────────────────────────────────��

Multiple required or optional items
If you can choose from two or more items, they appear vertically in a stack. If
you must choose one of the items, one item of the stack appears on the main
path.

��──REQUIRED_ITEM─ ──┬ ┬─required_choice1─ ───────────────────────────────��
 └ ┘─required_choice2─

If choosing one of the items is optional, the entire stack appears below the main
path.

��──REQUIRED_ITEM─ ──┬ ┬────────────────── ───────────────────────────────��
 ├ ┤─optional_choice1─
 └ ┘─optional_choice2─

Repeatable items
An arrow returning to the left above the main line indicates that an item can be
repeated.

 ┌ ┐───────────────────
��──REQUIRED_ITEM─ ───� ┴─repeatable_item─ ────────────────────────────────��

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

 ┌ ┐─,───────────────
��──REQUIRED_ITEM─ ───� ┴─repeatable_item─ ────────────────────────────────��

A repeat arrow above a stack indicates that you can specify more than one of the
choices in the stack.

Default keywords

IBM-supplied default keywords appear above the main path, and the remaining
choices are shown below the main path. In the parameter list following the
syntax diagram, the default choices are underlined.

 ┌ ┐─default_choice──
��──REQUIRED_ITEM─ ──┼ ┼───────────────── ────────────────────────────────��
 ├ ┤─optional_choice─
 └ ┘─optional_choice─

IMS-specific syntax information

 Preface xv

Fragments
Sometimes a diagram must be split into fragments. The fragments are
represented by a letter or fragment name, set off like this: | A |. The fragment
follows the end of the main diagram. The following example shows the use of
a fragment.

��──STATEMENT──item 1──item 2──┤ A ├─────────────────────────────────��

A:
├─ ──┬ ┬─item 3─ ─KEYWORD─ ──┬ ┬─item 5─ ───────────────────────────────────┤
 └ ┘─item 4─ └ ┘─item 6─

Substitution-block
Sometimes a set of several parameters is represented by a substitution-block
such as <A>. For example, in the imaginary /VERB command you could enter
/VERB LINE 1, /VERB EITHER LINE 1, or /VERB OR LINE 1.

��──/VERB─ ──┬ ┬───── ─LINE──line#──��
 └ ┘─<A>─

where <A> is:

��─ ──┬ ┬─EITHER─ ──��
 └ ┘─OR─────

Parameter endings
Parameters with number values end with the symbol '#', parameters that are
names end with 'name', and parameters that can be generic end with '*'.

��──/MSVERIFY─ ──┬ ┬ ─MSNAME──msname─ ───��
 └ ┘─SYSID──sysid#──

The MSNAME keyword in the example supports a name value and the SYSID
keyword supports a number value.

xvi Customization Guide

 Chapter 1. Introduction

This chapter introduces the routines you can use to customize IMS DPROP. These
routines are:

� Segment exit routine
� Field exit routine
� Propagation exit routine
� DB2 Data Capture subexit routine
� EKYRESLB Dynamic Allocation exit routine
� Timestamp marker facility callable interface
� User Asynchronous programs

Information about coding the programs in high-level languages is also included.
The rest of this book describes the programs in detail.

Segment, Field, and Propagation Exit Routines
If DPROP mapping and conversion capabilities do not meet your needs, you can
use the following exit routines for special situations:

� Segment exit routines
� Field exit routines
� Propagation exit routines

These routines can be written in either Assembler language or one of the following
high-level languages: COBOL, PL/I, and C. DPROP support for exit routines
written in high-level languages requires Language Environment/370 (LE/370)
Version 1 Release 2. See IMS DPROP An Introduction for a description of the
software requirements for the LE/370 environment.

Segment and Field exit routines complement the generalized mapping logic of the
RUP and HUP. They perform special data formatting that the RUP and HUP do
not support. When called, a Segment exit routine reformats an entire IMS
segment, while a Field exit routine reformats individual fields in a segment.

Figure 1 on page 2 illustrates the sequence in which the Segment exit routine,
Field exit routines, and DPROP conversion routines are invoked by the RUP and
HUP.

 Copyright IBM Corp. 1991,2001 1

 ┌┬─────────────────────────────────┬┐
││ Segment in IMS format ││

│ ││ Fields in user format ││ ;
│ └┴─────────────────────────────────┴┘ │

 │ │
 │ │
 │ ┌──────────────────────┐ │

│ │ Segment Exit Routine │ │
│ │ (optional) │ │

 │ └──────────────────────┘ │
 │ │
 │ │

│ ┌┬─────────────────────────────────┬┐ │
│ ││ Segment in DPROP format ││ │
│ ││ Fields in user format ││ │
│ └┴─────────────────────────────────┴┘ │

 │ │
 ┌────┴────┐ ┌────┴────┐

│ │ ┌──────────────────────┐ │ │
│ RUP │ │ Field Exit Routines │ │ HUP │
│ │ │ (optional) │ │ │

 └────┬────┘ └──────────────────────┘ └────┬────┘
 │ │
 │ │

│ ┌┬─────────────────────────────────┬┐ │
 │ ││ ││ │

│ ││ Fields in DPROP format ││ │
│ └┴─────────────────────────────────┴┘ │

 │ │
 │ │
 │ ┌──────────────────────┐ │
 │ │ DPROP │ │

│ │ Conversion Routines │ │
 │ └──────────────────────┘ │
 │ │
 │ │

│ ┌┬─────────────────────────────────┬┐ │
 � ││ ││ │

││ Column in DB2 format ││
 └┴─────────────────────────────────┴┘

Figure 1. Sequence of Conversion by Segment and Field Exit Routines

You may find that your mapping or propagation requirements cannot be handled by
combining the generalized mapping logic of DPROP with Segment and Field exit
routines. In this case, you may want to use a Propagation exit routine, which lets
you substitute your own mapping logic for the generalized mapping logic of the
RUP and HUP.

DPROP calls exit routines in both synchronous and LOG-ASYNC modes. During
synchronous propagation, the RUP and HUP can call the exit routines from both
IMS batch and dependent regions. For generalized mapping cases, Segment and
Field exit routines are also called during execution of the Consistency Check utility
(CCU) and DPROP DL/I Load utilities (DLU).

If you extract data with DataRefresher, the Segment and Field exit routines are also
called by DataRefresher.

2 Customization Guide

Segment Exit Routine
The Segment exit routine is generally used to map an IMS segment between an
IMS database format that DPROP does not support and a DPROP-supported
format.

The Segment exit routine can change the format and positions of data fields in an
IMS segment. It cannot change the format and position of keys, including the
concatenated key, nor can it change the format and position of any fields mapped
to the primary key of the related DB2 row.

Segment exit routines can:

� Map IMS segments that have fields with variable starting positions into a
segment format where starting positions are fixed.

� Clean up data, such as data stored in redefined areas of IMS segments.

� Selectively suppress propagation based on selection criteria programmed into
the exit routine. For IMS-to-DB2 propagation, it is preferable, where possible,
to selectively suppress propagation by defining a WHERE clause during PR
definition.

Segment exit routines used with PRTYPE=L (limited function) PRs are called only
for IMS-to-DB2 propagation and must, therefore, support only IMS-to-DPROP
mapping.

Segment exit routines used with PRTYPE=E (extended function) PRs must support
both IMS-to-DPROP and DPROP-to-IMS mapping, even if the PRTYPE=E PR
specifies MAPDIR=HR. This is because your Segment exit routine can be called
during CCU and DLU processing to do DPROP-to-IMS mapping. The conversion
done during DPROP-to-IMS mapping should be the opposite of the conversion
done during IMS-to-DPROP mapping.

If you are using DataRefresher to extract IMS data, the Segment exit routine is also
called by DataRefresher as a data type exit routine.

For additional information about the Segment exit routine, see Chapter 2, “Segment
Exit Routines” on page 17. For information about data type exit routines, see the
appropriate DataRefresher or DXT documentation.

Field Exit Routine
The Field exit routine is generally used to map a field between its IMS database
format (referred to as a user format) and a DPROP-supported format.

Field exit routines are used:

� For IMS segment fields that have special formats not supported by DPROP,
and that cannot be converted by the DPROP conversion routines. Examples of
such fields are:

– Date and time formats other than USA, ISO, EUR, and JIS, which must be
converted into a standard format

– Unsigned, packed numeric fields

– Encoded data, such as a two-byte state code that is to be expanded

 Chapter 1. Introduction 3

� When the format of the IMS field cannot be directly converted by DPROP to the
format of the DB2 column, such as converting a character format to a numeric
format, or converting a character field to a DBCS field.

� To convert some values in an IMS field to a DB2 null value.

� To change the contents or restructure the data in the field before storing it in
the corresponding DB2 table.

� To alter the contents of a key field.

� When performing DB2-to-IMS propagation, to convert the value of a numeric
DB2 column into a packed or zoned IMS field having a sign code other than
the “preferred” sign codes X'C' and X'D'.

Field exit routines used with PRTYPE=L PRs are only called for IMS-to-DB2
propagation and must therefore only support user-to-DPROP mapping. They are
called to convert an IMS field from your format in the IMS database to the format
supported by and defined to DPROP.

Field exit routines used with PRTYPE=E PRs must support both user-to-DPROP
mapping and DPROP-to-user mapping, even if the PRTYPE=E PR specifies
MAPDIR=HR. This is because your Field exit routine can be called during CCU
and DLU processing to do DPROP-to-user mapping. The conversion done during
DPROP-to-user mapping should be the opposite of the conversion done during
user-to-DPROP mapping.

If you are using DataRefresher to extract IMS data, the Field exit routine is also
called by DataRefresher as a data type exit routine.

For additional information about the Field exit routine, see Chapter 3, “Field Exit
Routines” on page 110. For information about data type exit routines, see the
appropriate DataRefresher or DXT documentation.

Propagation Exit Routine
If the DPROP generalized mapping cases cannot be used for propagation, you can
supply your own mapping in a Propagation exit routine. Propagation exit routines
must provide all necessary mapping logic, build the SQL* calls needed for
propagation to DB2, and build the IMS calls needed for propagation to IMS.
Neither DataRefresher nor the DLU call Propagation exit routines during the
extract/load phase.

For additional information about the Propagation exit routine, see Chapter 4,
“Propagation Exit Routines” on page 153.

Propagation Exit Routine or IMS Data Capture Exit Routine
Using Propagation exit routines to propagate data from DPROP has some
advantages over propagating data using an IMS Data Capture exit routine that you
write. These advantages include:

� Propagation debugging support provided by DPROP

� Centralized error handling through the RUP and HUP

� Simplified operation of propagation since DPROP can be used to suspend and
restart propagation

4 Customization Guide

� Protection against unintentional updates during the extract/load phase of
propagation

� Centralized control point for PR definitions (the DPROP directory tables)

� Common process for managing the data propagation environment for both
generalized and user mapping cases

Overview of RUP and Exit Routine Processing
For each updated segment occurrence, the RUP is called once by the IMS Data
Capture function. A particular segment type can be propagated by zero, one, or
several PRs. The number of PRs can be zero if you changed the DBD with an
EXIT= keyword, but have not yet generated PRs.

If the updated segment type is propagated by multiple PRs, the RUP will
sequentially process these PRs within a single call by the IMS Data Capture
function.

For each PR, the RUP checks the PR status to determine if the PR should be
processed. Inactive PRs are not processed. Then the RUP determines if the PR
specifies a generalized or user mapping case.

For a PR belonging to a generalized mapping case:

1. The RUP calls the optional Segment exit routine. The Segment exit routine
converts the IMS segment from its IMS database format to the format
supported by and defined to DPROP.

For some PRs (for example, those defined with a WHERE clause, those
propagating IMS segments that contain embedded structures, or those
attempting to avoid unnecessary SQL updates by specifying AVU=Y), the
Segment exit routine is called twice by the RUP during replace operations:
once to convert the segment before replacement, and a second time to convert
the segment after replacement.

2. For each field requiring it, the RUP calls the appropriate optional Field exit
routine. The Field exit routine converts the field from its user format to the
format supported by and defined to DPROP.

3. The RUP converts each field into its DB2 column format.

4. The RUP issues the propagating SQL statement by calling the appropriate SQL
update module, which was generated when the PR was defined.

For a PR using a Propagation exit routine (user mapping), the RUP calls the
Propagation exit routine. The Propagation exit routine is responsible for all required
mapping, conversions, and propagating SQL statements.

Figure 2 on page 6 shows RUP processing for a generalized mapping case,
including the relationship with Segment and Field exit routines. Figure 3 on
page 6 shows RUP processing for user mapping with a Propagation exit routine.

 Chapter 1. Introduction 5

PRs in
DPROP
Directory
and VLF

DPROP
RUP

Support
Functions

IMS
DBs

DB2
Tables

Optional
Segment
User Exit

Optional
Field
User Exit

DPROP
Data
Conversion

DPROP
SQL
Update
Module

IMS
Data
Capture

Figure 2. RUP Processing for Generalized Mapping

PRs in
DPROP
Directory
and VLF

DB2
Tables

DPROP
RUP

Support
Functions

IMS
Data
Capture

Propagation
User Exit

IMS
DBs

Figure 3. RUP Processing for User Mapping

6 Customization Guide

Overview of the HUP and Exit Routine Processing
The HUP runs as the IBM-supplied DB2 Data Capture exit routine. The HUP is
called when the DB2 Data Capture function detects that an SQL update changes
rows of tables that have been defined with the DATA CAPTURE parameter and
when DB2 tracing for MONITOR CLASS(6) is active. You must also set the DB2
system parameter DPROP SUPPORT to 2 or 3, otherwise no call back to IMS
occurs.

The HUP obtains all changed rows of these tables from DB2. Then, based on your
PR definitions, the HUP determines whether and how the changed rows of a
particular table should be propagated.

The HUP checks the PR status to determine if the PR should be processed.
Inactive PRs are not processed. Then the HUP determines if the PR specifies a
generalized or user mapping case.

For a PR belonging to a generalized mapping case:

1. The HUP converts each DB2 column into the DPROP-supported field format
that you specified in the PR definition.

2. For each field requiring it, the HUP calls the appropriate optional Field exit
routine. The Field exit routine converts the field from the format supported by
and defined to DPROP into its user format.

3. Then the HUP builds the IMS segment search arguments (SSAs) required to
access the target IMS database segment.

4. If the IMS target segment needs to be replaced or deleted, the HUP issues an
IMS GHU (get hold unique) call to retrieve the segment.

If the IMS target segment to be replaced is processed by a Segment exit
routine, and some fields are not propagated, the HUP initially calls the Segment
exit routine. The Segment exit routine must convert the retrieved IMS segment
from its IMS database format into the format you defined to DPROP. The
conversion done by your Segment exit routine should be the same as the
conversion done during RUP calls for IMS-to-DB2 propagation. This
processing is used to merge nonpropagated fields in the original IMS segment
with the updated fields propagated from DB2.

5. If the target IMS segment will be replaced or inserted, the HUP builds the new
segment image. If you have not specified use of a Segment exit routine, the
segment image has the format of the IMS database segment. Otherwise, the
segment image has the format you defined to DPROP.

For IMS segments that do not contain propagated internal segments, the HUP
builds the image of the IMS segment. In the other cases, the HUP builds the
image of either the internal or containing segment.

6. The HUP calls the optional Segment exit routine.

� If the IMS segment does not contain propagated internal segments, the
Segment exit routine converts the IMS segment from the format supported
by and defined to DPROP to the IMS database format. The conversion
done by your exit routine should be the reverse of the mapping done during
RUP calls for IMS-to-DB2 propagation.

 Chapter 1. Introduction 7

� If the IMS segment does contain propagated internal segments, the
Segment exit routine must merge the internal/containing segment formatted
by DPROP to the existing IMS segment that was previously retrieved by
the HUP (see item 4 on page 7).

7. The HUP issues the DL/I update calls that propagate the DB2 change.

For a PR using a Propagation exit routine (user mapping), the HUP calls the
Propagation exit routine. The Propagation exit routine does all required mapping,
conversions, and propagation of DL/I update calls.

After propagation of the changed DB2 row, the HUP calls your optional DB2 Data
Capture subexit routine.

Figure 4 shows HUP processing for a generalized mapping case, including the
relationship with Field and Segment exit routines. Figure 5 on page 9 shows HUP
processing for user mapping with a Propagation exit routine.

PRs in
DPROP
Directory
and VLF

DPROP
HUP

Support
Functions

DB2
Tables

IMS
DBs

6) Optional
Segment
User Exit

2) Optional
Field
User Exit

1) DPROP
Data
Conversion

7) DL/I Update
Calls issued by
HUP

DB2
Data Capture

4) Get-Hold-Unique

3) Build
SSAs

5) Build
Segment
Image

Figure 4. HUP Processing for Generalized Mapping Logic

8 Customization Guide

PRs in
DPROP
Directory
and VLF

IMS
DBs

DPROP
HUP

Support
Functions

DB2
Data Capture

Propagation
User Exit

DB2
Tables

Figure 5. HUP Processing for User Mapping

Error Handling Logic of Exit Routines
The exit routines may encounter error situations. For example, a field defined as
numeric may contain nonnumeric data. In this case, the exit routines should use
the error handling logic of the RUP and HUP. This practice has the following
advantages:

� The error option (ERROPT) in effect is used when the exit routine encounters
an error.

� Errors are traced and placed on an audit trail for later review if desired.

To take advantage of the error handling logic of the RUP and HUP, your exit
routine should:

� Signal propagation failures to RUP/HUP using a return code in the provided
interface control block. Your exit routine should not issue an abend if you want
to use the error handling logic of the RUP/HUP.

� Provide error or warning messages in the interface control block to help
diagnose the problem. Your exit routine should not issue messages directly.

To change versions of an exit routine, the job step from which the exit routine is
called must be stopped and restarted with the new version available.

Exit Routine Relationship to DataRefresher
This section describes the relationship between DataRefresher and the exit
routines.

Segment and Field Exit Routines
DPROP calls Segment and Field exit routines during propagation. DataRefresher
calls them during the extract/load when extracts are done by DataRefresher. This
lets you have identical mapping for extracts done by DataRefresher and
propagation done by DPROP. DataRefresher calls these routines data exits and
data type exits, respectively.

 Chapter 1. Introduction 9

There are some special restrictions and requirements for exit routines called by
DPROP. For example, while the interface control blocks to the exit routines are
identical for DPROP and DataRefresher, DPROP does not initialize all of the fields
in the control blocks. Another example of these restrictions is that no SYSPRINT
DCB is furnished to the exit routine by DPROP. The additional restrictions and
requirements are discussed with each type of exit routine in that routine's chapter
of this book.

Propagation Exit Routines
DataRefresher does not support Propagation exit routines. If you are using
Propagation exit routines for user mapping, DataRefresher will not call your
Propagation exit during the extract/load phase. If you determine that you can use
the mapping capabilities of DataRefresher for the extract/load, the mapping logic of
your Propagation exit routine must be compatible with that of DataRefresher
Otherwise, you write your own extract program providing the same mapping logic
as your Propagation exit routine.

DB2 Data Capture Subexit Routine
If your installation requires that the HUP coexist with another generalized DB2 Data
Capture exit routine, consider writing a DB2 Data Capture subexit routine. Instead
of having two DB2 Data Capture exit routines (which is not supported by DB2), you
would:

� Use the HUP as a DB2 Data Capture exit routine, and

� Define to DPROP the “other” generalized exit routine as a DB2 Data Capture
subexit routine (its name is defined during DPROP installation).

The purpose of the subexit routine is usually not DB2-to-IMS propagation. Instead,
its purpose is usually to:

� Propagate changed DB2 rows to other tables, or
� Perform other generalized functions, such as auditing changed DB2 rows.

DPROP calls your subexit routine when the DB2 Data Capture function calls the
HUP. DPROP calls the subexit routine even if you have not defined a PR and
even if propagation has been emergency stopped.

The HUP calls your subexit routine once for each changed row and gives it both
the data and the description of the changed row. The HUP calls your subexit
routine after processing of all DPROP PRs. However, your subexit routine is not
called when the HUP issues a rollback of the unit of work or an abend. This is not
a problem since, in this case, the SQL update can be considered nonexistent.

You can write your DB2 Changed Data Capture subexit routine in a high-level
language, such as C, COBOL, and PL/I.

For additional information about the DB2 Data Capture Subexit routine, see
Chapter 5, “DB2 Data Capture Subexit Routine” on page 259.

10 Customization Guide

EKYRESLB Dynamic Allocation Exit Routine
You can write an EKYRESLB Dynamic Allocation exit routine to dynamically
allocate the APF-authorized library containing DPROP load modules. You can do
this if the following methods of allocation are inappropriate for your installation:

� Allocation using an //EKYRESLB DD statement in the JCL of propagating job
steps and DPROP utility job steps

� Dynamic allocation by DPROP to a data set name specified during DPROP
installation.

Note that you cannot write the EKYRESLB Dynamic Allocation exit routine in a
high-level language.

For more information about EKYRESLB Dynamic Allocation exit routine, see
Chapter 6, “EKYRESLB Dynamic Allocation Exit Routine” on page 297.

General Considerations for Exit Routines
When called during synchronous propagation, the exit routines execute in the same
environment as the propagating application program. The exit routines can issue
the same IMS calls and SQL statements as the application. However, IMS and

A DB2 updates issued by the exit routines are not propagated. A possible exception
A to this would be IMS updates issued during DB2-to-IMS propagation; they can be
A propagated asynchronously if LOG-ASYNC propagation is based on the IMS
A Asynchronous Data Capture function. This is because IMS and DB2 calls issued

from the IMS or DB2 Data Capture function do not result in recursive calls to Data
Capture exit routines. To the IMS and DB2 Data Capture functions, DPROP's exits
appear to run as an extension to the RUP and HUP.

The exit routines must not perform functions incompatible with the environments in
which they execute. For example, they should not write to MVS data sets from IMS
message processing regions. The exit routines should also avoid using services
that can impact the performance of propagating application programs. Examples
could include the OPEN macro issued from IMS message processing regions.

DPROP Release 2 supports exit routines both written in Assembler language and
with high-level language compilers supporting LE/370 Version 1 Release 2. Exit
routines must receive and return control in AMODE 31, but their execution RMODE
can be ANY. The addresses of parameters passed by DPROP to the exit routines
are 31 bit, and the parameters are usually located above the 16MB line.

A TSMF Callable Interface
A When you are using DPROP LOG-ASYNC propagation, you must set an initial start
A time to run the Selector. Subsequently, the Selector can determine its own start
A and stop times. Alternatively, you can specify Group/database start times and
A group stop times for each Selector run. For details on Selector start and stop
A times, refer to the appropriate Administrators Guide for your propagation mode.

A The timestamp marker facility (TSMF) allows you to specify timestamp markers
A (TSMs) to be used by the Selector for group/database start times and group stop
A times. The TSMF can be invoked as a batch job. It can also be invoked through a

 Chapter 1. Introduction 11

A callable interface to allow a user application to insert a stop TSM in the Selector
A control file for a specified propagation group. The TSMF callable interface is
A described in detail in Chapter 7, “TSMF Callable Interface” on page 314.

A Note: The TSMF Callable Interface can only be used to create group stop times.

| EMF Callable Interface
| MQ-ASYNC supports both a Near Real Time Propagation and a Point-In-Time
| Propagation.

| For a Point-In-Time Propagation with MQ-ASYNC, you create Event Markers on the
| Source System. Each Event Marker identifies a particular Source System Point In
| Time. The Event Markers are transmitted in MQSeries messages, together with the
| IMS DB Changes, in First-In-First-Out order to the Apply Programs on the Target
| System.

| An Apply Program can be instructed to stop its processing when it reads an
| MQSeries message containing a specific Event Marker. When an Apply Program is
| stopped in this way, the content of the target DB2 tables reflects the Source
| System Point-in-Time that has been identified by the creation of the Event Marker.

| Usually, the Event Markers are created by running the IMS DPROP 'Capture
| System Utility (CUT)'. As an alternative, Event Markers can also be created by
| application programs through use of a callable interface.

A User Asynchronous Programs
A IMS DataPropagator Version 3 implements LOG-ASYNC IMS-to-DB2 propagation.
A You can implement user LOG-ASYNC IMS-to-DB2 propagation in one of the
A following ways:

A � Using the IMS Asynchronous Data Capture function. In this case, segment
A updates are written by this function to the IMS log. Later, programs you write
A (often called the “selector”) gather and select the changed data from the IMS
A log data sets. Another program you write (often called the receiver) reads the
A changed data and calls DPROP with it. Propagation is then done either by
A DPROP (if you used the generalized mapping cases) or by your Propagation
A exit routine (if you used user mapping). See Chapter 9, “User-Implemented
A Asynchronous Data Propagation (USER-ASYNC)” on page 322 for additional
A information.

A � Using a Data Capture exit routine you write (often called the sender). In this
A case, segment updates are written by your routine to the:

A – IMS log
A – IMS full-function database
A – DEDB sequential dependent segments
A – MVS flat file

A Another program you write (often called the receiver) does the same
A processing as described in the preceding paragraph.

A The LOG-ASYNC sender and receiver programs used in these two implementations
A are described and illustrated in Chapter 9, “User-Implemented Asynchronous Data
A Propagation (USER-ASYNC)” on page 322.

12 Customization Guide

Coding Exit Routines in High Level Languages
All DPROP User exit routines can be written in Assembler. In addition, the
following types of exit routines can be written in COBOL, PL/I, and C:

� Segment exit routines
� Field exit routines
� Propagation exit routines
� DB2 Data Capture subexit routine

DPROP support for user exit routines written in high-level languages (HLL) requires
the following:

� LE/370 must be installed, and LE/370 modules must be available (through
//STEPLIB, //JOBLIB, LINKLIB, or LPA concatenation) to the job steps where
the exits are executed.

� Exit routines written in COBOL must be compiled with the SAA AD/Cycle
COBOL/370 Version 1 Release 1 (or later releases) compiler.

� Exit routines written in PL/I must be compiled with the LE/370 Version 1
Release 1 (or later releases) compiler.

� Exit routines written in C must be compiled with the LE/370 Version 1 Release
1 (or later releases) compiler.

Preinitializing an HLL Environment
DPROP uses LE/370 support for preinitialization to call exit routines written in
high-level languages. LE/370 preinitialization allows the HLL environment to be
initialized once and to perform multiple executions of HLL exit routines using this
preinitialized environment.

DPROP initialization triggers the preinitialization of the HLL environment. DPROP
uses an interface to LE/370 that is similar to the CEEPIPI environment created with
an INIT-SUB call. The resulting LE/370 enclave is used to execute all HLL DPROP
exit routines.

Then, when one of your exit routines needs to be called, DPROP determines
whether it was compiled with one of the previously listed HLL compilers, and
proceeds as follows:

� If it was compiled, DPROP calls your exit routine through the CEEPIPI interface
module. Your exit routines are called in the LE/370 enclave used for the HLL
DPROP exit routines, as opposed to the LE/370 enclave of your propagating
application programs. LE/370 treats your exit routines as subroutines, as
opposed to main programs.

� If your exit routines were not compiled with one of the above compilers,
DPROP assumes that they are Assembler exit routines, and calls them
according to Assembler conventions.

� If LE/370 is installed and available through the //JOBLIB, //STEPLIB, linklist, or
LPA concatenation, do not provide HLL exit routines compiled with compilers
other than those listed above, because the results are unpredictable.

 Chapter 1. Introduction 13

Specifying LE/370 Runtime Options
It is possible that both your exit routines and your applications will be coded in
high-level languages. In most cases, each will use LE/370 runtime libraries and
options. In such a situation, there are two enclaves: one for the exit, and one for
the application. Note that the two enclaves operate under a different set of rules:

� The exit operates under the rules for a routine invoked through CEEPIPI
preinitialization.

� The application operates under the LE/370 rules for a main routine.

Additionally, the enclaves are separate in terms of storage use. Each enclave has
its own storage, based on installation defaults or overriding runtime options. For
performance and storage use, ensure that each enclave has sufficient storage
allocations.

The //EKYLEOPT DD Statement
DPROP allows you to specify LE/370 runtime options for the HLL DPROP exit
routines' enclave. You can provide the runtime options in the //EKYLEOPT DD
statements of the various DPROP job steps (described in IMS DPROP Reference).
DPROP provides these runtime options to CEEPIPI during the INIT SUB call.
Runtime options provided in //EKYLEOPT override the installation defaults that
were defined in the CEEDOPT LE/370 module.

You cannot link runtime options with a particular exit, as you can with an
application.

The TRAP Runtime Option
In an environment where both your exit routines and applications are coded in
high-level languages, you should be aware of issues concerning the LE/370 TRAP
runtime option. This runtime option is a combined ESTAE/ESPIE setting that you
can set ON or OFF. If the TRAP option is set ON, a DPROP abend could be
trapped by the LE/370 ESTAE/ESPIE mechanism. However, because LE/370 is
not in control, a 4036 abend will likely result. In this case, rerun the failing situation
with the TRAP option set to OFF to find the underlying abend.

For more information on LE/370, see OS/390 Language Environment Programming
Guide. For more information on diagnosing DPROP problems, see IMS DPROP
Diagnosis.

LE/370 and DPROP Installation
During DPROP installation, your DPROP system administrator can create a
dummy, IEFBR14-type, CEEPIPI load module in your DPROP RESLIB. This is
done if DPROP installation occurs before LE/370 installation. Creating the dummy
CEEPIPI module prevents a large number of CSV003I messages informing you that
the CEEPIPI module was not found. If the dummy CEEPIPI module was copied to
the DPROP RESLIB during DPROP installation and you install LE/370 at a later
time, do one of the following to enable DPROP to support LE/370:

� Delete the dummy, IEFBR14-type, CEEPIPI load module from the DPROP
RESLIB. The LE/370 load modules must be available to DPROP (through
//JOBLIB, //STEPLIB, LINKLIB, and LPA concatenation).

� Concatenate the load module library containing LE/370 modules ahead of the
DPROP RESLIB in the //JOBLIB, //STEPLIB, LINKLIB or LPA concatenation.

14 Customization Guide

Additional Requirements and Recommendations For COBOL
DPROP exit routines written in COBOL must be compiled with the RENT option.

Additional Requirements and Recommendations For PL/I
The PROCEDURE statement for a PL/I exit must include processing
characteristics, as shown in the following example:

 OPTIONS(FETCHABLE REENTRANT)

Refer to IBM SAA AD/Cycle PL/I MVS & VM Language Reference for more
information.

The sample exit in “Third Sample Segment Exit Routine” on page 97 and the
control blocks in Appendix B, “Sample Segment Exit Control Blocks” on page 352,
Appendix C, “Sample Field Exit Control Blocks” on page 368, and Appendix D,
“Sample Propagation Exit Control Blocks” on page 381 were coded with source
code between columns 2 and 72. Column 1 is used for carriage control. Page
ejects are inserted to make compiled sample listings more readable. To set this up
in your exit routines, specify the MARGINS compiler option when compiling a PL/I
exit, as follows:

 MARGINS(2,72,1)

Refer to IBM SAA AD/Cycle PL/I MVS & VM Programming Guide for more
information.

Additional Requirements and Recommendations For C
To establish correct linkage, all C language exits must include the following
PRAGMA:

#PRAGMA LINKAGE(exitname, FETCHABLE)

 Chapter 1. Introduction 15

Where:

EXITNAME
Is the name of the user exit (field, segment, or propagation).

The sample propagation exit routine in “Sample Exit Routine Source Code” on
page 235 uses LE/370 callable services (CEETDLI). To call LE/370 callable
services, add the following INCLUDE statement to your C language source code:

#INCLUDE "LEAWI.H"

Refer to OS/390 Language Environment Programming Reference for additional
information about LE/370 callable services.

Carriage control within the sample exit in “Sample Exit Routine Source Code” on
page 235 and in the control blocks in Appendix B, “Sample Segment Exit Control
Blocks” on page 352, Appendix C, “Sample Field Exit Control Blocks” on
page 368, and Appendix D, “Sample Propagation Exit Control Blocks” on
page 381 was forced using PRAGMA:

#PRAGMA PAGE(1)

Page ejects were inserted to make compiled sample listings more readable.

16 Customization Guide

Chapter 2. Segment Exit Routines

The RUP and HUP call a Segment exit routine as part of DPROP's generalized
mapping logic processing. This exit routine is required for TYPE=E PRs that
propagate IMS segments containing internal segments; it is optional for other PRs.

A Segment exit routine can be used to reformat or change the segment data during
propagation. The RUP's or HUP's generalized mapping logic can take care of most
situations, but if your data is stored in an unusual way or in some form that the
RUP or HUP cannot handle, consider writing a Segment exit routine.

A Segment exit routine converts a segment between an IMS database format that
DPROP does not support and the DPROP-supported format that you define in your
PR. This is further referenced as:

� IMS-to-DPROP mapping or normal call when your exit routine is called to
convert the segment from its IMS database format to the DPROP format. Calls
to your exit routine for IMS-to-DPROP mapping are generated primarily by the
RUP as part of IMS-to-DB2 propagation, and under some circumstances also
by the HUP as part of DB2-to-IMS propagation.

� DPROP-to-IMS mapping or reverse call when your exit routine is called to
convert the segment from its DPROP format to the IMS database format. Calls
to your exit routine for DPROP-to-IMS mapping are only generated by the HUP
as part of DB2-to-IMS propagation.

The conversion performed during DPROP-to-IMS mapping must be the reverse of
the conversion performed during IMS-to-DPROP mapping.

Segment exit routines used with TYPE=L or TYPE=F PRs must support
IMS-to-DPROP mapping; they do not need to support DPROP-to-IMS mapping.

Segment exit routines used with TYPE=E PRs must support both IMS-to-DPROP
mapping and DPROP-to-IMS mapping, even if the TYPE=E PR specifies
MAPDIR=HR. This is because the HUP may call your Segment exit routine and
request DPROP-to-IMS mapping during CCU and DLU processing.

A Segment exit routine can be used to:

� Reorganize IMS segments whose fields have variable start positions into a
format in which the fields have fixed start positions DPROP does not directly
support fields with variable start positions.

� Clean up data stored in an unusual way, or reorganize it before propagation to
DB2.

� Suppress the propagation of certain data changes. This subject is discussed in
more detail in “Selective Suppression of Data Propagation” on page 44.

� Support propagation of IMS segments containing internal segments (mapping
case 3).

The IMS-to-DPROP mapping logic of your Segment exit routine will typically
perform one or more of the following functions:

– Artificially construct, in the internal segments, ID fields that uniquely identify
each occurrence of the internal segment

 Copyright IBM Corp. 1991,2001 17

– Artificially construct, in the containing IMS segment, a counter field that
counts the number of occurrences of an internal segment type within the
containing segment (for internal segments whose number of occurrences
varies).

The DPROP-to-IMS mapping logic of your Segment exit routine must assemble
the IMS segment as it is expected by your IMS applications. The assembly is
performed from the containing segment and from multiple internal segments.

Your Segment exit routine does not need to distinguish between propagated and
nonpropagated fields; it always receives a complete segment.

You can use a Segment exit routine to change the format, position, or content of
fields in a segment before it is propagated to DB2 or stored in the IMS database.
Do not change the format, position, or content of the segment's key, concatenated
key, or any field that maps to the primary DB2 key. Changing these fields results
in an error.

If you need to convert field formats that DPROP does not directly support, consider
using a Field exit routine instead of (or in combination with) Segment exit routines.
Field exit routines are described in Chapter 3, “Field Exit Routines” on page 110.

If you are using a Segment exit routine, the definitions of the field format and
position that you provide to DPROP apply to the DPROP segment format. DPROP
does not require definitions for the IMS database format of the segment.

All your exit routines can be written in Assembler, or in COBOL, PL/I, or C.
DPROP support for exit routines written in high-level languages requires LE/370
Version 1 Release 2. For synchronous propagation, the RUP and HUP call your
exits in both IMS batch and online dependent regions accessing DB2. For
LOG-ASYNC propagation, the RUP calls your exit routines in an MVS batch
environment. During user asynchronous propagation, depending on your
implementation, the RUP calls your exit routines in IMS batch and dependent
regions accessing DB2, or in a non-IMS DB2/TSO or CAF environment. The RUP
and HUP also call your exits during execution of the CCU and DLU.

The DataRefresher term for segment exits is data exits. If you are using
DataRefresher to extract the IMS data, DataRefresher calls your exit routines
during extraction so that the mapping performed during extraction and data
propagation is the same.

As shown in Figure 1 on page 2, your Segment exit routine is called by DPROP in
the following contexts:

1. During HR propagation, the RUP first calls your Segment exit routine for
IMS-to-DPROP mapping, immediately after the segment has been passed by
the DL/I Data Capture.

Your Segment exit routine must convert the segment from its IMS database
format (as it is in the IMS database) to the DPROP format that you specified
during PR definition.

After calling your Segment and Field exit routines, the RUP converts the field
formats that you specified in your PR definition to the format of the DB2
columns and issues SQL statements (INSERT, UPDATE, or DELETE) to
update the DB2 table.

18 Customization Guide

2. During RH propagation, the HUP first converts the format of the DB2 columns
into the field format that you specified in the PR definition. Then it calls your
optional Field exit routines.

The HUP then calls your Segment exit routine for DPROP-to-IMS mapping, just
before performing the update of the IMS database. The Segment exit routine
must convert the segment from its DPROP format to its IMS database format.

Your exit routine does not need to distinguish between propagated and
nonpropagated fields; it always receives a complete segment from the HUP.

The HUP uses the following logic to provide a complete segment when only a
subset of the fields are propagated: The HUP retrieves the existing IMS
segment (if it exists) from the IMS database and calls your Segment exit routine
to perform IMS-to-DPROP mapping of the existing IMS segment. If the IMS
segment does not exist, the HUP initializes a segment in its DPROP format by
setting nonpropagated fields to the default value associated with their data type
(for example, zero or blank) or to binary zeroes (for space in the segment that
was not explicitly defined to DPROP as fields). The HUP then merges the
updated DB2 data with nonpropagated fields of the existing or initialized IMS
segment; this results in a complete segment in its DPROP format.

Providing Required Mapping Logic in Segment Exits
The mapping logic provided by a Segment exit routine is usually straightforward,
especially if the Segment exit routine does not support IMS segments containing
internal segments that are propagated by mapping case 3 PRs. In this case, the
Segment exit routine must convert the segment between its IMS database format
(as it is in the IMS database) and its DPROP format (as defined to DPROP during
PR definition).

Mapping Logic for IMS Segments With No Internal Segments
This section describes the mapping logic for IMS segments that do not contain
internal segments.

 IMS-to-DPROP Mapping
For IMS-to-DPROP mapping, when your exit routine is entered, a buffer contains
the segment in its IMS format. Your exit routine must convert the segment to its
DPROP format, and place it in another buffer.

 DPROP-to-IMS Mapping
For DPROP-to-IMS mapping, when your segment routine is entered, a buffer
contains the segment in its DPROP format, as it was mapped (according to the PR
definition) by DPROP from the changed DB2 row. Your exit routine must convert
the segment to its IMS format, and place it in another buffer.

The segment, in its DPROP format, is built by DPROP before calling your exit
routine, as follows:

� For propagated fields, the value of the DB2 column is converted to the IMS
field's DPROP format.

If Field exit routines were defined, the Field exit routines are called to convert
the fields from their DPROP format to their user format.

 Chapter 2. Segment Exit Routines 19

� Nonpropagated IMS fields are initialized in the DPROP segment format as
follows:

– For replace and delete operations, nonpropagated fields are initialized with
their current value.

– For insert operations, nonpropagated fields are initialized to the default
value associated with their data type (for example, zero or blank) or to
binary zeroes (for space in the segment that was not explicitly defined to
DPROP as fields).

Mapping Logic for IMS Segments
This section discusses mapping logic for IMS segments with internal segments.

When designing a Segment exit routine for IMS segments containing one or more
internal segment types, consider the following:

1. Each internal segment type is propagated by a mapping case 3 PR to/from a
different table.

Fields of the IMS segment that are not located in any internal segment can be
propagated by a mapping case 1 or 2 PR to/from another table, if performing
DB2-to-IMS propagation, propagation of these other fields is required.

Specify use of the same Segment exit routine when you define all these PRs.
This is to avoid propagation failures resulting from inconsistent mapping.
Consequently, your segment exit routine will typically be called during the
processing of both mapping case 3 and mapping case 1 or 2 PRs.

2. The Segment exit routine is specified at the level of the IMS segment, not at
the level of the internal segment. The output of the Segment exit routine is
therefore an entire IMS segment, not an individual internal segment.

3. A Segment exit routine is required for the propagation of an IMS segment
containing internal segments with TYPE=E PRs. It is optional for TYPE=L and
TYPE=F PRs.

4. During IMS-to-DB2 propagation your segment exit routine will be called for
IMS-to-DPROP mapping.

During DB2-to-IMS propagation, your Segment exit routine is called primarily for
DPROP-to-IMS mapping, and, in some circumstances, for IMS-to-DPROP
mapping.

5. When called for IMS-to-DPROP mapping, your Segment exit routine always
gets as input the entire IMS segment in its IMS format. Your Segment exit
routine must then return the entire IMS segment in its DPROP format.

6. When called for DPROP-to-IMS mapping, your Segment exit routine must
distinguish between two cases:

a. Sometimes, your exit routine is called during the processing of a mapping
case 3 PR propagating a table change to an occurrence of an internal
segment. In this case your Segment exit routine gets both of the following
as input:

� The internal segment, in its DPROP format, as mapped by DPROP
from the changed DB2 row

� The entire IMS segment, in its IMS format as it exists in the database
before propagation

20 Customization Guide

Your Segment exit routine must then return the modified IMS segment, in
its IMS format. This is done by merging the changed internal segment
occurrence in the pre-existing IMS segment.

b. Other times, your exit routine is called during the processing of the
mapping case 1 or 2 PR propagating a table change to the containing IMS
segment. In this case your Segment exit routine gets both of the following
as input:

� The IMS segment, in its DPROP format, as mapped by DPROP from
the changed DB2 row

� The entire IMS segment (if it exists), in its IMS format as it exists in the
database before the propagation

Your Segment exit routine must then return the modified IMS segment in its
IMS format.

 IMS-to-DPROP Mapping
For IMS-to-DPROP mapping, when your Segment exit routine is entered, a buffer
contains the segment in its IMS format. Your exit routine must convert the segment
to its DPROP format and place it in another buffer.

Make sure that the IMS-to-DPROP mapping logic of your exit routine creates a
DPROP segment format that matches the PR definition. Be sure that:

� For each internal segment type defined as having a variable number of
occurrences, the containing segment in its DPROP format has a count field. If
such a count field does not exist in the IMS format, your exit routine must
construct the count field in the DPROP format.

� Each internal segment type contains one or more ID fields that uniquely identify
each occurrence of the internal segment type within its containing segment. If
the ID fields do not exist in the IMS format, your exit routine must construct the
ID fields in the DPROP format.

� The start position of the first occurrence of an internal segment type and the
length of each internal segment occurrence exactly match the PR definitions.

 DPROP-to-IMS Mapping
Sometimes, your Segment exit routine is called for the processing of a mapping
case 3 PR propagating a table change to an internal segment. Other times, your
Segment exit routine is called for the processing of the mapping case 1 or mapping
case 2 PR propagating a table change to the containing IMS segment. Your
Segment exit routine must provide logic for both types of calls (as explained in the
information on page 36, your exit routine can distinguish between the two types of
calls by testing the value provided by DPROP in the DAXSEGT field).

Mapping logic when propagating to an internal segment: This section
discusses mapping logic when propagating to an internal segment with a mapping
case 3 PR.

A mapping case 3 PR propagates a table change to an internal segment. When
propagating this table change to IMS, DPROP provides the following information
when entering your exit routine:

 Chapter 2. Segment Exit Routines 21

� The internal segment, in its DPROP format, as DPROP mapped it (according to
the mapping case 3 PR definition) from the changed DB2 row. See below for a
description of how DPROP builds it.

� The before-change IMS segment, in its IMS format, as it exists in the IMS
database before propagation.

Your exit routine must merge (insert, delete, or replace) the changed internal
segment occurrence into the existing IMS segment, and construct the changed IMS
segment in its IMS format.

Before calling your exit routine, DPROP builds the internal segment that is provided
as input to your exit routine. DPROP builds the segment as follows:

� For propagated fields, the value of the DB2 column is converted to the DPROP
format of the IMS field.

If Field exit routines were defined, the Field exit routines are called to convert
the fields from their DPROP format to their user format.

� Nonpropagated IMS fields of the changed internal segment occurrence are
initialized in the DPROP segment format as follows:

– For replace and delete operations, they are initialized with their current
value.

– For insert operations, they are initialized with the default value associated
with their data type (for example, zero or blank); or with binary zeroes (for
space in the segment that was not explicitly defined to DPROP as fields).

Mapping logic when propagating to containing segment: This section
discusses mapping logic when propagating to the containing segment with a
mapping case 1 or mapping case 2 PR.

A mapping case 1 or mapping case 2 PR propagates a table change to a
containing IMS segment. When called to propagate this table change to IMS, your
exit routine receives the following information from DPROP upon entry:

� The containing IMS segment, in its DPROP format, as mapped by DPROP from
the changed DB2 row according to the mapping case 1 or 2 PR definition. See
below for a description of how DPROP builds it.

� The before-change IMS segment, in its IMS format, as it exists in the IMS
database before propagation (it is provided only if the DB2 change is a replace
or delete).

Your exit routine must return the new or changed IMS segment, in its IMS format,
in another area.

The containing IMS segment, in its DPROP format, provided as input to your exit
routine, is built as follows by DPROP before calling your exit routine:

� For fields that are propagated by the mapping case 1 or 2 PR (but not for fields
propagated by mapping case 3 PRs), the value of the DB2 column is converted
to the DPROP format of the IMS field.

If Field exit routines were defined, the Field exit routines are called to convert
the fields from their DPROP format to their user format.

� Fields that are not propagated by the mapping case 1 or 2 PR are initialized in
the DPROP segment format as follows:

22 Customization Guide

– For replace and delete operations, they are initialized with their current
value.

– For insert operations, they are initialized with binary zeroes for fields
located in internal segments and for space in the segment that was not
explicitly defined to DPROP as fields. Other fields that are not propagated
by the mapping case 1 or 2 PR are initialized with the default value
associated with their data type (for example, zero or blank).

How To Write A Segment Exit Routine
This section describes some guidelines and requirements for writing a Segment exit
routine to be used with DPROP. If DataRefresher uses your exit routine for data
extraction, it must also conform to these requirements.

As mentioned above, your exit routine can be written in Assembler, COBOL, PL/I,
or C when LE/370 Version 1 Release 2 is installed. When the RUP and HUP call
your Segment exit routine, they pass the following four parameters to the exit:

� An Interface Control Block
� An IMS DB segment buffer
� A DPROP segment buffer
� A 64-byte anchor area

Note: When calling your exit routine for DPROP-to-IMS mapping, DPROP
provides to your exit routine one additional segment buffer. This additional buffer
contains the before-change and existing IMS segment in its IMS format. This
additional buffer is not provided as a call parameter; instead, the buffer is pointed to
by the DAXIDDSB field of the interface control block.

If your exit routine is written in Assembler, register 1 contains the address of the list
of parameter addresses. This list is four fullwords long and contains the addresses
of the parameters in the order listed above. If your exit routine is written in a
high-level language supported by LE/370 Version 1 Release 2, then it must include
the appropriate mapping definitions to access the four parameters being passed to
it.

Interface Control Block
Figure 7 on page 28 shows the structure of the interface control block,
EKYRCDAX, that is passed to your Segment exit routine. There is one interface
control block per exit routine, lasting the duration of the exit in virtual storage. The
following table lists:

� The fields most useful to your exit routine
� What the fields are used for
� Their displacement into the control block DSECT

Figure 6 (Page 1 of 2). Interface Control Block Parameters for Segment Exits

Field Used For Displacement

DAXCALL Call function X'20'

DAXDBNM Name of IMS database
currently in use

X'9C'

DAXSEGM Name of physical segment
type

X'4C'

 Chapter 2. Segment Exit Routines 23

The interface control block has the same structure as the control block
DataRefresher passes to its data exits. A more complete description of these fields
is included in the copy of the control block DSECT shown in Figure 7 on page 28.

Of the fields listed above, the following can be changed by your Segment exit
routine:

 � DAXRETC
 � DAXSMESG
 � DAXSCRT1
 � DAXENTRD
 � DAXINCTL

Altering any of the other fields in the control block causes an error.

Figure 6 (Page 2 of 2). Interface Control Block Parameters for Segment Exits

Field Used For Displacement

DAXDLEN Length of the IMS DB
segment buffer

X'7C'

DAXFLEN Length of DPROP
segment buffer

X'80'

DAXPROGM Name of calling program X'90'

DAXTRANS A description of the DB or
TM environment

X'8C'

DAXKFBAD Address of fully
concatenated key

X'74'

DAXKFBLN Length of fully
concatenated key

X'78'

DAXDPRCT Type of update X'174'

DAXISEGM Name of segment to be
processed

X'178'

DAXIDDSB Pointer to buffer with
before-change IMS DB
segment

X'180'

DAXRETC Return code that your exit
provides

X'1A4'

DAXSMESG Exit message text X'1A8'

DAXSCRT1 Exit work space (128
bytes)

X'220'

DAXENTRD Indicates the exit routine
has been entered

X'1A2'

DAXINCTL Indicates the exit routine
has control

X'1A3'

IMS DB Segment Buffer
The IMS DB Segment Buffer contains the segment in its IMS format.

� When performing IMS-to-DPROP mapping, DPROP or DataRefresher provides
the IMS segment to your Segment exit routine in this buffer. Until now, there
has been no processing of the segment, so it appears as it does in the IMS
database.

24 Customization Guide

Your Segment exit routine must not modify this buffer when it is called to
perform IMS-to-DPROP mapping.

� When performing DPROP-to-IMS mapping, your Segment exit routine must
provide the segment to DPROP in this buffer. The segment must be provided
in its IMS format. This is the same IMS format as provided by DPROP to your
exit routine when performing IMS-to-DPROP mapping.

When called for DPROP-to-IMS mapping, this buffer is empty at entry to the
Segment exit routine.

See “Buffers and Variable-Length Segments” for notes about variable length
segment.

DPROP Segment Buffer
The DPROP Segment buffer contains the segment in the DPROP-supported format
that you identified during your PR definition.

� When performing IMS-to-DPROP mapping, your exit must place the
transformed segment into this buffer before returning to DPROP. When your
exit routine returns, DPROP reads this buffer to get the transformed segment.

You can return the segment in either fixed-length or variable-length format,
depending on what you specified in your PR. This does not depend on
whether the segment was fixed or variable in the IMS DB segment buffer. See
“Buffers and Variable-Length Segments” for notes on variable-length segments.

� When performing DPROP-to-IMS mapping, the HUP provides in this buffer
the segment to your Segment exit routine. This segment is in the
DPROP-supported format that you specified during the PR definition; it is in
either fixed-length or variable-length format.

1. For an IMS segment containing imbedded structures, the segment is either
the containing IMS segment or one of the internal segments whose name
can be found in the DAXISEGM field of the interface control block. Refer
to “DPROP-to-IMS Mapping” on page 21 for more details.

2. For all other segment types, this buffer contains the complete IMS
segment; the name in the DAXISEGM field is the same as the name of the
physical segment type in DAXSEGM.

This buffer always contains an entire internal or IMS segment that has:

– Propagated fields mapped from the changed DB2 table row

– Nonpropagated fields either mapped from an existing IMS segment image
or set to their initial values

Buffers and Variable-Length Segments
� For variable-length IMS segments, the first two bytes contain the length field,

followed by the segment data. The number in the length field includes the
length of the segment data plus the two bytes of the length field itself. For
example, if the segment data is 18 bytes long, the length field is set at 20
bytes, or X'14'.

To understand how DPROP sets the length of IMS segments during
DB2-to-IMS propagation, refer to the appropriate Administrators Guide for your
propagation mode.

 Chapter 2. Segment Exit Routines 25

� For variable-length internal segments, the length of the internal segment is not
necessarily in the first two bytes. Instead, the length of a variable-length
internal segment is provided by the HUP to your Segment exit routine in the
DAXFLEN field. The HUP determines the length of the internal segment based
on the PR definition. Remember that during PR definition, you specify the
length of a variable-length internal segment on the NEXT=fieldname+n keyword
of the SEGMENT statement of the DXTPCB (for PRs defined with
DataRefresher), or the fieldname+n value of the NEXT column of the DPRISEG
table (for PRs defined without DataRefresher).

Before-Change IMS DB Segment Buffer
The Before-Change IMS DB segment buffer exists only when the Segment exit
routine is called to perform DPROP-to-IMS mapping and there is an existing
segment in the IMS database. This is the case for:

� All segment types when the IMS update to be performed is a DLET or REPL

� Internal segment types for all types of updates

The Before-Change IMS DB segment buffer contains the IMS DB segment (in its
IMS format) as it currently exists in the IMS database, before propagation of the
DB2 change. This buffer is pointed to by the DAXIDDSB field of the interface
control block.

Your Segment exit routine must not modify this buffer.

Although your exit always receives this buffer when there is an existing IMS
segment image, it is only important when performing DPROP-to-IMS mapping of an
IMS segment containing internal segments. In the other cases, it is recommended
that your exit routine ignore this buffer.

See “Buffers and Variable-Length Segments” on page 25 for notes on
variable-length segments.

64-Byte Anchor Area
DPROP gives you 64 bytes as a general-purpose storage area. Each exit routine
has its own unique anchor area. You can use it for whatever you want. Initially,
the area is set to all binary zeros, and DPROP (or DataRefresher if you are using
it) never changes it again.

The anchor area exists in virtual storage, and remains yours for the duration of the
exit, as follows:

� For IMS batch and BMP regions, the anchor area lasts for the duration of the
application program.

� For MPP regions, the anchor area lasts for the duration of the IMS Program
Controller Subtask. This can span multiple MPP executions.

� For CCU and DLU executions, the anchor area lasts for the duration of the job
step.

� For LOG-ASYNC propagation and user asynchronous propagation, the anchor
area lasts for the duration of the MVS task being used by the receiver program
to call the RUP.

26 Customization Guide

Interface Control Block DSECT
You can generate the following DSECT in your assembler exit routine by coding the
EKYRCDAX macro statement. For HLL exit routines, you can include or copy one
of the following members to map the Segment exit routine Interface Control Block:

EKYRCDXC For exit routines written in COBOL
EKYRCDXP For exit routines written in PL/I
EKYRCDXK For exit routines written in C

Figure 7 on page 28 shows the interface control block, followed by detailed
descriptions of its fields.

 Chapter 2. Segment Exit Routines 27

 1 EKYRCDAX
2+KKKKKKKKKKKKKKKKKK START OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKKKKK/

 3+K K/
4+K CONTROL BLOCK NAME: K/

 5+K EKYRCDAX (DAX) K/
 6+K K/
 7+K DESCRIPTIVE NAME: K/

8+K DPROP SEGMENT EXIT INTERFACE BLOCK K/
 9+K K/
 1S+K K/
 11+KK
 12+K K

13+K THIS PRODUCT CONTAINS "RESTRICTED MATERIALS OF IBM". K
 14+K K

15+K 5685-124 (C) COPYRIGHT IBM CORP. 1989, 1992. K
16+K ALL RIGHTS RESERVED. K

 17+K K
18+K U.S. GOVERNMENT USERS RESTRICTED RIGHTS - K
19+K USE, DUPLICATION, OR DISCLOSURE RESTRICTED BY K
2S+K GSA ADP SCHEDULE CONTRACT WITH IBM CORP. K

 21+K K
22+K LICENSED MATERIALS - PROPERTY OF IBM. K

 23+K K
 24+KK
 25+K K/

26+K STATUS: V1 R2 MS K/
 27+K K/
 28+K FUNCTION: K/

29+K THIS IS THE CONTROL BLOCK USED TO INTERFACE BETWEEN K/
3S+K - DPROP OR DXT K/

 31+K AND K/
32+K - A USER'S SEGMENT EXIT ROUTINE (THESE USER K/
33+K EXIT ROUTINES ARE CALLED BY DXT 'USER DATA K/

 34+K EXIT ROUTINES') K/
 35+K K/

36+K THERE IS ONE DAX CONTROL BLOCK FOR EACH SEGMENT K/
37+K EXIT ROUTINE, LASTING FOR THE DURATION OF THE EXIT K/
38+K IN VIRTUAL STORAGE. K/
39+K FOR SYNCH PROPAGATION IN MPP REGIONS: K/
4S+K - THIS IS THE DURATION OF THE IMS PROGRAM CONTROLLER K/

 41+K SUBTASK. K/
42+K FOR SYNCH PROPAGATION IN BATCH/BMP REGIONS, FOR K/
43+K CCU AND DLU PROCESSING, AND FOR ASYNCH PROPAGATION K/
44+K (DEPENDING ON HOW AYSNCH PROPAGATION IS IMPLEMENTED): K/
45+K - THIS IS THE DURATION OF THE JOBSTEP. K/

 46+K K/
 47+K--K/
 48+K IMPORTANT NOTES: K/
 49+K ================ K/

5S+K - SINCE THE SAME USER EXIT ROUTINE CAN BE INVOKED BOTH K/
51+K BY DPROP AND BY DXT: CHANGES TO THIS CONTROL BLOCK MUST K/
52+K BE COORDINATED BETWEEN DPROP DEVELOPMENT AND DXT K/

 53+K DEVELOPMENT. K/
 54+K K/

55+K - FIELDS MARKED IN THE COMMENT WITH 'KKKDXT ONLYKKK' K/
56+K HAVE NO MEANING, WHEN THE SEGMENT USER EXIT K/
57+K ROUTINE IS INVOKED BY DPROP. K/

 58+K--K/
 59+K K/

6S+K MODULE TYPE= MACRO K/
61+K PROCESSOR= ASSEMBLER H K/

 62+K K/
63+K INNER CONTROL BLOCKS: NONE K/

 64+K K/
65+K MACROS USED FROM MACRO LIBRARY: NONE K/

 66+K K/

Figure 7 (Part 1 of 6). Interface Control Block for a Segment Exit Routine

28 Customization Guide

 67+K CHANGE ACTIVITY: K/
 68+K KMPSS57 12/13/9S K/

69+K KMPSS6S S2/S8/91 COPYRIGHT INFORMATION K/
 7S+K KMPREL2 S3/2S/91 K/
 71+K K/

72+KKKKKKKKKKKKKKKKKKKK END OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKKKKK/

 SSSSSS 74+DAX DSECT

SSSSS 75+DVRDAX EQU K LABEL FOR DXT COMPATIBILITY
 76+K--K

77+K THIS SECTION OF THE CB MAY NOT BE MODIFIED BY EXIT K
 78+K--K
 SSSSSS 79+DAXPFX DS SCL32 PREFIX OF CONTROL BLOCK
 SSSSSS 8S+DAXTNAME DS CL8 EYE CATCHER: "DVRXCDAX"
 SSSSS8 81+DAXRSVD DS CL24 RESERVED FOR DXT INTERNAL USE
 82+K
 SSSS2S 83+DAXPFXE DS SCL448 PREFIX EXTENSION
 SSSS2S 84+DAXCALL DS CL2 TYPE OF CALL TO EXIT:

85+K =C'NO' - NORMAL CALL,
86+K ISSUED TO CONVERT DATA FROM
87+K 'IMS DATABASE FORMAT' TO

 88+K 'DPROP/DXT' FORMAT
89+K =C'RV' - REVERSE CALL
9S+K ISSUED TO CONVERT

 91+K DATA FROM:
 92+K 'DPROP/DXT' FORMAT
 93+K TO

94+K 'IMS DATABASE FORMAT'
95+K KKKDXT ONLYKKK =C'RE' - RETURN CALL, ISSUED
96+K INSTEAD OF NEXT REQUEST FOR
97+K NEW DATA AT REQUEST OF EXIT
98+K (SEE DAXRETC VALUE 4)
99+K KKKDXT ONLYKKK =C'ED' - END-OF-DATA CALL
1SS+K ISSUED BY DXT.

 1S1+K
 SSSS22 1S2+DAXDATYP DS CL2 TYPE OF DATA BEING PASSED--

1S3+K =C'DL' - DL/I DATA
1S4+K KKKDXT ONLYKKK =C'PS' - PHYSICAL SEQUENTIAL
1S5+K KKKDXT ONLYKKK =C'VK' - VSAM KSDS DATA
1S6+K KKKDXT ONLYKKK =C'VE' - VSAM ESDS DATA
1S7+K KKKDXT ONLYKKK =C'GD' - GDI RECRD DATA

 1S8+K
 SSSS24 1S9+DAXFIL DS CL32 NAME OF FILE OR PCB FROM WHICH
 11S+K DATA IS BEING PASSED
 111+K
 SSSS44 112+DAXPSB DS CL8 NAME OF PSB IF TYPE IS "DL"
 113+K
 SSSS4C 114+DAXSEGM DS CL32 NAME OF SEGMENT IF TYPE IS "DL"
 115+K IF CALLER IS DPROP:

116+K - NAME OF PHYSICAL SEGM.
 117+K IF CALLER IS DXT:

118+K - NAME OF SEGM. SPECIFIED
119+K IN THE USED DBD (DBD CAN
12S+K BE A PHYSICAL OR LOGICAL

 121+K DBD)
 122+K
SSSS6C 123+DAXPCBAD DS AL4 KKKDXT ONLYKKK PTR TO PCB IF TYPE IS "DL"
 124+K
SSSS7S 125+DAXPCBLS DS AL4 KKKDXT ONLYKKK PTR TO LIST OF DEM'S PCBS,
 126+K IF DEM IS A DL/I DEM

Figure 7 (Part 2 of 6). Interface Control Block for a Segment Exit Routine

 Chapter 2. Segment Exit Routines 29

 127+K
 SSSS74 128+DAXKFBAD DS AL4 PTR TO SEGMENT'S FULLY
 129+K CONCAT KEY (IF DL/I).
 13S+K IF CALLER IS DPROP:

131+K - S, IF 'NOKEY' HAS BEEN
132+K SPECIFIED ON EXIT=

 133+K OF DBDGEN.
 134+K
 SSSS78 135+DAXKFBLN DS F LENGTH OF SEGM'S FULLY
 136+K CONCAT KEY (IF DL/I)
 137+K IF DPROP: S, IF 'NOKEY' HAS BEEN

138+K SPECIFIED ON EXIT=
 139+K OF DBDGEN.
 14S+K
 SSSS7C 141+DAXINLN DS SF
 SSSS7C 142+DAXDLEN DS F LENGTH OF IMS DB SEGMENT BUFFER
 143+K
 SSSS8S 144+DAXOUTLN DS SF
 SSSS8S 145+DAXFLEN DS F LENGTH OF DPROP SEGMENT BUFFER
 146+K
SSSS84 147+DAXSYSPR DS AL4 KKKDXT ONLYKKK POINTER TO SYSPRINT DCB (EXIT
 148+K MAY WISH TO RECORD INFORMATION
 149+K IN SYSPRINT VIA "PUT"--
 15S+K DCB FACTS: LRECL=121,

151+K NO CARRIAGE CONTROL CHAR
 152+K
 SSSS88 153+DAXENVT DS SCL12 ENVIRONMENT SUBFIELDS
 SSSS88 154+DAXOPSYS DS CL4 OPERATING SYSTEM:

155+K =C'ESA ' IF MVS/ESA
156+K KKKDXT ONLYKKK =C'XA ' IF MVS/XA
157+K KKKDXT ONLYKKK =C'MVS ' IF MVS

 158+K
 SSSS8C 159+DAXTRANS DS CL4 DB/DC ENVIRONMENT:

16S+K =C'BAT ' IF IMS BATCH/BMP
161+K =C'MPP ' IF IMS MPP
162+K =C'IFP ' IF FAST PATH
163+K =C'CICS' IF CICS
164+K =C' ' IF NONE OF ABOV.

 165+K
 SSSS9S 166+DAXPROGM DS CL4 CALLING PROGRAM:

167+K =C'DXT ' IF DataRefresher
168+K =C'DPRS' IF DPROP SYNCH PROP
169+K =C'DPRA' IF DPROP ASYNCH PROP
17S+K =C'DPRC' IF DPROP CCU PROP
171+K =C'DPRL' IF DPROP DLU

 172+K
 SSSS94 173+DAXEXIT DS CL8 NAME OF THIS EXIT ROUTINE
 174+K
 SSSS9C 175+DAXDBNM DS CL8 NAME OF IMS DATABASE
 176+K IF CALLER IS DPROP:

177+K - NAME OF PHYSICAL DBD.
 178+K IF CALLER IS DXT:

179+K - NAME OF USED DBD (CAN BE
18S+K NAME OF A PHYSICAL OR

 181+K LOGICAL DBD)
 182+K
 SSSSA4 183+DAXDPRPN DS CL24 RESERVED
 184+K
 SSSSBC 185+DAXASGNO DS F KKKDXT ONLYKKK NUMBER OF DAXASEGS ARRAY
 186+K ELEMENTS CONTAINING
 187+K ANCESTOR SEGM INFORMATION

Figure 7 (Part 3 of 6). Interface Control Block for a Segment Exit Routine

30 Customization Guide

 188+K
 SSSSCS 189+DAXASEGS DS 15CL12 KKKDXT ONLYKKK ARRAY OF ANCESTOR SEGMS,
 19S+K ONLY FOR DL/I SEGM EXIT,
 191+K IN ORDER FROM ROOT TO
 192+K PARENT SEGMENT (EACH
 193+K ARRAY ELEMENT IS MAPPED
 194+K BY DAXANCTR DSECT, BELOW)
 195+K
 SSS174 196+DAXRSVD1 DS CL46 RESERVED FOR DXT USE
 SSS1A2 SS174 197+ ORG DAXRSVD1 REDEFINE THIS AREA
 198+K
 SSS174 199+DAXDPRCT DS CL4' ' --DPROP ONLY-- IF CALLER IS DPROP:
 2SS+K - EXIT IS CALLED TO PROCESS:

2S1+K 'ISRT': A DL/I OR DB2 INSERT
2S2+K 'DLET': A DL/I OR DB2 DELETE
2S3+K 'REPL': A DL/I OR DB2 REPLACE

 2S4+K (AFTER-REPLACE IMAGE)
2S5+K IF CALLER IS DXT:

 2S6+K - NOT USED
 SSS178 2S7+DAXREPL DS C' ' --DPROP ONLY-- IF CALLER IS DPROP AND IF

2S8+K DAXDPRCT IS 'REPL':
 SSSC1 2S9+DAXREPLA EQU C'A' 'A': AFTER-REPLACE IMAGE

SSSC2 21S+DAXREPLB EQU C'B' 'B': BEFORE-REPLACE IMAGE

 SSS179 212+DAXSEGT DS C' ' --DPROP ONLY-- IF CALLER IS DPROP:
 213+K - TYPE OF SEGMENT PROCESSED:

SSSE4 214+DAXSEGTU EQU C'U' 'U': UPDATED IMS SEGMENT
SSSC1 215+DAXSEGTA EQU C'A' 'A': ANCESTOR OF UPDATED SEGM
SSSC9 216+DAXSEGTI EQU C'I' 'I': INTERNAL SEGMENT

 SSS17A 218+DAXPSUP DS C' ' --DPROP ONLY-- IF CALLER IS DPROP, DESCRIPTION
 219+K WHETHER PROPAGATION-SUPPRESSION
 22S+K IS ALLOWED:

SSSD5 221+DAXPSUPN EQU C'N' 'N': SUPPRESSION NOT ALLOWED
SSSE8 222+DAXPSUPY EQU C'Y' 'Y': SUPPRESSION ALLOWED

 SSS17B 224+ DS C' ' RESERVED
 225+K
 SSS17C 226+DAXISEGM DS CL8' ' --DPROP ONLY-- IF CALLER IS DPROP:
 227+K - FOR RH PROPAGATION

228+K NAME OF SEGMENT TO
229+K PROCESS. SAME AS PHYS.
23S+K IMS SEGNAME IN DAXSEGM
231+K IF NOT MAPPING CASE 3

 232+K ENTITY (INTERNAL)
233+K SEGMENT IN PROCESS.
234+K IF CALLER IS DXT:

 235+K - NOT USED
 SSS184 236+DAXIDDSB DS A --DPROP ONLY-- IF CALLER IS DPROP:
 237+K - FOR RH PROPAGATION

238+K POINTER TO THE BUFFER
239+K CONTAINING THE 'BEFORE-CHANGE'
24S+K IMS DATABASE SEGMENT.
241+K BUFFER CONTAINS THE
242+K BEFORE IMAGE OF THE
243+K IMS SEGMENT IF:
244+K - DAXDPRCT EQ REPL, OR
245+K - DAXDPRCT EQ DLET, OR
246+K - DAXSEGT EQ DAXSEGTI
247+K (INTERNAL SEGMENT OF
248+K MAPPING CASE 3)
249+K OR CONTAINS ALL BINARY
25S+K ZEROES IN OTHER CASES.
251+K BUFFER IS READ ONLY
252+K FOR THE EXIT ROUTINE.

Figure 7 (Part 4 of 6). Interface Control Block for a Segment Exit Routine

 Chapter 2. Segment Exit Routines 31

 SSS188 253+DAXIDDSL DS A --DPROP ONLY-- IF CALLER IS DPROP:
 254+K - FOR RH PROPAGATION

255+K LENGTH OF THE 'BEFORE-CHANGE'
256+K IMS DB SEGMENT POINTED-TO

 257+K BY DAXIDDSB.
 SSS18C SS1A2 258+ ORG

259+K POINT TO THE END OF DAXRSVD1
 26S+K--K

261+K THE NEXT GROUP OF FIELDS MAY BE MODIFIED BY THE EXIT ROUTINE K
 262+K--K
 SSS1A2 263+DAXENTRD DS CL1 SET BY EXIT ROUTINE TO
 264+K C'X', INDICATES
 265+K THAT EXIT HAS BEEN ENTERED
 266+K
 SSS1A3 267+DAXINCTL DS CL1 SET BY EXIT ROUTINE TO
 268+K C'X', INDICATES
 269+K THAT EXIT IS IN CONTROL
 27S+K
 SSS1A4 271+DAXRETC DS F RETURN CODE--

272+K VALUE SET HERE BY EXIT,
 273+K
 274+K RETURN CODE VALUES...

SSSSS 275+DAXRCOK EQU S = S - NORMAL, OUTPUT
 276+K DATA RETURNED
 277+K

SSSS4 278+DAXRCOKR EQU 4 KKKDXT ONLYKKK = 4 - NORMAL, OUTPUT
 279+K DATA RETURNED,
 28S+K DXT SHOULD

281+K RETURN TO EXIT FOR NEXT
282+K OCCURRENCE OF THIS RECORD

 283+K OR SEGMENT
 284+K

SSSS8 285+DAXRCNQ EQU 8 = 8 - IF CALLER IS DPROP:
286+K DPROP WILL SUPPRESS
287+K THE PROPAGATION OF
288+K THE CHANGED DL/I DATA
289+K - IF CALLER IS DXT:
29S+K DXT SHOULD NOT
291+K CONSIDER DATA TO
292+K BE ELIGIBLE FOR

 293+K EXTRACT
 294+K
 SSSSC 295+DAXRCERB EQU 12 =12 ERROR

296+K - IF CALLER IS DPROP:
 297+K PROPAGATION FAILURE.
 298+K DPROP/RUP WILL

299+K GO THROUGH ITS USUAL
3SS+K ERROR HANDLING LOGIC.
3S1+K - IF CALLER IS DXT:

 3S2+K DXT SHOULD
 3S3+K TERMINATE BATCH
 3S4+K
 SSS1S 3S5+DAXRCERD EQU 16 =16 ERROR

3S6+K - IF CALLER IS DPROP:
3S7+K RUP WILL ABEND
3S8+K - IF CALLER IS DXT:

 3S9+K DXT SHOULD
31S+K TERMINATE DEM EXECUTION

 311+K

Figure 7 (Part 5 of 6). Interface Control Block for a Segment Exit Routine

32 Customization Guide

 SSS1A8 312+DAXSMESG DS CL64 TEXT OF MESSAGE PASSED
 313+K FROM EXIT ROUTINE TO DPROP/DXT.
 314+K ALL BLANKS MEANS NO MESSAGE.

315+K - IF CALLER IS DPROP:
 316+K MSG WILL BE WRITTEN TO
 317+K VARIOUS DESTINATIONS ACCORDING
 318+K TO USUAL DPROP/RUP ERROR HANDLING
 319+K LOGIC IN MESSAGE EKYR98SI OR
 32S+K EKYR981E.

321+K - IF CALLER IS DXT:
 322+K TEXT OF MESSAGE WILL BE
 323+K WRITTEN TO
 324+K SYSPRINT DATA SET IN MESSAGE
 325+K DVRAS_5S.
 326+K (UNDERSCORE IS REPLACED
 327+K BY ONE OF SEVERAL DIGITS)
 328+K HAS EFFECT FOR ALL CALLS.
 329+K
 SSS1E8 33S+DAXDPRPM DS CL24 STORAGE RESERVED FOR DATA EXIT
 331+K
 SSS2SS 332+DAXRSVD2 DS CL32 RESERVED FOR DXT USE
 SSS22S 333+DAXSCRT1 DS CL128 WORK SPACE (SCRATCHPAD)
 334+K MAY BE USED BY EXIT
 335+K ROUTINE AS DESIRED
 336+K

SS2AS 337+DAXEND EQU K END OF DAX DSECT
SS2AS 338+DAXLEN EQU K-DAX LENGTH OF DAX DSECT

 339+KK
 34S+K
 341+K DAXANCTR DSECT KKKDXT ONLYKKK

342+K MAPS THE ARRAY ELEMENTS OF DAXASEGS
 343+K
 344+KK
 SSSSSS 345+DAXANCTR DSECT , KKKDXT ONLYKKK
SSSSSS 346+DAXASGNM DS CL8 KKKDXT ONLYKKK ANCESTOR SEGM NAME
 347+K
SSSSS8 348+DAXASGAD DS AL4 KKKDXT ONLYKKK ANCESTOR SEGM ADDRESS
 349+K
 35S END

Figure 7 (Part 6 of 6). Interface Control Block for a Segment Exit Routine

Interface Control Block Field Descriptions
The following list contains detailed descriptions of the fields in the interface control
block. The primary descriptions given are for DPROP unless otherwise indicated.
Additional descriptions are given for DataRefresher.

Some of the fields are not useful to your exit routine when DPROP calls it. These
fields are for DataRefresher only, both in the interface control block and below.

DAXTNAME Contains the constant DVRXCDAX, used to identify the control
block in a storage dump.

DAXCALL The call function that describes what action your exit routine must
perform. This field can have the following values:

NO Normal (IMS-to-DPROP mapping). The exit routine is called to
convert the segment from its IMS to its DPROP (or
DataRefresher) format described in the PR definition. NO calls
can be generated by both the RUP and HUP during
propagation, and by DataRefresher DEM during extract.

 Chapter 2. Segment Exit Routines 33

RV Reverse (DPROP-to-IMS mapping). The exit routine is called
to convert the segment from the DPROP (or DataRefresher)
format described in the PR definition to the IMS format. RV
calls are generated only by the HUP.

ED End of data (DataRefresher only). The exit routine is called to
perform end of data summary functions. A DataRefresher user
must request this function with a EODCALL=Y keyword on the
SEGMENT statement of the DXTPSB.

RE Return (DataRefresher only). The exit routine is called during
data extract after returning with a return code of 4. DPROP
does not support return code 4 and return calls. Your exit must
not use return code 4 with DataRefresher if the extracted data
is propagated using a generalized mapping case. This results
in different mapping for the DataRefresher extract and
propagation by DPROP, which causes inconsistencies in the
propagated data.

DAXDATYP Contains the constant DL, indicating that the data being mapped is
an IMS segment.

DAXFIL If called by DPROP, the name of the DBPCB used for the updating
IMS call. This field is filled for both NO and RV calls. If called by
DataRefresher, it contains the name of the DBPCB used for extract.

DAXPSB If called by DPROP, the name of the PSB used for the program that
modified the IMS data. This field is only specified for NO calls. If
called by DataRefresher, it contains the name of the PSB used for
DataRefresher DEM.

DAXDBNM If called by DPROP, the name of the physical IMS DBD.

If called by DataRefresher, the name of the DBD referenced in the
PCB of the PSB used for the DataRefresher DEM. In this case, the
DBD can be either physical or logical. For DataRefresher users, if
the exit routine is called for segments propagated by DPROP, it is
recommended that you refer to physical DBDs in the PCB.

DAXSEGM If called by DPROP, the name of the IMS segment type as specified
in the physical IMS DBD.

If called by DataRefresher, it is the segment type found on the
SEGMENT statement of the DXTPSB. For DataRefresher users, it
is recommended that you specify the same segment names on the
SEGMENT statements as in the physical IMS DBD.

DAXKFBAD The address of the segment's fully concatenated key. Remember
that your exit routine must not modify this key. The address can be
zero if the segment has no fully concatenated key, or if the key was
not supplied to the RUP (for example, if the NOKEY option was
used in the EXIT= keyword of the DBD).

DAXKFBLN The length of the fully concatenated key. The length can be zero if
the segment has no fully concatenated key, or if the key was not
supplied to the RUP.

DAXDLEN If called by DPROP for a NO call (IMS-to-DPROP mapping), the
length of the IMS DB segment.

If called by DPROP for an RV call (DPROP-to-IMS mapping), this

34 Customization Guide

field contains the length of the IMS DB segment buffer. For RV
calls, this buffer contains the result of Segment exit routine
processing; do not store a segment in the IMS DB segment buffer
that is longer than the length specified in DAXDLEN. This can
cause storage overlays and unpredictable results. If the segment in
its IMS format is a variable-length segment, the segment exit must
store the actual length of the segment in the first two bytes of the
IMS segment buffer.

If called by DataRefresher, this field contains the length specified in
the BYTES= keyword of the SEGMENT statement in the CREATE
DXTPSB control statement. For variable length IMS DB segments,
the actual length is found in the first two bytes of the buffer.

DAXFLEN If called by DPROP for a NO call (IMS-to-DPROP mapping), the
length of the DPROP segment buffer. For NO calls, this buffer
contains the result from Segment exit routine processing; do not
store a segment in the DPROP segment buffer that is longer than
the length specified in DAXFLEN. This can cause storage overlays
and unpredictable results. If the PR defines the segment in its
DPROP format as a variable-length segment, the actual length of
the segment must be stored by the segment exit in the first two
bytes of the DPROP segment buffer.

If called by DPROP for an RV call (DPROP-to-IMS mapping),
DAXFLEN contains the length of the segment in its DPROP format.

DAXOPSYS Contains the constant ESA, indicating that the program is running in
an MVS environment.

DAXTRANS Contains a value describing the environment in which the exit
routine is called. This field can have the following values:

BAT IMS Batch or BMP environment
MPP IMS MPP environment
IFP IMS Fast Path environment
CICS CICS environment

If the exit is called in an environment other than those listed above,
the value consists of blanks.

DAXPROGM Contains information about the calling program, either DPROP or
DataRefresher. This field can have the following values:

DPRS Called by DPROP during synchronous propagation
DPRA Called by DPROP during LOG-ASYNC propagation and

user asynchronous propagation
DPRC Called by DPROP during CCU execution
DPRL Called by DPROP during DLU execution
DataRefresher Called by DataRefresher

DAXEXIT The load module name of the Segment exit routine.

DAXDPRCT Contains a value describing the type of IMS or DB2 update
performed. This field can contain the values ISRT, REPL, and
DLET for the insert, replace, or delete of an IMS segment or DB2
row, respectively. The field is set only when DPROP calls the exit
routine. If the exit is called for CCU or DLU processing, the value
of the field is set to ISRT because the DPROP logic simulates an
insert during CCU and DLU processing.

 Chapter 2. Segment Exit Routines 35

DAXREPL This field is only set when the exit routine is called by DPROP
during processing of a Replace. The field specifies whether the exit
routine is being called to process the after-image (A) of the
segment, or the before-image (B) of the segment.

DAXSEGT This field describes which type of segment is being processed.

For NO calls (IMS-to-DPROP mapping), the possible values are:

U The segment being processed is the IMS segment being
updated.

A The segment being processed is a physical ancestor of the IMS
segment being updated. The value can be set to A when
processing a PR propagating path-data located in an ancestor
segment.

For RV calls (DPROP-to-IMS mapping), the possible values are:

U The segment located in the DPROP segment buffer is the
containing IMS segment.

I The segment located in the DPROP segment buffer is an
internal segment. The value can be set to I when processing
mapping case 3 PRs. The name of the internal segment type
being processed is located in DAXISEGM.

The field is set only when the exit routine is called by DPROP.

DAXPSUP This field indicates whether the Segment exit routine can request
suppression of data propagation during its current call. This field is
set only when the exit routine is called by DPROP.

If your Segment exit routine is designed to support propagation
suppression, it must test this field to determine if it can suppress
propagation.

N The exit routine cannot request suppression of data
propagation.

Y The exit routine can request suppression of data propagation.

This field is set to Y only if:

� The PR definition specified PROPSUP=Y.

� Other conditions are met (for example, if the current call of
the exit is not for the before-image of a segment).

DAXISEGM This field is only set for RV calls (DPROP-to-IMS mapping) and
contains the name of the segment to be processed. For internal
segments (mapping case 3), this is the name of an internal
segment; for any other case, it contains the name of the physical
IMS segment and is the same as in the DAXSEGM field above.

DAXIDDSB This field is only set for RV calls (DPROP-to-IMS mapping) and
contains a pointer to a buffer, or zero. The buffer contains the
before-change IMS DB segment (in its IMS format). The size of the
before-change IMS DB segment is provided in DAXIDDSL.

The buffer must not be modified by your exit routine.

36 Customization Guide

This pointer is only present if the type of update in DAXDPRCT is
either REPL or DLET, or if the segment to be processed is a
mapping case 3 internal segment.

The buffer pointed to by DAXIDDSB is only important when
performing DPROP-to-IMS mapping of an IMS segment containing
internal segments. In this case, your exit routine requires the
following two inputs:

� The DPROP segment buffer. It contains either an internal
segment (if it is the target table of an internal segment that has
changed) or the IMS segment (in all other cases) in its DPROP
format.

� The buffer pointed to by DAXIDDSB. It contains the
before-change copy of the IMS segment, as stored in the IMS
DB.

Your Segment exit routine must then use this input to assemble the
after-change copy of the IMS segment (in its IMS format). The
assembled IMS segment must be returned in the IMS DB segment
Buffer.

If the IMS segment is variable length, the first two bytes contain the
length field, followed by the segment data. The number in the
length field includes the length of the segment data plus the two
bytes of the length field itself.

DAXIDDSL The length of the segment in the before-change IMS DB segment
buffer.

The next two fields are switches that can be useful for problem determination.
DPROP and DataRefresher do not require your exit routine to set these fields.
However, they can help you determine where a problem occurred if you have an
ABEND. DPROP and DataRefresher set these fields to blanks before calling your
exit routine for the first time.

DAXENTRD Exit-entered flag.

As you enter your exit routine, set this field to X. DPROP does not
change this field again, so if a problem occurs, you can determine if
your exit has been entered.

DAXINCTL Exit-in-control flag.

You can also set this field to X, indicating that your exit routine has
control. When DPROP regains control, it resets this field to blank,
so you can determine if your exit routine has control when an
ABEND occurs.

The next two fields can be used along with the RUP's and HUP's error handling
logic. For more information on return codes and error handling techniques, see
“Return Codes and Error Handling Techniques” on page 39.

DAXRETC The return code that the exit routine provides when returning to its
caller. This field is set to zero when the exit routine is called.

DAXSMESG User-provided error message. It is set to blanks when the exit
routine is called. When the exit routine returns, if the field is not
blank, DPROP or DataRefresher writes the contents of the field.

 Chapter 2. Segment Exit Routines 37

DPROP prefaces the message with the number EKYR980I or
EKYR981E, and writes the message according to its usual error
handling logic (for example, to the OS/VS console, trace data set,
//EKYPRINT, or the Audit trail). DataRefresher prefaces the
message with the number DVRA_50, (where _ is one of several
possible digits) and writes the message to the //SYSPRINT data
set.

DAXSCRT1 An exit routine work space for your own use; for example, to save
information across calls to the exit routine. Before the first call to
your exit routine, DPROP initializes this space to binary zeros, and
does not modify it again.

Exit Routine Processing
Using the information given above, your Segment exit routine can copy the
propagated data from a buffer, transform it, and return it using another buffer.

When called for IMS-to-DPROP mapping (with NO in DAXCALL), your Segment
exit routine can read the segment from the IMS DB segment buffer and return it in
the DPROP segment buffer after transformation.

When called for DPROP-to-IMS mapping (with RV in DAXCALL), your Segment exit
routine reads the segment from the DPROP segment buffer and returns it in the
IMS DB segment buffer after transformation.

There are, however, some restrictions and guidelines to follow when developing
your exit routine:

� When DPROP calls it, your exit routine always gets control in AMODE 31, and
must return control in AMODE 31. Keywords DPROP passes to your exit are
usually located above the 16MB line. The exit routine is loaded above or below
the 16MB line, depending on the RMODE attribute of the exit load module.

It is recommended that you code and link-edit your program as reentrant. To
simplify programming, DPROP provides work spaces in your exit routines, in
the interface control block, and the 64-byte anchor area.

� If your exit routine is written in Assembler language, DPROP uses standard
OS/VS conventions when calling your exit routine.

– Register 1 points to the parameter list described above.
– Register 13 contains the address of a register save area.
– Register 14 contains the return address.
– Register 15 contains the entry point address of the exit routine.

Upon entry, the exit routine must save the register contents into the save area
that the caller provides. If your exit routine calls other routines that use
standard MVS linkage conventions, it must also provide a save area of its own.
The exit routine must return to its caller using normal OS/VS conventions after
restoring the registers. A return code must be provided in the interface control
block, not in register 15.

� Your Segment exit routine must never change the content or the displacement
of the key field of the propagated IMS segment. Do not change the fully
concatenated key, the address of which is in DAXKFBAD in the interface
control block. and when called for DPROP-to-IMS mapping, your exit routine
must not change the DPROP segment buffer,

38 Customization Guide

� When called for IMS-to-DPROP mapping, your exit routine must not change
the IMS DB segment buffer, which contains a copy of the propagated segment.

� If you map an IMS field that is not in the fully concatenated key to a column of
the DB2 primary key, observe the following rules:

For a TYPE=E PR, your exit routine must not change the content or
displacement of this field.

If the DPROP format of the segment is variable length, this field must be
contained in the DPROP format of the segment that your exit routine
returns to DPROP during IMS-to-DPROP mapping.

� Because the exit routine for synchronous propagation runs in the same
environment as the propagating application program, it can generate the same
type of IMS calls and SQL statements as the application program. However,
for LOG-ASYNC propagation and user asynchronous propagation using the
TSO-Attach or CAF-Attach, the exit routines do not execute in an IMS
environment, and cannot generate IMS calls. Therefore, it may be preferable
to generate only SQL statements.

If your exit generates IMS calls, then use the AIB interface described in
IMS/ESA Application Programming: DL/I Calls, which allows your exit routine to
generate calls without the address of the IMS PCBs.

During synchronous propagation, IMS and DB2 update calls, made from within
your exit routine, are not propagated synchronously (but can be propagated
asynchronously, if you implement LOG-ASYNC propagation or user
asynchronous propagation).

Exclude the PCBs your exit routine uses from the list passed to the application
program upon entry. You can avoid changing the application program if you
need to add PCBs that your exit routine uses exclusively. Refer to IMS/ESA
Utilities Reference: System for more details.

� A Segment exit routine must not perform functions that are not supported by
the environment in which it is running. For example, an exit routine running in
an MPP region must not WRITE to OS files; also, the exit routine must not
generate STIMER macros in an IMS environment.

For performance reasons, your exit routine should generate static rather than
dynamic SQL statements. Avoid using functions that have a detrimental impact
on the performance of the propagating program (such as performing an OPEN
and CLOSE on an OS/VS file each time the exit routine is called).

Return Codes and Error Handling Techniques
This section discusses how to return from your exit routine to DPROP, including
return codes and error handling techniques.

 Return Codes
The following list describes the return codes that you can set when returning from
your Segment exit routine to the RUP or HUP. To set the return code, place it in
the DAXRETC field in the interface control block. The RUP and HUP read this field
when they regain control.

Returning with any code other than those on the list is considered an error and
results in an ABEND, regardless of the error option (that is, even with
ERROPT=IGNORE in effect).

 Chapter 2. Segment Exit Routines 39

0 Used for normal returns.

4 This return code is not supported by DPROP. Returning this code to the RUP
or HUP causes it to ABEND. While DataRefresher supports this return code,
your exit must not return this code to DataRefresher while processing a
segment that is propagated by the DPROP generalized mapping logic. This can
result in DataRefresher mapping during the extract that is not consistent with the
DPROP mapping during propagation. This can result in propagation failures.

8 This return code causes DPROP to suppress propagation of the changed data
segment. The exit must be specifically allowed to use this code during PR
generation. The exit routine must not return with return code 8 when DAXPSUP
was set to N (for example, the Segment exit routine is processing the
before-image of a segment, or processing an ancestor of the changed IMS
segment). For more information about suppressing data propagation, see
“Selective Suppression of Data Propagation” on page 44.

If your exit routine uses this return code with DataRefresher, the current
occurrence of the segment is not extracted.

12 DPROP interprets this return code as a failure indication. This prevents
propagation of the changed data, and DPROP proceeds with its error logic.

If ERROPT=BACKOUT is in effect, for synchronous propagation, the RUP or
HUP backs out the propagating application. If ERROPT=BACKOUT is in effect
for LOG-ASYNC propagation, the Receiver terminates with an error message.
For user asynchronous propagation, CCU or DLU execution, the RUP and HUP
return to the caller with an error. DPROP uses its error reporting logic to write
diagnosis information.

If ERROPT=IGNORE is in effect, the RUP and HUP do not perform
propagation, and return to the caller without performing a backout and without
providing any error indication to the caller. However, if this occurs during CCU
or DLU execution, the RUP and HUP return to the CCU or DLU with an error.
DPROP uses its error reporting logic to write diagnosis information.

If the exit returns to DataRefresher with this return code, DataRefresher
terminates the extract requests currently being processed.

16 Return code 16 signals a severe error. DPROP does not propagate the
changed data, but generates an ABEND. Returning this code to DataRefresher
causes it to terminate the DEM.

Error Handling Techniques
When your exit routine encounters an error, It is strongly recommended that your
exit routine take advantage of the standard error handling logic of DPROP. In the
interface control block, you can supply a return code in DAXRETC, and an error
message in DAXSMESG. You must not return an error message in DAXSMESG
without providing an error return code (12 or 16), because this can create many
console messages.

By supplying DPROP with an error return code and message, you gain many
advantages. When an exit returns with an error return code, the RUP and HUP
trace or snap the data and the control blocks involved in the interface. The exits
are included in the standardized error handling scheme of DPROP. This scheme:

� Determines the difference between ERROPT=BACKOUT and
ERROPT=IGNORE

40 Customization Guide

� Is different for propagation and CCU or DLU execution

� Protects against sending too many messages to the MVS consoles

DPROP writes your error message using its standard message writing logic: WTO,
trace data set (the IMS log, the //EKYLOG data set, or the //EKYTRACE data set),
and AUDIT trail.

If the exit routine generates its own messages or ABENDs, the RUP and HUP
cannot include the exit routine in their standardized error handling, or guard against
sending numerous messages to the MVS consoles. Therefore, it is not
recommended that your exit routine generate its own messages or ABENDs when
an error occurs.

Saving Information Across Calls
You can save information across calls to the exit routine. Save the information
either in the 64-byte anchor area or in the DAXSCRT1 field of the interface control
block. If these areas are not large enough, you can generate a GETMAIN and
save the address of the storage in either of these areas.

DPROP and DataRefresher treat the interface control block in slightly different
ways. In DPROP, there is one interface control block per exit routine (lasting for
the duration of the MVS task), while in DataRefresher, there is one interface control
block per segment type (lasting for the duration of the extract request). If
DataRefresher and DPROP call the exit routine, and are sensitive to this difference,
you can use the anchor area to save information across calls. DPROP and
DataRefresher handle this area the same way: there is one anchor area per exit,
and it lasts for the duration of the exit in virtual storage.

Updating Your Segment Exit Routine
DPROP does not provide any online change logic to replace an existing load
module copy of your segment exit routine with a new version of the load module. If
you need to change your exit routine, then stop the affected IMS regions, DPROP
asynchronous Receiver or any user asynchronous receiver programs before
performing the change. A change of the exit routine without stopping the IMS
regions or receiver programs can cause unpredictable results. For example, some
MPP regions can use the new version of the exit routine, while other regions use
the old version. After the change, you can restart the IMS regions.

Tracing Your Exit Routine
DPROP provides a trace facility that can assist you in detecting errors in your exit
routines. You can activate the DPROP trace facility by providing a TRACE control
statement in the //EKYIN data set of the job step where your exit routine runs. For
synchronous propagation, you can also activate tracing by calling the SCU with a
TRACE ON control statement.

If you include debug level 2 on the TRACE or TRACE ON statements, the trace
output includes the changed IMS segment and the propagating SQL statements for
HR propagation, or the changed DB2 row and the propagating DL/I call, including
the IMS segment data, for RH propagation.

If you include debug level 4 on the TRACE or TRACE ON statements, each time
the exit routine returns to DPROP, the trace output includes:

 Chapter 2. Segment Exit Routines 41

� The contents of the interface control block

� The IMS DB segment buffer

� The DPROP segment buffer

� The 64-Byte anchor area

� For DPROP-to-IMS mapping, the old image of the IMS segment (located in the
buffer pointed to by DAXIDDSB)

This information is automatically included in the RUP or HUP trace information
when a propagation failure occurs, even if you have not activated the DPROP
trace.

If you include debug level 8 on the TRACE or TRACE ON statements, the trace
output includes a record of each call to, and each return from, an exit routine.

Two other debugging aids, located in the interface control block, are:

� The exit-entered flag
� The exit-in-control flag

In a dump, these flags help you determine if your exit routine is in control at the
time of a failure.

Differences Between Exit Routine Calls From DPROP or DataRefresher
This section summarizes the differences between calling your Segment exit routine
from DPROP and calling it from DataRefresher.

� DPROP does not call the exit routine with ED or RE calls.

� DPROP does not support return code 4. If DataRefresher/DEM calls the exit
routine for a segment that is propagated using generalized mapping logic, the
exit routine must not return a return code 4 to DataRefresher/DEM.

� When DPROP calls the exit routine, there is one interface control block per exit
routine, lasting for the duration of the IMS Program Controller MVS Subtask.
When DataRefresher calls it, there is one interface control block per segment
type, lasting for the duration of the extract request.

If your exit routine must save information across calls and is sensitive to this
difference, you can use the 64-byte anchor area to save information. This area
is treated the same by both DPROP and DataRefresher.

� The following fields in the interface control block are not set when DPROP calls
the exit routine; a brief explanation of any consequences this has is included.

DAXPCBAD The exit routine cannot access the DB PCB used for the
updating IMS calls.

DAXPCBLS The exit routine cannot access the list of DB PCBs. If the exit
routine needs to issue IMS calls, it must use the IMS AIB
interface.

DAXSYSPR The exit routine cannot write to the SYSPRINT file.

DAXASGNO This is the number of array elements in DAXASEGS.

DAXASEGS This is the array of names of ancestor segments.

� The RV call is generated only by DPROP for DPROP-to-IMS transformation
and is not used by DataRefresher.

42 Customization Guide

� DAXDPRCT is only set when DPROP calls the exit routine.

� DAXISEGM is only set when DPROP calls the exit routine for DPROP-to-IMS
mapping.

� DPROP support for exit routines written in high-level languages requires
LE/370 Version 1 Release 2.

Refer to the appropriate DataRefresher or DXT documentation for information about
DataRefresher trace facilities.

Telling DPROP About Your Segment Exit Routine
This section discusses how to inform DPROP that you want to use a Segment exit
routine. The procedure depends on how you are entering your PR.

PRs Entered Through DataRefresher UIM
If you are entering the PR through DataRefresher UIM, you must provide the
following keyword operands on the SEGMENT statement of the DXTPSB:

� Specify the load module name of the exit routine on the EXIT= keyword.

� Specify the fixed or maximum length of the segment, in its DPROP format, on
the XBYTES= keyword.

� Specify whether the DPROP segment format is fixed with FORMAT=F, or
variable with FORMAT=V.

You can also specify that your exit routine be allowed to suppress propagation of
an update by returning a return code of 8. You specify this by coding a
PROPSUP=Y value on the MVGUPARM keyword of the DataRefresher SUBMIT
control statement. Specifying PROPSUP=N prohibits your exit routine from
returning a return code of 8.

PRs Entered Into the MVG Input Tables
If you are entering your PR information directly into the Mapping Verification and
Generation (MVG) input tables, without using DataRefresher, you use the
DPRISEG (or SEG) table to inform DPROP about your exit routine. The SEG table
is one of the MVG input tables. There are three columns in the table that you must
specify:

SEGEXIT The name of your Segment exit routine. It can be up to eight
characters long. It must be alphanumeric, and begin with an
alphabetic character.

SEGEXITL The length, in bytes, of the segment in its DPROP format. The
length must be specified as an integer. If the segment length is
variable, use the maximum length.

SEGEXITF The format of the segment in its DPROP format. If the segment is
fixed length, place an F in this column. If the segment is variable
length, place a V in this column.

SEGEXITL and SEGEXITF describe the segment in the DPROP segment buffer
and in the DPROP-supported format. This format is for IMS-to-DPROP mapping
the output of the exit routine, and for DPROP-to-IMS mapping the input to your exit
routine.

 Chapter 2. Segment Exit Routines 43

You must specify values for all three of these columns to use your exit routine. If
either the segment length or the format is entered, the MVGU checks to make sure
you have also entered the name of the exit routine.

To specify that your exit routine be allowed to suppress propagation of an update
by returning a return code of 8, use the PROPSUP column of the DPRIPR MVG
input table. Place a Y in the column to allow suppression. Place an N in the
column to prohibit suppression.

Selective Suppression of Data Propagation
Your Segment exit routine can selectively suppress data propagation. Propagation
is suppressed when your exit routine returns a return code of 8 to DPROP. This
means that your exit can analyze the changed data segment and, based on your
requirements, tell DPROP whether or not to propagate the change to your DB2
table or IMS database. For example, this can be used to suppress the propagation
of IMS delete calls, turning your propagated copy into a kind of archive that
contains data for longer periods than the source data. If you use a return code of
8, DPROP does not propagate the data, but continues with its normal processing.
This section describes how to set up selective suppression.

Your Segment exit routine must not return with return code 8 when DAXPSUP was
set to N (for example, because the Segment exit routine is processing the
before-image of a segment, or processing an ancestor of the changed IMS
segment).

To indicate that you want to allow a return code of 8 to be used, you must specify
the PROPSUP parameter as PROPSUP=Y. The default for this parameter is
PROPSUP=N, which means that a return code of 8 is not allowed.

If you are using DataRefresher to code your PRs, specify this PROPSUP
parameter in the MAPUPARM operand of the DataRefresher SUBMIT statement. If
you are using the MVG input tables to code your PRs, the PROPSUP parameter is
specified in the MVGIPR Table.

When you specify PROPSUP=Y, it is recorded in the mapping table. This can be
useful for problem determination. If the database administrator (DBA) finds an
inconsistency between IMS and DB2 data, the DBA can check the mapping table to
see if it is caused by a return code of 8 from a Segment exit routine.

Be very careful when using selective suppression. The inconsistencies that it
creates can result in future propagation failures. For example, an SQL INSERT
can fail if the original DELETE statement was not propagated to DB2. Also,
selective suppression can make the CCU useless, because the IMS and DB2 data
are no longer consistent.

You can retain some of the usefulness of the CCU with the USE keyword in the
CCU CHECK statement. If you are suppressing delete calls before they are
propagated to your DB2 table, you can create a view of the DB2 table that
excludes the undeleted rows during the CCU read phase. For more information,
see IMS DPROP Reference.

For HR propagation, you can also selectively suppress propagation through
definition of a WHERE clause during PR definition. If you can choose between
specifying a WHERE clause and suppressing with a Segment exit routine, choose

44 Customization Guide

the WHERE clause approach. Using the WHERE clause does not cause
inconsistencies, and does not restrict the usefulness of the CCU.

Mapping case 2 propagates multiple segment types to or from one table.
Suppression of propagation of the entity segment does not automatically suppress
propagation of the extension segments (RH propagation of the delete of the entity
segment is an exception; this also suppresses deletion of the extension segments).
Therefore, if you provide a Segment exit routine that suppresses the propagation of
the entity segment, you must also provide Segment exit routines that suppress the
propagation of the extension segments. This is important for avoiding propagation
failures.

First Sample Segment Exit Routine
Figure 8 on page 46 is an example of a Segment exit routine. The Segment exit
routine transforms a segment between its IMS format and its DPROP format. The
IMS format contains fields with variable start positions. In the DPROP format, all of
the fields have fixed start positions.

In this example, the first two fields in the IMS format of the segment are fixed
length and contain the segment key. The last three fields, however, are variable
length, containing a last name, first name, and city. It is assumed that each of the
variable length fields has a maximum length, and a variable start position within the
segment in its IMS format.

When it receives a changed IMS data segment and is called for IMS-to-DPROP
mapping, the exit routine transforms it into a DPROP-supported format, and returns
the segment to the RUP for propagation to DB2.

When it is called for DPROP-to-IMS mapping, the exit routine transforms the
DPROP format into the IMS format and returns the segment to the HUP for
propagation to IMS.

The source code shown in Figure 8 on page 46 is provided in the DPROP Sample
Source Library (EKYSAMP) under the member name EKYESE1A. Following the
source code are definitions related to the sample Segment exit routine.

 Chapter 2. Segment Exit Routines 45

2 KKKKKKKKKK START OF SPECIFICATIONS KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK
3 K MODULE NAME = EKYESE1A K

 4 K K
5 K DESCRIPTIVE NAME = SAMPLE 'SEGMENT USER EXIT ROUTINE' K

 6 K K
7 K STATUS: V1 R2 MS K

 8 K K
9 K FUNCTION = EKYESE1A IS A SAMPLE DPROP K
1S K 'SEGMENT USER EXIT ROUTINE' AND ILLUSTRATES K
11 K THE TRANSFORMATION OF A SEGMENT LAYOUT BETWEEN ITS: K
12 K - 'DL/I DB FORMAT' K
13 K - 'DPROP FORMAT'. K

 14 K K
15 K EKYESE1A ILLUSTRATES ONE OF THE MOST TYPICAL USAGE K
16 K OF DPROP SEGMENT USER EXITS: THE TRANSFORMATION OF: K
17 K - A VARIABLE LENGTH DL/I SEGMENT WITH FIELDS K
18 K HAVING VARIABLE START POSITIONS K

 19 K INTO K
2S K - A SEGMENT LAYOUT WHERE ALL FIELDS HAVE A FIXED K

 21 K START POSITION. K
22 K (DL/I SEGMENTS WITH FIELDS HAVING VARIABLE START K
23 K POSITIONS CAN BE SUPPORTED BY THE 'GENERALIZED K
24 K MAPPING LOGIC' OF DPROP V1R2, ONLY IF A SEGMENT K
25 K USER EXIT ROUTINE TRANSFORMS THE SEGMENT INTO A K
26 K FORMAT WHERE ALL FIELDS HAVE A FIXED START POSITION. K
27 K IF DB2 TO IMS OR TWO WAY PROPAGATION IS IN EFFECT, K
28 K THEN THE SEGMENT USER EXIT ROUTINE MUST ALSO BE ABLE K
29 K TO TRANSFORM SUCH A SEGMENT FROM A FORMAT WHERE ALL K
3S K FIELDS HAVE FIXED START POSITION (THE DPROP FORMAT) K
31 K TO A FORMAT WITH VARIABLE START POSITIONS (THE DL/I K

 32 K SEGMENT FORMAT)) K
 33 K K

34 K THIS SAMPLE ASSUMES THAT IN ITS DL/I DB FORMAT: K
35 K 1) THE FIRST PORTION OF THE SEGMENT HAS A K
36 K FIXED FORMAT CONTAINING THE KEY OF THE K

 37 K SEGMENT. K
 38 K K

39 K 2) THE SECOND PORTION OF THE SEGMENT CONSISTS OF K
4S K THREE ADJACENT PAIR OF: K
41 K (LENGTH FIELD,VARIABLE LENGTH FIELD) K
42 K FOR THE FAMILY-NAME, FIRST-NAME, AND CITY. K

 43 K K
44 K WITH THE EXCEPTION OF THE FIRST PAIR OF K
45 K LENGTH FIELD AND VARIABLE LENGTH FIELD: K
46 K THESE PAIR OF LENGTH FIELDS AND VARIABLE LENGTH K
47 K FIELDS HAVE A VARIABLE START POSITION. K

 48 K K
49 K EACH VARIABLE LENGTH FIELD IS ASSUMED TO HAVE A K
5S K SPECIFIC MAXIMUM LENGTH. K

 51 K K
52 K THE FIGURE BELOW PROVIDES AN OVERVIEW OF K
53 K THE TRANSFORMATION PERFORMED BY THIS SAMPLE EXIT. K

 54 K K
55 K THE LEFT-HAND SIDE DESCRIBES THE SEGMENT SEG1 IN ITS K
56 K DL/I DB FORMAT. THE FIGURE PROVIDES FOR EACH FIELD K
57 K LOCATED IN THE SEGMENT: K
58 K - THE FIELD NAME K
59 K - THE FORMAT OF THE FIELD K
6S K 'H' STANDS FOR 'HALFWORD BINARY' FORMAT. K
61 K 'C' STANDS FOR 'FIXED LENGTH CHARACTER FORMAT' K
62 K 'VC' STANDS FOR 'VARIABLE LENGTH CHARACTER FORMAT' K
63 K - THE FIXED START POSITION OF THE FIELD (IF THE K
64 K FIELD HAS A FIXED START POSITION) OR 'V' IF K
65 K THE FIELD HAS A VARIABLE START POSITION. K

Figure 8 (Part 1 of 23). First Sample Segment Exit Routine (Assembler)

46 Customization Guide

 66 K K

67 K THE RIGHT-HAND SIDE DESCRIBES THE SEGMENT SEG1 IN ITS K
68 K DPROP FORMAT. THE FIGURE PROVIDES FOR EACH FIELD K
69 K LOCATED IN THE SEGMENT: K
7S K - THE FIELD NAME K
71 K - THE FORMAT OF THE FIELD K
72 K 'C' STANDS FOR 'FIXED LENGTH CHARACTER FORMAT' K
73 K 'VC' STANDS FOR 'VARIABLE LENGTH CHARACTER FORMAT' K
74 K - THE FIXED START POSITION OF THE FIELD WITHIN THE K
75 K DPROP FORMAT OF THE SEGMENT. K

 76 K K
 77 K K--------------------K K---------------------K K

78 K ‘ SEGMENT IN ITS ‘ ‘ SEGMENT IN ITS ‘ K
79 K ‘ VARIABLE-LENGTH ‘ ‘ FIXED-LENGTH ‘ K
8S K ‘ DL/I DB FORMAT ‘ ‘ DPROP FORMAT ‘ K

 81 K K--------------------K K---------------------K K
 82 K K
 83 K K--------K-----K-----K K--------K-----K------K K

84 K ‘FLD NAME‘ FLD ‘ FLD ‘ ‘FLD NAME‘ FLD ‘ FLD ‘ K
85 K ‘ ‘ FMT ‘START‘ ‘ ‘ FMT ‘START ‘ K

 86 K K--------K-----K-----K K--------K-----K------K K
87 K ‘SEG1LL ‘ H ‘ 1 ‘ ‘SEG1LL ‘ H ‘ 1 ‘ K
88 K ‘KEYFLD1 ‘ C ‘ 3 ‘<-->‘KEYFLD1 ‘ C ‘ 3 ‘ K
89 K ‘KEYFLD2 ‘ C ‘ 5 ‘<-->‘KEYFLD2 ‘ C ‘ 5 ‘ K
9S K ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ K
91 K ‘FAMILY_L‘ H ‘ 11 ‘<-->‘FAMILY_L‘ H ‘ 11 ‘ K
92 K ‘FAMILY ‘ VC ‘ 13 ‘<-->‘FAMILY ‘ VC ‘ 13 ‘ K
93 K ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ K
94 K ‘FIRST_L ‘ H ‘ V ‘<-->‘FIRST_L ‘ H ‘ 43 ‘ K
95 K ‘FIRST ‘ VC ‘ V ‘<-->‘FIRST ‘ VC ‘ 45 ‘ K
96 K ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ K
97 K ‘CITY_L ‘ H ‘ V ‘<-->‘CITY-L ‘ H ‘ 65 ‘ K
98 K ‘CITY ‘ VC ‘ V ‘<-->‘CITY ‘ VC ‘ 67 ‘ K

 99 K K--------K-----K-----K K--------K-----K------K K
 1SS K K

1S1 K PLEASE REFER TO THE DSECTS TOWARDS THE BOTTOM OF THIS K
1S2 K MODULE IN ORDER TO FIND ALL THE DETAILS ABOUT THE K
1S3 K 'DL/I DB FORMAT' AND THE 'DPROP FORMAT' OF SEG1. K

 1S4 K K
 1S6 K K
 1S7 K NOTES = K

1S8 K EKYESE1A IS CALLED: K
 1S9 K K

11S K - FOR TRANSFORMATION OF THE SEGMENT FROM ITS DL/I K
111 K DB FORMAT WITH VARIABLE FIELD START POSITIONS K
112 K TO ITS FORMAT SUPPORTED BY DXT/DPROP WITH FIXED K
113 K FIELD START POSITIONS (NORMAL CALL TYPE INDICATED K
114 K BY 'NO' IN DAXCALL FIELD OF THE DAX AREA): K
115 K - BY DXT (DURING EXTRACT OF THE DL/I DATA). K
116 K - BY DPROP DURING: K
117 K - SYNCH/ASYNCH IMS-TO-DB2 PROPAGATION K
118 K - SYNCH DB2-TO-IMS PROPAGATION K
119 K - CCU EXECUTION K
12S K - DLU EXECUTION K

 121 K K
122 K - FOR TRANSFORMATION OF THE SEGMENT FROM ITS FORMAT K
123 K SUPPORTED BY DXT/DPROP WITH FIXED FIELD START K
124 K POSITIONS TO ITS FORMAT ON THE DL/I DATABASE WITH K
125 K VARIABLE FIELD START POSITITIONS (REVERSE CALL K
126 K TYPE INDICATED BY 'RV' IN DAXCALL FIELD OF DAX): K
127 K - BY DPROP DURING: K
128 K - SYNCH DB2-TO-IMS PROPAGATION K
129 K - CCU EXECUTION OF REPAIR FILE GENERATION K
13S K - DLU EXECUTION K

 131 K K
 132 K K

Figure 8 (Part 2 of 23). First Sample Segment Exit Routine (Assembler)

 Chapter 2. Segment Exit Routines 47

 133 K K

134 K DEPENDENCIES = NONE K
 135 K K

136 K RESTRICTIONS = NONE K
 137 K REGISTER CONVENTIONS= K

138 K R13= ADDRESS OF SAVE AREA K
139 K R12= MODULE BASE REGISTER K
14S K R8 = ADDRESS OF ANCHOR AREA K
141 K R7 = ADDRESS OF SEGMENT IN DPROP FORMAT K
142 K R6 = ADDRESS OF SEGMENT IN DL/I DB FORMAT K
143 K R5 = ADDRESS OF DAX K
144 K R2 = CURRENT ADDRESS WITHIN SEGMENT IN ITS K
145 K DL/I DB FORMAT K
146 K PATCH LABEL = - (NONE) K

 147 K K
148 K MODULE TYPE = PROCEDURE K
149 K PROCESSOR = ASSEMBLER K
15S K MODULE SIZE = APPROXIMATELY 14SS BYTES K
151 K ATTRIBUTES = REENTRANT K

 152 K RMODE = ANY K
 153 K AMODE = 31 K
 154 K K

155 K ENTRY POINT = EKYESE1A K
156 K PURPOSE = SEE FUNCTION K
157 K LINKAGE = STANDARD OS/VS ASSEMBLER LINKAGE CONVENTIONS. K

 158 K K
159 K INPUT : R1 = POINTING TO A STANDARD PARAMETER ADDRESS LIST. K
16S K 1ST PARAMETER: ADDRESS OF DAX (DAX IS THE K
161 K EXIT INTERFACE CONTROL BLOCK) K
162 K 2ND PARAMETER: ADDRESS OF SEGMENT IN DL/I FORMAT K
163 K 3RD PARAMETER: ADDRESS OF SEGMENT IN DPROP FORMAT K
164 K 4TH PARAMETER: ADDRESS OF ANCHOR AREA PRESERVED K
165 K ACROSS CALLS TO THIS EXIT. K

 166 K K
167 K OUTPUT : THE SEGMENT FORMAT TRANSFORMATION HAS BEEN DONE K

 168 K K
 169 K EXIT-NORMAL= K

17S K STANDARD OS/VS ASSEMBLER RETURN CONVENTIONS. K
171 K RETURN CODES = S K

 172 K K
 173 K EXIT-ERROR= K

174 K STANDARD OS/VS ASSEMBLER RETURN CONVENTIONS. K
175 K RETURN CODE = 12: INVALID DATA IN DL/I SEGMENT K
176 K (INVALID LENGTH OF SEGMENT, K
177 K INVALID FIELD LENGTH, K
178 K FIELD NOT TOTALLY WITHIN SEGMENT). K
179 K = 16: SHOULD-NOT-OCCUR ERRORS K
18S K (INVALID CALL FUNCTION, K
181 K PARAMETER AREA TOO SMALL, K
182 K INVALID SEGMENT NAME). K

 183 K K
 184 K K

185 K ABEND CODE OF EKYESE1A = NONE K
186 K ABEND REASON CODES = NONE K

 187 K K
188 K ERROR MESSAGES ISSUED BY EKYESE1A K
189 K EKYESESE: CALL FUNCTION NOT SUPPORTED K
19S K EKYESE1E: UNSUPPORTED DBD OR SEGNAME K
191 K EKYESE2E: 3RD PARAMETER HAS INCORRECT LENGTH K
192 K EKYESE3E: INVALID SEGMENT LENGTH K
193 K EKYESE4E: FAMILY FIELD DOES NOT FIT WITHIN SEGMENT K
194 K EKYESE5E: LENGTH OF FAMILY FIELD IS INVALID K
195 K EKYESE6E: FIRST-NAME FIELD DOES NOT FIT WITHIN SEGMENT K
196 K EKYESE7E: LENGTH OF FIRST-NAME FIELD IS INVALID K
197 K EKYESE8E: CITY FIELD DOES NOT FIT WITHIN SEGMENT K
198 K EKYESE9E: LENGTH OF CITY FIELD IS INVALID K

 199 K K

Figure 8 (Part 3 of 23). First Sample Segment Exit Routine (Assembler)

48 Customization Guide

 2SS K K
 2S1 K EXTERNAL REFERENCES K
 2S2 K K
 2S3 K ROUTINES= = NONE K
 2S4 K K

2S5 K DATA AREAS = SEE CONTROL BLOCKS K
 2S6 K K

2S7 K CONTROL BLOCKS = DAX INTERFACE CB FOR SEGMENT EXIT ROUTINE K
 2S8 K K

2S9 K MACROS CODED IN MODULE= NONE K
 21S K K

211 K MACROS USED FROM MACRO LIBRARY= K
212 K SAVE - SAVE REGISTERS K
213 K GETMAIN - OS/VS GETMAIN K

 214 K K
215 K EKYRCDAX - INTERFACE CB FOR SEGMENT EXIT ROUTINE K

 216 K K
 217 K K
 218 K TABLES= NONE K
 219 K K

22S K INCLUDE CODE FROM LIBRARY= NONE K
 221 K K

222 K CHANGE ACTIVITY= NONE K
 223 K K

224 KKKKKKKKKKKKK END OF SPECIFICATIONS KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK
226 KKKKKKKKKKKK LOGIC OF EKYESE1A KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK

 227 K K
 228 K K
 229 K MAIN-LINE LOGIC: K
 23S K ================ K
 231 K K

232 K 1) MODULE ENTRY LOGIC: K
 233 K ---------------------- K

234 K - PROVIDE REGISTER EQUATES K
235 K - GENERATE A MODULE SAVE-ID K
236 K - SAVE REGISTERS AND ESTABLISH MODULE BASE REGISTER K
237 K - LOAD ADDRESSES OF CALL PARAMETERS K
238 K - SET 'MODULE ENTERED' AND 'MODULE IN CONTROL' FLAGS K

 239 K INTO DAX. K
24S K - IF FIRST INVOCATION OF THE EXIT: K
241 K - GETMAIN AN AREA CONTAINING AMONG OTHER K
242 K A MODULE SAVE-AREA AND MODULE-WORKSPACE. K
243 K - SAVE ADDRESS OF GETMAINED AREA. K
244 K - CLEAR THE GETMAINED AREA. K
245 K - CHAIN MODULE SAVE-AREA AND SAVE-AREA OF CALLER. K

 246 K K
247 K NOTE: SINCE THE SAMPLE EXIT DOES NOT CALL OTHER K
248 K FUNCTIONS, IT DOES NOT REALLY NEED A SAVE-AREA AND K
249 K DOES NOT REALLY NEED TO GETMAIN AN AREA. K
25S K EKYESE1A NEVERTHELESS PROVIDES THIS LOGIC, K
251 K WITH THE HOPE, THAT THIS COULD HELP IBM CUSTOMERS K
252 K FOR THE DEVELOPMENT OF MORE COMPLEX, REAL-LIFE, K
253 K SEGMENT USER EXITS. K

 254 K K
255 K 2) VERIFY INFORMATION PROVIDED BY CALLER K

 256 K -- K
257 K - VERIFY THAT THE EXIT IS INVOKED TO PROPAGATE THE K

 258 K RIGHT DBD/SEGNAME. K
259 K - VERIFY THAT THE AREA CALL PARAMETER USED FOR K
26S K THE SEGMENT IN ITS DPROP FORMAT HAS THE EXPECTED LENGTH.K
261 K - VERIFY THAT THE REQUESTED CALL FUNCTION IS SUPPORTED. K
262 K AND BRANCH ACCORDING TO CALL FUNCTION: K
263 K -- FOR A 'NO' CALL: PERFORM TRANSFORMATION K
264 K DL/I DB FORMAT ---> DPROP FORMAT K
265 K -- FOR A 'RV' CALL: PERFORM TRANSFORMATION K
266 K DPROP FORMAT ---> DL/I DB FORMAT K

Figure 8 (Part 4 of 23). First Sample Segment Exit Routine (Assembler)

 Chapter 2. Segment Exit Routines 49

 267 K K

268 K 3) TRANSFORM THE SEGMENT: DL/I DB FORMAT ---> DPROP FORMAT K
 269 K -- K

27S K A) PROCESS THE FIRST, FIXED-FORMAT PORTION OF THE K
 271 K SEGMENT: K
 272 K K

273 K - VERIFY THAT THE DL/I FORMAT OF THE SEGMENT IS K
274 K LONG ENOUGH TO CONTAIN THE FIRST, FIXED-FORMAT K
275 K PORTION OF THE SEGMENT. K
276 K - MOVE THE FIELDS IN THE FIRST, FIXED-FORMAT K
277 K PORTION OF THE SEGMENT INTO THE 'DPROP FORMAT' OF K

 278 K THE SEGMENT. K
 279 K K

28S K B) PROCESS THE SECOND, VARIABLE-FORMAT PORTION OF THE K
 281 K SEGMENT: K

282 K - INITIALIZE THE 'CURRENT POINTER' WITHIN THE K
283 K DL/I FORMAT TO THE START OF THE VARIABLE-FORMAT K

 284 K PORTION. K
 285 K K

286 K - FOR EACH FIELD IN THE VARIABLE-FORMAT PORTION OF K
 287 K THE SEGMENT: K

288 K -- VALIDATE THE FIELD LENGTH: K
289 K ---FIELD LENGTH SHOULD BE POSITIVE K
29S K ---FIELD LENGTH SHOULD NOT EXCEED A SPECIFIC K

 291 K MAXIMAL LENGTH. K
292 K ---FIELD SHOULD BE TOTALLY WITHIN THE SEGMENT. K

 293 K K
294 K -- COPY THE FIELD TO THE 'DPROP FORMAT' OF THE K

 295 K SEGMENT. K
 296 K K

297 K 4) TRANSFORM THE SEGMENT: DPROP FORMAT ---> DL/I DB FORMAT K
 298 K -- K

299 K A) PROCESS THE FIRST, FIXED-FORMAT PORTION OF THE K
 3SS K SEGMENT: K
 3S1 K K

3S2 K - VERIFY THAT THE DL/I FORMAT OF THE SEGMENT IS K
3S3 K LONG ENOUGH TO CONTAIN THE FIRST, FIXED-FORMAT K
3S4 K PORTION OF THE SEGMENT. K
3S5 K - MOVE THE FIELDS IN THE FIRST, FIXED-FORMAT K
3S6 K PORTION OF THE SEGMENT INTO THE 'DPROP FORMAT' OF K

 3S7 K THE SEGMENT. K
 3S8 K K

3S9 K B) PROCESS THE SECOND, VARIABLE-FORMAT PORTION OF THE K
 31S K SEGMENT: K

311 K - INITIALIZE THE 'CURRENT POINTER' WITHIN THE K
312 K DL/I FORMAT TO THE START OF THE VARIABLE-FORMAT K

 313 K PORTION. K
 314 K K

315 K - FOR EACH FIELD IN THE VARIABLE-FORMAT PORTION OF K
 316 K THE SEGMENT: K

317 K -- VALIDATE THE FIELD LENGTH: K
318 K ---FIELD LENGTH SHOULD BE POSITIVE K
319 K ---FIELD LENGTH SHOULD NOT EXCEED A SPECIFIC K

 32S K MAXIMAL LENGTH. K
321 K ---FIELD SHOULD BE TOTALLY WITHIN THE SEGMENT. K

 322 K K
323 K -- COPY THE FIELD TO THE 'DPROP FORMAT' OF THE K

 324 K SEGMENT. K
 325 K K
 326 K K

327 K 5) RETURN LOGIC K
 328 K ---------------- K

329 K - RESTORE REGISTERS OF THE CALLER K
33S K - RETURN TO THE CALLER. K

 331 K K

Figure 8 (Part 5 of 23). First Sample Segment Exit Routine (Assembler)

50 Customization Guide

 332 K K
 333 K ERROR LOGIC K
 334 K =========== K
 335 K K

336 K - FORMAT AN ERROR MESSAGE INTO DAX K
337 K - SET RETURN CODE INTO DAX K
338 K - RETURN TO THE CALLER. K

 339 K K
34S KKKKKKKKKKKK END-OF-LOGIC KK

 342 KK
 343 KK
 344 KK
 345 KKKK KKKK

346 KKKK MODULE ENTRY LOGIC KKKK
 347 KKKK KKKK
 348 KK
 349 KK
 35S KK

 SSSSSS 352 EKYESE1A START
 353 K

354 EKYESE1A AMODE 31 EXIT EXPECTS TO BE CALLED IN AMODE-31
355 EKYESE1A RMODE ANY EXIT CAN BE LOADED ANYWHERE

 356 K
 357 K---K

358 K DEFINITION OF REGISTER EQUATES K
 359 K---K
 36S K
 SSSSS 361 RS EQU S
 SSSS1 362 R1 EQU 1

SSSS2 363 R2 EQU 2 CURRENT POSITION WITHIN DL/I DB FMT
 SSSS3 364 R3 EQU 3
 SSSS4 365 R4 EQU 4
 SSSS5 366 R5 EQU 5 A(DAX)

SSSS6 367 R6 EQU 6 A(SEGMENT IN DL/I DB FORMAT)
SSSS7 368 R7 EQU 7 A(SEGMENT IN DPROP FORMAT)

 SSSS8 369 R8 EQU 8 A(ANCHOR AREA)
 SSSS9 37S R9 EQU 9
 SSSSA 371 R1S EQU 1S

SSSSB 372 R11 EQU 11 BAS REGISTER TO CALL SUBROUTINES
SSSSC 373 R12 EQU 12 MODULE BASE REGISTER

 SSSSD 374 R13 EQU 13 A(SAVEAREA)
 SSSSE 375 R14 EQU 14
 SSSSF 376 R15 EQU 15

 378 K---K

379 K GENERATE SAVE-ID CONSISTING OF EXIT NAME, K
38S K COMPILATION DATE AND COMPILATION TIME. K

 381 K---K

 383 LCLC &SAVEID

384 &SAVEID SETC 'EKYESE1A DPR12S'.'-'.'&SYSDATE'.'-'.'&SYSTIME'

 386 K---K

387 K SAVE REGISTERS AND ESTABLISH MODULE BASE REGISTER K
 388 K---K

39S SAVE (14,12),,&SAVEID SAVE REGISTERS
 SSSSSS 47FS FS24 SSS24 391+ B 36(S,15) BRANCH AROUND ID
 SSSSS4 1E 392+ DC AL1(3S) LENGTH OF IDENTIFIER
 SSSSS5 C5D2E8C5E2C5F1C1 393+ DC CL8'EKYESE1A' IDENTIFIER
 SSSSSD 4SC4D7D9F1F2FS6S 394+ DC CL8' DPR12S-' IDENTIFIER
 SSSS15 FSF361F2F361F9F3 395+ DC CL8'S3/23/93' IDENTIFIER
 SSSS1D 6SF1FS4BF4F6 396+ DC CL6'-1S.46' IDENTIFIER
 SSSS23 SS
 SSSS24 9SEC DSSC SSSSC 397+ STM 14,12,12(13) SAVE REGISTERS

Figure 8 (Part 6 of 23). First Sample Segment Exit Routine (Assembler)

 Chapter 2. Segment Exit Routines 51

 SSSS28 18CF 399 LR R12,R15 R12=ENTRY POINT OF THIS EXIT

SSSSS 4SS USING EKYESE1A,R12 ESTABLISH BASE REGISTER

 4S2 K---K

4S3 K LOAD ADDRESS OF CALL PARAMETERS K
 4S4 K---K

 SSSS2A 9858 1SSS SSSSS 4S6 LM R5,R8,S(R1) LOAD ADDRESS OF FOUR CALL PARAMETERS

SSSSS 4S7 USING DAX,R5 R5=BASE FOR INTERFACE CONTROL BLOCK
SSSSS 4S8 USING DL1_SEG1,R6 R6=A(SEGMENT IN ITS DL/I DB FORMAT)
SSSSS 4S9 USING DPR_SEG1,R7 R7=A(SEGMENT IN ITS DPROP FORMAT)

 SSSSS 41S USING ANCHOR,R8 R8=A(ANCHOR AREA)

 412 K---K

413 K SET IN THE INTERFACE BLOCK THE K
414 K 'EXIT ENTERED' AND 'EXIT IN CONTROL' FLAGS. K

 415 K---K

 SSSS2E 92E7 51A2 SS1A2 417 MVI DAXENTRD,C'X' SET 'EXIT ENTERED'
 SSSS32 92E7 51A3 SS1A3 418 MVI DAXINCTL,C'X' SET 'EXIT IN CONTROL'

 42S K---K

421 K IF THIS IS THE FIRST INVOCATION: K
422 K - GETMAIN AN AREA CONTAINING K
423 K -- OUR SAVE-AREA K

 424 K -- MODULE-WORKSPACE K
425 K - CLEAR THE GETMAINED AREA WITH BINARY ZEROES K

 426 K---K

 SSSS36 58BS 8SSS SSSSS 428 L R11,ANCHOR_PTR R11=A(GETMAINED AREA)
 SSSS3A 12BB 429 LTR R11,R11 IS THIS ADDRESS ZERO?
 SSSS3C 477S CS68 SSS68 43S BNZ NOTFIRST ...NO>>>FIRST TIME PROCESSING DONE

432 GETMAIN RU,LV=GETML,LOC=ANY GETMAIN AN AREA
 SSSS4S 433+ CNOP S,4
 SSSS4S 47FS CS4C SSS4C 434+ B K+12-4KS-2KS BRANCH AROUND DATA
 SSSS44 SSSSSS5E 435+ DC A(GETML) LENGTH
 SSSS48 SS 436+IHBSSS2F DC AL1(S) RESERVED
 SSSS49 SS 437+ DC AL1(S) RESERVED
 SSSS4A SS 438+ DC AL1(S) SUBPOOL
 SSSS4B 72 439+ DC BL1'S111SS1S' MODE BYTE @G86SP3S
 SSSS4C 58SS CS44 SSS44 44S+ L S,K-8+2KS LOAD LENGTH
 SSSS5S 58FS CS48 SSS48 441+ L 15,IHBSSS2F LOAD GETMAIN PARMS
 SSSS54 1B11 442+ SR 1,1 ZERO RESERVED REG 1
 SSSS56 SA78 443+ SVC 12S ISSUE GETMAIN SVC

 SSSS58 18B1 445 LR R11,R1 R11=A(GETMAINED AREA)
 SSSS5A 5SBS 8SSS SSSSS 446 ST R11,ANCHOR_PTR SAVE ADDRESS GETMAINED AREA

 SSSS5E 18S1 448 LR RS,R1 SET UP
 SSSS6S 411S SS5E SSS5E 449 LA R1,GETML ...FOR A
 SSSS64 1BFF 45S SR R15,R15 ...ZEROING
 SSSS66 SESE 451 MVCL RS,R14 ...MVCL
 SSSS68 452 NOTFIRST DS SH

 454 K---K

455 K CHAIN TOGETHER OUR SAVE-AREA AND THE HIGHER LEVEL SAVEAREA K
456 K AND LOAD INTO R13 THE ADDRESS OF OUR SAVE-AREA K

 457 K---K

 SSSS68 5SBD SSS8 SSSS8 459 ST R11,8(R13) CHAIN OUR SAVE-AREA INTO HIGHER
 SSSS6C 5SDB SSS4 SSSS4 46S ST R13,4(R11) CHAIN HIGHER SAVE-AREA INTO OUR
 SSSS7S 18DB 461 LR R13,R11 R13=A(OUR SAVE-AREA)

SSSSS 462 USING GETM,R13 ESTABLISH BASE REGISTER FOR WORKAREA

Figure 8 (Part 7 of 23). First Sample Segment Exit Routine (Assembler)

52 Customization Guide

 464 KK
 465 KK
 466 KK
 467 KKKK KKKK
 468 KKKK VERIFY THAT: KKKK

469 KKKK - THE EXIT IS INVOKED TO FORMAT THE SEGMENT 'SEG1' KKKK
47S KKKK OF DB 'DB1'. KKKK
471 KKKK - THE AREA USED TO CONTAIN THE SEGMENT IN ITS KKKK
472 KKKK DPROP FORMAT HAS THE EXPECTED LENGTH. KKKK
473 KKKK - THE EXIT IS INVOKED WITH A SUPPORTED KKKK

 474 KKKK CALL FUNCTION. KKKK
 475 KKKK KKKK
 476 KK
 477 KK
 478 KK

 48S K---K

481 K VERIFY, THAT THE EXIT IS CALLED FOR THE TRANSFORMATION OF K
482 K THE CORRECT DBDNAME AND SEGMENT-NAME. K

 483 K---K

 SSSS72 D5S7 5S9C C358 SSS9C SS358 485 CLC DAXDBNM,=CL8'DB1' EXPECTED DBDNAME?
 SSSS78 477S C28E SS28E 486 BNE INVDBSEG ...NO>>>THIS IS AN ERROR
 SSSS7C D5S7 5S4C C36S SSS4C SS36S 487 CLC DAXSEGM(8),=CL8'SEG1' EXPECTED SEGMENT-NAME?
 SSSS82 477S C28E SS28E 488 BNE INVDBSEG ...NO>>>THIS IS AN ERROR

 49S K---K

491 K VERIFY, THAT THE EXIT IS CALLED WITH A SUPPORTED K
 492 K CALL FUNCTION. K
 493 K---K

 SSSS86 D5S1 5S2S C3FS SSS2S SS3FS 495 CLC DAXCALL,=C'NO' 'NORMAL CALL'?
 SSSS8C 478S CS9E SSS9E 496 BE CALLNO ...YES>>>B
 SSSS9S D5S1 5S2S C3F2 SSS2S SS3F2 497 CLC DAXCALL,=C'RV' 'REVERSE CALL'?
 SSSS96 478S C18A SS18A 498 BE CALLRV ...YES>>>B
 SSSS9A 47FS C27A SS27A 499 B INVCALL UNSUPPORTED CALL FUNCTION
 5S1 KK
 5S2 KK
 5S3 KK
 5S4 KKKK KKKK

5S5 KKKK 'NORMAL CALL' TO TRANSFORM THE SEGMENT KKKK
5S6 KKKK FROM ITS 'DL/I DB FORMAT' INTO ITS 'DPROP FORMAT' KKKK

 5S7 KKKK KKKK
 5S8 KK
 5S9 KK
 51S KK

 SSSS9E 512 CALLNO DS SH

 514 K---K

515 K VERIFY, THAT THE 3RD PARAMETER HAS THE EXPECTED LENGTH K
 516 K---K

 SSSS9E D5S3 5S8S C3B8 SSS8S SS3B8 518 CLC DAXFLEN,=A(DPR_SEG1L) EXPECTED LENGTH OF PARAMETER?
 SSSSA4 477S C2A2 SS2A2 519 BNE INVPARL ...NO>>>THIS IS AN ERROR

 521 KKK

522 K PROCESS THE FIRST, FIXED-FORMAT PORTION OF THE K
 523 K SEGMENT: K
 524 K K

525 K - VERIFY THAT THE SEGMENT IN ITS DL/I FORMAT IS LARGE K
526 K ENOUGH TO CONTAIN KEYFLD1 AND KEYFLD2. K
527 K - MOVE KEYFLD1 AND KEYFLD2 TO THE DPROP-FORMAT OF THE SEGM. K

 528 KKK

Figure 8 (Part 8 of 23). First Sample Segment Exit Routine (Assembler)

 Chapter 2. Segment Exit Routines 53

 SSSSA8 D5S1 6SSS C3F4 SSSSS SS3F4 53S CLC DL1_SEG1LL,=AL2(DL1_FIXEDL) SEGMENT LARGE ENOUGH?
 SSSSAE 47DS C2B6 SS2B6 531 BNH INVSEGL ...NO>>>THATS AN ERROR
 SSSSB2 D2S1 7SSS C3F6 SSSSS SS3F6 532 MVC DPR_SEG1LL,=AL2(DPR_SEG1L) SET LENGTH OF DPROP_SEG
 SSSSB8 D2S1 7SS2 6SS2 SSSS2 SSSS2 533 MVC DPR_KEYFLD1,DL1_KEYFLD1 MOVE KEYFLD1
 SSSSBE D2S5 7SS4 6SS4 SSSS4 SSSS4 534 MVC DPR_KEYFLD2,DL1_KEYFLD2 MOVE KEYFLD2

 536 KKK
537 K INITIALIZE 'CURRENT POINTER' WITHIN DL/I FORMAT K

 538 K K
539 K (IT IS REGISTER 2, WHICH IS USED AS CURRENT PTR K
54S K WITHIN DL/I FORMAT) K

 541 KKK

 SSSSC4 412S 6SSA SSSSA 543 LA R2,DL1_SEG1VAR R2=CURRENT ADDR IN DL1 FMT

 545 KKK
 546 K K

547 K FOR EACH FIELD IN THE VARIABLE-FORMAT PORTION OF THE K
 548 K SEGMENT: K

549 K - VALIDATE THE FIELD LENGTH: K
55S K ---FIELD LENGTH SHOULD BE POSITIVE K
551 K ---FIELD LENGTH SHOULD NOT EXCEED A SPECIFIC K

 552 K MAXIMAL LENGTH. K
553 K ---FIELD SHOULD BE TOTALLY WITHIN THE SEGMENT. K

 554 K K
555 K - COPY THE FIELD AND ITS LENGTH-FIELD TO THE K
556 K DPROP-FORMAT OF THE SEGMENT K

 557 K K
 558 KKK

 56S K---K

561 K PROCESS FAMILY NAME FIELD K
 562 K---K

 564 K

565 KKK CHECK LENGTH FIELD
 566 K
 SSSSC8 48F2 SSSS SSSSS 567 LH R15,S(R2) R15=LENGTH OF VC FIELD
 SSSSCC 12FF 568 LTR R15,R15 LENGTH FIELD POSITIVE?
 SSSSCE 47DS C2DE SS2DE 569 BNP INVFAM2 ...NO>>>THATS AN ERROR
 SSSSD2 55FS C3BC SS3BC 57S CL R15,=A(3S) FAMILY FIELD LONGER THAN 3S?
 SSSSD6 472S C2DE SS2DE 571 BH INVFAM2 ...YES>>>THATS AN ERROR
 572 K

573 KKK CHECK THAT THE FIELD IS TOTALLY WITHIN THE SEGM
 574 K
 SSSSDA 41S2 FSS2 SSSS2 575 LA RS,2(R2,R15) RS=A(END OF VC FIELD)+1
 SSSSDE 481S 6SSS SSSSS 576 LH R1,DL1_SEG1LL R1=LENGTH OF SEGMENT
 SSSSE2 4111 6SSS SSSSS 577 LA R1,DL1_SEG1(R1) R1=A(END OF SEGMENT)+1
 SSSSE6 19S1 578 CR RS,R1 FLD TOTALLY WITHIN SEG?
 SSSSE8 472S C2CA SS2CA 579 BH INVFAM1 ...NO>>>THATS AN ERROR
 58S K

581 KKK MOVE LENGTH FIELD INTO DPROP-FORMAT
 582 K
 SSSSEC D2S1 7SSA 2SSS SSSSA SSSSS 583 MVC DPR_FAMILY_L,S(R2) MOVE LENGTH FIELD
 584 K

585 KKK MOVE VC FIELD INTO DPROP-FORMAT
 586 K
 SSSSF2 41S2 SSS2 SSSS2 587 LA RS,2(R2) RS=START FOR MVCL
 SSSSF6 181F 588 LR R1,R15 R1=LENGTH FIR MVCL
 SSSSF8 BF18 C3F8 SS3F8 589 ICM R1,8,=C' ' PADDING BLANK FOR MVCL
 SSSSFC 41ES 7SSC SSSSC 59S LA R14,DPR_FAMILY R14=TARGET ADDRESS FOR MVCL
 SSS1SS 41FS SS1E SSS1E 591 LA R15,3S R15=TARGET LENGTH FOR MVCL
 SSS1S4 SEES 592 MVCL R14,RS MOVE THAT FIELD

Figure 8 (Part 9 of 23). First Sample Segment Exit Routine (Assembler)

54 Customization Guide

 593 K

594 KKK ADJUST 'CURRENT POINTER WITHIN DL/I DB FORMAT'
 595 K
 SSS1S6 182S 596 LR R2,RS R2=START OF NEXT FIELD

 598 K---K
599 K PROCESS FIRST NAME FIELD K

 6SS K---K

 6S2 K

6S3 KKK CHECK LENGTH FIELD
 6S4 K
 SSS1S8 48F2 SSSS SSSSS 6S5 LH R15,S(R2) R15=LENGTH OF VC FIELD
 SSS1SC 12FF 6S6 LTR R15,R15 LENGTH FIELD POSITIVE?
 SSS1SE 47DS C3S6 SS3S6 6S7 BNP INVFRST2 ...NO>>>THATS AN ERROR
 SSS112 55FS C3CS SS3CS 6S8 CL R15,=A(2S) FIRST FIELD LONGER THAN 2S?
 SSS116 472S C3S6 SS3S6 6S9 BH INVFRST2 ...YES>>>THATS AN ERROR
 61S K

611 KKK CHECK THAT THE FIELD IS TOTALLY WITHIN THE SEGM
 612 K
 SSS11A 41S2 FSS2 SSSS2 613 LA RS,2(R2,R15) RS=A(END OF VC FIELD)+1
 SSS11E 481S 6SSS SSSSS 614 LH R1,DL1_SEG1LL R1=LENGTH OF SEGMENT
 SSS122 4111 6SSS SSSSS 615 LA R1,DL1_SEG1(R1) R1=A(END OF SEGMENT)+1
 SSS126 19S1 616 CR RS,R1 FLD TOTALLY WITHIN SEG?
 SSS128 472S C2F2 SS2F2 617 BH INVFRST1 ...NO>>>THATS AN ERROR
 618 K

619 KKK MOVE LENGTH FIELD INTO DPROP-FORMAT
 62S K
 SSS12C D2S1 7S2A 2SSS SSS2A SSSSS 621 MVC DPR_FIRST_L,S(R2) MOVE LENGTH FIELD
 622 K

623 KKK MOVE VC FIELD INTO DPROP FORMAT
 624 K
 SSS132 41S2 SSS2 SSSS2 625 LA RS,2(R2) RS=START FOR MVCL
 SSS136 181F 626 LR R1,R15 R1=LENGTH FOR MVCL
 SSS138 BF18 C3F8 SS3F8 627 ICM R1,8,=C' ' PADDING BLANK FOR MVCL
 SSS13C 41ES 7S2C SSS2C 628 LA R14,DPR_FIRST R14=TARGET ADDRESS FOR MVCL
 SSS14S 41FS SS14 SSS14 629 LA R15,2S R15=TARGET LENGTH FOR MVCL
 SSS144 SEES 63S MVCL R14,RS MOVE THAT FIELD
 631 K

632 KKK ADJUST 'CURRENT POINTER WITHIN DL/I DB FORMAT'
 633 K
 SSS146 182S 634 LR R2,RS R2=START OF NEXT FIELD

 636 K---K
637 K PROCESS CITY FIELD K

 638 K---K

 64S K

641 KKK CHECK LENGTH FIELD
 642 K
 SSS148 48F2 SSSS SSSSS 643 LH R15,S(R2) R15=LENGTH OF VC FIELD
 SSS14C 12FF 644 LTR R15,R15 LENGTH FIELD POSITIVE?
 SSS14E 47DS C32E SS32E 645 BNP INVCITY2 ...NO>>>THATS AN ERROR
 SSS152 55FS C3C4 SS3C4 646 CL R15,=A(35) CITY FIELD LONGER THAN 35?
 SSS156 472S C32E SS32E 647 BH INVCITY2 ...YES>>>THATS AN ERROR
 648 K

649 KKK CHECK THAT THE FIELD IS TOTALLY WITHIN THE SEGM
 65S K
 SSS15A 41S2 FSS2 SSSS2 651 LA RS,2(R2,R15) RS=A(END OF VC FIELD)+1
 SSS15E 481S 6SSS SSSSS 652 LH R1,DL1_SEG1LL R1=LENGTH OF SEGMENT
 SSS162 4111 6SSS SSSSS 653 LA R1,DL1_SEG1(R1) R1=A(END OF SEGMENT)+1
 SSS166 19S1 654 CR RS,R1 FLD TOTALLY WITHIN SEG?
 SSS168 472S C31A SS31A 655 BH INVCITY1 ...NO>>>THATS AN ERROR

Figure 8 (Part 10 of 23). First Sample Segment Exit Routine (Assembler)

 Chapter 2. Segment Exit Routines 55

 656 K

657 KKK MOVE LENGTH FIELD INTO DPROP-FORMAT
 658 K
 SSS16C D2S1 7S4S 2SSS SSS4S SSSSS 659 MVC DPR_CITY_L,S(R2) MOVE LENGTH FIELD
 66S K

661 KKK MOVE VC FIELD INTO DPROP-FORMAT
 662 K
 SSS172 41S2 SSS2 SSSS2 663 LA RS,2(R2) RS=START FOR MVCL
 SSS176 181F 664 LR R1,R15 R1=LENGTH FOR MVCL
 SSS178 BF18 C3F8 SS3F8 665 ICM R1,8,=C' ' PADDING BLANK FOR MVCL
 SSS17C 41ES 7S42 SSS42 666 LA R14,DPR_CITY R14=TARGET ADDRESS FOR MVCL
 SSS18S 41FS SS23 SSS23 667 LA R15,35 R15=TARGET LENGTH FOR MVCL
 SSS184 SEES 668 MVCL R14,RS MOVE THAT FIELD

 SSS186 47FS C26A SS26A 67S B RETURN
 672 KK
 673 KK
 674 KK
 675 KKKK KKKK

676 KKKK 'REVERSE CALL' TO TRANSFORM THE SEGMENT KKKK
677 KKKK FROM ITS 'DPROP FORMAT' INTO ITS 'DL/I DB FORMAT' KKKK

 678 KKKK KKKK
 679 KK
 68S KK
 681 KK

 SSS18A 683 CALLRV DS SH

 685 KKK

686 K PROCESS THE FIRST, FIXED-FORMAT PORTION OF THE K
 687 K SEGMENT: K
 688 K K

689 K - VERIFY THAT THE DLI FORMAT BUFFER IS LARGE ENOUGH TO K
69S K CONTAIN THE LARGEST POSSIBLE SEGMENT. K
691 K - VERIFY THAT THE SEGMENT IN ITS DPROP FORMAT IS LARGE K
692 K ENOUGH TO CONTAIN KEYFLD1 AND KEYFLD2. K
693 K - MOVE KEYFLD1 AND KEYFLD2 TO THE DL/I-FORMAT OF THE SEGM. K

 694 KKK

 SSS18A D5S3 5S7C C3C8 SSS7C SS3C8 696 CLC DAXDLEN,=A(DL1_CITY+L'DL1_CITY-DL1_SEG1) ROOM FOR SEG?
 SSS19S 474S C2B6 SS2B6 697 BL INVSEGL ...NO>>>THATS AN ERROR
 SSS194 D5S3 5S8S C3CC SSS8S SS3CC 698 CLC DAXFLEN,=A(DPR_SEG1KEY+L'DPR_SEG1KEY-DPR_SEG1) IS AT
 SSS19A 474S C2A2 SS2A2 699 BL INVPARL LEAST KEY HERE? ->NO, ERR
 SSS19E D2S1 6SS2 7SS2 SSSS2 SSSS2 7SS MVC DL1_KEYFLD1,DPR_KEYFLD1 MOVE KEYFLD1
 SSS1A4 D2S5 6SS4 7SS4 SSSS4 SSSS4 7S1 MVC DL1_KEYFLD2,DPR_KEYFLD2 MOVE KEYFLD2

 7S3 KKK
7S4 K INITIALIZE 'CURRENT POINTER' WITHIN DL/I FORMAT K

 7S5 K K
7S6 K (IT IS REGISTER 2, WHICH IS USED AS CURRENT PTR K
7S7 K WITHIN DL/I FORMAT) K

 7S8 KKK

 SSS1AA 412S 6SSA SSSSA 71S LA R2,DL1_SEG1VAR R2=CURRENT ADDR IN DL1 FMT

Figure 8 (Part 11 of 23). First Sample Segment Exit Routine (Assembler)

56 Customization Guide

 712 KKK
 713 K K

714 K FOR EACH FIELD IN THE VARIABLE-FORMAT PORTION OF THE K
 715 K SEGMENT: K

716 K - VALIDATE IF THE FIELD IS REALLY PRESENT (MAY BE K
717 K TRUNCATED IF "NULL" ON THE DB2 SIDE) K
718 K - VALIDATE THE FIELD LENGTH: K
719 K ---FIELD LENGTH SHOULD BE POSITIVE K
72S K ---FIELD LENGTH SHOULD NOT EXCEED A SPECIFIC K

 721 K MAXIMAL LENGTH. K
 722 K K

723 K - COPY THE FIELD AND ITS LENGTH-FIELD TO THE K
724 K DL/I-FORMAT OF THE SEGMENT K

 725 K K
 726 KKK

 728 K---K

729 K PROCESS FAMILY NAME FIELD K
 73S K---K

 732 K

733 KKK CHECK LENGTH FIELD
 734 K
 SSS1AE 17FF 735 XR R15,R15 PRESET LENGTH TO ZERO
 SSS1BS D5S3 5S8S C3DS SSS8S SS3DS 736 CLC DAXFLEN,=A(DPR_FAMILY-DPR_SEG1) IS LENGTH FIELD HERE?
 SSS1B6 474S C1D8 SS1D8 737 BL CALLRV1S ...NO>>>THEN USE ZERO FIELD
 SSS1BA 48FS 7SSA SSSSA 738 LH R15,DPR_FAMILY_L R15=LENGTH OF VC FIELD
 SSS1BE 12FF 739 LTR R15,R15 LENGTH FIELD NEGATIVE?
 SSS1CS 474S C2DE SS2DE 74S BM INVFAM2 ...YES>>>THATS AN ERROR
 SSS1C4 59FS C3D4 SS3D4 741 C R15,=A(L'DPR_FAMILY) FAMILY FIELD LONGER THAN MAX?
 SSS1C8 472S C2DE SS2DE 742 BH INVFAM2 ...YES>>>THATS AN ERROR
 743 K

744 KKK CHECK THAT THE FIELD IS TOTALLY WITHIN THE SEGM
 745 K
 SSS1CC 41SF SSSC SSSSC 746 LA RS,DPR_FAMILY-DPR_SEG1(R15) RS=DPR_FAMILY+L'DPR_FAMILY
 SSS1DS 59SS 5S8S SSS8S 747 C RS,DAXFLEN FLD TOTALLY WITHIN SEG?
 SSS1D4 472S C2CA SS2CA 748 BH INVFAM1 ...NO>>>THATS AN ERROR
 749 K

75S KKK STORE LENGTH FIELD INTO DL/I-FORMAT
 751 K
 SSS1D8 752 CALLRV1S DS SH
 SSS1D8 4SFS 2SSS SSSSS 753 STH R15,S(S,R2) STORE LENGTH FIELD
 754 K

755 KKK MOVE VC FIELD INTO DL/I FORMAT
 756 K
 SSS1DC 412S 2SS2 SSSS2 757 LA R2,2(S,R2) R2=START FOR MVCL
 SSS1ES 183F 758 LR R3,R15 R3=LENGTH FOR MVCL
 SSS1E2 41ES 7SSC SSSSC 759 LA R14,DPR_FAMILY R14=SOURCE ADDRESS FOR MVCL
 SSS1E6 SE2E 76S MVCL R2,R14 MOVE THAT FIELD

 762 K---K
763 K PROCESS FIRST NAME FIELD K

 764 K---K

 766 K

767 KKK CHECK LENGTH FIELD
 768 K
 SSS1E8 17FF 769 XR R15,R15 PRESET LENGTH TO ZERO
 SSS1EA D5S3 5S8S C3D8 SSS8S SS3D8 77S CLC DAXFLEN,=A(DPR_FIRST-DPR_SEG1) IS LENGTH FIELD HERE?
 SSS1FS 474S C212 SS212 771 BL CALLRV3S ...NO>>>THEN USE ZERO FIELD
 SSS1F4 48FS 7S2A SSS2A 772 LH R15,DPR_FIRST_L R15=LENGTH OF VC FIELD
 SSS1F8 12FF 773 LTR R15,R15 LENGTH FIELD NEGATIVE?
 SSS1FA 474S C3S6 SS3S6 774 BM INVFRST2 ...YES>>>THATS AN ERROR
 SSS1FE 59FS C3DC SS3DC 775 C R15,=A(L'DPR_FIRST) FIRST NAME LONGER THAN MAX?
 SSS2S2 472S C3S6 SS3S6 776 BH INVFRST2 ...YES>>>THATS AN ERROR

Figure 8 (Part 12 of 23). First Sample Segment Exit Routine (Assembler)

 Chapter 2. Segment Exit Routines 57

 777 K

778 KKK CHECK THAT THE FIELD IS TOTALLY WITHIN THE SEGM
 779 K
 SSS2S6 41SF SS2C SSS2C 78S LA RS,DPR_FIRST-DPR_SEG1(R15) RS=DPR_FIRST+L'DPR_FIRST
 SSS2SA 55SS 5S8S SSS8S 781 CL RS,DAXFLEN FLD TOTALLY WITHIN SEG?
 SSS2SE 472S C2F2 SS2F2 782 BH INVFRST1 ...NO>>>THATS AN ERROR
 783 K

784 KKK STORE LENGTH FIELD INTO DL/I-FORMAT
 785 K
 SSS212 786 CALLRV3S DS SH
 SSS212 4SFS 2SSS SSSSS 787 STH R15,S(S,R2) STORE LENGTH FIELD
 788 K

789 KKK MOVE VC FIELD INTO DL/I FORMAT
 79S K
 SSS216 412S 2SS2 SSSS2 791 LA R2,2(S,R2) R2=START FOR MVCL
 SSS21A 183F 792 LR R3,R15 R3=LENGTH FOR MVCL
 SSS21C 41ES 7S2C SSS2C 793 LA R14,DPR_FIRST R14=SOURCE ADDRESS FOR MVCL
 SSS22S SE2E 794 MVCL R2,R14 MOVE THAT FIELD

 796 K---K
797 K PROCESS CITY FIELD K

 798 K---K

 8SS K

8S1 KKK CHECK LENGTH FIELD
 8S2 K
 SSS222 17FF 8S3 XR R15,R15 PRESET LENGTH TO ZERO
 SSS224 D5S3 5S8S C3ES SSS8S SS3ES 8S4 CLC DAXFLEN,=A(DPR_CITY-DPR_SEG1) IS LENGTH FIELD HERE?
 SSS22A 474S C24C SS24C 8S5 BL CALLRV5S ...NO>>>THEN USE ZERO FIELD
 SSS22E 48FS 7S4S SSS4S 8S6 LH R15,DPR_CITY_L R15=LENGTH OF VC FIELD
 SSS232 12FF 8S7 LTR R15,R15 LENGTH FIELD NEGATIVE?
 SSS234 474S C32E SS32E 8S8 BM INVCITY2 ...YES>>>THATS AN ERROR
 SSS238 59FS C3E4 SS3E4 8S9 C R15,=A(L'DPR_CITY) CITY FIELD LONGER THAN MAX?
 SSS23C 472S C32E SS32E 81S BH INVCITY2 ...YES>>>THATS AN ERROR
 811 K

812 KKK CHECK THAT THE FIELD IS TOTALLY WITHIN THE SEGM
 813 K
 SSS24S 41SF SS42 SSS42 814 LA RS,DPR_CITY-DPR_SEG1(R15) RS=DPR_FIRST+L'DPRFIRST
 SSS244 59SS 5S8S SSS8S 815 C RS,DAXFLEN FLD TOTALLY WITHIN SEG?
 SSS248 472S C31A SS31A 816 BH INVCITY1 ...NO>>>THATS AN ERROR
 817 K

818 KKK STORE LENGTH FIELD INTO DL/I-FORMAT
 819 K
 SSS24C 82S CALLRV5S DS SH
 SSS24C 4SFS 2SSS SSSSS 821 STH R15,S(S,R2) STORE LENGTH FIELD
 822 K

823 KKK MOVE VC FIELD INTO DL/I FORMAT
 824 K
 SSS25S 412S 2SS2 SSSS2 825 LA R2,2(S,R2) R2=START FOR MVCL
 SSS254 183F 826 LR R3,R15 R3=LENGTH FOR MVCL
 SSS256 41ES 7S42 SSS42 827 LA R14,DPR_CITY R14=SOURCE ADDRESS FOR MVCL
 SSS25A SE2E 828 MVCL R2,R14 MOVE THAT FIELD

 83S KKK
831 K SETUP LENGTH OF SEGMENT IN DL/I FORMAT K

 832 K K
833 K REGISTER 2 POINTS NOW 1 BYTE PAST LAST USED WITHIN THE K
834 K DL/I SEGMENT BUFFER. SUBTRACTING THE BUFFER START K
835 K ADDRESS GIVES THE LENGTH OF THE DL/I SEGMENT. K

 836 KKK

Figure 8 (Part 13 of 23). First Sample Segment Exit Routine (Assembler)

58 Customization Guide

 SSS25C 41FS 6SSS SSSSS 838 LA R15,DL1_SEG1 POINT BEGIN OF SEGMENT
 SSS26S 1B2F 839 SR R2,R15 COMPUTE SEGMENT LENGTH
 SSS262 4S2S 6SSS SSSSS 84S STH R2,DL1_SEG1LL SET LENGTH OF DL1_SEG

 SSS266 47FS C26A SS26A 842 B RETURN
 844 KK
 845 KK
 846 KK
 847 KKKK KKKK
 848 KKKK RETURN LOGIC: KKKK

849 KKKK - IF USER REQUESTED TRACING: TRACE THE PROPAGATING KKKK
 85S KKKK SQL STATEMENT. KKKK

851 KKKK - RETURN TO CALLER OF EXIT KKKK
 852 KKKK KKKK
 853 KK
 854 KK
 855 KK
 856 KK

 858 K--K

859 K RETURN TO CALLER OF THIS EXIT K
 86S K--K

 SSS26A 862 RETURN DS SH
 SSS26A 58DD SSS4 SSSS4 863 L R13,4(R13) R13=A(HIGHER SAVE-AREA)
 SSS26E 98EC DSSC SSSSC 864 LM R14,R12,12(R13) RELOAD REGISTERS OF CALLER
 SSS272 96S1 DSSF SSSSF 865 OI 15(R13),X'S1' SET RETURN INDICATION
 SSS276 1BFF 866 SR R15,R15 SET ZERO RETURN-CODE
 SSS278 S7FE 867 BR R14 RETURN LOGIC
 869 KK
 87S KK
 871 KK
 872 KKKK KKKK
 873 KKKK ERROR LOGIC: KKKK

874 KKKK - BUILD IN THE INTERFACE CONTROL BLOCK AN KKKK
875 KKKK ERROR MESSAGE CONTAINING: KKKK
876 KKKK - A 8-BYTE MESSAGE-ID KKKK
877 KKKK - A DESCRIPTION OF THE TYPE OF FAILURE KKKK
878 KKKK - SET A RETURN CODE IN THE INTERFACE CONTROL BLOCK KKKK
879 KKKK - RETURN TO CALLER OF THE EXIT KKKK

 88S KKKK KKKK
 881 KK
 882 KK
 883 KK

 SSS27A 885 INVCALL DS SH
 SSS27A D2S7 51A8 C368 SS1A8 SS368 886 MVC MSGID,=CL8'EKYESESE'
 SSS28S 924S 51BS SS1BS 887 MVI MSGBL1,C' '
 SSS284 D236 51B1 C3F9 SS1B1 SS3F9 888 MVC MSGTXT,=CL55'CALL FUNCTION NOT SUPPORTED' '
 SSS28A 47FS C34C SS34C 889 B INVRC16

 SSS28E 891 INVDBSEG DS SH
 SSS28E D2S7 51A8 C37S SS1A8 SS37S 892 MVC MSGID,=CL8'EKYESE1E'
 SSS294 924S 51BS SS1BS 893 MVI MSGBL1,C' '
 SSS298 D236 51B1 C43S SS1B1 SS43S 894 MVC MSGTXT,=CL55'UNSUPPORTED DBD OR SEGNAME'
 SSS29E 47FS C34C SS34C 895 B INVRC16

 SSS2A2 897 INVPARL DS SH
 SSS2A2 D2S7 51A8 C378 SS1A8 SS378 898 MVC MSGID,=CL8'EKYESE2E'
 SSS2A8 924S 51BS SS1BS 899 MVI MSGBL1,C' '
 SSS2AC D236 51B1 C467 SS1B1 SS467 9SS MVC MSGTXT,=CL55'3RD PARAMETER HAS INCORRECT LENGTH'
 SSS2B2 47FS C34C SS34C 9S1 B INVRC16

Figure 8 (Part 14 of 23). First Sample Segment Exit Routine (Assembler)

 Chapter 2. Segment Exit Routines 59

 SSS2B6 9S3 INVSEGL DS SH
 SSS2B6 D2S7 51A8 C38S SS1A8 SS38S 9S4 MVC MSGID,=CL8'EKYESE3E'
 SSS2BC 924S 51BS SS1BS 9S5 MVI MSGBL1,C' '
 SSS2CS D236 51B1 C49E SS1B1 SS49E 9S6 MVC MSGTXT,=CL55'INVALID SEGMENT LENGTH'
 SSS2C6 47FS C342 SS342 9S7 B INVRC12

 SSS2CA 9S9 INVFAM1 DS SH
 SSS2CA D2S7 51A8 C388 SS1A8 SS388 91S MVC MSGID,=CL8'EKYESE4E'
 SSS2DS 924S 51BS SS1BS 911 MVI MSGBL1,C' '
 SSS2D4 D236 51B1 C4D5 SS1B1 SS4D5 912 MVC MSGTXT,=CL55'FAMILY FIELD DOES NOT FIT WITHIN SEGMENT'
 SSS2DA 47FS C342 SS342 913 B INVRC12

 SSS2DE 915 INVFAM2 DS SH
 SSS2DE D2S7 51A8 C39S SS1A8 SS39S 916 MVC MSGID,=CL8'EKYESE5E'
 SSS2E4 924S 51BS SS1BS 917 MVI MSGBL1,C' '
 SSS2E8 D236 51B1 C5SC SS1B1 SS5SC 918 MVC MSGTXT,=CL55'LENGTH OF FAMILY FIELD IS INVALID'
 SSS2EE 47FS C342 SS342 919 B INVRC12

 SSS2F2 921 INVFRST1 DS SH
 SSS2F2 D2S7 51A8 C398 SS1A8 SS398 922 MVC MSGID,=CL8'EKYESE6E'
 SSS2F8 924S 51BS SS1BS 923 MVI MSGBL1,C' '
 SSS2FC D236 51B1 C543 SS1B1 SS543 924 MVC MSGTXT,=CL55'FIRST-NAME FIELD DOES NOT FIT WITHIN SEGMENC
 T'
 SSS3S2 47FS C342 SS342 925 B INVRC12

 SSS3S6 927 INVFRST2 DS SH
 SSS3S6 D2S7 51A8 C3AS SS1A8 SS3AS 928 MVC MSGID,=CL8'EKYESE7E'
 SSS3SC 924S 51BS SS1BS 929 MVI MSGBL1,C' '
 SSS31S D236 51B1 C57A SS1B1 SS57A 93S MVC MSGTXT,=CL55'LENGTH OF FIRST-NAME FIELD IS INVALID'
 SSS316 47FS C342 SS342 931 B INVRC12

 SSS31A 933 INVCITY1 DS SH
 SSS31A D2S7 51A8 C3A8 SS1A8 SS3A8 934 MVC MSGID,=CL8'EKYESE8E'
 SSS32S 924S 51BS SS1BS 935 MVI MSGBL1,C' '
 SSS324 D236 51B1 C5B1 SS1B1 SS5B1 936 MVC MSGTXT,=CL55'CITY FIELD DOES NOT FIT WITHIN SEGMENT'
 SSS32A 47FS C342 SS342 937 B INVRC12

 SSS32E 939 INVCITY2 DS SH
 SSS32E D2S7 51A8 C3BS SS1A8 SS3BS 94S MVC MSGID,=CL8'EKYESE9E'
 SSS334 924S 51BS SS1BS 941 MVI MSGBL1,C' '
 SSS338 D236 51B1 C5E8 SS1B1 SS5E8 942 MVC MSGTXT,=CL55'LENGTH OF CITY FIELD IS INVALID'
 SSS33E 47FS C342 SS342 943 B INVRC12

 SSS342 945 INVRC12 DS SH
 SSS342 D2S3 51A4 C3E8 SS1A4 SS3E8 946 MVC DAXRETC,=F'12' SET RETURN CODE 12 (ERROR)
 SSS348 47FS C26A SS26A 947 B RETURN

 SSS34C 949 INVRC16 DS SH
 SSS34C D2S3 51A4 C3EC SS1A4 SS3EC 95S MVC DAXRETC,=F'16' SET RETURN CODE 16 (SEVERE ERROR)
 SSS352 47FS C26A SS26A 951 B RETURN
 SSS358 953 LTORG
 SSS358 C4C2F14S4S4S4S4S 954 =CL8'DB1'
 SSS36S E2C5C7F14S4S4S4S 955 =CL8'SEG1'
 SSS368 C5D2E8C5E2C5FSC5 956 =CL8'EKYESESE'
 SSS37S C5D2E8C5E2C5F1C5 957 =CL8'EKYESE1E'
 SSS378 C5D2E8C5E2C5F2C5 958 =CL8'EKYESE2E'
 SSS38S C5D2E8C5E2C5F3C5 959 =CL8'EKYESE3E'
 SSS388 C5D2E8C5E2C5F4C5 96S =CL8'EKYESE4E'
 SSS39S C5D2E8C5E2C5F5C5 961 =CL8'EKYESE5E'

Figure 8 (Part 15 of 23). First Sample Segment Exit Routine (Assembler)

60 Customization Guide

 SSS398 C5D2E8C5E2C5F6C5 962 =CL8'EKYESE6E'
 SSS3AS C5D2E8C5E2C5F7C5 963 =CL8'EKYESE7E'
 SSS3A8 C5D2E8C5E2C5F8C5 964 =CL8'EKYESE8E'
 SSS3BS C5D2E8C5E2C5F9C5 965 =CL8'EKYESE9E'
 SSS3B8 SSSSSS65 966 =A(DPR_SEG1L)
 SSS3BC SSSSSS1E 967 =A(3S)
 SSS3CS SSSSSS14 968 =A(2S)
 SSS3C4 SSSSSS23 969 =A(35)
 SSS3C8 SSSSSS35 97S =A(DL1_CITY+L'DL1_CITY-DL1_SEG1)
 SSS3CC SSSSSSSA 971 =A(DPR_SEG1KEY+L'DPR_SEG1KEY-DPR_SEG1)
 SSS3DS SSSSSSSC 972 =A(DPR_FAMILY-DPR_SEG1)
 SSS3D4 SSSSSS1E 973 =A(L'DPR_FAMILY)
 SSS3D8 SSSSSS2C 974 =A(DPR_FIRST-DPR_SEG1)
 SSS3DC SSSSSS14 975 =A(L'DPR_FIRST)
 SSS3ES SSSSSS42 976 =A(DPR_CITY-DPR_SEG1)
 SSS3E4 SSSSSS23 977 =A(L'DPR_CITY)
 SSS3E8 SSSSSSSC 978 =F'12'
 SSS3EC SSSSSS1S 979 =F'16'
 SSS3FS D5D6 98S =C'NO'
 SSS3F2 D9E5 981 =C'RV'
 SSS3F4 SSSA 982 =AL2(DL1_FIXEDL)
 SSS3F6 SS65 983 =AL2(DPR_SEG1L)
 SSS3F8 4S 984 =C' '
 SSS3F9 C3C1D3D34SC6E4D5 985 =CL55'CALL FUNCTION NOT SUPPORTED'
 SSS43S E4D5E2E4D7D7D6D9 986 =CL55'UNSUPPORTED DBD OR SEGNAME'
 SSS467 F3D9C44SD7C1D9C1 987 =CL55'3RD PARAMETER HAS INCORRECT LENGTH'
 SSS49E C9D5E5C1D3C9C44S 988 =CL55'INVALID SEGMENT LENGTH'
 SSS4D5 C6C1D4C9D3E84SC6 989 =CL55'FAMILY FIELD DOES NOT FIT WITHIN SEGMENT'
 SSS5SC D3C5D5C7E3C84SD6 99S =CL55'LENGTH OF FAMILY FIELD IS INVALID'
 SSS543 C6C9D9E2E36SD5C1 991 =CL55'FIRST-NAME FIELD DOES NOT FIT WITHIN SEGMENT'
 SSS57A D3C5D5C7E3C84SD6 992 =CL55'LENGTH OF FIRST-NAME FIELD IS INVALID'
 SSS5B1 C3C9E3E84SC6C9C5 993 =CL55'CITY FIELD DOES NOT FIT WITHIN SEGMENT'
 SSS5E8 D3C5D5C7E3C84SD6 994 =CL55'LENGTH OF CITY FIELD IS INVALID'
 996 KK

997 K DESCRIPTION OF GETMAINED AREA CONTAINING: K
 998 K - SAVE-AREA K

999 K - EXIT WORKSPACE K
 1SSS KK

 SSSSSS 1SS2 GETM DSECT
 1SS3 K--K
 1SS4 K REGISTER SAVE-AREA K
 1SS5 K--K
 SSSSSS 1SS6 SAVE DS 18F REGISTER SAVE-AREA

 1SS8 K--K

1SS9 K WORK SPACE FOR EXIT K
 1S1S K--K

 SSSS48 1S12 EXITWORK DS CL22 NOT USED BY THIS SAMPLE EXIT

SSS5E 1S14 GETML EQU K-GETM LENGTH OF GETMAINED AREA
 1S16 KKK

1S17 K DESCRIPTIONS OF SEGMENT SEG1 IN K
1S18 K - ITS DL/I DB FORMAT K
1S19 K - ITS DPROP FORMAT K

 1S2S KKK

 1S22 K--K

1S23 K DESCRIPTION OF SEGMENT 'SEG1' IN ITS K
1S24 K VARIABLE-LENGTH DL/I DB FORMAT K

Figure 8 (Part 16 of 23). First Sample Segment Exit Routine (Assembler)

 Chapter 2. Segment Exit Routines 61

 1S25 K--K

 SSSSSS 1S27 DL1_SEG1 DSECT ,
 1S28 K

1S29 KKK SEGMENT PORTION WITH FIXED-LENGTH FIELDS HAVING
1S3S KKK A FIXED START POSITION.

 1S31 K
 SSSSSS 1S32 DL1_SEG1LL DS H LENGTH OF SEGMENT
 SSSSS2 1S33 DL1_SEG1KEY DS SCL8 KEY FIELD
 SSSSS2 1S34 DL1_KEYFLD1 DS CL2 SUB-FIELD OF KEY OF SEG1
 SSSSS4 1S35 DL1_KEYFLD2 DS CL6 SUB-FIELD OF KEY OF SEG1

SSSSA 1S36 DL1_FIXEDL EQU K-DL1_SEG1 LENGTH OF FIXED PORTION
 1S37 K

1S38 KKK START OF VARIABLE SEGMENT PORTION WITH CONTIGUOUS
 1S39 KKK PAIRS OF:

1S4S KKK (LENGTH FIELD,VARIABLE-LENGTH FIELD).
1S41 KKK WITH THE EXCEPTION OF THE FIRST PAIR: ALL
1S42 KKK PAIRS HAVE A VARIABLE START POSITION (SINCE THE
1S43 KKK PAIRS ARE STORED ADJACENTLY IN ORDER TO CONSERVE
1S44 KKK DASD STORAGE IN THE DL/I DB).

 1S45 K
 SSSSA 1S46 DL1_SEG1VAR EQU K
 1S47 K
 SSSSSA 1S48 DL1_FAMILY_L DS HL2 LENGTH OF FAMILY NAME
 SSSSSC 1S49 DL1_FAMILY DS CL3S FAMILY NAME
 1S5S K
 SSSS2A SSSSD 1S51 ORG DL1_FAMILY+1
 SSSSSD 1S52 DL1_FIRST_L DS HL2 LENGTH OF FIRST NAME
SSSSSF 1S53 DL1_FIRST DS CL2S FIRST NAME
 1S54 K
 SSSS23 SSS1S 1S55 ORG DL1_FIRST+1
 SSSS1S 1S56 DL1_CITY_L DS HL2 LENGTH OF CITY-NAME
 SSSS12 1S57 DL1_CITY DS CL35 CITY-NAME
 SSSS35 SSS35 1S58 ORG

 1S6S K--K

1S61 K DESCRIPTION OF SEGMENT 'SEG1' IN ITS DPROP FIXED-FORMAT.K
 1S62 K K

1S63 K IN THIS FIXED FORMAT, THE PAIRS OF K
1S64 K (LENGTH FIELD,VARIABLE-LENGTH FIELD) K
1S65 K ARE NOT IMMEDIATELY ADJACENT. INSTEAD THIS FORMAT K
1S66 K RESERVES FOR EACH VARIABLE LENGTH FIELD ENOUGH STORAGE K
1S67 K FOR ITS MAXIMUM FIELD LENGTH. K
1S68 K THEREFORE EACH PAIR STARTS AT A FIXED LOCATION K
1S69 K WITHIN THE SEGMENT. K

 1S7S K--K

 SSSSSS 1S72 DPR_SEG1 DSECT ,
 SSSSSS 1S73 DPR_SEG1LL DS H SEGMENT LENGTH
 SSSSS2 1S74 DPR_SEG1KEY DS SCL8 KEY FIELD
 SSSSS2 1S75 DPR_KEYFLD1 DS CL2 SUB-FIELD OF KEY OF SEG1
 SSSSS4 1S76 DPR_KEYFLD2 DS CL6 SUB-FIELD OF KEY OF SEG1
 1S77 K
 SSSSSA 1S78 DPR_FAMILY_L DS HL2 LENGTH OF FAMILY NAME
 SSSSSC 1S79 DPR_FAMILY DS CL3S FAMILY NAME
 1S8S K
 SSSS2A 1S81 DPR_FIRST_L DS HL2 LENGTH OF FIRST NAME
SSSS2C 1S82 DPR_FIRST DS CL2S FIRST NAME
 1S83 K
 SSSS4S 1S84 DPR_CITY_L DS HL2 LENGTH OF CITY NAME
 SSSS42 1S85 DPR_CITY DS CL35 CITY NAME
 1S86 K

SSS65 1S87 DPR_SEG1L EQU K-DPR_SEG1 LENGTH OF SEGMENT

Figure 8 (Part 17 of 23). First Sample Segment Exit Routine (Assembler)

62 Customization Guide

 1S89 KK
1S9S K DESCRIPTION OF ANCHOR AREA K

 1S91 KK

 SSSSSS 1S93 ANCHOR DSECT ,
 SSSSSS 1S94 ANCHOR_PTR DS F'S' PTR TO GETMAINED AREA
 SSSSS4 1S95 DS CL6S' ' NOT USED

1S97 EKYRCDAX , EXIT INTERFACE CONTROL BLOCK
1S98+KKKKKKKKKKKKKKKKKK START OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKKKKK/

 1S99+K K/
11SS+K CONTROL BLOCK NAME: K/

 11S1+K EKYRCDAX (DAX) K/
 11S2+K K/
 11S3+K DESCRIPTIVE NAME: K/

11S4+K DPROP SEGMENT EXIT INTERFACE BLOCK K/
 11S5+K K/
 11S6+K K/
 11S7+KK
 11S8+K K

11S9+K THIS PRODUCT CONTAINS "RESTRICTED MATERIALS OF IBM". K
 111S+K K

1111+K 5685-124 (C) COPYRIGHT IBM CORP. 1989, 1992. K
1112+K ALL RIGHTS RESERVED. K

 1113+K K
1114+K U.S. GOVERNMENT USERS RESTRICTED RIGHTS - K
1115+K USE, DUPLICATION, OR DISCLOSURE RESTRICTED BY K
1116+K GSA ADP SCHEDULE CONTRACT WITH IBM CORP. K

 1117+K K
1118+K LICENSED MATERIALS - PROPERTY OF IBM. K

 1119+K K
 112S+KK
 1121+K K/

1122+K STATUS: V1 R2 MS K/
 1123+K K/
 1124+K FUNCTION: K/

1125+K THIS IS THE CONTROL BLOCK USED TO INTERFACE BETWEEN K/
1126+K - DPROP OR DXT K/

 1127+K AND K/
1128+K - A USER'S SEGMENT EXIT ROUTINE (THESE USER K/
1129+K EXIT ROUTINES ARE CALLED BY DXT 'USER DATA K/

 113S+K EXIT ROUTINES') K/
 1131+K K/

1132+K THERE IS ONE DAX CONTROL BLOCK FOR EACH SEGMENT K/
1133+K EXIT ROUTINE, LASTING FOR THE DURATION OF THE EXIT K/
1134+K IN VIRTUAL STORAGE. K/
1135+K FOR SYNCH PROPAGATION IN MPP REGIONS: K/
1136+K - THIS IS THE DURATION OF THE IMS PROGRAM CONTROLLER K/

 1137+K SUBTASK. K/
1138+K FOR SYNCH PROPAGATION IN BATCH/BMP REGIONS, FOR K/
1139+K CCU AND DLU PROCESSING, AND FOR ASYNCH PROPAGATION K/
114S+K (DEPENDING ON HOW AYSNCH PROPAGATION IS IMPLEMENTED): K/
1141+K - THIS IS THE DURATION OF THE JOBSTEP. K/

 1142+K K/
 1143+K--K/
 1144+K IMPORTANT NOTES: K/
 1145+K ================ K/

1146+K - SINCE THE SAME USER EXIT ROUTINE CAN BE INVOKED BOTH K/
1147+K BY DPROP AND BY DXT: CHANGES TO THIS CONTROL BLOCK MUST K/
1148+K BE COORDINATED BETWEEN DPROP DEVELOPMENT AND DXT K/

 1149+K DEVELOPMENT. K/
 115S+K K/

1151+K - FIELDS MARKED IN THE COMMENT WITH 'KKKDXT ONLYKKK' K/
1152+K HAVE NO MEANING, WHEN THE SEGMENT USER EXIT K/
1153+K ROUTINE IS INVOKED BY DPROP. K/

 1154+K--K/

Figure 8 (Part 18 of 23). First Sample Segment Exit Routine (Assembler)

 Chapter 2. Segment Exit Routines 63

 1155+K K/

1156+K MODULE TYPE= MACRO K/
1157+K PROCESSOR= ASSEMBLER H K/

 1158+K K/
1159+K INNER CONTROL BLOCKS: NONE K/

 116S+K K/
1161+K MACROS USED FROM MACRO LIBRARY: NONE K/

 1162+K K/
 1163+K CHANGE ACTIVITY: K/
 1164+K KMPSS57 12/13/9S K/

1165+K KMPSS6S S2/S8/91 COPYRIGHT INFORMATION K/
 1166+K KMPREL2 S3/2S/91 K/
 1167+K K/

1168+KKKKKKKKKKKKKKKKKKKK END OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKKKKK/

 SSSSSS 117S+DAX DSECT

SSSSS 1171+DVRDAX EQU K LABEL FOR DXT COMPATIBILITY
 1172+K--K

1173+K THIS SECTION OF THE CB MAY NOT BE MODIFIED BY EXIT K
 1174+K--K
 SSSSSS 1175+DAXPFX DS SCL32 PREFIX OF CONTROL BLOCK
 SSSSSS 1176+DAXTNAME DS CL8 EYE CATCHER: "DVRXCDAX"
 SSSSS8 1177+DAXRSVD DS CL24 RESERVED FOR DXT INTERNAL USE
 1178+K
 SSSS2S 1179+DAXPFXE DS SCL448 PREFIX EXTENSION
 SSSS2S 118S+DAXCALL DS CL2 TYPE OF CALL TO EXIT:

1181+K =C'NO' - NORMAL CALL,
1182+K ISSUED TO CONVERT DATA FROM
1183+K 'IMS DATABASE FORMAT' TO

 1184+K 'DPROP/DXT' FORMAT
1185+K =C'RV' - REVERSE CALL
1186+K ISSUED TO CONVERT

 1187+K DATA FROM:
 1188+K 'DPROP/DXT' FORMAT
 1189+K TO

119S+K 'IMS DATABASE FORMAT'
1191+K KKKDXT ONLYKKK =C'RE' - RETURN CALL, ISSUED
1192+K INSTEAD OF NEXT REQUEST FOR
1193+K NEW DATA AT REQUEST OF EXIT
1194+K (SEE DAXRETC VALUE 4)
1195+K KKKDXT ONLYKKK =C'ED' - END-OF-DATA CALL
1196+K ISSUED BY DXT.

 1197+K
 SSSS22 1198+DAXDATYP DS CL2 TYPE OF DATA BEING PASSED--

1199+K =C'DL' - DL/I DATA
12SS+K KKKDXT ONLYKKK =C'PS' - PHYSICAL SEQUENTIAL
12S1+K KKKDXT ONLYKKK =C'VK' - VSAM KSDS DATA
12S2+K KKKDXT ONLYKKK =C'VE' - VSAM ESDS DATA
12S3+K KKKDXT ONLYKKK =C'GD' - GDI RECRD DATA

 12S4+K
 SSSS24 12S5+DAXFIL DS CL32 NAME OF FILE OR PCB FROM WHICH

12S6+K DATA IS BEING PASSED
 12S7+K
 SSSS44 12S8+DAXPSB DS CL8 NAME OF PSB IF TYPE IS "DL"
 12S9+K
 SSSS4C 121S+DAXSEGM DS CL32 NAME OF SEGMENT IF TYPE IS "DL"

1211+K IF CALLER IS DPROP:
1212+K - NAME OF PHYSICAL SEGM.
1213+K IF CALLER IS DXT:
1214+K - NAME OF SEGM. SPECIFIED
1215+K IN THE USED DBD (DBD CAN
1216+K BE A PHYSICAL OR LOGICAL

 1217+K DBD)
 1218+K

Figure 8 (Part 19 of 23). First Sample Segment Exit Routine (Assembler)

64 Customization Guide

SSSS6C 1219+DAXPCBAD DS AL4 KKKDXT ONLYKKK PTR TO PCB IF TYPE IS "DL"
 122S+K
SSSS7S 1221+DAXPCBLS DS AL4 KKKDXT ONLYKKK PTR TO LIST OF DEM'S PCBS,

1222+K IF DEM IS A DL/I DEM
 1223+K
 SSSS74 1224+DAXKFBAD DS AL4 PTR TO SEGMENT'S FULLY

1225+K CONCAT KEY (IF DL/I).
1226+K IF CALLER IS DPROP:
1227+K - S, IF 'NOKEY' HAS BEEN
1228+K SPECIFIED ON EXIT=

 1229+K OF DBDGEN.
 123S+K
 SSSS78 1231+DAXKFBLN DS F LENGTH OF SEGM'S FULLY

1232+K CONCAT KEY (IF DL/I)
1233+K IF DPROP: S, IF 'NOKEY' HAS BEEN
1234+K SPECIFIED ON EXIT=

 1235+K OF DBDGEN.
 1236+K
 SSSS7C 1237+DAXINLN DS SF
 SSSS7C 1238+DAXDLEN DS F LENGTH OF IMS DB SEGMENT BUFFER
 1239+K
 SSSS8S 124S+DAXOUTLN DS SF
 SSSS8S 1241+DAXFLEN DS F LENGTH OF DPROP SEGMENT BUFFER
 1242+K
SSSS84 1243+DAXSYSPR DS AL4 KKKDXT ONLYKKK POINTER TO SYSPRINT DCB (EXIT

1244+K MAY WISH TO RECORD INFORMATION
1245+K IN SYSPRINT VIA "PUT"--
1246+K DCB FACTS: LRECL=121,
1247+K NO CARRIAGE CONTROL CHAR

 1248+K
 SSSS88 1249+DAXENVT DS SCL12 ENVIRONMENT SUBFIELDS
 SSSS88 125S+DAXOPSYS DS CL4 OPERATING SYSTEM:

1251+K =C'ESA ' IF MVS/ESA
1252+K KKKDXT ONLYKKK =C'XA ' IF MVS/XA
1253+K KKKDXT ONLYKKK =C'MVS ' IF MVS

 1254+K
 SSSS8C 1255+DAXTRANS DS CL4 DB/DC ENVIRONMENT:

1256+K =C'BAT ' IF IMS BATCH/BMP
1257+K =C'MPP ' IF IMS MPP
1258+K =C'IFP ' IF FAST PATH
1259+K =C'CICS' IF CICS
126S+K =C' ' IF NONE OF ABOV.

 1261+K
 SSSS9S 1262+DAXPROGM DS CL4 CALLING PROGRAM:

1263+K =C'DXT ' IF DataRefresher
1264+K =C'DPRS' IF DPROP SYNCH PROP
1265+K =C'DPRA' IF DPROP ASYNCH PROP
1266+K =C'DPRC' IF DPROP CCU PROP
1267+K =C'DPRL' IF DPROP DLU

 1268+K
 SSSS94 1269+DAXEXIT DS CL8 NAME OF THIS EXIT ROUTINE
 127S+K
 SSSS9C 1271+DAXDBNM DS CL8 NAME OF IMS DATABASE

1272+K IF CALLER IS DPROP:
1273+K - NAME OF PHYSICAL DBD.
1274+K IF CALLER IS DXT:
1275+K - NAME OF USED DBD (CAN BE
1276+K NAME OF A PHYSICAL OR

 1277+K LOGICAL DBD)
 1278+K
 SSSSA4 1279+DAXDPRPN DS CL24 RESERVED
 128S+K
 SSSSBC 1281+DAXASGNO DS F KKKDXT ONLYKKK NUMBER OF DAXASEGS ARRAY
 1282+K ELEMENTS CONTAINING

1283+K ANCESTOR SEGM INFORMATION

Figure 8 (Part 20 of 23). First Sample Segment Exit Routine (Assembler)

 Chapter 2. Segment Exit Routines 65

 1284+K
 SSSSCS 1285+DAXASEGS DS 15CL12 KKKDXT ONLYKKK ARRAY OF ANCESTOR SEGMS,

1286+K ONLY FOR DL/I SEGM EXIT,
1287+K IN ORDER FROM ROOT TO
1288+K PARENT SEGMENT (EACH
1289+K ARRAY ELEMENT IS MAPPED
129S+K BY DAXANCTR DSECT, BELOW)

 1291+K
 SSS174 1292+DAXRSVD1 DS CL46 RESERVED FOR DXT USE
 SSS1A2 SS174 1293+ ORG DAXRSVD1 REDEFINE THIS AREA
 1294+K
 SSS174 1295+DAXDPRCT DS CL4' ' --DPROP ONLY-- IF CALLER IS DPROP:

1296+K - EXIT IS CALLED TO PROCESS:
1297+K 'ISRT': A DL/I OR DB2 INSERT
1298+K 'DLET': A DL/I OR DB2 DELETE
1299+K 'REPL': A DL/I OR DB2 REPLACE

 13SS+K (AFTER-REPLACE IMAGE)
 13S1+K IF CALLER IS DXT:

13S2+K - NOT USED
 SSS178 13S3+DAXREPL DS C' ' --DPROP ONLY-- IF CALLER IS DPROP AND IF
 13S4+K DAXDPRCT IS 'REPL':
 SSSC1 13S5+DAXREPLA EQU C'A' 'A': AFTER-REPLACE IMAGE

SSSC2 13S6+DAXREPLB EQU C'B' 'B': BEFORE-REPLACE IMAGE

 SSS179 13S8+DAXSEGT DS C' ' --DPROP ONLY-- IF CALLER IS DPROP:

13S9+K - TYPE OF SEGMENT PROCESSED:
SSSE4 131S+DAXSEGTU EQU C'U' 'U': UPDATED IMS SEGMENT
SSSC1 1311+DAXSEGTA EQU C'A' 'A': ANCESTOR OF UPDATED SEGM
SSSC9 1312+DAXSEGTI EQU C'I' 'I': INTERNAL SEGMENT

 SSS17A 1314+DAXPSUP DS C' ' --DPROP ONLY-- IF CALLER IS DPROP, DESCRIPTION
 1315+K WHETHER PROPAGATION-SUPPRESSION
 1316+K IS ALLOWED:

SSSD5 1317+DAXPSUPN EQU C'N' 'N': SUPPRESSION NOT ALLOWED
SSSE8 1318+DAXPSUPY EQU C'Y' 'Y': SUPPRESSION ALLOWED

 SSS17B 132S+ DS C' ' RESERVED
 1321+K
 SSS17C 1322+DAXISEGM DS CL8' ' --DPROP ONLY-- IF CALLER IS DPROP:

1323+K - FOR RH PROPAGATION
1324+K NAME OF SEGMENT TO
1325+K PROCESS. SAME AS PHYS.
1326+K IMS SEGNAME IN DAXSEGM
1327+K IF NOT MAPPING CASE 3

 1328+K ENTITY (INTERNAL)
1329+K SEGMENT IN PROCESS.

 133S+K IF CALLER IS DXT:
1331+K - NOT USED

 SSS184 1332+DAXIDDSB DS A --DPROP ONLY-- IF CALLER IS DPROP:
1333+K - FOR RH PROPAGATION
1334+K POINTER TO THE BUFFER
1335+K CONTAINING THE 'BEFORE-CHANGE'
1336+K IMS DATABASE SEGMENT.
1337+K BUFFER CONTAINS THE
1338+K BEFORE IMAGE OF THE
1339+K IMS SEGMENT IF:
134S+K - DAXDPRCT EQ REPL, OR
1341+K - DAXDPRCT EQ DLET, OR
1342+K - DAXSEGT EQ DAXSEGTI
1343+K (INTERNAL SEGMENT OF
1344+K MAPPING CASE 3)
1345+K OR CONTAINS ALL BINARY
1346+K ZEROES IN OTHER CASES.
1347+K BUFFER IS READ ONLY
1348+K FOR THE EXIT ROUTINE.

Figure 8 (Part 21 of 23). First Sample Segment Exit Routine (Assembler)

66 Customization Guide

 SSS188 1349+DAXIDDSL DS A --DPROP ONLY-- IF CALLER IS DPROP:

135S+K - FOR RH PROPAGATION
1351+K LENGTH OF THE 'BEFORE-CHANGE'
1352+K IMS DB SEGMENT POINTED-TO

 1353+K BY DAXIDDSB.
 SSS18C SS1A2 1354+ ORG
 1355+K POINT TO THE END OF DAXRSVD1
 1356+K--K

1357+K THE NEXT GROUP OF FIELDS MAY BE MODIFIED BY THE EXIT ROUTINE K
 1358+K--K
 SSS1A2 1359+DAXENTRD DS CL1 SET BY EXIT ROUTINE TO
 136S+K C'X', INDICATES

1361+K THAT EXIT HAS BEEN ENTERED
 1362+K
 SSS1A3 1363+DAXINCTL DS CL1 SET BY EXIT ROUTINE TO
 1364+K C'X', INDICATES

1365+K THAT EXIT IS IN CONTROL
 1366+K
 SSS1A4 1367+DAXRETC DS F RETURN CODE--

1368+K VALUE SET HERE BY EXIT,
 1369+K

137S+K RETURN CODE VALUES...
SSSSS 1371+DAXRCOK EQU S = S - NORMAL, OUTPUT

 1372+K DATA RETURNED
 1373+K

SSSS4 1374+DAXRCOKR EQU 4 KKKDXT ONLYKKK = 4 - NORMAL, OUTPUT
 1375+K DATA RETURNED,
 1376+K DXT SHOULD

1377+K RETURN TO EXIT FOR NEXT
1378+K OCCURRENCE OF THIS RECORD

 1379+K OR SEGMENT
 138S+K

SSSS8 1381+DAXRCNQ EQU 8 = 8 - IF CALLER IS DPROP:
1382+K DPROP WILL SUPPRESS
1383+K THE PROPAGATION OF
1384+K THE CHANGED DL/I DATA
1385+K - IF CALLER IS DXT:
1386+K DXT SHOULD NOT
1387+K CONSIDER DATA TO
1388+K BE ELIGIBLE FOR

 1389+K EXTRACT
 139S+K
 SSSSC 1391+DAXRCERB EQU 12 =12 ERROR

1392+K - IF CALLER IS DPROP:
 1393+K PROPAGATION FAILURE.
 1394+K DPROP/RUP WILL

1395+K GO THROUGH ITS USUAL
1396+K ERROR HANDLING LOGIC.
1397+K - IF CALLER IS DXT:

 1398+K DXT SHOULD
 1399+K TERMINATE BATCH
 14SS+K
 SSS1S 14S1+DAXRCERD EQU 16 =16 ERROR

14S2+K - IF CALLER IS DPROP:
14S3+K RUP WILL ABEND
14S4+K - IF CALLER IS DXT:

 14S5+K DXT SHOULD
14S6+K TERMINATE DEM EXECUTION

 14S7+K
 SSS1A8 14S8+DAXSMESG DS CL64 TEXT OF MESSAGE PASSED

14S9+K FROM EXIT ROUTINE TO DPROP/DXT.
141S+K ALL BLANKS MEANS NO MESSAGE.

Figure 8 (Part 22 of 23). First Sample Segment Exit Routine (Assembler)

 Chapter 2. Segment Exit Routines 67

1411+K - IF CALLER IS DPROP:
1412+K MSG WILL BE WRITTEN TO
1413+K VARIOUS DESTINATIONS ACCORDING
1414+K TO USUAL DPROP/RUP ERROR HANDLING
1415+K LOGIC IN MESSAGE EKYR98SI OR

 1416+K EKYR981E.
1417+K - IF CALLER IS DXT:
1418+K TEXT OF MESSAGE WILL BE

 1419+K WRITTEN TO
142S+K SYSPRINT DATA SET IN MESSAGE

 1421+K DVRAS_5S.
1422+K (UNDERSCORE IS REPLACED
1423+K BY ONE OF SEVERAL DIGITS)
1424+K HAS EFFECT FOR ALL CALLS.

 1425+K
 SSS1E8 1426+DAXDPRPM DS CL24 STORAGE RESERVED FOR DATA EXIT
 1427+K
 SSS2SS 1428+DAXRSVD2 DS CL32 RESERVED FOR DXT USE
 SSS22S 1429+DAXSCRT1 DS CL128 WORK SPACE (SCRATCHPAD)

143S+K MAY BE USED BY EXIT
1431+K ROUTINE AS DESIRED

 1432+K
SS2AS 1433+DAXEND EQU K END OF DAX DSECT
SS2AS 1434+DAXLEN EQU K-DAX LENGTH OF DAX DSECT

 1435+KK
 1436+K
 1437+K DAXANCTR DSECT KKKDXT ONLYKKK

1438+K MAPS THE ARRAY ELEMENTS OF DAXASEGS
 1439+K
 144S+KK
 SSSSSS 1441+DAXANCTR DSECT , KKKDXT ONLYKKK
SSSSSS 1442+DAXASGNM DS CL8 KKKDXT ONLYKKK ANCESTOR SEGM NAME
 1443+K
SSSSS8 1444+DAXASGAD DS AL4 KKKDXT ONLYKKK ANCESTOR SEGM ADDRESS
 1445+K

 1447 KKK
1448 K REDEFINITION OF THE MESSAGE AREA LOCATED IN THE DAX K

 1449 KKK

 SSS2AS 1451 DAX DSECT
 SSS2AS SS1A8 1452 ORG DAXSMESG
 SSS1A8 4S4S4S4S4S4S4S4S 1453 MSGID DC CL8' ' MESSAGE ID
 SSS1BS 4S 1454 MSGBL1 DC C' ' ONE BLANK
 SSS1B1 4S4S4S4S4S4S4S4S 1455 MSGTXT DC CL55' ' TEXT

 SSSSSS 1457 END EKYESE1A

Figure 8 (Part 23 of 23). First Sample Segment Exit Routine (Assembler)

Definitions for the First Sample Segment Exit Routine
This section contains definitions associated with the first sample Segment exit
routine. The following types of definitions are provided:

� IMS DBDGEN and PSBGEN definitions

� DB2 CREATE TABLE definitions

� DataRefresher definitions required to define the PR with DataRefresher and to
extract the IMS data with DataRefresher

� SQL statements defining the PR without DataRefresher in the MVG input tables

68 Customization Guide

 DBDGEN Definitions
Figure 9 shows a DBDGEN definition for the Segment exit routine in Figure 8 on
page 46.

 DBD NAME=DB1,VERSION=V123456789, C
 ACCESS=(HDAM,OSAM),RMNAME=(DFSHDC4S,5,4), C
 EXIT=(EKYRUP��)
 DATASET DD1=HDAM,SIZE=4S96,DEVICE=338S
K
 SEGM NAME=SEG1,PARENT=S,BYTES=(1S1,1S)
 FIELD NAME=(KEY,SEQ,U),BYTES=8,START=3
K
 DBDGEN
 FINISH
 END

Figure 9. DBDGEN Definition

Note: The EXIT= keyword of the DBD macro specifies that EKYRUP00 (the RUP)
be called when a segment of this DBD is changed. This is required for
synchronous data propagation.

 PSBGEN Definitions
Figure 10 shows a PSBGEN definition for the Segment exit routine in Figure 8 on
page 46.

 PCB TYPE=DB,... C
 ...
 SENSEG ...
 PCB TYPE=DB,... C
 ...
 SENSEG ...
PCBDPR1 PCB TYPE=DB,DBDNAME=DB1,LIST=NO C
 KEYLEN=1S1,PROCOPT=A
 SENSEG NAME=SEG1
K
 PSBGEN PSBNAME=PSBDPR1
 END

Figure 10. PSBGEN Definition

Note: The first two PCBs represent PCBs used by the application programs. The
third PCB, PCBDPR1, is the PCB reserved for HUP usage.

CREATE TABLE Statement
Figure 11 on page 70 shows a CREATE TABLE statement for the segment exit
routine in Figure 8 on page 46.

 Chapter 2. Segment Exit Routines 69

CREATE TABLE TS966S6.TABLES1
 (KEY1 CHAR(2) NOT NULL,
 KEY2 CHAR(6) NOT NULL,
 FAMILY VARCHAR(3S) ,
 FIRST VARCHAR(2S) ,
 CITY VARCHAR(35) ,

PRIMARY KEY (KEY1, KEY2))
DATA CAPTURE CHANGES

 IN DUS966S6.PROPTS;

CREATE UNIQUE INDEX XNS1 ON TABLES1 (KEY1, KEY2)
USING VCAT KOE ;

Figure 11. CREATE TABLE Statement

Note: The DATA CAPTURE CHANGES option of the create table command
specifies that the DB2 Changed Data Capture exit (the HUP) be called when a row
of this table is changed under IMS attach.

Using DataRefresher to Define the PR
This section shows how to define the PR in Figure 8 on page 46 using
DataRefresher.

 CREATE DXTPSB
Figure 12 on page 71 shows a CREATE DXTPSB statement for the segment exit
routine in Figure 8 on page 46.

70 Customization Guide

 CREATE DXTPSB NAME=KOEPSB2

DXTPCB NAME=DB1, DBNAME=DB1, DBACCESS=HDAM

SEGMENT NAME=SEG1, PARENT=S, BYTES=1�1,
DATAEXIT=EKYESE1A, XBYTES=1�1, FORMAT=V

FIELD NAME = KEY ,
 START = 3,
 BYTES = 8,
 SEQFLD = R
 FIELD NAME = KEY1,
 TYPE = C,
 START = 3,
 BYTES = 2
 FIELD NAME = KEY2,
 TYPE = C,
 START = 5,
 BYTES = 6
 FIELD NAME = LFAMILY,
 TYPE = H,
 START = 11,
 BYTES = 2
 FIELD NAME = FAMILY,
 TYPE = VC,
 LFIELD = LFAMILY,
 START = 13,
 BYTES = 3S
 FIELD NAME = LFIRST,
 TYPE = H,
 START = 43,
 BYTES = 2
 FIELD NAME = FIRST,
 LFIELD = LFIRST,
 TYPE = VC,
 START = 45,
 BYTES = 2S
 FIELD NAME = LCITY,
 TYPE = H,
 START = 65,
 BYTES = 2
 FIELD NAME = CITY,
 TYPE = VC,
 LFIELD = LCITY,
 START = 67,
 BYTES = 35;

Figure 12. CREATE DXTPSB Statement

Notes:

1. Segment exit routine EKYESE1A is specified on the DATAEXIT= keyword of
the SEGMENT statement of CREATE DXTPSB.

The SEGMENT statement also provides the following specifications:

� BYTES=101 specifies the maximum length of the segment in its IMS DB
format.

� XBYTES=101 specifies the maximum length of the segment in its DPROP
format.

� FORMAT=V specifies the segment has a variable length in its DPROP
format.

2. The FIELD statements describe the fields as they appear in the DPROP format
of the segment (as opposed to the segment in its IMS DB format).

All propagated fields need to be described in a FIELD statement.

 Chapter 2. Segment Exit Routines 71

3. The fields FAMILY, FIRST, and CITY are defined by TYPE=VC as
variable-length character fields.

DataRefresher requires that each variable-length field have an associated
length field. The length fields are described with their own FIELD statements.
The LFIELD= keyword of a variable-length field must identify the name of the
length field.

For example, this is illustrated in the FAMILY field. The LFIELD= keyword of
the FAMILY field identifies LFAMILY as the length field of FAMILY.

The EXTRACT statement (see below) propagates the variable-length fields, but
does not propagate the length fields.

 CREATE DXTVIEW
Figure 13 shows a CREATE DXTVIEW statement for the Segment exit routine in
Figure 8 on page 46.

 CREATE
 DXTVIEW NAME = VIEWS11,
 DXTPSB = KOEPSB2,
 DXTPCB = DB1,
 SEGMENT = SEG1,
 MINSEGM = SEG1,
 FIELDS = K ;

Figure 13. CREATE DXTVIEW Statement

DataRefresher UIM SUBMIT Command and EXTRACT Statement
Figure 14 shows a DataRefresher UIM SUBMIT command and EXTRACT
statement for the Segment exit routine in Figure 8 on page 46.

 SUBMIT EXTID=PRSS1,
 NODE=NODEX,
 USERID=TS966S6,
 CD=JCS,
 JCS=DDJCSS1,
 FORMAT=SOURCE,
 MAPEXIT=EKYMCE��,
 MAPUPARM='PRTYPE=E,
 MAPDIR=TW,
 MAPCASE=1,
 ACTION=REPL,
 ERROPT=BACKOUT,
 PCBLABEL=PCBDPR1'

 EXTRACT
INTO TS966S6.TABLES1 (KEY1 NOT NULL,

 KEY2 NOT NULL,
 FAMILY,
 FIRST,
 CITY)
 SELECT KEY1,
 KEY2,
 FAMILY,
 FIRST,
 CITY

FROM VIEWS11 ;

Figure 14. DataRefresher UIM SUBMIT Command and EXTRACT Statement

72 Customization Guide

Notes:

1. The MAPEXIT= keyword of the SUBMIT control statement specifies
EKYMCE00. This results in DataRefresher UIM calling the DPROP-provided
Map Capture Exit EKYMCE00 during processing of the SUBMIT or EXTRACT.
This is needed to allow DPROP to create the PR.

2. MAPUPARM= is used to provide the DPROP propagation keywords.

3. The EXTRACT statement describes to DataRefresher and DPROP which fields
must be mapped to which columns.

The EXTRACT statement propagates the variable-length fields FAMILY, FIRST,
and CITY; it does not propagate the length fields LFAMILY, LFIRST, and
LCITY.

Using DataRefresher for the Extract
This section covers INITDEM and USE DXTPSB Control Statements. Figure 15
shows INITDEM and USE DXTPSB control statements for the Segment exit routine
in Figure 8 on page 46.

 INITDEM NAME=DEMPROD;
 USE DXTPSB=KOEPSB2;

Figure 15. Using DataRefresher for the Extract: INITDEM and USE DXTPSB Control
Statements

Defining the PR in the MVG Input Tables
This section shows how to define the PR without using DataRefresher. Figure 16
on page 74 describes the DSNTEP2 SQL statements required to define the PR in
the MVG input tables.

The following rows are inserted into the MVG input tables:

� One row is inserted into the DPRIPR table (the PR table).

This row identifies the PR ID. By inserting an F into the PRTYPE column and
a 1 into the MAPCASE column, you can set up the SQL statement so that the
PR belongs to mapping case 1 of an extended-function PR.

� One row for the Entity segment Type SEG1 is inserted into the DPRISEG table
(the SEG table).

Because SEG1 is the root segment, no rows are inserted into DPRISEG for
physical ancestors.

The row describing SEG1 provides the following column values:

– The nonblank value EKYESE1A in the SEGEXIT column. This specifies
that the segment must be processed by the Segment exit routine
EKYESE1A.

– The value 101 in the SEGEXITL column specifies the maximum length of
the segment in its DPROP format.

– The value V in the SEGEXITF column specifies that the segment in its
DPROP format has a variable length.

� One row is inserted into the DPRITAB table (the TAB table).

 Chapter 2. Segment Exit Routines 73

This row indicates that the target table is T096606.TABLE01.

� One row is inserted into the DPRIFLD table (the FLD table) for each
propagated field.

The DPRIFLD rows describe the fields as they appear in the DPROP format of
the segment (as opposed to the segment in its IMS DB format).

The fields FAMILY, FIRST, and CITY are defined by the VC value in the
DATATYPE column as variable-length character fields.

DPROP requires two DPRIFLD rows for each variable length field:

– One row describes the variable-length field.
– The other row describes the length field.

The FAMILY field illustrates this. The row describing the variable-length field
FAMILY identifies in the LENFIELD column the name of the length field,
LFAMILY.

The row describing the length field LFAMILY has a blank value in the
COLNAME column, because the length field is not propagated (only the
variable-length field FAMILY is propagated).

DELETE FROM TS966S6.DPRIPR WHERE PRID = 'PRSS1' ;

INSERT INTO TS966S6.DPRIPR
(PRID, USERID, PRTYPE, MAPCASE, MAPDIR,

 ERROPT, ACTION)
 VALUES ('PRSS1', 'TS966S6','F', '1', 'TW',
 'BACKOUT','REPL') ;

INSERT INTO TS966S6.DPRISEG
 (PRID, DBNAME, SEGNAME, ROLE, PCBLABEL,

SEGEXIT, SEGEXITL, SEGEXITF)
 VALUES ('PRSS1', 'DB1', 'SEG1', 'E', 'PCBDPR1',
 'EKYESE1A',1�1 , 'V' ;

INSERT INTO TS966S6.DPRITAB
(PRID, TABQUAL, TABNAME)

VALUES ('PRSS1','TS966S6', 'TABLES1') ;

INSERT INTO TS966S6.DPRIFLD
 (PRID, DBNAME, SEGNAME, FLDNAME,
 TABQUAL, TABNAME, COLNAME,

DATATYPE, POSITION, BYTES)
 VALUES ('PRSS1', 'DB1', 'SEG1', 'KEY1',
 'TS966S6','TABLES1', 'KEY1',
 'C ', 3, 2) ;

INSERT INTO TS966S6.DPRIFLD
 (PRID, DBNAME, SEGNAME, FLDNAME,
 TABQUAL, TABNAME, COLNAME,

DATATYPE, POSITION, BYTES)
 VALUES ('PRSS1', 'DB1', 'SEG1', 'KEY2',
 'TS966S6','TABLES1', 'KEY2',
 'C ', 5, 6) ;

Figure 16 (Part 1 of 2). Defining the PR in the MVG Input Tables

74 Customization Guide

INSERT INTO TS966S6.DPRIFLD
 (PRID, DBNAME, SEGNAME, FLDNAME,
 TABQUAL, TABNAME, COLNAME,

DATATYPE, POSITION, BYTES)
 VALUES ('PRSS1', 'DB1', 'SEG1', 'LFAMILY',
 'TS966S6','TABLES1', ' ',
 'H ', 11, 2) ;

INSERT INTO TS966S6.DPRIFLD
 (PRID, DBNAME, SEGNAME, FLDNAME,
 TABQUAL, TABNAME, COLNAME,

DATATYPE, POSITION, BYTES, LENFIELD)
 VALUES ('PRSS1', 'DB1', 'SEG1', 'FAMILY',
 'TS966S6','TABLES1', 'FAMILY' ,
 'VC', 13, 3S, 'LFAMILY') ;

INSERT INTO TS966S6.DPRIFLD
 (PRID, DBNAME, SEGNAME, FLDNAME,
 TABQUAL, TABNAME, COLNAME,

DATATYPE, POSITION, BYTES)
 VALUES ('PRSS1', 'DB1', 'SEG1', 'LFIRST ',
 'TS966S6','TABLES1', ' ',
 'H ', 43, 2) ;

INSERT INTO TS966S6.DPRIFLD
 (PRID, DBNAME, SEGNAME, FLDNAME,
 TABQUAL, TABNAME, COLNAME,

DATATYPE, POSITION, BYTES, LENFIELD)
 VALUES ('PRSS1', 'DB1', 'SEG1', 'FIRST',
 'TS966S6','TABLES1', 'FIRST' ,
 'VC', 45, 2S, 'LFIRST') ;

INSERT INTO TS966S6.DPRIFLD
 (PRID, DBNAME, SEGNAME, FLDNAME,
 TABQUAL, TABNAME, COLNAME,

DATATYPE, POSITION, BYTES)
VALUES ('PRSS1', 'DB1', 'SEG1', 'LCITY ',

 'TS966S6','TABLES1', ' ',
 'H ', 65, 2) ;

INSERT INTO TS966S6.DPRIFLD
 (PRID, DBNAME, SEGNAME, FLDNAME,
 TABQUAL, TABNAME, COLNAME,

DATATYPE, POSITION, BYTES, LENFIELD)
 VALUES ('PRSS1', 'DB1', 'SEG1', 'CITY ',
 'TS966S6','TABLES1', 'CITY' ,
 'VC', 67, 35, 'LCITY') ;

COMMIT;

Figure 16 (Part 2 of 2). Defining the PR in the MVG Input Tables

Second Sample Segment Exit Routine
Figure 17 on page 77 contains another example of a Segment exit routine. This
example supports the propagation of an IMS segment containing internal segments
propagated by a mapping case 3 PR.

When it receives a changed IMS data segment and is called for IMS-to-DPROP
mapping, the exit routine transforms the segment into a DPROP-supported format.
During this transformation process, the exit routine creates in each occurrence of
the internal segment type an ID field. The ID field is required by DPROP and
allows identification of each occurrence of the internal segment within its containing

 Chapter 2. Segment Exit Routines 75

IMS segment. The exit routine builds a counter field. The counter field describes
how many internal segments are contained within a particular occurrence of the
containing segment.

When it is called for DPROP-to-IMS mapping, the exit routine must build the IMS
format of the segment. The Segment exit routine receives the following input:

� Either a changed occurrence of an internal segment (in its DPROP format), or
the changed containing segment (in its DPROP format)

� The existing before-change image of the IMS segment in its IMS format

By combining information from this input, the segment exit routine builds the new
after-change image of the IMS segment in its IMS format.

The source code in Figure 17 on page 77 is provided in the DPROP Sample
Source Library (EKYSAMP) under the member name EKYESE2C. Following the
source code are definitions related to the sample Segment exit routine.

76 Customization Guide

K----------------- START OF SPECIFICATIONS ---------------------K
 K K

K MODULE NAME: EKYESE2C K
 K ----------- K
 K K

K DESCRIPTIVE NAME: SAMPLE SEGMENT EXIT COBOL ROUTINE K
 K ---------------- K
 K K

K FUNCTION: EKYESE2C IS A SAMPLE DPROP SEGMENT EXIT ROUTINE K
K -------- WRITTEN IN COBOL AND USED FOR THE TRANSFORMATION K
K OF A SEGMENT LAYOUT BETWEEN ITS: K
K - IMS FORMAT AND K
K - DPROP FORMAT. K

 K K
K EKYESE2C ILLUSTRATES ONE OF THE MOST TYPICAL USAGE K
K OF DPROP SEGMENT USER EXITS: THE SUPPORT OF THE K
K PROPAGATION OF AN IMS SEGMENT CONTAINING AN K
K INTERNAL SEGMENT / REPEATING GROUP OF FIELDS. K

 K K
K THIS SAMPLE SEGMENT EXIT ROUTINE SUPPORTS TYPE=E K
K PR'S AND IS THEREFORE CALLED BOTH FOR: K
K - IMS-TO-DPROP MAPPING (E.G. DURING IMS-TO-DB2 K
K PROPAGATION; ALSO DURING DXT-EXTRACTS, K
K CCU-PROCESSING AND DLU PROCESSING). K
K - DPROP-TO-IMS MAPPING (E.G. DURING DB2-TO-IMS K
K PROPAGATION; ALSO DURING CCU PROCESSING AND K

 K DLU PROCESSING). K
 K K

K IN THIS EXAMPLE THE PROPAGATED IMS SEGMENT IS A K
K BANK ACCOUNT SEGMENT. THE IMS SEGMENT CONSISTS OF K
K THE FOLLOWING FIELDS: K
K - THE ACCOUNT-NBR (THIS IS THE KEY OF THE SEG) K
K - THE CUSTOMER-NAME K
K - A REPEATING GROUP OF FIELDS WITH THREE OCCURRENCES. K
K EACH OCCURRENCE OF THE REPEATING GROUP CONTAINS K
K INFORMATION ABOUT ONE TYPE OF CREDIT THAT THE K
K BANK IS GRANTING. THIS INFORMATION IS: K
K - THE CURRENT AMOUNT OF CREDIT GRANTED TO THE K

 K CUSTOMER/ACCOUNT K
K - THE CREDIT LIMIT FOR THE CUSTOMER/ACCOUNT. K

 K K
K THE DATABASE ADMINISTRATOR WANTS TO HAVE A NORMALIZED K
K DB2 TABLE DESIGN AND THEREFORE WANTS TO: K

 K K
K 1) PROPAGATE THE ACCOUNT-NBR AND CUSTOMER-NAME K
K TO/FROM THE TABLE CALLED "ACCOUNT": K

 K K
K - THIS IS DONE WITH A MAPPING-CASE-1 PR. K

 K K
K 2) PROPAGATE THE INFORMATION RELATED TO THE K
K DIFFERENT TYPES OF CREDITS (TOGETHER WITH THE K
K ACCOUNT-NBR) TO/FROM ANOTHER TABLE CALLED "CREDIT": K

 K K
K - THIS IS DONE WITH A MAPPING-CASE-3 PR. K

 K K
K EACH OCCURRENCE OF THE CREDIT INFORMATION (THERE K
K ARE 3 OF THEM) IS CONSIDERED TO BE AN OCCURRENCE K
K OF AN INTERNAL SEGMENT AND IS PROPAGATED TO/FROM K
K ONE ROW OF THE TABLE "CREDIT". K

 K K
K IN ORDER TO DISTINGUISH WITHIN THE CREDIT TABLE K
K THE 3 TYPE OF CREDIT INFORMATION (AND IN ORDER K
K TO HAVE A DB2 PRIMARY KEY), THE CREDIT TABLE DOES K
K NOT ONLY CONTAIN AN ACCOUNT-NBR COLUMN AND THE K
K CURRENT CREDIT AMOUNT AND LIMIT. K
K THE CREDIT TABLE CONTAINS ALSO A "TYPE" COLUMN K
K WHICH IDENTIFIES THE TYPE OF CREDIT. K

Figure 17 (Part 1 of 11). Second Sample Segment Exit Routine (COBOL)

 Chapter 2. Segment Exit Routines 77

 K K
K THE SAMPLE SEGMENT EXIT ROUTINE "EKYESE2C" PROVIDES K
K LOGIC TO SUPPORT THE PROPAGATION OF THE IMS SEGMENT K
K TO/FROM THE TABLES ACCOUNT AND CREDIT. K

 K K
K 1) FOR IMS-TO-DPROP MAPPING, THE SAMPLE EXIT PROVIDES K
K THE FOLLOWING FUNCTIONS WHEN BUILDING THE DPROP K
K FORMAT OF THE SEGMENT: K

 K K
K - THE EXIT ROUTINE CREATES IN THE DPROP FORMAT K
K AN ID-FIELD FOR EACH OCCURRENCE OF THE INTERNAL K
K SEGMENT. THIS IS THE FIELD CALLED "TYPE". K

 K K
K THIS ADDRESS THE DPROP REQUIREMENT THAT INTERNAL K
K SEGMENTS HAVE AN "ID" FIELD IDENTIFYING UNIQUELY K
K THE OCCURRENCES OF THE INTERNAL SEGMENTS WITHIN K
K THE CONTAINING SEGMENT. K

 K K
K IN THE DPROP FORMAT, EACH OCCURRENCE OF THE IN- K
K TERNAL SEGMENT WILL CONSIST OF FOLLOWING FIELDS: K
K - THE FIELD "TYPE" (THIS IS THE ID-FIELD K
K CREATED BY THE EXIT) K
K - THE FIELD "AMOUNT" (COPIED FROM THE IMS K
K FORMAT OF THE SEGMENT) K
K - THE FIELD "LIMIT" (COPIED FROM THE IMS K
K FORMAT OF THE SEGMENT). K

 K K
K - THE EXIT ROUTINE CREATES IN THE DPROP FORMAT K
K A COUNT FIELD. ITS VALUE IS THE NUMBER OF K
K OCCURRENCES OF THE INTERNAL SEGMENT-TYPE WITHIN K
K THE CONTAINING SEGMENT. K
K NOTE THAT A COUNT FIELD IS REQUIRED BY DPROP K
K FOR THE PROPAGATION OF INTERNAL SEGMENTS WITH K

 K TYPE=E PR'S. K
 K K

K 2) FOR DPROP-TO-IMS MAPPING, THE SAMPLE EXIT K
K DISTINGUISHES THE TWO FOLLOWING CASES: K

 K K
K A) IT IS CALLED DURING A REPLACE, DELETE, OR K
K INSERT OF A ROW OF THE "CREDIT" TABLE. K

 K K
K IN THIS CASE, THE EXIT ROUTINE GETS FOLLOWING K
K TWO INPUTS FROM DPROP: K

 K K
K - THE CHANGED OCCURRENCE OF THE INTERNAL SEGMENT K
K IN ITS DPROP FORMAT. K
K THIS INPUT HAS BEEN BUILT BY DPROP BY MAPPING K
K THE CHANGED CREDIT ROW TO THE DPROP FORMAT K
K OF THE INTERNAL SEGMENT. K

 K K
K - THE EXISTING "BEFORE-CHANGE" IMS SEGMENT IN K
K ITS IMS FORMAT. K

 K K
K THE SEGMENT EXIT ROUTINE IS RESPONSIBLE BY K
K COMBINING INFORMATION IN THESE TWO INPUTS TO K
K BUILD THE NEW "AFTER-CHANGE" IMS SEGMENT IN K
K ITS IMS FORMAT. K

 K K
K B) IT IS CALLED DURING A REPLACE, DELETE, OR K
K INSERT OF A ROW OF THE "ACCOUNT TABLE" K

 K K
K IN THIS CASE, THE EXIT ROUTINE GETS FOLLOWING K
K TWO INPUTS FROM DPROP: K

 K K

Figure 17 (Part 2 of 11). Second Sample Segment Exit Routine (COBOL)

78 Customization Guide

K - THE CHANGED OCCURRENCE OF THE CONTAINING K
K SEGMENT IN ITS DPROP FORMAT. K
K THIS INPUT HAS BEEN BUILT BY DPROP BY MAPPING K
K THE CHANGED ACCOUNT ROW TO THE DPROP FORMAT K
K OF THE CONTAINING SEGMENT. K

 K K
K - THE EXISTING "BEFORE-CHANGE" IMS SEGMENT IN K
K ITS IMS FORMAT (ONLY FOR REPLACES AND K
K DELETES OF ROWS OF THE ACCOUNT TABLE). K

 K K
K THE SEGMENT EXIT ROUTINE IS RESPONSIBLE BY K
K COMBINING INFORMATION IN THESE TWO INPUTS TO K
K BUILD THE NEW "AFTER-CHANGE" IMS SEGMENT IN K
K ITS IMS FORMAT. K

 K K
 /K K
 K K

K THE FIGURE BELOW DESCRIBES ON THE LEFT-HAND SIDE K
K THE SEGMENT IN ITS IMS FORMAT AND ON THE RIGHT-HAND K
K SIDE THE SEGMENT IN ITS DPROP FORMAT. K

 K K
 K K
 K K--------------------K K---------------------K K

K | IMS SEGMENT IN ITS | | IMS SEGMENT IN ITS | K
K | IMS FORMAT | | DPROP FORMAT | K

 K K--------------------K K---------------------K K
 K K
 K K--------K-----K-----K K--------K-----K------K K

K |FLD NAME| FLD | FLD | |FLD NAME| FLD | FLD | K
K | | FMT |START| | | FMT |START | K

 K K--------K-----K-----K K--------K-----K------K K
K |ACNT_NBR| C | 1 |<-->|ACNT_NBR| C | 1 | K
K |NAME | C | 1S |<-->|NAME | C | 1S | K
K | | | | |COUNT | H | 31 | K
K | | | | |TYPE_1 | P | 33 | K
K |AMOUNT_A| P | 31 | |AMOUNT_1| P | 34 | K
K |LIMIT_A | P | 38 | |LIMIT_1 | P | 41 | K
K | | | | |TYPE_2 | P | 48 | K
K |AMOUNT_B| P | 45 | |AMOUNT_2| P | 49 | K
K |LIMIT_B | P | 52 | |LIMIT_2 | P | 56 | K
K | | | | |TYPE_3 | P | 63 | K
K |AMOUNT_C| P | 59 | |AMOUNT_3| P | 64 | K
K |LIMIT_C | P | 66 | |LIMIT_3 | P | 71 | K

 K K--------K-----K-----K K--------K-----K------K K
 K K

K BOTH THE IMS FORMAT AND THE DPROP FORMAT OF THE K
K IMS SEGMENT ARE DEFINED AS FIXED-LENGTH. K

 K K
K THE INTERNAL SEGMENT IS DEFINED TO DPROP AS FOLLOWS: K

 K K
K - IT HAS A VARIABLE NUMBER OF OCCURRENCES. K
K (THE NUMBER OF OCCURRENCES IS IN THE COUNT FELD K
K "COUNT" OF THE CONTAINING SEGMENT) K
K - THE FIRST OCCURRENCE STARTS AT A FIXED LOCATION K
K WITHIN THE CONTAINING SEGMENT (START=33) K
K - IT HAS A FIXED LENGTH (15 BYTES) K
K - IT CONSISTS OF THE FOLLOWING FIELDS: K
K THE 1-BYTE TYPE, 7-BYTES AMOUNT, AND 7-BYTES LIMIT K

 K K
K PLEASE REFER TO THE DSECTS TOWARDS THE BOTTOM OF THIS K
K MODULE IN ORDER TO FIND ALL THE DETAILS ABOUT THE K
K "IMS FORMAT" AND THE "DPROP FORMAT" OF THE SEGMENTS K

 K K

Figure 17 (Part 3 of 11). Second Sample Segment Exit Routine (COBOL)

 Chapter 2. Segment Exit Routines 79

K FOLLOWING CONVENTIONS ARE USED TO DESCRIBE CREDIT-INFO K
K WHICH DO NOT EXIST: K
K - IN THE IMS FORMAT, A NON-EXISTING CREDIT-INFO K
K HAS A ZERO VALUE IN THE FIELD "LIMIT". K
K - IN THE DPROP FORMAT, THE COUNT REFLECTS THE NUMBER K
K OF EXISTING CREDIT INTERNAL SEGMENTS. EXISTING K
K CREDIT INTERNAL SEGMENTS FOLLOW EACH-OTHER IN THE K
K DPROP FORMAT OF THE IMS SEGMENT (NON-EXISTING K
K INTERNAL SEGMENTS ARE ELIMINATED. K
K THIS MUST BE SO IN ORDER TO CONFORM TO THE WAY THAT K
K INTERNAL SEGMENTS ARE DEFINED TO DPROP AND DXT. K

 K K
 K K

K INPUT: 1ST PARAMETER: ADDRESS OF DAX (DAX IS THE EXIT K
K ----- INTERFACE CONTROL BLOCK) K
K 2ND PARAMETER: ADDRESS OF SEGMENT IN IMS FORMAT K
K 3RD PARAMETER: ADDRESS OF SEGMENT IN DPROP FORMAT K
K 4TH PARAMETER: ADDRESS OF ANCHOR AREA PRESERVED K
K ACROSS CALLS TO THIS EXIT. K

 K K
K OUTPUT: THE SEGMENT FORMAT TRANSFORMATION HAS BEEN DONE K

 K ------ K
 K K
 K EXIT-ERROR= K

K RETURN CODE = 12: MAPPING PROBLEM / INVALID DATA K
K = 16: SHOULD-NOT-OCCUR ERRORS K
K (INVALID CALL FUNCTION, K
K PARAMETER AREA TOO SMALL, K
K INVALID SEGMENT NAME). K

 K K
 K K

K ERROR MESSAGES ISSUED BY EKYESE2C K
K EKYESE1E: CALL FUNCTION NOT SUPPORTED K
K EKYESE2E: UNSUPPORTED DBD OR SEGNAME K
K EKYESE3E: UNEXPECTED LENGTH OF IMS SEGMENT K
K EKYESE4E: DPROP SEGMENT IS TOO SHORT K
K EKYESE5E: IMS SEGMENT IS TOO SHORT K
K EKYESE6E: UNEXPECTED VALUE IN TYPE COLUMN OF K

 K CREDIT TABLE K
 K K

K CHANGE ACTIVITY= NONE K
 K K

K----------------- END OF SPECIFICATIONS -----------------------K
 /K

K----------------- LOGIC OF EKYESE2C ---------------------------K
 K K
 K MAIN-LINE LOGIC: K
 K ================ K
 K K

K 1) MODULE ENTRY LOGIC: K
 K ---------------------- K
 K K

K - SET "MODULE ENTERED" AND "MODULE IN CONTROL" FLAGS K
 K INTO DAX. K
 K K

K - VERIFY THAT THE EXIT IS INVOKED TO PROPAGATE THE K
K CORRECT DATABASE AND SEGMENT K

 K K
K - BRANCH ACCORDING TO CALL FUNCTION EITHER FOR: K
K - THE PROCESSING OF IMS-TO-DPROP, OR K
K - THE PROCESSING OF DPROP-TO-IMS K

 K K

Figure 17 (Part 4 of 11). Second Sample Segment Exit Routine (COBOL)

80 Customization Guide

K 2) IMS-TO-DPROP FORMATTING K
 K -------------------------- K
 K K

K - CHECK LENGTH OF SEGMENT IN ITS IMS FORMAT AND K
K CHECK THAT DPROP SEGMENT BUFFER IS LARGE ENOUGH K

 K K
K - MOVE TO DPROP FORMAT THE ACCOUNT-NBR AND THE K

 K CUSTOMER NAME. K
 K K

K - INITIALIZE THE NUMBER OF INTERNAL SEGMENT OCCURRENCES K
 K TO ZERO. K
 K K

K - FOR EACH NON-ZERO LIMIT IN THE IMS FORMAT: K
 K K

K - INCREASE THE OCCURRENCE COUNTERS BY 1 K
K - CREATE IN THE DPROP BUFFER THE ID OF THE INTERNAL K

 K SEGMENT. K
K - MOVE TO THE DPROP BUFFER THE DATA OF THE INTERNAL K

 K SEGMENT. K
 K K

K NOTE: A LIMIT WITH A ZERO VALUE IN THE IMS FORMAT IS K
K ---- CONSIDERED TO IDENTIFY A "NON-EXISTING" CREDIT K

 K INFORMATION. K
 K K

K IN THE DPROP FORMAT THERE WILL BE NO OCCURRENCE OF K
K INTERNAL SEGMENTS FOR THESE NON-EXISTING CREDITS. K
K AS REQUIRED BY DPROP, THE OCCURRENCES FOR THE K
K EXISTING INTERNAL SEGMENTS WILL FOLLOW EACH OTHER. K

 K K
 K K
 K 3) DPROP-TO-IMS-FORMATTING K
 K -------------------------- K
 K K

K - CHECK THAT IMS SEGMENT BUFFER IS LARGE ENOUGH K
 K K

K - INITIALIZE IMS SEGMENT BUFFER AS FOLLOWS: K
 K K

K - IF BEFORE-CHANGE IMAGE IS PROVIDED BY THE CALLER, K
K COPY THE BEFORE-CHANGE IMAGE TO IMS BUFFER K
K - ELSE INITIALIZE IMS BUFFER WITH PROPER INITIAL K
K VALUES (ZEROES AND BLANKS). K

 K K
K - IF PROCESSING THE CHANGE TO THE TARGET OF THE K

 K CONTAINING SEGMENT: K
 K K

K - COPY INFORMATION OF CHANGED CONTAINING SEGMENT FROM K
K DPROP BUFFER TO IMS BUFFER. K

 K K
K - IF PROCESSING THE CHANGE TO THE TARGET OF AN INTERNAL K

 K SEGMENT: K
 K K

K - IF PROCESSING A DELETE, K
K SET APPROPRIATE CREDIT INFO TO S IN THE IMS BUFFER K
K - IF PROCESSING A REPLACE OR INSERT, K
K COPY INFORMATION OF CHANGED INTERNAL SEGMENT K
K FROM DPROP BUFFER TO IMS BUFFER. K

 K K
 K K
 K ERROR LOGIC K
 K =========== K
 K K

K - FORMAT AN ERROR MESSAGE INTO DAX K
K - SET RETURN CODE INTO DAX K
K - RETURN TO THE CALLER. K

 K K
K----------------- END OF LOGIC --------------------------------K

Figure 17 (Part 5 of 11). Second Sample Segment Exit Routine (COBOL)

 Chapter 2. Segment Exit Routines 81

 /K
 IDENTIFICATION DIVISION.
 PROGRAM-ID. EKYESE2C.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 K

77 X1 PIC S9(8) COMP.
K INDEX FOR INTERNAL SEGMENTS IN IMS FORMAT
77 X2 PIC S9(8) COMP.
K INDEX FOR INTERNAL SEGMENTS IN DPROP FORMAT
77 IMSSEGL PIC S9(8) COMP VALUE +72.
K IMS SEGMENT LENGTH
77 DPRSEGL PIC S9(8) COMP VALUE +77.
K DPR SEGMENT LENGTH

 K
 K---K

K REDEFINITION OF THE MESSAGE AREA LOCATED IN THE DAX K
 K---K
 K
 S1 MSGLINE.
 S2 MSGID PIC X(11).
 S2 MSGBL1 PIC X.
 S2 MSGTXT PIC X(52).
 K
 K---K

K WORK AREA FOR THE IMS SEGMENT IN ITS DPROP-FORMAT K
 K---K
 K
 S1 DPRSEG.
 K

S2 DPRACNBR PIC X(9).
K ACCOUNT NUMBER (KEY)

 S2 DPRNAME PIC X(21).
 K NAME

S2 DPRCOUNT PIC 9(4) COMP.
K COUNT INTERNAL SEGM OCCURENCES

 S2 DPRINSEG OCCURS 3.
K 3 OCCURRENCES OF INTERNAL SEG

 S3 DPRTYPE PIC 9 COMP-3.
 K ID
 S3 DPRAMOUN PIC 9(11)V99 COMP-3.
 K CURRENT AMOUNT
 S3 DPRLIMIT PIC 9(11)V99 COMP-3.
 K
 K---K
 K LINKAGE SECTION K
 K---K
 K
 LINKAGE SECTION.
 K
 K---K

K DESCRIPTION OF THE SEGMENT EXIT INTERFACE "DAX" K
 K---K
 K
 COPY EKYRCDXC.
 K
 K---K

K DESCRIPTION OF IMS SEGMENT IN ITS IMS FORMAT K
 K---K
 K
 S1 IMSSEG.
 K

Figure 17 (Part 6 of 11). Second Sample Segment Exit Routine (COBOL)

82 Customization Guide

S2 IMSACNBR PIC X(9).
K ACCOUNT NUMBER (KEY)

 S2 IMSNAME PIC X(21).
K NAME OF CUSTOMER

 S2 IMSINSEG OCCURS 3.
K 3 OCCURRENCES OF INTERNAL SEG

S3 IMSAMOUN PIC 9(11)V99 COMP-3.
K CURRENT AMOUNT TYPE-A CREDIT

S3 IMSLIMIT PIC 9(11)V99 COMP-3.
 K
 K---K

K THE THIRD PARAMETER CAN POINT TO DPRSEG OR TO DPRISEG K
 K---K
 K
 S1 THIRDPARM PIC X(77).
 S1 CONTAINING REDEFINES THIRDPARM PIC X(32).
 S1 INTERNAL REDEFINES THIRDPARM PIC X(45).
 K
 K---K

K DSECT FOR THE BEFORE_CHANGE IMS IMAGE K
 K---K
 K
 S1 IMSBEFIM PIC X(72).
 K
 K---K

K PROCEDURE DIVISION K
 K---K
 K

PROCEDURE DIVISION USING DAX,
 IMSSEG,
 THIRDPARM.
 K
 K---K

K SET THE "EXIT ENTERED" AND "EXIT IN CONTROL" FLAGS. K
 K---K
 K
 MOVE "X" TO DAXENTRD.
 MOVE "X" TO DAXINCTL.

MOVE ZERO TO DAXRETC.
 K
 K---K

K VERIFY THAT THE EXIT IS CALLED TO FORMAT THE EXPECTED K
K IMS DATABASE AND SEGMENT TYPE K

 K---K
 K

IF DAXDBNM NOT = "DB123"
GO TO INVDBSEG.

IF DAXSEGM NOT = "ACCOUNT"
GO TO INVDBSEG.

 K
 K---K

K BRANCH ACCORDING TO CALL-FUNCTION K
 K---K
 K

IF DAXCALL = "NO"
GO TO IMSTDPR.

K "NORMAL CALL" (IMS TO DPROP)
IF DAXCALL = "RV"

GO TO DPRTIMS.
K "REVERSE CALL" (DPROP TO IMS)

GO TO INVCALL.
K UNSUPPORTED CALL FUNCTION

 K

Figure 17 (Part 7 of 11). Second Sample Segment Exit Routine (COBOL)

 Chapter 2. Segment Exit Routines 83

 K###K
K# NORMAL CALL TO TRANSFORM THE SEGMENT FROM ITS #K
K# IMS FORMAT INTO ITS DPROP FORMAT #K

 K###K
 K
 IMSTDPR.
 K
 K---K

K CHECK THE LENGTH OF SEGMENT IN ITS IMS FORMAT AND CHECK K
K THAT THE DPROP BUFFER IS LARGE ENOUGH TO CONTAIN THE K
K SEGMENT IN ITS DPROP FORMAT. K

 K---K
 K

IF DAXDLEN NOT = IMSSEGL
GO TO INVLENN1.

IF DAXFLEN < DPRSEGL
GO TO INVLENN2.

 K
 K---K

K MOVE THE ACCOUNT NUMBER AND CUSTOMER NAME TO DPROP FORMAT K
 K---K
 K

MOVE IMSACNBR TO DPRACNBR.
 MOVE IMSNAME TO DPRNAME.
 K
 K---K

K INITIALIZE PROCESSING FOR THE THREE CREDITS: K
K ---> INITIALIZE COUNTER FIELD TO ZERO K

 K---K
 K

MOVE ZERO TO DPRCOUNT.
MOVE ZERO TO X1, X2.
MOVE ZERO TO DPRTYPE (1), DPRTYPE (2), DPRTYPE (3).
MOVE ZERO TO DPRAMOUN (1), DPRAMOUN (2), DPRAMOUN (3).
MOVE ZERO TO DPRLIMIT (1), DPRLIMIT (2), DPRLIMIT (3).

K INIT INDEXES FOR INTERNAL SEGMENTS
PERFORM MOVECRED 3 TIMES.

K MOVE 1, 2 OR 3 CREDITS.
MOVE DPRSEG TO THIRDPARM.

K RETURN IMS SEGMENT IN DPROP FORMAT
GO TO ENDPGM.

 K
 K---K

K MOVE THE OCCURRENCE OF THE INTERN SEG FOR TYPE_A CREDITS. K
 K---K
 K
 MOVECRED.

ADD +1 TO X1.
K INCREMENT INDEX FOR NEXT INT SEG

IF IMSLIMIT (X1) = ZERO
 NEXT SENTENCE

K SKIP IF THIS FIELD IS ZERO
 ELSE
 ADD +1 TO X2

MOVE X2 TO DPRCOUNT
K INCREMENT COUNTER OF INTERNAL SEGS

 MOVE X1 TO DPRTYPE (X2)
MOVE IMSAMOUN (X1) TO DPRAMOUN (X2)
MOVE IMSLIMIT (X1) TO DPRLIMIT (X2).

K SET ID, MOVE AMOUNT AND LIMIT
 ENDMOVEC.
 K
 K###K

K# REVERSE CALL TO TRANSFORM THE SEGMENT FROM ITS #K
K# DPROP FORMAT INTO ITS IMS FORMAT #K

 K###K

Figure 17 (Part 8 of 11). Second Sample Segment Exit Routine (COBOL)

84 Customization Guide

 K
 DPRTIMS.
 K
 K---K

K CHECK THAT THE IMS BUFFER IS LARGE ENOUGH TO CONTAIN K
K THE SEGMENT IN ITS IMS FORMAT. K

 K---K
 K

IF DAXDLEN < IMSSEGL
GO TO INVLENN3.

 K
 K---K

K INITIALIZE THE AFTER_CHANGE IMS FORMAT AS FOLLOWS: K
 K K

K IF BEFORE-CHANGE IMAGE OF IMS SEGMENT HAS BEEN PROVIDED K
 K INIT THE AFTER-CHANGE IMAGE WITH BEFORE_CHANGE IMAGE K

K ELSE INIT THE AFTER-CHANGE IMAGE WITH PROPER INITIAL VALUES K
 K---K
 K

IF DAXIDDSB = NULL
GO TO CALLRS2S.

K BEFORE-CHANGE IMAGE IS NOT PROVIDED
 K
 KKK INITIALIZE AFTER-CHANGE IMAGE WITH BEFORE-CHANGE VALUES
 K

SET ADDRESS OF IMSBEFIM TO DAXIDDSB.
K ADDRESSING OF BEFORE_CHANGE IMAGE

MOVE IMSBEFIM TO IMSSEG.
K MOVE BEFORE_CHANGE TO AFTER-CH.

GO TO CALLR1SS.
 K
 KKK INITIALIZE AFTER-CHANGE IMAGE WITH PROPER INITIAL VALUES
 K
 CALLRS2S.

MOVE "SSSSSSSSS" TO IMSACNBR.
 MOVE SPACES TO IMSNAME.

MOVE ZERO TO IMSAMOUN (1), IMSLIMIT (1).
MOVE ZERO TO IMSAMOUN (2), IMSLIMIT (2).
MOVE ZERO TO IMSAMOUN (3), IMSLIMIT (3).

 K
 K---K

K DETERMINE WHETHER WE ARE CALLED FOR A CHANGE TO THE K
K ACCOUNT TABLE OR TO THE CREDIT TABLE. K

 K---K
 K
 CALLR1SS.
 IF DAXSEGTI

GO TO CALLR2SS.
K UPDATE OF INTERNAL SEGMENT

 K
 K---K

K EXIT ROUTINE IS CALLED FOR DPROP-TO-IMS MAPPING BECAUSE K
K THE TARGET OF THE CONTAINING SEGMENT HAS CHANGED. K
K WE WILL JUST MOVE INFORMATION FROM THE CONTAINING SEGMENT K
K IN ITS DPROP FORMAT TO SEGMENT IN ITS IMS FORMAT K

 K---K
 K

MOVE CONTAINING TO DPRSEG.
K GET CONTAINING SEG IN DPROP FORMAT

MOVE DPRACNBR TO IMSACNBR.
 MOVE DPRNAME TO IMSNAME.

GO TO ENDPGM.
 K

Figure 17 (Part 9 of 11). Second Sample Segment Exit Routine (COBOL)

 Chapter 2. Segment Exit Routines 85

 K---K
K EXIT ROUTINE IS CALLED FOR DPROP-TO-IMS MAPPING BECAUSE K
K THE TARGET OF THE INTERNAL SEGMENT HAS CHANGED. K

 K K
K IF PROCESSING A DELETE K

 K THE EXIT ROUTINE WILL ZERO THE APPROPR. AMOUNT AND LIMIT K
K IF PROCESSING AN INSERT OR REPLACE K

 K THE EXIT ROUTINE WILL COPY THE AMOUNT AND LIMIT FROM THE K
 K CHANGED INTERNAL SEGMENT TO THE IMS FORMAT OF THE SEGMENTK
 K---K
 K
 CALLR2SS.
 K
 K---K

K DETERMINE WHICH INTERNAL SEGMENT OCCURRENCE HAS CHANGED K
 K---K
 K

MOVE INTERNAL TO DPRINSEG (1).
K GET INTERNAL SEG IN DPROP FORMAT

IF DPRTYPE (1) = S OR 1 OR 2 OR 3
MOVE DPRTYPE (1) TO X2
GO TO CALLR21S

K CHANGE OF 1ST, 2ND OR 3RD TYPE
 ELSE

GO TO INVTYPE.
 K INVALID TYPE
 K
 K---K

K BRANCH DEPENDING ON THE TYPE OF UPDATE K
 K---K
 K
 CALLR21S.

IF DAXDPRCT NOT = "DLET"
GO TO CALLR23S.

 K
 KKK A DELETE: ZERO CREDIT INFO IN IMS FORMAT
 K

MOVE S TO IMSAMOUN (X2).
MOVE S TO IMSLIMIT (X2).
GO TO ENDPGM.

 K
KKK INSERT OR REPLACE: COPY CHANGED CREDIT INFO INTO IMS FORMAT

 K
 CALLR23S.

MOVE DPRAMOUN (1) TO IMSAMOUN (X2).
MOVE DPRLIMIT (1) TO IMSLIMIT (X2).
GO TO ENDPGM.

 K
 K---K
 K ERROR LOGIC: K

K - BUILD IN THE INTERFACE CONTROL BLOCK AN ERROR MESSAGE K
K - SET A RETURN CODE IN THE INTERFACE CONTROL BLOCK K
K - RETURN TO CALLER OF THE EXIT K

 K---K
 K
 INVCALL.

MOVE "EKYESE1E" TO MSGID.
MOVE SPACE TO MSGBL1.
MOVE "CALL FUNCTION NOT SUPPORTED"

 TO MSGTXT.
GO TO INVRC16.

 K

Figure 17 (Part 10 of 11). Second Sample Segment Exit Routine (COBOL)

86 Customization Guide

 INVDBSEG.
MOVE "EKYESE2E" TO MSGID.
MOVE SPACE TO MSGBL1.
MOVE "UNSUPPORTED DBD OR SEGNAME"

 TO MSGTXT.
GO TO INVRC16.

 K
 INVLENN1.

MOVE "EKYESE3E" TO MSGID.
MOVE SPACE TO MSGBL1.
MOVE "UNEXPECTED LENGTH OF IMS SEGMENT"

 TO MSGTXT.
GO TO INVRC16.

 K
 INVLENN2.

MOVE "EKYESE4E" TO MSGID.
MOVE SPACE TO MSGBL1.
MOVE "DPROP SEGMENT BUFFER IS TOO SHORT"

 TO MSGTXT.
GO TO INVRC16.

 K
 INVLENN3.

MOVE "EKYESE5E" TO MSGID.
MOVE SPACE TO MSGBL1.
MOVE "IMS SEGMENT BUFFER IS TOO SHORT"

 TO MSGTXT.
GO TO INVRC16.

 K
 INVTYPE.

MOVE "EKYESE6E" TO MSGID.
MOVE SPACE TO MSGBL1.
MOVE "UNEXPECTED VALUE IN TYPE COLUMN OF CREDIT TABLE"

 TO MSGTXT.
GO TO INVRC12.

 K
 INVRC12.

MOVE MSGLINE TO DAXSMESG.
MOVE 16 TO DAXRETC.

K SET RETURN CODE 12 (ERROR)
GO TO ENDPGM.

 K
 INVRC16.

MOVE MSGLINE TO DAXSMESG.
MOVE 12 TO DAXRETC.

K SET RETURN CODE 16 (SEVERE ERROR)
GO TO ENDPGM.

 K
 K---K

K RETURN TO CALLER OF THIS EXIT K
 K---K
 K
 ENDPGM.
 GOBACK.
 K
 K---K

Figure 17 (Part 11 of 11). Second Sample Segment Exit Routine (COBOL)

 Chapter 2. Segment Exit Routines 87

Definitions for the Second Sample Segment Exit Routine
This section contains definitions associated with the second sample Segment exit
routine. The following types of definitions are provided:

� IMS DBDGEN and PSBGEN definitions

� DB2 CREATE TABLE definitions

� DataRefresher definitions required to define the PR with DataRefresher and to
extract the IMS data with DataRefresher

� SQL statements required to define the PR in the MVG Input Tables without
DataRefresher

 DBDGEN Definitions
Figure 18 show a DBDGEN definition for the Segment exit routine in Figure 17 on
page 77.

 DBD NAME=DB123,VERSION=V12, C
 ACCESS=(HDAM,OSAM),RMNAME=(DFSHDC4S,5,4), C
 EXIT=(EKYRUP��)
 DATASET DD1=HDAM,SIZE=4S96,DEVICE=338S
K
 SEGM NAME=ACCOUNT,PARENT=S,BYTES=72
 FIELD NAME=(ACNTNBR,SEQ,U),BYTES=9,START=1
K
 DBDGEN
 FINISH
 END

Figure 18. DBDGEN Definition

Note: The EXIT= keyword of the DBD Macro specifies that EKYRUP00 (the RUP)
be called when a segment of this DBD is changed. This is required for
synchronous data propagation.

 PSBGEN Definitions
Figure 19 shows a PSBGEN definition for the Segment exit routine in Figure 17 on
page 77.

 PCB TYPE=DB,... C
 ...
 SENSEG ...
 PCB TYPE=DB,... C
 ...
 SENSEG ...
 PCB TYPE=DB,DBDNAME=DB123,NAME=HUPPCB, C
 KEYLEN=72,PROCOPT=A
 SENSEG NAME=ACCOUNT
K
 PSBGEN PSBNAME=PSBDPR3
 END

Figure 19. PSBGEN Definition

Note: The first two PCBs represent PCBs used by the application programs. The
third PCB, HUPPCB, is the PCB reserved for HUP usage.

88 Customization Guide

CREATE TABLE Statements
Figure 20 contains the CREATE TABLE statements used to create the ACCOUNT
table and the CREDIT table in Figure 17 on page 77.

The figure contains the CREATE UNIQUE INDEX statements required to create the
indexes for the DB2 primary keys of the two tables.

CREATE TABLE ACCOUNT
 (ACT_NBR CHAR(9) NOT NULL,

NAME CHAR(21) NOT NULL WITH DEFAULT,
 PRIMARY KEY (ACT_NBR))

DATA CAPTURE CHANGES
 IN DUS966S6.PROPT1 ;

CREATE UNIQUE INDEX XNS1 ON ACCOUNT
 (ACT_NBR)

USING VCAT KOE ;

CREATE TABLE CREDIT
 (ACT_NBR CHAR(9) NOT NULL,
 TYPE DECIMAL (1,S) NOT NULL,

AMOUNT DECIMAL (13,2) NOT NULL WITH DEFAULT,
LIMIT DECIMAL (13,2) NOT NULL WITH DEFAULT,

PRIMARY KEY (ACT_NBR,TYPE),
FOREIGN KEY (ACT_NBR) REFERENCES ACCOUNT ON DELETE CASCADE)
DATA CAPTURE CHANGES

 IN DUS966S6.PROPT2 ;

CREATE UNIQUE INDEX XNS2 ON CREDIT
 (ACT_NBR, TYPE)

USING VCAT KOE ;

Figure 20. CREATE TABLE Statements

Note: The DATA CAPTURE CHANGES option of the CREATE TABLE command
specifies that the DB2 Changed Data Capture exit (the HUP) be called when a row
of this table is changed under IMS attach. The FOREIGN KEY option is used if
one-way DB2-to-IMS propagation or two-way propagation is implemented. The
containing segment/internal segment relationship should be handled just as a
parent/child segment is handled for setting up matching RIRs. In this example, the
DELETE CASCADE option is used.

Using DataRefresher To Define the PR: CREATE DXTPSB
Figure 21 on page 90 shows a CREATE DXTPSB definition for the Segment exit
routine in Figure 17 on page 77.

 Chapter 2. Segment Exit Routines 89

 CREATE DXTPSB NAME=KOEPSB2

 DXTPCB NAME=PCBSS1,DBACCESS=HDAM,DBNAME=DB123

SEGMENT NAME=ACCOUNT , PARENT=S, BYTES=72 ,
 EXIT=EKYESE2C, XBYTES=77

FIELD NAME=KEY , START=1, BYTES=9 , SEQFLD=R
FIELD NAME=ACT_NBR, START=1, BYTES=9 , TYPE=C
FIELD NAME=NAME , START=1S, BYTES=21, TYPE=C
FIELD NAME=COUNT START=31, BYTES=2 , TYPE=H

SEGMENT NAME=CREDIT , PARENT=ACCOUNT ,
 FORMAT=FI,
 OCCURS=COUNT,
 START =33,
 BYTES =15

FIELD NAME=TYPE , START=1, BYTES=1 , TYPE=P, SCALE=S
FIELD NAME=AMOUNT , START=2, BYTES=7, TYPE=P, SCALE=2
FIELD NAME=LIMIT , START=9, BYTES=7, TYPE=P, SCALE=2;

Figure 21. Using DataRefresher to Define the PR: CREATE DXTPSB

Notes:

1. The DXTPCB has two SEGMENT statements, which are followed by FIELD
statements.

� The first SEGMENT statement and its fields describe the containing IMS
segment ACCOUNT in its DPROP format.

� The second SEGMENT statement and its fields describe the internal
segment type CREDIT in its DPROP format.

2. The Segment exit routine EKYESE2C is specified on the EXIT= keyword of the
SEGMENT statement.

The EXIT= keyword must be provided on the SEGMENT statement describing
the containing segment, never on SEGMENT statements describing internal
segments.

The SEGMENT statement for the ACCOUNT segment also provides the
following specifications:

� BYTES=72 specifies the length of the segment in its IMS format.
� XBYTES=77 specifies the length of the segment in its DPROP format.

3. The SEGMENT statement for the segment CREDIT describes the internal
segment in its DPROP format.

� FORMAT=FI specifies that the segment has a fixed length and is an
internal segment.

� OCCURS=COUNT specifies that the internal segment has a variable
number of occurrences, and that the count field for the internal segment is
the field called COUNT. The count field must be defined with a FIELD
statement as a field of the containing segment (not as a field in the internal
segment).

� START=33 specifies that the internal segment starts at byte 33 of the
containing segment (in its DPROP format).

� BYTES=15 specifies that the internal segment has a length of 15 bytes.

90 Customization Guide

4. The FIELD statement for the field TYPE describes the one-byte ID field built by
the Segment exit routine in the DPROP format during IMS-to-DPROP mapping.

5. The FIELD statements for the fields AMOUNT and LIMIT describe the other
fields of the internal segment or repeating group.

Using DataRefresher to Define the PR: CREATE DXTVIEW
Figure 22 shows a CREATE DXTVIEW definition for the Segment exit routine in
Figure 17 on page 77.

 CREATE
 DXTVIEW NAME = VIEWCRED,
 DXTPSB = KOEPSB2,
 DXTPCB = PCBSS1,
 SEGMENT = CREDIT,
 MINSEGM = CREDIT,
 FIELDS = K ;

Figure 22. Using DataRefresher to Define the PR: CREATE DXTVIEW

Using DataRefresher To Define the PR
This section covers the DataRefresher UIM SUBMIT Command and EXTRACT
Statement.

Figure 23 on page 92 contains two pairs of SUBMIT and EXTRACT statements to
define the two PRs, PR1 and PR2.

PR1 propagates the fields ACT_NBR and NAME of the containing segment to the
ACCOUNT table.

PR2 propagates the fields TYPE, AMOUNT, and LIMIT of the internal segment to
the CREDIT table. PR2 propagates the key field ACT_NBR of the containing
parent segment ACCOUNT to the CREDIT table.

 Chapter 2. Segment Exit Routines 91

 SUBMIT EXTID=PR1,
 NODE=NODEX,
 USERID=TS966S6,
 CD=JCS,
 JCS=DDJCSS1,
 FORMAT=SOURCE,

USERDECK='ENFORCE NO, REPLACE',
 MAPEXIT=EKYMCE��,
 MAPUPARM='PRTYPE=E,MAPDIR=TW,MAPCASE=1,
 ACTION=REPL, ERROPT=BACKOUT,
 PCBLABEL=HUPPCB'

EXTRACT INTO ACCOUNT (ACT_NBR NOT NULL,
NAME NOT NULL WITH DEFAULT)

 OPTIONS(FLDERR(SUBST(ZERO)))
 SELECT ACT_NBR,
 NAME

FROM VIEWCRED ;

 SUBMIT EXTID=PR2,
 NODE=NODEX,
 USERID=TS966S6,
 CD=JCS,
 JCS=DDJCSS1,
 FORMAT=SOURCE,

USERDECK='ENFORCE NO, RESUME(YES)',
 MAPEXIT=EKYMCE��,
 MAPUPARM='PRTYPE=E,MAPDIR=TW,MAPCASE=3,
 ACTION=REPL, ERROPT=BACKOUT,
 PCBLABEL=HUPPCB'

EXTRACT INTO CREDIT (ACT_NBR NOT NULL,
 TYPE NOT NULL,

AMOUNT NOT NULL WITH DEFAULT,
LIMIT NOT NULL WITH DEFAULT)

 OPTIONS(FLDERR(SUBST(ZERO)))
 SELECT ACT_NBR,
 TYPE ,
 AMOUNT ,
 LIMIT

FROM VIEWCRED ;

Figure 23. Using DataRefresher to Define the PR: DataRefresher UIM SUBMIT Command
and EXTRACT Statement

Notes:

1. The MAPEXIT= keyword of the SUBMIT control statement specifies
EKYMCE00. This causes DataRefresher UIM to call the DPROP-provided Map
Capture Exit EKYMCE00 during processing of the SUBMIT or EXTRACT. This
is needed to allow DPROP to create the PR.

2. MAPUPARM= is used to provide the DPROP propagation keywords.

MAPCASE=1 defines PR1 as a mapping case 1 PR, and MAPCASE=3 defines
PR2 as a mapping case 3 PR.

3. The EXTRACT statement describes to DataRefresher and DPROP which fields
should be mapped to which columns.

The COUNT field is not propagated by either PR1 or PR2.

92 Customization Guide

Using DataRefresher For the Extract
This section covers INITDEM and USE DXTPSB Control Statements. Figure 24
shows INITDEM and USE DXTPSB control statements for the Segment exit routine
in Figure 17 on page 77.

 INITDEM NAME=DEMPROD;
 USE DXTPSB=KOEPSB2;

Figure 24. Using DataRefresher for the Extract: INITDEM and USE DXTPSB Control
Statements

Defining the PR in the MVG Input Tables
Figure 25 on page 95 describes the DSNTEP2 SQL statements required to define
the two PRs, PR1 and PR2, in the MVG input tables.

PR1 propagates to the ACCOUNT table the fields ACT_NBR and NAME of the
containing segment.

PR2 propagates to the CREDIT table the fields TYPE, AMOUNT and LIMIT of the
internal segment. PR2 propagates to the CREDIT table the key field ACT_NBR of
the containing parent segment ACCOUNT.

The following rows are inserted into the MVG input tables to define PR1:

� One row is inserted into the DPRIPR table (the PR table).

This row identifies the PRID by inserting an E into the PRTYPE column and a 1
into the MAPCASE column. The SQL statement specifies that the PR belongs
to mapping case 1 of an extended-function PR.

� One row for the entity segment type ACCOUNT is inserted into the DPRISEG
table (the SEG table).

Because ACCOUNT is the root segment, no rows are inserted into DPRISEG
for physical ancestors.

The row describing ACCOUNT provides the following column values:

– Value E in the ROLE column specifies that the segment is the entity
segment of the PR.

– Nonblank value EKYESE2C in the SEGEXIT column specifies that the
segment must be processed by the Segment exit routine EKYESE2C.

– Value 77 in the SEGEXITL column specifies the length of the segment in
its DPROP format.

– Value F in the SEGEXITF column specifies that the segment in its DPROP
format has a fixed length.

� One row is inserted into the DPRITAB table (the TAB table).

This row specifies that the target table is T096606.ACCOUNT.

� One row is inserted into the DPRIFLD table (the FLD table) for each
propagated field.

The DPRIFLD rows describe the fields as they appear in the DPROP format of
the segment (as opposed to the segment in its IMS DB format).

 Chapter 2. Segment Exit Routines 93

The following rows are inserted into the MVG input tables to define PR2:

� One row is inserted into the DPRIPR table (the PR table).

This row identifies the PRID by inserting an E into the PRTYPE column and a 3
into the MAPCASE column. The SQL statement specifies that the PR belongs
to mapping case 3 of an extended-function PR.

� One row for the Containing segment Type ACCOUNT is inserted into the
DPRISEG table (the SEG table).

Because ACCOUNT is the root segment, no rows are inserted into DPRISEG
for physical ancestors.

The row describing ACCOUNT provides the following column values:

– Value C in the ROLE column specifies that the segment is the containing
segment of the mapping case 3 PR.

– Nonblank value EKYESE2C in the SEGEXIT column specifies that the
segment must be processed by the Segment exit routine EKYESE2C.

– Value 77 in the SEGEXITL column specifies the length of the segment in
its DPROP format.

– Value F in the SEGEXITF column specifies that the segment in its DPROP
format has a fixed length.

� One row for the internal segment type CREDIT is inserted into the DPRISEG
table (the SEG table).

The row describing CREDIT provides the following column values:

– Value E in the ROLE column. This specifies that the segment is the Entity
segment of the PR.

– Blank value in the SEGEXIT column. This is because DPROP requires
that the Segment exit routine be defined in the DPRISEG row of the
containing segment (not in the DPRISEG row of the internal segment).

– Value FI in the FORMAT column specifies that the segment has a fixed
length and is an internal segment type.

– Value COUNT in the OCCURS column specifies that the internal segment
has a variable number of occurrences and that the number of occurrences
is stored in the field COUNT.

– Value 33 in the START column specifies that the first occurrence of the
internal segment starts at location 33 within the containing segment (in its
DPROP format).

– Value 15 in the BYTES column specifies that the length of the internal
segment type is 15 bytes.

� One row is inserted into the DPRITAB table (the TAB table).

This row specifies that the target table is T096606.CREDIT.

� One row is inserted into the DPRIFLD table (the FLD table) for each
propagated field. Another row is inserted into the DPRIFLD table for the
COUNT field.

The DPRIFLD rows describe the fields as they appear in the DPROP format of
the segment (as opposed to the segment in its IMS DB format).

94 Customization Guide

– The row describing the field ACT_NBR has the value ACCOUNT in the
SEGNAME column. This specifies that the ACT_NBR field is located in the
containing segment ACCOUNT (not in the internal segment).

– The row describing the field COUNT has a blank value in the COLNAME
column, because the COUNT field is not propagated. The value
ACCOUNT in the SEGNAME column specifies that the COUNT field is
located in the containing segment ACCOUNT (not in the internal segment).

– The row describing the fields TYPE, AMOUNT, and LIMIT COUNT have
the value CREDIT in the SEGNAME column. This specifies that these
fields are located in the internal segment CREDIT.

DELETE FROM TS966S6.DPRIPR WHERE PRID = 'PR1' ;

INSERT INTO TS966S6.DPRIPR
(PRID , USERID , PRTYPE, MAPCASE, MAPDIR,

 ERROPT , ACTION)
VALUES ('PR1' ,'TS966S6','E' ,'1' ,'TW',

 'BACKOUT','REPL') ;

INSERT INTO TS966S6.DPRISEG
(PRID , DBNAME , SEGNAME , ROLE , PCBLABEL,
SEGEXIT , SEGEXITL, SEGEXITF)

VALUES ('PR1' ,'DB123' ,'ACCOUNT', 'E' ,'HUPPCB' ,
 'EKYESE2C', 77 ,'F') ;

INSERT INTO TS966S6.DPRITAB
 (PRID, TABQUAL , TABNAME)

VALUES ('PR1', 'TS966S6', 'ACCOUNT') ;

INSERT INTO TS966S6.DPRIFLD
 (PRID , DBNAME , SEGNAME , FLDNAME,

TABQUAL , TABNAME , COLNAME,
DATATYPE, POSITION, BYTES)

 VALUES ('PR1' ,'DB123' , 'ACCOUNT','ACT_NBR',
 'TS966S6','ACCOUNT', 'ACT_NBR',
 'C ' , 1 , 9) ;

INSERT INTO TS966S6.DPRIFLD
 (PRID , DBNAME , SEGNAME , FLDNAME,

TABQUAL , TABNAME , COLNAME,
DATATYPE, POSITION, BYTES)

 VALUES ('PR1' ,'DB123' ,'ACCOUNT' ,'NAME' ,
 'TS966S6','ACCOUNT', 'NAME' ,
 'C ' , 1S , 21) ;

Figure 25 (Part 1 of 2). Defining the PR in the MVG Input Tables

 Chapter 2. Segment Exit Routines 95

DELETE FROM TS966S6.DPRIPR WHERE PRID = 'PR2' ;

INSERT INTO TS966S6.DPRIPR
(PRID , USERID , PRTYPE, MAPCASE, MAPDIR,

 ERROPT , ACTION)
VALUES ('PR2' ,'TS966S6','E' ,'3' ,'TW' ,

 'BACKOUT','REPL') ;

INSERT INTO TS966S6.DPRISEG
(PRID , DBNAME , SEGNAME , ROLE , PCBLABEL,
SEGEXIT, SEGEXITL, SEGEXITF)

 VALUES ('PR2' , 'DB123' ,'ACCOUNT', 'C' , 'HUPPCB',
 'EKYESE2C',77 ,'F') ;

INSERT INTO TS966S6.DPRISEG
(PRID , DBNAME , SEGNAME , ROLE , PCBLABEL,
SEGEXIT, SEGEXITL, SEGEXITF ,
FORMAT , OCCURS , START , BYTES)

VALUES ('PR2' , 'DB123' ,'CREDIT ' , 'E' , ' ',
 ' ', S ,' ' ,
 'FI' , 'COUNT' , '33' , 15) ;

INSERT INTO TS966S6.DPRITAB
 (PRID, TABQUAL , TABNAME)

VALUES ('PR2', 'TS966S6', 'CREDIT') ;

INSERT INTO TS966S6.DPRIFLD
 (PRID , DBNAME , SEGNAME , FLDNAME,

TABQUAL , TABNAME , COLNAME,
DATATYPE, POSITION, BYTES)

 VALUES ('PR2' ,'DB123' , 'ACCOUNT','ACT_NBR',
 'TS966S6','CREDIT ', 'ACT_NBR',
 'C ' , 1 , 9) ;

INSERT INTO TS966S6.DPRIFLD
 (PRID , DBNAME , SEGNAME , FLDNAME,

TABQUAL , TABNAME , COLNAME,
DATATYPE, POSITION, BYTES)

VALUES ('PR2' ,'DB123' , 'ACCOUNT','COUNT' ,
 'TS966S6','CREDIT ', ' ' ,
 'H ' , 31 , 2) ;

INSERT INTO TS966S6.DPRIFLD
 (PRID , DBNAME , SEGNAME , FLDNAME ,

TABQUAL , TABNAME , COLNAME ,
DATATYPE, POSITION, BYTES , SCALE)

VALUES ('PR2' ,'DB123' ,'CREDIT' ,'TYPE' ,
 'TS966S6','CREDIT ', 'TYPE' ,
 'P ' , 1 , 1 , S) ;

INSERT INTO TS966S6.DPRIFLD
 (PRID , DBNAME , SEGNAME , FLDNAME ,

TABQUAL , TABNAME , COLNAME ,
DATATYPE, POSITION, BYTES , SCALE)

VALUES ('PR2' ,'DB123' , 'CREDIT ','AMOUNT ' ,
 'TS966S6','CREDIT ', 'AMOUNT' ,
 'P ' , 2 , 7 , 2) ;

INSERT INTO TS966S6.DPRIFLD
 (PRID , DBNAME , SEGNAME , FLDNAME ,

TABQUAL , TABNAME , COLNAME ,
DATATYPE, POSITION, BYTES , SCALE)

VALUES ('PR2' ,'DB123' , 'CREDIT ','LIMIT ' ,
 'TS966S6','CREDIT ', 'LIMIT ' ,
 'P ' , 9 , 7 , 2) ;

Figure 25 (Part 2 of 2). Defining the PR in the MVG Input Tables

96 Customization Guide

Third Sample Segment Exit Routine
Figure 26 on page 98 contains an example of a Segment exit routine in PL/I. Its
functions are the same as those for the exit routine in “Second Sample Segment
Exit Routine” on page 75. For information about this routine, refer to “Second
Sample Segment Exit Routine” on page 75.

The source code in Figure 26 on page 98 is provided in the DPROP Sample
Source Library (EKYSAMP) under the member name EKYESE2P. The definitions
for this routine are the same as those for EKYESE2C, except that the exit name is
different. Specifically, the EXIT=EKYESE2C in Figure 21 on page 90, and both
occurrences of EKYESE2C in Figure 25 on page 95, are changed to EKYESE2P.
The text that refers to EKYESE2C is also true for EKYESE2P. Refer to “Definitions
for the Second Sample Segment Exit Routine” on page 88 for information about
the definitions.

 Chapter 2. Segment Exit Routines 97

KPROCESS MAR(2,72,1);
 EKYESE2P: PROCEDURE /K Sample Segment Exit Routine K/
 (DAX_PARM_PTR,
 IMSSEG_PARM_PTR,
 DPRSEG_PARM_PTR,
 USERAREA_PARM_PTR)
 OPTIONS (FETCHABLE REENTRANT);

 /KKK
 K K
K Licensed Materials - Property of IBM K

 K K
K 5685-124 (C) Copyright IBM Corp. 1989, 1992. K

 K K
K See Copyright Instructions K

 K K
 KKK/
1/KKK
K Module name: EKYESE2P K

 K K
K Descriptive name: Sample PL/I Segment Exit Routine K

 K K
K Function: The intent of this program is to provide a sample of K
K a segment exit routine. This example is used for the K
K transformation of a segment layout between its: K
K - IMS format K
K - DPROP format. K

 K K
K EKYESE2P illustrates the usage of a DPROP segment exit to support K
K the propagation of an IMS segment containing an internal K
K segment / repeating group of fields. K

 K K
 K K
K This sample segment exit routine supports TYPE=E PR's and is K
K therefore called both for: K

 K K
K - IMS-to-DPROP mapping K
K (e.g. during IMS-to-DB2 propagation, also during K
K DXT-extracts, CCU and DLU processing). K

 K K
K - DPROP-to-IMS mapping K
K (e.g. during DB2-to-IMS propagation, also during CCU and K

 K DLU processing). K
 K K
 K K
K In this example the propagated IMS segment is a bank account K
K segment. The IMS segment consists of the following fields: K

 K K
K - The account number (this is the key of the segment). K
K - The customer name. K
K - A repeating group of fields with three occurrences. K
K Each occurrence of the repeating group contains information K
K about one type of credit that the bank is granting. K
K This data is: K
K - the current amount of credit granted to the K

 K customer/account. K

Figure 26 (Part 1 of 12). Third Sample Segment Exit Routine (PL/I)

98 Customization Guide

K - the credit limit for the customer/account. K
 K K
 KKK
1 KKK
 K K
K The database administrator wants to have a normalized DB2 table K
K design and therefore wants to: K

 K K
K 1) Propagate the account number and customer name to/from the K
K table called "ACCOUNT". This is done with a mapping-case-1 K

 K propagation request. K
 K K
K 2) Propagate the information akin to the different types of K
K credits (together with the account number) to/from another K
K table called "CREDIT".

 K K
K This is done with a mapping-case-3 propagation request. K

 K K
K Each occurrence of the credit information (there are three K
K of them) is considered to be an occurrence of an internal K
K and is propagated to/from one row of the table "CREDIT". K

 K K
K To distinguish between the three types of credit K
K information within the CREDIT table (and in order to have K
K a DB2 primary key), the CREDIT table does not only contain K
K an account number column and the current credit amount and K
K limit. The CREDIT table also contains a "TYPE" column K
K which identifies the type of credit. K

 K K
K The sample segment exit routine EKYESE2P provides logic to K
K support the propagation of the IMS segment to/from the two tables K
K "ACCOUNT" and "CREDIT". K

 K K
 KKK
1 KKK
 K K
 K K
K 1) For IMS-to-DPROP mapping the sample exit provides the K
K following functions, when building the DPROP format of the K

 K segment: K
 K K
K - The exit routine creates in the DPROP-format an "ID" field K
K for each occurrence of the internal segment. This is the K
K field called "TYPE". K

 K K
K This addresses the DPROP requirement that internal segments K
K have an "ID" field uniquely identifying the occurrences of K
K the internal segments within the containing segment. K

 K K
K In the DPROP format, each occurrence of the internal segment K
K will consist of the following fields: K
K - The field "TYPE" (this is the "ID" field created by the K

 K exit). K
K - The field "AMOUNT" (copied from the IMS format of the K

 K segment). K
K - The field "LIMIT" (copied from the IMS format of the K

 K segment). K
 K K
K - The exit routine creates in the DPROP-format a count field K
K Its value is the number of occurrences of the internal K
K segment-type within the containing segment. K

Figure 26 (Part 2 of 12). Third Sample Segment Exit Routine (PL/I)

 Chapter 2. Segment Exit Routines 99

K Note that a count field is required by DPROP for the K
K propagation of internal segments with TYPE=E PR's. K

 K K
 KKK
1 KKK
 K K
K 2) For DPROP-to-IMS mapping the sample exit differentiates K
K between the two following cases: K

 K K
K a) It is called during a REPLACE, DELETE, or INSERT of a row K
K of the "CREDIT" table. K

 K K
K Here, the exit routine gets the ensuing two inputs from K

 K DPROP: K
 K K
K - The changed occurrence of the internal segment in its K
K DPROP format. This input has been built by DPROP by K
K mapping the changed CREDIT row to the DPROP format of K
K the internal segment. K

 K K
K - The existing "before-change" IMS segment in its IMS K

 K format. K
 K K
K By combining information from these two inputs the segment K
K exit routine is responsible for building the new K
K "after-change" IMS segment in its IMS format. K

 K K
K b) It is called during a REPLACE, DELETE, or INSERT of a row K
K of the "ACCOUNT" table. K

 K K
K Here, this exit routine gets following two inputs from K

 K DPROP: K
 K K
K - The changed occurrence of the containing segment in K
K its DPROP format. This input has been built by DPROP K
K by mapping the changed ACCOUNT row to the DPROP format K
K of the containing segment. K

 K K
K - The existing "before-change" IMS segment in its IMS K
K format (only for REPLACES and DELETES of rows of the K

 K ACCOUNT table). K
 K K
K By combining information from these two inputs the segment K
K exit routine is responsible for building the new K
K "after-change" IMS segment in its IMS format. K

 K K
 KKK
1 KKK
 K K
K The figure below describes on the left-hand side the segment in K
K its IMS format and on the right-hand side the segment in its K
K DPROP format. K

 K K
 K K
 K K-------------------------K K-------------------------K K
K | IMS segment in its | | IMS segment in its | K
K | IMS format | | DPROP format | K

 K K-------------------------K K-------------------------K K
 K K

Figure 26 (Part 3 of 12). Third Sample Segment Exit Routine (PL/I)

100 Customization Guide

 K K----------K--------K-----K K----------K--------K-----K K
 K | field | field |field| | field | field |field| K
K | name | format |start| | name | format |start| K

 K K----------K--------K-----K K----------K--------K-----K K
K | ACNT_NBR | Z | 1 |<-->| ACNT_NBR | Z | 1 | K
K | NAME | C | 1S |<-->| NAME | C | 1S | K

 K | | | | | COUNT | H | 31 | K
K | | | | | TYPE_1 | P | 33 | K
K | AMOUNT_A | P | 31 | | AMOUNT_1 | P | 34 | K

 K | LIMIT_A | P | 38 | | LIMIT_1 | P | 41 | K
K | | | | | TYPE_2 | P | 48 | K
K | AMOUNT_B | P | 45 | | AMOUNT_2 | P | 49 | K

 K | LIMIT_B | P | 52 | | LIMIT_2 | P | 56 | K
K | | | | | TYPE_3 | P | 63 | K
K | AMOUNT_C | P | 59 | | AMOUNT_3 | P | 64 | K

 K | LIMIT_C | P | 66 | | LIMIT_3 | P | 71 | K
 K K----------K--------K-----K K----------K--------K-----K K
 K K
K Both the IMS format and the DPROP format of the IMS segment are K
K defined as fixed-length. K

 K K
K The internal segment is defined to DPROP as follows: K

 K K
K - It has a variable number of occurrences (the number of K
K occurrences is in the count field "COUNT" of the containing K

 K segment). K
K - The first occurrence starts at a fixed location within the K
K containing segment (start position = 33). K
K - It has a fixed length (15 bytes). K
K - It consists of the following fields: K

 K TYPE (1 byte). K
K AMOUNT (7 bytes). K

 K LIMIT (7 bytes). K
 K K
K Please refer to the DSECTS found later in this module to find K
K all the details about the "IMS format" and the "DPROP format" K
K of the segments. K

 K K
 KKK
1 KKK
 K K
K The following conventions are used to describe credit information K
K if it does not exist: K
K - In the IMS format, a non-existing credit-info has a zero K
K value in the field "LIMIT". K

 K K
K - In the DPROP-format, the count reflects the number of K
K existing CREDIT internal segments. Existing CREDIT internal K
K segments follow each other in the DPROP format of the IMS K
K segment (non-existing internal segments are eliminated). K
K This must be so in order to conform to the way that internal K
K segments are defined to DPROP and DXT. K

 K K
 K K
K Input: 1st parameter: Address of DAX (DAX is the exit interface K

 K control block). K
K 2nd parameter: Address of segment in IMS format. K
K 3rd parameter: Address of segment in DPROP format. K
K 4th parameter: Address of anchor area preserved K
K across calls to this exit. K

 K K

Figure 26 (Part 4 of 12). Third Sample Segment Exit Routine (PL/I)

 Chapter 2. Segment Exit Routines 101

K Output: the segment format transformation has been completed. K
 K K
 K K
 K Exit-error: K
 K K
K Return code = 12 - mapping problem / invalid data K
K = 16 - should-not-occur errors (invalid call K
K function, parameter area too small, K
K invalid segment name). K

 K K
 K K
K Error messages issued by EKYESE2P: K

 K K
K EKYESE2P-1E: Call function not supported. K
K EKYESE2P-2E: Unsupported DBD or segment name. K
K EKYESE2P-3E: Unexpected length of IMS segment. K
K EKYESE2P-4E: DPROP segment is too short. K
K EKYESE2P-5E: IMS segment is too short. K
K EKYESE2P-6E: Unexpected value in TYPE column of CREDIT K

 K table. K
 K K
K Change activity= none K

 K K
 K K
KKKKKKKKKKKKKKKKKK End of Specifications KKKKKKKKKKKKKKKKKKKKKKKKKKKK

1 KKKKKKKKKKKKKKKKKK Logic of EKYESE2P KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK
 K K
 K K
K Main logic: K

 K K
K 1) Module entry logic: K

 K K
K - Set "module entered" and "module in control" flags into DAX. K

 K K
K - Validate that the exit is invoked to propagate the correct K
K database and segment. K

 K K
K - Process according to call-function either for: K
K - The processing of IMS-to-DPROP, or K
K - The processing of DPROP-to-IMS K

 K K
 K K
K 2) IMS-to-DPROP formatting: K

 K K
K - Check length of segment in its IMS format and check that the K
K size of the DPROP segment buffer is sufficient to contain K
K the segment in its DPROP format. K

 K K
K - Assign the account number and the customer name to the DPROP K

 K format. K
 K K
K - Initialize the computation of internal segment occurrences K

 K to zero. K
 K K
K - For each non-zero limit in the IMS format: K
K - Increase the occurrence counters by 1. K
K - Create the ID of the internal segment in the DPROP buffer.K
K - Move the data of the internal segment to the DPROP buffer.K

 K K

Figure 26 (Part 5 of 12). Third Sample Segment Exit Routine (PL/I)

102 Customization Guide

K Note: A limit with a zero value in the IMS format is deemed K
K as identifying "non-existing" credit information. K

 K K
K In the DPROP format there will be no occurrence of K
K internal segments for these non-existing credits. K
K As required by DPROP, the occurrences for the K
K existing internal segments will follow each other. K

 K K
 KKK
1 KKK
 K K
K 3) DPROP-to-IMS formatting K

 K K
K - Check that the IMS segment buffer is large enough. K

 K K
K - Initialize the IMS segment buffer as follows: K
K - If before-change image is provided by the caller, K
K copy the before-change image to the IMS buffer, K
K otherwise initialize the IMS buffer with the appropriate K
K initial values (zeroes and blanks). K

 K K
K - If processing a change to the target of a containing K

 K segment: K
K - Copy information of the changed containing segment from K
K the DPROP buffer to the IMS buffer. K

 K K
K - If processing a change to the target of an internal K

 K segment: K
K - If processing a DELETE, set the appropriate CREDIT K
K information to zero in the IMS buffer. K
K - If processing a REPLACE or INSERT, copy the information K
K of the changed internal segment from the DPROP buffer to K
K the IMS buffer. K

 K K
K Error Logic: K

 K K
K - Format an error message in the "DAX". K

 K K
K - Set a return code in the "DAX". K

 K K
K - Return to the caller. K

 K K
 KKKKKKKKKKKKKKKKK End of logic summary KKKKKKKKKKKKKKKKKKKKKKKKKKKK/
 %INCLUDE EKYRCDXP; /K DAX control block structure K/
1/KKK
K Description of IMS segment in its IMS format K

 KKK/

 DECLARE IMSSEGBUFF CHAR(72) BASED(IMSSEG_POINTER);

 DECLARE 1 IMSSEG BASED(IMSSEG_POINTER),
2 IMSACNBR PIC'(8)9T', /K Account number (KEY) K/
2 IMSNAME CHAR(21), /K Name of customer K/
2 IMSINSEG(3), /K 3 occurrences of internal seg K/
3 IMSAMOUNT FIXED DEC(13), /K Current amount type-a credit K/

 3 IMSLIMIT FIXED DEC(13);

Figure 26 (Part 6 of 12). Third Sample Segment Exit Routine (PL/I)

 Chapter 2. Segment Exit Routines 103

 /KKK
K Description of IMS segment in its DPROP format K

 KKK/

 DECLARE DPRSEGBUFF CHAR(77);

 DECLARE 1 DPRSEG BASED(DPRSEG_POINTER),

2 DPRACNBR PIC '(8)9T', /K Account number (key) K/
2 DPRNAME CHAR(21), /K Name of customer K/
2 DPRCOUNT FIXED BIN(15), /K Internal segment occurrences

 count K/
2 DPRINSEG(3), /K three occurrences of

 internal segment K/
 3 DPRTYPE FIXED DEC(1), /K ID K/

3 DPRAMOUNT FIXED DEC(13), /K Current amount K/
3 DPRLIMIT FIXED DEC(13); /K Limit amount K/

1/KKK
K Description of Internal segment in DPROP format K

 KKK/

 DECLARE DPRI_SEG_POINTER POINTER;

 DECLARE 1 DPRI_SEG(3) BASED (DPRI_SEG_POINTER),
 2 DPRI_TYPE FIXED DEC(1), /K ID K/

2 DPRI_AMOUNT FIXED DEC(13), /K Current amount K/
2 DPRI_LIMIT FIXED DEC(13); /K Limit amount K/

 /KKK
K Description of Containing segment in DPROP format K

 KKK/

 DECLARE DPRC_SEG_POINTER POINTER;

 DECLARE 1 DPRC_SEG BASED (DPRC_SEG_POINTER),
2 DPRC_ACNBR PIC'(8)9T', /K Account number (KEY) K/
2 DPRC_NAME CHAR(21), /K Name of customer K/
2 DPRC_COUNT FIXED BIN(15); /K Internal segment occurrences

 count K/

 /KKK
K Area for the before-change IMS image K

 KKK/

 DECLARE IMSBEFIM_POINTER POINTER;
 DECLARE IMSBEFIM CHAR(72) BASED(IMSBEFIM_POINTER);
1/KKK
K Built-in functions and global variable declarations K

 KKK/

 DECLARE DAX_PARM_PTR POINTER;
 DECLARE IMSSEG_PARM_PTR POINTER;
 DECLARE DPRSEG_PARM_PTR POINTER;
 DECLARE USERAREA_PARM_PTR POINTER;
 DECLARE DAX_POINTER POINTER;
 DECLARE IMSSEG_POINTER POINTER;
 DECLARE DPRSEG_POINTER POINTER;

Figure 26 (Part 7 of 12). Third Sample Segment Exit Routine (PL/I)

104 Customization Guide

 DECLARE I FIXED BIN(31);
 DECLARE J FIXED BIN(31);

 DECLARE ADDR BUILTIN;
 DECLARE NULL BUILTIN;
1/KKK
K Declarations for initialized variables K

 KKK/

 DECLARE EKYESE1E FIXED BIN(31) INIT(1);
 DECLARE EKYESE2E FIXED BIN(31) INIT(2);
 DECLARE EKYESE3E FIXED BIN(31) INIT(3);
 DECLARE EKYESE4E FIXED BIN(31) INIT(4);
 DECLARE EKYESE5E FIXED BIN(31) INIT(5);
 DECLARE EKYESE6E FIXED BIN(31) INIT(6);

 DECLARE RETURN_CODE_12 FIXED BIN(31) INIT(12);
 DECLARE RETURN_CODE_16 FIXED BIN(31) INIT(16);

 DECLARE IMSSEGL FIXED BIN(31) INIT(72);
 DECLARE DPRSEGL FIXED BIN(31) INIT(77);

 DECLARE X CHAR(1) INIT('X');
 DECLARE NO CHAR(2) INIT('NO');
 DECLARE RV CHAR(2) INIT('RV');
 DECLARE DB123 CHAR(8) INIT('DB123 ');
 DECLARE ACCOUNT CHAR(8) INIT('ACCOUNT ');
1/KKK
K Format error messages and place into DAX control block K

 KKK/

 WRITE_ERROR_MESSAGE: PROCEDURE(MESSAGE_NUM,RETURN_CODE);

DECLARE MESSAGE_NUM FIXED BIN(31); /K Message identifier input K/
DECLARE RETURN_CODE FIXED BIN(31); /K Return code input K/

 /KK
K Buffer and structure for assignment of DAX message K

 KK/
DECLARE MSGBUFF CHAR(64);
DECLARE MSG_PTR POINTER;
DECLARE 1 MSGLINE BASED(MSG_PTR),

 2 MSGID CHAR(11),
 2 MSGBL1 CHAR(1),
 2 MSGTXT CHAR(52);

 /KK
K Error and informative message declarations K

 KK/
 DECLARE MESSAGE_ID(6) CHAR(11) INIT
 ('EKYESE2P-1E','EKYESE2P-2E','EKYESE2P-3E',
 'EKYESE2P-4E','EKYESE2P-5E','EKYESE2P-6E');

 DECLARE MESSAGE_TEXT(6) CHAR(52) INIT
('Call function not supported. ',
'Unsupported DBD or segname. ',
'Unexpected length of IMS segment. ',
'DPROP segment buffer is too short. ',
'IMS segment buffer is too short. ',
'Unexpected value in type column of credit table. ');

Figure 26 (Part 8 of 12). Third Sample Segment Exit Routine (PL/I)

 Chapter 2. Segment Exit Routines 105

 /KK
K Format message and assign return code to DAX K

 KK/

MSGBUFF = ' '; /K Blank out message buffer K/

 MSG_PTR = ADDR(MSGBUFF);
 MSGID = MESSAGE_ID(MESSAGE_NUM);
 MSGTXT = MESSAGE_TEXT(MESSAGE_NUM);

DAXRETC = RETURN_CODE; /K Return code into DAX K/
DAXSMESG = MSGBUFF; /K Formatted message to DAX K/

 END WRITE_ERROR_MESSAGE;
1/KKK
K Normal call to transform the segment from its IMS format into K
K its DPROP format K

 KKK/

 IMS_TO_DPROP: PROCEDURE;

 /KK
K Establish addressability to DPROP format segment data area K

 KK/
DPRSEG_POINTER = ADDR(DPRSEG_PARM_PTR);

 /KK
K Check the length of segment in its IMS format and check that K
K the DPROP buffer is large enough to contain the segment in its K
K DPROP format. K

 KK/
IF DAXDLEN ¬= IMSSEGL THEN /K Unexpected length of IMS segment K/

 DO;
 CALL WRITE_ERROR_MESSAGE(EKYESE3E,RETURN_CODE_16);

GOTO FIN; /K Terminate K/
 END;

IF DAXFLEN < DPRSEGL THEN /K DPROP segment buffer is too short K/
 DO;
 CALL WRITE_ERROR_MESSAGE(EKYESE4E,RETURN_CODE_16);

GOTO FIN; /K Terminate K/
 END;

 /KK
K Assign the account number and customer name to DPROP format K

 KK/
DPRACNBR = IMSACNBR;

 DPRNAME = IMSNAME;

 /KK
K Initialize counter field to zero and K
K initialize processing for the three credits K

 KK/
DPRCOUNT = S;
DPRINSEG = S;
J = S;

DO I = 1 TO 3; /K Move credits K/
IF IMSLIMIT(I) ¬= S /K i.e. non zero limit K/

 THEN DO;
J = J + 1;
DPRCOUNT = J; /K Increase occurence counter K/

Figure 26 (Part 9 of 12). Third Sample Segment Exit Routine (PL/I)

106 Customization Guide

DPRTYPE(J) = I; /K Assign ID of internal seg K/
DPRAMOUNT(J) = IMSAMOUNT(I); /K Assign current amount K/
DPRLIMIT(J) = IMSLIMIT(I); /K Assign limit amount K/

END; /K IMSLIMIT(I) ¬= S K/
END; /K I K/

 END IMS_TONDPROP;
1/KKK
K Reverse call to transform the segment from its DPROP format into K
K its IMS format K

 KKK/

 DPROP_TO_IMS: PROCEDURE;
 DECLARE INTERNAL CHAR(1) INIT('I');
 DECLARE DLET CHAR(4) INIT('DLET');
 DECLARE NINE_ZEROS PIC'(8)9T' INIT(S);
 DECLARE BLANKS_21 CHAR(21) INIT(' ');

 /KK
K Check that the IMS buffer is large enough to contain the K
K segment in its IMS format. K

 KK/
IF DAXDLEN < IMSSEGL THEN /K IMS segment buffer is too short K/

 DO;
 CALL WRITE_ERROR_MESSAGE(EKYESE5E,RETURN_CODE_16);

GOTO FIN; /K Terminate K/
 END;

 /KK
K Initialize the after change IMS format as follows: K

 K K
K If before change image of IMS segment has not been provided, K
K initialize the after change image with the appropriate K

 K initial values K
 K else K

K initialize the after change image with before change image K
 KK/

IF DAXIDDSB = NULL /K Before-change image IS NOT provided K/
 THEN DO;

IMSACNBR = NINE_ZEROS; /K Initialize account number to zeros K/
IMSNAME = BLANKS_21; /K Initialize customer name to blanks K/
IMSINSEG = S; /K Initialize amounts/limits to zero K/

END; /K DAXIDDSB is NULL K/

ELSE DO; /K Before-change image IS provided K/
IMSBEFIM_POINTER = DAXIDDSB; /K Address of before-change image K/
IMSSEGBUFF = IMSBEFIM; /K Assign before-change to after-change K/

 END;
1 IF DAXSEGT = INTERNAL /K value is "I" (i.e. internal segment) K/
 THEN
 /KK

K Exit routine is called for DPROP-to-IMS mapping because the K
K target of the internal segment has changed. K

 K K
K When processing a DELETE - K
K the exit routine will zero the appropriate amount and limit.K
K When processing an INSERT or REPLACE - K
K the exit routine will copy the amount and limit from the K
K changed internal segment to the IMS format of the segment. K

 KK/

Figure 26 (Part 10 of 12). Third Sample Segment Exit Routine (PL/I)

 Chapter 2. Segment Exit Routines 107

 DO;
DPRSEG_POINTER = ADDR(DPRSEGBUFF);

 /KKK
K Establish addressability to DPROP format segment data area K

 KKK/
 DPRI_SEG_POINTER = ADDR(DPRSEG_PARM_PTR);

DPRINSEG = DPRI_SEG;
 SELECT(DPRTYPE(1));

WHEN(1,2,3) /K Determine which internal segment K/
DO; /K occurrence has changed K/

J = DPRTYPE(1);
 SELECT(DAXDPRCT);

WHEN(DLET) /K Processing a DELETE K/
 DO;

IMSAMOUNT(J) = S; /K Zero appropriate amount K/
IMSLIMIT(J) = S; /K Zero appropriate limit K/

 END;
OTHERWISE /K Assume processing an INSERT or REPLACE K/

 DO;
IMSAMOUNT(J)=DPRAMOUNT(1); /K Copy internal amount K/
IMSLIMIT(J) =DPRLIMIT(1); /K Copy internal limit K/

 END;
END; /K Select DAXDPRCT K/

END; /K When DPRTYPE(1) = 1, 2 or 3 K/
OTHERWISE /K Unexpected value in type column of credit tab K/

 DO;
 CALL WRITE_ERROR_MESSAGE(EKYESE6E,RETURN_CODE_12);

GOTO FIN; /K Terminate K/
 END;

END; /K Select DPRTYPE K/
 END;
1 ELSE /K DAXSEGT not = "I" (i.e. not an internal segment) K/
 /KK

K Exit routine is called for DPROP-to-IMS mapping because K
K the target of the containing segment has changed. K
K We will just move information from the containing segment K
K in its DPROP format to segment in its IMS format. K

 KK/
 DO;
 /KKK

K Establish addressability to DPROP format segment data area K
 KKK/

DPRC_SEG_POINTER = ADDR(DPRSEG_PARM_PTR);
IMSACNBR = DPRC_ACNBR;

 IMSNAME = DPRC_NAME;
 END;

 END DPROP_TO_IMS;
1/KKK
 K Main Routine K
 KKK/

 /KKK
K Establish addressability to DAX control block and IMS segment dataK

 KKK/
 DAX_POINTER = ADDR(DAX_PARM_PTR);
 IMSSEG_POINTER = ADDR(IMSSEG_PARM_PTR);

 /KKK
K Set the "exit entered" and "exit in control" flags. K

 KKK/

Figure 26 (Part 11 of 12). Third Sample Segment Exit Routine (PL/I)

108 Customization Guide

 DAXENTRD = X;
 DAXINCTL = X;

 /KKK
K Verify that the exit is called to format the expected IMS K
K database and segment type K

 KKK/
 IF DAXDBNM ¬= DB123 THEN /K Unsupported DBD K/
 DO;
 CALL WRITE_ERROR_MESSAGE(EKYESE2E,RETURN_CODE_16);

GOTO FIN; /K Terminate K/
 END;

 IF DAXSEGM ¬= ACCOUNT THEN /K Unsupported segname K/
 DO;
 CALL WRITE_ERROR_MESSAGE(EKYESE2E,RETURN_CODE_16);

GOTO FIN; /K Terminate K/
 END;

 /KKK
K Process depending on call-function K

 KKK/
 SELECT (DAXCALL);

WHEN (NO) CALL IMS_TO_DPROP; /K Normal call (IMS to DPROP) K/

WHEN (RV) CALL DPROP_TO_IMS; /K Reverse call (DPROP to IMS) K/

OTHERWISE /K Unsupported call function K/
 DO;
 CALL WRITE_ERROR_MESSAGE(EKYESE1E,RETURN_CODE_16);

GOTO FIN; /K Terminate K/
 END;

 END; /K Select DAXCALL K/

 FIN: /K End of processing K/

 END EKYESE2P;

Figure 26 (Part 12 of 12). Third Sample Segment Exit Routine (PL/I)

 Chapter 2. Segment Exit Routines 109

Chapter 3. Field Exit Routines

The RUP and HUP call the Segment and Field exit routines as part of DPROP's
generalized mapping logic processing. These exit routines are optional and can be
used to reformat or change data during propagation. The generalized mapping
logic of the RUP or HUP can take care of most situations, but if your data is stored
in an unusual way, or in some form that the RUP or HUP cannot handle, consider
writing a Field exit routine to proceed.

A Field exit routine is generally used to convert an individual IMS data field
between a user format that DPROP does not support, and a DPROP-supported
format that you have defined in your PR. This is further referred to as:

� User-to-DPROP mapping when your exit routine is called to convert the field
from its user format to the DPROP format. Calls to an exit routine for
user-to-DPROP mapping are generated by the RUP as part of IMS-to-DB2
propagation.

� DPROP-to-user mapping when your exit routine is called to convert the field
from its DPROP format to its user format. Calls to exit routine for
DPROP-to-user mapping are generated by the HUP as part of DB2-to-IMS
propagation.

Typical uses of Field exit routines include:

� Converting IMS fields that have special formats that DPROP does not directly
support.

� Performing data conversions that are not supported by the DPROP data
conversion routines.

� The following support for DATE and TIME formats in IMS fields:

– Installation-specific (LOCAL) DATE and TIME formats

– During RH-propagation, support of DATE and TIME formats other than
those identified during DPROP installation

� Converting between some values in an IMS field and a DB2 NULL value.

� Cleaning up or reorganizing IMS data stored in an unusual way.

� If performing DB2-to-IMS propagation to convert the value of a numeric DB2
column into a packed or zoned IMS field, having a sign-code other than the
“preferred” sign codes X'.C' and X'.D'. (The period (.) represents the
numeric digit that precedes the sign code.)

Field exit routines have many of the same characteristics as Segment exit routines.

Field exit routines used with TYPE=L or TYPE=F PRs are only called to perform
HR-propagation and therefore support only user-to-DPROP mapping.

Field exit routines used with TYPE=E PRs support both user-to-DPROP mapping
and DPROP-to-user mapping, even if the TYPE=E PR specifies MAPDIR=HR.
This is because your Field exit routine can be called by the CCU and DLU. The
conversion performed during DPROP-to-user mapping must be the reverse of the
conversion performed during user-to-DPROP mapping.

110 Copyright IBM Corp. 1991,2001

1. During IMS-to-DB2 mapping, the RUP calls your Field exit routines immediately
after your Segment exit routine, if you are using one. If you are not using a
Segment exit routine, as soon as the RUP receives the changed data segment,
it calls your Field exit routine.

Your Field exit routine must convert the field from its user format to the
DPROP-supported format that you specified during the PR definition. The RUP
calls a Field exit routine for each field that requires one according to your field
definitions.

After calling your optional Segment exit routine and your optional Field exit
routine, the RUP converts the field formats that you specified in your PR
definition to the format of the DB2 columns.

2. During DB2-to-IMS mapping, the HUP converts the format of the DB2 columns
into the field format that you specified in your PR definitions. Then the HUP
calls your Field exit routine before your Segment exit routine, if you are using
one.

Your Field exit routine must convert the field from the DPROP-supported format
specified during PR definition to its user format. The HUP calls a Field exit
routine for each field that, according to your PR definitions, can be processed
by one.

Finally, after performing its own data conversion, calling your optional Field exit
routines, and calling your optional Segment exit routines, the HUP updates the
IMS database segment.

Like the Segment exit routines, your Field exit routines can be written in Assembler,
or in COBOL, PL/I, or C. DPROP support for exit routines written in high-level
languages requires LE/370 Version 1 Release 2.

For synchronous propagation, the RUP and HUP call your exits in both IMS batch
and online dependent regions accessing DB2. For LOG-ASYNC propagation, the
RUP calls your exit routines in an MVS batch environment. During user
asynchronous propagation, depending on your implementation, the RUP calls your
exit routines in IMS batch and dependent regions accessing DB2, or in a non-IMS
DB2 TSO or CAF environment. DPROP also calls your exits during execution of
the CCU and DLU.

DataRefresher calls Field exits User Data Type exits. If you are using
DataRefresher to extract IMS data, your exit routines are called directly by
DataRefresher during data extraction so that the mapping performed during
extraction and data propagation are the same. DataRefresher also generates a
definition call to your exit routine when you define the field on the CREATE
DXTPSB statement.

How To Write A Field Exit Routine
This section describes some guidelines and requirements to follow when writing
your Field exit routine. If your exit routine is used by DataRefresher during data
extraction, it must follow these rules. See the appropriate DataRefresher or DXT
documentation for information about DataRefresher requirements.

As with Segment exits, when the RUP or HUP calls your Field exit routine, the
following four parameters are passed to your exit:

 Chapter 3. Field Exit Routines 111

� An interface control block
� A user format buffer for the field in its user format
� A DPROP format buffer for the field in its DPROP format
� A 64-byte anchor area

If your exit routine is written in Assembler, register 1 contains the address of a list.
This list is four fullwords long and contains the addresses of the parameters in the
order listed above.

Interface Control Block
Figure 28 on page 115 shows the structure of the interface control block, which is
called EKYRCUDT and is passed to your Field exit routine. There is one interface
control block per exit routine, lasting the duration of the exit in virtual storage. The
following table lists:

� The fields most useful to your exit routine
� What the fields are used for
� Their displacement in the control block DSECT

Figure 27 (Page 1 of 2). Interface Control Block Parameters for Field Exits

Field Used For Displacement

UDTCALL Call function, describing
whether your exit routine
is called either to perform
user-to-DPROP mapping,
DPROP-to-user mapping,
or for a DataRefresher
definition call.

X'20'

UDTPROGM Name of the calling
component

X'2C'

UDTSTYPE User data type (data type
of the field in its user
format)

X'54'

UDTSBYTV Number of bytes of field in
its user format

X'58'

UDTSSCLV Value of the scale of field
in its user format

X'5E'

UDTTTYPE DPROP data type (data
type of the field in its
DPROP format)

X'60'

UDTTBYTV Number of bytes of field in
its DPROP format

X'64'

UDTTSCLV Value of the scale of field
in its DPROP format

X'6A'

UDTXRETC Return code that your exit
routine provides

X'108'

UDTXMESG exit routine message text X'10C'

UDTSCRT1 exit routine work space X'6C'

UDTENTRD Indicates the exit routine
has been entered

X'104'

112 Customization Guide

The interface control block has the same structure as the control block that
DataRefresher passes to its User Data Type exits. A more complete description of
these fields is included in the copy of the control block in Figure 28 on page 115.

When called for propagation, and for DataRefresher extraction, your exit routine
must not change any fields in the control block except:

� UDTXRETC, UDTXMESG, UDTSCRT1, UDTENTRD, UDTINCTL, and
UDTNULLT

� UDTTBYTV (when performing user-to-DPROP mapping for a field having a VC
or VG DPROP format)

� UDTSBYTV (when performing DPROP-to-user mapping)

Altering any of the other fields in the control block can cause unpredictable results.

When DataRefresher calls it for DEFINITION calls, your exit routine needs to
update additional fields. Refer to the appropriate DataRefresher or DXT
documentation for more details.

Figure 27 (Page 2 of 2). Interface Control Block Parameters for Field Exits

Field Used For Displacement

UDTINCTL Indicates the exit routine
has control

X'105'

UDTNULLT Flag indicating conversion
into or from a DB2 NULL

X'106'

User Format Buffer
The user format buffer contains the field in its User Format:

� When performing user-to-DPROP mapping, DataRefresher or DPROP provides
the field to your field exit routine in this buffer. The field is still in its IMS format
or in the format your Segment exit routine returns.

Your field exit routine must not modify this buffer when called to perform
user-to-DPROP mapping.

� When performing DPROP-to-user mapping, your field exit routine must provide
the field to DPROP in this buffer. The field must be provided in its user format.
This is the IMS format or the format your Segment exit routine expects.

Do not place a field in the user format buffer that is longer than the fixed or
maximum field length specified in UDTSBYTV. This causes storage overlays
and unpredictable results.

DPROP Format Buffer
The DPROP format buffer contains the field in the DPROP-supported format that
you identified during your PR definition:

� When performing user-to-DPROP mapping, your exit routine must convert the
field to the format you have defined in your PR, and place the converted field in
the DPROP format buffer before returning to the RUP. The RUP reads the
field from this buffer and then continues its normal processing as if the
converted field were the original.

 Chapter 3. Field Exit Routines 113

Do not place a field in the DPROP format buffer that is longer than the fixed or
maximum field length specified in UDTTBYTV. This causes storage overlays
and unpredictable results.

If the data type of the converted field is VC or VG, then the DPROP format
buffer begins with the first data byte of the field (not with the field length).
When converting to a VC or VG format, the actual field length (expressed in
number of bytes) must be set by your exit routine in the UDTTBYTV field of the
interface control block.

� When performing DB2-to-IMS mapping, the HUP provides the field for your
Field exit routine in this buffer. The provided field is in the DPROP-supported
format that you specified during PR definition. DATE and TIME fields are
provided by the HUP in ISO format.

If the DPROP-supported data type is VC or VG, then the DPROP format buffer
begins with the first data byte of the field (not with the field length). The actual
field length (expressed in number of bytes) is provided by DPROP to your exit
routine in the UDTTBYTV field of the interface control block.

Your field exit routine must not modify this buffer when being called to perform
DPROP-to-user mapping.

64-Byte Anchor Area
The RUP or HUP gives you 64 bytes as a general storage area. Each exit routine
has its own unique anchor area. You can use it for whatever you want. Initially,
the area is set to all binary zeros, and is never changed again by DPROP (or
DataRefresher if you are using it).

The anchor area exists in virtual storage, and remains yours for the duration of the
exit. For IMS batch and BMP regions, the anchor area lasts for the duration of the
application program. For MPP regions, the anchor area lasts for the duration of the
IMS Program Controller Subtask. This can span multiple MPP executions. For
CCU execution, the anchor area lasts for the duration of the job step. For
asynchronous propagation, the anchor area lasts for the duration of the MVS task
being used by the receiver program to call the RUP.

Interface Control Block DSECT
You can generate the following DSECT in your assembler exit routine by coding the
EKYRCUDT macro statement. For high-level language exit routines, you can
include or copy one of the following members to map the Field exit routine interface
control block:

EKYRCUDC Exit routines written in COBOL
EKYRCUDP Exit routines written in PL/I
EKYRCUDK Exit routines written in C

The interface control block is shown in Figure 28 on page 115 followed by detailed
descriptions of its fields.

114 Customization Guide

 1 EKYRCUDT
2+KKKKKKKKKKKKKKKKKK START OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKKKKK/

 3+K K/
4+K CONTROL BLOCK NAME: K/

 5+K EKYRCUDT (UDT) K/
 6+K K/
 7+K DESCRIPTIVE NAME: K/

8+K DPROP FIELD EXIT INTERFACE BLOCK K/
 9+K K/
 1S+K K/
 11+KK
 12+K K

13+K THIS PRODUCT CONTAINS "RESTRICTED MATERIALS OF IBM". K
 14+K K

15+K 5685-124 (C) COPYRIGHT IBM CORP. 1989, 1992. K
16+K ALL RIGHTS RESERVED. K

 17+K K
18+K U.S. GOVERNMENT USERS RESTRICTED RIGHTS - K
19+K USE, DUPLICATION, OR DISCLOSURE RESTRICTED BY K
2S+K GSA ADP SCHEDULE CONTRACT WITH IBM CORP. K

 21+K K
22+K LICENSED MATERIALS - PROPERTY OF IBM. K

 23+K K
 24+KK
 25+K K/

26+K STATUS: V1 R2 MS K/
 27+K K/
 28+K FUNCTION: K/

29+K THIS IS THE CONTROL BLOCK USED TO INTERFACE BETWEEN K/
3S+K - DPROP OR DXT K/

 31+K AND K/
32+K - A USER'S FIELD EXIT ROUTINE (THESE USER K/
33+K EXIT ROUTINES ARE CALLED BY DXT 'USER DATA TYPE K/

 34+K EXIT ROUTINES') K/
 35+K K/

36+K THERE IS ONE UDT CB FOR EACH USER FIELD K/
37+K EXIT ROUTINE, LASTING FOR THE DURATION OF THE EXIT K/
38+K IN VIRTUAL STORAGE. K/
39+K FOR SYNCH PROPAGATION IN MPP REGIONS: K/
4S+K - THIS IS THE DURATION OF THE IMS PROGRAM CONTROLLER K/

 41+K SUBTASK. K/
42+K FOR SYNCH PROPAGATION IN BATCH/BMP REGIONS, FOR K/
43+K ASYNCH PROPAGATION, AND FOR CCU PROCESSING: K/
44+K - THIS IS THE DURATION OF THE JOBSTEP. K/

 45+K K/
 46+K--K/
 47+K IMPORTANT NOTES: K/
 48+K ================ K/

49+K - SINCE THE SAME USER EXIT ROUTINE CAN BE INVOKED BOTH K/
5S+K BY DPROP AND BY DXT: CHANGES TO THIS CONTROL BLOCK MUST K/
51+K BE COORDINATED BETWEEN DPROP DEVELOPMENT AND DXT K/

 52+K DEVELOPMENT. K/
 53+K K/

54+K - FIELDS MARKED IN THE COMMENT WITH 'KKKDXT ONLYKKK' K/
55+K HAVE NO MEANING, WHEN THE FIELD USER EXIT K/
56+K ROUTINE IS INVOKED BY DPROP. K/

 57+K--K/
 58+K K/

59+K MODULE TYPE= MACRO K/
6S+K PROCESSOR= ASSEMBLER H K/

 61+K K/
62+K INNER CONTROL BLOCKS: NONE K/

 63+K K/
64+K MACROS USED FROM MACRO LIBRARY: NONE K/

 65+K K/

Figure 28 (Part 1 of 4). Interface Control Block for a Field Exit Routine

 Chapter 3. Field Exit Routines 115

 66+K CHANGE ACTIVITY: K/
 67+K KMPSS57 12/13/9S K/

68+K KMPSS6S S2/S8/91 COPYRIGHT INFORMATION K/
 69+K K/

7S+KKKKKKKKKKKKKKKKKKKK END OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKKKKK/

 SSSSSS 72+UDT DSECT

SSSSS 73+DVRXCUDT EQU K LABEL FOR DXT COMPATIBILITY
 74+K--K

75+K THIS SECTION OF THE CB MAY NOT BE MODIFIED BY EXIT K
 76+K--K
 SSSSSS 77+UDTPFX DS SCL32 DXT PREFIX
 SSSSSS 78+UDTTNAME DS CL8 NAME OF BLOCK, "DVRXCUDT"
 SSSSS8 79+UDTXADDR DS AL4 ADDRESS OF LOADED ROUTINE
 SSSSSC 8S+ DS CL2S RESERVED FOR DXT USE
 81+K
 SSSS2S 82+UDTPFXE DS SCL3SS PREFIX EXTENSION
 SSSS2S 83+UDTPNMOD DS SCL76
 SSSS2S 84+UDTCALL DS CL2 TYPE OF CALL TO EXIT...
 85+K 'ST' - "SRC->TRG" CALL ISSUED

86+K BY DXT AND BY
87+K DPROP DURING HR MAPPING.
88+K EXIT SHOULD CONVERT THE
89+K DATA FROM THE
9S+K - USER FORMAT

 91+K TO THE
92+K - DPROP FORMAT

 93+K 'TS' - "TRG->SRC" CALL
94+K ISSUED BY DPROP DURING RH
95+K MAPPING. EXIT SHOULD
96+K CONVERT DATA FROM THE
97+K - DPROP FORMAT

 98+K TO THE
99+K - USER FORMAT
1SS+K NOT ISSUED BY DXT
1S1+K KKKDXT ONLYKKK 'DF' - "DEFINITION CALL".
1S2+K KKNOTKK ISSUED BY DPROP.
1S3+K DEFINITION CALL ISSUED
1S4+K BY DXT/UIM FOR EACH DATA
1S5+K TYPE. EXIT CAN VALIDATE
1S6+K REQUEST AND RETURN

 1S7+K REQUIRED VALUES.
1S8+K NOT ISSUED BY DPROP.

 SSSS22 1S9+ DS CL2 RESERVED FOR DXT USE
 11S+K
 SSSS24 111+UDTENVRN DS SCL12 ENVIRONMENTAL INFORMATION
 112+K
 SSSS24 113+UDTOPSYS DS CL4 OPERATING SYSTEM:

114+K =C'ESA ' IF MVS/ESA
115+K KKKDXT ONLYKKK =C'XA ' IF MVS/XA
116+K KKKDXT ONLYKKK =C'MVS ' IF MVS

 117+K
 SSSS28 118+UDTTRANS DS CL4 DB/DC ENVIRONMENT:

119+K =C'BAT ' IF IMS BATCH/BMP
12S+K =C'MPP ' IF IMS MP
121+K =C'IFP ' IF FAST PATH
122+K =C'CICS' IF CICS
123+K =C' ' IF NONE OF ABOVE

 124+K
 SSSS2C 125+UDTPROGM DS CL4 CALLING PROGRAM:

126+K =C'DXT ' IF DXT
127+K =C'DPRS' IF DPROP SYNCH PROP
128+K =C'DPRA' IF DPROP ASYNCH PROP
129+K =C'DPRC' IF DPROP CCU PROCESSING
13S+K =C'DPRL' IF DPROP DLU

Figure 28 (Part 2 of 4). Interface Control Block for a Field Exit Routine

116 Customization Guide

 131+K
 SSSS3S 132+UDTEXIT DS CL8 NAME OF THE USER EXIT
 133+K
 SSSS38 134+UDTPCBLS DS AL4 KKKDXT ONLYKKK ADDRESS LIST OF ALL PCB

135+K ADDRESSES IF DL/I ENVIRONMENT
 136+K
 SSSS3C 137+UDTDPRP1 DS CL24 ADDITIONAL WORK SPACE
 138+K--

139+K THIS SECTION CONTAINS DATA PERTINENT TO FIELD IN ITS USER FORMAT
 14S+K--
 SSSS54 141+UDTSTYPE DS CL2 USER DATA TYPE
 SSSS56 142+UDTSBYTI DS CL1 KKKDXT ONLYKKK LENGTH INDICATOR FOR USER FORMAT.
 143+K NOT USED BY DPROP. USED BY DXT.

144+K 'N' - INDICATES LENGTH OF USER
145+K FORMAT RESIDES WITH THE

 146+K DEFINITION.
147+K 'V' - INDICATES LENGTH OF USER
148+K FORMAT VARIES, AND MUST
149+K BE RETURNED AT

 15S+K "DEFINITION" TIME.
 SSSS57 151+ DS CL1 RESERVED FOR DXT USE
 SSSS58 152+UDTSBYTV DS H LENGTH OF FIELD IN USER FORMAT
 153+K
 SSSS5A 154+UDTSSCLI DS CL1 KKKDXT ONLYKKK SCALE INDICATOR FOR USER FORMAT
 155+K NOT USED BY DPROP. USED BY DXT.

156+K 'N' - INDICATES VALUE OF SCALE
157+K OF USER FORMAT
158+K RESIDES WITH THE

 159+K DEFINITION.
16S+K 'V' - INDICATES VALUE OF SCALE
161+K OF USER FORMAT
162+K VARIES, AND MUST
163+K BE RETURNED AT

 164+K "DEFINITION" TIME.
 SSSS5B 165+ DS CL3 RESERVED FOR DXT USE
 SSSS5E 166+UDTSSCLV DS H VALUE OF SCALE IN USER FORMAT
 167+K--K

168+K THIS SECTION CONTAINS DATA PERTINENT TO FIELD IN ITS DPROP FORMATK
 169+K--K
 SSSS6S 17S+UDTTTYPE DS CL2 DATA TYPE OF DPROP FORMAT
 SSSS62 171+UDTTBYTI DS CL1 KKKDXT ONLYKKK LENGTH INDICATOR FOR DPROP FORMAT
 172+K NOT USED BY DPROP. USED BY DXT:

173+K 'N' - INDICATES LENGTH OF DPROP
174+K FORMAT RESIDES WITH THE

 175+K DEFINITION.
176+K 'V' - INDICATES LENGTH OF DPROP
177+K FORMAT VARIES, AND MUST
178+K BE RETURNED AT

 179+K "DEFINITION" TIME.
 SSSS63 18S+ DS CL1 RESERVED FOR DXT USE
 SSSS64 181+UDTTBYTV DS H LENGTH OF FIELD IN DPROP FORMAT
 SSSS66 182+UDTTSCLI DS CL1 KKKDXT ONLYKKK SCALE INDICATOR FOR DPROP FORMAT
 183+K NOT USED BY DPROP. USED BY DXT.

184+K 'N' - INDICATES VALUE OF SCALE
185+K OF DPROP FORMAT
186+K RESIDES WITH THE

 187+K DEFINITION.
188+K 'V' - INDICATES VALUE OF SCALE
189+K OF DPROP FORMAT
19S+K VARIES, AND MUST
191+K BE RETURNED AT

 192+K "DEFINITION" TIME.
 SSSS67 193+ DS CL3 RESERVED FOR DXT USE
 SSSS6A 194+UDTTSCLV DS H VALUE OF SCALE IN DPROP FORMAT

Figure 28 (Part 3 of 4). Interface Control Block for a Field Exit Routine

 Chapter 3. Field Exit Routines 117

 195+K--K

196+K THIS SECTION IS THE COMMUNICATIONS AREA BETWEEN K
197+K - THE EXIT K

 198+K AND K
 199+K - DPROP/DXT. K
 2SS+K--K
 SSSS6C 2S1+UDTXICOM DS SCL224 DEFINE A COMMUNICATIONS AREA
 SSSS6C 2S2+UDTDPRP2 DS CL24 RESERVED
 SSSS84 2S3+UDTSCRT1 DS CL128 USER EXIT WORK AREA
 SSS1S4 2S4+UDTENTRD DS CL1 'ENTERED' FLAG - SET TO 'X' BY

2S5+K EXIT TO INDICATE THAT DATA
2S6+K TYPE ROUTINE HAS BEEN ENTERED

 SSS1S5 2S7+UDTINCTL DS CL1 'IN-CONTROL' FLAG - SET TO 'X'
2S8+K BY EXIT TO INDICATE THAT DATA
2S9+K TYPE ROUTINE IS IN CONTROL

 SSS1S6 21S+UDTNULLT DS CL1 NULL DATA RETURNED FROM EXIT?
211+K 'Y' - DATA IS NULL
212+K 'N' - DATA IS NOT NULL

 SSS1S7 213+ DS CL1 RESERVED
 SSS1S8 214+UDTXRETC DS F USER EXIT RETURN CODE

215+K S - SUCCESSFUL COMPLETION
216+K OTHER - ERROR ENCOUNTERED.
217+K IF CALLER IS DPROP:
218+K =4: RUP WILL USE
219+K ITS USUAL ERROR

 22S+K HANDLING LOGIC.
221+K NOT =4: RUP ABENDS

 SSS1SC 222+UDTXMESG DS CL64 USER EXIT MESSAGE TEXT
223+K INSERTED INTO DPROP/DXT MESSAGE
224+K IF CALLER IS DPROP:
225+K TEXT WILL BE INSERTED
226+K INTO MSG EKYR97SI/EKYR971E.

SS14C 227+UDTEND EQU K END OF UDT
SS14C 228+UDTLEN EQU K-UDT LENGTH OF UDT

 229 END

Figure 28 (Part 4 of 4). Interface Control Block for a Field Exit Routine

Interface Control Block Field Descriptions
The following list includes detailed descriptions of the fields in the interface control
block. DPROP and DataRefresher descriptions are included. Some of the fields
are not useful to your exit routine when DPROP calls it. These fields are described
for DataRefresher only.

UDTTNAME Contains the constant DVRXCUDT, used to identify the control
block in a storage dump.

UDTXADDR The virtual storage entry point address of the exit routine.

UDTCALL The call function that describes what action your exit routine must
perform. This field can have the following values:

ST Source to target conversion (user-to-DPROP mapping).

The exit routine is called to convert the field from its user
format to its DPROP format. The user format is the format in
the IMS segment, or the format that your Segment exit routine
provides, if one was called. The DPROP (or DataRefresher)
format is defined either on the TRGTYPE= keyword of the
DataRefresher CREATE DATATYPE statement, or in the
FLDETYPE column of the DPRIFLD MVG input table.

118 Customization Guide

TS Target to source conversion (DPROP-to-user mapping).

The exit routine is called to convert the field from its DPROP
format to its user format. The user format is the format in the
IMS segment, or the format your Segment exit routine expects,
if one is called. The DPROP (or DataRefresher) format is
defined either on the TRGTYPE= keyword of the
DataRefresher CREATE DATATYPE statement, or in the
FLDETYPE column of the DPRIFLD MVG input table.

DF DEFINITION call (DataRefresher only).

DataRefresher calls the exit routine to complete or validate a
field definition. If you provide all your mapping definitions
through the MVG input tables, then your Field exit routine is
never called with the DF call function.

The remaining descriptions are only for ST and TS calls. For more information on
calls that only DataRefresher uses, refer to the appropriate DataRefresher or DXT
documentation.

UDTOPSYS Contains the constant ESA, indicating that the program is running in
an MVS environment.

UDTTRANS Contains a label describing the environment in which the exit
routine is called. This field can have the following values:

BAT IMS batch or BMP environment
MPP IMS MPP environment
IFP IMS Fast Path environment
CICS CICS environment

If the exit is called in an environment other than those listed above,
the value consists of blanks.

UDTPROGM Contains information about the calling program, either DPROP or
DataRefresher. This field can have the following values:

DPRS Called by DPROP during synchronous
propagation

DPRA Called by DPROP during LOG-ASYNC
propagation or user asynchronous propagation

DPRC Called by DPROP during CCU execution
DPRL Called by DPROP during DLU execution
DataRefresher Called by DataRefresher

UDTEXIT The load module name of the Field exit routine.

The next five fields describe the user format of the propagated field. The user
format is the IMS DB format if you do not use Segment exit routines. If you do use
a Segment exit routine, it is the format your Segment exit routine creates
(HR-propagation) or expects (RH-propagation).

UDTSTYPE The user data type that was specified either on the SCRTYPE
keyword of the DataRefresher CREATE DATATYPE statement, or
in the DATATYPE column of the DPRIFLD MVG input table.

UDTSBYTI (DataRefresher only) Used for DF calls. Refer to the appropriate
DataRefresher or DXT documentation for a complete description.

 Chapter 3. Field Exit Routines 119

UDTSBYTV The length (in bytes) of the field in its user format.

For graphic fields, the number of bytes is twice the number of
DBCS characters. This is different from the usual DB2 convention
that expresses the length of G and VG columns as the number of
DBCS characters.

During user-to-DPROP mapping, UDTSBYTV is initialized on entry
to your exit routine to the length specified during PR definition.

Observe the following rules about UDTSBYTV for DPROP-to-user
mapping:

� On entry to your exit routine, UDTSBYTV is initialized by
DPROP to the length specified during PR definition. During
processing, your exit routine can decrease (but not increase)
the UDTSBYTV value to the actual length of the field in its user
format.

UDTSSCLI (DataRefresher only) Used for DF calls. Refer to the appropriate
DataRefresher or DXT documentation for a complete description.

UDTSSCLV The scale of the field in its user format.

The next five fields describe the field in its DPROP or DataRefresher format.

UDTTTYPE The DPROP or DataRefresher data type that is specified either on
the TRGTYPE keyword of the DataRefresher CREATE DATATYPE
statement, or in the FLDETYPE column of the DPRIFLD MVG input
table.

UDTTBYTI (DataRefresher only) used for DF calls. Refer to the appropriate
DataRefresher or DXT documentation for a complete description.

UDTTBYTV The length (in bytes) of the field in its DPROP or DataRefresher
format.

For graphic fields, the number of bytes is twice the number of
DBCS characters. This is different from the usual DB2 convention
that expresses the length of G and VG columns as the number of
DBCS characters.

Observe the following rules about UDTTBYTV for user-to-DPROP
mapping:

� On entry to your exit routine, UDTTBYTV was initialized by
DPROP and DataRefresher to the maximum field length (for
fields having a VC or VG data type in their DPROP format) or to
the fixed length of the field (for fields having data types other
than VC and VG in their DPROP format).

� When processing a field having in its DPROP format a VC or
VG data type, your exit routine must return the actual length of
the field in UDTTBYTV.

During DPROP-to-user mapping, UDTTBYTV is initialized on entry
to your exit routine to the actual length of the field.

UDTTSCLI (DataRefresher only) Used for DF calls. Refer to the appropriate
DataRefresher or DXT documentation for a complete description.

UDTTSCLV The scale of the field in its DPROP or DataRefresher format.

120 Customization Guide

The remaining fields can be changed in your Field exit routine.

UDTSCRT1 An exit routine work space for your own use. Before the first call to
your exit routine, DPROP initializes this space to binary zeros, and
does not modify it again.

The next two fields are switches that can be useful for problem determination.
DPROP and DataRefresher do not require your exit routine to set these fields.
However, they can help you determine where a problem occurred if you have an
ABEND. DPROP and DataRefresher set these fields to blanks before the first time
your exit routine is called.

UDTENTRD Exit-entered flag. As you enter your exit routine, set this field to X.
DPROP does not change this field again, so if a problem occurs,
you can determine if your exit has been entered.

UDTINCTL Exit-in-control flag. You can also set this field to X, indicating that
your exit routine has control. When DPROP regains control, it
resets this field to blank, so you can determine if your exit routine
has control when an ABEND occurs.

The next field supports conversion to or from a DB2 null value.

UDTNULLT Null value indicator. This field allows you to map the contents of
the IMS field to a DB2 NULL value (user-to-DPROP mapping) or
from a DB2 NULL value (DPROP-to-user mapping).

� When your exit routine is called with an ST Call Function
(user-to-DPROP mapping), DPROP initializes this field to
blanks. If your exit routine sets UDTNULLT to Y during an ST
call, DPROP or DataRefresher assigns a NULL value to the
target DB2 column. You must define the target column as
containing a NULL value.

� When your exit routine is called with a TS Call Function
(DPROP-to-user mapping), this field indicates whether or not
the DB2 column contains a NULL value.

Y The DB2 column contains a NULL value.
N The DB2 column does not contain a NULL value.

The next two fields can be used along with the RUP's and HUP's error handling
logic. For more information on return codes and error handling techniques, see
“Return Codes and Error Handling Techniques” on page 123.

UDTXRETC The return code the exit routine provides when returning to its
caller. This field is set to zero when the exit routine is called.

UDTXMESG User-provided error message. It is set to blanks when the exit
routine is called. When the exit routine returns, if this field is not
blank, DPROP or DataRefresher writes the contents of the field.

DPROP prefaces the message with the number EKYR970I or
EKYR971E, and writes the message according to its usual error
handling logic. DataRefresher prefaces the message and writes the
message to the //SYSPRINT data set.

There is one exception to the above. If the exit routine is called
during processing of the optional WHERE clause of the PR,

 Chapter 3. Field Exit Routines 121

DPROP does not write error messages if the exit returns with a
return code 0 or 4 in UDTXRETC.

Performing Data Conversions
The appropriate Administrators Guide for your propagation mode lists all the data
conversions that are supported directly through the DPROP data conversion
routines. If the IMS data field you want to propagate is in a format DPROP does
not support, or if you want to perform a conversion that the DPROP data
conversion routines do not support, your Field exit routine can perform the
conversion. Examples of conversions that are not supported include binary
integers to floating-point numbers, and time stamp to date or time formats.

Your exit routine does not need to convert a field directly into or from the format of
the DB2 column. The DPROP data conversion routines are still called (if
necessary) to complement the conversion done by your field exit routine. The RUP
and HUP call the DPROP data conversion routines automatically if the DPROP
format of the data field is different from the DB2 column format. Therefore, it is
sufficient if your exit routine converts the data field between its user format and a
DPROP-supported format.

Exit Routine Processing
When called for user-to-DPROP mapping, your Field exit routine can read the IMS
field from the user format buffer and, using the information found in the interface
control block, convert the field into the DPROP format you have defined in your PR.
For more details on defining user and DPROP formats, see “Telling DPROP About
Your Field Exit Routine” on page 125.

When called for DPROP-to-user mapping, your Field exit routine can read the field
from the DPROP format buffer and, using the information found in the interface
control block, convert the field into the user format.

Meanwhile, there are some restrictions and guidelines to follow when developing
your exit routine.

� When DPROP calls it, your exit routine always gets control in AMODE 31, and
must return control in AMODE 31. Parameters DPROP passes to your exit are
usually located above the 16MB line. The exit routine is loaded above or below
the 16MB line depending on the RMODE attribute of the exit load module.

It is recommended that you code and link-edit your exit routine as reentrant.
To simplify programming, DPROP provides work space for your exit routines,
both in the interface control block and the 64-byte anchor area.

� If your exit routine is written in Assembler language, DPROP uses standard
OS/VS conventions when calling your exit routine.

– Register 1 points to the parameter list described above.
– Register 13 contains the address of a register save area.
– Register 14 contains the return address.
– Register 15 contains the entry point address of the exit routine

Upon entry, the exit routine must save the register contents into the save area
that the caller provides. If your exit routine calls other routines that use
standard MVS linkage conventions, it must also provide a save area of its own.
The exit routine must return to its caller using normal OS/VS conventions after

122 Customization Guide

restoring the registers. A return code must be provided in the interface control
block, not in register 15.

� Your Field exit routine must check that the data returned to DPROP is valid.
For example, it must make sure that a packed field contains a number in
packed format. Conversions producing invalid formats can cause propagation
or application failures. For example, during HR-propagation, SQL statements
that the SQL update module generates, or conversions by DPROP data
conversion routines, can be rejected. With RH-propagation, invalid conversion
can result in application failures, when your IMS applications access the
segments with the invalid data.

� When converting a field that is part of the IMS key or mapped to a primary DB2
key, DPROP cannot verify that the key is still unique after it is converted; you
must check it.

� Because the exit routine for synchronous propagation runs in the same
environment as the propagating application program, it can, if necessary,
generate the same type of IMS calls and SQL statements as the application
program. For LOG-ASYNC and user asynchronous propagation using either
TSO-Attach or CAF-Attach, create only SQL statements, as the exit routines do
not execute in an IMS environment, and cannot generate IMS calls.

If your exit generates IMS calls, use the AIB interface described in IMS/ESA
Application Programming: DL/I Calls, which allows your exit routine to generate
calls without the address of the IMS PCBs.

During synchronous propagation, any changes you make to propagated data
from within your exit routine are not propagated synchronously. However, the
date can be propagated asynchronously, if you implement asynchronous
propagation.

Exclude the PCBs your exit routine uses from the list passed to the application
program upon entry. You can avoid changing the application program if you
need to add PCBs for exclusive use by your exit routine. Refer to IMS/ESA
Utilities Reference: System for more details.

� A Field exit routine must not perform functions that are not supported by the
environment in which it is running. For example, an exit routine running in an
MPP region must not write to OS files, and the exit routine must not generate
STIMER macros in an IMS environment.

For performance reasons, your exit routine must generate static rather than
dynamic SQL statements. Avoid using functions that have a detrimental impact
on the performance of the propagating program, such as performing an OPEN
and CLOSE on an OS/VS file each time the exit is called.

Return Codes and Error Handling Techniques
This section discusses how to return from your exit routine to the RUP and HUP,
including return codes and error handling techniques.

 Return Codes
You set the return code by placing it in the UDTXRETC field of the interface control
block. The RUP and HUP read this field when they regain control. The valid return
codes are 0 and 4. Returning any other code is an error and DPROP abends.

0 Normal return. DPROP or DataRefresher continues normal processing using
the converted field value.

 Chapter 3. Field Exit Routines 123

4 A failure occurred. DPROP uses its usual error handling logic. There is one
exception to this: if the exit routine is called during processing of the optional
WHERE clause of the PR, DPROP does not perform its error logic. The
currently processed condition of the WHERE clause is considered to be false (or
true if the operand of the condition is ¬=).

For synchronous propagation,

if ERROPT=BACKOUT is in effect, DPROP backs out the propagating application.
For LOG-ASYNC propagation, if ERROPT=BACKOUT is in effect, the Receiver
terminates with an error message. For user asynchronous propagation, CCU or
DLU execution, the RUP and HUP return to their caller with an error. The RUP
and HUP use their error reporting logic to write diagnosis information.

If ERROPT=IGNORE is in effect, the RUP and HUP do not perform propagation,
and return to the caller without performing a backout and without providing any
error indication to the caller. However, if this occurs during CCU or DLU execution,
the RUP and HUP return to the CCU or DLU with an error. The RUP and HUP use
their error reporting logic to write diagnosis information.

For DataRefresher, further processing is based on the FLDERR keyword of the
DataRefresher SUBMIT control statement.

Error Handling Techniques
When you find an error in your exit routine, it is strongly recommended that your
exit routine take advantage of the standard error handling logic of the RUP and
HUP. In the interface control block, you can supply a return code in UDTXRETC,
and an error message in UDTXMESG. You must not return an error message in
UDTXMESG without providing an error return code, because this generates
excessive console messages.

By supplying DPROP with an error return code and message, you gain many
advantages. When an exit returns with an error return code, DPROP traces or
snaps both the control blocks involved in the interface, and the data. The exits are
included in the standardized error handling scheme of the RUP and HUP, which
distinguishes between ERROPT=BACKOUT and ERROPT=IGNORE; this is
different for propagation and CCU executions. It protects against excessive
console messages. DPROP writes your error message using its standard message
writing logic: WTO, trace data set (the IMS log, the //EKYTRACE data set, or the
//EKYLOG data set), and Audit trail.

If the exit routine generates its own messages or ABENDs, the RUP and HUP
cannot include the exit routine in their standardized error handling, and cannot
guard against excessive messages on the MVS consoles. Therefore, it is
recommended that your exit routine does not generate its own messages or
ABENDs when an error occurs.

Saving Information Across Calls
You can save information across calls to the exit routine. You can save the
information either in the 64-byte anchor area, or in the field UDTSCRT1 in the
interface control block. If these areas are not large enough, generate a GETMAIN
and save the address of the storage in either of these areas.

124 Customization Guide

Updating Your Field Exit Routine
DPROP does not provide any online change logic to replace an existing load
module copy of your Field Exit routine with a new version of the load module. If
you need to change your exit routine, stop the affected IMS regions, DPROP
asynchronous Receiver or user asynchronous receiver programs before performing
the change. A change of the exit routine without stopping the IMS regions or
receiver programs causes unpredictable results. For example, some MPP regions
can use the new version of the exit routine, while other regions use the old version.
After the change, you can restart the IMS regions.

Tracing Your Exit Routine
As described in “Tracing Your Exit Routine” on page 41, DPROP provides a trace
facility to help you debug your exit routine. For a Field exit routine, DPROP
includes in the trace output the user format buffer and DPROP format buffer, rather
than the segment buffers.

Telling DPROP About Your Field Exit Routine
This section discusses how to inform DPROP that you want to use a Field exit
routine during data propagation. To do this, you must provide DPROP with the
name of your exit routine, the two-byte user data type, and the description of the
DPROP-supported field format. How you proceed depends on how you enter your
PR.

PRs Entered Through DataRefresher UIM

Defining the User Data Type
If you are using both DataRefresher and a Field exit routine, define a user data
type before calling the exit routine.

Use the DataRefresher CREATE DATATYPE control statement to define the user
data type and associate it with a Field exit routine. You define a user data type by
assigning it a unique two-byte name using CREATE DATATYPE. You also specify
the name of the exit routine on the control statement.

Usually, one CREATE DATATYPE control statement is used for each Field exit
routine. But you can use multiple CREATE DATATYPE statements specifying
multiple definitions for one exit routine. In this case, your exit routine is responsible
for converting the multiple user data types.

You must provide the following keywords on the CREATE DATATYPE statement
when calling DataRefresher:

EXIT=exitname
The load module name of the Field exit routine.

SRCTYPE=xx
A two-byte character value used to uniquely identify the user data type and
associate it with the exit routine.

The second character of the two-byte value cannot be blank, and the value
cannot be VC or VG.

 Chapter 3. Field Exit Routines 125

SRCBYTES=nn
The length in bytes of the field in its user format.

SRCSCALE=mm
Optional; the scale of the field in its user format.

TRGTYPE=yy
The data type of the DataRefresher or DPROP format.

It must be a data type that DataRefresher and DPROP support.

TRGBYTES=bb
The length in bytes of the field in its DataRefresher or DPROP format.

For variable-length character and graphic fields, specify the maximum length.

TRGSCALE=ss
The scale of the field in its DataRefresher or DPROP format.

This keyword is used only for packed decimal and zoned decimal data types.

Requesting Exit Routine Use
After defining a user data type, you can request the use of the associated Field exit
routine. Specify if the exit routine must process a field by using the FIELD
statement of the CREATE DXTPSB control statement.

Identify the user data type on the TYPE= keyword of the FIELD statement. This is
the same data type specified earlier in the SRCTYPE= keyword of the CREATE
DATATYPE control statement. Each FIELD statement identifying a user data type
with the TYPE= keyword is processed by the exit routine.

DataRefresher calls the Field exit routine with a definition call each time it
processes a FIELD statement identifying a user data type. During the definition
call, the exit routine can validate or change the field definitions provided by the
CREATE DATATYPE statement and the FIELD statement. Definition calls are
generated when DataRefresher processes your CREATE DXTPSB control
statement, not during the extract.

DataRefresher calls your Field exit routine during the extract; DPROP calls it during
propagation. During these calls, your exit routine must convert the fields between
the user data type and the data type supported by DataRefresher and DPROP.

For more information on DataRefresher calls, see the appropriate DataRefresher or
DXT documentation.

PRs Entered into the MVG Input Tables
If you are entering your PR information directly into the MVG input tables, without
using DataRefresher, you can use the DPRIFLD (or FLD) table to inform DPROP if
your Field exit routine must process a particular field. The FLD table is one of the
MVG input tables. Provide the information in the following columns:

FLDEXIT=exitname
The load module name of the Field exit routine.

The name must begin with an alphabetic character. If you insert blanks into
the FLDEXIT column or leave the column blank, then the field described in the
DPRIFLD row is not processed by your exit routine.

126 Customization Guide

DATATYPE=xx
A two-byte character value used to uniquely identify the user data type, and to
associate the exit routine with this data type.

The second character of the two-byte value cannot be blank, and cannot be VC
or VG.

BYTES=nn
The length in bytes of the field in its user format.

SCALE=mm
Optional; the scale of the field in its user format.

FLDETYPE=yy
The data type of the DPROP format.

This value must be a data type that DPROP supports.

FLDEBYTE=bb
The length in bytes of the field in its DPROP format.

For variable-length character and graphic fields, specify the maximum length.

FLDESCAL=ss
The scale of the field in its DPROP format.

This keyword is used only for packed decimal and zoned decimal data types.

The MVGU validates all of these columns for a general mapping case. For a PR
entered into the MVG input tables, the Field exit routine is not called for a definition
call.

First Sample Field Exit Routine
The sample Field exit routine in Figure 29 on page 128 is an example of how to
convert the data type of an individual field. In this case, the exit routine converts a
bit string field into a character field (during user-to-DPROP mapping) and a
character field into a bit string (during DPROP-to-user mapping).

Specifically, during user-to-DPROP mapping, each bit is converted into a character
represented by 0 or 1 based on the value of the related bit. This can be useful to
convert bit control fields into individual flag character fields.

The source code in Figure 29 on page 128 is provided in the DPROP Sample
Source Library (EKYSAMP) under the member name EKYEFL1A. Following the
source code are definitions related to the sample Field exit routine.

 Chapter 3. Field Exit Routines 127

 2 PRINT NOGEN
 3 K/KK/
 4 K/K K/

5 K/K MODULE NAME: EKYEFL1A K/
 6 K/K K/

7 K/K DESCRIPTIVE NAME: SAMPLE DPROP 'FIELD USER EXIT ROUTINE' K/
 8 K/K K/

9 K/K STATUS: V1 R2 MS K/
 1S K/K K/

11 K/K FUNCTION: THE PURPOSE OF THIS PROGRAM IS TO PROVIDE A SAMPLE K/
12 K/K STRUCTURE FOR A 'FIELD USER EXIT ROUTINE'. K/

 13 K/K K/
14 K/K THIS EXAMPLE CONVERTS A BIT STRING INTO A CHARACTER K/
15 K/K STRING (OR VICE VERSA) WITH EACH BIT REPRESENTED BY K/
16 K/K A CHARACTER, TO BE SET O '1' OR 'S' BASED ON THE K/
17 K/K VALUE OF THE RELATED BIT (ALTERNATE REPRESENTATION K/
18 K/K MIGHT BE 'T' FOR TRUE AND 'F' FOR FALSE). THIS K/
19 K/K FUNCTION COULD BE USEFUL FOR CONVERTING BIT CONTROL K/
2S K/K FIELDS TO INDIVIDUAL FLAG BYTES. K/

 21 K/K K/
22 K/K IN INSTALLATIONS WHICH COMBINE USAGE OF: K/
23 K/K - DXT (FOR THE ORIGINAL EXTRACT OF THE DL/I K/

 24 K/K DATA). K/
25 K/K - DPROP (FOR THE PROPAGATION OF THE DL/I DATA) K/
26 K/K THE EXIT WILL BE CALLED BOTH BY DXT AND DPROP. K/

 27 K/K K/
28 K/K DXT CALLS THE EXIT: K/
29 K/K - DURING DXT-UIM PROCESSING, WITH A 'DEFINITION K/
3S K/K CALL' IN ORDER TO VALIDATE FIELD DEFINITIONS. K/
31 K/K - DURING DXT-DEM PROCESSING, IN ORDER TO MAP K/
32 K/K DURING THE DL/I DATA EXTRACT BIT-STRINGS INTO K/

 33 K/K CHARACTER-STRING. K/
 34 K/K K/

35 K/K DPROP CALLS THE EXIT: K/
36 K/K - FOR 'SOURCE-TO-TARGET' (ST) CONVERSION, TO K/
37 K/K MAP THE BIT-STRINGS INTO CHARACTER STRINGS: K/
38 K/K - DURING DATA PROPAGATION K/
39 K/K - DURING DPROP CCU (CONSISTENCY CHECK UTILITY) K/
4S K/K - FOR 'TARGET-TO-SOURCE' (TS) CONVERSION, TO K/
41 K/K MAP THE CHARACTER STRINGS INTO BIT-STRINGS: K/
42 K/K - DURING DATA PROPAGATION K/
43 K/K - DURING DPROP CCU (CONSISTENCY CHECK UTILITY) K/
44 K/K - DURING DPROP DLU (DL/I LOAD UTILITIES) K/

 45 K/K K/
 46 K/K K/

47 K/K PROCESSING: - FOR 'SOURCE-TO-TARGET' CALLS, THE SOURCE FIELD K/
48 K/K IS CONVERTED A BIT A TIME INTO 'S' OR '1' K/
49 K/K CHARACTERS IN THE TARGET FIELD. FOR EXAMPLE K/
5S K/K THE 2 BYTE CHARACTER STRING 'A1' IS HEX 'C1F1' K/
51 K/K OR '11SSSSS11111SSS1' IN BINARY. IT WOULD K/
52 K/K BE CONVERTED INTO THE 16 BYTE CHARACTER STRING K/
53 K/K '11SSSSS11111SSS1'. THE LENGTH OF THE TARGET K/
54 K/K FIELD TERMINATES PROCESSING. IF THE TARGET K/
55 K/K LENGTH IS MORE THAN SOURCE LENGTH TIMES 8 THE K/
56 K/K REMAINING RIGHT HAND BYTES ARE SET TO THE K/

 57 K/K CHARACTER 'S'. K/

Figure 29 (Part 1 of 10). Sample Field Exit Routine (Assembler)

128 Customization Guide

58 K/K - FOR 'TARGET-TO-SOURCE' CALLS, THE TARGET FIELD K/
59 K/K (IN THIS CASE INPUT TO THIS ROUTINE) WHICH MUST K/
6S K/K BE ALL CHARACTERS 'S' OR '1', IS CONVERTED TO K/
61 K/K A BIT STRING WITH THOSE BITS ON, WHICH ARE '1' K/
62 K/K IN THE TARGET FIELD. WHEN USING THE ABOVE K/
63 K/K EXAMPLE, THE 16 BYTE CHARACTER FIELD WITH THE K/
64 K/K VALUE '11SSSSS11111SSS1' WOULD BE CONVERTED TO K/
65 K/K THE 2 BYTE BIT-STRING '11SSSSS11111SSS1' WHICH K/
66 K/K IS HEX 'C1F1' OR CHAR 'A1'. NOTE THAT VALUES K/
67 K/K OTHER THAN 'S' AND '1' IN THE CHARACTER TARGET K/
68 K/K FIELD LEADS TO CONVERSION ERRORS DETECTED BY K/
69 K/K THIS FIELD EXIT ROUTINE. K/

 7S K/K K/
71 K/K PROCESSING DURING 'DEFINITION' CALLS ISSUED BY DXT-UIM: K/
72 K/K - THE SOURCE LENGTH IS CHECKED AGAINST THE MAXIMUM K/

 73 K/K SOURCE LENGTH(16). K/
74 K/K - IF THE TARGET LENGTH HAS BEEN DEFINED ON THE K/
75 K/K DXT UIM 'CREATE DATATYPE' STATEMENT AS 'VARIES', K/
76 K/K THE EXIT SETS ITS VALUE TO 8 TIMES THE SOURCE K/

 77 K/K LENGTH. K/
78 K/K IF THE TARGET LENGTH HAS BEEN SPECIFIED ON THE K/
79 K/K DXT UIM 'CREATE DATATYPE' STATEMENT: IT IS K/
8S K/K CHECKED AGAINST 8 TIMES THE MAXIMUM SOURCE LENGTH. K/
81 K/K - TARGET DATA TYPE IS ENSURED K/
82 K/K TO BE 'C' AND TARGET SCALE ENSURED TO BE 'N'. K/

 83 K/K K/
84 K/K NOTE FOR INSTALLATIONS WHICH USE DPROP WITHOUT DXT: K/
85 K/K IF DPROP IS USED WITHOUT DXT, THE EXIT WILL NEVER K/
86 K/K BE INVOKED FOR A DEFINITION CALL (DEFINITION K/
87 K/K CALLS ARE NOT NECESSARY, SINCE THE USER PROVIDES K/
88 K/K ALL DEFINITIONS (I.E SOURCE LENGTH, TARGET LENGTH) K/
89 K/K IN THE DPROP 'MVG INPUT TABLES'. K/

 9S K/K K/
91 K/K PROCESSING DURING 'TARGET-TO-SOURCE' CALLS ISSUED BY K/
92 K/K DXT-DEM AND DPROP: K/
93 K/K - THE DATA IN THE SOURCE BUFFER IS CONVERTED A BIT K/
94 K/K AT A TIME INTO A '1' OR 'S' IN THE TARGET BUFFER. K/
95 K/K PROCESSING STOPS WHEN THE NUMBER OF BITS PROCESSED K/
96 K/K EQUALS THE VALUE PASSED AS THE TARGET LENGTH. IF K/
97 K/K THE SOURCE LENGTH IS EXHAUSTED BEFORE THE TARGET, K/
98 K/K THE REMAINING RIGHT HAND TARGET BYES ARE SET TO K/

 99 K/K CHARACTER 'S'. K/
 1SS K/K K/

1S1 K/K PROCESSING DURING 'SOURCE-TO-TARGET' CALLS ISSUED BY DPROP: K/
1S2 K/K - THE DATA IN THE TARGET BUFFER IS CONVERTED FROM K/
1S3 K/K ITS CHARACTER FORMAT TO A BIT-STRING FORMAT IN K/
1S4 K/K THE SOURCE BUFFER. 8 BYTES OF THE TARGET BUFFER K/
1S5 K/K WILL COMPOSE A BYTE (8 BITS) IN THE SOURCE BUFFER. K/
1S6 K/K IF THE TARGET LENGTH IS EXHAUSTED BEFORE ALL K/
1S7 K/K SOURCE BITS ARE PROCEED, THEN THE REMAINING RIGHT K/
1S8 K/K HAND BITS ARE ALL SET TO 'S'. K/

 1S9 K/K K/
11S K/K INSTALLATIONS USING BOTH DXT AND DPROP WILL NOTICE K/
111 K/K THAT THE LOGIC OF EKYEFL1A IS THE SAME AS K/
112 K/K THE LOGIC OF THE DXT-PROVIDED SAMPLE EXIT ROUTINE K/
113 K/K DVRXAXUT, BUT IT IS ENHANCED BY THE 'TARGET-TO-SOURCE' K/
114 K/K CALL TYPE WHICH IS ISSUED ONLY BY DPROP. K/

 115 K/K K/
116 K/K SPECIFIC EXIT FUNCTIONS DEMONSTRATED BY THIS MODULE. K/
117 K/K 1. PROCESSING THE INVOCATION PARM LIST. K/
118 K/K 2. USING THE USER ANCHOR AREA. K/
119 K/K 3. IDENTIFYING THE REQUESTED FUNCTION. K/
12S K/K 4. UIM VALIDATION OF 'V' TYPE LENGTH FIELDS. K/
121 K/K 5. THE USE OF THE MESSAGE AREA. K/

 122 K/K K/

Figure 29 (Part 2 of 10). Sample Field Exit Routine (Assembler)

 Chapter 3. Field Exit Routines 129

123 K/K INPUT: (PASSED AS PARAMETERS). K/
124 K/K 1. UDT - USER DATA TYPE INTERFACE CONTROL BLOCK. K/
125 K/K 2. SOURCE BUFFER - THE SOURCE USER DATA (N/A FOR DEFINE CALL).K/
126 K/K 3. TARGET BUFFER - TARGET AFTER CONVERSION (N/A FOR DEFINE). K/
127 K/K 4. USER ANCHOR AREA - A 64 BYTE AREA FOR USE BY THE EXIT. K/

 128 K/K K/
 129 K/K CHANGE ACTIVITY= K/
 13S K/K K/
 131 K/KK/
 132 K/KK/
 133 K/K K/

134 K/K RETURN CODE AND MESSAGES ARE SET IN UDT BLOCK. K/
 135 K/K K/

136 K/K RETURN CODE = S PROCESSING SUCCESSFUL - NO MESSAGE SET. K/
 137 K/K K/

138 K/K RETURN CODE = 4 DATA TYPE VALIDATION FAILED - MESSAGE SET.K/
139 K/K 'SOURCE LENGTH NOT SPECIFIED - REQUIRED. ' K/
14S K/K 'SOURCE LENGTH EXCEEDS MAXIMUM ALLOWED. ' K/
141 K/K 'TARGET LENGTH NOT SPECIFIED - REQUIRED. ' K/
142 K/K 'TARGET LENGTH EXCEEDS MAXIMUM ALLOWED. ' K/
143 K/K 'TARGET DATA TYPE MUST BE CHARACTER ' K/
144 K/K 'TARGET SCALE MUST NOT BE SPECIFIED ' K/
145 K/K 'VALUE IN TARGET FIELD OTHER THAN 'S' OR '1' ' K/

 146 K/K K/
 147 K/K K/

148 K/K RETURN CODE =16 UNIDENTIFIED FUNCTION - MESSAGE IS SET. K/
149 K/K 'DATA TYPE CALL FUNCTION CANNOT BE IDENTIFIED' K/

 15S K/K K/
 151 K/KK/
 153 K/KK/

154 K/K INFORMATION FOR INSTALLATIONS WHICH COMBINE K/
155 K/K THE USAGE OF DXT AND DPROP. K/

 156 K/K K/
157 K/K THESE INSTALLATIONS DEFINE THE DL/I-TO-DB2 MAPPING BY K/
158 K/K PROVIDING MAPPING DEFINITIONS TO DXT. K/
159 K/K USAGE OF THIS FIELD EXIT ROUTINE REQUIRES K/
16S K/K FOLLOWING SPECIFICATIONS IN THE DXT 'CREATE DATATYPE' K/
161 K/K AND 'CREATE DXTPSB' 'FIELD' STATEMENT: K/

 162 K/K--K/
163 K/K INVOCATION OF A FIELD USER EXIT ROUTINE K/
164 K/K IS DEFINED BOTH BY SPECIFICATIONS IN THE DXT K/
165 K/K 'CREATE DATATYPE' AND 'CREATE DXTPSB' 'FIELD' STATEMENT. K/

 166 K/K K/
167 K/K THE CREATE DATATYPE; K/
168 K/K EXIT = EKYEFL1A - THE EXIT LOAD MODULE NAME K/
169 K/K SRCTYPE = XX - THE TWO CHARACTER USER DATA TYPE ID. K/
17S K/K SRCBYTES = VARIES - THE SOURCE FIELD LENGTH. K/

 171 K/K OR NNNN K/
172 K/K (MAXIMUM SOURCE LENGTH IS 16 FOR K/
173 K/K THIS SAMPLE. THE EXIT PROGRAM COULD K/
174 K/K HAVE THE LIMIT INCREASED TO 4S92.) K/
175 K/K TRGTYPE = C - MUST BE A 'C' FOR CHARACTER TYPE TARGETK/
176 K/K TRGBYTES = VARIES - THE TARGET FIELD/COLUMN LENGTH. K/

 177 K/K OR NNNN K/
178 K/K THE TARGET LENGTH SHOULD BE K/
179 K/K 8 TIMES THE SOURCE LENGTH. K/
18S K/K IF TRGBYTES IS SPECIFIED AS 'VARIES' K/
181 K/K ON THE 'CREATE DATATYPE', THEN THE K/
182 K/K EXIT WILL SET (DURING THE 'DEFINITION K/
183 K/K CALL') THE TARGET LENGTH TO 8 TIMES K/
184 K/K THE SOURCE LENGTH. K/
185 K/K (MAXIMUM TARGET LENGTH IS 128 IN K/
186 K/K THIS SAMPLE, BUT THE PROGRAM COULD K/
187 K/K HAVE THE LIMIT INCREASED TO 32,736.) K/
188 K/K SRCSCALE =, AND TRGSCALE = MUST NOT BE SPECIFIED. K/

 189 K/K K/

Figure 29 (Part 3 of 10). Sample Field Exit Routine (Assembler)

130 Customization Guide

19S K/K THE FIELD STATEMENT IN CREATE DXTPSB: K/
191 K/K TYPE = XX - RELATES THIS FIELD TO A DXT DATATYPE. K/
192 K/K BYTES = NN - THE SOURCE FIELD LENGTH. K/
193 K/K IF DEFINED AS 'VARIES' IN THE K/
194 K/K DATATYPE STATEMENT, IT MUST NOT K/
195 K/K EXCEED THE MAXIMUM FIELD LENGTH K/
196 K/K ALLOWED BY THE EXIT. K/
197 K/K IF NOT DEFINED AS 'VARIES', K/
198 K/K IT MUST EQUAL THE 'SRCBYTES' K/
199 K/K OPERAND IN THE DATATYPE STATEMENT. K/
2SS K/K SCALE = MUST NOT BE SPECIFIED. K/

 2S1 K/K K/
 2S2 K/K K/
 2S3 K/KK/

 2S5 K/KK/
2S6 K/K INFORMATION FOR INSTALLATIONS WHICH USE DPROP WITHOUT DXT. K/

 2S7 K/K K/
2S8 K/K THESE INSTALLATIONS DEFINE THE DL/I-TO-DB2 MAPPING BY K/
2S9 K/K PROVIDING MAPPING DEFINITIONS IN THE K/
21S K/K DPROP 'MVG INPUT TABLES'. K/
211 K/K USAGE OF THIS SAMPLE FIELD EXIT ROUTINE REQUIRES K/
212 K/K FOLLOWING DEFINITIONS IN THE DPRIFLD TABLE: K/

 213 K/K--K/
214 K/K INVOCATION OF A FIELD USER EXIT ROUTINE K/
215 K/K IS DEFINED BY PROVIDING SPECIFICATIONS IN K/
216 K/K THAT ROW OF THE 'DPRIFLD' TABLE WHICH DESCRIBES K/
217 K/K THE FIELD TO BE MAPPED. K/

 218 K/K K/
219 K/K COLUMNS OF THE DPRIFLD ROW SHOULD PROVIDE K/

 22S K/K FOLLOWING DEFINITIONS: K/
 221 K/K K/
 222 K/K COLUMN OF COLUMN K/

223 K/K DPRIFLD VALUE EXPLANATIONS K/
 224 K/K ---K/

225 K/K FLDEXIT = EKYEFL1A: THE EXIT LOAD MODULE NAME K/
226 K/K DATATYPE = XX : A TWO CHARACTER DATA-TYPE ID. K/
227 K/K BYTES = NNNN : THE SOURCE FIELD LENGTH K/
228 K/K FLDETYPE = C : THE TARGET DATA-TYPE. MUST BE 'C '. K/
229 K/K FLDEBYTE = MMMMM : THE TARGET FIELD LENGTH. K/
23S K/K (MUST BE 8 TIMES THE SOURCE K/

 231 K/K FIELD LENGTH). K/
232 K/K SCALE = : SHOULD EITHER NOT BE PROVIDED OR K/
233 K/K SHOULD BE SPECIFIED AS ZERO. K/
234 K/K FLDESCAL = : SHOULD EITHER NOT BE PROVIDED OR K/
235 K/K SHOULD BE SPECIFIED AS ZERO. K/

 236 K/K K/
 237 K/K K/
 238 K/KK/
 24S K/KK/

241 K/K ASSEMBLER LANGUAGE DEPENDENT SECTION K/
 242 K/KK/
 243 K/K K/
 244 K/K ENTRY REGISTERS K/

245 K/K 1 - A(PARAMETER LIST) K/
246 K/K PARAMETER LIST = A(UDT) K/

 247 K/K A(SOURCE BUFFER) K/
 248 K/K A(TARGET BUFFER) K/

249 K/K A(EXIT ANCHOR AREA) K/
25S K/K 13 - CALLER'S SAVE AREA K/
251 K/K 14 - CALLER'S RETURN ADDRESS K/
252 K/K 15 - ENTRY FOR THIS EXIT ROUTINE K/

 253 K/K K/

Figure 29 (Part 4 of 10). Sample Field Exit Routine (Assembler)

 Chapter 3. Field Exit Routines 131

 254 K/K EXIT REGISTERS K/

255 K/K S-12 - RESTORED K/
256 K/K 14 - RESTORED K/
257 K/K 15 - RETURN CODE - S = PROCESSING SUCCESSFUL K/
258 K/K 4 = VALIDATION FAILED K/
259 K/K 16 = UNIDENTIFIED FUNCTION K/

 26S K/K K/
261 K/K ATTRIBUTES = REENTRANT K/

 262 K/K RMODE = ANY K/
 263 K/K AMODE = 31 K/
 264 K/K K/
 265 K/KK/

 SSSSSS 267 EKYEFL1A CSECT DPROP FIELD USER EXIT ROUTINE

268 EKYEFL1A AMODE 31
269 EKYEFL1A RMODE ANY

 27S KKK
SSSFS 271 XDBITOFF EQU C'S' VALUE TO BE SET IF RELATED BIT IS OFF
SSSF1 272 XDBITON EQU C'1' VALUE TO BE SET IF RELATED BIT IS ON

 273 KKK
 SSSSS 274 RS EQU S REGISTER S EQUATE
 SSSS1 275 R1 EQU 1 REGISTER 1 EQUATE
 SSSS2 276 R2 EQU 2 REGISTER 2 EQUATE
 SSSS3 277 R3 EQU 3 REGISTER 3 EQUATE
 SSSS4 278 R4 EQU 4 REGISTER 4 EQUATE
 SSSS5 279 R5 EQU 5 REGISTER 5 EQUATE
 SSSS6 28S R6 EQU 6 REGISTER 6 EQUATE
 SSSS7 281 R7 EQU 7 REGISTER 7 EQUATE
 SSSS8 282 R8 EQU 8 REGISTER 8 EQUATE
 SSSS9 283 R9 EQU 9 REGISTER 9 EQUATE

SSSSA 284 R1S EQU 1S REGISTER 1S EQUATE
SSSSB 285 R11 EQU 11 REGISTER 11 EQUATE
SSSSC 286 R12 EQU 12 REGISTER 12 EQUATE
SSSSD 287 R13 EQU 13 REGISTER 13 EQUATE
SSSSE 288 R14 EQU 14 REGISTER 14 EQUATE
SSSSF 289 R15 EQU 15 REGISTER 15 EQUATE

291 SAVE (14,12),,EKYEFL1A-&SYSDATE SAVE CALLER'S REGISTERS
 298 K
 SSSS1A 18CF 299 LR R12,R15 TRANSFER ENTRY REGISTER
 SSSSS 3SS USING EKYEFL1A,R12 ESTABLISH ADDRESSABILITY
 SSSS1C 58B1 SSSS SSSSS 3S1 L R11,S(R1) GET A(INTERFACE CONTROL BLOCK)

SSSSS 3S2 USING DVRXCUDT,R11 SET INTERFACE CONTROL BLOCK BASE
 SSSS2S 58A1 SSSC SSSSC 3S3 L R1S,12(R1) GET ADDRESS 64 BYTE ANCHOR AREA

SSSSS 3S4 USING USERAREA,R1S SET BASE FOR USER AREA
 SSSS24 1851 3S5 LR R5,R1 SAVE ADDRESS OF INPUT PARMS
 3S6 K
 SSSS26 92E7 B1S4 SS1S4 3S7 MVI UDTENTRD,C'X' SET EXIT-ENTERED-AT-LEASE-ONCE
 SSSS2A 92E7 B1S5 SS1S5 3S8 MVI UDTINCTL,C'X' SET EXIT-IN-CONTROL FLAG (DPR RESETS
 3S9 K---K

31S K ON FIRST INVOCATION, K
311 K ISSUE GET MAIN FOR AN EXIT SAVE AREA - NEEDED TO ISSUE CALLS K
312 K (NOT REQUIRED BY THIS EXIT - SHOWN AS AN EXAMPLE) K

 313 K---K
 314 K
 SSSS2E 581S ASSS SSSSS 315 L R1,USERWD1 GET POINTER TO EXIT SAVE AREA
 SSSS32 1211 316 LTR R1,R1 HAS ONE BEEN OBTAINED
 SSSS34 477S CS46 SSS46 317 BNZ GOTSTOR YES-THIS IS NOT FIRST CALL

318 GETMAIN R,LV=72 GET STORAGE FOR A SAVE AREA

 SSSS42 5S1S ASSS SSSSS 323 ST R1,USERWD1 SAVE ADDRESS OF SAVE IN ANCHOR AREA
 SSSS46 324 GOTSTOR DS SH STORAGE IS AVAILABLE FOR A SAVE AREA
 325 K

Figure 29 (Part 5 of 10). Sample Field Exit Routine (Assembler)

132 Customization Guide

 326 K---K

327 K CHAIN IN SAVE AREA (ADDRESS IN R1) K
 328 K---K
 329 K
 SSSS46 5S1D SSS8 SSSS8 33S ST R1,8(R13) SET EXIT SAVE ADDR IN CALLERS SAVE
 SSSS4A 5SD1 SSS4 SSSS4 331 ST R13,4(R1) SET A(CALLERS SAVE) IN EXIT AREA
 SSSS4E 18D1 332 LR R13,R1 SET NEW SAVE AS CURRENT FOR CALLS
 333 K
 334 K---K

335 K BRANCH DEPENDING ON THE TYPE OF CALL / FUNCTION CODE K
 336 K---K
 337 K
 SSSS5S D5S1 BS2S C23A SSS2S SS23A 338 CLC UDTCALL,XDEMSTAR A DPROP/DEM SOURCE-TO-TARGET CALL?
 SSSS56 478S CS72 SSS72 339 BE SRCTARG YES-PROCESS THAT CALL
 34S K
 SSSS5A D5S1 BS2S C23E SSS2S SS23E 341 CLC UDTCALL,XDEMTSRC A DPROP TARGET-TO-SOURCE CALL?
 SSSS6S 478S C1SS SS1SS 342 BE TARGSRC YES-PROCESS THAT CALL
 343 K
 SSSS64 D5S1 BS2S C23C SSS2S SS23C 344 CLC UDTCALL,XUIMDEFN IS THIS A UIM DEFINITION CALL?
 SSSS6A 478S C176 SS176 345 BE UIMVALSS YES-PERFORM VALIDATION- IF ANY
 346 K
 SSSS6E 47FS C22A SS22A 347 B DEMBADSS NO-UNPREDICTABLE ENVIRONMENT- ABORT
 348 K

349 DROP R1S RELEASE USER ANCHOR AREA BASE
 351 KKK
 352 K K

353 K PROCESSING DPROP OR DXT-DEM 'SOURCE-TO-TARGET' CALL. K
 354 K K
 355 KKK

 357 K---K

358 K SET UP TARGET ADDRESSES FOR LOOP K
 359 K R8 = 1 K

36S K R9 = A(LAST TARGET BYTE) K
361 K R1S = A(TARGET (OUTPUT) BUFFER) K

 362 K---K
 363 K

364 K RECHECK TARGET LENGTH - SHOULD ALWAYS BE GOOD, BUT.....
 SSSS72 365 SRCTARG DS SH
 SSSS72 489S BS64 SSS64 366 LH R9,UDTTBYTV GET NUMBER OF TARGET BYTES
 SSSS76 499S C248 SS248 367 CH R9,ZEROLGT IS TARGET LENGTH NON ZERO
 SSSS7A 478S C1E4 SS1E4 368 BE ERRTLGT1 NO-PERFORM ERROR FUNCTION
 SSSS7E 499S C246 SS246 369 CH R9,MAXTARLG IS MAXIMUM TARGET LENGTH EXCEEDED
 SSSS82 472S C1F2 SS1F2 37S BH ERRTLGT2
 371 K
 SSSS86 58A5 SSS8 SSSS8 372 L R1S,8(R5) GET ADDRESS OF TARGET (OUTPUT) BUFFR
 SSSS8A 1A9A 373 AR R9,R1S GET ADDRESS OF TARGET END +1
 SSSS8C S69S 374 BCTR R9,S BACK UP TO TARGET END
 SSSS8E 418S SSS1 SSSS1 375 LA R8,1 GET A ONE FOR INCREMENT

 377 K---K

378 K SET UP SOURCE ADDRESSES FOR LOOP K
379 K R4 = A(SOURCE (INPUT) BUFFER) K

 38S K R6 = 1 K
381 K R7 = A(LAST SOURCE BYTE) K

 382 K---K
 383 K
 SSSS92 5845 SSS4 SSSS4 384 L R4,4(R5) GET ADDRESS OF SOURCE (INPUT) BUFFER
 385 K

386 K RECHECK SOURCE LENGTH - SHOULD ALWAYS BE GOOD, BUT.....
 SSSS96 487S BS58 SSS58 387 LH R7,UDTSBYTV GET NUMBER OF SOURCE BYTES
 SSSS9A 497S C248 SS248 388 CH R7,ZEROLGT IS SOURCE LENGTH SPECIFIED
 SSSS9E 478S C1C8 SS1C8 389 BE ERRSLGT1 NO-PERFORM ERROR FUNCTION
 SSSSA2 497S C244 SS244 39S CH R7,MAXSRCLG IS MAXIMUM SOURCE LENGTH EXCEEDED
 SSSSA6 472S C1D6 SS1D6 391 BH ERRSLGT2
 392 K

Figure 29 (Part 6 of 10). Sample Field Exit Routine (Assembler)

 Chapter 3. Field Exit Routines 133

 SSSSAA 1A74 393 AR R7,R4 GET ADDRESS OF SOURCE END +1
 SSSSAC S67S 394 BCTR R7,S BACK UP TO SOURCE END
 SSSSAE 416S SSS1 SSSS1 395 LA R6,1 GET A ONE FOR INCREMENT
 396 K
 SSSSB2 397 NEXTBYTE DS SH PROCESS NEXT BYTE (8 BITS) OF SOURCE
 SSSSB2 4334 SSSS SSSSS 398 IC R3,S(R4) GET BYTE SOURCE BYTE
 SSSSB6 893S SS18 SSS18 399 SLL R3,24 PUT SOURCE BYTE IN TOP OF REG
 SSSSBA 415S SSS8 SSSS8 4SS LA R5,8 SET NUMBER BITS PER BYTE
 4S1 K
 SSSSBE 4S2 NEXTBITS DS SH PROCESS NEXT BIT IN SOURCE BYTE (TOP OF R5)
 SSSSBE 1B22 4S3 SR R2,R2 CLEAR WORK REGISTER
 SSSSCS 92FS ASSS SSSSS 4S4 MVI S(R1S),XDBITOFF ASSUME THE BIT IS OFF
 SSSSC4 8D2S SSS1 SSSS1 4S5 SLDL R2,1 PUT SOURCE BIT IN WORK REG
 SSSSC8 542S C24S SS24S 4S6 N R2,LOWBITMK CLEAR ALL BITS BUT ONE JUST SHIFTED
 SSSSCC 478S CSD4 SSSD4 4S7 BZ BITSETSS IF IT WAS OFF TARGET VALUE IS SET
 SSSSDS 92F1 ASSS SSSSS 4S8 MVI S(R1S),XDBITON RESET THE TARGET FOR BIT ON
 SSSSD4 4S9 BITSETSS DS SH THE TARGET BYTE VALUE HAS BEEN SET
 SSSSD4 86A8 CSE8 SSSE8 41S BXH R1S,R8,CONVCOMP POINT TO NEXT TARGET BYTE
 SSSSD8 465S CSBE SSSBE 411 BCT R5,NEXTBITS REPEAT FOR NEXT BIT
 SSSSDC 8746 CSB2 SSSB2 412 BXLE R4,R6,NEXTBYTE POINT TO NEXT SOURCE BYTE AND CONVER
 413 K
 SSSSES 414 PADSOURC DS SH TARGET LONGER THAN SOURCE PAD WITH C'S'
 SSSSES 92FS ASSS SSSSS 415 MVI S(R1S),XDBITOFF PAD WITH BIT OFF VALUE
 SSSSE4 87A8 CSES SSSES 416 BXLE R1S,R8,PADSOURC POINT TO NEXT TARGET BYTE AND FILL
 417 K
 SSSSE8 418 CONVCOMP DS SH CONVERSION COMPLETE EXIT
 SSSSE8 1BFF 42S SR R15,R15 RETURN CODE IS ALWAYS ZERO

 422 KKK
 SSSSEA 423 EXITRETN DS SH RETURN TO CALLER - DXT-UIM, DXT-DEM, OR DPROP
 424 KKK
 SSSSEA 5SFS B1S8 SS1S8 425 ST R15,UDTXRETC STORE RETURN CODE IN UDT
 426 K
 SSSSEE 58DD SSS4 SSSS4 427 L R13,4(R13) RESTORE CALLER'S SAVE AREA

428 RETURN (14,12),T,RC=(15) RESTORE CALLER'S REGISTERS
 434 KKK
 435 K K

436 K PROCESSING DPROP 'TARGET-TO-SOURCE' CALL. K
 437 K K
 438 KKK

 44S K---K

441 K SET UP TARGET ADDRESSES FOR LOOP K
442 K R9 = A(TARGET (INPUT) BUFFER) K
443 K R1S = A(LAST TARGET BYTE) K

 444 K---K
 445 K

446 K RECHECK TARGET LENGTH - SHOULD ALWAYS BE GOOD, BUT.....
 SSS1SS 447 TARGSRC DS SH
 SSS1SS 48AS BS64 SSS64 448 LH R1S,UDTTBYTV GET NUMBER OF TARGET BYTES
 SSS1S4 49AS C248 SS248 449 CH R1S,ZEROLGT IS TARGET LENGTH NON ZERO
 SSS1S8 478S C1E4 SS1E4 45S BE ERRTLGT1 NO-PERFORM ERROR FUNCTION
 SSS1SC 49AS C246 SS246 451 CH R1S,MAXTARLG IS MAXIMUM TARGET LENGTH EXCEEDED
 SSS11S 472S C1F2 SS1F2 452 BH ERRTLGT2 YES-PERFORM ERROR FUNCTION
 453 K
 SSS114 5895 SSS8 SSSS8 454 L R9,8(R5) GET ADDRESS OF TARGET (INPUT) BUFFER
 SSS118 1AA9 455 AR R1S,R9 GET ADDRESS OF TARGET END +1
 SSS11A S6AS 456 BCTR R1S,S BACK UP TO TARGET END

 458 K---K

459 K SET UP SOURCE ADDRESSES FOR LOOP K
46S K R7 = A(SOURCE (OUTPUT) BUFFER) K
461 K R8 = A(LAST SOURCE BYTE) K

 462 K---K

Figure 29 (Part 7 of 10). Sample Field Exit Routine (Assembler)

134 Customization Guide

 463 K

464 K RECHECK SOURCE LENGTH - SHOULD ALWAYS BE GOOD, BUT.....
 SSS11C 488S BS58 SSS58 465 LH R8,UDTSBYTV GET NUMBER OF SOURCE BYTES
 SSS12S 498S C248 SS248 466 CH R8,ZEROLGT IS SOURCE LENGTH SPECIFIED
 SSS124 478S C1C8 SS1C8 467 BE ERRSLGT1 NO-PERFORM ERROR FUNCTION
 SSS128 498S C244 SS244 468 CH R8,MAXSRCLG IS MAXIMUM SOURCE LENGTH EXCEEDED
 SSS12C 472S C1F2 SS1F2 469 BH ERRTLGT2 YES-PERFORM ERROR FUNCTION
 47S K
 SSS13S 5875 SSS4 SSSS4 471 L R7,4(R5) GET ADDRESS OF SOURCE (OUTPUT) BUFFR
 SSS134 1A87 472 AR R8,R7 GET ADDRESS OF SOURCE END +1
 SSS136 S68S 473 BCTR R8,S BACK UP TO SOURCE END

 475 K---K

476 K PROCESS NEXT BYTE (8 BITS) OF SOURCE K
 477 K---K
 SSS138 478 TARGNEXT DS SH
 SSS138 1722 479 XR R2,R2 PRESET ALL BITS TO ZERO
 SSS13A 581S C45S SS45S 48S L R1,=X'SSSSSS8S' SETUP 'OR' REGISTER FOR HIGH BIT
 481 K
 SSS13E 482 TARGNX1S DS SH
 SSS13E 199A 483 CR R9,R1S ALL BYTES OF TARGET PROCESSED?
 SSS14S 472S C15A SS15A 484 BH TARGNX3S YES-SKIP CHECK OF TARGET BYTE
 SSS144 95FS 9SSS SSSSS 485 CLI S(R9),XDBITOFF IS THIS BYTE OFF/ZERO/FALSE?
 SSS148 478S C156 SS156 486 BE TARGNX2S YES-VALUE IS OK
 SSS14C 95F1 9SSS SSSSS 487 CLI S(R9),XDBITON IS THIS BYTE ON/ONE/TRUE?
 SSS15S 477S C21C SS21C 488 BNE ERRCONV1 NO-PERFORM CONVERSION ERROR FUNCTION
 SSS154 1621 489 OR R2,R1 INDICATE THE ONE IN SOURCE BYTE
 SSS156 49S TARGNX2S DS SH
 SSS156 419S 9SS1 SSSS1 491 LA R9,1(S,R9) POINT NEXT BYTE IN TARGET BUFFER
 SSS15A 492 TARGNX3S DS SH
 SSS15A 8A1S SSS1 SSSS1 493 SRA R1,1 SHIFT 'OR' REG TO NEXT BIT POSITION
 SSS15E 477S C13E SS13E 494 BNZ TARGNX1S AND PROCESS IF NOT ZERO
 495 K
 SSS162 422S 7SSS SSSSS 496 STC R2,S(S,R7) STORE THE SOURCE BYTE
 SSS166 417S 7SS1 SSSS1 497 LA R7,1(S,R7) POINT NEXT SOURCE BYTE IN BUFFER
 SSS16A 1978 498 CR R7,R8 MORE SOURCE BYTES TO PROCESS?
 SSS16C 47DS C138 SS138 499 BNH TARGNEXT YES-BRANCH TO PROCESS NEXT BYTE
 5SS K
 SSS17S 1BFF 5S1 SR R15,R15 SET SUCCESSFUL RETURN CODE
 SSS172 47FS CSEA SSSEA 5S2 B EXITRETN GO TO COMMON RETURN POINT
 5S4 KKK

5S5 K PROCESSING A DXT-UIM 'DEFINITION CALL'. K
 5S6 K K

5S7 K LETS PERFORM UIM VALIDATION K
 5S8 KKK
 5S9 K
 SSS176 51S UIMVALSS DS SH PERFORM UIM VALIDATION
 SSS176 487S BS58 SSS58 511 LH R7,UDTSBYTV GET NUMBER OF MAX SOURCE BYTES
 SSS17A 497S C248 SS248 512 CH R7,ZEROLGT IS SOURCE LENGTH SPECIFIED
 SSS17E 478S C1C8 SS1C8 513 BE ERRSLGT1 NO-PERFORM ERROR FUNCTION
 SSS182 497S C244 SS244 514 CH R7,MAXSRCLG IS MAXIMUM SOURCE LENGTH EXCEEDED
 SSS186 472S C1D6 SS1D6 515 BH ERRSLGT2

516 K SOURCE IS VALIDATED - PROCESS TARGET
 SSS18A 486S BS64 SSS64 517 LH R6,UDTTBYTV GET NUMBER OF MAX TARGET BYTES
 SSS18E 95E5 BS62 SSS62 518 CLI UDTTBYTI,C'V' IS TARGET LENGTH VARIES TYPE
 SSS192 477S C1AS SS1AS 519 BNE UIMVAL6S NOT JUST DO VALIDATION
 SSS196 1867 52S LR R6,R7 DUPLICATE SOURCE BYTES
 SSS198 896S SSS3 SSSS3 521 SLL R6,3 MULTIPLE BY 8 FOR NUMBER BITS
 SSS19C 4S6S BS64 SSS64 522 STH R6,UDTTBYTV SET NUMBER OF MAX TARGET BYTES
 SSS1AS 523 UIMVAL6S DS SH VALIDATE TARGET LENGTH
 SSS1AS 496S C248 SS248 524 CH R6,ZEROLGT IS TARGET LENGTH NON ZERO
 SSS1A4 478S C1E4 SS1E4 525 BE ERRTLGT1 NO-PERFORM ERROR FUNCTION
 SSS1A8 496S C246 SS246 526 CH R6,MAXTARLG IS MAXIMUM TARGET LENGTH EXCEEDED
 SSS1AC 472S C1F2 SS1F2 527 BH ERRTLGT2
 528 K

Figure 29 (Part 8 of 10). Sample Field Exit Routine (Assembler)

 Chapter 3. Field Exit Routines 135

529 K VALIDATE ADDITION CONTROL VALUES

 SSS1BS D5S1 BS6S C238 SSS6S SS238 53S CLC UDTTTYPE,XDTYPEC IS TARGET DATA TYPE CHARACTER
 SSS1B6 477S C2SS SS2SS 531 BNE UIMBAD4S NO-PERFORM ERROR FUNCTION
 SSS1BA 95D5 BS66 SSS66 532 CLI UDTTSCLI,C'N' IS TARGET SCALE SET FOR VARIES
 SSS1BE 477S C2SE SS2SE 533 BNE UIMBAD5S NO-PERFORM ERROR FUNCTION
 534 K
 SSS1C2 1BFF 535 SR R15,R15 SET SUCCESSFUL RETURN CODE
 SSS1C4 47FS CSEA SSSEA 536 B EXITRETN GO TO COMMON RETURN POINT
 538 KKK
 539 K ERROR LOGIC. K
 54S KKK

 SSS1C8 542 ERRSLGT1 DS SH SOURCE LENGTH IS OMITTED (ZERO)
 SSS1C8 D23F B1SC C24A SS1SC SS24A 543 MVC UDTXMESG,EMSGSSSS SET SOURCE LENGTH ZERO MESSAGE
 SSS1CE 41FS SSS4 SSSS4 544 LA R15,4 SET ERROR DETECTED INDICATION
 SSS1D2 47FS CSEA SSSEA 545 B EXITRETN GO TO COMMON RETURN POINT
 SSS1D6 546 ERRSLGT2 DS SH SOURCE LENGTH IS EXCEEDED
 SSS1D6 D23F B1SC C28A SS1SC SS28A 547 MVC UDTXMESG,EMSGSS1S SET SOURCE LENGTH EXCEEDED
 SSS1DC 41FS SSS4 SSSS4 548 LA R15,4 SET ERROR DETECTED INDICATION
 SSS1ES 47FS CSEA SSSEA 549 B EXITRETN GO TO COMMON RETURN POINT
 SSS1E4 55S ERRTLGT1 DS SH TARGET LENGTH IS ZERO
 SSS1E4 D23F B1SC C2CA SS1SC SS2CA 551 MVC UDTXMESG,EMSGSS2S SET TARGET LENGTH IS ZERO MESSAGE
 SSS1EA 41FS SSS4 SSSS4 552 LA R15,4 SET ERROR DETECTED INDICATION
 SSS1EE 47FS CSEA SSSEA 553 B EXITRETN GO TO COMMON RETURN POINT
 SSS1F2 554 ERRTLGT2 DS SH TARGET LENGTH IS EXCEEDED
 SSS1F2 D23F B1SC C3SA SS1SC SS3SA 555 MVC UDTXMESG,EMSGSS3S SET LENGTH EXCEEDED MESSAGE
 SSS1F8 41FS SSS4 SSSS4 556 LA R15,4 SET ERROR DETECTED INDICATION
 SSS1FC 47FS CSEA SSSEA 557 B EXITRETN GO TO COMMON RETURN POINT
 SSS2SS 558 UIMBAD4S DS SH TARGET DATA TYPE IS NOT CHARACTER
 SSS2SS D23F B1SC C34A SS1SC SS34A 559 MVC UDTXMESG,EMSGSS4S SET INVALID DATA TYPE MESSAGE
 SSS2S6 41FS SSS4 SSSS4 56S LA R15,4 SET ERROR DETECTED INDICATION
 SSS2SA 47FS CSEA SSSEA 561 B EXITRETN GO TO COMMON RETURN POINT
 SSS2SE 562 UIMBAD5S DS SH TARGET SCALE IS INVALID ('N' NOT SPECIFIED)
 SSS2SE D23F B1SC C38A SS1SC SS38A 563 MVC UDTXMESG,EMSGSS5S SET INVALID TARGET SCALE MESSAGE
 SSS214 41FS SSS4 SSSS4 564 LA R15,4 SET ERROR DETECTED INDICATION
 SSS218 47FS CSEA SSSEA 565 B EXITRETN GO TO COMMON RETURN POINT
 SSS21C 566 ERRCONV1 DS SH TARGET FIELD CONTAINS BYTE OTHER THAN 'S' OR '1'
 SSS21C D23F B1SC C3CA SS1SC SS3CA 567 MVC UDTXMESG,EMSGSS6S SET TARGET FIELD VALUE IS INVALID
 SSS222 41FS SSS4 SSSS4 568 LA R15,4 SET ERROR DETECTED INDICATION
 SSS226 47FS CSEA SSSEA 569 B EXITRETN GO TO COMMON RETURN POINT
 57S K
 SSS22A 571 DEMBADSS DS SH INVALID USER DATA TYPE CALL FUNCTION
 SSS22A D23F B1SC C4SA SS1SC SS4SA 572 MVC UDTXMESG,EMSGDSSS SET NOT SUPPORTED MESSAGE
 SSS23S 41FS SS1S SSS1S 573 LA R15,16 SET ERROR DETECTED INDICATION
 SSS234 47FS CSEA SSSEA 574 B EXITRETN GO TO COMMON RETURN POINT
 576 KKK
 577 K DATA DEFINITIONS K
 578 KKK

 SSS238 C34S 58S XDTYPEC DC CL2'C ' IS TARGET DATA TYPE CHARACTER
 SSS23A E2E3 581 XDEMSTAR DC CL2'ST' CODE FOR DEM/DPROP SOURCE TO TARGET
 SSS23C C4C6 582 XUIMDEFN DC CL2'DF' CODE FOR UIM VALIDATION CALL
 SSS23E E3E2 583 XDEMTSRC DC CL2'TS' CODE FOR DPROP TARGET TO SOURCE
 584 K
 SSS24S 585 LOWBITMK DS SF ALIGN MASK ON FULL WORD
 SSS24S SSSSSSS1 586 DC XL4'SSSSSSS1' MASK CLEAR ALL BUT FIRST BIT
 587 K
 SSS244 SS1S 588 MAXSRCLG DC AL2(S16) MAXIMUM SOURCE LENGTH
 SSS246 SS8S 589 MAXTARLG DC AL2(128) MAXIMUM TARGET LENGTH
 SSS248 SSSS 59S ZEROLGT DC AL2(S) NO LENGTH VALUE
 591 K

Figure 29 (Part 9 of 10). Sample Field Exit Routine (Assembler)

136 Customization Guide

 592 K
 SSS24A 593 EMSGSSSS DS SCL64
 SSS24A C5E7C9E37EC5D2E8 594 DC CL16'EXIT=EKYEFL1A - '
 SSS25A E2D6E4D9C3C54SD3 595 DC CL44'SOURCE LENGTH NOT SPECIFIED - REQUIRED. '
 SSS286 4S4S4S4S 596 DC CL4' '
 SSS28A 597 EMSGSS1S DS SCL64
 SSS28A C5E7C9E37EC5D2E8 598 DC CL16'EXIT=EKYEFL1A - '
 SSS29A E2D6E4D9C3C54SD3 599 DC CL44'SOURCE LENGTH EXCEEDS MAXIMUM ALLOWED. '
 SSS2C6 4S4S4S4S 6SS DC CL4' '
 SSS2CA 6S1 EMSGSS2S DS SCL64
 SSS2CA C5E7C9E37EC5D2E8 6S2 DC CL16'EXIT=EKYEFL1A - '
 SSS2DA E3C1D9C7C5E34SD3 6S3 DC CL44'TARGET LENGTH NOT SPECIFIED - REQUIRED. '
 SSS3S6 4S4S4S4S 6S4 DC CL4' '
 SSS3SA 6S5 EMSGSS3S DS SCL64
 SSS3SA C5E7C9E37EC5D2E8 6S6 DC CL16'EXIT=EKYEFL1A - '
 SSS31A E3C1D9C7C5E34SD3 6S7 DC CL44'TARGET LENGTH EXCEEDS MAXIMUM ALLOWED. '
 SSS346 4S4S4S4S 6S8 DC CL4' '
 SSS34A 6S9 EMSGSS4S DS SCL64
 SSS34A C5E7C9E37EC5D2E8 61S DC CL16'EXIT=EKYEFL1A - '
 SSS35A E3C1D9C7C5E34SC4 611 DC CL44'TARGET DATA TYPE MUST BE CHARACTER. '
 SSS386 4S4S4S4S 612 DC CL4' '
 SSS38A 613 EMSGSS5S DS SCL64
 SSS38A C5E7C9E37EC5D2E8 614 DC CL16'EXIT=EKYEFL1A - '
 SSS39A E3C1D9C7C5E34SE2 615 DC CL44'TARGET SCALE MUST NOT BE SPECIFIED. '
 SSS3C6 4S4S4S4S 616 DC CL4' '
 SSS3CA 617 EMSGSS6S DS SCL64
 SSS3CA C5E7C9E37EC5D2E8 618 DC CL16'EXIT=EKYEFL1A - '
 SSS3DA E5C1D3E4C54SC9D5 619 DC CL44'VALUE IN TARGET FIELD OTHER THAN ''S'' OR ''1'' '
 SSS4S6 4S4S4S4S 62S DC CL4' '
 SSS4SA 621 EMSGDSSS DS SCL64
 SSS4SA C5E7C9E37EC5D2E8 622 DC CL16'EXIT=EKYEFL1A - '
 SSS41A C4C1E3C14SE3E8D7 623 DC CL44'DATA TYPE CALL FUNCTION CANNOT BE IDENTIFIED'
 SSS446 4B4S4S4S 624 DC CL4'. '
 625 K
 SSSSSS 626 PRMLIST DSECT MAPPING OF PARMS PASSED ON ENTRY
 SSSSSS 627 PRMUTDB@ DS A ADDRESS OF USER DATA TYPE INTERFACE BLK(UDT)
 SSSSS4 628 PRMSRCB@ DS A ADDRESS OF SOURCE BUFFER AREA K
 SSSSS8 629 PRMTARG@ DS A ADDRESS OF TARGET BUFFER AREA
 SSSSSC 63S PRMANCH@ DS A ADDRESS OF USER ANCHOR AREA FOR THIS EXIT
 632 KKK

633 K THE FOLLOWING EKYRCUDT MACRO (WHICH MAPS THE UDT INTERFACE
634 K CONTROL BLOCK, IS SHIPPED WITH THE DPROP PRODUCT

 635 KKK
636 EKYRCUDT , DEFINITION OF UDT CONTROL BLOCK

 SSSSSS 863 USERAREA DSECT THIS 64 BYTE FIELD IS FOR USE BY THE EXIT
864 K THIS AREA IS FOR THE EXCLUSIVE USE OF THIS EXIT
865 K ITS CONTENTS WILL BE PRESERVED BETWEEN CALLS
866 K IT IS INITIALIZED TO BINARY ZEROS.

SSSSSS 867 USERWD1 DS F USER ANCHOR WORD 1 (IN THIS CASE A SAVE POINTER)
 SSSSS4 868 DS 15F REMAINDER OF USER ANCHORS AREA
 869 KKK

87S END , END OF DATA EXIT ROUTINE
 SSS45S SSSSSS8S 871 =X'SSSSSS8S'

Figure 29 (Part 10 of 10). Sample Field Exit Routine (Assembler)

 Chapter 3. Field Exit Routines 137

Definitions for the First Sample Field Exit Routine
This section contains definitions associated with the sample Field exit routine. The
following types of definitions are provided:

� IMS DBDGEN and PSBGEN definitions

� DB2 CREATE TABLE definitions

� DataRefresher definitions required to define the PR with DXT and to extract the
IMS data with DataRefresher

� SQL statements required to define the PR in the MVG input tables without
DataRefresher

 DBDGEN Definitions
Figure 30 shows a DBDGEN definition for the Field exit routine in Figure 29 on
page 128.

 DBD NAME=DB1,ACCESS=(HDAM,OSAM),RMNAME=(DFSHDC4S,5,4), C
 EXIT=(EKYRUP��)
 DATASET DD1=HDAM,SIZE=4S96,DEVICE=338S
K
 SEGM NAME=SEG1,PARENT=S,BYTES=12S
 FIELD NAME=(FLD1,SEQ,U),START=3,BYTES=2
K
 DBDGEN
 FINISH
 END

Figure 30. DBDGEN Definition

Note: The EXIT= keyword of the DBD macro specifies that EKYRUP00 (the RUP)
be called when a segment of this DBD is changed. This is required for
synchronous HR propagation with DPROP.

 PSBGEN Definitions
Figure 31 shows a PSBGEN definition for the Field exit routine in Figure 29 on
page 128.

 PCB TYPE=DB,DBDNAME=DB1,NAME=HUPPCB, C
 KEYLEN=12S,PROCOPT=A
 SENSEG NAME=SEG1
K
 PSBGEN PSBNAME=PSBDPR2
 END

Figure 31. PSBGEN Definition

CREATE TABLE Statement
Figure 32 on page 139 shows a CREATE TABLE definition for the Field exit
routine in Figure 29 on page 128.

138 Customization Guide

CREATE TABLE TABLES1
 (COL1 CHAR(6) NOT NULL,

COLB SMALLINT NOT NULL WITH DEFAULT,
COLH SMALLINT NOT NULL WITH DEFAULT,
COLC CHAR(32) NOT NULL WITH DEFAULT,

PRIMARY KEY (COL1))
DATA CAPTURE CHANGES

 IN DUS966S6.PROPTS ;

CREATE UNIQUE INDEX XNS1 ON TABLES1 (COL1)
USING VCAT KOE ;

Figure 32. CREATE TABLE Statement

Note: The DATA CAPTURE CHANGES clause specifies that the changed DB2
rows are captured and that the DB2CDCEX routine (the HUP) is called when a row
of this table is changed. This is required for synchronous RH-propagation with
DPROP.

Using DataRefresher to Define the PR
This section shows how to use DataRefresher to define the PR for the Field exit
routine in Figure 29 on page 128.

 CREATE DATATYPE
Figure 33 shows a CREATE DATATYPE definition for the Field exit routine in
Figure 29 on page 128.

CREATE DATATYPE SRCTYPE=AA, EXIT=EKYEFL1A,
 SRCBYTES=VARIES,
 TRGTYPE=C ,
 TRGBYTES=VARIES;

Figure 33. CREATE DATATYPE Definition

The CREATE DATATYPE command provides the following information:

� It creates a user data type called AA and associates the Field exit routine
EKYEFL1A with this user data type.

The Field exit routine, EKYEFL1A, is called to reformat each field defined in a
DXTPSB with a TYPE=AA keyword.

� SRCBYTES=VARIES means that the length of the fields (in their user format)
with a user data type AA can have different BYTES values coded in the FIELD
statements of the CREATE DXTPSB control statement.

� TRGTYPE=C means that the Field exit routine reformats the fields between the
user data type and a character data type.

� TRGBYTES=VARIES means that the length of the fields (in their
DPROP-supported and DXT-supported character format) are established by the
definition call generated by DataRefresher UIM when it processes a FIELD
statement with this user data type.

 Chapter 3. Field Exit Routines 139

 CREATE DXTPSB
Figure 34 shows a CREATE DXTPSB definition for the Field exit routine in
Figure 29 on page 128.

 CREATE DXTPSB NAME=KOEPSB2

 DXTPCB NAME=PCBSS1,DBACCESS=HDAM,DBNAME=DB1

SEGMENT NAME=SEG1, PARENT=S, BYTES=12S

FIELD NAME=FLD1 , START=3, BYTES=2 , SEQFLD=R
FIELD NAME=FLDB , START=5, BYTES=1 , TYPE=B
FIELD NAME=FLDH , START=6, BYTES=2 , TYPE=H
FIELD NAME=FLDC , START=9, BYTES=4 , TYPE=AA ;

Figure 34. CREATE DXTPSB Definition

Notes:

1. The Field FLDC is defined as having a data type AA. When DataRefresher
UIM processes this field statement, it calls the Field exit routine EKYEFL1A
associated with the user data type AA for a definition call.

DataRefresher UIM also calls EKYEFL1A during the extract; DPROP calls it
during propagation to reformat the field FLDC between its user data type AA
and its character format.

2. The length of the FLDC in its user format is defined on the BYTES= keyword
as four bytes.

The length of the field in its DPROP format is set by the Field exit routine
during the definition call that DataRefresher UIM generates.

 CREATE DXTVIEW
Figure 35 shows a CREATE DXTVIEW definition for the Field exit routine in
Figure 29 on page 128.

 CREATE DXTVIEW NAME = VIEWS11,
 DXTPSB = KOEPSB2,
 DXTPCB = PCBSS1,
 SEGMENT = SEG1,
 MINSEGM = SEG1,
 FIELDS = K ;

Figure 35. CREATE DXTVIEW Definition

DataRefresher UIM SUBMIT Command and EXTRACT Statement
Figure 36 on page 141 shows a DataRefresher UIM SUBMIT command and
EXTRACT statement for the Field exit routine in Figure 29 on page 128.

140 Customization Guide

 SUBMIT EXTID=PRSS1,
 NODE=NODEX,
 USERID=TS966S6,
 CD=JCS,
 JCS=DDJCSS1,
 FORMAT=SOURCE,
 MAPEXIT=EKYMCE��,
 MAPUPARM='PRTYPE=E,
 MAPDIR=TW,
 MAPCASE=1,
 ACTION=REPL,
 ERROPT=BACKOUT,
 PCBLABEL=HUPPCB'

 EXTRACT
INTO TABLES1 (COL1 NOT NULL,

COLB NOT NULL WITH DEFAULT,
COLH NOT NULL WITH DEFAULT,
COLC NOT NULL WITH DEFAULT

)
 SELECT FLD1,
 FLDB,
 FLDH,
 FLDC

FROM VIEWS11 ;

Figure 36. DataRefresher UIM SUBMIT Command and EXTRACT Statement

Notes:

1. The MAPEXIT= keyword of the SUBMIT control statement specifies
EKYMCE00. This results in DataRefresher UIM calling the DPROP Map
Capture Exit EKYMCE00 during the processing of the SUBMIT or EXTRACT.
This is needed to allow DPROP to create the PR.

2. The EXTRACT statement informs DataRefresher and DPROP which fields must
be mapped to which columns. The EXTRACT statement indicates, for
example, that the field FLDC must be mapped to column COLC.

Using DataRefresher for the Extract
This section covers INITDEM and USE DXTPSB Control Statements.

Figure 37 shows INITDEM and USE DXTPSB control statements for the Field exit
routine shown in Figure 35 on page 140.

 INITDEM NAME=DXTPROD;
 USE DXTPSB=KOEPSB2;

Figure 37. Using DataRefresher for the Extract: INITDEM and USE DXTPSB Control
Statements

Defining the PR in the MVG Input Tables
Figure 38 on page 143 describes the SQL statements required to define the PR in
the MVG input tables.

The following rows are inserted into the MVG input tables:

� One row is inserted into the DPRIPR table (the PR table).

 Chapter 3. Field Exit Routines 141

This row identifies the PRID. By inserting an E into the PRTYPE column and a
1 into the MAPCASE column, the SQL statement indicates that the PR belongs
to mapping case 1 of an extended-function PR.

� One row for the entity segment type SEG1 is inserted into the DPRISEG table
(the SEG table).

Because SEG1 is the root segment, no rows are inserted into DPRISEG for
physical ancestors.

� One row is inserted into the DPRITAB table (the TAB table).

This row indicates that the target table is T096606.TABLE01.

� One row is inserted into the DPRIFLD table (the FLD table) for each
propagated field.

The DPRIFLD row for the field FLDC has the value EKYEFL1A in the FLDEXIT
column. This indicates that the Field is processed by the Field exit routine
EKYEFL1A. The value AA in the DATATYPE column is used to identify the
user data type.

For PR definitions entered into the MVG input tables, the Field exit routine is
not called for a definition call. Therefore, you must provide in the DPRIFLD row
a complete definition of the field in its user and DPROP format. Accordingly,
the row describing FLDC contains, in the BYTES column, the length of the field
in its user format and, in the FLDEBYTE column, the length of the field in its
DPROP format.

142 Customization Guide

DELETE FROM TS966S6.DPRIPR WHERE PRID = 'PRSS1' ;

INSERT INTO TS966S6.DPRIPR
(PRID, USERID, PRTYPE, MAPCASE, MAPDIR,

 ERROPT, ACTION)
 VALUES ('PRSS1', 'TS966S6','E', '1', 'TW',
 'BACKOUT','REPL') ;

INSERT INTO TS966S6.DPRISEG
(PRID, DBNAME, SEGNAME, ROLE, PCBLABEL,

 VALUES ('PRSS1','DB1', 'SEG1', 'E', 'HUPPCB') ;

INSERT INTO TS966S6.DPRITAB
(PRID, TABQUAL, TABNAME)

VALUES ('PRSS1','TS966S6', 'TABLES1') ;

INSERT INTO TS966S6.DPRIFLD
 (PRID, DBNAME, SEGNAME, FLDNAME,

TABQUAL, TABNAME, COLNAME,
DATATYPE, POSITION, BYTES)

 VALUES ('PRSS1', 'DB1', 'SEG1', 'FLD1',
 'TS966S6','TABLES1','COL1',
 'C ', 3, 2) ;

INSERT INTO TS966S6.DPRIFLD
 (PRID, DBNAME, SEGNAME, FLDNAME,

TABQUAL, TABNAME, COLNAME,
DATATYPE, POSITION, BYTES)

 VALUES ('PRSS1', 'DB1', 'SEG1', 'FLDB',
 'TS966S6','TABLES1','COLB',
 'B ', 5, 1) ;

INSERT INTO TS966S6.DPRIFLD
 (PRID, DBNAME, SEGNAME, FLDNAME,

TABQUAL, TABNAME, COLNAME,
DATATYPE, POSITION, BYTES)

 VALUES ('PRSS1', 'DB1', 'SEG1', 'FLDH',
 'TS966S6','TABLES1','COLH',
 'H ', 6, 2) ;

INSERT INTO TS966S6.DPRIFLD
 (PRID, DBNAME, SEGNAME, FLDNAME,

TABQUAL, TABNAME, COLNAME,
DATATYPE, POSITION, BYTES,

 FLDEXIT, FLDETYPE, FLDEBYTE)
 VALUES ('PRSS1', 'DB1', 'SEG1', 'FLDC',
 'TS966S6','TABLES1','COLC',
 'AA', 9, 4,
 'EKYEFL1A','C', 32) ;

COMMIT;

Figure 38. Defining the PR in the MVG Input Tables

Second Sample Field Exit Routine
Figure 39 on page 144 contains an example of a field exit routine in COBOL. Its
functions are the same as those for the exit routine in “First Sample Field Exit
Routine” on page 127. For information about this routine, refer to “First Sample
Field Exit Routine” on page 127.

The source code in Figure 39 on page 144 is provided in the DPROP Sample
Source Library (EKYSRC) under the member name EKYEFL1C. The definitions for
this routine are the same as those for EKYEFL1A, except that the exit name is

 Chapter 3. Field Exit Routines 143

different. Specifically, the EXIT=EKYEFL1A in Figure 33 on page 139, and
EKYEfl1a in Figure 38, are changed to EKYEFL1C. The text that refers to
EKYEFL1A is also true for EKYEFL1C. Refer to “Definitions for the First Sample
Field Exit Routine” on page 138 for information about the definitions.

SSS1SSKKKKKKKKKKKKKKKKKK START OF SPECIFICATIONS KKKKKKKKKKKKKKKKKKKKKK SSS1SSSS
SSS2SSK K SSS2SSSS
SSS3SSK MODULE NAME: EKYEFL1C K SSS3SSSS
SSS4SSK ----------- K SSS4SSSS
SSS5SSK K SSS5SSSS
SSS6SSK DESCRIPTIVE NAME: SAMPLE FIELD EXIT ROUTINE K SSS6SSSS
SSS7SSK ---------------- K SSS7SSSS
SSS8SSK K SSS8SSSS
SSS9SSK FUNCTION: THE PURPOSE OF THIS PROGRAM IS TO PROVIDE A SAMPLE K SSS9SSSS
SS1SSSK -------- STRUCTURE FOR A FIELD EXIT ROUTINE. THIS EXAMPLE K SS1SSSSS
SS11SSK CONVERTS A BIT STRING INTO A CHARACTER STRING OR K SS11SSSS
SS12SSK VICE-VERSA, DEPENDING ON THE FUNCTION CALL, WITH K SS12SSSS
SS13SSK EACH BIT REPRESENTED BY A CHARACTER, TO BE SET TO K SS13SSSS
SS14SSK '1' OR 'S' BASED ON THE VALUE OF THE RELATED BIT K SS14SSSS
SS15SSK OR VICE VERSA. K SS15SSSS
SS16SSK (ALTERNATE REPRESENTATION MIGHT BE 'T' FOR TRUE AND K SS16SSSS
SS17SSK 'F' FOR FALSE.) THIS FUNCTION COULD BE USEFUL FOR K SS17SSSS
SS18SSK CONVERTING BIT CONTROL FIELDS TO INDIVIDUAL FLAG K SS18SSSS
SS19SSK BYTES. K SS19SSSS
SS2SSSK K SS2SSSSS
SS21SSK IN INSTALLATIONS WHICH COMBINE USEAGE OF: K SS21SSSS
SS22SSK - DXT, FOR THE ORIGINAL EXTRACT OF THE DL/I DATA K SS22SSSS
SS23SSK - DPROP, FOR THE PROPAGATION OF THE DL/I DATA, K SS23SSSS
SS24SSK THE EXIT WILL BE CALLED BOTH BY DataRefresher AND DPROP. K SS24SSSS
SS25SSK K SS25SSSS
SS26SSK DataRefresher CALLS THE EXIT: K SS26SSSS
SS27SSK - DURING DXT-UIM PROCESSING, WITH A 'DEFINITION K SS27SSSS
SS28SSK CALL' IN ORDER TO VALIDATE FIELD DEFINITIONS. K SS28SSSS
SS29SSK - DURING DXT-DEM PROCESSING, IN ORDER TO MAP K SS29SSSS
SS3SSSK DURING THE DL/I DATA EXTRACT BIT-STRINGS INTO K SS3SSSSS
SS31SSK CHARACTER STRINGS. K SS31SSSS
SS32SSK DPROP CALLS THE EXIT: K SS32SSSS
SS33SSK - DURING DATA PROPAGATION, IN ORDER TO MAP K SS33SSSS
SS34SSK THE BIT-STRINGS INTO CHARACTER STRINGS K SS34SSSS
SS35SSK - DURING DPROP CCU (CONSISTENCY CHECK UTILITY), K SS35SSSS
SS36SSK IN ORDER TO MAP THE BIT-STRINGS INTO K SS36SSSS
SS37SSK CHARACTER STRINGS. K SS37SSSS
SS38SSK K SS38SSSS
SS39SSK K SS39SSSS
SS4SSSK K SS4SSSSS
SS41SSK PROCESSING FOR DEFINITION CALL (FUNCTION=DF), K SS41SSSS
SS42SSK ISSUED BY DXT-UIM: K SS42SSSS
SS43SSK -- K SS43SSSS
SS44SSK K SS44SSSS
SS45SSK - THE SOURCE LENGTH IS CHECKED AGAINST THE MAXIMUM K SS45SSSS
SS46SSK SOURCE LENGTH (16). K SS46SSSS
SS47SSK - IF THE TARGET LENGTH HAS BEEN DEFINED ON THE K SS47SSSS
SS48SSK DXT-UIM 'CREATE DATATYPE' STATEMENT AS 'VARIES', K SS48SSSS
SS49SSK THE EXIT SETS ITS VALUE TO 8 TIMES THE SOURCE K SS49SSSS
SS5SSSK LENGTH. K SS5SSSSS
SS51SSK - IF THE TARGET LENGTH HAS BEEN SPECIFIED ON THE K SS51SSSS
SS52SSK DXT-UIM 'CREATE DATATYPE' STATEMENT, IT IS CHECKED K SS52SSSS
SS53SSK AGAINST 8 TIMES THE MAXIMUM SOURCE LENGTH. K SS53SSSS
SS54SSK - TARGET DATA TYPE IS ENSURED TO BE 'C' AND TARGET K SS54SSSS
SS55SSK SCALE ENSURED TO BE 'N'. K SS55SSSS
SS56SSK K SS56SSSS
SS57SSK NOTE FOR INSTALLATIONS WHICH USE DPROP WITHOUT DXT: K SS57SSSS
SS58SSK IF DPROP IS USED WITHOUT DXT, THE EXIT WILL NEVER K SS58SSSS
SS59SSK BE INVOKED FOR A DEFINITION CALL (DEFINITION CALLS K SS59SSSS
SS6SSSK ARE NOT NECESSARY, SINCE THE USER PROVIDES ALL K SS6SSSSS

Figure 39 (Part 1 of 9). Second Sample Field Exit Routine (COBOL)

144 Customization Guide

SS61SSK DEFINITIONS (I.E. SOURCE LENGTH, TARGET LENGTH) K SS61SSSS
SS62SSK IN THE DPROP 'MVG INPUT TABLES'. K SS62SSSS
SS63SSK K SS63SSSS
SS64SSK K SS64SSSS
SS65SSK PROCESSING FOR CONVERSION SOURCE TO TARGET (FUNCTION=ST), K SS65SSSS
SS66SSK ISSUED BY DXT-DEM AND DPROP: K SS66SSSS
SS67SSK -- K SS67SSSS
SS68SSK K SS68SSSS
SS69SSK THE SOURCE FIELD IS CONVERTED A BIT AT A TIME INTO K SS69SSSS
SS7SSSK 'S' OR '1' CHARACTERS IN THE TARGET FIELD. FOR K SS7SSSSS
SS71SSK EXAMPLE THE 2 BYTE CHARACTER STRING 'A1' IS HEX K SS71SSSS
SS72SSK 'C1F1' OR '11SSSSS11111SSS1' IN BINARY. IT WOULD K SS72SSSS
SS73SSK BE CONVERTED INTO THE 16 BYTES CHARACTER STRING K SS73SSSS
SS74SSK '11SSSSS11111SSS1'. THE LENGTH OF THE TARGET FIELD K SS74SSSS
SS75SSK TERMINATES PROCESSING. IF THE TARGET LENGTH IS K SS75SSSS
SS76SSK GREATER THAN SOURCE LENGTH TIMES 8, THE REMAINING K SS76SSSS
SS77SSK RIGHT HAND BYTES ARE SET TO THE CHARACTER 'S'. K SS77SSSS
SS78SSK K SS78SSSS
SS79SSK K SS79SSSS
SS8SSSK PROCESSING FOR CONVERSION TARGET TO SOURCE (FUNCTION=TS), K SS8SSSSS
SS81SSK ISSUED BY DPROP: K SS81SSSS
SS82SSK -- K SS82SSSS
SS83SSK K SS83SSSS
SS84SSK EACH TARGET BYTE IS CONVERTED TO THE CORRESPONDING K SS84SSSS
SS85SSK BIT IN THE SOURCE FIELD. THE LENGTH OF THE SOURCE K SS85SSSS
SS86SSK FIELD TERMINATES PROCESSING. IF THE SOURCE FIELD K SS86SSSS
SS87SSK LENGTH IS GREATER THAN THE TARGET FIELD / 8, THE K SS87SSSS
SS88SSK REMAINING RIGHT HAND BITS ARE SET TO S. K SS88SSSS
SS88SSK EACH BYTE MUST BE "S" OR "1". K SS89SSSS
SS89SSK K SS9SSSSS
SS9SSS/K SS91SSSS
SS91SSK K SS92SSSS
SS92SSK SPECIFIC EXIT FUNCTIONS DEMONSTRATED BY THIS MODULE. K SS93SSSS
SS93SSK --- K SS94SSSS
SS94SSK K SS95SSSS
SS95SSK 1. PROCESSING THE INVOCATION PARM LIST. K SS96SSSS
SS96SSK 2. USING THE USER ANCHOR AREA. K SS97SSSS
SS97SSK 3. IDENTIFYING THE REQUESTED FUNCTION. K SS98SSSS
SS98SSK 4. UIM VALIDATION OF 'V' TYPE LENGTH FIELDS. K SS99SSSS
SS99SSK 5. THE USE OF THE MESSAGE AREA. K S1SSSSSS
S1SSSSK K S1S1SSSS
S1S1SSK INPUT: (PASSED AS PARAMETERS). K S1S2SSSS
S1S2SSK ----- K S1S3SSSS
S1S3SSK K S1S4SSSS
S1S4SSK 1. UDT - USER DATA TYPE INTERFACE CONTROL BLOCK. K S1S5SSSS
S1S5SSK 2. SOURCE BUFFER - THE SOURCE USER DATA (N/A FOR DEFINE CALL)K S1S6SSSS
S1S6SSK 3. TARGET BUFFER - TARGET AFTER CONVERSION (N/A FOR DEFINE). K S1S7SSSS
S1S7SSK 4. USER ANCHOR AREA - A 64 BYTE AREA FOR USE BY THE EXIT. K S1S8SSSS
S1S8SSK K S1S9SSSS
S1S9SSK K S11SSSSS
S11SSSKKK S111SSSS
S111SSK K S112SSSS
S112SSK RETURN CODE AND MESSAGES ARE SET IN UDT BLOCK) K S113SSSS
S113SSK K S114SSSS
S114SSK RETURN CODE = S PROCESSING SUCCESSFUL - NO MESSAGE SET. K S115SSSS
S115SSK K S116SSSS
S116SSK RETURN CODE = 4 DATA TYPE VALIDATION FAILED - MESSAGE SET.K S117SSSS
S117SSK 'SOURCE LENGTH NOT SPECIFIED - REQUIRED. ' K S118SSSS
S118SSK 'SOURCE LENGTH EXCEEDS MAXIMUM ALLOWED. ' K S119SSSS
S119SSK 'TARGET LENGTH NOT SPECIFIED - REQUIRED. ' K S12SSSSS
S12SSSK 'TARGET LENGTH EXCEEDS MAXIMUM ALLOWED. ' K S121SSSS

Figure 39 (Part 2 of 9). Second Sample Field Exit Routine (COBOL)

 Chapter 3. Field Exit Routines 145

S121SSK 'TARGET DATA TYPE MUST BE CHARACTER ' K S122SSSS
S122SSK 'TARGET SCALE MUST NOT BE SPECIFIED ' K S123SSSS
S123SSK K S124SSSS
S124SSK K S125SSSS
S125SSK RETURN CODE =16 UNIDENTIFIED FUNCTION - MESSAGE IS SET. K S126SSSS
S126SSK 'DATA TYPE CALL FUNCTION CANNOT BE IDENTIFIED' K S127SSSS
S127SSK K S128SSSS
S128SSKKK S129SSSS
S129SS/K S13SSSSS
S13SSSKKK S131SSSS
S131SSK INFORMATION FOR INSTALLATIONS WHICH COMBINE K S132SSSS
S132SSK THE USAGE OF DataRefresher AND DPROP. K S133SSSS
S133SSK --- K S134SSSS
S134SSK K S135SSSS
S135SSK THESE INSTALLATIONS DEFINE THE DL/I-TO-DB2 AND VICE-VERSA K S136SSSS
S136SSK MAPPING BY PROVIDING MAPPING DEFINITIONS TO DXT. K S137SSSS
S137SSK USAGE OF THIS FIELD EXIT ROUTINE REQUIRES FOLLOWING K S138SSSS
S138SSK SPECIFICATIONS IN THE DataRefresher 'CREATE DATATYPE' AND K S139SSSS
S139SSK 'CREATE DXTPSB' 'FIELD' STATEMENT: K S14SSSSS
S14SSSK K S141SSSS
S141SSK INVOCATION OF A FIELD EXIT ROUTINE IS DEFINED BOTH K S142SSSS
S142SSK BY SPECIFICATIONS IN THE DXT 'CREATE DATATYPE' AND K S143SSSS
S143SSK 'CREATE DXTPSB' 'FIELD' STATEMENT. K S144SSSS
S144SSK K S145SSSS
S145SSK THE CREATE DATATYPE: K S146SSSS
S146SSK ------------------- K S147SSSS
S147SSK K S148SSSS
S148SSK EXIT = EKYEFL1C - THE EXIT LOAD MODULE NAME K S149SSSS
S149SSK SRCTYPE = XX - THE TWO CHARACTER USER DATA TYPE ID. K S15SSSSS
S15SSSK SRCBYTES = VARIES - THE SOURCE FIELD LENGTH. K S151SSSS
S151SSK OR NNNN (MAXIMUM SOURCE LENGTH IS 16 FOR K S152SSSS
S152SSK THIS SAMPLE. THE EXIT PROGRAM COULD K S153SSSS
S153SSK HAVE THE LIMIT INCREASED TO 4S92.) K S154SSSS
S154SSK TRGTYPE = C - MUST BE A 'C' FOR CHAR TYPE TARGET. K S155SSSS
S155SSK TRGBYTES = VARIES - THE TARGET FIELD/COLUMN LENGTH K S156SSSS
S156SSK OR NNNN THE TARGET LENGTH SHOULD BE 8 TIMES K S157SSSS
S157SSK THE SOURCE LENGTH. K S158SSSS
S158SSK IF TRGBYTES IS SPECIFIED AS 'VARIES' K S159SSSS
S159SSK ON THE 'CREATE DATATYPE', THEN THE K S16SSSSS
S16SSSK EXIT WILL SET (DURING THE 'DEFINITION K S161SSSS
S161SSK CALL') THE TARGET LENGTH TO 8 TIMES K S162SSSS
S162SSK THE SOURCE LENGTH. K S163SSSS
S163SSK (MAXIMUM TARGET LENGTH IS 128 IN K S164SSSS
S164SSK THIS SAMPLE, BUT THE PROGRAM COULD K S165SSSS
S165SSK HAVE THE LIMIT INCREASED TO 32,736.) K S166SSSS
S166SSK SRCSCALE =, AND TRGSCALE = MUST NOT BE SPECIFIED. K S167SSSS
S167SSK K S168SSSS
S168SSK THE FIELD STATEMENT IN CREATE DXTFILE: K S169SSSS
S169SSK ------------------------------------- K S17SSSSS
S17SSSK K S171SSSS
S171SSK TYPE = XX - RELATES THIS FIELD TO A DXT DATATYPE. K S172SSSS
S172SSK BYTES = NN - THE SOURCE FIELD LENGTH. K S173SSSS
S173SSK IF DEFINED AS 'VARIES' IN THE K S174SSSS
S174SSK DATATYPE STATEMENT, IT MUST NOT K S175SSSS
S175SSK EXCEED THE MAXIMUM FIELD LENGTH K S176SSSS
S176SSK ALLOWED BY THE EXIT. K S177SSSS
S177SSK IF NOT DEFINED AS 'VARIES', K S178SSSS
S178SSK IT MUST EQUAL THE 'SRCBYTES' K S179SSSS
S179SSK OPERAND IN THE DATATYPE STATEMENT. K S18SSSSS
S18SSSK SCALE = MUST NOT BE SPECIFIED. K S181SSSS

Figure 39 (Part 3 of 9). Second Sample Field Exit Routine (COBOL)

146 Customization Guide

S181SSK K S182SSSS
S182SS/K S183SSSS
S183SSKKK S184SSSS
S184SSK INFORMATION FOR INSTALLATIONS WHICH USE DPROP WITHOUT DXT. K S185SSSS
S185SSK --- K S186SSSS
S186SSK K S187SSSS
S187SSK THESE INSTALLATIONS DEFINE THE DL/I-TO-DB2 AND VICE-VERSA K S188SSSS
S188SSK MAPPING BY PROVIDING MAPPING DEFINITIONS IN THE DPROP K S189SSSS
S189SSK 'MVG INPUT TABLES'. K S19SSSSS
S19SSSK USAGE OF THIS SAMPLE FIELD EXIT ROUTINE REQUIRES FOLLOWING K S191SSSS
S191SSK DEFINITIONS IN THE DPRIFLD TABLE: K S192SSSS
S192SSK K S193SSSS
S193SSK INVOCATION OF A FIELD EXIT ROUTINE IS DEFINED BOTH K S194SSSS
S194SSK BY SPECIFICATIONS IN THAT ROW OF THE 'DPRIFLD' TABLE K S195SSSS
S195SSK WHICH DESCRIBES THE FIELD TO BE MAPPED. K S196SSSS
S196SSK K S197SSSS
S197SSK COLUMNS OF THE DPRIFLD ROW SHOULD PROVIDE FOLLOWING K S198SSSS
S198SSK DEFINITIONS: K S199SSSS
S199SSK K S2SSSSSS
S2SSSSK COLUMN OF COLUMN K S2S1SSSS
S2S1SSK DPRIFLD VALUE EXPLANATIONS K S2S2SSSS
S2S2SSK -- K S2S3SSSS
S2S3SSK FLDEXIT = EKYEFL1C: THE EXIT LOAD MODULE NAME K S2S4SSSS
S2S4SSK DATATYPE = XX : A TWO CHARACTER DATA-TYPE ID. K S2S5SSSS
S2S5SSK BYTES = NNNN : THE SOURCE FIELD LENGTH K S2S6SSSS
S2S6SSK FLDETYPE = C : THE TARGET DATA-TYPE MUST BE 'C '. K S2S7SSSS
S2S7SSK FLDEBYTE = MMMMM : THE TARGET FIELD LENGTH K S2S8SSSS
S2S8SSK (MUST BE 8 TIMES THE SOURCE K S2S9SSSS
S2S9SSK FIELD LENGTH). K S21SSSSS
S21SSSK SCALE = : SHOULD EITHER NOT BE PROVIDED OR K S211SSSS
S211SSK SHOULD BE SPECIFIED AS ZERO. K S212SSSS
S212SSK FLDESCAL = : SHOULD EITHER NOT BE PROVIDED OR K S213SSSS
S213SSK SHOULD BE SPECIFIED AS ZERO. K S214SSSS
S214SSK K S215SSSS
S215SSKKKKKKKKKKKKKKKKKKKK END OF SPECIFICATIONS KKKKKKKKKKKKKKKKKKKKKK S216SSSS
S216SS/K S217SSSS
S217SS IDENTIFICATION DIVISION. S218SSSS
S218SS PROGRAM-ID. EKYEFL1C. S219SSSS
S219SS ENVIRONMENT DIVISION. S22SSSSS
S22SSS DATA DIVISION. S221SSSS
S221SS WORKING-STORAGE SECTION. S222SSSS
S222SS 77 XDBITON PICTURE X USAGE DISPLAY VALUE "1". S223SSSS
S223SS 77 XDBITOFF PICTURE X USAGE DISPLAY VALUE "S". S224SSSS
S224SS 77 MAXSRCLG PICTURE S9999 USAGE COMPUTATIONAL VALUE S16. S225SSSS
S225SS 77 MAXTARLG PICTURE S9999 USAGE COMPUTATIONAL VALUE S128. S226SSSS
S226SS 77 XTVALUE PICTURE S9999 USAGE COMPUTATIONAL. S227SSSS
S227SSK S228SSSS
S228SS S1 EMESSAGE. S229SSSS
S229SS S2 EMSGSSSS. S23SSSSS
S23SSS S3 FILLER PICTURE X(16) S231SSSS
S231SS VALUE "EXIT=EKYEFL1C - ". S232SSSS
S232SS S3 FILLER PICTURE X(44) S233SSSS
S233SS VALUE "SOURCE LENGTH NOT SPECIFIED - REQUIRED. ". S234SSSS
S234SS S3 FILLER PICTURE X(S4) S235SSSS
S235SS VALUE " ". S236SSSS
S236SS S2 EMSGSS1S. S237SSSS
S237SS S3 FILLER PICTURE X(16) S238SSSS
S238SS VALUE "EXIT=EKYEFL1C - ". S239SSSS
S239SS S3 FILLER PICTURE X(44) S24SSSSS
S24SSS VALUE "SOURCE LENGTH EXCEEDS MAXIMUM ALLOWED. ". S241SSSS

Figure 39 (Part 4 of 9). Second Sample Field Exit Routine (COBOL)

 Chapter 3. Field Exit Routines 147

S241SS S3 FILLER PICTURE X(S4) S242SSSS
S242SS VALUE " ". S243SSSS
S243SS S2 EMSGSS2S. S244SSSS
S244SS S3 FILLER PICTURE X(16) S245SSSS
S245SS VALUE "EXIT=EKYEFL1C - ". S246SSSS
S246SS S3 FILLER PICTURE X(44) S247SSSS
S247SS VALUE "TARGET LENGTH NOT SPECIFIED - REQUIRED. ". S248SSSS
S248SS S3 FILLER PICTURE X(S4) S249SSSS
S249SS VALUE " ". S25SSSSS
S25SSS S2 EMSGSS3S. S251SSSS
S251SS S3 FILLER PICTURE X(16) S252SSSS
S252SS VALUE "EXIT=EKYEFL1C - ". S253SSSS
S253SS S3 FILLER PICTURE X(44) S254SSSS
S254SS VALUE "TARGET LENGTH EXCEEDS MAXIMUM ALLOWED. ". S255SSSS
S255SS S3 FILLER PICTURE X(S4) S256SSSS
S256SS VALUE " ". S257SSSS
S257SS S2 EMSGSS4S. S258SSSS
S258SS S3 FILLER PICTURE X(16) S259SSSS
S259SS VALUE "EXIT=EKYEFL1C - ". S26SSSSS
S26SSS S3 FILLER PICTURE X(44) S261SSSS
S261SS VALUE "TARGET DATA TYPE MUST BE CHARACTER. ". S262SSSS
S262SS S3 FILLER PICTURE X(S4) S263SSSS
S263SS VALUE " ". S264SSSS
S264SS S2 EMSGSS5S. S265SSSS
S265SS S3 FILLER PICTURE X(16) S266SSSS
S266SS VALUE "EXIT=EKYEFL1C - ". S267SSSS
S267SS S3 FILLER PICTURE X(44) S268SSSS
S268SS VALUE "TARGET SCALE MUST NOT BE SPECIFIED. ". S269SSSS
S269SS S3 FILLER PICTURE X(S4) S27SSSSS
S27SSS VALUE " ". S271SSSS
S271SS S2 EMSGDSSS. S272SSSS
S272SS S3 FILLER PICTURE X(16) S273SSSS
S273SS VALUE "EXIT=EKYEFL1C - ". S274SSSS
S274SS S3 FILLER PICTURE X(44) S275SSSS
S275SS VALUE "DATA TYPE CALL FUNCTION CANNOT BE IDENTIFIED". S276SSSS
S276SS S3 FILLER PICTURE X(S4) S277SSSS
S277SS VALUE ". ". S278SSSS
S285SS/K S279SSSS
S286SSKKK S28SSSSS
S287SSK S281SSSS
S288SS LINKAGE SECTION. S282SSSS
S289SSK S283SSSS
S29SSSKKK S284SSSS
S291SSK THE FOLLOWING CONTROL BLOCK IS SHIPPED WITH THE DPROP PRODUCTK S285SSSS
S292SSKKK S286SSSS
S293SSK S287SSSS
S294SS COPY EKYRCUDC. S288SSSS
S295SSK S289SSSS
S296SSKKK S29SSSSS
S297SSK THIS DESCRIBES THE SOURCE FIELD TO BE CONVERTED K S291SSSS
S298SSKKK S292SSSS
S299SSK S293SSSS
S3SSSS S1 SRCFIELD. S294SSSS

Figure 39 (Part 5 of 9). Second Sample Field Exit Routine (COBOL)

148 Customization Guide

S3S1SS S2 SRCBYTE PICTURE X USAGE DISPLAY OCCURS 16 TIMES. S295SSSS
S3S2SSK S296SSSS
S3S3SSKKK S297SSSS
S3S4SSK THIS DESCRIBES THE TARGET FOR THE CONVERTED OUTPUT K S298SSSS
S3S5SSKKK S299SSSS
S3S6SSK S3SSSSSS
S3S7SS S1 TARFIELD. S3S1SSSS
S3S8SS S2 TARBYTE PICTURE X USAGE DISPLAY OCCURS 128 TIMES. S3S2SSSS
S3S9SSK S3S3SSSS
S31SSSKKK S3S4SSSS
S311SSK THIS 64 BYTE USERAREA IS FOR THE EXCLUSIVE USE OF THIS K S3S5SSSS
S312SSK EXIT. ITS CONTENTS WILL BE PRESERVED BETWEEN CALLS. K S3S6SSSS
S313SSK IT IS INITIALIZED TO BINARY ZEROS. K S3S7SSSS
S314SSKKK S3S8SSSS
S315SSK S3S9SSSS
S316SS S1 USERAREA. S31SSSSS
S317SS S2 SPECAREA PICTURE S99999 USAGE COMPUTATIONAL. S311SSSS
S318SS S2 SPECARE2 PICTURE S99999 USAGE COMPUTATIONAL. S312SSSS
S319SS S2 TARNUMBER PICTURE S99999 USAGE COMPUTATIONAL. S313SSSS
S32SSS S2 TESTITX REDEFINES TARNUMBER. S314SSSS
S321SS S3 TOPPART PICTURE XXX USAGE DISPLAY. S315SSSS
S322SS S3 TESTPART PICTURE X USAGE DISPLAY. S316SSSS
S323SS S2 SCOUNT PICTURE S9999 USAGE COMPUTATIONAL. S317SSSS
S324SS S2 TCOUNT PICTURE S9999 USAGE COMPUTATIONAL. S318SSSS
S325SS S2 BCOUNT PICTURE S9999 USAGE COMPUTATIONAL. S319SSSS
S326SS S2 FUNCVALD PICTURE X USAGE DISPLAY. S32SSSSS
S327SS/K S321SSSS
S328SSKKK S322SSSS
S329SSK S323SSSS
S33SSS PROCEDURE DIVISION USING EKYRCUDC S324SSSS
S331SS SRCFIELD S325SSSS
S332SS TARFIELD S326SSSS
S333SS USERAREA. S327SSSS
S334SSK S328SSSS
S335SSKKK SET CONTROL FLAGS - EXIT ENTERED, EXIT IN CONTROL, S329SSSS
S336SSKKK FUNCTION NOT IDENTIFIED. S33SSSSS
S337SSK S331SSSS
S338SS MOVE "X" TO UDTENTRD. S332SSSS
S339SS MOVE "X" TO UDTINCTL. S333SSSS
S34SSS MOVE " " TO FUNCVALD. S334SSSS
S341SSK S335SSSS
S342SSKKK SELECT THE REQUIRE PROCESSING ROUTINE BASED S336SSSS
S343SSKKK ON CALL FUNCTION S337SSSS
S344SSK S338SSSS
S345SSKKK 1. DXT-UIM DEFINE CALL S339SSSS
S346SSK S34SSSSS
S347SS IF UDTCDEFN THEN S341SSSS
S348SS MOVE "X" TO FUNCVALD S342SSSS
S349SS PERFORM UIMVALSS THROUGH UIMVALXS. S343SSSS
S35SSSK S344SSSS
S351SSKKK 2. DPROP/DataRefresher SOURCE TO TARGET S345SSSS
S352SSK S346SSSS
S353SS IF UDTCSRTG THEN S347SSSS
S354SS MOVE "X" TO FUNCVALD S348SSSS
S355SS PERFORM SRCTARTS THROUGH SRCTARTX. S349SSSS
S356SSK S35SSSSS
S357SSKKK 3. DPROP TARGET TO SOURCE S351SSSS
S358SSK S352SSSS
S359SS IF UDTCTGSR THEN S353SSSS
S36SSS MOVE "X" TO FUNCVALD S354SSSS

Figure 39 (Part 6 of 9). Second Sample Field Exit Routine (COBOL)

 Chapter 3. Field Exit Routines 149

S361SS PERFORM TARTSRCS THROUGH TARTSRCX. S355SSSS
S362SSK S356SSSS
S363SSKKK 4. CALL FUNCTION IS UNIDENTIFIED S357SSSS
S364SSK S358SSSS
S365SS IF FUNCVALD NOT EQUAL "X" THEN S359SSSS
S366SSKKK SET MESSAGE AND TERMINATE RETURN CODE S36SSSSS
S367SS MOVE EMSGDSSS TO UDTXMESG S361SSSS
S368SS MOVE 16 TO UDTXRETC. S362SSSS
S369SSK S363SSSS
S37SSS GOBACK. S364SSSS
S371SS/K S365SSSS
S372SSKKK S366SSSS
S373SSK PROCEDURE: UIMVALSS K S367SSSS
S374SSK K S368SSSS
S375SSK FUNCTION: VALIDATE VALUES SET IN THE CONTROL BLOCK FOR THIS K S369SSSS
S376SSK DATA TYPE. SET CONTROL BLOCKS VALUES WHEN REQUIRED. K S37SSSSS
S377SSKKK S371SSSS
S378SSK S372SSSS
S379SSK IF SOURCE LGT IS NOT ZERO S373SSSS
S38SSSK . IF SOURCE LGT NOT TOO LONG S374SSSS
S381SSK . . IF TARGET TYPE VARIABLE S375SSSS
S382SSK . . SET TARGET LGT=(SRC LGTK8) S376SSSS
S383SSK . . ELSE USE PASSED TARGET LENGTH S377SSSS
S384SSK . . END-IF S378SSSS
S385SSK . . IF TARGET IS NOT ZERO S379SSSS
S386SSK . . . IF TARGET LGT NOT TOO LONG S38SSSSS
S387SSK IF TARGET DATA TYPE = CHARACTER S381SSSS
S388SSK IF TARGET SCALE = "N" S382SSSS
S389SSK SET RC=S: VALIDATION SUCCESSFUL S383SSSS
S39SSSK ELSE S384SSSS
S391SSK MESSAGE = EMSGSS5S S385SSSS
S392SSK ELSE S386SSSS
S393SSK MESSAGE = EMSGSS4S S387SSSS
S394SSK . . . ELSE S388SSSS
S395SSK . . . MESSAGE = EMSGSS3S S389SSSS
S396SSK . . ELSE S39SSSSS
S397SSK . . MESSAGE = EMSGSS2S S391SSSS
S398SSK . ELSE S392SSSS
S399SSK . MESSAGE = EMSGSS1S S393SSSS
S4SSSSK ELSE S394SSSS
S4S1SSK MESSAGE = EMSGSSSS. S395SSSS
S4S2SSK S396SSSS
S4S3SS UIMVALSS. S397SSSS
S4S4SS MOVE 4 TO UDTXRETC. S398SSSS
S4S5SS IF UDTSBYTV GREATER THAN S THEN S399SSSS
S4S6SS IF UDTSBYTV NOT GREATER THAN MAXSRCLG THEN S4SSSSSS
S4S7SS IF UDTTBYTI = "V" THEN S4S1SSSS
S4S8SS COMPUTE UDTTBYTV = UDTSBYTV K 8 S4S2SSSS
S4S9SS END-IF S4S3SSSS
S41SSS IF UDTTBYTV GREATER THAN S THEN S4S4SSSS
S411SS IF UDTTBYTV NOT GREATER THAN MAXTARLG THEN S4S5SSSS
S412SS IF UDTTTYPE IS EQUAL TO "C " THEN S4S6SSSS
S413SS IF UDTTSCLN THEN S4S7SSSS
S414SS MOVE S TO UDTXRETC S4S8SSSS
S415SS ELSE S4S9SSSS
S416SS MOVE EMSGSS5S TO UDTXMESG S41SSSSS
S417SS ELSE S411SSSS
S418SS MOVE EMSGSS4S TO UDTXMESG S412SSSS
S419SS ELSE S413SSSS
S42SSS MOVE EMSGSS3S TO UDTXMESG S414SSSS

Figure 39 (Part 7 of 9). Second Sample Field Exit Routine (COBOL)

150 Customization Guide

S421SS ELSE S415SSSS
S422SS MOVE EMSGSS2S TO UDTXMESG S416SSSS
S423SS ELSE S417SSSS
S424SS MOVE EMSGSS1S TO UDTXMESG S418SSSS
S425SS ELSE S419SSSS
S426SS MOVE EMSGSSSS TO UDTXMESG. S42SSSSS
S427SS UIMVALXS. EXIT. S421SSSS
S428SS/K S422SSSS
S429SSKKK S423SSSS
S43SSSK PROCEDURE: SRCTARTS K S424SSSS
S431SSK K S425SSSS
S432SSK FUNCTION: CONVERT A EACH SOURCE BYTE TO A "ON" OR "OFF' K S426SSSS
S433SSK CHARACTER. K S427SSSS
S434SSKKK S428SSSS
S435SSK S429SSSS
S436SS SRCTARTS. S43SSSSS
S437SSK S431SSSS
S438SS MOVE S TO UDTXRETC. S432SSSS
S439SSK S433SSSS
S44SSS MOVE ZERO TO SCOUNT. S434SSSS
S441SS MOVE ZERO TO TCOUNT. S435SSSS
S442SS MOVE ZERO TO BCOUNT. S436SSSS
S443SSK S437SSSS
S444SSKKK MOVE NEXT SOURCE BYTE TO BINARY WORD FOR BIT CHECK. S438SSSS
S445SSK S439SSSS
S446SS GETNXSRC. S44SSSSS
S447SS MOVE S TO BCOUNT. S441SSSS
S448SS IF SCOUNT IS LESS THAN UDTSBYTV THEN S442SSSS
S449SS ADD 1 TO SCOUNT S443SSSS
S45SSS MOVE ZERO TO TARNUMBER S444SSSS
S451SS MOVE SRCBYTE(SCOUNT) TO TESTPART. S445SSSS
S452SSK S446SSSS
S453SSKKK SET NEXT TARGET BYTE TO THE "ON" VALUE OR THE "OFF" S447SSSS
S454SSKKK VALUE DEPENDING ON THE CORRESPONDING BIT BEING 1 OR S S448SSSS
S455SSK S449SSSS
S456SS TOTARGET. S45SSSSS
S457SS ADD 1 TO BCOUNT. S451SSSS
S458SS ADD 1 TO TCOUNT. S452SSSS
S459SSK S453SSSS
S46SSS IF TCOUNT IS GREATER THAN UDTTBYTV THEN S454SSSS
S461SS GO TO SRCTARTX. S455SSSS
S462SSK S456SSSS
S463SS MOVE XDBITOFF TO TARBYTE(TCOUNT). S457SSSS
S464SSK S458SSSS
S465SS IF SCOUNT IS NOT GREATER THAN UDTSBYTV THEN S459SSSS
S466SS ADD TARNUMBER TO TARNUMBER S46SSSSS
S467SS IF TARNUMBER IS NOT LESS THAN 256 THEN S461SSSS
S468SS SUBTRACT 256 FROM TARNUMBER S462SSSS
S469SS MOVE XDBITON TO TARBYTE(TCOUNT). S463SSSS
S47SSSK S464SSSS
S471SS IF BCOUNT EQUAL TO 8 THEN S465SSSS
S472SS GO TO GETNXSRC S466SSSS
S473SS ELSE S467SSSS
S474SS GO TO TOTARGET. S468SSSS
S475SS SRCTARTX. S469SSSS
S476SS/K S47SSSSS
S477SSKKK S471SSSS
S478SSK PROCEDURE: TARTSRCS K S472SSSS
S479SSK K S473SSSS
S48SSSK FUNCTION: CONVERT A EACH 'TARGET' BYTE K S474SSSS

Figure 39 (Part 8 of 9). Second Sample Field Exit Routine (COBOL)

 Chapter 3. Field Exit Routines 151

S481SSK TO A 'S' OR '1' BIT. K S475SSSS
S482SSK K S476SSSS
S483SSKKK IN THE FOLLOWING PROCESS, THE 'TARGET' IS THE SENDING KKKK S477SSSS
S484SSKKK FIELD AND THE 'SOURCE' IS THE RECEIVING FIELD KKKK S478SSSS
S485SSK K S479SSSS
S486SSKKK S48SSSSS
S487SSK S481SSSS
S488SS TARTSRCS. S482SSSS
S489SSK S483SSSS
S49SSS MOVE ZERO TO UDTXRETC. S484SSSS
S491SS MOVE ZERO TO TCOUNT. S485SSSS
S492SS MOVE ZERO TO SCOUNT. S486SSSS
S493SSK S487SSSS
S494SSKKK PROCESS FIRST OR NEXT 'SOURCE' BYTE. S488SSSS
S495SSK S489SSSS
S496SS TARTSRC1. S49SSSSS
S497SS MOVE 256 TO XTVALUE S491SSSS
S498SS MOVE ZERO TO TARNUMBER. S492SSSS
S499SS MOVE ZERO TO BCOUNT. S493SSSS
S5SSSS ADD 1 TO SCOUNT S494SSSS
S5S1SSK S495SSSS
S5S2SSKKK WHEN ALL 'SOURCE' BYTES ARE FILLED, THEN STOP S496SSSS
S5S3SSKKK ELSE, INITIALIZE THE 'SOURCE' BYTE TO ZERO. S497SSSS
S5S4SSK S498SSSS
S5S5SS IF SCOUNT IS GREATER THAN UDTSBYTV THEN S499SSSS
S5S6SS GO TO TARTSRCX S5SSSSSS
S5S7SS ELSE S5S1SSSS
S5S8SS MOVE TESTPART TO SRCBYTE(SCOUNT). S5S2SSSS
S5S9SSK S5S3SSSS
S51SSSKKK SET NEXT 'SOURCE' BIT TO S OR TO 1 DEPENDING IF S5S4SSSS
S511SSKKK THE CORRESPONDING 'TARGET' BYTE IS 'S' OR '1' S5S5SSSS
S512SSK S5S6SSSS
S513SS TARTSRC2. S5S7SSSS
S514SS COMPUTE XTVALUE = XTVALUE / 2. S5S8SSSS
S515SS ADD 1 TO BCOUNT. S5S9SSSS
S516SS ADD 1 TO TCOUNT. S51SSSSS
S517SSK S511SSSS
S518SS IF TCOUNT IS GREATER THAN UDTTBYTV THEN S512SSSS
S519SS GO TO TARTSRC1. S513SSSS
S52SSSK S514SSSS
S521SS IF TARBYTE(TCOUNT) = "1" S515SSSS
S522SS ADD XTVALUE TO TARNUMBER. S516SSSS
S523SSK S517SSSS
S524SS IF BCOUNT EQUAL TO 8 THEN S518SSSS
S525SS MOVE TESTPART TO SRCBYTE(SCOUNT) S519SSSS
S526SS GO TO TARTSRC1 S52SSSSS
S527SS ELSE S521SSSS
S528SS GO TO TARTSRC2. S522SSSS
S529SS TARTSRCX. S523SSSS
S53SSSK S524SSSS
S533SSKKK S525SSSS

Figure 39 (Part 9 of 9). Second Sample Field Exit Routine (COBOL)

152 Customization Guide

Chapter 4. Propagation Exit Routines

If the generalized mapping cases are not flexible enough for your needs, you can
use a Propagation exit routine. This type of exit routine supplies all its own
mapping logic and propagating SQL or DL/I calls. DPROP calls the exit routine,
which retains many of the DPROP support functions. This is the advantage a
Propagation exit routine has over an IMS Data Capture exit routine (as described in
IMS/ESA Customization Guide), or a DB2 Data Capture exit routine. These
DPROP-supported functions are discussed below.

If you have specified the use of a Propagation exit routine for a particular PR,
DPROP calls your exit routine as soon as it receives the changed data. DPROP
does not use any of its own mapping logic; instead, it relies on your exit routine to
perform any data transformations you need and to propagate the data to the DB2
table or IMS database.

Your exit routine can be written in Assembler, or in COBOL, PL/I, or C. The
DPROP support for exit routines written in HLLs requires LE/370 Version 1 Release
2.

For synchronous propagation, DPROP calls your exits in both IMS batch and online
dependent regions accessing DB2. For LOG-ASYNC propagation the RUP calls
your exit routines in an MVS batch environment using CAF attach to DB2. For user
asynchronous propagation, depending on your implementation, the RUP can call
your exit routine in IMS batch and dependent regions accessing DB2, or in a
non-IMS DB2 TSO or DB2 CAF environment.

Propagation exit routines differ from Segment and Field exit routines, in that
DataRefresher does not call Propagation exit routines during data extraction. In
some cases, you can use DataRefresher's more powerful mapping capabilities to
extract and load the data. Otherwise, you must write your own programs to extract
the IMS data. Loading the DB2 tables can then be done either by creating an input
data set for the DB2 Load Utility, or by inserting the DB2 rows with SQL
statements; this takes more time.

Propagation exit routines differ from Segment and Field exit routines, in that the
DPROP DLU does not call Propagation exit routines. Data propagated by
Propagation exit routines can be passed, using sequential files, to the DLU. See
IMS DPROP Reference for more information.

To avoid propagation failures, the mapping performed during the extract and load
must be compatible with the mapping that your Propagation exit routine performs.

Environment Considerations for a Propagation Exit Routine
S In Synchronous propagation mode, your Propagation exit routine can be called by
S the RUP (when the propagation direction is HR) or by the HUP (when the
S propagation direction is RH). Because the RUP and the HUP run as as extensions
S of IMS mixed mode applications your Propagation exit routine runs as an IMS
S mixed mode application. This allows your Propagation exit routine to issue both
S DL/I calls and SQL calls, but you must link edit your Propagation exit routine with
S the DB2 language interface for IMS Attach.

 Copyright IBM Corp. 1991,2001 153

A In LOG-ASYNC propagation mode, your Propagation exit routine can only be called
A by the RUP (propagation direction is always HR). The RUP is called by the
A Receiver which runs as an MVS application with a CAF Attach to DB2. This means
A that your Propagation exit routine can only issue SQL calls. In this case, you
A must link edit your Propagation exit routine with the DB2 language interface for
A CAF Attach.

A In User Asynchronous propagation mode, your Propagation exit routine can only be
A called by the RUP (propagation direction is always HR). The RUP is called by your
A own user-written receiver programs which can run either as an IMS application, a
A TSO application or as an MVS application with CAF Attach, depending on how you
A design it. If you design your own user-written receiver programs to run as an IMS
A mixed-mode application, then you can issue both DL/I calls and SQL calls from
A your Propagation exit routine.

It is recommended in all of the above cases that you code and link-edit your
Propagation exit routine as reentrant. You must also link-edit your Propagation exit
routine with the DPROP Trace Module EKYR410X.

How To Write A Propagation Exit Routine
Because you supply your own mapping logic and SQL or DL/I calls, DPROP is very
flexible regarding the structure of your Propagation exit routine. You can even
propagate data changes to more than one DB2 table. DPROP does not impose or
check rules for the mapping of keys or referential integrity relationships (RIRs).
DPROP also does not support the CCU and DLU. Mapping and verifying data
propagation is left up to you.

Before discussing the development of your exit routine, the next section briefly lists
which functions DPROP supports when using a Propagation exit.

Supported DPROP Functions
As mentioned above, DPROP does not impose or check rules for the mapping of
keys or RIRs. Also, Propagation exits do not support the use of the CCU and the
DLU.

However, DPROP still supports the following features when you use a Propagation
exit routine:

� DPROP-provided tracing support

� DPROP-provided Audit support

� Standardized error handling

� Orderly suspension of propagation

� Activation or deactivation of PRs

� Emergency stops of all propagating activities

� The PROP OFF //EKYIN control statement

� Protection against unintentional updates during IMS extract and DLU
processing

� Propagation definitions recorded in the DPROP directory

� Optional DBD version checking (for HR-propagation)

154 Customization Guide

Although you control the propagation of changed data, DPROP still provides some
of the valuable functions available to generalized mapping cases.

Creating your own user mapping with a Propagation exit routine, instead of using
an IMS Data Capture exit routine, or DB2 Data Capture exit routine, helps establish
a common process for managing the data propagation environment for both
generalized and user mapping cases.

Propagation Exit Routine Interface
When DPROP receives the changed data, it calls your Propagation exit routine.

1. The RUP calls your Propagation exit routine for IMS-to-DB2 mapping with an
interface similar to the IMS Data Capture Exit interface. The following control
blocks are passed:

� The Propagation Interface Control Block (PIC)
� The Extended Program Communication Block (XPCB)

The XPCB is a control block that IMS defines; it describes the changed
IMS data.

2. The HUP calls your Propagation exit routine for DB2-to-IMS mapping with the
following control blocks:

� The Propagation Interface Control Block (PIC)
� The HUP Exit Communication Block (HEC)

The HEC is a control block that DPROP defines; it contains pointers to
areas that the DB2 Data Capture exit passes.

Register 1 points to a list that is two fullwords long, containing the addresses of
these control blocks.

 Chapter 4. Propagation Exit Routines 155

Propagation Interface Control Block (PIC)
There is one interface control block per exit routine, lasting for the duration of the
exit in virtual storage.

You can generate the following DSECT in your assembler exit routine by coding the
EKYRCPIC macro statement. For HLL exit routines, you can include or copy one
of the following members to map the Propagation exit routine Interface Control
Block:

EKYRCPCC Exit routines written in COBOL
EKYRCPCP Eit routines written in PL/I
EKYRCPCK Exit routines written in C

Figure 40 on page 157 shows the structure of the control block, and is followed by
a detailed description of its fields.

156 Customization Guide

 1 EKYRCPIC
2+KKKKKKKKKKKKKKKKKK START OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKKKKK/

 3+K K/
4+K CONTROL BLOCK NAME: K/

 5+K EKYRCPIC (PIC) K/
 6+K K/
 7+K DESCRIPTIVE NAME: K/

8+K DPROP PROPAGATION EXIT INTERFACE BLOCK K/
 9+K K/
 1S+K K/
 11+KK
 12+K K

13+K THIS PRODUCT CONTAINS "RESTRICTED MATERIALS OF IBM". K
 14+K K

15+K 5685-124 (C) COPYRIGHT IBM CORP. 1989, 1992. K
16+K ALL RIGHTS RESERVED. K

 17+K K
18+K U.S. GOVERNMENT USERS RESTRICTED RIGHTS - K
19+K USE, DUPLICATION, OR DISCLOSURE RESTRICTED BY K
2S+K GSA ADP SCHEDULE CONTRACT WITH IBM CORP. K

 21+K K
22+K LICENSED MATERIALS - PROPERTY OF IBM. K

 23+K K
 24+KK
 25+K K/

26+K STATUS: V1 R2 MS K/
 27+K K/
 28+K FUNCTION: K/

29+K THIS IS THE CONTROL BLOCK USED TO INTERFACE BETWEEN K/
 3S+K - DPROP K/
 31+K AND K/

32+K - A USER'S PROPAGATION EXIT ROUTINE K/
 33+K K/

34+K THERE IS ONE PIC CB FOR EACH EXIT PROPAGATION K/
35+K EXIT ROUTINE, LASTING FOR THE DURATION OF THE EXIT K/
36+K IN VIRTUAL STORAGE. K/
37+K FOR SYNCH PROPAGATION IN MPP REGIONS: K/
38+K - THIS IS THE DURATION OF THE IMS PROGRAM CONTROLLER K/

 39+K SUBTASK. K/
4S+K FOR SYNCH PROPAGATION IN BATCH/BMP REGIONS, FOR K/
41+K ASYNCH PROPAGATION, AND FOR CCU PROCESSING: K/
42+K - THIS IS THE DURATION OF THE JOBSTEP. K/

 43+K K/
44+K MODULE TYPE= MACRO K/
45+K PROCESSOR= ASSEMBLER H K/

 46+K K/
47+K INNER CONTROL BLOCKS: NONE K/

 48+K K/
49+K MACROS USED FROM MACRO LIBRARY: NONE K/

 5S+K K/
 51+K CHANGE ACTIVITY: K/
 52+K KMPSS57 12/13/9S K/

53+K KMPSS6S S2/S8/91 COPYRIGHT INFORMATION K/
 54+K K/

55+KKKKKKKKKKKKKKKKKKKK END OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKKKKK/

 SSSSSS 57+PIC DSECT
 58+K--K

59+K THIS SECTION CONTAINS INFORMATION PROVIDED BY K
6S+K DPROP TO THE INVOKED EXIT AT ENTRY TO CALL. THIS K
61+K SECTION MUST NOT BE MODIFIED BY THE EXIT. K

 62+K--K

Figure 40 (Part 1 of 4). Interface Control Block for a Propagation Exit Routine

 Chapter 4. Propagation Exit Routines 157

 SSSSSS C5D2E8D9C3D7C9C3 64+PICEYE DC CL8'EKYRCPIC' EYE CATCHER
 SSSSS8 4S4S4S4S4S4S4S4S 65+PICEXIT DC CL8' ' NAME OF THE EXIT ROUTINE
 SSSS1S 4S4S 66+PICCALL DC CL2' ' TYPE OF CALL TO EXIT

67+K ...'HR': HIERARCH TO RELATIONAL PROP
68+K ...'RH': REL. TO HIERARCH

 SSSS12 SS 69+PICDBLEV DC X'SS' DEBUG LEVEL IN EFFECT
SSSS2 7S+PICDBLV2 EQU X'S2' 2 : EXTERNAL TRACE OF PROPAGATING

71+K SQL STATEMENTS AND DL/I CALLS
 SSSS13 SS 72+ DC X'SS' RESERVED
 SSSS14 SSSSSSSS 73+PICPTD DC A(S) A(DPROP PTD)
 SSSS18 4S4S4S4S4S4S4S4S 74+PICPRID DC CL8' ' PR-ID
 SSSS2S 4S4S4S4S4S4S4S4S 75+PICPRSET DC CL8' ' PRSET-ID
 SSSS28 4S4S4S4S4S4S4S4S 76+PICPRTST DC CL26' ' PR TIMESTAMP
 SSSS42 SSSS 77+ DC XL2'SS' RESERVED
 SSSS44 4S4S4S4S4S4S4S4S 78+PICPCBLA DC CL8' ' PCB LABEL AS SPECIFIED ON PR
 SSSS4C SSSSSSSSSSSSSSSS 79+ DC XL56'SS' RESERVED
 SSSS84 4S4S4S4S 8S+PICOPSYS DC CL4' ' OPERATING SYSTEM

81+K ...'ESA ': MVS/ESA
 SSSS88 4S4S4S4S 82+PICTRANS DC CL4' ' IMS REGION TYPE

83+K ...'MPP ': MPP REGION
84+K ...'IFP ': IMS FAST PATH REGION
85+K ...'BMP ': IMS BMP REGION
86+K ...'BAT ': IMS BATCH REGION
87+K ...' ': IF NONE OF ABOVE

 SSSS8C 4S4S4S4S 88+PICPROGM DC CL4' ' CALLING PROGRAM
89+K ...'DPRS': DPROP SYNCH PROPAGATION
9S+K ...'DPRA': DPROP ASYNCH PROPAGATION

 SSSS9S SSSSSSSSSSSSSSSS 91+ DC XL12'SS' RESERVED FOR DPROP

 93+K--K
94+K THIS SECTION IS USED BY THE EXIT TO PROVIDE K
95+K INFORMATION TO DPROP K

 96+K--K

 SSSS9C 4S 98+PICENTRD DC CL1' ' SET BY EXIT ROUTINE TO
 99+K C'X', INDICATES
 1SS+K THAT EXIT HAS BEEN ENTERED
 1S1+K
 SSSS9D 4S 1S2+PICINCTL DC CL1' ' SET BY EXIT ROUTINE TO
 1S3+K C'X', INDICATES
 1S4+K THAT EXIT IS IN CONTROL

 1S6+KKKKKKKK

1S7+KKKKKKKK RETURN CODE AND ERROR MESSAGE
 1S8+KKKKKKKK

 SSSS9E SSSS 11S+PICXRETC DC H'S' RETURN CODE

111+K ...4: SQL ERROR
112+K SQL ERROR CODE IS IN THE FIELD
113+K SQLCODE OF THE SQLCA
114+K ...8: DLI ERROR
115+K AIBRETRN, AIBREASN AND
116+K DLI STATUS CODE IN PCB
117+K POINTED BY AIBRSA1
118+K ..12: ERROR OTHER THAN SQL ERROR:
119+K SOME RESOURCES NOT AVAILABLE
12S+K ..16: ERROR OTHER THAN SQL ERROR:
121+K NOT A RESOURCE AVAILABILITY

 122+K PROBLEM.
123+K ..2S: SHOULD NOT OCCUR/SHOULD ABEND

 124+K
 SSSSAS 125+PICXMESG DS SCL28S USER EXIT ERROR/WARNING MESSAGE
 126+K DPROP WILL WRITE THE MESSAGE
 127+K TO VARIOUS DESTINATIONS ACCORDING
 128+K TO USUAL DPROP/RUP ERROR HANDLING

Figure 40 (Part 2 of 4). Interface Control Block for a Propagation Exit Routine

158 Customization Guide

 129+K LOGIC.
 SSSSAS 13S+PICXML1 DS SCL7S' ' 1ST MESSAGE LINE
 SSSSAS 131+PICXMSGI DS CL8' ' ...8 BYTES MESSAGE ID
 SSSSA8 132+PICXMSGB DS C' ' ...ONE BLANK
 SSSSA9 133+PICXMTXT DS CL61' ' ...61 TEXT BYTES IN 1ST MESSAGE LINE
 SSSSE6 134+PICXML2 DS CL7S' ' 2ND MESSAGE LINE
 SSS12C 135+PICXML3 DS CL7S' ' 3RD MESSAGE LINE
 SSS172 136+PICXML4 DS CL7S' ' 4TH MESSAGE LINE
 137+K
 SSS1B8 SSSSSSSSSSSSSSSS 138+ DC XL12'SS' RESERVED FOR DPROP

 14S+KKKKKKKK

141+KKKKKKKK NAME OF OBJECTS ASSOCIATED WITH ERROR
 142+KKKKKKKK

 SSS1C4 4S4S4S4S4S4S4S4S 144+PICDBN DC CL8' ' DBDNAME ASSOCIATED WITH THE ERROR
 SSS1CC 4S4S4S4S4S4S4S4S 145+PICSEGN DC CL8' ' SEG NAME ASSOCIATED WITH THE ERROR
 SSS1D4 4S4S4S4S4S4S4S4S 146+PICTABQ DC CL8' ' TABLE NAME QUALIFIER ASSOC. W. ERROR
 SSS1DC 4S4S4S4S4S4S4S4S 147+PICTABN DC CL18' ' TABLE NAME ASSOCIATED WITH THE ERROR
 SSS1EE SSSSSSSSSSSSSSSS 148+ DC XL14'SS' RESERVED FOR DPROP

 15S+K--K
151+K EXIT WORK AREA K

 152+K K
153+K THE EXIT WORK AREA CAN BE USED TO SAVE K
154+K INFORMATION ACROSS CALLS TO THE EXIT (E.G. K
155+K TO SAVE THE ADDRESSES OF GETMAINED AREAS ACROSS K
156+K CALLS TO THE EXIT. K

 157+K--K

 SSS2SS 159+ DS SD
 SSS2SS SSSSSSSSSSSSSSSS 16S+PICSWORK DC XL256'SS' WORK AREA FOR THE EXIT
 SSS3SS SSSSSSSSSSSSSSSS 161+ DC XL16'SS' RESERVED FOR DPROP

 163+K--K
164+K SQL COMMUNICATION AREA (SQLCA). K

 165+K K
166+K THE EXIT SHOULD USE THIS SQLCA FOR ITS SQL K

 167+K STATEMENTS. K
 168+K--K

 SSS31S 17S+SQLCA DS SD
 SSS31S 171+SQLCID DS CL8 ID
 SSS318 172+SQLCABC DS F BYTE COUNT
 SSS31C 173+SQLCODE DS F RETURN CODE
 SSS32S 174+SQLERRM DS H,CL7S ERROR MSG PARMS
 SSS368 175+SQLERRP DS CL8 IMPL DEPENDENT
 SSS37S 176+SQLERRD DS 6F
 SSS388 177+SQLWARN DS SC WARNING FLAGS
 SSS388 178+SQLWARNS DS C'W' IF ANY
 SSS389 179+SQLWARN1 DS C'W' = WARNING
 SSS38A 18S+SQLWARN2 DS C'W' = WARNING
 SSS38B 181+SQLWARN3 DS C'W' = WARNING
 SSS38C 182+SQLWARN4 DS C'W' = WARNING
 SSS38D 183+SQLWARN5 DS C'W' = WARNING
 SSS38E 184+SQLWARN6 DS C'W' = WARNING
 SSS38F 185+SQLWARN7 DS C'W' = WARNING
 SSS39S 186+SQLEXT DS CL8
 SSS398 187+ DS 4F RESERVED

Figure 40 (Part 3 of 4). Interface Control Block for a Propagation Exit Routine

 Chapter 4. Propagation Exit Routines 159

 189+K---K

19S+K DLI APPLICATION INTERFACE BLOCK (AIB) K
 191+K K

192+K THE EXIT SHOULD USE THIS AIB FOR ITS DLI K
193+K CALL. BEFORE FIRST CALL, DPROP INITS K
194+K AIBID, AIBLEN, AIBRSNM1 AND AIBSFUNC FIELDS. K

 195+K K
 196+K---K

 SSS3A8 198+PICAIB DS SD AIB INITIALIZED BY DPROP
 SSS3A8 199+PIC_AIBID DS CL8'DFSAIB' EYECATCHER
 SSS3BS 2SS+PIC_AIBLEN DS F DFSAIB ALLOCATED LENGTH
 SSS3B4 2S1+PIC_AIBSFUNC DS CL8 SUBFUNCTION CODE
 SSS3BC 2S2+PIC_AIBRSNM1 DS CL8 RESOURCE NAME 1
 SSS3C4 2S3+PIC_AIBRSNM2 DS CL8 RESOURCE NAME 2
 SSS3CC 2S4+ DS 2F RESERVED
 SSS3D4 2S5+PIC_AIBOALEN DS F OUTPUT AREA LENGTH (MAX)
 SSS3D8 2S6+PIC_AIBOAUSE DS F OUTPUT AREA LENGTH (USED)
 SSS3DC 2S7+ DS 2F RESERVED
 SSS3E4 2S8+ DS H RESERVED
 SSS3E6 2S9+ DS H RESERVED
 SSS3E8 21S+PIC_AIBRETRN DS F RETURN CODE
 SSS3EC 211+PIC_AIBREASN DS F REASON CODE
 SSS3FS 212+ DS F RESERVED
SSS3F4 213+PIC_AIBRSA1 DS A RESOURCE ADDRESS 1
SSS3F8 214+PIC_AIBRSA2 DS A RESOURCE ADDRESS 2
SSS3FC 215+PIC_AIBRSA3 DS A RESOURCE ADDRESS 3
 SSS4SS 216+ DS 1SF RESERVED
 SSS8S 217+PIC_AIBLL EQU K-PICAIB DFSAIB LENGTH
 SSS428 218+ DS 4F RESERVED

SS438 22S+PICEND EQU K END OF PIC
SS438 221+PICLEN EQU K-PIC LENGTH OF PIC

 222 END

Figure 40 (Part 4 of 4). Interface Control Block for a Propagation Exit Routine

Interface Control Block Field Descriptions
The following is a detailed description of the control block fields:

PICEYE Contains the constant EKYRCPIC, and is used to identify the
control block in a dump.

PICEXIT The load module name of the exit routine.

PICCALL The call function that DPROP sets to HR to indicate
hierarchical-to-relational or to RH to indicate
relational-to-hierarchical propagation.

PICDBLEV Contains the DPROP trace debug level in effect. If the PICDBLV2
bit is on, it indicates that you want to trace the propagating SQL
statements for HR-propagation, and the propagating IMS calls for
RH-propagation. The exit routine can then call the DPROP trace
module.

PICPTD Address of an internal DPROP control block that the exit needs for
calls to the DPROP trace module.

PICPRID The ID of the PR.

PICPRSET The Set ID of the PR.

PICPRTST The PR time stamp, assigned when MVG processed the PR.

160 Customization Guide

PICOPSYS Set to ESA to define the operating system.

PICTRANS Identifies the IMS region type in which the exit routine is called.
This field is blank if the exit routine is called from outside an IMS
region— for example, during LOG-ASYNC propagation or user
asynchronous propagation.

PICPROGM Describes the program calling the exit routine. Set to DPRS for
synchronous propagation or DPRA for LOG-ASYNC propagation or
user asynchronous propagation.

The next two fields are switches that are useful for problem determination. DPROP
does not require your exit routine to set these fields. However, they can help you
determine where a problem occurred if you have an ABEND. DPROP sets these
fields to blanks before the first time your exit routine is called.

PICENTRD When you enter your exit routine, set this field to X. DPROP does
not change this field again, so if a problem occurs, you can
determine if your exit has been entered.

PICINCTL You must also set this field to X, indicating that your exit routine has
control. When DPROP regains control, it resets this field to blanks,
so you can determine if your exit routine has control when an
ABEND occurs.

The next two fields can be used along with the RUP's and HUP's error handling
logic. For more information on return codes and error handling techniques, see
“Return Codes and Error Handling Techniques” on page 184.

PICXRETC The return code that the exit routine provides when returning to
its caller. This field is set to zero when the exit routine is called.

0 Propagation was successful.

4 SQL error. Use return code 4 only if the failing SQL
statement used the SQL communication area SQLCA
provided in the interface control block.

8 DL/I call error. Use return code 8 only if the failing DL/I call
used the DL/I Application Interface Block (AIB) provided in the
interface control block.

12 Propagation failure (not caused by SQL or DL/I error);
unavailable resource problem.

16 Propagation failure (not caused by SQL or DL/I error); Not an
unavailable resource problem.

20 Severe error; DPROP ABENDs.

PICXMESG User-provided error message. It is set to blanks when the exit
routine is called. When the exit routine returns, if the first eight
bytes are not blank, DPROP writes the contents of the field as an
error message with its usual error reporting logic. It is written as
a four-line message with 70 bytes in each line. If the trailing lines
contain only blanks, they are not written.

The message lines must have the following format:

� The first eight bytes of the first message line must be a
message ID, beginning with a letter in the range J-Z (to avoid
confusion with IBM-provided messages).

 Chapter 4. Propagation Exit Routines 161

� The ninth character of the first message line must be blank.

� The remaining 61 bytes of the first message line, and the
entire second, third, and fourth message lines, can all be
used for your message text.

If your exit routine returns an error code to its caller, the following fields can be
used to identify which data objects are associated with the error.

For HR-propagation:

PICTABQ Table name qualifier of the table involved in the error.
PICTABN Unqualified table name of the table involved in the error.

For-RH propagation:

PICDBN DBDNAME of the IMS database involved in the error.
PICSEGN Segment name of the segment involved in the error.

The following field is the work area for the exit routine.

PICSWORK The work area can be used to save information across calls to the
exit routine. You can also use this field to hold the address of
storage that the exit routine obtains the first time it gains control.

DPROP initializes this field to binary zeros before the first call to the
exit routine, and never changes this field again. The contents of
this field are saved until an application ABENDs in an MPP or an
IFP region, when MVS releases the storage. After the ABEND,
DPROP again initializes this field to binary zeros.

For these types of asynchronous propagation, the contents of this
field are preserved until the end of the MVS task that the receiver
program uses to call the RUP.

The PIC, and therefore the work area, is associated with an exit
name. When an exit routine is called for multiple segments, tables,
or multiple PRs, the work area is the same.

SQLCA This area is the SQL Communication Area, used for the SQL
statements your exit routine executes. it is recommended that all
SQL statements that your Propagation exit routine generates use
this SQL communication area.

If your exit routine encounters an SQL error and returns with a
return code of 4, DPROP uses the contents of this area to
determine which type of SQL error occurred and to provide detailed
error messages.

DFSAIB This area is the DL/I Application Interface Block (AIB) used for the
DL/I calls your exit routine executes. it is recommended that all
DL/I calls that your Propagation exit routine generates use this AIB.

If your exit routine encounters a DL/I error and returns with a return
code of 8, DPROP uses the contents of this area to determine
which type of DL/I error occurred and to provide detailed error
messages.

162 Customization Guide

Interface for HR Propagation
This section describes the interface used for HR-propagation. If your exit routine
must not support HR-propagation, then you can skip this section and continue with
the section “Interface for RH-Propagation” on page 171.

Interfaces between the RUP and your Propagation exit routine are the XPCB and
the Extended Segment Data Block (XSDB). These are control blocks that the IMS
Data Capture function defines; they are used to describe the changed IMS data.

The XPCB is the second parameter passed to your Propagation exit routine when
the RUP calls it. It is used to provide information about the changed data and to
point to XSDBs. An XSDB points to, and describes, either a changed segment
occurrence or a physical ancestor of a changed segment.

Your exit routine must not modify the XPCB, the XSDB, or the data pointed to by
these control blocks.

Figure 41 on page 164 provides an overview of the interface defined through the
XPCB and XSDBs.

 Chapter 4. Propagation Exit Routines 163

1
┌───────────┐
│ XPCB │
│ │
│ │
│ │ 2
│ ├───────────────────────────� Fully concatenated key of
│ │ changed IMS segment
│ │
│ │
│ │
│ │ 3 ┌─────────┐
│ │ │ XSDB │
│ ├────────� │ changed ├──────� Data of changed IMS segment
│ │ │ segment │
│ │ └─────────┘
│ │
│ │
│ │ 4 ┌─────────┐
│ │ │ XSDB │
│ ├────────� │ "before ├──────� "Before─replace"
│ │ │ image" │ Data of changed IMS segment
│ │ └─────────┘
│ │
│ │
│ │ 5 ┌─────────┐
│ │ │ XSDB │
│ ├────────� │ Path ├──────� Data of root IMS segment
│ │ │ Data │
│ │ └────┬────┘
│ │ │
│ │ �
│ │ ┌─────────┐
│ │ │ XSDB │
│ │ │ Path ├──────� Data of ancestor of changed IMS segment
│ │ │ Data │
│ │ └────┬────┘
│ │ │
│ │ │
│ │ �
│ │ ┌─────────┐
│ │ │ XSDB │
│ │ │ Path ├──────� Data of parent of changed IMS segment
│ │ │ Data │
│ │ └─────────┘
│ │
│ │ 6
│ ├───────────────────────────� DBD─version ID
│ │
│ │
│ │
│ │ 7 ┌─────────┐
│ │ │ │
│ ├────────� │ DBPCB │
│ │ │ │
│ │ └─────────┘
│ │
│ │
│ │ 8 ┌─────────┐
│ │ │ INQY │
│ ├────────� │ Output ├──────� Recovery Token
│ │ │ Area │
│ │ └─────────┘
│ │
└───────────┘

Figure 41. XPCB and XSDB Control Block Structures

As shown in the numbered sections of the figure, the interface consists of:

1. One XPCB control block that provides a description of the changed data and
contains various pointers.

2. A pointer to the fully concatenated key of the changed segment.

164 Customization Guide

3. A pointer to the XSDB control block describing the changed segment. This
XSDB points to the data of the changed segment.

4. For Replace operations, a pointer to an XSDB describing the segment before it
was replaced. The XSDB also points to the data of the before-image of the
segment.

5. A pointer to the first XSDB in a chain of XSDBs for the hierarchical ancestors
of the changed segment. The chain is in descending hierarchical order, with
each XSDB pointing to the segment data of the segment and the next XSDB in
descending order.

6. A pointer to the DBD version ID.

7. A pointer to the DB PCB.

8. A pointer to an area containing the output of an implied IMS INQY ENVIRON
call.

The XPCB and XSDB Control Blocks
You can generate the following DSECTs in your assembler exit routine by coding
the EKYRCDL1 macro statement. For HLL exit routines, you can include or copy
one of the following members to map the XPCB and XSDB Control Blocks:

EKYRCDLC Exit routines written in COBOL
EKYRCDLP Exit routines written in PL/I
EKYRCDLK Exit routines written in C

 XPCB DSECT
The XPCB control block is shown in Figure 42 on page 166 followed by a detailed
description of those fields that are most useful to your exit routine.

 Chapter 4. Propagation Exit Routines 165

 1 EKYRCDL1

 3+KKK
 4+K K

5+K E X T E N D E D D A T A B A S E P C B -- X P C B K
 6+K K
 7+KKK

 SSSSSS 9+XPCB DSECT
 SSSSSS 1S+XPCBEYE DS CL4 "XPCB" EYECATCHER
 SSSSS4 11+XPCBVER DS CL2 XPCB VERSION INDICATOR
 SSSSS6 12+XPCBREL DS CL2 XPCB RELEASE INDICATOR
 SSSSS8 13+XPCBEXIT DS CL8 SEGMENT USER EXIT NAME
SSSS1S 14+XPCBRC DS H RETURN-CODE
 SSSS12 15+XPCBRSNC DS H REASON-CODE
 SSSS14 16+XPCBDBD DS CL8 PHYSICAL DATA BASE NAME
 SSSS1C 17+XPCBVERA DS A ADDRESS OF DBD VERSION ID
 SSSS2S 18+XPCBSEG DS CL8 PHYSICAL SEGMENT NAME
 SSSS28 19+XPCBCALL DS CL4 'CALL FUNCTION' DEFINED BY IMS/ESA
 2S+K ISRT: INSERT
 21+K REPL: REPLACE
 22+K DLET: DELETE

23+K CASC: CASCADING DELETE
24+K DLLP: NOW ALSO DELETED FROM LOGICAL PATH

 SSSS2C 25+XPCBPCALL DS CL4 'PHYSICAL UPDATE TYPE' DEFINED BY IMS
 26+K ISRT: INSERT

27+K REIN: RE-INSERT VIA LOGICAL PATH
 28+K REPL: REPLACE
 29+K DLET: DELETE

3S+K DLPP: DELETED ONLY FROM PHYSICAL PATH
 SSSS3S 31+ DS CL4 RESERVED
 SSSS34 32+XPCBPCBA DS A ADDRESS OF DB PCB
 SSSS38 33+XPCBPCBN DS CL8 NAME OF DB PCB
 SSSS4S 34+XPCBINQA DS A ADDRESS OF "INQY" OUTPUT
 SSSS44 35+XPCBIOPA DS A ADDRESS OF I/O PCB
 SSSS48 36+ DS H RESERVED
 SSSS4A 37+XPCBCKEYL DS H LENGTH OF CONCATENATED KEY
 SSSS4C 38+XPCBCKEYA DS A ADDRESS OF CONCATENATED KEY
 SSSS5S 39+XPCBXSDBD DS A ADDRESS OF XSDB FOR DATA
 SSSS54 4S+XPCBXSDBB DS A ADDRESS OF XSDB FOR REPL DATA
 SSSS58 41+XPCBXSDBP DS A ADDRESS OF XSDB FOR PATH DATA
 SSSS5C 42+ DS F RESERVED
 SSSS6S 43+ DS F RESERVED
 SSSS64 44+ DS F RESERVED
 SSSS68 45+XPCBEXIWP DS A ADDRESS OF 256-BYTE AREA RESERVED FOR EXIT
 SSSS6C 46+ DS F RESERVED
 SSSS7S 47+ DS F RESERVED
 SSSS74 48+XPCBTIMST DS CL8 TIMESTAMP OF CALL
 SSSS7C 49+ DS F RESERVED

SSS8S 5S+XPCBLEN EQU K-XPCB LENGTH OF XPCB

Figure 42. Extended Program Communication Block (XPCB)

XPCB Field Descriptions
The fields you need to use are:

XPCBDBD The physical database name.

XPCBVERA A pointer to a variable-length character string that identifies the
DBD version. Unless the character string is set from the DBD
VERSION= keyword, it is the time stamp of the DBDGEN. The first
two bytes contain the length of the string followed by the string
itself.

XPCBSEG The name of the updated physical segment type.

166 Customization Guide

XPCBCALL Depending on the IMS call function, this field contains one of the
following values:

REPL The IMS application generated a Replace call.

ISRT The IMS application generated an Insert call.

DLET The IMS application generated a Delete call.

CASC The IMS application generated a Delete call that resulted
in a cascading delete of the IMS segment being
processed by the current call of the Propagation exit
routine.

The following value can be provided when logical parent segment
types have an IMS Logical delete rule, and are involved in a
unidirectional logical relationship. The value is encountered both for
the logical parent segment type, and for its physical ancestors.

DLLP The IMS application generated a Delete call that resulted
in a delete from the logical path. This value is provided
as a result of deleting the last logical child of a logical
parent that was no longer accessible through a physical
path (the logical parent segment was only accessible
through its logical path). When the delete is completed,
the logical parent segment is no longer accessible, either
through logical or physical paths.

Refer to IMS/ESA Customization Guide for more information on this
field.

XPCBPCALL The physical update function. This differs from the IMS call function
and from the content of XPCBCALL. For example, when an
application inserts a concatenated logical parent or child that was
deleted on the same path, IMS performs a physical replace of the
logical parent instead of an insert.

The logic of your Propagation exit routine depends on the
combination of values in XPCBCALL and XPCBPCALL. Refer to
“The XPCBPCALL, XPCBCALL, and XSDBPHP Fields” on
page 170 for examples of valid logic.

XPCBPCALL can have the following values:

REPL A segment is replaced.

ISRT A segment is inserted.

DLET A segment is deleted. If the segment is involved in a
logical relationship, it is no longer accessible by either its
physical or logical paths.

The following two values can be provided when you have an IMS
delete rule of LOGICAL with a unidirectional logical relationship.
The values can be provided for both the logical parent segment
type and its physical ancestors. For more information, see the
appropriate Administrators Guide for your propagation mode.

DLPP A segment has been deleted from the physical path of the
current segment. The current segment is still accessible
from its logical path.

 Chapter 4. Propagation Exit Routines 167

REIN The reinsert of a segment that was no longer accessible
from its physical path, but accessible through a logical
path.

For more information on the XPCBPCALL, refer to IMS/ESA
Customization Guide.

XPCBINQA Address of the output of an IMS INQY ENVIRON call. An implied
IMS INQY call is done before calling the exit routine. Therefore, the
information returned to an application program after an INQY call is
available to the exit routine without having to generate the call.
This information includes the PSBNAME, RECOVERY TOKEN,
PCB LIST, and so forth. You can use this information to augment
the data in the exit routine control blocks. See IMS/ESA Application
Programming: DL/I Calls for more details about the INQY ENVIRON
call.

XPCBCKEYL The length of the fully concatenated key. This field is zero if the
fully concatenated key is not provided (for example, if the EXIT
keyword of the DBD specifies the NOKEY data option).

XPCBCKEYA The address of the fully concatenated key. This field is zero if the
fully concatenated key is not provided (for example, if the EXIT
keyword of the DBD specifies the NOKEY data option).

XPCBXSDBD Address of the XSDB control block for the changed segment data.
This field is zero if the XSDB is not provided (for example, if the
EXIT keyword of the DBD specifies the NODATA data option).

XPCBXSDBB Address of the XSDB control block for the before-image of a
replaced segment. This field is zero if the XSDB is not provided
(for example, if the EXIT keyword of the DBD specifies the
NODATA data option, or if the IMS change is not a replace).

XPCBXSDBP Pointer to the first XSDB on the descending hierarchic chain. This
field is zero if the chain of XSDBs is zero (for example, if the EXIT
keyword of the DBD specifies the NOPATH option, or if the
changed segment is a root segment).

The XPCBRC, XPCBRSNC, and XPCBEXIWP fields are reserved for RUP use.
Your exit routine must not modify them.

168 Customization Guide

 XSDB DSECT
The XSDB control block is shown in Figure 43, followed by a detailed description of
those fields that are most useful to your exit routine.

 52+KKK
 53+K K

54+K E X T E N D E D S E G M E N T D A T A -- X S D B K
 55+K K
 56+KKK

 SSSSSS 58+XSDB DSECT
 SSSSSS 59+XSDBEYE DS CL4 "XSDB" EYECATCHER
 SSSSS4 6S+XSDBVER DS CL2 XSDB VERSION INDICATOR
 SSSSS6 61+XSDBREL DS CL2 XSDB RELEASE INDICATOR
 SSSSS8 62+XSDBNXSDB DS A NEXT XSDB POINTER
 SSSSSC 63+XSDBDBD DS CL8 PHYSICAL DATA BASE NAME
 SSSS14 64+XSDBSEG DS CL8 PHYSICAL SEGMENT NAME
 SSSS1C 65+XSDBPHP DS CL1 PHYSICAL PATH ACCESSIBILITY

SSSE8 66+XSDBPHPY EQU C'Y' ...SEGM ACCESSIBLE VIA PHYSICAL PATH
SSSD5 67+XSDBPHPN EQU C'N' ...SEGM NOT ACCESSIBLE VIA PH. PATH

 SSSS1D 68+ DS CL3 RESERVED
 SSSS2S 69+XSDBSEGLV DS H SEGMENT DATA BASE LEVEL
 SSSS22 7S+XSDBKEYL DS H LENGTH OF PHYSICAL KEY
 SSSS24 71+XSDBKEYA DS A ADDRESS OF PHYSICAL KEY
 SSSS28 72+XSDBFIL1 DS H RESERVED
 SSSS2A 73+XSDBSEGL DS H LENGTH OF SEGMENT DATA
 SSSS2C 74+XSDBSEGA DS A ADDRESS OF SEGMENT DATA
 SSSS3S 75+XSDBFIL2 DS F RESERVED
 SSSS34 76+XSDBFIL3 DS F RESERVED
 SSSS38 77+XSDBFIL4 DS F RESERVED

SSS3C 78+XSDBLEN EQU K-XSDB LENGTH OF XSDB

Figure 43. Extended Segment Data Block (XSDB)

XSDB Field Descriptions
The fields of the XSDB that you are likely to need are:

XSDBNXSDB If the XSDB describes path data, this field contains the address of
the next XSDB. The XPCB points to the first XSDB, but there is
more than one XSDB for path data. They are in hierarchical,
top-down sequence. In this case, the XSDBs are chained together,
with the last pointer set to zero to indicate the end of the chain.

If the XSDB does not describe path data, this field contains a zero.

XSDBSEG The physical segment name.

XSDBPHP Accessibility through the physical path.

This field describes whether a segment is accessible through its
physical path. The field can have the following values:

Y (Yes) the segment is accessible through its physical path.
N (No) the segment is not accessible through its physical path.

This field is set to Y, unless you have an IMS logical delete rule for
logical parent segment types. It can be set to N for such logical
parents and their physical ancestors. Refer to IMS/ESA
Customization Guide for more information about this field.

XSDBSEGLV The segment level in the database.

 Chapter 4. Propagation Exit Routines 169

XSDBKEYL The length of the key field for this segment (the length is zero if the
segment has no key).

XSDBKEYA The address of the key field for this segment.

XSDBSEGL The length of the physical segment.

XSDBSEGA The address of the physical segment.

The XPCBPCALL, XPCBCALL, and XSDBPHP Fields
If your Propagation exit routine does not need to support logical parent segments
and their physical ancestors having a LOGICAL IMS delete rule and involved in a
unidirectional IMS logical relationship, then you need to test only the value of the
XPCBPCALL field. In this case, the logic of a Propagation exit routine performing a
simple mapping can be summarized in the following table:

More complex mapping (for example, mapping similar to generalized mapping case
2) propagates the ISRT of an extension segment with an SQL UPDATE statement.

The logic of your propagation exit routine becomes more complex if it needs to
support a logical parent segment or one of its physical ancestors having a
LOGICAL IMS delete rule and involved in a unidirectional IMS logical relationship.
In this case, you first need to decide how the delete of the logical parent (or its
physical ancestors) is propagated. You can do this in two ways:

1. Delete the DB2 target row as soon as the segment gets deleted on its physical
path (even if the logical parent segment still has logical children and remains
accessible through a logical path).

2. Delete the DB2 target row only when the segment gets both physically and
logically deleted.

The sample Propagation exit routine illustrates the logic supporting the first choice.
Its logic is summarized in Figure 45. For the various combinations of
XPCBPCALL, XPCBCALL, and XSDBPHP field values, the table in the figure
describes the action taken by the sample exit routine. When taking the described
actions, the exit routine does not need to check if the updated segment is involved
in logical relationships. A dash (-) in a column of the table below means that a test
of that value is not performed in the sample exit routine for the combination of
values in that row.

Figure 44. Exit Routine Action Based on the XPCBPCALL Field Value

XPCBPCALL Meaning Exit Routine Action

REPL A segment is replaced Propagate with SQL
UPDATE statements

ISRT A segment is inserted Propagate with an SQL
INSERT

DLET A segment is deleted Propagate with an SQL
DELETE

170 Customization Guide

Figure 45. Exit Routine Action Based on the XPCBPCALL, XPCBCALL, and XSDBPHP Field Values

XPCBPCALL XPCBCALL XSDBPHP Meaning Exit Routine Action

REPL - Y A segment accessible
through its physical path
is replaced.

Propagate with an SQL
UPDATE.

REPL - N A segment not
accessible through its
physical path is replaced
through its logical path.

Ignored by exit routine.

ISRT - - A segment is inserted. Propagate with an SQL
INSERT.

REIN - - A segment previously
physically deleted (but
still accessible through
its logical path) is
physically reinserted.

Propagate with an SQL
INSERT.

DLET DLET or
CASC

- A segment is physically
deleted (if involved in A
logical relationship, it is
neither accessible
through the logical path
nor through the physical
path).

propagate with an SQL
DELETE.

DLPP DLET or
CASC

- A segment is physically
deleted, but it remains
accessible through a
logical path.

Propagate with an SQL
DELETE.

DLET DLLP - A segment previously
physically deleted is now
also being logically
deleted.

Ignored by exit routine.

Interface for RH-Propagation
The following section describes the interface used for RH-propagation. If your exit
routine must not support RH-propagation, then you can skip this section and
continue with the section “Exit Routine Processing” on page 182.

The HUP Exit Communication Block (HEC) is the second parameter passed to your
Propagation exit routine when the HUP calls your routine. It provides the pointers
to the areas received from the DB2 Data Capture (DB2CDC). These areas
describe and contain the captured changed data, and are listed below:

QWHC Is the DB2 Instrumentation Facility standard header mapped by
DSNDQWHC.

QWHS Is the DB2 Instrumentation Facility correlation data mapped by
DSNDQWHS.

CDCDD Contains the Data Capture table description and is mapped by the
QW0185 DSECT within DSNDQW02.

 Chapter 4. Propagation Exit Routines 171

CDCDA Contains the Data Capture data row and is also mapped by the
QW0185 DSECT within DSNDQW02

For inserts and deletes, there is one data row with the data of the
inserted or deleted row. For updates, there is one data row
containing the after-image and one data row with the before-image
of the updated row.

Your exit routine must not modify the HEC or the data pointed to by this control
block.

Figure 46 provides an overview of the interface defined through the HEC.

1
┌──────────┐
│ HEC │
│ │
│ │
│ │ ┌───┐
│ │ 2 │ QWHS │
│ ├────────� │ DB2 Standard Header Data │
│ │ │ │
│ │ └───┘
│ │
│ │
│ │ ┌───┐
│ │ 3 │ QWHC │
│ ├────────� │ DB2 Correlation Data Header │
│ │ │ │
│ │ └───┘
│ │
│ │
│ │ ┌───┐
│ │ 4 │ Table Description │
│ ├────────� │ Description of table and its columns │
│ │ │ │
│ │ └───┘
│ │
│ │
│ │ ┌───┐
│ │ 5 │ Data Row │
│ ├────────� │ Data of changed row after the │
│ │ │ operation has been applied │
│ │ └───┘
│ │
│ │
│ │ ┌───┐
│ │ 6 │ Data Row │
│ ├────────� │ Data of changed row before the │
│ │ │ operation has been applied (for update) │
│ │ └───┘
│ 7 │
├──────────┤
│ │
│ HECRARC2 │
│ │
└──────────┘

Figure 46. HEC, QWHS, QWHC, Table Description and Data Row Control Block Structures

As shown in the numbered sections of the figure, the interface consists of:

1. One HEC control block that provides various pointers.

2. A pointer to the DB2 Instrumentation Facility standard header data that
contains specific DB2 information based on the active trace.

3. A pointer to the DB2 Instrumentation Facility correlation data header containing
information about correlation and authorization.

172 Customization Guide

4. A pointer to the Data Capture table description of the changed table and its
columns.

5. A pointer to the Data Capture Data (data row) record containing the after
image of the captured row. For SQL INSERT and DELETE, this is the only
data row passed to your exit routine.

6. A pointer to the Data Capture Data (data row) record containing the before
image of the captured row. This data row is only present for update
operations.

7. A field containing the reason code returned by DB2 for the generated IFI call to
retrieve the captured data. See DB2 Messages and Codes for a description of
IFI reason codes.

The HEC Control Block
You can generate the following DSECT in your assembler exit routine by coding the
EKYHCHEC macro statement. For HLL exit routines, you can include or copy one
of the following members to map the HUP Exit Communication Block:

EKYHCHCC Exit routines written in COBOL
EKYHCHCP Exit routines written in PL/I
EKYHCHCK Exit routines written in C

 Chapter 4. Propagation Exit Routines 173

 1 EKYHCHEC
2+KKKKKKKKKKKKKKKKKK START OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKKKKK

 3+K K
4+K CONTROL BLOCK NAME: K

 5+K EKYHCHEC (HEC) K
 6+K K
 7+K DESCRIPTIVE NAME: K

8+K DPROP HUP EXIT COMMUNICATION BLOCK K
 9+K = = = K
 1S+K K
 11+KK
 12+K K

13+K THIS PRODUCT CONTAINS "RESTRICTED MATERIALS OF IBM". K
 14+K K

15+K 5685-124 (C) COPYRIGHT IBM CORP. 1989, 1992. K
16+K ALL RIGHTS RESERVED. K

 17+K K
18+K U.S. GOVERNMENT USERS RESTRICTED RIGHTS - K
19+K USE, DUPLICATION, OR DISCLOSURE RESTRICTED BY K
2S+K GSA ADP SCHEDULE CONTRACT WITH IBM CORP. K

 21+K K
22+K LICENSED MATERIALS - PROPERTY OF IBM. K

 23+K K
 24+KK
 25+K K

26+K STATUS: V1 R2 MS K
 27+K K
 28+K FUNCTION: K

29+K THIS IS THE CONTROL BLOCK USED TO PASS INFORMATION K
3S+K GOT BY DPROP FROM THE DB2 CHANGED DATA CAPTURE EXIT K
31+K (USING IFI CALLS) TO THE PROPAGATION EXIT ROUTINE K
32+K AND / OR THE DB2 CHANGED DATA CAPTURE SUBEXIT ROUTINE. K

 33+K K
34+K THE HEC IS BUILD FOR EACH EXIT CALL NEW AND DOES K
35+K CONTAIN DATA TO BE RETAINED BEETWEEN EXIT CALLS. K

 36+K K
37+K MODULE TYPE= MACRO K
38+K PROCESSOR= ASSEMBLER H K

 39+K K
4S+K INNER CONTROL BLOCKS: NONE K

 41+K K
42+K MACROS USED FROM MACRO LIBRARY: NONE K

 43+K K
 44+K CHANGE ACTIVITY: K
 45+K K

46+KKKKKKKKKKKKKKKKKKKK END OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKKKKK

 SSSSSS 48+HEC DSECT , START OF CONTROL BLOCK

5S+K------- EYE CATCHTERS
 SSSSSS 51+HECEYE DS SCL8 EYE-CATCHER AREA
 SSSSSS C5D2E84S 52+HECEYE1 DC CL4'EKY ' EYE-CATCHER DPROP
 SSSSS4 C8C5C34S 53+HECEYE2 DC CL4'HEC ' EYE-CATCHER CONTROL BLOCK
 SSSSS8 SSSSSSSSSSSSSSSS 54+HECRESV1 DC 2F'S' RESERVED

56+K------- POINTERS TO IFI HEADER AREAS
 SSSS1S SSSSSSSS 57+HECQWHS DC A(K-K) ADDRESS OF THE DB2 IFI

58+K STANDARD HEADER AREA
 SSSS14 SSSSSSSS 59+HECQWHC DC A(K-K) ADDRESS OF THE DB2 IFI

6S+K CORRELATION DATA AREA

62+K------- POINTERS TO CDC DATA AREAS
 SSSS18 SSSSSSSS 63+HECCDCDD DC A(K-K) ADDRESS OF CDC DATA DESCRIPT.

64+K ALWAYS PASSED TO EXIT
 SSSS1C SSSSSSSS 65+HECCDCDA DC A(K-K) ADDRESS OF CDC DATA ROW

Figure 47 (Part 1 of 2). HUP Exit Communication Block

174 Customization Guide

66+K ALWAYS PASSED TO EXIT.
67+K ONLY DATA FOR INSERT/DELETE
68+K OR CONTAINS THE AFTER
69+K IMAGE FOR UPDATE OPERATIONS

 SSSS2S SSSSSSSS 7S+HECCDCDB DC A(K-K) ADDRESS OF CDC DATA ROW.
71+K ZERO FOR INSERT AND DELETE
72+K OR BEFORE IMAGE OF ROW FOR

 73+K UPDATE OPERATIONS

75+K------- RETURN CODE FROM IFI CALL
 SSSS24 SSSSSSSS 76+HECRARC2 DC F'S' IFCRC2 REASON CODE

78+K------- DBDNAME/SEGNAME/PCBLABEL AREA (MAPPED BY HECDSLDS BELOW)
 SSSS28 SSSSSSSS 79+HECDBSLA DC A(K-K) ADDR. OF DBD/SEG/PCBLABEL AREA
 SSSS2C SSSSSSSS 8S+HECDBSLN DC F'S' NUMBER OF ENTRIES IN THIS AREA

82+K------- RESERVED SPACE AND CB SIZE
 SSSS3S SSSSSSSSSSSSSSSS 83+HECRESV2 DC 4F'S' RESERVED
 SSSS4S 84+HECEND DS SD END OF CONTROL BLOCK

SSS4S 85+HECLEN EQU K-HEC LENGTH OF CONTROL BLOCK

 87+K---K

88+K FOR PROPAGATION EXIT ROUTINES ONLY, THE HECDBSLA FIELD K
89+K POINTS TO AN AREA (FOR DB2 SUBEXIT ROUTINES THIS FIELD IS K
9S+K ZERO). THIS AREA CONTAINS 24 BYTE ENTRIES (IN TOP TO BOTTOM K
91+K HIERARCHY) WHICH WAS DEFINED TO DPROP FOR THE PR IN PROCESS. K
92+K THE NUMBER OF ENTRIES IN THIS LIST IS CONTAINED IN THE K

 93+K HECDBSLN FIELD. K
 94+K---K
 SSSS4S 95+HECDSLDS DS SD ENTRY FOR DBD/SEG/PCBLABEL
 SSSS4S 96+HECDBDNM DS CL8 - DBD NAME
 SSSS48 97+HECSEGNM DS CL8 - SEGMENT NAME
 SSSS5S 98+HECPCBNM DS CL8 - PCB LABEL NAME

SSS18 99+HECDSLDL EQU K-HECDSLDS LENGTH OF ONE ENTRY
 1SS END

Figure 47 (Part 2 of 2). HUP Exit Communication Block

The QWHS and QWHC Control Blocks
The IFI standard header data and IFI correlation data are passed as received from
the DB2 Instrumentation Facility.

DSNDQWHS Is the DB2 provided macro which maps the standard header data.
DSNDQWHC Is the DB2 provided macro which maps the correlation data.

Refer to DB2 Administration Guide for information about these control blocks.

The Table Description and Data Row Control Blocks
The Data Capture Table Description contains a description of the captured data. It
is always present when the HUP calls your Propagation exit routine.

The Data Capture Data (data row) contains a row's data. When the HUP calls your
Propagation exit routine, it passes one or two data row areas, depending on the
type of SQL operation that caused the data to be captured:

� For INSERT and DELETE, there is only one data row that contains either the
inserted or deleted row.

� For UPDATE, there are two data rows, one containing the image of the row
before the update, and one after the update operation.

 Chapter 4. Propagation Exit Routines 175

Both data rows have the same format and are described by the same Data
Capture table description, which is passed to your exit routine.

The table description and data row are composed of a header common to both,
and a data part which is different for each control block type:

� The header part describes the table, using its qualified table name and the time
stamp of the table description. For the data row, it also contains the RBAs of
log records, the operation code, and the operation code qualifier.

� The data part of the table description contains a description of the columns of
the table. The description is similar to the SQLDA.

� The data part of the data row contains the row data, as described in the table
description data part.

You can generate the following DSECT (provided by DB2) in your assembler exit
routine by coding the DSNDQW02 macro statement. This macro contains the
QW0185 DSECT that represents the mapping of the table description and data row
control blocks that the DB2 Data Capture uses.

For HLL exit routines, you can include or copy one of the following members to
map the table description and data row control blocks:

EKYHCQ2C For exit routines written in COBOL
EKYHCQ2P For exit routines written in PL/I
EKYHCQ2K For exit routines written in C

176 Customization Guide

 1 DSNDQWS2

 3+KK

4+K QWSS185 IS WRITTEN FOR READS REQUESTS FOR IFCID 185. K
5+K FOR IFCID 185, THE PRODUCT SECTION WILL PRECEDE THE DATA K
6+K SECTION. A SINGLE READS REQUEST FOR IFCID 185 MAY RESULT IN K
7+K A SERIES OF 185 RECORDS. ONLY THE FIRST 185 RECORD IN SUCH A K
8+K A SERIES WILL CONTAIN A PRODUCT SECTION. IFCID 185 RECORDS K
9+K MAY BE BROKEN AT ANY POINT IN THE DATA. IT IS UP TO THE K
1S+K READER OF THE RECORD TO INTERPRET SPANNED IFCID 185 RECORDS. K

 11+K K
12+K QWS185 CONTAINS A HEADER SECTION WHICH IS FOLLOWED BY A DATA K
13+K SECTION. THE DATA PORTION OF QWS185 BEGINS WITH FIELD K
14+K - QWS185ID IF QWS185TP=S K

 15+K OR K
16+K - QWS185DR IF QWS185TP=D K

 17+KK
 SSSSSS 18+QWS185 DSECT READS IFCID FOR DATA OF DB2CDC
 SSSSSS 19+QWS185LN DS F LENGTH OF TOTAL DB2CDC DATA
 SSSSS4 2S+QWS185TP DS CL1 TYPE: S = DB2CDC TABLE
 21+K DESCRIPTION

22+K D = DB2CDC DATA ROW
 SSSSS5 23+ DS CL3 RESERVED
 SSSSS8 24+QWS185RC DS CL4 REASON CODE DESCRIBING ERROR

25+K FOR THIS DATA PORTION
 SSSSSC 26+QWS185QT DS SCL26 QUALIFIED TABLE NAME
 SSSSSC 27+QWS185CR DS CL8 CREATOR OF TABLE (AUTH ID)
 SSSS14 28+QWS185TB DS CL18 TABLE NAME
 SSSS26 29+QWS185TS DS CL1S TIMESTAMP (INTERNAL FORMAT) OF

3S+K TABLE DESCRIPTION FROM CATALOG
 SSSS3S 31+QWS185TL DS CL1S TIMESTAMP (INTERNAL FORMAT) OF

32+K LOG BUFFER CI WHEN IT IS EXTERNAL-
33+K IZED OR WHEN THE BUFFER IS

 34+K INITIALIZED
 SSSS3A 35+QWS185UR DS CL8 RBA OF THE FIRST LOG RECORD FOR

36+K THIS UNIT OF WORK.
 SSSS42 37+QWS185LR DS CL8 RBA OF LOG RECORD THAT THIS

38+K DB2CDC DATA ROW WAS DERIVED FROM
 SSSS4A 39+QWS185PC DS CL2 OPERATION CODE.

4S+K USED ONLY IF QWS185TP=D, IN
41+K WHICH CASE, QWS185PC MAY HAVE
42+K ANY OF THE FOLLOWING VALUES:
43+K IN - INSERT
44+K UB - UPDATE BEFORE IMAGE
45+K UA - UPDATE AFTER IMAGE
46+K DE - DELETE
47+K 'SSSS'X IF QWS185TP = 'S'.

 SSSS4C 48+QWS185RI DS CL2 OPERATION CODE QUALIFIER.
49+K 'SSSS'X IF QWS185TP = 'S'.
5S+K 'RI' IF THE OPERATION IS THE
51+K RESULT OF A REFERENTIAL
52+K CONSTRAINT ENFORCEMENT OF
53+K A DELETE SET NULL OR
54+K CASCADE OPERATION AND
55+K IF QWS185TP = 'D'.

 SSSS4E 56+ DS CL6 RESERVED
SSS54 57+QWS185HL EQU 84 TOTAL LENGTH OF HEADER PORTION

 SSSS54 58+QWS185DA DS SC BEGIN OF DATA PORTION
 59+KK
 6S+K K

61+K IFCID 185 DATA PORTION FOLLOWS K
 62+K K

63+K IF QWS185TP = S, THEN K
64+K THE DATA PORTION CONSISTS OF FOUR VARIABLES FOLLOWED BY AN K
65+K ARBITRARY NUMBER OF OCCURRENCES OF THE QWS185VR STRUCTURE. K

 66+K K
 67+KK

Figure 48 (Part 1 of 2). Table Description and Data Row Control Blocks

 Chapter 4. Propagation Exit Routines 177

 SSSS54 SSS54 68+ ORG QWS185DA
 SSSS54 69+QWS185ID DS CL8 EYE CATCHER = 'CDCDD '
 SSSS5C 7S+QWS185BC DS F LENGTH OF THE CDCDD =

71+K (QWS185NO K 44) +16
 SSSS6S 72+QWS185NO DS H TOTAL NUMBER OF OCCURRENCES OF
 73+K QWS185VR
 SSSS62 74+QWS185LD DS H NUMBER OF COLUMNS DESCRIBED BY

75+K OCCURRENCES OF QWS185VR
 SSSS64 76+QWS185VR DS SCL44 DESCRIBES A COLUMN IN A
 77+K CAPTURED TABLE
 SSSS64 78+QWS185ST DS H TELLS THE DATA TYPE OF THE

79+K COLUMN AND WHETHER IT HAS AN
8S+K ASSOCIATED INDICATOR VARIABLE

 SSSS66 81+QWS185LE DS H DEFINES THE EXTERNAL LENGTH OF
82+K A VALUE FROM THE COLUMN

 SSSS68 83+QWS185SD DS F CONTAINS THE CCSID (CODED CHAR
84+K SET ID IN BYTES 3 AND 4.

 SSSS6C 85+QWS185SI DS F OFFSET OF THIS COLUMN INTO THE
 86+K DATA ROW
 SSSS7S 87+QWS185SN DS SC LENGTH OF NAME AND NAME OF THE
 88+K COLUMN
 SSSS7S 89+QWS185NL DS H LENGTH OF COLUMN NAME OR LABEL
 SSSS72 9S+QWS185CN DS CL3S NAME OR LABEL OF COLUMN
 91+K
 92+KK
 93+K K

94+K IF QWS185TP = D, THEN K
95+K THE DATA PORTION CONSISTS OF K
96+K - THE DATA ROW IF QWS185RC EQUAL S. K

 97+K OR K
98+K - AN ERROR MESSAGE IF QWS185RC NOT EQUAL S. K

 99+K K
1SS+K IN THIS CASE, LENGTH OF DATA PORTION IS QWS185LN - QWS185HL. K

 1S1+K K
 1S2+KK
 SSSS9S SSS54 1S3+ ORG QWS185DA
 SSSS54 1S4+QWS185DR DS SC DATA ROW OR ERROR MESSAGE
 1S5 END

Figure 48 (Part 2 of 2). Table Description and Data Row Control Blocks

The Table Description and Data Row Header
The following describes the fields of the table description and data row header part
in more detail:

QW0185LN Length of total table description or data row (header and data).

QW0185TP Contains the CDC control block type and is:

S For the DB2CDC table description
D For the DB2CDC data row

QW0185RC Reason code describing errors for this table and used only for the
data row. If a severe error was detected for this table, the HUP
does not call your Propagation exit routine and enforce the rollback
of the changes. Therefore, the only reason code that your
Propagation exit routine must be able to handle, is the warning
code X'00E60A0B'. This code indicates that although the date or
time install option was specified as LOCAL, a date or time column
value of the row has been returned in ISO format. The DB2 Data
Capture never calls date and time exits.

178 Customization Guide

QW0185QT The qualified table name, which is composed by the table creator
(QW0185CR) and table name (QW0185TB).

QW0185CR Creator name (authorization ID), which is 8 bytes long and padded
with blanks.

QW0185TB Table name, which is 18 bytes long and padded on the right with
blanks.

QW0185TS Time stamp (internal format) of table description from the catalog.

QW0185TL Time stamp (internal format) of log record within the log buffer CI.
This field is present only in the data row (QW0185TP=D).

QW0185UR RBA of the first log record for this unit of work. This field is present
only in the data row (QW0185TP=D).

QW0185LR RBA of log record of this data row. This field is present only in the
data row (QW0185TP=D).

QW0185PC Operation code describing the type of row image and the SQL
operation that performed the data change. This field is present only
in the data row (QW0185TP=D). The possible values of
QW0185PC are:

Code Description
IN Insert
UB Update before-image
UA Update after-image
DE Delete

QW0185RI Operation code qualifier present only in the data row
(QW0185TP=D). This field is either blanks, or RI if the operation is
a result of a referential constraint enforcement of a DELETE SET
NULL or CASCADE operation.

The Table Description Data
The table description data portion contains a similar form of an SQLDA that
describes the table. It is like the standard SQLDA external format, except for the
field where you usually specify the address of the data area for a particular column.
In the CDC table description this field is already set and contains the offset to the
column within the data row data section, which is optionally prefixed by a null
indicator variable.

The data portion of the table description consists of four variables, followed by an
arbitrary number of occurrences of a sequence of five variables collectively called
QW0185VR.

QW0185ID An eye catcher for storage dumps containing CDCDD.

QW0185BC The length of the table description data portion. It is (QW0185NO *
44) + 16.

QW0185NO Total number of occurrences of QW0185VR.

QW0185LD The number of columns described by occurrences of QW0185VR.

The following five variables are collectively called QW0185VR and occur
QW0185NO times in the table description. Each occurrence of QW0185VR
describes a column in the captured table.

 Chapter 4. Propagation Exit Routines 179

QW0185ST Tells the data type of the column and whether it has an associated
indicator variable. For a description of the type codes, see
Figure 49 on page 181.

QW0185LE Defines the external length of a value of the column, as follows:

Data Type Content

Character Length attribute in bytes

Graphic Length attribute in bytes

Decimal byte 1 = precision
byte 2 = scale

Float 4 (bytes) for single precision
8 (bytes) for double precision

Smallint 2 (bytes)

Integer 4 (bytes)

Date 10 (bytes) or LOCAL value

Time 8 (bytes) or LOCAL value

Time stamp 26 (bytes).

QW0185SD Contains the CCSID (Coded Character Set Identifier) in bytes 3 and
4. It is a two-byte (unsigned) binary number that uniquely identifies
an encoding scheme and one or more pairs of character sets and
code pages.

QW0185SI Contains a flag byte and the offset of this column into the data row.
The flag byte indicates if the column can be nullable or not. If the
column value can be NULL, then the column data in the data row is
prefixed by an indicator variable (2 bytes). The offset points to the
null indicator variable instead of the data for the column; the data
immediately follows the indicator and starts at offset + 2. The
indicator variable is a two-byte field in the data row containing
X'FFFF' (value -1) if the field is null, or X'0000' if the field
contains data.

The format of the QW0185SI field is:

Bytes Content

1 Flag byte. If highest bit (bit 0) is on, then the
column is prefixed with a null indicator variable, and
the real data starts at offset + 2. The remaining bits
are reserved.

2-4 Offset into the data, or indicator variable for this
column. This offset must be added to the data row
data portion address (QW0185DR) to compute the
virtual storage address of the column data or
indicator variable.

QW0185SN Length of name (QW0185NL) and name of the column
(QW0185CN).

QW0185NL Contains the length of the column name.

QW0185CN Contains the name of the column.

180 Customization Guide

The table below lists values of the QW0185ST field of the table description and
their meanings. There are two values for each data type. The first value means
that the column does not have a null indicator and does not allow nulls; the second
means the column has a null indicator and allows nulls. For more information
about data types, refer to DB2 SQL Reference.

Figure 49. Values of QW0185ST and Their Meanings

Values Data Type

384/385 Date

388/389 Time

392/393 Time stamp

448/449 Variable-length character string

452/453 Fixed-length character string

456/457 Long character string

460/461 Variable-length, optionally null terminated
character string (C)

464/465 Variable-length graphic string

468/469 Fixed-length graphic string

472/473 Long graphic string

480/481 Floating point

484/485 Decimal

496/497 Large Integer

500/501 Small Integer

The Data Row Data
The data row data portion starts at label QW0185DR. It contains actual data
mapped according to the table description, with DB2-calculated offsets into the
data for each column.

SQL inserts (IN) and SQL deletes (DE) are passed as one row pointed to by
HECCDCDA, a single image that contains all the columns in the table.

SQL updates are passed as two rows, an after-image (UA) pointed to by
HECCDCDA, and a before-image (UB) pointed to by HECCDCDB. Both images
contain all the columns of the table.

As applicable, the rules of the external form of a table description dictate how the
following data items are handled:

� A string of fields, ordered as they were specified in the external form of a table
description of the table, and in standard SQL external format.

� EDITPROCs and FIELDPROCs are called as in standard SQL. The returned
data is as decoded by an EDITPROC or any FIELDPROCs that apply, the
same as standard SQL.

� DBCS data is supported as in standard SQL.

� VARCHARs are padded to maximum length, but they contain the actual length
in the first two bytes of the data.

 Chapter 4. Propagation Exit Routines 181

� Nulls are represented by an indicator variable (two bytes) that precedes the
field, but this field is not included in the length.

Exit Routine Processing
Using the information in the control blocks described above (interface control block,
XPCB, and XSDCB for HR-propagation, or interface control block, HEC, data
description and data row for RH-propagation), you can propagate the changed data
segment (pointed to by the XSDB) or DB2 row (pointed to by the data row) in any
way you choose. This section describes considerations for developing your
Propagation exit routine.

Calling Your Exit Routine
DPROP loads your Propagation exit routine before its first call, and keeps it in
virtual storage until the OS/VS task terminates. In MPP regions, this spans multiple
MPP executions. Before calling your exit routine, the RUP or HUP reads the
Propagation interface control block, checks the propagation status, and traces the
changed IMS data or DB2 data.

DPROP uses standard OS/VS conventions when calling your exit routine.

Register 1 Points to the parameter list described above.
Register 13 Contains the address of a register save area.
Register 14 Contains the return address.
Register 15 Contains the entry point address of the exit routine.

Upon entering the exit routine, the register contents must be saved into the caller's
save area. If your exit routine calls other routines that use standard MVS linkage
conventions, it must also provide a save area of its own. The exit routine must
return to its caller using normal OS/VS conventions after restoring the registers. A
return code must be provided in the interface control block, not in register 15. Also,
like the other exit routines, your Propagation exit routine gains control in AMODE
31, and must return control in AMODE 31.

For HR-propagation, Propagation exit routines can be called multiple times during
one IMS call if the call updates more than one segment type, or if multiple PRs
exist for one segment type. The number of calls, and the order in which they are
made, depends on these conditions and the type of IMS update being made.

� During processing of an updating IMS call, IMS calls the RUP once for each
occurrence of a modified segment type. For ISRT and REPL operations, the
call sequence is top-down. For DLET operations, the call sequence is usually
bottom-up. Refer to IMS/ESA Application Programming: DL/I Calls for more
information on the call sequence.

� During one call, the RUP needs to process multiple PRs propagating the
modified segment occurrence. The RUP processes the PRs sequentially.

– The RUP calls a Propagation exit routine for each one of the following
active PRs belonging to a user mapping case.

1. If defining PRs with DataRefresher, for each PR identifying the modified
segment type in the PROPSEDG keyword. The PROPSEGM keyword
is part of the MAPUPARM keyword of the DataRefresher UIM SUBMIT
control statement.

2. If defining PRs in the MVG input tables, for each PR having a
DPRISEG row identifying the modified segment type.

182 Customization Guide

For details on defining a PR, see “Telling DPROP About Your Propagation
Exit” on page 186.

– The RUP also processes each active PR belonging to a generalized
mapping case that identifies the modified segment occurrence as an entity
segment or as an extension segment.

For RH-propagation, Propagation exit routines can be called multiple times

� If you have multiple PRs propagating the same table, or

� During the processing of an SQL statement, if the statement updates or deletes
more than one row.

The number of calls, and the order in which they are made, depends on the DB2
process sequence of the rows and is unpredictable for DPROP and the
Propagation exit routine.

Exit Routine Logic
Your exit routine must supply all the mapping logic, SQL statements, and IMS calls
necessary for propagating the changed data to DB2 or IMS. For performance
reasons, it is recommended that your exit routine generate static SQL calls. Avoid
using functions that have a detrimental effect on the performance of the
propagating program (such as performing an OPEN and CLOSE on an MVS file
each time the exit routine is called). It is also recommended that the Database
Request Modules (DBRMs) of your Propagation exits be package bound. The DB2
plans created for the propagating application programs must then list the packages.

You can also propagate data changes to more than one DB2 table or IMS
database. For more information, see “Propagating Data To More Than One DB2
Table” on page 188.

Because the exit routine for synchronous propagation runs in the same
environment as the propagating application program, it can generate the same type
of IMS calls and SQL statements that the application program can. For
LOG-ASYNC and user asynchronous propagation using the TSO Attach or CAF
Attach, the exit routines do not execute in an IMS environment, and cannot
generate IMS calls. For asynchronous propagation, therefore, create only SQL
statements.

If the exit generates SQL statements, then the DBRM of your Propagation exit
routine must be included in the DB2 plans of those application programs which
synchronously propagate the changed data. For both LOG-ASYNC and user
asynchronous propagation, the DBRM must be included in the DB2 plan of the
receiver program.

For RH-propagation, your exit probably generates IMS calls. Use the AIB interface
described in IMS/ESA Application Programming: DL/I Calls, which allows your exit
routine to generate calls without the address of the IMS PCBs.

During synchronous propagation, any changes you make to propagated data from
within your exit routine are not propagated.

A Propagation exit routine must not perform functions that are not supported by the
environment in which it is running. For example, an exit routine running in an MPP

 Chapter 4. Propagation Exit Routines 183

region must not write to OS files, and the exit routine must not generate STIMER
macros in an IMS environment.

It is recommended that you code and link-edit your program as reentrant. To
simplify programming, DPROP provides a work space to your exit routine in the
interface control block.

Return Codes and Error Handling Techniques
This section discusses how to return from your exit routine to DPROP, including
return codes and a brief description of error handling techniques. For more
information on how the RUP and HUP handle error situations, see the appropriate
Administrators Guide for your propagation mode. First, though, remember that you
must return control to the caller in AMODE 31, using the normal MVS conventions
described in the previous section.

 Return Codes
Below is a list of the return codes you can use when returning from your exit
routine, including detailed descriptions of their meanings. The code must be
returned in the PICXRETC field of the interface control block.

0 Used for normal returns.

4 Your exit routine must set return code of 4 when it encounters an SQL error
code that it considers a propagation failure. If the SQL error code it
encounters is considered a normal situation (not a propagation failure), your
exit routine must use return code 0.

DPROP assumes that the SQLCA (located in the Propagation interface control
block) was used to generate the last SQL statement, and that the last SQL
statement was the one that failed. DB2 stores the type of SQL error in the
SQLCA. DPROP then reads the SQLCA and, based on which type of error is
indicated, proceeds with its usual error handling techniques. DPROP also
uses the information in the SQLCA to write an error message describing the
details of the error.

8 Your exit must set return code 8 when it encounters an IMS call error that it
considers a propagation failure. If the IMS status code it encounters is
considered a normal situation (not a propagation failure), your exit routine must
use return code 0.

DPROP assumes that the AIB (located in the Propagation Interface Control
Block) was used to generate the last IMS call, and that the last IMS call was
the one that failed. IMS stores the status code in the failing PCB pointed to by
the AIBRSA1 field of the AIB control block. DPROP then reads the AIB and
PCB and, based on which type of error is indicated, proceeds with its usual
error handling techniques. DPROP also uses the information in the AIB and
PCB to write an error message describing the details of the error.

12 Your exit routine must set return code 12 if it encounters a propagation failure
error that is not caused by an SQL error or IMS call error, and that DPROP
considers as an unavailable resource problem. DPROP then executes its
usual error handling techniques for unavailable resources.

16 This return code must be used for propagation failures that are not caused by
an SQL error, an IMS call error, or an unavailable resource problem. DPROP
again uses its usual error handling techniques for problems other than
unavailable resources.

184 Customization Guide

20 Your exit routine must set this return code if there is a severe error for which
you want DPROP to ABEND, even if ERROPT=IGNORE is in effect.

Generating ABENDs from an exit routine is not recommended. Doing this
results in loss of flexibility of DPROP's error handling techniques.

Error Handling Techniques
When you encounter an error in your exit routine, it is strongly recommended that
your exit routine take advantage of DPROP's standard error handling logic. In the
interface control block, you can supply a return code in PICXRETC, and an error
message in PICXMESG. You must not return an error message in PICXMESG
without providing an error return code, because this creates too many console
messages.

By supplying DPROP with an error return code and message, you gain many
advantages. When an exit returns with an error return code, DPROP traces or
snaps the control blocks involved in the interface, and the data. The exits are
included in DPROP's standardized error handling techniques; they can differentiate
between ERROPT=BACKOUT and ERROPT=IGNORE, and respond based on the
type of error encountered; they protect against excessive console messages.
DPROP writes your error message using its standard message writing logic: WTO,
trace data set (the IMS log, the //EKYLOG data set, or the //EKYTRACE data set),
and audit trail.

If the exit routine generates its own messages or ABENDs, DPROP cannot include
the exit routine in its standardized error handling, and cannot guard against
excessive console messages. Therefore, it is not recommended that your exit
routine generate its own messages or ABENDs when an error occurs.

Saving Information Across Calls
You can save information across calls to the exit routine. Save it in the
PICSWORK field of the interface control block. If PICSWORK is not large enough,
generate a GETMAIN and save the address of the storage in PICSWORK.

Updating Your Propagation Exit Routine
DPROP does not provide any online change logic to replace an existing load
module copy of your exit routine with a new version of the load module. If you
need to change your exit routine, stop the affected IMS regions and any
asynchronous receiver programs before performing the change. A change of the
exit routine without stopping the IMS regions and receiver programs causes
unpredictable results. For example, some MPP regions use the new version of the
exit routine, while other regions use the old version. After the change, you can
restart the IMS regions.

Tracing Your Exit Routine
DPROP provides a trace facility that can assist you in detecting errors in your exit
routines. DPROP creates trace output when it encounters propagation failures and
when the user activates the trace facility.

You can activate the DPROP trace facility by providing a TRACE control statement
in the //EKYIN data set of the job step where your exit routine runs. For
synchronous propagation, you can also activate tracing by calling the SCU with a
TRACE ON control statement.

 Chapter 4. Propagation Exit Routines 185

If you include debug level 2 on the TRACE or TRACE ON statements, the trace
output includes, for HR-propagation, the changed IMS segment, and, for
RH-propagation, the changed DB2 row. Also, the PICDBLV2 bit of the interface
control block is on when the exit routine is entered. When this bit is on, It is
recommended that your exit routine also trace the propagating SQL statements for
HR-propagation, or the propagating IMS calls for RH-propagation. See the
appropriate Administrators Guide for your propagation mode for details on how to
call the DPROP trace module directly from your exit routine.

If you include debug level 4 on the TRACE or TRACE ON statements, each time
the exit routine returns to DPROP, the trace output includes:

For HR-propagation:

� The contents of the interface control block
� The XPCB and XSDBs
� The before replace image of changed segments
� The path data for the changed segment (if provided by the caller of the RUP)

For RH-propagation:

� The contents of the interface control block
� The HEC, QWHS, and QWHC
� The Data Capture Data Description
� The Data Capture Data area for the before- and after-image of the row.

If you include debug level 8 on the TRACE or TRACE ON statements, the trace
output includes a record of each call to and each return from an exit routine.

Other useful debugging aids are the exit entered and exit in control flags in the
interface control block. These flags help you determine if your exit routine is in
control at the time of a failure.

Telling DPROP About Your Propagation Exit
This section describes how you can inform DPROP that you want to use a
Propagation exit routine. During PR definition, specify which Propagation exit
routines must be called when changes are made to specific IMS segment types or
DB2 tables. The process you follow depends on whether or not you are creating
your PRs using DataRefresher.

Creating a PR Using DataRefresher
Defining a PR that uses a Propagation exit routine is much the same as defining a
PR used with the generalized mapping cases. The most significant difference is
that, on the MAPUPARM operand of the DataRefresher SUBMIT statement, you
must:

� Specify the PRTYPE parameter as PRTYPE=U.

� Give the load module name of the exit routine on the EXITNAME= parameter.

� Identify the list of the segment types propagated by the PR on the
PROPSEGM= keyword.

This tells DPROP that you want to use a Propagation exit routine, which exit
routine must be called, and which segment types and table are propagated.

186 Customization Guide

For HR-propagation, one segment type is usually propagated by only one PR.
However, one segment type can be propagated by multiple PRs, belonging to
generalized and user mapping cases. If the segment type is specified on the
PROPSEGM= keyword of more than one PR, the RUP calls your exit routine once
for each associated PR.

For RH-propagation, one table is usually propagated by only one PR. However,
one table can be propagated by multiple PRs, but they must all belong to user
mapping cases.

Creating a PR Using the MVG Input Tables
This section discusses how to define a PR for a Propagation exit using the MVG
Input Tables. The input into the tables is similar to that used for the generalized
mapping cases. When specifying a Propagation exit routine, your PR must have at
least one row in the PR table, one row in the DPRISEG (or SEG) table, and one
row in the DPRITAB (or TAB) table.

In the PR table, you must specify the PRTYPE column as U. Also, specify the load
module name of the exit routine using the EXITNAME column. When you define
the PR for your exit routine, leave the MAPCASE column blank. The PROPSUP
column is ignored.

For HR-propagation, you must include in the SEG table one row for each segment
type that, when changed, is propagated by the Propagation exit routine associated
with the PR being defined. When one of these segments is changed, the RUP
calls the exit routine to propagate the segment.

Typically, one segment type is propagated by only one PR, and only one PR has a
SEG row for that segment type. However, one segment type can be propagated by
multiple PRs that belong to generalized and user mapping cases. If the segment
type is specified on the SEG row of more than one PR, the RUP calls your exit
routine once for each associated PR.

For RH-propagation, include in the TAB table one row for each table that, when
changed, is propagated by the Propagation exit routine associated with the PR
being defined.

Typically, one table is propagated by only one PR, and only one PR has a TAB row
for that table. However, one table can be propagated by multiple PRs, belonging to
user mapping cases. If the table is specified on the TAB row of more than one PR,
the HUP calls your exit routine once for each associated PR.

The SEGEXIT, SEGEXITL, and SEGEXITF columns of the SEG row do not apply
to user mapping cases, and are ignored; but they are copied to the SEG mapping
table. Also, DPROP ignores the ROLE column, but still must be set to a value (P,
E, or X) or blank.

In the TAB table, the columns are the same as those for the generalized mapping
cases. Also, DPROP performs the same checks. The only difference is that, for a
user mapping, you can specify more than one row in the table. For more
information about multiple DB2 tables, see the next section.

 Chapter 4. Propagation Exit Routines 187

You can also use the DPRIFLD (or FLD) table to provide information on the fields
to be propagated to DB2. However, DPROP does not use the information in this
table, and you are not required to provide it.

Propagating Data To More Than One DB2 Table
Using a Propagation exit routine, you can propagate your changed IMS data to
more than one DB2 table. The SQL calls involved are created by you, but you
must let DPROP know that more than one table is involved. You can only do this
through the MVG input tables. To inform DPROP that you want to use more than
one DB2 table, add one row in the MVG TAB table for each DB2 table that
receives the data changes.

You can define PRs that propagate to multiple tables if you are defining them with
the MVG input tables, but not with DataRefresher. However, with DataRefresher,
you can define multiple PRs, each propagating the same data to another target
DB2 table.

Propagating Data To More Than One IMS Segment
Using a Propagation exit routine, you can propagate your changed DB2 data to
more than one IMS segment. The IMS calls involved are created by you, but you
must let DPROP know that more than one database or segment is involved. You
can do this using either DataRefresher or the MVG input tables. When using
DataRefresher, you must use one DataRefresher SEGMENT statement for each
segment to which you want to propagate the PR. If you use the MVG input tables,
then add one row in the MVG SEG table for each IMS segment that receives the
data changes.

Binding the PR
Use the name of the propagation exit as the member name when binding the PR.

First Sample Propagation Exit Routine
Figure 52 on page 190 shows the first example of a Propagation exit routine for
HR-propagation only. This example shows you the basic principles for mapping a
data change involving path data, although this is already supported by the
generalized mapping case capabilities of DPROP Version 1 Release 2. The
purpose of this sample exit is to illustrate typical aspects of the logic that a
Propagation user exit needs to provide and how to call the DPROP trace module
within such an exit routine.

In this case, the sample exit is mapping fields from an entity segment, and nonkey
path data located in the segment's parent, to the target DB2 table.

Because this kind of mapping is supported by the DataRefresher mapping logic, the
data extract in this case can be performed by DataRefresher.

Mapping Performed By the Sample Exit Routine
Figure 50 on page 189 illustrates the overview of the propagation done on IMS
fields by the sample Propagation exit routine.

188 Customization Guide

 Database DB1
┌────────────┐
│ │
│ SEG1 ├───────────�────┐
│ │ path data │
└─────┬──────┘ │
 │ │
 │ │
 │ │
 │ │
 │ │
 │ │
┌─────┴──────┐ │ ┌──────────┐
? ? ? Propagation exit routine ? ?
│ SEG2 ├───────────�────┴──────────────────────────�│ TAB2 │
│ │ entity segment │ │
└────────────┘ └──────────┘

Figure 50. Overview of the Propagation Performed By the Exit Routine

Figure 51 shows the mapping of individual IMS source fields to the DB2 target
columns.

Figure 51. Mapping of IMS Source Fields to DB2 Target Columns

Segment Name Field Name Key attribute Column Name Column Type

SEG1 SEG1KEY1 Key field TAB2COL1 Part of primary
Key

SEG1 SEG1DAT1 TAB2COL6

SEG1 SEG1DAT2

SEG1 SEG1DAT3

SEG2 SEG2KEY1 Key subfield TAB2COL2 Part of primary
Key

SEG2 SEG2KEY2 Key subfield TAB2COL3 Part of primary
Key

SEG2 SEG2DAT1 TAB2COL4

SEG2 SEG1DAT2 TAB2COL5

Sample Exit Routine Source Code
The example in Figure 52 on page 190 is intentionally simplified to emphasize the
fundamental logic involved. Your Propagation exit routine will likely be more
complex to meet your propagation requirements.

The source code below is provided in the DPROP Sample Source Library
(EKYSAMP) under the member name EKYEPR1A. The following source code
shows sample module EKYEPR1A after the DB2 precompiler processed it.

Following the source code are definitions related to the sample Propagation exit
routine.

 Chapter 4. Propagation Exit Routines 189

 1 MACRO
 2 SQLSECT &TYPE
 3 GBLC &SQLSECT

4 AIF ('&TYPE' EQ 'RESTORE').REST
5 &SQLSECT SETC '&SYSECT'

 6 MEXIT
 7 .REST ANOP

8 &SQLSECT CSECT
 9 MEND

11 KKKKKKKKKK START OF SPECIFICATIONS KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK
12 K MODULE NAME = EKYEPR1A K

 13 K K
14 K DESCRIPTIVE NAME = SAMPLE 'PROPAGATION USER EXIT ROUTINE' K

 15 K K
16 K STATUS: V1 R2 MS K

 17 K K
18 K FUNCTION = EKYEPR1A IS A SAMPLE DPROP K
19 K 'PROPAGATION USER EXIT ROUTINE'. K

 2S K K
21 K EKYEPR1A ILLUSTRATES TYPICAL ASPECTS OF THE LOGIC THATK
22 K A 'PROPAGATION USER EXIT ROUTINES' NEEDS TO PROVIDE. K

 23 K K
24 K THIS PARTICULAR SAMPLE EXIT ROUTINE PROPAGATES THE K
25 K CHANGE OF THE DL/I SEGMENT 'SEG2' TO A DB2 TABLE K

 26 K 'TAB2'. K
27 K THE DL/I SOURCE FIELDS FOR THE PROPAGATION ARE K

 28 K LOCATED IN: K
29 K - THE FULLY CONCATENATED DL/I KEY OF 'SEG2' K
3S K - IN THE DATA PORTION OF 'SEG2' K
31 K - AND IN THE DATA PORTION OF THE PARENT SEGMENT K
32 K 'SEG1' OF SEG2 (FIELDS IN THE DATA PORTION K
33 K OF THE PARENT ARE REFERRED TO AS 'PATH DATA'). K

 34 K K
35 K NOTE THAT MAPPING INVOLVING 'PATH DATA' IS K
36 K SUPPORTED BY THE GENERALIZED MAPPING LOGIC OF DPROP K
37 K V1R2. THEREFORE, IN REAL LIFE, DPROP INSTALLATIONS K
38 K WILL NOT NEED TO PROVIDE A PROPAGATION EXIT ROUTINE K
39 K TO PERFORM THE MAPPING DESCRIBED IN THIS SAMPLE K
4S K EXIT ROUTINE; INSTEAD THEY WILL USE THE GENERALIZED K
41 K MAPPING LOGIC OF DPROP. K

 42 K K
44 K THE FIGURE BELOW PROVIDES AN OVERVIEW OF K
45 K THE DL1-TO-DB2 MAPPING PERFORMED BY THIS SAMPLE EXIT. K

 46 K K
 47 K K--------------------K K-------------------------K K
 48 K ‘ DL/I WORLD ‘ ‘ DB2 WORLD ‘ K
 49 K K--------------------- K-------------------------K K
 5S K K
 51 K K--------------------K K-------------------------K K

52 K ‘ SEGMENT 'SEG1' ‘ ‘ TABLE 'TAB2' ‘ K
 53 K K--------------------K K-------------------------K K

54 K ‘SEG1KEY1 KEY FLD ‘--> ‘ TAB2COL1 PRIMARY KEY COL‘ K
55 K ‘SEG1DAT1 ‘--> ‘ TAB2COL6 ‘ K

 56 K ‘SEG1DAT2 ‘ ‘ - ‘ K
 57 K ‘SEG1DAT3 ‘ ‘ - ‘ K
 58 K K--------------------K ‘ ‘ K
 59 K ‘ ‘ ‘ K
 6S K ‘ ‘ ‘ K
 61 K ‘ ‘ ‘ K
 62 K V ‘ ‘ K
 63 K K--------------------K ‘ ‘ K

64 K ‘ SEGMENT 'SEG2' ‘ ‘ ‘ K
 65 K K--------------------K ‘ ‘ K

66 K ‘SEG2KEY1 SUB-KEY FLD‘ -->‘ TAB2COL2 PRIMARY KEY COL‘ K
67 K ‘SEG2KEY2 SUB-KEY FLD‘ -->‘ TAB2COL3 PRIMARY KEY COL‘ K
68 K ‘SEG2DAT1 ‘ -->‘ TAB2COL4 ‘ K
69 K ‘SEG2DAT2 ‘ -->‘ TAB2COL5 ‘ K

 7S K K--------------------K K-------------------------K K

Figure 52 (Part 1 of 40). First Sample Propagation Exit Routine (Assembler)

190 Customization Guide

 71 K K

72 K THE PROPAGATION OF A DL/I REPL OF SEG2 RESULTS IN: K
73 K A SQL UPDATE STATEMENT FOR THE THREE COLUMNS K
74 K WHICH ARE NOT PART OF THE PRIMARY DB2 KEY OF TAB2. K
75 K THE 'WHERE CLAUSE' OF THE SQL UPDATE STATEMENT K
76 K PROVIDES THE VALUES FOR THE THREE COLUMNS WHICH K
77 K MAKES UP THE PRIMARY DB2 KEY OF TAB2. K

 78 K K
79 K THE PROPAGATION OF A DL/I ISRT OF SEG2 RESULTS IN: K
8S K A SQL INSERT STATEMENT OF A ROW INTO TAB2 K
81 K WITH ALL 6 COLUMNS SHOWN IN THE ABOVE TABLE. K

 82 K K
83 K THE PROPAGATION OF A DL/I DLET OF SEG2 RESULTS IN: K
84 K A SQL DELETE STATEMENT OF A ROW INTO TAB2. K
85 K THE 'WHERE CLAUSE' OF THE SQL DELETE STATEMENT K
86 K PROVIDES THE VALUES FOR THE THREE COLUMNS WHICH K
87 K MAKES UP THE PRIMARY DB2 KEY OF TAB2. K

 88 K K
 89 K DISCLAIMERS: K
 9S K ------------ K

91 K 1) THIS SAMPLE EXIT IS BY PURPOSE VERY SIMPLE, IN K
92 K ORDER TO AVOID TO OBSCURE THE MOST ESSENTIAL K
93 K ASPECTS OF THE LOGIC OF A PROPAGATION USER EXIT. K
94 K IN REAL-LIFE, MOST PROPAGATION USER EXITS WILL K
95 K BE MORE COMPLEX THAN THIS SAMPLE BECAUSE THEY K
96 K MIGHT NEED TO PROVIDE LOGIC IN ORDER TO SUPPORT K

 97 K FOR EXAMPLE: K
98 K - FIELD FORMAT CONVERSION K
99 K - CONVERSION TO A DB2 'NULL' VALUE K
1SS K - VARIABLE LENGTH SEGMENTS K
1S1 K - DL/I FIELDS HAVING A VARIABLE START POSITION K
1S2 K WITHIN THE SEGMENT. K

 1S3 K K
1S4 K 2) NOTE ALSO THAT THIS SAMPLE EXIT DOES KKKNOTKKK PROPAGATE K
1S5 K CHANGE OF 'PATH DATA' (I.E THE FIELD SEG1DAT1 OF SEGMENT K
1S6 K SEG1) TO TAB2. K
1S7 K I.E.: THIS EXIT PROPAGATES THE PATH DATA LOCATED IN SEG1 K
1S8 K ONLY WHEN A SEG2 SEGMENT IS BEING UPDATED. THIS K
1S9 K EXIT DOES NOT PROPAGATE DATA LOCATED IN SEG1 WHEN K
11S K A SEG1 SEGMENT IS BEING UPDATED. K

 111 K K
112 K IN REAL-LIFE THE USER HAS AT LEAST TWO OPTIONS TO K
113 K PROPAGATE SUCH CHANGES: K
114 K A) HE CAN DEFINE FOR THE PROPAGATION OF SUCH CHANGES K
115 K ANOTHER PR AND PROVIDE ANOTHER PROPAGATION USER EXIT K
116 K ROUTINE TO PERFORM THE REQUIRED PROPAGATION. K

 117 K OR: K
118 K B) HE CAN PERFORM THE PROPAGATION OF THESE CHANGES WITH K
119 K THE SAME PR AND WITH THE SAME PROPAGATION USER EXIT K
12S K ROUTINE AS THE PROPAGATION OF CHANGES TO SEG2. K
121 K HE SHOULD THEN EXPAND THE LOGIC OF EKYEPR1A IN ORDER K
122 K TO INCLUDE PROPAGATING SQL UPDATE STATEMENTS IN ORDER K
123 K TO PROPAGATE TO TAB2 DL/I REPL OF SEG1 WHICH K
124 K RESULTS IN A CHANGE OF SEG1DAT1. K

 126 K K
 127 K NOTES = K

128 K DEPENDENCIES ON DBDGEN SPECIFICATIONS K
 129 K ------------------------------------- K
 13S K K

131 K FOR THE PROPAGATION OF REPL AND ISRT OF SEG2, K
132 K EKYEPR1A NEEDS DL/I DATA STORED IN: K
133 K - THE FULLY CONCATENATED KEY OF SEG2 K
134 K - THE DATA OF SEGM2 K
135 K - THE DATA OF THE PARENT SEGM1 ('PATH DATA'). K

Figure 52 (Part 2 of 40). First Sample Propagation Exit Routine (Assembler)

 Chapter 4. Propagation Exit Routines 191

 136 K K

137 K FOR THE PROPAGATION OF DLET, EKYEPR1A K
138 K NEEDS ONLY THOSE DL/I FIELDS WHICH ARE MAPPED K
139 K TO THE COLUMNS OF THE DB2 PRIMARY KEY. ALL THESE K
14S K DL/I FIELDS ARE LOCATED IN K
141 K - THE FULLY CONCATENATED KEY OF SEG2. K

 142 K K
143 K 1) THEREFORE, EXIT= SPECIFICATIONS DURING DBDGEN SHOULD K

 144 K SPECIFY: K
 145 K K-------------------------------K K
 146 K ‘EXIT=((EKYRUPSS,KEY,PATH,DATA))‘ K
 147 K K-------------------------------K K

148 K THESE SPECIFICATIONS ALLOW TO SATISFY THE K
149 K EKYEPR1A DATA REQUIREMENTS FOR THE PROPAGATION OF K
15S K REPL, ISRT AND DLET OPERATIONS. K

 151 K K
152 K 2) KKKIFKKK THE TARGET DB2 TABLES ARE KKKNOTKKK INVOLVED K
153 K IN REFERENTIAL INTEGRITY CONSTRAINTS ALLOWING TO USE K
154 K THE DL/I DBDGEN 'NOCASCADE' OPTION, THEN PROPAGATION K
155 K OF DL/I DLET REQUIRES THE DBDGEN OPTION OF K
156 K 'CASCADE' ('CASCADE' IS A DBDGEN DEFAULT OPTION). K
157 K THE DL/I DBDGEN CASCADE OPTION: K
158 K - MUST SPECIFY (OR DEFAULT TO) THE 'KEY' SUBOPTION K
159 K (BECAUSE EKYEPR1A NEEDS THE FULLY CONCATENATED K
16S K KEY OF SEG2 TO PROPAGATE CASCADING DELETES OF K

 161 K SEG2), K
162 K - CAN SPECIFY THE 'NODATA' AND 'NOPATH' OPTIONS K
163 K (BECAUSE EKYEPR1A NEEDS NEITHER SEG2 DATA NOR K
164 K PATH DATA TO PROPAGATE DELETES OF SEG2). K
165 K THEREFORE THE CASCADE OPTION IN DBDGEN WILL TYPICALLY K
166 K BE SPECIFIED AS: K

 167 K K---------------------------K K
 168 K ‘(CASCADE,KEY,NODATA,NOPATH)‘ K
 169 K K---------------------------K K

17S K IT IS ALSO OK TO TAKE THE DEFAULT CASCADE OPTIONS, K
 171 K WHICH ARE: K
 172 K K---------------------------K K
 173 K ‘(CASCADE,KEY,DATA,NOPATH) ‘ K
 174 K K---------------------------K K
 175 K K

176 K DEPENDENCIES ON LINKAGE EDITING K
 177 K ------------------------------- K

178 K 1) EKYEPR1A MUST BE LINK EDITED WITH THE 'RIGHT' K
179 K DB2 LANGUAGE INTERFACE ROUTINE (DB2 HAS DIFFERENT K
18S K LANGUAGE INTERFACE ROUTINES FOR EACH UNIQUE K
181 K ENVIRONMENT: ONE LANGUAGE INTERFACE ROUTINE FOR K
182 K IMS ENVIRONMENTS, ANOTHER FOR TSO ENVIRONMENTS, K
183 K AND ANOTHER FOR CAF ENVIRONMENTS). K

 184 K K
185 K IF USING EKYEPR1A FOR DPROP ASYNCHRONOUS PROPAGATION K
186 K OR USER ASYNCHRONOUS PROPAGATION USING A CAF ATTACH K
187 K - THE INSTALLATION MUST LINK EKYEPR1A WITH THE K
188 K DB2 LANGUAGE INTERFACE FOR THE CAF ATTACH. K

 189 K K
19S K IF USING EKYEPR1A FOR ASYNCH PROPAGATION IN AN IMS K

 191 K ENVIRONMENT: K
192 K - THE INSTALLATION MUST LINK EKYEPR1A WITH THE K
193 K DB2 LANGUAGE INTERFACE FOR THE IMS ATTACH. K

 194 K K
195 K IF USING EKYEPR1A FOR ASYNCH PROPAGATION IN K
196 K A TSO ATTACH ENVIRONMENT: K
197 K - THE INSTALLATION MUST LINK EKYEPR1A WITH THE K
198 K DB2 LANGUAGE INTERFACE FOR THE TSO ATTACH. K

 199 K K

Figure 52 (Part 3 of 40). First Sample Propagation Exit Routine (Assembler)

192 Customization Guide

2SS K IF USING EKYEPR1A FOR SYNCHRONOUS PROPAGATION: K
2S1 K - THE INSTALLATION MUST LINK EKYEPR1A WITH THE K
2S2 K DB2 LANGUAGE INTERFACE FOR THE IMS ATTACH. K

 2S3 K K
 2S4 K K

2S5 K 2) EKYEPR1A MUST ALSO BE LINK EDITED WITH THE DPROP K
2S6 K TRACE MODULE EKYR41SX. K

 2S7 K K
2S8 K RESTRICTIONS = NONE K

 2S9 K REGISTER CONVENTIONS= K
21S K R13= ADDRESS OF SAVE AREA K
211 K R12= MODULE BASE REGISTER K
212 K R11= BAS REGISTER TO CALL SUBROUTINE K
213 K R1S= ADDRESS OF XPCB K
214 K R9 = ADDRESS OF PIC K
215 K R8 = ADDRESS OF XSDB K
216 K R7 = ADDRESS OF FULLY CONCATENATED KEY K
217 K R6 = ADDRESS OF SEGMENT DATA K
218 K R5 = ADDRESS OF PATH DATA K
219 K R4 = A(SQLDSECT) / A(TRB) / A(TED) K
22S K PATCH LABEL = - (NONE) K

 221 K K
222 K MODULE TYPE = PROCEDURE K
223 K PROCESSOR = ASSEMBLER K
224 K MODULE SIZE = APPROXIMATELY 32SS BYTES K
225 K ATTRIBUTES = REENTRANT K

 226 K RMODE = ANY K
 227 K AMODE = 31 K
 228 K K

229 K ENTRY POINT = EKYEPR1A K
23S K PURPOSE = SEE FUNCTION K
231 K LINKAGE = STANDARD OS/VS ASSEMBLER LINKAGE CONVENTIONS. K

 232 K K
233 K INPUT : R1 = POINTING TO A STANDARD PARAMETER ADDRESS LIST. K
234 K 1ST PARAMETER: ADDRESS OF PIC (PIC IS THE K
235 K EXIT INTERFACE CONTROL BLOCK) K
236 K 2ND PARAMETER: ADDRESS OF DL/I XPCB K

 237 K K
238 K OUTPUT : THE CHANGED DL/I SEGMENT HAS BEEN PROPAGATED K

 239 K K
 24S K EXIT-NORMAL= K

241 K STANDARD OS/VS ASSEMBLER RETURN CONVENTIONS. K
242 K RETURN CODES = S K

 243 K K
 244 K EXIT-ERROR= K

245 K STANDARD OS/VS ASSEMBLER RETURN CONVENTIONS. K
246 K RETURN CODE = 4 : SQL ERROR K
247 K 2S: SEVERE ERRORS K

 248 K K
 249 K K

25S K ABEND-CODE OF EKYEPR1A = NONE K
 251 K ABEND-REASON CODES = NONE K
 252 K K

253 K ERROR MESSAGES ISSUED BY EKYEPR1A K
254 K EKYEPRSE : PROPAGATION FAILURE FOR TABLE=XXXXXXXX K
255 K FAILING SQL STATEMENT=XXXXX SQL ERROR CODE=XXXX K
256 K EKYEPR1E : UNEXPECTED DBD- OR SEGNAME FOR EKYEPR1A K
257 K DBDNAME=XXXXX SEGNAME=XXXXXX FUNC=XXXX K
258 K EKYEPR2E : KEY OF SEG2 NOT PROVIDED BY DL/I CAPTURE K
259 K DBDNAME=XXXXX SEGNAME=XXXXXX FUNC=XXXX K
26S K EKYEPR3E : DATA OF SEG2 NOT PROVIDED BY DL/I CAPTURE K
261 K DBDNAME=XXXXX SEGNAME=XXXXXX FUNC=XXXX K
262 K EKYEPR4E : PATH DATA NOT PROVIDED BY DL/I CAPTURE K
263 K DBDNAME=XXXXX SEGNAME=XXXXXX FUNC=XXXX K
264 K EKYEPR5E : UNEXPECTED CALL FUNCTION IN DL/I XPCB K
265 K DBDNAME=XXXXX SEGNAME=XXXXXX FUNC=XXXX K

Figure 52 (Part 4 of 40). First Sample Propagation Exit Routine (Assembler)

 Chapter 4. Propagation Exit Routines 193

 266 K K
 267 K K
 268 K EXTERNAL REFERENCES K
 269 K K

27S K ROUTINES= = SQL LANGUAGE INTERFACE K
271 K EKYR41SX : DPROP TRACE MODULE K

 272 K K
273 K DATA AREAS = SEE CONTROL BLOCKS K

 274 K K
275 K CONTROL BLOCKS = PIC INTERFACE CB FOR PROPAGATION EXIT K
276 K XPCB DL/I CAPTURE EXTENDED PCB K
277 K XSDB DL/I CAPTURE EXTENDED SEGMENT K

 278 K DESCRIPTION K
279 K TRB TRACE REQUEST BLOCK K
28S K TED TRACE ELEMENT DESCRIPTION K

 281 K K
282 K MACROS CODED IN MODULE= K
283 K SETTED - SET INFORMATION INTO A TED K

 284 K K
285 K MACROS USED FROM MACRO LIBRARY= K
286 K SAVE - SAVE REGISTERS K
287 K GETMAIN - OS/VS GETMAIN K

 288 K K
289 K EKYRCPIC - INTERFACE CB FOR PROPAGATION EXIT K
29S K EKYRCDL1 - DL/I CAPTURE INTERFACE CONTROL BLOCKS K
291 K EKYTRB - TRACE REQUEST BLOCK K
292 K EKYTED - TRACE ELEMENT DESCRIPTOR K

 293 K K
 294 K K
 295 K TABLES= NONE K
 296 K K

297 K INCLUDE CODE FROM LIBRARY= NONE K
 298 K K
 299 K CHANGE ACTIVITY= K

3SS K KMPSS46: SUPPORT OF LOGICAL PARENT SEGMENTS HAVING K
3S1 K A 'LOGICAL' IMS DELETE RULE AND INVOLVED K
3S2 K IN A UNIDIRECTIONAL LOGICAL RELATIONSHIP. K

 3S3 K K
3S4 KKKKKKKKKKKKK END OF SPECIFICATIONS KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK
3S6 KKKKKKKKKKKK LOGIC OF EKYEPR1A KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK

 3S7 K K
 3S8 K K

3S9 K MAIN LINE LOGIC: K
 31S K ================ K
 311 K K

312 K 1) MODULE ENTRY LOGIC: K
 313 K ---------------------- K

314 K - PROVIDE REGISTER EQUATES K
315 K - GENERATE A MODULE SAVEID K
316 K - SAVE REGISTERS AND ESTABLISH MODULE-BASE REGISTER K
317 K - LOAD ADDRESSES OF CALL PARAMETERS K
318 K - SET 'MODULE ENTERED' AND 'MODULE IN CONTROL' FLAGS K

 319 K INTO PIC. K
32S K - SET TABLE QUALIFIER AND TABLE NAME INTO PIC K
321 K - IF FIRST INVOCATION OF THE EXIT: K
322 K - GETMAIN AN AREA CONTAINING AMONG OTHER K
323 K A MODULE SAVE AREA AND MODULE WORKSPACE. K
324 K - SAVE ADDRESS OF GETMAINED AREA. K
325 K - CLEAR THE GETMAINED AREA. K
326 K - CHAIN MODULE SAVE AREA AND SAVE AREA OF CALLER. K

 327 K K
328 K 2) VERIFY INFORMATION PROVIDED BY DL/I CAPTURE AND/OR DPROP K

 329 K --- K
33S K - VERIFY THAT THE EXIT IS INVOKED TO PROPAGATE THE K

 331 K RIGHT DBD/SEGNAME. K

Figure 52 (Part 5 of 40). First Sample Propagation Exit Routine (Assembler)

194 Customization Guide

332 K - VERIFY THAT DL/I CAPTURE PROVIDES THE K
333 K FULLY CONCATENATED KEY OF THE SEGMENT K
334 K - FOR ISRT AND REPL OPERATIONS: K
335 K VERIFY THAT DL/I CAPTURE PROVIDES: K
336 K - THE SEGMENT DATA K
337 K - PATH DATA. K

 338 K K
339 K 3) BRANCH ACCORDING TO TYPE OF DL1 UPDATE OPERATION. K

 34S K -- K
 341 K K
 342 K K

343 K 4) FOR A DL/I REPL: K
 344 K -------------------- K

345 K - ISSUE A SQL UPDATE STATEMENT FOR A ROW WITH COLUMNS K
 346 K ORIGINATING FROM: K

347 K - THE DATA PORTION OF SEG2 K
348 K - PATH DATA (I.E FROM THE DATA PORTION OF THE K

 349 K PARENT SEGMENT) K
35S K THE 'WHERE CLAUSE' OF THE UPDATE STATEMENT PROVIDES K
351 K THE VALUES OF THE DB2 COLUMNS WHICH MAKES UP THE K
352 K PRIMARY DB2 KEY. K

 353 K K
354 K - IF THE SQL UPDATE RESULTS IN AN ERROR OR WARNING: K
355 K - B TO SQLERR ('SQL ERROR LOGIC). K
356 K - IF THE SQL UPDATE IS OK: K
357 K - B TO TRACRET ('TRACE AND RETURN TO CALLER') K

 358 K K
 359 K K

36S K 5) FOR A DL/I ISRT: K
 361 K -------------------- K

362 K - ISSUE A SQL INSERT STATEMENT TO INSERT A ROW WITH K
363 K COLUMNS ORIGINATING FROM: K
364 K - THE FULLY CONCATENATED KEY OF SEG2 K
365 K - THE DATA PORTION OF SEG2 K
366 K - PATH DATA (I.E FROM THE DATA PORTION OF THE K

 367 K PARENT SEGMENT) K
 368 K K

369 K - IF THE SQL INSERT RESULTS IN AN ERROR OR WARNING: K
37S K - B TO SQLERR ('SQL ERROR LOGIC). K
371 K - IF THE SQL INSERT IS OK: K
372 K - B TO TRACRET ('TRACE AND RETURN TO CALLER') K

 373 K K
 374 K K

375 K 6) FOR A DL/I DLET: K
 376 K -------------------- K

377 K - ISSUE A SQL DELETE STATEMENT TO DELETE THE TARGET ROW. K
378 K THE 'WHERE CLAUSE' OF THE DELETE STATEMENT PROVIDES K
379 K THE VALUES OF THE DB2 COLUMNS WHICH MAKES UP THE K
38S K PRIMARY DB2 KEY. K

 381 K K
382 K - IF THE SQL DELETE RESULTS IN A WARNING OR AN ERROR K
383 K OTHER THAN 'NOT FOUND': K
384 K - B TO SQLERR ('SQL ERROR LOGIC). K
385 K - IF THE SQL DELETE RESULTS IN A 'NOT FOUND' AND THE K
386 K DL/I DELETE WAS NOT A CASCADING DELETE K
387 K - B TO SQLERR ('SQL ERROR LOGIC). K
388 K - IF THE SQL DELETE IS OK, K
389 K OR IF THE SQL DELETE RESULTS IN A 'NOT FOUND' AND THE K
39S K DL/I DELETE WAS A CASCADING DELETE: K
391 K - B TO TRACRET ('TRACE AND RETURN TO CALLER') K

 392 K K
 393 K K

394 K 7) RETURN LOGIC K
 395 K ---------------- K

396 K - IF THE USER REQUESTED A TRACING OF THE PROPAGATING K
 397 K SQL STATEMENTS: K

Figure 52 (Part 6 of 40). First Sample Propagation Exit Routine (Assembler)

 Chapter 4. Propagation Exit Routines 195

398 K - CALL THE TRACE SUBROUTINE IN ORDER TO TRACE K
399 K THE PROPAGATING SQL STATEMENT. K
4SS K - RESTORE REGISTERS OF THE CALLER K
4S1 K - RETURN TO THE CALLER. K

 4S2 K K
 4S3 K K

4S4 K MISCELLANEOUS (ERROR LOGIC AND TRACING) K
 4S5 K ======================================= K
 4S6 K K

4S7 K A) SQL ERROR LOGIC K
 4S8 K ------------------ K

4S9 K - SET RETURN CODE 4 K
41S K - FORMAT AN ERROR MESSAGE K
411 K - CALL THE TRACE SUBROUTINE TO TRACE THE FAILING K

 412 K SQL STATEMENT. K
413 K - RETURN TO THE CALLER. K

 414 K K
 415 K K

416 K B) ERRORS OTHER THAN SQL ERRORS K
 417 K ------------------------------- K

418 K - SET RETURN CODE 4 K
419 K - FORMAT AN ERROR MESSAGE K
42S K - RETURN TO THE CALLER. K

 421 K K
 422 K K

423 K C) TRACE SUBROUTINE: K
 424 K --------------------- K

425 K - FILL INFORMATION INTO THE 'TRACE REQUEST BLOCK (TRB)' K
426 K LOCATED IN THE GETMAINED AREA. K
427 K - FOR EACH ITEM/ELEMENT TO BE INCLUDED IN THE K

 428 K TRACE OUTPUT: K
429 K -- CALL A SETTED MACRO TO IDENTIFY THE INFORMATION K
43S K TO BE INCLUDED IN THE TRACE OUTPUT. K
431 K - CALL THE DPROP TRACER. K
432 K - RETURN TO THE CALLER OF THE TRACE SUBROUTINE K

 433 K K
434 KKKKKKKKKKKK END-OF-LOGIC KK

 436 KK
 437 KK
 438 KK
 439 KKKK KKKK

44S KKKK MODULE ENTRY LOGIC KKKK
 441 KKKK KKKK
 442 KK
 443 KK
 444 KK

 SSSSSS 446 EKYEPR1A START
 447 K

448 EKYEPR1A AMODE 31 EXIT EXPECTS TO BE CALLED IN AMODE-31
449 EKYEPR1A RMODE ANY EXIT CAN BE LOADED ANYWHERE

 45S K
 451 K---K

452 K DEFINITION OF REGISTER EQUATES K
 453 K---K
 454 K
 SSSSS 455 RS EQU S
 SSSS1 456 R1 EQU 1
 SSSS2 457 R2 EQU 2
 SSSS3 458 R3 EQU 3
 SSSS4 459 R4 EQU 4 A(TED)/A(TRB)/A(SQLDSECT)

SSSS5 46S R5 EQU 5 A(DATA OF PARENT SEGMENT)
SSSS6 461 R6 EQU 6 A(DATA OF CHANGED SEGMENT)
SSSS7 462 R7 EQU 7 A(FULLY CONCATENATED KEY)

 SSSS8 463 R8 EQU 8 A(XSDB)
 SSSS9 464 R9 EQU 9 A(PIC)

Figure 52 (Part 7 of 40). First Sample Propagation Exit Routine (Assembler)

196 Customization Guide

 SSSSA 465 R1S EQU 1S A(DL/I XPCB)

SSSSB 466 R11 EQU 11 BAS REGISTER TO CALL SUBROUTINES
SSSSC 467 R12 EQU 12 MODULE BASE REGISTER

 SSSSD 468 R13 EQU 13 A(SAVEAREA)
 SSSSE 469 R14 EQU 14
 SSSSF 47S R15 EQU 15

 472 K---K

473 K GENERATE SAVE-ID CONSISTING OF EXIT NAME, K
474 K COMPILATION DATE AND COMPILATION TIME. K

 475 K---K

 477 LCLC &SAVEID

478 &SAVEID SETC 'EKYEPR1A DPR11S'.'-'.'&SYSDATE'.'-'.'&SYSTIME'

 48S K---K

481 K SAVE REGISTERS AND ESTABLISH MODULE-BASE REGISTER K
 482 K---K

484 SAVE (14,12),,&SAVEID SAVE REGISTERS
 SSSSSS 47FS FS24 SSS24 485+ B 36(S,15) BRANCH AROUND ID
 SSSSS4 1E 486+ DC AL1(3S) LENGTH OF IDENTIFIER
 SSSSS5 C5D2E8C5D7D9F1C1 487+ DC CL8'EKYEPR1A' IDENTIFIER
 SSSSSD 4SC4D7D9F1F1FS6S 488+ DC CL8' DPR11S-' IDENTIFIER
 SSSS15 FSF361F2F361F9F3 489+ DC CL8'S3/23/93' IDENTIFIER
 SSSS1D 6SF1F14BFSF2 49S+ DC CL6'-11.S2' IDENTIFIER
 SSSS23 SS
 SSSS24 9SEC DSSC SSSSC 491+ STM 14,12,12(13) SAVE REGISTERS

 SSSS28 18CF 493 LR R12,R15 R12=ENTRY POINT OF THIS EXIT

SSSSS 494 USING EKYEPR1A,R12 ESTABLISH BASE REGISTER

 496 K---K

497 K LOAD ADDRESS OF CALL PARAMETERS K
 498 K---K

 SSSS2A 989A 1SSS SSSSS 5SS LM R9,R1S,S(R1) LOAD ADDRESS OF TWO CALL PARAMETERS

SSSSS 5S1 USING PIC,R9 R9=BASE FOR INTERFACE CONTROL BLOCK
SSSSS 5S2 USING XPCB,R1S R1S=BASE FOR DL/I XPCB

 5S4 K---K

5S5 K SET IN THE INTERFACE BLOCK THE K
5S6 K 'EXIT ENTERED' AND 'EXIT IN CONTROL' FLAGS. K

 5S7 K---K

 SSSS2E 92E7 9S9C SSS9C 5S9 MVI PICENTRD,C'X' SET 'EXIT ENTERED'
 SSSS32 92E7 9S9D SSS9D 51S MVI PICINCTL,C'X' SET 'EXIT IN CONTROL'

 512 K---K

513 K SET IN THE INTERFACE BLOCK THE K
514 K TABLE NAME QUALIFIER AND THE TABLE NAME K

 515 K---K

 SSSS36 D2S7 91D4 CA2S SS1D4 SSA2S 517 MVC PICTABQ,=CL8' ' UNKNOWN QUALIFIER
 SSSS3C D211 91DC CB44 SS1DC SSB44 518 MVC PICTABN,=CL18'TAB2' SET TABLE NAME

 52S K---K

521 K IF THIS IS THE FIRST INVOCATION: K
522 K - GETMAIN AN AREA CONTAINING K
523 K -- OUR SAVE AREA K
524 K -- MODULE WORKSPACE K
525 K - CLEAR THE GETMAINED AREA WITH BINARY ZEROES K

 526 K---K

Figure 52 (Part 8 of 40). First Sample Propagation Exit Routine (Assembler)

 Chapter 4. Propagation Exit Routines 197

 SSSS42 58BS 92SS SS2SS 528 L R11,PICSWORK R11=A(GETMAINED AREA)
 SSSS46 12BB 529 LTR R11,R11 IS THIS ADDRESS ZERO?
 SSSS48 477S CS74 SSS74 53S BNZ NOTFIRST ...NO>>>FIRST TIME PROCESSING DONE

532 GETMAIN RU,LV=GETML,LOC=ANY GETMAIN AN AREA
 SSSS4C 533+ CNOP S,4
 SSSS4C 47FS CS58 SSS58 534+ B K+12-4KS-2KS BRANCH AROUND DATA
 SSSS5S SSSSS319 535+ DC A(GETML) LENGTH
 SSSS54 SS 536+IHBSSS2F DC AL1(S) RESERVED
 SSSS55 SS 537+ DC AL1(S) RESERVED
 SSSS56 SS 538+ DC AL1(S) SUBPOOL
 SSSS57 72 539+ DC BL1'S111SS1S' MODE BYTE @G86SP3S
 SSSS58 58SS CS5S SSS5S 54S+ L S,K-8+2KS LOAD LENGTH
 SSSS5C 58FS CS54 SSS54 541+ L 15,IHBSSS2F LOAD GETMAIN PARMS
 SSSS6S 1B11 542+ SR 1,1 ZERO RESERVED REG 1
 SSSS62 SA78 543+ SVC 12S ISSUE GETMAIN SVC

 SSSS64 18B1 545 LR R11,R1 R11=A(GETMAINED AREA)
 SSSS66 5SBS 92SS SS2SS 546 ST R11,PICSWORK SAVE ADDRESS GETMAINED AREA

 SSSS6A 18S1 548 LR RS,R1 SET UP
 SSSS6C 411S S319 SS319 549 LA R1,GETML ...FOR A
 SSSS7S 1BFF 55S SR R15,R15 ...ZEROING
 SSSS72 SESE 551 MVCL RS,R14 ...MVCL
 SSSS74 552 NOTFIRST DS SH

 554 K---K

555 K CHAIN TOGETHER OUR SAVEAREA AND THE HIGHER-LEVEL SAVEAREA K
556 K AND LOAD INTO R13 THE ADDRESS OF OUR SAVEAREA K

 557 K---K

 SSSS74 5SBD SSS8 SSSS8 559 ST R11,8(R13) CHAIN OUR SAVEAREA INTO HIGHER
 SSSS78 5SDB SSS4 SSSS4 56S ST R13,4(R11) CHAIN HIGHER SAVEAREA INTO OUR
 SSSS7C 18DB 561 LR R13,R11 R13=A(OUR SAVEAREA)

SSSSS 562 USING GETM,R13 ESTABLISH BASE REGISTER FOR WORKAREA
 564 KK
 565 KK
 566 KK
 567 KKKK KKKK
 568 KKKK VERIFY THAT: KKKK

569 KKKK - THE EXIT IS INVOKED TO PROPAGATE THE RIGHT KKKK
 57S KKKK DBD-/SEG-NAME. KKKK

571 KKKK - THE DBDGEN EXIT= SPECIFICATIONS ARE SUCH, THAT KKKK
572 KKKK DL/I CAPTURE PROVIDES ALL REQUIRED INFORMATION. KKKK

 573 KKKK KKKK
 574 KK
 575 KK
 576 KK

 578 K---K

579 K VERIFY, THAT THE EXIT IS CALLED FOR THE PROPAGATION OF K
58S K THE CORRECT DBDNAME AND SEGMENT NAME. K

 581 K---K

 SSSS7E D5S7 AS14 CA28 SSS14 SSA28 583 CLC XPCBDBD,=CL8'DB1' EXPECTED DBDNAME?
 SSSS84 477S C4DA SS4DA 584 BNE INVDBSEG ...NO>>>THIS IS AN ERROR
 SSSS88 D5S7 AS2S CA3S SSS2S SSA3S 585 CLC XPCBSEG,=CL8'SEG2' EXPECTED SEGMENT-NAME?
 SSSS8E 477S C4DA SS4DA 586 BNE INVDBSEG ...NO>>>THIS IS AN ERROR

Figure 52 (Part 9 of 40). First Sample Propagation Exit Routine (Assembler)

198 Customization Guide

 588 K---K

589 K THE FULLY CONCATENATED KEY OF THE CHANGED DL/I SEGMENT IS K
59S K REQUIRED TO BUILD THE PRIMARY KEY OF THE TARGET DB2 K
591 K TABLE AND TO IDENTIFY THE TARGET DB2 ROW. K

 592 K K
593 K THE EXIT THEREFORE VERIFIES, THAT DL/I CAPTURE PROVIDES K
594 K THE FULLY CONCATENATED KEY OF THE CHANGED DL/I SEGMENT K

 595 K---K

 SSSS92 587S AS4C SSS4C 597 L R7,XPCBCKEYA R7=A(FULLY CONCATENATED KEY)
 SSSS96 1277 598 LTR R7,R7 KEY PROVIDED BY DL/I CAPTURE?
 SSSS98 478S C4EE SS4EE 599 BZ KEYMISS ...NO>>>THIS IS AN ERROR
 SSSSS 6SS USING FCKEY,R7

 6S2 K---K

6S3 K FOR ISRT AND REPL UPDATES, THE EXIT REQUIRES BOTH THE K
6S4 K DATA FROM THE CHANGED SEGMENT AND FROM ITS PARENT K
6S5 K SEGMENT (WHICH IS THE ROOT). K

 6S6 K K
6S7 K THE EXIT THEREFORE VERIFIES, THAT DL/I CAPTURE PROVIDES K
6S8 K THE DATA OF THE CHANGED SEGMENT AND THE PATH DATA FROM K
6S9 K ITS PARENT SEGMENT K

 61S K---K

 SSSS9C D5S3 AS2C CAC8 SSS2C SSAC8 612 CLC XPCBPCALL,=CL4'ISRT' IS IT AN ISRT?
 SSSSA2 478S CSBE SSSBE 613 BE DATAREQ ...YES>>>DATA REQUIRED
 SSSSA6 D5S3 AS2C CACC SSS2C SSACC 614 CLC XPCBPCALL,=CL4'REPL' IS IT AN REPL?
 SSSSAC 478S CSBE SSSBE 615 BE DATAREQ ...YES>>>DATA REQUIRED
 SSSSBS D5S3 AS2C CADS SSS2C SSADS 616 CLC XPCBPCALL,=CL4'REIN' IS IT A RE-INSERT OF A
 SSSSB6 478S CSBE SSSBE 617 BE DATAREQ LOGICAL PARENT?
 SSSSBA 47FS CSE6 SSSE6 618 B DATANREQ ...NO>>>DATA IS NOT REQUIRED

 SSSSBE 62S DATAREQ DS SH
 SSSSBE 588S AS5S SSS5S 621 L R8,XPCBXSDBD R8=A(XSDB OF CHANGED SEGMENT)

SSSSS 622 USING XSDB,R8 R8=BASE OF DL/I XSDB
 SSSSC2 1288 623 LTR R8,R8 DATA PROVIDED BY DL/I CAPTURE?
 SSSSC4 478S C5S2 SS5S2 624 BZ DATAMISS ...NO>>>THIS IS AN ERROR
 SSSSC8 586S 8S2C SSS2C 625 L R6,XSDBSEGA R6=A(CHANGED DATA)
 SSSSCC 1266 626 LTR R6,R6 DATA PROVIDED BY DL/I CAPTURE?
 SSSSCE 478S C5S2 SS5S2 627 BZ DATAMISS ...NO>>>THIS IS AN ERROR
 SSSSS 628 USING SEG2,R6

 SSSSD2 58FS AS58 SSS58 63S L R15,XPCBXSDBP R15=A(XSDB FOR PATH DATA)
 SSSSD6 12FF 631 LTR R15,R15 IS THIS XSDB PROVIDED?
 SSSSD8 478S C516 SS516 632 BZ PATHMISS ...NO>>>THIS IS AN ERROR
 SSSSDC 585F SS2C SSS2C 633 L R5,XSDBSEGA-XSDB(R15) R5=A(PATH DATA)
 SSSSES 1255 634 LTR R5,R5 DATA PROVIDED BY DL/I CAPTURE?
 SSSSE2 478S C516 SS516 635 BZ PATHMISS ...NO>>>THIS IS AN ERROR
 SSSSS 636 USING SEG1,R5
 SSSSE6 637 DATANREQ DS SH
 639 KK
 64S KK
 641 KK
 642 KKKK KKKK

643 KKKK BRANCH ACCORDING TO TYPE OF DL/I UPDATE KKKK
 644 KKKK KKKK
 645 KK
 646 KK
 647 KK

 SSSSE6 D5S3 AS2C CACC SSS2C SSACC 649 CLC XPCBPCALL,=CL4'REPL' IS IT AN REPL?
 SSSSEC 478S C11C SS11C 65S BE REPL ...YES>>>B
 SSSSFS D5S3 AS2C CAC8 SSS2C SSAC8 651 CLC XPCBPCALL,=CL4'ISRT' IS IT AN ISRT?
 SSSSF6 478S C242 SS242 652 BE ISRT ...YES>>>B
 SSSSFA D5S3 AS2C CADS SSS2C SSADS 653 CLC XPCBPCALL,=CL4'REIN' RE-INSERT OF LOGICAL PARENT
 SSS1SS 478S C242 SS242 654 BE ISRT

Figure 52 (Part 10 of 40). First Sample Propagation Exit Routine (Assembler)

 Chapter 4. Propagation Exit Routines 199

 SSS1S4 D5S3 AS2C CAD4 SSS2C SSAD4 655 CLC XPCBPCALL,=CL4'DLET' IS IT A DLET?
 SSS1SA 478S C36S SS36S 656 BE DLET ...YES>>>B
 SSS1SE D5S3 AS2C CAD8 SSS2C SSAD8 657 CLC XPCBPCALL,=CL4'DLPP' PHYSICAL-DELETE-ONLY OF A
 SSS114 478S C36S SS36S 658 BE DLET ...LOGICAL PARENT?
 SSS118 47FS C52A SS52A 659 B INVCALL INVALID CALL FUNCTION
 661 KK
 662 KK
 663 KK
 664 KKKK KKKK

665 KKKK DL/I SEGMENT HAS BEEN REPLACED: KKKK
666 KKKK THIS RESULTS IN A PROPAGATING 'SQL UPDATE' KKKK
667 KKKK OF THE TARGET DB2 ROW. KKKK

 668 KKKK KKKK
 669 KK
 67S KK
 671 KK

 SSS11C 673 REPL DS SH
 SSS11C 95E8 8S1C SSS1C 674 CLI XSDBPHP,XSDBPHPY RETURN, IF SEGM NOT ACCES-
 SSS12S 477S C464 SS464 675 BNE RETURN SIBLE VIA PHYSICAL PATH.

 SSS124 D2S7 DS48 CA38 SSS48 SSA38 677 MVC OPER,=CL8'UPDATE' IDENTIFY TYPE OF SQL OPERATION

 679 K---K

68S K ISSUE A SQL UPDATE STATEMENT TO UPDATE THE TAB2 ROW K
 681 K---K

 SSS12A 414S DS58 SSS58 683 LA R4,WORKSQL ESTABLISH ADDRESSABILITY

SSSSS 684 USING SQLDSECT,R4 ...OF SQL DSECT

 686 KKK$$$

687 K EXEC SQL UPDATE C
 TAB2 C

SET TAB2COL4 = :SEG2DAT1 , C
TAB2COL5 = :SEG2DAT2 , C
TAB2COL6 = :SEG1DAT1 C

WHERE TAB2COL1 = :FCK_SEG1KEY1 AND C
TAB2COL2 = :FCK_SEG2KEY1 AND C
TAB2COL3 = :FCK_SEG2KEY2

 SSS12E 47FS C14E SS14E 688 B K+32
 SSS132 SS288SSSSS1E 689 DC H'4S',X'8SSS',H'3S'
 SSS138 E74S4S4S4S4S4S4S 69S DC CL8'X ',XL8'14E73C84S3SFCAB4',H'1'
 SSS14A S293SSEA 691 DC H'659,234'
 SSS14E D217 4SS4 C132 SSSS4 SS132 692 MVC SQLPLLEN(24),K-28
 SSS154 D2S3 4S28 C14A SSS28 SS14A 693 MVC SQLSTNUM(4),K-1S
 SSS15A 41FS 931S SS31S 694 LA 15,SQLCA
 SSS15E 5SFS 4S1C SSS1C 695 ST 15,SQLCODEP
 SSS162 41FS 6SS8 SSSS8 696 LA 15,SEG2DAT1
 SSS166 5SFS 4S34 SSS34 697 ST 15,SQLPVARS+8
 SSS16A D2S1 4S3S CB56 SSS3S SSB56 698 MVC SQLPVARS+4(2),=X'S1C4'
 SSS17S D2S1 4S32 CB58 SSS32 SSB58 699 MVC SQLPVARS+6(2),=H'8'
 SSS176 1FFF 7SS SLR 15,15
 SSS178 5SFS 4S38 SSS38 7S1 ST 15,SQLPVARS+12
 SSS17C 41FS 6S1S SSS1S 7S2 LA 15,SEG2DAT2
 SSS18S 5SFS 4S4S SSS4S 7S3 ST 15,SQLPVARS+2S
 SSS184 D2S1 4S3C CB56 SSS3C SSB56 7S4 MVC SQLPVARS+16(2),=X'S1C4'
 SSS18A D2S1 4S3E CB58 SSS3E SSB58 7S5 MVC SQLPVARS+18(2),=H'8'
 SSS19S 1FFF 7S6 SLR 15,15
 SSS192 5SFS 4S44 SSS44 7S7 ST 15,SQLPVARS+24
 SSS196 41FS 5SS5 SSSS5 7S8 LA 15,SEG1DAT1
 SSS19A 5SFS 4S4C SSS4C 7S9 ST 15,SQLPVARS+32
 SSS19E D2S1 4S48 CB56 SSS48 SSB56 71S MVC SQLPVARS+28(2),=X'S1C4'
 SSS1A4 D2S1 4S4A CB5A SSS4A SSB5A 711 MVC SQLPVARS+3S(2),=H'7'
 SSS1AA 1FFF 712 SLR 15,15
 SSS1AC 5SFS 4S5S SSS5S 713 ST 15,SQLPVARS+36
 SSS1BS 41FS 7SSS SSSSS 714 LA 15,FCK_SEG1KEY1

Figure 52 (Part 11 of 40). First Sample Propagation Exit Routine (Assembler)

200 Customization Guide

 SSS1B4 5SFS 4S58 SSS58 715 ST 15,SQLPVARS+44
 SSS1B8 D2S1 4S54 CB56 SSS54 SSB56 716 MVC SQLPVARS+4S(2),=X'S1C4'
 SSS1BE D2S1 4S56 CB5C SSS56 SSB5C 717 MVC SQLPVARS+42(2),=H'5'
 SSS1C4 1FFF 718 SLR 15,15
 SSS1C6 5SFS 4S5C SSS5C 719 ST 15,SQLPVARS+48
 SSS1CA 41FS 7SS5 SSSS5 72S LA 15,FCK_SEG2KEY1
 SSS1CE 5SFS 4S64 SSS64 721 ST 15,SQLPVARS+56
 SSS1D2 D2S1 4S6S CB56 SSS6S SSB56 722 MVC SQLPVARS+52(2),=X'S1C4'
 SSS1D8 D2S1 4S62 CB5E SSS62 SSB5E 723 MVC SQLPVARS+54(2),=H'2'
 SSS1DE 1FFF 724 SLR 15,15
 SSS1ES 5SFS 4S68 SSS68 725 ST 15,SQLPVARS+6S
 SSS1E4 41FS 7SS7 SSSS7 726 LA 15,FCK_SEG2KEY2
 SSS1E8 5SFS 4S7S SSS7S 727 ST 15,SQLPVARS+68
 SSS1EC D2S1 4S6C CB56 SSS6C SSB56 728 MVC SQLPVARS+64(2),=X'S1C4'
 SSS1F2 D2S1 4S6E CB6S SSS6E SSB6S 729 MVC SQLPVARS+66(2),=H'6'
 SSS1F8 1FFF 73S SLR 15,15
 SSS1FA 5SFS 4S74 SSS74 731 ST 15,SQLPVARS+72
 SSS1FE D2S3 4S2C CADC SSS2C SSADC 732 MVC SQLPVARS(4),=F'76'
 SSS2S4 41FS 4S2C SSS2C 733 LA 15,SQLPVARS
 SSS2S8 5SFS 4S2S SSS2S 734 ST 15,SQLVPARM
 SSS2SC D2S3 4S24 CAES SSS24 SSAES 735 MVC SQLAPARM,=XL4'SSSSSSSS'
 SSS212 411S 4SS4 SSSS4 736 LA 1,SQLPLLEN
 SSS216 5S1S 4SSS SSSSS 737 ST 1,SQLPLIST
 SSS21A 968S 4SSS SSSSS 738 OI SQLPLIST,X'8S'
 SSS21E 411S 4SSS SSSSS 739 LA 1,SQLPLIST
 SSS222 58FS CAE4 SSAE4 74S L 15,=V(DSNHLI)
 SSS226 S5EF 741 BALR 14,15
 742 KKK$$$

 744 DROP R4

 746 K---K
747 K CHECK SQL ERROR CODE AND SQL WARNINGS K

 748 K---K

 SSS228 582S 931C SS31C 75S L R2,SQLCODE R2=SQL ERROR CODE
 SSS22C 1222 751 LTR R2,R2 IS IT ZERO?
 SSS22E 477S C23A SS23A 752 BNZ REPLFAIL ...NO>>>THIS IS AN ERROR
 SSS232 95E6 9388 SS388 753 CLI SQLWARN,C'W' A SQL WARNING?
 SSS236 477S C23E SS23E 754 BNE REPLOK ...NO>>>SQL WAS SUCCESSFUL

 SSS23A 756 REPLFAIL DS SH
 SSS23A 47FS C474 SS474 757 B SQLERR PROPAGATING SQL STMT FAILED

 SSS23E 759 REPLOK DS SH
 SSS23E 47FS C45S SS45S 76S B TRACRET PROPAGATING SQL STMT WAS OK
 762 KK
 763 KK
 764 KK
 765 KKKK KKKK

766 KKKK DL/I SEGMENT HAS BEEN INSERTED: KKKK
767 KKKK THIS RESULTS IN A PROPAGATING 'SQL INSERT' KKKK
768 KKKK OF THE TARGET DB2 ROW. KKKK

 769 KKKK KKKK
 77S KK
 771 KK
 772 KK

 SSS242 774 ISRT DS SH
 SSS242 D2S7 DS48 CA4S SSS48 SSA4S 775 MVC OPER,=CL8'INSERT' IDENTIFY TYPE OF SQL OPERATION

Figure 52 (Part 12 of 40). First Sample Propagation Exit Routine (Assembler)

 Chapter 4. Propagation Exit Routines 201

 777 K---K

778 K ISSUE A SQL INSERT STATEMENT TO INSERT THE ROW K
 779 K---K

 SSS248 414S DS58 SSS58 781 LA R4,WORKSQL ESTABLISH ADDRESSABILITY

SSSSS 782 USING SQLDSECT,R4 ...OF SQL DSECT

 784 KKK$$$

785 K EXEC SQL INSERT C
 INTO TAB2 C
 (TAB2COL1, C
 TAB2COL2, C
 TAB2COL3, C
 TAB2COL4, C
 TAB2COL5, C
 TAB2COL6) C
 VALUES C
 (FCK_SEG1KEY1, C
 FCK_SEG2KEY1, C
 FCK_SEG2KEY2, C
 SEG2DAT1, C
 SEG2DAT2, C
 SEG1DAT1)
 SSS24C 47FS C26C SS26C 786 B K+32
 SSS25S SS288SSSSS1E 787 DC H'4S',X'8SSS',H'3S'
 SSS256 E74S4S4S4S4S4S4S 788 DC CL8'X ',XL8'14E73C84S3SFCAB4',H'2'
 SSS268 S2C4SSE8 789 DC H'7S8,232'
 SSS26C D217 4SS4 C25S SSSS4 SS25S 79S MVC SQLPLLEN(24),K-28
 SSS272 D2S3 4S28 C268 SSS28 SS268 791 MVC SQLSTNUM(4),K-1S
 SSS278 41FS 931S SS31S 792 LA 15,SQLCA
 SSS27C 5SFS 4S1C SSS1C 793 ST 15,SQLCODEP
 SSS28S 41FS 7SSS SSSSS 794 LA 15,FCK_SEG1KEY1
 SSS284 5SFS 4S34 SSS34 795 ST 15,SQLPVARS+8
 SSS288 D2S1 4S3S CB56 SSS3S SSB56 796 MVC SQLPVARS+4(2),=X'S1C4'
 SSS28E D2S1 4S32 CB5C SSS32 SSB5C 797 MVC SQLPVARS+6(2),=H'5'
 SSS294 1FFF 798 SLR 15,15
 SSS296 5SFS 4S38 SSS38 799 ST 15,SQLPVARS+12
 SSS29A 41FS 7SS5 SSSS5 8SS LA 15,FCK_SEG2KEY1
 SSS29E 5SFS 4S4S SSS4S 8S1 ST 15,SQLPVARS+2S
 SSS2A2 D2S1 4S3C CB56 SSS3C SSB56 8S2 MVC SQLPVARS+16(2),=X'S1C4'
 SSS2A8 D2S1 4S3E CB5E SSS3E SSB5E 8S3 MVC SQLPVARS+18(2),=H'2'
 SSS2AE 1FFF 8S4 SLR 15,15
 SSS2BS 5SFS 4S44 SSS44 8S5 ST 15,SQLPVARS+24
 SSS2B4 41FS 7SS7 SSSS7 8S6 LA 15,FCK_SEG2KEY2
 SSS2B8 5SFS 4S4C SSS4C 8S7 ST 15,SQLPVARS+32
 SSS2BC D2S1 4S48 CB56 SSS48 SSB56 8S8 MVC SQLPVARS+28(2),=X'S1C4'
 SSS2C2 D2S1 4S4A CB6S SSS4A SSB6S 8S9 MVC SQLPVARS+3S(2),=H'6'
 SSS2C8 1FFF 81S SLR 15,15
 SSS2CA 5SFS 4S5S SSS5S 811 ST 15,SQLPVARS+36
 SSS2CE 41FS 6SS8 SSSS8 812 LA 15,SEG2DAT1
 SSS2D2 5SFS 4S58 SSS58 813 ST 15,SQLPVARS+44
 SSS2D6 D2S1 4S54 CB56 SSS54 SSB56 814 MVC SQLPVARS+4S(2),=X'S1C4'
 SSS2DC D2S1 4S56 CB58 SSS56 SSB58 815 MVC SQLPVARS+42(2),=H'8'
 SSS2E2 1FFF 816 SLR 15,15
 SSS2E4 5SFS 4S5C SSS5C 817 ST 15,SQLPVARS+48
 SSS2E8 41FS 6S1S SSS1S 818 LA 15,SEG2DAT2
 SSS2EC 5SFS 4S64 SSS64 819 ST 15,SQLPVARS+56
 SSS2FS D2S1 4S6S CB56 SSS6S SSB56 82S MVC SQLPVARS+52(2),=X'S1C4'
 SSS2F6 D2S1 4S62 CB58 SSS62 SSB58 821 MVC SQLPVARS+54(2),=H'8'
 SSS2FC 1FFF 822 SLR 15,15
 SSS2FE 5SFS 4S68 SSS68 823 ST 15,SQLPVARS+6S
 SSS3S2 41FS 5SS5 SSSS5 824 LA 15,SEG1DAT1
 SSS3S6 5SFS 4S7S SSS7S 825 ST 15,SQLPVARS+68
 SSS3SA D2S1 4S6C CB56 SSS6C SSB56 826 MVC SQLPVARS+64(2),=X'S1C4'
 SSS31S D2S1 4S6E CB5A SSS6E SSB5A 827 MVC SQLPVARS+66(2),=H'7'
 SSS316 1FFF 828 SLR 15,15

Figure 52 (Part 13 of 40). First Sample Propagation Exit Routine (Assembler)

202 Customization Guide

 SSS318 5SFS 4S74 SSS74 829 ST 15,SQLPVARS+72
 SSS31C D2S3 4S2C CADC SSS2C SSADC 83S MVC SQLPVARS(4),=F'76'
 SSS322 41FS 4S2C SSS2C 831 LA 15,SQLPVARS
 SSS326 5SFS 4S2S SSS2S 832 ST 15,SQLVPARM
 SSS32A D2S3 4S24 CAES SSS24 SSAES 833 MVC SQLAPARM,=XL4'SSSSSSSS'
 SSS33S 411S 4SS4 SSSS4 834 LA 1,SQLPLLEN
 SSS334 5S1S 4SSS SSSSS 835 ST 1,SQLPLIST
 SSS338 968S 4SSS SSSSS 836 OI SQLPLIST,X'8S'
 SSS33C 411S 4SSS SSSSS 837 LA 1,SQLPLIST
 SSS34S 58FS CAE4 SSAE4 838 L 15,=V(DSNHLI)
 SSS344 S5EF 839 BALR 14,15
 84S KKK$$$

 842 DROP R4

 844 K---K
845 K CHECK SQL ERROR CODE AND SQL WARNINGS K

 846 K---K

 SSS346 582S 931C SS31C 848 L R2,SQLCODE R2=SQL ERROR CODE
 SSS34A 1222 849 LTR R2,R2 IS IT ZERO?
 SSS34C 477S C358 SS358 85S BNZ ISRTFAIL ...NO>>>THIS IS AN ERROR
 SSS35S 95E6 9388 SS388 851 CLI SQLWARN,C'W' A SQL WARNING?
 SSS354 477S C35C SS35C 852 BNE ISRTOK ...NO>>>SQL WAS SUCCESSFUL

 SSS358 854 ISRTFAIL DS SH
 SSS358 47FS C474 SS474 855 B SQLERR PROPAGATING SQL STMT FAILED

 SSS35C 857 ISRTOK DS SH
 SSS35C 47FS C45S SS45S 858 B TRACRET PROPAGATING SQL STMT WAS OK
 86S KK
 861 KK
 862 KK
 863 KKKK KKKK

864 KKKK DL/I SEGMENT HAS BEEN DELETED: KKKK
865 KKKK THIS RESULTS IN A PROPAGATING 'SQL DELETE' KKKK
866 KKKK OF THE TARGET DB2 ROW. KKKK

 867 KKKK KKKK
 868 KKKK NOTE: KKKK

869 KKKK IF THE 'SQL DELETE' RESULTS IN A 'NOT FOUND' KKKK
87S KKKK AND IF THE DL/I DELETE WAS A 'CASCADING DELETE': KKKK
871 KKKK THE SQL 'NOT FOUND' CAN BE A NORMAL SITUATION; KKKK
872 KKKK THE WILL THEREFORE NOT CONSIDER THIS SITUATION KKKK
873 KKKK AS AN ERROR. KKKK

 874 KKKK KKKK
 875 KK
 876 KK
 877 KK

 SSS36S 879 DLET DS SH
 SSS36S D5S3 AS28 CAE8 SSS28 SSAE8 88S CLC XPCBCALL,=C'DLLP' RETURN IF LOGICAL DELETE OF
 SSS366 478S C464 SS464 881 BE RETURN A PREVIOUSLY PHYSICALLY C
 DELETED SEGMENT

 SSS36A D2S7 DS48 CA48 SSS48 SSA48 883 MVC OPER,=CL8'DELETE' IDENTIFY TYPE OF SQL OPERATION

 885 K---K

886 K ISSUE A SQL DELETE STATEMENT TO DELETE THE ROW K
 887 K---K

 SSS37S 414S DS58 SSS58 889 LA R4,WORKSQL ESTABLISH ADDRESSABILITY

SSSSS 89S USING SQLDSECT,R4 ...OF SQL DSECT

Figure 52 (Part 14 of 40). First Sample Propagation Exit Routine (Assembler)

 Chapter 4. Propagation Exit Routines 203

 892 KKK$$$

893 K EXEC SQL DELETE C
 FROM TAB2 C

WHERE TAB2COL1 = :FCK_SEG1KEY1 AND C
TAB2COL2 = :FCK_SEG2KEY1 AND C
TAB2COL3 = :FCK_SEG2KEY2

 SSS374 47FS C394 SS394 894 B K+32
 SSS378 SS288SSSSS1E 895 DC H'4S',X'8SSS',H'3S'
 SSS37E E74S4S4S4S4S4S4S 896 DC CL8'X ',XL8'14E73C84S3SFCAB4',H'3'
 SSS39S S3S7SSE9 897 DC H'775,233'
 SSS394 D217 4SS4 C378 SSSS4 SS378 898 MVC SQLPLLEN(24),K-28
 SSS39A D2S3 4S28 C39S SSS28 SS39S 899 MVC SQLSTNUM(4),K-1S
 SSS3AS 41FS 931S SS31S 9SS LA 15,SQLCA
 SSS3A4 5SFS 4S1C SSS1C 9S1 ST 15,SQLCODEP
 SSS3A8 41FS 7SSS SSSSS 9S2 LA 15,FCK_SEG1KEY1
 SSS3AC 5SFS 4S34 SSS34 9S3 ST 15,SQLPVARS+8
 SSS3BS D2S1 4S3S CB56 SSS3S SSB56 9S4 MVC SQLPVARS+4(2),=X'S1C4'
 SSS3B6 D2S1 4S32 CB5C SSS32 SSB5C 9S5 MVC SQLPVARS+6(2),=H'5'
 SSS3BC 1FFF 9S6 SLR 15,15
 SSS3BE 5SFS 4S38 SSS38 9S7 ST 15,SQLPVARS+12
 SSS3C2 41FS 7SS5 SSSS5 9S8 LA 15,FCK_SEG2KEY1
 SSS3C6 5SFS 4S4S SSS4S 9S9 ST 15,SQLPVARS+2S
 SSS3CA D2S1 4S3C CB56 SSS3C SSB56 91S MVC SQLPVARS+16(2),=X'S1C4'
 SSS3DS D2S1 4S3E CB5E SSS3E SSB5E 911 MVC SQLPVARS+18(2),=H'2'
 SSS3D6 1FFF 912 SLR 15,15
 SSS3D8 5SFS 4S44 SSS44 913 ST 15,SQLPVARS+24
 SSS3DC 41FS 7SS7 SSSS7 914 LA 15,FCK_SEG2KEY2
 SSS3ES 5SFS 4S4C SSS4C 915 ST 15,SQLPVARS+32
 SSS3E4 D2S1 4S48 CB56 SSS48 SSB56 916 MVC SQLPVARS+28(2),=X'S1C4'
 SSS3EA D2S1 4S4A CB6S SSS4A SSB6S 917 MVC SQLPVARS+3S(2),=H'6'
 SSS3FS 1FFF 918 SLR 15,15
 SSS3F2 5SFS 4S5S SSS5S 919 ST 15,SQLPVARS+36
 SSS3F6 D2S3 4S2C CAEC SSS2C SSAEC 92S MVC SQLPVARS(4),=F'4S'
 SSS3FC 41FS 4S2C SSS2C 921 LA 15,SQLPVARS
 SSS4SS 5SFS 4S2S SSS2S 922 ST 15,SQLVPARM
 SSS4S4 D2S3 4S24 CAES SSS24 SSAES 923 MVC SQLAPARM,=XL4'SSSSSSSS'
 SSS4SA 411S 4SS4 SSSS4 924 LA 1,SQLPLLEN
 SSS4SE 5S1S 4SSS SSSSS 925 ST 1,SQLPLIST
 SSS412 968S 4SSS SSSSS 926 OI SQLPLIST,X'8S'
 SSS416 411S 4SSS SSSSS 927 LA 1,SQLPLIST
 SSS41A 58FS CAE4 SSAE4 928 L 15,=V(DSNHLI)
 SSS41E S5EF 929 BALR 14,15
 93S KKK$$$

 932 DROP R4

 934 K---K
935 K CHECK SQL ERROR CODE AND SQL WARNINGS K

 936 K---K

 SSS42S 582S 931C SS31C 938 L R2,SQLCODE R2=SQL ERROR CODE
 SSS424 1222 939 LTR R2,R2 IS IT ZERO?
 SSS426 478S C44S SS44S 94S BZ DLETS9S ...YES>>>B
 SSS42A 592S CAFS SSAFS 941 C R2,=F'1SS' IS IT A 'NOT FOUND'?
 SSS42E 477S C448 SS448 942 BNE DLETFAIL ...NO>>>THIS IS AN ERROR
 SSS432 D5S3 AS28 CAF4 SSS28 SSAF4 943 CLC XPCBCALL,=C'CASC' IS IT A CASCADING DELETE?
 SSS438 478S C44C SS44C 944 BE DLETOK ...YES>>>THIS IS (PERHAPS) OK
 SSS43C 477S C448 SS448 945 BNE DLETFAIL ...NO>>>THIS IS AN ERROR
 SSS44S 946 DLETS9S DS SH
 SSS44S 95E6 9388 SS388 947 CLI SQLWARN,C'W' A SQL WARNING?
 SSS444 477S C44C SS44C 948 BNE DLETOK ...NO>>>SQL WAS SUCCESSFUL

Figure 52 (Part 15 of 40). First Sample Propagation Exit Routine (Assembler)

204 Customization Guide

 SSS448 95S DLETFAIL DS SH
 SSS448 47FS C474 SS474 951 B SQLERR PROPAGATING SQL STMT FAILED

 SSS44C 953 DLETOK DS SH
 SSS44C 47FS C45S SS45S 954 B TRACRET PROPAGATING SQL STMT WAS OK
 956 KK
 957 KK
 958 KK
 959 KKKK KKKK
 96S KKKK RETURN LOGIC: KKKK

961 KKKK - IF USER REQUESTED TRACING: TRACE THE PROPAGATING KKKK
 962 KKKK SQL STATEMENT. KKKK

963 KKKK - RETURN TO CALLER OF EXIT KKKK
 964 KKKK KKKK
 965 KK
 966 KK
 967 KK
 968 KK

 SSS45S 97S TRACRET DS SH
 971 K--K

972 K IF USER REQUESTED TRACING: K
973 K TRACE THE PROPAGATING SQL STATEMENT K

 974 K--K

 SSS45S 91S2 9S12 SSS12 976 TM PICDBLEV,PICDBLV2 USER REQUESTING TRACING
 SSS454 478S C464 SS464 977 BZ RETURN ...NO>>>B AROUND

 SSS458 414S D118 SS118 979 LA R4,WORKTRB R4=A(TRACE REQUEST BLOCK)
 SSSSS 98S USING TRB,R4
 SSS45C 92E8 4S34 SSS34 981 MVI TRBSOLI,TRBSOLY SET 'A SOLICITED TRACE'
 982 DROP R4
 SSS46S 4DBS C56C SS56C 983 BAS R11,TRACE TRACE THE SQL STATEMENT
 SSS464 984 RETURN DS SH

 986 K--K

987 K RETURN TO CALLER OF THIS EXIT K
 988 K--K

 SSS464 58DD SSS4 SSSS4 99S L R13,4(R13) R13=A(HIGHER SAVEAREA)
 SSS468 98EC DSSC SSSSC 991 LM R14,R12,12(R13) RELOAD REGISTERS OF CALLER
 SSS46C 96S1 DSSF SSSSF 992 OI 15(R13),X'S1' SET RETURN INDICATION
 SSS47S 1BFF 993 SR R15,R15 SET ZERO RETURN-CODE
 SSS472 S7FE 994 BR R14 RETURN LOGIC
 996 KK
 997 KK
 998 KK
 999 KKKK KKKK

1SSS KKKK SQL ERROR LOGIC: KKKK
1SS1 KKKK - SET IN THE INTERFACE BLOCK THE RETURN CODE KKKK
1SS2 KKKK AND THE ADDRESS OF THE SQL-COMMUNICATION-AREA KKKK
1SS3 KKKK - BUILD IN THE INTERFACE CONTROL BLOCK AN KKKK

 1SS4 KKKK ERROR MESSAGE KKKK
1SS5 KKKK - CALL THE TRACE SUBROUTINE KKKK
1SS6 KKKK - RETURN TO THE CALLER OF THE EXIT KKKK

 1SS7 KKKK KKKK
 1SS8 KK
 1SS9 KK
 1S1S KK

 SSS474 1S12 SQLERR DS SH
 1S13 K--K

1S14 K SET IN THE PIC THE ERROR CODE AND THE SQL CODE K
 1S15 K--K
 SSS474 D2S1 9S9E CB62 SSS9E SSB62 1S17 MVC PICXRETC,=H'4' TELL A 'SQL ERROR'

Figure 52 (Part 16 of 40). First Sample Propagation Exit Routine (Assembler)

 Chapter 4. Propagation Exit Routines 205

 1S19 K--K

1S2S K PROVIDE AN ERROR MESSAGE CONTAINING: K
1S21 K - MESSAGE ID K
1S22 K - TYPE OF SQL UPDATE OPERATION K
1S23 K - TABLE NAME K

 1S24 K--K

 SSS47A D2S7 9SAS CA5S SSSAS SSA5S 1S26 MVC MSGSID,=CL8'EKYEPRSE' SET MESSAGE ID
 SSS48S 924S 9SA8 SSSA8 1S27 MVI MSGSBL1,C' ' SET A BLANK
 SSS484 D21D 9SA9 CB64 SSSA9 SSB64 1S28 MVC MSGSTXT,=CL3S'PROPAGATION FAILURE FOR TABLE='
 SSS48A D211 9SC7 CB44 SSSC7 SSB44 1S29 MVC MSGSTABLE,=CL18'TAB2'
 SSS49S D215 9SE6 CB82 SSSE6 SSB82 1S3S MVC MSGSTXT2,=CL22'FAILING SQL STATEMENT='
 SSS496 D2S7 9SFC DS48 SSSFC SSS48 1S31 MVC MSGSTXTO,OPER
 SSS49C D2SF 91S4 CA58 SS1S4 SSA58 1S32 MVC MSGSTXT3,=CL16' SQL ERROR CODE='

 1S34 K--K

1S35 K TRANSLATE THE SQL ERROR CODE INTO PRINTABLE CHARACTERS K
 1S36 K--K

 SSS4A2 4E2S DS5S SSS5S 1S38 CVD R2,DBLW CONVERT SQL CODE TO DECIMAL
 SSS4A6 F321 9115 DS56 SS115 SSS56 1S39 UNPK MSGSSQLC(3),DBLW+6(2) UNPACK SQL CODE
 SSS4AC 96FS 9117 SS117 1S4S OI MSGSSQLC+2,X'FS' FORCE PRINTABLE CHARACTER
 SSS4BS 924S 9114 SS114 1S41 MVI MSGSSQLCS,C' ' PRESET SIGN TO BLANKS
 SSS4B4 1222 1S42 LTR R2,R2
 SSS4B6 478S C4CA SS4CA 1S43 BZ SQLERRS4 B, IF SQLCODE IS ZERO
 SSS4BA 474S C4C6 SS4C6 1S44 BM SQLERRS2 B, IF SQLCODE IS NEGATIVE
 SSS4BE 924E 9114 SS114 1S45 MVI MSGSSQLCS,C'+' SET '+' SIGN
 SSS4C2 47FS C4CA SS4CA 1S46 B SQLERRS4
 SSS4C6 1S47 SQLERRS2 DS SH
 SSS4C6 926S 9114 SS114 1S48 MVI MSGSSQLCS,C'-' SET '-' SIGN
 SSS4CA 1S49 SQLERRS4 DS SH

 1S51 K--K

1S52 K CALL TRACE SUBROUTINE, IN ORDER TO PERFORM A TRACE OF THE K
1S53 K FAILING SQL STATEMENT. K

 1S54 K--K

 SSS4CA 414S D118 SS118 1S56 LA R4,WORKTRB R4=A(TRACE REQUEST BLOCK)
 SSSSS 1S57 USING TRB,R4
 SSS4CE 92D5 4S34 SSS34 1S58 MVI TRBSOLI,TRBSOLN SET 'NOT A SOLICITED TRACE'
 1S59 DROP R4
 SSS4D2 4DBS C56C SS56C 1S6S BAS R11,TRACE TRACE THE FAILED SQL STATEMENT
 SSS4D6 47FS C464 SS464 1S61 B RETURN RETURN TO CALLER
 1S63 KK
 1S64 KK
 1S65 KK
 1S66 KKKK KKKK

1S67 KKKK ERRORS OTHER THEN SQL ERRORS: KKKK
1S68 KKKK - BUILD IN THE INTERFACE CONTROL BLOCK AN KKKK
1S69 KKKK ERROR MESSAGE CONTAINING: KKKK
1S7S KKKK - A 8-BYTE MESSAGE ID KKKK
1S71 KKKK - A DESCRIPTION OF THE TYPE OF FAILURE KKKK
1S72 KKKK - THE DBDNAME, THE SEGMENT NAME, AND THE TYPE KKKK
1S73 KKKK OF DL/I UPDATE. KKKK
1S74 KKKK - SET A RETURN CODE IN THE INTERFACE CONTROL BLOCK KKKK
1S75 KKKK - RETURN TO CALLER OF THE EXIT KKKK

 1S76 KKKK KKKK
 1S77 KK
 1S78 KK
 1S79 KK

 SSS4DA 1S81 INVDBSEG DS SH
 SSS4DA D2S7 9SAS CA68 SSSAS SSA68 1S82 MVC MSGOID,=CL8'EKYEPR1E'
 SSS4ES 924S 9SA8 SSSA8 1S83 MVI MSGOBL1,C' '
 SSS4E4 D226 9SA9 CBC6 SSSA9 SSBC6 1S84 MVC MSGOTXT(39),=C'UNEXPECTED DBD- OR SEGNAME FOR EKYEPR1A'
 SSS4EA 47FS C53E SS53E 1S85 B ERRCOM

Figure 52 (Part 17 of 40). First Sample Propagation Exit Routine (Assembler)

206 Customization Guide

 SSS4EE 1S87 KEYMISS DS SH
 SSS4EE D2S7 9SAS CA7S SSSAS SSA7S 1S88 MVC MSGOID,=CL8'EKYEPR2E'
 SSS4F4 924S 9SA8 SSSA8 1S89 MVI MSGOBL1,C' '
 SSS4F8 D227 9SA9 CA78 SSSA9 SSA78 1S9S MVC MSGOTXT(4S),=C'KEY OF SEG2 NOT PROVIDED BY DL/I CAPTURE'
 SSS4FE 47FS C53E SS53E 1S91 B ERRCOM

 SSS5S2 1S93 DATAMISS DS SH
 SSS5S2 D2S7 9SAS CAAS SSSAS SSAAS 1S94 MVC MSGOID,=CL8'EKYEPR3E'
 SSS5S8 924S 9SA8 SSSA8 1S95 MVI MSGOBL1,C' '
 SSS5SC D228 9SA9 CBED SSSA9 SSBED 1S96 MVC MSGOTXT(41),=C'DATA OF SEG2 NOT PROVIDED BY DL/I CAPTUREC
 '
 SSS512 47FS C53E SS53E 1S97 B ERRCOM

 SSS516 1S99 PATHMISS DS SH
 SSS516 D2S7 9SAS CAA8 SSSAS SSAA8 11SS MVC MSGOID,=CL8'EKYEPR4E'
 SSS51C 924S 9SA8 SSSA8 11S1 MVI MSGOBL1,C' '
 SSS52S D225 9SA9 CB98 SSSA9 SSB98 11S2 MVC MSGOTXT(38),=C'PATH DATA NOT PROVIDED BY DL/I CAPTURE'
 SSS526 47FS C53E SS53E 11S3 B ERRCOM

 SSS52A 11S5 INVCALL DS SH
 SSS52A D2S7 9SAS CABS SSSAS SSABS 11S6 MVC MSGOID,=CL8'EKYEPR5E'
 SSS53S 924S 9SA8 SSSA8 11S7 MVI MSGOBL1,C' '
 SSS534 D224 9SA9 CC16 SSSA9 SSC16 11S8 MVC MSGOTXT(37),=C'UNEXPECTED CALL FUNCTION IN DL/I XPCB'
 SSS53A 47FS C53E SS53E 11S9 B ERRCOM

 SSS53E 1111 ERRCOM DS SH
 SSS53E D2S7 9SE6 CAB8 SSSE6 SSAB8 1112 MVC MSGOTXT2,=CLS8'DBDNAME='
 SSS544 D2S7 9SEE AS14 SSSEE SSS14 1113 MVC MSGODBD,XPCBDBD
 SSS54A D2S8 9SF6 CC3B SSSF6 SSC3B 1114 MVC MSGOTXT3,=CLS9' SEGNAME='
 SSS55S D2S7 9SFF AS2S SSSFF SSS2S 1115 MVC MSGOSEG,XPCBSEG
 SSS556 D2S5 91S7 CBBE SS1S7 SSBBE 1116 MVC MSGOTXT4,=CLS6' FUNC='
 SSS55C D2S3 91SD AS2C SS1SD SSS2C 1117 MVC MSGOFUNC,XPCBPCALL

 SSS562 D2S1 9S9E CBC4 SSS9E SSBC4 1119 MVC PICXRETC,=H'2S' SET 'SHOULD NOT OCCUR' RC
 SSS568 47FS C464 SS464 112S B RETURN
 1122 KK
 1123 KK
 1124 KK
 1125 KKKK KKKK

1126 KKKK TRACING OF PROPAGATING SQL STATEMENT. KKKK
 1127 KKKK KKKK

1128 KKKK TRACING OF THE PROPAGATING SQL STATEMENT IS ASSISTED KKKK
1129 KKKK THROUGH USAGE OF THE SAMPLE 'SETTED' MACRO WHICH IS KKKK
113S KKKK PROVIDED AND DESCRIBED BELOW. KKKK

 1131 KKKK KKKK
1132 KKKK FOR EACH ITEM TO BE INCLUDED IN THE TRACE, THIS SAMPLE KKKK
1133 KKKK EXIT INVOKES THE SETTED SAMPLE MACRO, WHICH IDENTIFIES KKKK
1134 KKKK TO THE DPROP TRACER THE INFORMATION TO BE INCLUDED IN KKKK

 1135 KKKK THE TRACE. KKKK
 1136 KKKK KKKK
 1137 KK
 1138 KK
 1139 KK

 1141 K-KK
1142 K SAMPLE SETTED MACRO K

 1143 K K
1144 K SETTED IS A SAMPLE MACRO USED TO SUPPORT/EASE CALLS TO K
1145 K THE DPROP TRACER. K

 1146 K K
1147 K SETTED IS CALLED ONCE FOR EACH ELEMENT/ITEM TO BE K
1148 K INCLUDED IN THE TRACE (I.E SETTED IS CALLED ONCE FOR EACH K
1149 K 'TRACE ELEMENT DESCRIPTOR (TED)'). K

Figure 52 (Part 18 of 40). First Sample Propagation Exit Routine (Assembler)

 Chapter 4. Propagation Exit Routines 207

 115S K K

1151 K SETTED PERFORMS THE FOLLOWING: K
1152 K - IT DESCRIBES IN THE TED THE ELEMENT TO BE INCLUDED K
1153 K IN THE TRACE. K
1154 K - IT STORES THE ADDRESS OF THE TED INTO THE K
1155 K CALL PARAMETER LIST USED TO INVOKE THE DPROP TRACER. K
1156 K TO BE INCLUDED IN THE TRACE OUTPUT. K

 1157 K K
1158 K SETTED IS INVOKED IN ONE OF THE THREE FOLLOWING WAYS: K
1159 K 1) FOR A 'HEADER-TED': K

 116S K SETTED NBR=...,TYPE=HEADER,TXT=...... K
1161 K 2) FOR A 'SUB-HEADER TED': K

 1162 K SETTED NBR=...,TYPE=SUBH,TXT=.... K
1163 K 3) FOR A 'DATA-TED': K

 1164 K SETTED NBR=...,TYPE=DATA,TXT=....,DATA=..... K
 1165 K K

1166 K THE NBR= KEYWORD OPERAND IS USED TO IDENTIFY THE K
1167 K RELATIVE NUMBER OF THE TED. K

 1168 K K
1169 K THE TXT= KEYWORD OPERAND IS USED TO PROVIDE THE NAME K
117S K OF AN ASSEMBLER FIELD CONTAINING THE DESCRIPTIVE TEXT K
1171 K ASSOCIATED WITH THE TED. K

 1172 K K
1173 K THE DATA= KEYWORD OPERAND IS USED TO PROVIDE THE NAME K
1174 K OF AN ASSEMBLER FIELD CONTAINING THE DATA TO BE INCLUDED K
1175 K IN THE TRACE. K

 1176 K K
1177 K NOTE THAT 'SETTED' IS KKKNOTKKK A GENERAL PURPOSE MACRO K
1178 K AND CAN KKKNOTKKK BE USED 'AS IS' IN USER-PROGRAMMED K
1179 K EXIT ROUTINES. INSTEAD OF USING THE SETTED MACRO 'AS IS' K
118S K IN OTHER EXIT ROUTINES, PROGRAMMERS OF THE CUSTOMER MAY K
1181 K USE 'SETTED' AS A MODEL, WHICH CAN HELP THEM DEVELOP K
1182 K THEIR OWN MACRO WHICH IS ADAPTED TO THEIR REQUIREMENTS. K

 1183 K K
 1184 K-KK

1186 K-K-K-K- START OF SAMPLE 'SETTED' MACRO K-K-K-K-K-K-K-K-K-K-K-K-K-K-KK
 1187 MACRO
 1188 &LABEL SETTED &NBR=,&TYPE=,&TXT=,&DATA=
 1189 .K

119S .KKK GET ADDRESS OF TED AND STORE ITS ADDRESS INTO
1191 .KKK THE TRACE PARAMETER LIST

 1192 .K
1193 AIF (T'&NBR EQ 'N').NBROK CHECK THAT NBR= IS NUMERIC
1194 MNOTE 8,'VALUE OF NBR= KEYWORD OPERAND MUST BE NUMERIC'

 1195 MEXIT
 1196 .NBROK ANOP
 1197 &LABEL LA R4,WORKTED+((&NBR-1)KTEDLEN) R4=A(TED)
 1198 USING TED,R4

1199 ST R4,TRAPARML+(4K&NBR) SET A(TED) INTO PARMLIST
 12SS .K

12S1 .KKK SET EYE CATCHER INTO TED
 12S2 .K

12S3 MVC TEDEYE,=CL4'TED' SET EYE CATCHER INTO TED
 12S4 .K

12S5 .KKK VALIDATE THE VALUE OF THE TYPE= KEYWORD OPERAND
12S6 .KKK AND SET TYPE OF TED.

 12S7 .K
12S8 AIF ('&TYPE' EQ 'HEADER').HDR
12S9 AIF ('&TYPE' EQ 'SUBH').SUBH
121S AIF ('&TYPE' EQ 'DATA').DATA
1211 MNOTE 8,'INVALID OR MISSING VALUE FOR TYPE= OPERAND'

 1212 MEXIT
1213 .HDR MVI TEDTYPE,TEDTYPH SET 'THIS IS A HEADER-TED'

Figure 52 (Part 19 of 40). First Sample Propagation Exit Routine (Assembler)

208 Customization Guide

 1214 AGO .TYPCOM

1215 .SUBH MVI TEDTYPE,TEDTYPS SET 'THIS IS A SUBHEADER-TED'
 1216 AGO .TYPCOM

1217 .DATA MVI TEDTYPE,TEDTYPD SET 'THIS IS A DATA-TED'
 1218 AGO .TYPCOM
 1219 .TYPCOM ANOP
 122S .K

1221 .KKK CHECK THAT TXT= KEYWORD OPERAND HAS BEEN PROVIDED
1222 .KKK AND SET ADDRESS AND LENGTH OF TEXT INTO TED

 1223 .K
1224 AIF (T'&TXT NE 'O').TXTOK B, IF TXT= NOT OMITTED
1225 MNOTE 8,'TXT= KEYWORD OPERAND VALUE IS MISSING'

 1226 MEXIT
 1227 .TXTOK ANOP
 1228 LA R15,&TXT R15=A(TEXT)

1229 ST R15,TEDTXTA STORE A(TEXT) INTO TED
123S MVC TEDTXTL,=A(L'&TXT) SET LENGTH OF TEXT STRING

 1231 .K
 1232 .KKK IF TYPE=DATA:

1233 .KKK CHECK THAT TXT= KEYWORD OPERAND HAS BEEN PROVIDED
1234 .KKK AND SET ADDRESS AND LENGTH OF DATA INTO TED

 1235 .K
1236 AIF ('&TYPE' NE 'DATA').NOTDATA
1237 AIF (T'&DATA NE 'O').DATAOK B, IF DATA= NOT OMITTED
1238 MNOTE 8,'DATA= KEYWORD OPERAND VALUE IS MISSING'

 1239 MEXIT
 124S .DATAOK ANOP
 1241 LA R15,&DATA R15=A(DATA)

1242 ST R15,TEDMA STORE A(DATA) INTO TED
1243 MVC TEDALEN,=A(L'&DATA) STORE LENGTH OF DATA
1244 MVI TEDALIGN,TEDALIGL REQUEST 'LEFT ALIGNMENT'
1245 .NOTDATA ANOP

 1246 MEND
1247 K-K-K-K- END OF SAMPLE 'SETTED' MACRO K-K-K-K-K-K-K-K-K-K-K-K-K-K-K-KK

 1249 KK
 125S K TRACE SUBROUTINE K
 1251 KK

 1253 K---K

1254 K LOGIC COMMON FOR THE TRACING OF INSERT/UPDATE/DELETE K
 1255 K SQL STATEMENTS: K

1256 K - PROVIDE INFORMATION IN THE TRACE PARAMETER BLOCK K
1257 K - PROVIDE INFORMATION IN A 'HEADER TED' K
1258 K - PROVIDE A TED FOR THE SQL CODE K

 1259 K---K

SSS56C 1261 TRACE DS SH
 1262 K

1263 KKK PROVIDE INFORMATION IN THE TRACE PARAMETER BLOCK (TRB)
 1264 K
 SSS56C 414S D118 SS118 1265 LA R4,WORKTRB
 SSSSS 1266 USING TRB,R4
 SSS57S 5S4S DSE8 SSSE8 1267 ST R4,TRATRB STORE A (TRB) INTO PARMLIST
 SSS574 D2S3 4SSS CAF8 SSSSS SSAF8 1268 MVC TRBEYE,=CL4'TRB ' SET EYE CATCHER
 SSS57A D2S3 4SS4 9S14 SSSS4 SSS14 1269 MVC TRBPTD,PICPTD COPY A(PTD) TO TRB
 SSS58S D2S7 4SS8 CA2S SSSS8 SSA2S 127S MVC TRBTABQ,=CL8' ' SET TABLE NAME QUALIFIER TO BLANKS
 SSS586 D211 4S1S CB44 SSS1S SSB44 1271 MVC TRBTABN,=CL18'TAB2' SET TABLE NAME
 1272 K

1273 KKK PROVIDE 1ST TED (HEADER WITH NAME OF PROPAGATED TABLE)
 1274 K
 SSS58C D2S7 D2C8 CACS SS2C8 SSACS 1275 MVC TRHPS,=CL8'EKYEPR1A' SET MODULE NAME CREATING THE SNAP
 SSS592 D21S D2DS CC44 SS2DS SSC44 1276 MVC TRHP1,=C' PROPAGATING SQL-'
 SSS598 D2S7 D2E1 DS48 SS2E1 SSS48 1277 MVC TRHP2,OPER SET TYPE OF SQL STATEMENT
 SSS59E D2SA D2E9 CC55 SS2E9 SSC55 1278 MVC TRHP3,=C' FOR TABLE='
 SSS5A4 D211 D2F4 CB44 SS2F4 SSB44 1279 MVC TRHP4,=CL18'TAB2' SET TABLE NAME

Figure 52 (Part 20 of 40). First Sample Propagation Exit Routine (Assembler)

 Chapter 4. Propagation Exit Routines 209

 1281 SETTED NBR=1,TYPE=HEADER,TXT=TRHEADER
 SSS5AA 414S D16S SS16S 1282+ LA R4,WORKTED+((1-1)KTEDLEN) R4=A(TED)
 SSSSS 1283+ USING TED,R4
 SSS5AE 5S4S DSEC SSSEC 1284+ ST R4,TRAPARML+(4K1) SET A(TED) INTO PARMLIST
 SSS5B2 D2S3 4SSS CAFC SSSSS SSAFC 1285+ MVC TEDEYE,=CL4'TED' SET EYE CATCHER INTO TED
 SSS5B8 92C8 4SS4 SSSS4 1286+ MVI TEDTYPE,TEDTYPH SET 'THIS IS A HEADER-TED'
 SSS5BC 41FS D2C8 SS2C8 1287+ LA R15,TRHEADER R15=A(TEXT)
 SSS5CS 5SFS 4SS8 SSSS8 1288+ ST R15,TEDTXTA STORE A(TEXT) INTO TED
 SSS5C4 D2S3 4SSC CBSS SSSSC SSBSS 1289+ MVC TEDTXTL,=A(L'TRHEADER) SET LENGTH OF TEXT STRING
 129S K

1291 KKK PROVIDE 2ND TED (SQL ERROR CODE)
 1292 K
 SSS5CA D212 D3S6 CC6S SS3S6 SSC6S 1293 MVC TXTSQLC,=C'SQL ERROR CODE=-NNN' MOVE TEXT
 SSS5DS 582S 931C SS31C 1294 L R2,SQLCODE R2=SQL CODE
 SSS5D4 4E2S DS5S SSS5S 1295 CVD R2,DBLW CONVERT SQL CODE TO DECIMAL
 SSS5D8 F321 D316 DS56 SS316 SSS56 1296 UNPK TXTSQLCC(3),DBLW+6(2) UNPACK SQL CODE
 SSS5DE 96FS D318 SS318 1297 OI TXTSQLCC+2,X'FS' FORCE PRINTABLE CHARACTER
 SSS5E2 924S D315 SS315 1298 MVI TXTSQLCS,C' ' PRESET SIGN TO BLANKS
 SSS5E6 1222 1299 LTR R2,R2
 SSS5E8 478S C5FC SS5FC 13SS BZ TRACES19 B, IF SQLCODE IS ZERO
 SSS5EC 474S C5F8 SS5F8 13S1 BM TRACES12 B, IF SQLCODE IS NEGATIVE
 SSS5FS 924E D315 SS315 13S2 MVI TXTSQLCS,C'+' SET '+' SIGN
 SSS5F4 47FS C5FC SS5FC 13S3 B TRACES19
 SSS5F8 13S4 TRACES12 DS SH
 SSS5F8 926S D315 SS315 13S5 MVI TXTSQLCS,C'-' SET '-' SIGN
 SSS5FC 13S6 TRACES19 DS SH

 13S8 SETTED NBR=2,TYPE=SUBH,TXT=TXTSQLC
 SSS5FC 414S D184 SS184 13S9+ LA R4,WORKTED+((2-1)KTEDLEN) R4=A(TED)
 SSSSS 131S+ USING TED,R4
 SSS6SS 5S4S DSFS SSSFS 1311+ ST R4,TRAPARML+(4K2) SET A(TED) INTO PARMLIST
 SSS6S4 D2S3 4SSS CAFC SSSSS SSAFC 1312+ MVC TEDEYE,=CL4'TED' SET EYE CATCHER INTO TED
 SSS6SA 92E2 4SS4 SSSS4 1313+ MVI TEDTYPE,TEDTYPS SET 'THIS IS A SUBHEADER-TED'
 SSS6SE 41FS D3S6 SS3S6 1314+ LA R15,TXTSQLC R15=A(TEXT)
 SSS612 5SFS 4SS8 SSSS8 1315+ ST R15,TEDTXTA STORE A(TEXT) INTO TED
 SSS616 D2S3 4SSC CBS4 SSSSC SSBS4 1316+ MVC TEDTXTL,=A(L'TXTSQLC) SET LENGTH OF TEXT STRING

 1318 K--K
1319 K BRANCH ACCORDING TO TYPE OF SQL UPDATE STATEMENT K

 132S K--K

 SSS61C D5S7 DS48 CA38 SSS48 SSA38 1322 CLC OPER,=CL8'UPDATE' A SQL UPDATE STATEMENT?
 SSS622 478S C634 SS634 1323 BE TRACEU
 SSS626 D5S7 DS48 CA4S SSS48 SSA4S 1324 CLC OPER,=CL8'INSERT' A SQL INSERT STATEMENT?
 SSS62C 478S C7A8 SS7A8 1325 BE TRACEI
 SSS63S 47FS C8FC SS8FC 1326 B TRACED
 1328 K--K

1329 K TRACE THE SQL UPDATE STATEMENT K
 133S K K

1331 K FOR EACH ELEMENT TO BE INCLUDED IN THE TRACE: INVOKE K
1332 K A SETTED MACRO DESCRIBING THE ELEMENT. K
1333 K SET INTO THE ADDRESS OF THE LAST TED THE 'VL BIT' K
1334 K IDENTIFYING THE END OF THE CALL PARAMETER LIST FOR K

 1335 K THE DPROP_TRACER. K
 1336 K--K

 SSS634 1338 TRACEU DS SH
 1339 K

134S KKK PROVIDE 3RD TED (SUBHEADER 'COLUMNS IN WHERE CLAUSE')
 1341 K
 1342 SETTED NBR=3,TYPE=SUBH,TXT=TXTWH
 SSS634 414S D1A8 SS1A8 1343+ LA R4,WORKTED+((3-1)KTEDLEN) R4=A(TED)
 SSSSS 1344+ USING TED,R4
 SSS638 5S4S DSF4 SSSF4 1345+ ST R4,TRAPARML+(4K3) SET A(TED) INTO PARMLIST
 SSS63C D2S3 4SSS CAFC SSSSS SSAFC 1346+ MVC TEDEYE,=CL4'TED' SET EYE CATCHER INTO TED

Figure 52 (Part 21 of 40). First Sample Propagation Exit Routine (Assembler)

210 Customization Guide

 SSS642 92E2 4SS4 SSSS4 1347+ MVI TEDTYPE,TEDTYPS SET 'THIS IS A SUBHEADER-TED'
 SSS646 41FS C9C6 SS9C6 1348+ LA R15,TXTWH R15=A(TEXT)
 SSS64A 5SFS 4SS8 SSSS8 1349+ ST R15,TEDTXTA STORE A(TEXT) INTO TED
 SSS64E D2S3 4SSC CBS8 SSSSC SSBS8 135S+ MVC TEDTXTL,=A(L'TXTWH) SET LENGTH OF TEXT STRING
 1351 K

1352 KKK PROVIDE 4TH TED (DATA FOR 1ST COLUMN IN WHERE CLAUSE)
 1353 K
 1354 SETTED NBR=4,TYPE=DATA,TXT=TXTCOL1,DATA=FCK_SEG1KEY1
 SSS654 414S D1CC SS1CC 1355+ LA R4,WORKTED+((4-1)KTEDLEN) R4=A(TED)
 SSSSS 1356+ USING TED,R4
 SSS658 5S4S DSF8 SSSF8 1357+ ST R4,TRAPARML+(4K4) SET A(TED) INTO PARMLIST
 SSS65C D2S3 4SSS CAFC SSSSS SSAFC 1358+ MVC TEDEYE,=CL4'TED' SET EYE CATCHER INTO TED
 SSS662 92C4 4SS4 SSSS4 1359+ MVI TEDTYPE,TEDTYPD SET 'THIS IS A DATA-TED'
 SSS666 41FS C9EF SS9EF 136S+ LA R15,TXTCOL1 R15=A(TEXT)
 SSS66A 5SFS 4SS8 SSSS8 1361+ ST R15,TEDTXTA STORE A(TEXT) INTO TED
 SSS66E D2S3 4SSC CBSC SSSSC SSBSC 1362+ MVC TEDTXTL,=A(L'TXTCOL1) SET LENGTH OF TEXT STRING
 SSS674 41FS 7SSS SSSSS 1363+ LA R15,FCK_SEG1KEY1 R15=A(DATA)
 SSS678 5SFS 4S1S SSS1S 1364+ ST R15,TEDMA STORE A(DATA) INTO TED
 SSS67C D2S3 4S14 CB1S SSS14 SSB1S 1365+ MVC TEDALEN,=A(L'FCK_SEG1KEY1) X

+ STORE LENGTH OF DATA
 SSS682 92D3 4SS5 SSSS5 1366+ MVI TEDALIGN,TEDALIGL REQUEST 'LEFT ALIGNMENT'
 1367 K

1368 KKK PROVIDE 5TH TED (DATA FOR 2ND COLUMN IN WHERE CLAUSE)
 1369 K
 137S SETTED NBR=5,TYPE=DATA,TXT=TXTCOL2,DATA=FCK_SEG2KEY1
 SSS686 414S D1FS SS1FS 1371+ LA R4,WORKTED+((5-1)KTEDLEN) R4=A(TED)
 SSSSS 1372+ USING TED,R4
 SSS68A 5S4S DSFC SSSFC 1373+ ST R4,TRAPARML+(4K5) SET A(TED) INTO PARMLIST
 SSS68E D2S3 4SSS CAFC SSSSS SSAFC 1374+ MVC TEDEYE,=CL4'TED' SET EYE CATCHER INTO TED
 SSS694 92C4 4SS4 SSSS4 1375+ MVI TEDTYPE,TEDTYPD SET 'THIS IS A DATA-TED'
 SSS698 41FS C9F7 SS9F7 1376+ LA R15,TXTCOL2 R15=A(TEXT)
 SSS69C 5SFS 4SS8 SSSS8 1377+ ST R15,TEDTXTA STORE A(TEXT) INTO TED
 SSS6AS D2S3 4SSC CB14 SSSSC SSB14 1378+ MVC TEDTXTL,=A(L'TXTCOL2) SET LENGTH OF TEXT STRING
 SSS6A6 41FS 7SS5 SSSS5 1379+ LA R15,FCK_SEG2KEY1 R15=A(DATA)
 SSS6AA 5SFS 4S1S SSS1S 138S+ ST R15,TEDMA STORE A(DATA) INTO TED
 SSS6AE D2S3 4S14 CB18 SSS14 SSB18 1381+ MVC TEDALEN,=A(L'FCK_SEG2KEY1) X

+ STORE LENGTH OF DATA
 SSS6B4 92D3 4SS5 SSSS5 1382+ MVI TEDALIGN,TEDALIGL REQUEST 'LEFT ALIGNMENT'
 1383 K

1384 KKK PROVIDE 6TH TED (DATA FOR 3RD COLUMN IN WHERE CLAUSE)
 1385 K
 1386 SETTED NBR=6,TYPE=DATA,TXT=TXTCOL3,DATA=FCK_SEG2KEY2
 SSS6B8 414S D214 SS214 1387+ LA R4,WORKTED+((6-1)KTEDLEN) R4=A(TED)
 SSSSS 1388+ USING TED,R4
 SSS6BC 5S4S D1SS SS1SS 1389+ ST R4,TRAPARML+(4K6) SET A(TED) INTO PARMLIST
 SSS6CS D2S3 4SSS CAFC SSSSS SSAFC 139S+ MVC TEDEYE,=CL4'TED' SET EYE CATCHER INTO TED
 SSS6C6 92C4 4SS4 SSSS4 1391+ MVI TEDTYPE,TEDTYPD SET 'THIS IS A DATA-TED'
 SSS6CA 41FS C9FF SS9FF 1392+ LA R15,TXTCOL3 R15=A(TEXT)
 SSS6CE 5SFS 4SS8 SSSS8 1393+ ST R15,TEDTXTA STORE A(TEXT) INTO TED
 SSS6D2 D2S3 4SSC CB1C SSSSC SSB1C 1394+ MVC TEDTXTL,=A(L'TXTCOL3) SET LENGTH OF TEXT STRING
 SSS6D8 41FS 7SS7 SSSS7 1395+ LA R15,FCK_SEG2KEY2 R15=A(DATA)
 SSS6DC 5SFS 4S1S SSS1S 1396+ ST R15,TEDMA STORE A(DATA) INTO TED
 SSS6ES D2S3 4S14 CB2S SSS14 SSB2S 1397+ MVC TEDALEN,=A(L'FCK_SEG2KEY2) X

+ STORE LENGTH OF DATA
 SSS6E6 92D3 4SS5 SSSS5 1398+ MVI TEDALIGN,TEDALIGL REQUEST 'LEFT ALIGNMENT'
 1399 K

14SS KKK PROVIDE 7TH TED (SUBHEADER 'PROPAGATED COLUMNS')
 14S1 K
 14S2 SETTED NBR=7,TYPE=SUBH,TXT=TXTPRC
 SSS6EA 414S D238 SS238 14S3+ LA R4,WORKTED+((7-1)KTEDLEN) R4=A(TED)
 SSSSS 14S4+ USING TED,R4
 SSS6EE 5S4S D1S4 SS1S4 14S5+ ST R4,TRAPARML+(4K7) SET A(TED) INTO PARMLIST
 SSS6F2 D2S3 4SSS CAFC SSSSS SSAFC 14S6+ MVC TEDEYE,=CL4'TED' SET EYE CATCHER INTO TED
 SSS6F8 92E2 4SS4 SSSS4 14S7+ MVI TEDTYPE,TEDTYPS SET 'THIS IS A SUBHEADER-TED'
 SSS6FC 41FS C9DD SS9DD 14S8+ LA R15,TXTPRC R15=A(TEXT)
 SSS7SS 5SFS 4SS8 SSSS8 14S9+ ST R15,TEDTXTA STORE A(TEXT) INTO TED
 SSS7S4 D2S3 4SSC CB24 SSSSC SSB24 141S+ MVC TEDTXTL,=A(L'TXTPRC) SET LENGTH OF TEXT STRING

Figure 52 (Part 22 of 40). First Sample Propagation Exit Routine (Assembler)

 Chapter 4. Propagation Exit Routines 211

 1411 K

1412 KKK PROVIDE 8TH TED (DATA FOR 1ST PROPAGATED COLUMN)
 1413 K
 1414 SETTED NBR=8,TYPE=DATA,TXT=TXTCOL4,DATA=SEG2DAT1
 SSS7SA 414S D25C SS25C 1415+ LA R4,WORKTED+((8-1)KTEDLEN) R4=A(TED)
 SSSSS 1416+ USING TED,R4
 SSS7SE 5S4S D1S8 SS1S8 1417+ ST R4,TRAPARML+(4K8) SET A(TED) INTO PARMLIST
 SSS712 D2S3 4SSS CAFC SSSSS SSAFC 1418+ MVC TEDEYE,=CL4'TED' SET EYE CATCHER INTO TED
 SSS718 92C4 4SS4 SSSS4 1419+ MVI TEDTYPE,TEDTYPD SET 'THIS IS A DATA-TED'
 SSS71C 41FS CAS7 SSAS7 142S+ LA R15,TXTCOL4 R15=A(TEXT)
 SSS72S 5SFS 4SS8 SSSS8 1421+ ST R15,TEDTXTA STORE A(TEXT) INTO TED
 SSS724 D2S3 4SSC CB28 SSSSC SSB28 1422+ MVC TEDTXTL,=A(L'TXTCOL4) SET LENGTH OF TEXT STRING
 SSS72A 41FS 6SS8 SSSS8 1423+ LA R15,SEG2DAT1 R15=A(DATA)
 SSS72E 5SFS 4S1S SSS1S 1424+ ST R15,TEDMA STORE A(DATA) INTO TED
 SSS732 D2S3 4S14 CB2C SSS14 SSB2C 1425+ MVC TEDALEN,=A(L'SEG2DAT1) STORE LENGTH OF DATA
 SSS738 92D3 4SS5 SSSS5 1426+ MVI TEDALIGN,TEDALIGL REQUEST 'LEFT ALIGNMENT'
 1427 K

1428 KKK PROVIDE 9TH TED (DATA FOR 2ND PROPAGATED COLUMN)
 1429 K
 143S SETTED NBR=9,TYPE=DATA,TXT=TXTCOL5,DATA=SEG2DAT2
 SSS73C 414S D28S SS28S 1431+ LA R4,WORKTED+((9-1)KTEDLEN) R4=A(TED)
 SSSSS 1432+ USING TED,R4
 SSS74S 5S4S D1SC SS1SC 1433+ ST R4,TRAPARML+(4K9) SET A(TED) INTO PARMLIST
 SSS744 D2S3 4SSS CAFC SSSSS SSAFC 1434+ MVC TEDEYE,=CL4'TED' SET EYE CATCHER INTO TED
 SSS74A 92C4 4SS4 SSSS4 1435+ MVI TEDTYPE,TEDTYPD SET 'THIS IS A DATA-TED'
 SSS74E 41FS CASF SSASF 1436+ LA R15,TXTCOL5 R15=A(TEXT)
 SSS752 5SFS 4SS8 SSSS8 1437+ ST R15,TEDTXTA STORE A(TEXT) INTO TED
 SSS756 D2S3 4SSC CB3S SSSSC SSB3S 1438+ MVC TEDTXTL,=A(L'TXTCOL5) SET LENGTH OF TEXT STRING
 SSS75C 41FS 6S1S SSS1S 1439+ LA R15,SEG2DAT2 R15=A(DATA)
 SSS76S 5SFS 4S1S SSS1S 144S+ ST R15,TEDMA STORE A(DATA) INTO TED
 SSS764 D2S3 4S14 CB34 SSS14 SSB34 1441+ MVC TEDALEN,=A(L'SEG2DAT2) STORE LENGTH OF DATA
 SSS76A 92D3 4SS5 SSSS5 1442+ MVI TEDALIGN,TEDALIGL REQUEST 'LEFT ALIGNMENT'
 1443 K

1444 KKK PROVIDE 1STH TED (DATA FOR 3RD PROPAGATED COLUMN)
 1445 K
 1446 SETTED NBR=1S,TYPE=DATA,TXT=TXTCOL6,DATA=SEG1DAT1
 SSS76E 414S D2A4 SS2A4 1447+ LA R4,WORKTED+((1S-1)KTEDLEN) R4=A(TED)
 SSSSS 1448+ USING TED,R4
 SSS772 5S4S D11S SS11S 1449+ ST R4,TRAPARML+(4K1S) SET A(TED) INTO PARMLIST
 SSS776 D2S3 4SSS CAFC SSSSS SSAFC 145S+ MVC TEDEYE,=CL4'TED' SET EYE CATCHER INTO TED
 SSS77C 92C4 4SS4 SSSS4 1451+ MVI TEDTYPE,TEDTYPD SET 'THIS IS A DATA-TED'
 SSS78S 41FS CA17 SSA17 1452+ LA R15,TXTCOL6 R15=A(TEXT)
 SSS784 5SFS 4SS8 SSSS8 1453+ ST R15,TEDTXTA STORE A(TEXT) INTO TED
 SSS788 D2S3 4SSC CB38 SSSSC SSB38 1454+ MVC TEDTXTL,=A(L'TXTCOL6) SET LENGTH OF TEXT STRING
 SSS78E 41FS 5SS5 SSSS5 1455+ LA R15,SEG1DAT1 R15=A(DATA)
 SSS792 5SFS 4S1S SSS1S 1456+ ST R15,TEDMA STORE A(DATA) INTO TED
 SSS796 D2S3 4S14 CB3C SSS14 SSB3C 1457+ MVC TEDALEN,=A(L'SEG1DAT1) STORE LENGTH OF DATA
 SSS79C 92D3 4SS5 SSSS5 1458+ MVI TEDALIGN,TEDALIGL REQUEST 'LEFT ALIGNMENT'
 1459 K

146S KKK SET INTO PARAMETER LIST THE 'HIGH ORDER BIT'
1461 KKK (I.E. THE 'VL BIT') WHICH SIGNALS THE END OF THE

 1462 KKK PARAMETER LIST.
 1463 K
 SSS7AS 968S D11S SS11S 1464 OI TRATED1S,X'8S' SET VL-BIT INTO TRACE PARMLIST
 SSS7A4 47FS C9BA SS9BA 1465 B TRACECO GO TO COMMON TRACE LOGIC
 1467 K--K

1468 K TRACE THE SQL INSERT STATEMENT K
 1469 K K

147S K FOR EACH ELEMENT TO BE INCLUDED IN THE TRACE: INVOKE K
1471 K A SETTED MACRO DESCRIBING THE ELEMENT. K
1472 K SET INTO THE ADDRESS OF THE LAST TED THE 'VL BIT' K
1473 K IDENTIFYING THE END OF THE CALL PARAMETER LIST FOR K
1474 K THE DPROP TRACER. K

 1475 K--K

Figure 52 (Part 23 of 40). First Sample Propagation Exit Routine (Assembler)

212 Customization Guide

 SSS7A8 1477 TRACEI DS SH
 1478 K

1479 KKK PROVIDE 3RD TED (SUBHEADER 'PROPAGATED COLUMNS'
 148S K
 1481 SETTED NBR=3,TYPE=SUBH,TXT=TXTPRC
 SSS7A8 414S D1A8 SS1A8 1482+ LA R4,WORKTED+((3-1)KTEDLEN) R4=A(TED)
 SSSSS 1483+ USING TED,R4
 SSS7AC 5S4S DSF4 SSSF4 1484+ ST R4,TRAPARML+(4K3) SET A(TED) INTO PARMLIST
 SSS7BS D2S3 4SSS CAFC SSSSS SSAFC 1485+ MVC TEDEYE,=CL4'TED' SET EYE CATCHER INTO TED
 SSS7B6 92E2 4SS4 SSSS4 1486+ MVI TEDTYPE,TEDTYPS SET 'THIS IS A SUBHEADER-TED'
 SSS7BA 41FS C9DD SS9DD 1487+ LA R15,TXTPRC R15=A(TEXT)
 SSS7BE 5SFS 4SS8 SSSS8 1488+ ST R15,TEDTXTA STORE A(TEXT) INTO TED
 SSS7C2 D2S3 4SSC CB24 SSSSC SSB24 1489+ MVC TEDTXTL,=A(L'TXTPRC) SET LENGTH OF TEXT STRING
 149S K

1491 KKK PROVIDE 4TH TED (DATA FOR 1ST PROPAGATED COLUMN)
 1492 K
 1493 SETTED NBR=4,TYPE=DATA,TXT=TXTCOL1,DATA=FCK_SEG1KEY1
 SSS7C8 414S D1CC SS1CC 1494+ LA R4,WORKTED+((4-1)KTEDLEN) R4=A(TED)
 SSSSS 1495+ USING TED,R4
 SSS7CC 5S4S DSF8 SSSF8 1496+ ST R4,TRAPARML+(4K4) SET A(TED) INTO PARMLIST
 SSS7DS D2S3 4SSS CAFC SSSSS SSAFC 1497+ MVC TEDEYE,=CL4'TED' SET EYE CATCHER INTO TED
 SSS7D6 92C4 4SS4 SSSS4 1498+ MVI TEDTYPE,TEDTYPD SET 'THIS IS A DATA-TED'
 SSS7DA 41FS C9EF SS9EF 1499+ LA R15,TXTCOL1 R15=A(TEXT)
 SSS7DE 5SFS 4SS8 SSSS8 15SS+ ST R15,TEDTXTA STORE A(TEXT) INTO TED
 SSS7E2 D2S3 4SSC CBSC SSSSC SSBSC 15S1+ MVC TEDTXTL,=A(L'TXTCOL1) SET LENGTH OF TEXT STRING
 SSS7E8 41FS 7SSS SSSSS 15S2+ LA R15,FCK_SEG1KEY1 R15=A(DATA)
 SSS7EC 5SFS 4S1S SSS1S 15S3+ ST R15,TEDMA STORE A(DATA) INTO TED
 SSS7FS D2S3 4S14 CB1S SSS14 SSB1S 15S4+ MVC TEDALEN,=A(L'FCK_SEG1KEY1) X

+ STORE LENGTH OF DATA
 SSS7F6 92D3 4SS5 SSSS5 15S5+ MVI TEDALIGN,TEDALIGL REQUEST 'LEFT ALIGNMENT'
 15S6 K

15S7 KKK PROVIDE 5TH TED (DATA FOR 2ND PROPAGATED COLUMN)
 15S8 K
 15S9 SETTED NBR=5,TYPE=DATA,TXT=TXTCOL2,DATA=FCK_SEG2KEY1
 SSS7FA 414S D1FS SS1FS 151S+ LA R4,WORKTED+((5-1)KTEDLEN) R4=A(TED)
 SSSSS 1511+ USING TED,R4
 SSS7FE 5S4S DSFC SSSFC 1512+ ST R4,TRAPARML+(4K5) SET A(TED) INTO PARMLIST
 SSS8S2 D2S3 4SSS CAFC SSSSS SSAFC 1513+ MVC TEDEYE,=CL4'TED' SET EYE CATCHER INTO TED
 SSS8S8 92C4 4SS4 SSSS4 1514+ MVI TEDTYPE,TEDTYPD SET 'THIS IS A DATA-TED'
 SSS8SC 41FS C9F7 SS9F7 1515+ LA R15,TXTCOL2 R15=A(TEXT)
 SSS81S 5SFS 4SS8 SSSS8 1516+ ST R15,TEDTXTA STORE A(TEXT) INTO TED
 SSS814 D2S3 4SSC CB14 SSSSC SSB14 1517+ MVC TEDTXTL,=A(L'TXTCOL2) SET LENGTH OF TEXT STRING
 SSS81A 41FS 7SS5 SSSS5 1518+ LA R15,FCK_SEG2KEY1 R15=A(DATA)
 SSS81E 5SFS 4S1S SSS1S 1519+ ST R15,TEDMA STORE A(DATA) INTO TED
 SSS822 D2S3 4S14 CB18 SSS14 SSB18 152S+ MVC TEDALEN,=A(L'FCK_SEG2KEY1) X

+ STORE LENGTH OF DATA
 SSS828 92D3 4SS5 SSSS5 1521+ MVI TEDALIGN,TEDALIGL REQUEST 'LEFT ALIGNMENT'
 1522 K

1523 KKK PROVIDE 6TH TED (DATA FOR 3RD PROPAGATED COLUMN)
 1524 K
 1525 SETTED NBR=6,TYPE=DATA,TXT=TXTCOL3,DATA=FCK_SEG2KEY2
 SSS82C 414S D214 SS214 1526+ LA R4,WORKTED+((6-1)KTEDLEN) R4=A(TED)
 SSSSS 1527+ USING TED,R4
 SSS83S 5S4S D1SS SS1SS 1528+ ST R4,TRAPARML+(4K6) SET A(TED) INTO PARMLIST
 SSS834 D2S3 4SSS CAFC SSSSS SSAFC 1529+ MVC TEDEYE,=CL4'TED' SET EYE CATCHER INTO TED
 SSS83A 92C4 4SS4 SSSS4 153S+ MVI TEDTYPE,TEDTYPD SET 'THIS IS A DATA-TED'
 SSS83E 41FS C9FF SS9FF 1531+ LA R15,TXTCOL3 R15=A(TEXT)
 SSS842 5SFS 4SS8 SSSS8 1532+ ST R15,TEDTXTA STORE A(TEXT) INTO TED
 SSS846 D2S3 4SSC CB1C SSSSC SSB1C 1533+ MVC TEDTXTL,=A(L'TXTCOL3) SET LENGTH OF TEXT STRING
 SSS84C 41FS 7SS7 SSSS7 1534+ LA R15,FCK_SEG2KEY2 R15=A(DATA)
 SSS85S 5SFS 4S1S SSS1S 1535+ ST R15,TEDMA STORE A(DATA) INTO TED
 SSS854 D2S3 4S14 CB2S SSS14 SSB2S 1536+ MVC TEDALEN,=A(L'FCK_SEG2KEY2) X

+ STORE LENGTH OF DATA
 SSS85A 92D3 4SS5 SSSS5 1537+ MVI TEDALIGN,TEDALIGL REQUEST 'LEFT ALIGNMENT'
 1538 K

1539 KKK PROVIDE 7TH TED (DATA FOR 4TH PROPAGATED COLUMN)

Figure 52 (Part 24 of 40). First Sample Propagation Exit Routine (Assembler)

 Chapter 4. Propagation Exit Routines 213

 154S K
 1541 SETTED NBR=7,TYPE=DATA,TXT=TXTCOL4,DATA=SEG2DAT1
 SSS85E 414S D238 SS238 1542+ LA R4,WORKTED+((7-1)KTEDLEN) R4=A(TED)
 SSSSS 1543+ USING TED,R4
 SSS862 5S4S D1S4 SS1S4 1544+ ST R4,TRAPARML+(4K7) SET A(TED) INTO PARMLIST
 SSS866 D2S3 4SSS CAFC SSSSS SSAFC 1545+ MVC TEDEYE,=CL4'TED' SET EYE CATCHER INTO TED
 SSS86C 92C4 4SS4 SSSS4 1546+ MVI TEDTYPE,TEDTYPD SET 'THIS IS A DATA-TED'
 SSS87S 41FS CAS7 SSAS7 1547+ LA R15,TXTCOL4 R15=A(TEXT)
 SSS874 5SFS 4SS8 SSSS8 1548+ ST R15,TEDTXTA STORE A(TEXT) INTO TED
 SSS878 D2S3 4SSC CB28 SSSSC SSB28 1549+ MVC TEDTXTL,=A(L'TXTCOL4) SET LENGTH OF TEXT STRING
 SSS87E 41FS 6SS8 SSSS8 155S+ LA R15,SEG2DAT1 R15=A(DATA)
 SSS882 5SFS 4S1S SSS1S 1551+ ST R15,TEDMA STORE A(DATA) INTO TED
 SSS886 D2S3 4S14 CB2C SSS14 SSB2C 1552+ MVC TEDALEN,=A(L'SEG2DAT1) STORE LENGTH OF DATA
 SSS88C 92D3 4SS5 SSSS5 1553+ MVI TEDALIGN,TEDALIGL REQUEST 'LEFT ALIGNMENT'
 1554 K

1555 KKK PROVIDE 8TH TED (DATA FOR 5TH PROPAGATED COLUMN)
 1556 K
 1557 SETTED NBR=8,TYPE=DATA,TXT=TXTCOL5,DATA=SEG2DAT2
 SSS89S 414S D25C SS25C 1558+ LA R4,WORKTED+((8-1)KTEDLEN) R4=A(TED)
 SSSSS 1559+ USING TED,R4
 SSS894 5S4S D1S8 SS1S8 156S+ ST R4,TRAPARML+(4K8) SET A(TED) INTO PARMLIST
 SSS898 D2S3 4SSS CAFC SSSSS SSAFC 1561+ MVC TEDEYE,=CL4'TED' SET EYE CATCHER INTO TED
 SSS89E 92C4 4SS4 SSSS4 1562+ MVI TEDTYPE,TEDTYPD SET 'THIS IS A DATA-TED'
 SSS8A2 41FS CASF SSASF 1563+ LA R15,TXTCOL5 R15=A(TEXT)
 SSS8A6 5SFS 4SS8 SSSS8 1564+ ST R15,TEDTXTA STORE A(TEXT) INTO TED
 SSS8AA D2S3 4SSC CB3S SSSSC SSB3S 1565+ MVC TEDTXTL,=A(L'TXTCOL5) SET LENGTH OF TEXT STRING
 SSS8BS 41FS 6S1S SSS1S 1566+ LA R15,SEG2DAT2 R15=A(DATA)
 SSS8B4 5SFS 4S1S SSS1S 1567+ ST R15,TEDMA STORE A(DATA) INTO TED
 SSS8B8 D2S3 4S14 CB34 SSS14 SSB34 1568+ MVC TEDALEN,=A(L'SEG2DAT2) STORE LENGTH OF DATA
 SSS8BE 92D3 4SS5 SSSS5 1569+ MVI TEDALIGN,TEDALIGL REQUEST 'LEFT ALIGNMENT'
 157S K

1571 KKK PROVIDE 9TH TED (DATA FOR 6TH PROPAGATED COLUMN)
 1572 K
 1573 SETTED NBR=9,TYPE=DATA,TXT=TXTCOL6,DATA=SEG1DAT1
 SSS8C2 414S D28S SS28S 1574+ LA R4,WORKTED+((9-1)KTEDLEN) R4=A(TED)
 SSSSS 1575+ USING TED,R4
 SSS8C6 5S4S D1SC SS1SC 1576+ ST R4,TRAPARML+(4K9) SET A(TED) INTO PARMLIST
 SSS8CA D2S3 4SSS CAFC SSSSS SSAFC 1577+ MVC TEDEYE,=CL4'TED' SET EYE CATCHER INTO TED
 SSS8DS 92C4 4SS4 SSSS4 1578+ MVI TEDTYPE,TEDTYPD SET 'THIS IS A DATA-TED'
 SSS8D4 41FS CA17 SSA17 1579+ LA R15,TXTCOL6 R15=A(TEXT)
 SSS8D8 5SFS 4SS8 SSSS8 158S+ ST R15,TEDTXTA STORE A(TEXT) INTO TED
 SSS8DC D2S3 4SSC CB38 SSSSC SSB38 1581+ MVC TEDTXTL,=A(L'TXTCOL6) SET LENGTH OF TEXT STRING
 SSS8E2 41FS 5SS5 SSSS5 1582+ LA R15,SEG1DAT1 R15=A(DATA)
 SSS8E6 5SFS 4S1S SSS1S 1583+ ST R15,TEDMA STORE A(DATA) INTO TED
 SSS8EA D2S3 4S14 CB3C SSS14 SSB3C 1584+ MVC TEDALEN,=A(L'SEG1DAT1) STORE LENGTH OF DATA
 SSS8FS 92D3 4SS5 SSSS5 1585+ MVI TEDALIGN,TEDALIGL REQUEST 'LEFT ALIGNMENT'
 1586 K

1587 KKK SET INTO PARAMETER LIST THE 'HIGH ORDER BIT'
1588 KKK (I.E. THE 'VL BIT') WHICH SIGNALS THE END OF THE

 1589 KKK PARAMETER LIST.
 159S K
 SSS8F4 968S D1SC SS1SC 1591 OI TRATED9,X'8S' SET VL-BIT INTO TRACE PARMLIST
 SSS8F8 47FS C9BA SS9BA 1592 B TRACECO GO TO COMMON TRACE LOGIC
 1594 K--K

1595 K TRACE THE SQL DELETE STATEMENT K
 1596 K K

1597 K FOR EACH ELEMENT TO BE INCLUDED IN THE TRACE: INVOKE K
1598 K A SETTED MACRO DESCRIBING THE ELEMENT. K
1599 K SET INTO THE ADDRESS OF THE LAST TED THE 'VL BIT' K
16SS K IDENTIFYING THE END OF THE CALL PARAMETER LIST FOR K
16S1 K THE DPROP TRACER. K

 16S2 K--K

 SSS8FC 16S4 TRACED DS SH
 16S5 K

16S6 KKK PROVIDE 3RD TED (SUBHEADER 'COLUMNS IN WHERE CLAUSE')

Figure 52 (Part 25 of 40). First Sample Propagation Exit Routine (Assembler)

214 Customization Guide

 16S7 K
 16S8 SETTED NBR=3,TYPE=SUBH,TXT=TXTWH
 SSS8FC 414S D1A8 SS1A8 16S9+ LA R4,WORKTED+((3-1)KTEDLEN) R4=A(TED)
 SSSSS 161S+ USING TED,R4
 SSS9SS 5S4S DSF4 SSSF4 1611+ ST R4,TRAPARML+(4K3) SET A(TED) INTO PARMLIST
 SSS9S4 D2S3 4SSS CAFC SSSSS SSAFC 1612+ MVC TEDEYE,=CL4'TED' SET EYE CATCHER INTO TED
 SSS9SA 92E2 4SS4 SSSS4 1613+ MVI TEDTYPE,TEDTYPS SET 'THIS IS A SUBHEADER-TED'
 SSS9SE 41FS C9C6 SS9C6 1614+ LA R15,TXTWH R15=A(TEXT)
 SSS912 5SFS 4SS8 SSSS8 1615+ ST R15,TEDTXTA STORE A(TEXT) INTO TED
 SSS916 D2S3 4SSC CBS8 SSSSC SSBS8 1616+ MVC TEDTXTL,=A(L'TXTWH) SET LENGTH OF TEXT STRING
 1617 K

1618 KKK PROVIDE 4TH TED (DATA FOR 1ST COLUMN IN WHERE CLAUSE)
 1619 K
 162S SETTED NBR=4,TYPE=DATA,TXT=TXTCOL1,DATA=FCK_SEG1KEY1
 SSS91C 414S D1CC SS1CC 1621+ LA R4,WORKTED+((4-1)KTEDLEN) R4=A(TED)
 SSSSS 1622+ USING TED,R4
 SSS92S 5S4S DSF8 SSSF8 1623+ ST R4,TRAPARML+(4K4) SET A(TED) INTO PARMLIST
 SSS924 D2S3 4SSS CAFC SSSSS SSAFC 1624+ MVC TEDEYE,=CL4'TED' SET EYE CATCHER INTO TED
 SSS92A 92C4 4SS4 SSSS4 1625+ MVI TEDTYPE,TEDTYPD SET 'THIS IS A DATA-TED'
 SSS92E 41FS C9EF SS9EF 1626+ LA R15,TXTCOL1 R15=A(TEXT)
 SSS932 5SFS 4SS8 SSSS8 1627+ ST R15,TEDTXTA STORE A(TEXT) INTO TED
 SSS936 D2S3 4SSC CBSC SSSSC SSBSC 1628+ MVC TEDTXTL,=A(L'TXTCOL1) SET LENGTH OF TEXT STRING
 SSS93C 41FS 7SSS SSSSS 1629+ LA R15,FCK_SEG1KEY1 R15=A(DATA)
 SSS94S 5SFS 4S1S SSS1S 163S+ ST R15,TEDMA STORE A(DATA) INTO TED
 SSS944 D2S3 4S14 CB1S SSS14 SSB1S 1631+ MVC TEDALEN,=A(L'FCK_SEG1KEY1) X

+ STORE LENGTH OF DATA
 SSS94A 92D3 4SS5 SSSS5 1632+ MVI TEDALIGN,TEDALIGL REQUEST 'LEFT ALIGNMENT'
 1633 K

1634 KKK PROVIDE 5TH TED (DATA FOR 2ND COLUMN IN WHERE CLAUSE)
 1635 K
 1636 SETTED NBR=5,TYPE=DATA,TXT=TXTCOL2,DATA=FCK_SEG2KEY1
 SSS94E 414S D1FS SS1FS 1637+ LA R4,WORKTED+((5-1)KTEDLEN) R4=A(TED)
 SSSSS 1638+ USING TED,R4
 SSS952 5S4S DSFC SSSFC 1639+ ST R4,TRAPARML+(4K5) SET A(TED) INTO PARMLIST
 SSS956 D2S3 4SSS CAFC SSSSS SSAFC 164S+ MVC TEDEYE,=CL4'TED' SET EYE CATCHER INTO TED
 SSS95C 92C4 4SS4 SSSS4 1641+ MVI TEDTYPE,TEDTYPD SET 'THIS IS A DATA-TED'
 SSS96S 41FS C9F7 SS9F7 1642+ LA R15,TXTCOL2 R15=A(TEXT)
 SSS964 5SFS 4SS8 SSSS8 1643+ ST R15,TEDTXTA STORE A(TEXT) INTO TED
 SSS968 D2S3 4SSC CB14 SSSSC SSB14 1644+ MVC TEDTXTL,=A(L'TXTCOL2) SET LENGTH OF TEXT STRING
 SSS96E 41FS 7SS5 SSSS5 1645+ LA R15,FCK_SEG2KEY1 R15=A(DATA)
 SSS972 5SFS 4S1S SSS1S 1646+ ST R15,TEDMA STORE A(DATA) INTO TED
 SSS976 D2S3 4S14 CB18 SSS14 SSB18 1647+ MVC TEDALEN,=A(L'FCK_SEG2KEY1) X

+ STORE LENGTH OF DATA
 SSS97C 92D3 4SS5 SSSS5 1648+ MVI TEDALIGN,TEDALIGL REQUEST 'LEFT ALIGNMENT'
 1649 K

165S KKK PROVIDE 6TH TED (DATA FOR 3RD COLUMN IN WHERE CLAUSE)
 1651 K
 1652 SETTED NBR=6,TYPE=DATA,TXT=TXTCOL3,DATA=FCK_SEG2KEY2
 SSS98S 414S D214 SS214 1653+ LA R4,WORKTED+((6-1)KTEDLEN) R4=A(TED)
 SSSSS 1654+ USING TED,R4
 SSS984 5S4S D1SS SS1SS 1655+ ST R4,TRAPARML+(4K6) SET A(TED) INTO PARMLIST
 SSS988 D2S3 4SSS CAFC SSSSS SSAFC 1656+ MVC TEDEYE,=CL4'TED' SET EYE CATCHER INTO TED
 SSS98E 92C4 4SS4 SSSS4 1657+ MVI TEDTYPE,TEDTYPD SET 'THIS IS A DATA-TED'
 SSS992 41FS C9FF SS9FF 1658+ LA R15,TXTCOL3 R15=A(TEXT)
 SSS996 5SFS 4SS8 SSSS8 1659+ ST R15,TEDTXTA STORE A(TEXT) INTO TED
 SSS99A D2S3 4SSC CB1C SSSSC SSB1C 166S+ MVC TEDTXTL,=A(L'TXTCOL3) SET LENGTH OF TEXT STRING
 SSS9AS 41FS 7SS7 SSSS7 1661+ LA R15,FCK_SEG2KEY2 R15=A(DATA)
 SSS9A4 5SFS 4S1S SSS1S 1662+ ST R15,TEDMA STORE A(DATA) INTO TED
 SSS9A8 D2S3 4S14 CB2S SSS14 SSB2S 1663+ MVC TEDALEN,=A(L'FCK_SEG2KEY2) X

+ STORE LENGTH OF DATA
 SSS9AE 92D3 4SS5 SSSS5 1664+ MVI TEDALIGN,TEDALIGL REQUEST 'LEFT ALIGNMENT'
 1665 K

1666 KKK SET INTO PARAMETER LIST THE 'HIGH ORDER BIT'
1667 KKK (I.E. THE 'VL BIT') WHICH SIGNALS THE END OF THE

 1668 KKK PARAMETER LIST.
 1669 K

Figure 52 (Part 26 of 40). First Sample Propagation Exit Routine (Assembler)

 Chapter 4. Propagation Exit Routines 215

 SSS9B2 968S D1SS SS1SS 167S OI TRATED6,X'8S' SET VL BIT INTO TRACE PARMLIST
 SSS9B6 47FS C9BA SS9BA 1671 B TRACECO GO TO COMMON TRACE LOGIC

 1673 K---K
1674 K CALL DPROP TRACE MODULE WITH THE PREVIOUSLY K
1675 K FORMATTED PARAMETER LIST. K

 1676 K---K

 SSS9BA 1678 TRACECO DS SH

 SSS9BA 411S DSE8 SSSE8 168S LA R1,TRAPARML R1=TRACE PARAMETER LIST FOR TRACER
 SSS9BE 58FS CB4S SSB4S 1681 L R15,=V(EKYR41SX) CALL
 SSS9C2 SDEF 1682 BASR R14,R15 ...DPROP TRACER MODULE

 SSS9C4 S7FB 1684 BR R11 RETURN TO CALLER OF SUBROUTINE

 1686 K---K
1687 K TEXT USED FOR TRACING K

 1688 K---K

 SSS9C6 C3D6D3E4D4D5E24S 169S TXTWH DC C'COLUMNS IN WHERE CLAUSE' TEXT FOR TRACE SUBHEADER
 SSS9DD D7D9D6D7C1C7C1E3 1691 TXTPRC DC C'PROPAGATED COLUMNS' TEXT FOR TRACE SUBHEADER
 SSS9EF E3C1C2F2C3D6D3F1 1692 TXTCOL1 DC CL8'TAB2COL1' TEXT FOR TRACE
 SSS9F7 E3C1C2F2C3D6D3F2 1693 TXTCOL2 DC CL8'TAB2COL2' TEXT FOR TRACE
 SSS9FF E3C1C2F2C3D6D3F3 1694 TXTCOL3 DC CL8'TAB2COL3' TEXT FOR TRACE
 SSSAS7 E3C1C2F2C3D6D3F4 1695 TXTCOL4 DC CL8'TAB2COL4' TEXT FOR TRACE
 SSSASF E3C1C2F2C3D6D3F5 1696 TXTCOL5 DC CL8'TAB2COL5' TEXT FOR TRACE
 SSSA17 E3C1C2F2C3D6D3F6 1697 TXTCOL6 DC CL8'TAB2COL6' TEXT FOR TRACE

 SSSA2S 1699 LTORG
 SSSA2S 4S4S4S4S4S4S4S4S 17SS =CL8' '
 SSSA28 C4C2F14S4S4S4S4S 17S1 =CL8'DB1'
 SSSA3S E2C5C7F24S4S4S4S 17S2 =CL8'SEG2'
 SSSA38 E4D7C4C1E3C54S4S 17S3 =CL8'UPDATE'
 SSSA4S C9D5E2C5D9E34S4S 17S4 =CL8'INSERT'
 SSSA48 C4C5D3C5E3C54S4S 17S5 =CL8'DELETE'
 SSSA5S C5D2E8C5D7D9FSC5 17S6 =CL8'EKYEPRSE'
 SSSA58 4SE2D8D34SC5D9D9 17S7 =CL16' SQL ERROR CODE='
 SSSA68 C5D2E8C5D7D9F1C5 17S8 =CL8'EKYEPR1E'
 SSSA7S C5D2E8C5D7D9F2C5 17S9 =CL8'EKYEPR2E'
 SSSA78 D2C5E84SD6C64SE2 171S =C'KEY OF SEG2 NOT PROVIDED BY DL/I CAPTURE'
 SSSAAS C5D2E8C5D7D9F3C5 1711 =CL8'EKYEPR3E'
 SSSAA8 C5D2E8C5D7D9F4C5 1712 =CL8'EKYEPR4E'
 SSSABS C5D2E8C5D7D9F5C5 1713 =CL8'EKYEPR5E'
 SSSAB8 C4C2C4D5C1D4C57E 1714 =CLS8'DBDNAME='
 SSSACS C5D2E8C5D7D9F1C1 1715 =CL8'EKYEPR1A'
 SSSAC8 C9E2D9E3 1716 =CL4'ISRT'
 SSSACC D9C5D7D3 1717 =CL4'REPL'
 SSSADS D9C5C9D5 1718 =CL4'REIN'
 SSSAD4 C4D3C5E3 1719 =CL4'DLET'
 SSSAD8 C4D3D7D7 172S =CL4'DLPP'
 SSSADC SSSSSS4C 1721 =F'76'
 SSSAES SSSSSSSS 1722 =XL4'SSSSSSSS'
 SSSAE4 SSSSSSSS 1723 =V(DSNHLI)
 SSSAE8 C4D3D3D7 1724 =C'DLLP'
 SSSAEC SSSSSS28 1725 =F'4S'
 SSSAFS SSSSSS64 1726 =F'1SS'
 SSSAF4 C3C1E2C3 1727 =C'CASC'
 SSSAF8 E3D9C24S 1728 =CL4'TRB '
 SSSAFC E3C5C44S 1729 =CL4'TED'
 SSSBSS SSSSSS35 173S =A(L'TRHEADER)
 SSSBS4 SSSSSS13 1731 =A(L'TXTSQLC)
 SSSBS8 SSSSSS17 1732 =A(L'TXTWH)

Figure 52 (Part 27 of 40). First Sample Propagation Exit Routine (Assembler)

216 Customization Guide

 SSSBSC SSSSSSS8 1733 =A(L'TXTCOL1)
 SSSB1S SSSSSSS5 1734 =A(L'FCK_SEG1KEY1)
 SSSB14 SSSSSSS8 1735 =A(L'TXTCOL2)
 SSSB18 SSSSSSS2 1736 =A(L'FCK_SEG2KEY1)
 SSSB1C SSSSSSS8 1737 =A(L'TXTCOL3)
 SSSB2S SSSSSSS6 1738 =A(L'FCK_SEG2KEY2)
 SSSB24 SSSSSS12 1739 =A(L'TXTPRC)
 SSSB28 SSSSSSS8 174S =A(L'TXTCOL4)
 SSSB2C SSSSSSS8 1741 =A(L'SEG2DAT1)
 SSSB3S SSSSSSS8 1742 =A(L'TXTCOL5)
 SSSB34 SSSSSSS8 1743 =A(L'SEG2DAT2)
 SSSB38 SSSSSSS8 1744 =A(L'TXTCOL6)
 SSSB3C SSSSSSS7 1745 =A(L'SEG1DAT1)
 SSSB4S SSSSSSSS 1746 =V(EKYR41SX)
 SSSB44 E3C1C2F24S4S4S4S 1747 =CL18'TAB2'
 SSSB56 S1C4 1748 =X'S1C4'
 SSSB58 SSS8 1749 =H'8'
 SSSB5A SSS7 175S =H'7'
 SSSB5C SSS5 1751 =H'5'
 SSSB5E SSS2 1752 =H'2'
 SSSB6S SSS6 1753 =H'6'
 SSSB62 SSS4 1754 =H'4'
 SSSB64 D7D9D6D7C1C7C1E3 1755 =CL3S'PROPAGATION FAILURE FOR TABLE='
 SSSB82 C6C1C9D3C9D5C74S 1756 =CL22'FAILING SQL STATEMENT='
 SSSB98 D7C1E3C84SC4C1E3 1757 =C'PATH DATA NOT PROVIDED BY DL/I CAPTURE'
 SSSBBE 4SC6E4D5C37E 1758 =CLS6' FUNC='
 SSSBC4 SS14 1759 =H'2S'
 SSSBC6 E4D5C5E7D7C5C3E3 176S =C'UNEXPECTED DBD- OR SEGNAME FOR EKYEPR1A'
 SSSBED C4C1E3C14SD6C64S 1761 =C'DATA OF SEG2 NOT PROVIDED BY DL/I CAPTURE'
 SSSC16 E4D5C5E7D7C5C3E3 1762 =C'UNEXPECTED CALL FUNCTION IN DL/I XPCB'
 SSSC3B 4SE2C5C7D5C1D4C5 1763 =CLS9' SEGNAME='
 SSSC44 4SD7D9D6D7C1C7C1 1764 =C' PROPAGATING SQL-'
 SSSC55 4SC6D6D94SE3C1C2 1765 =C' FOR TABLE='
 SSSC6S E2D8D34SC5D9D9D6 1766 =C'SQL ERROR CODE=-NNN'
 1768 KK

1769 K DESCRIPTION OF GETMAINED AREA CONTAINING AMONG OTHER: K
 177S K - SAVEAREA K

1771 K - EXIT WORKSPACE K
1772 K - AN SQL WORKAREA (SQLDSECT) K
1773 K - A CALL PARAMETER LIST USED FOR CALLS TO THE K
1774 K THE DPROP TRACER K
1775 K - A TRACE REQUEST BLOCK (TRB) K
1776 K - 1S TRACE ELEMENT DESCRIPTORS (TED'S) K

 1777 KK

 SSSSSS 1779 GETM DSECT
 178S K--K
 1781 K REGISTER SAVEAREA K
 1782 K--K
 SSSSSS 1783 SAVE DS 18F'S' REGISTER SAVEAREA

 1785 K--K

1786 K WORK SPACE FOR EXIT K
 1787 K--K

 SSSS48 4S4S4S4S4S4S4S4S 1789 OPER DC CL8' ' TYPE OF SQL OPERATION
 SSSS5S SSSSSSSSSSSSSSSS 179S DBLW DC D'S' DOUBLE WORD USED AS WORK

 1792 K--K

1793 K SPACE FOR THE SQL WORK AREA K
 1794 K--K
 SSSS58 1795 DS SD
 SSSS58 1796 WORKSQL DS CL(SQLDLEN) RESERVE LENGTH OF SQL DSECT

 1798 K--K

1799 K PARAMETER LIST TO CALL THE DPROP TRACER K
 18SS K--K

Figure 52 (Part 28 of 40). First Sample Propagation Exit Routine (Assembler)

 Chapter 4. Propagation Exit Routines 217

 SSSSE8 18S2 DS SF

SSSE8 18S3 TRAPARML EQU K TRACE PARAMETER LIST
 SSSSE8 SSSSSSSS 18S4 TRATRB DC A(S) A(TRACE REQUEST BLOCK)
 SSSSEC SSSSSSSS 18S5 TRATED1 DC A(S) A(1ST TRACE ELEMENT DESCRIPTOR)
 SSSSFS SSSSSSSS 18S6 TRATED2 DC A(S) A(2ND TRACE ELEMENT DESCRIPTOR)
 SSSSF4 SSSSSSSS 18S7 TRATED3 DC A(S) A(3RD TRACE ELEMENT DESCRIPTOR)
 SSSSF8 SSSSSSSS 18S8 TRATED4 DC A(S) A(4TH TRACE ELEMENT DESCRIPTOR)
 SSSSFC SSSSSSSS 18S9 TRATED5 DC A(S) A(5TH TRACE ELEMENT DESCRIPTOR)
 SSS1SS SSSSSSSS 181S TRATED6 DC A(S) A(6TH TRACE ELEMENT DESCRIPTOR)
 SSS1S4 SSSSSSSS 1811 TRATED7 DC A(S) A(7TH TRACE ELEMENT DESCRIPTOR)
 SSS1S8 SSSSSSSS 1812 TRATED8 DC A(S) A(8TH TRACE ELEMENT DESCRIPTOR)
 SSS1SC SSSSSSSS 1813 TRATED9 DC A(S) A(9NT TRACE ELEMENT DESCRIPTOR)
 SSS11S SSSSSSSS 1814 TRATED1S DC A(S) A(1STH TRACE ELEMENT DESCRIPTOR)

 1816 K--K

1817 K SPACE FOR ONE TRACE REQUEST BLOCK (TRB) K
 1818 K--K

 SSS118 182S DS SD
 SSS118 1821 WORKTRB DS CL(TRBLEN)

 1823 K--K

1824 K SPACE FOR 1S DIFFERENT TRACE ELEMENT DESCRIPTORS (TED'S) K
 1825 K--K

 SSS16S 1827 DS SD
 SSS16S 1828 WORKTED DS 1SCL(TEDLEN) SPACE FOR 1S TED'S

 183S K--K

1831 K SPACE FOR A TRACE HEADER K
 1832 K--K

 SSS2C8 1834 TRHEADER DS SCL53 TRACE HEADER
SSS2C8 1835 TRHPS DS CL8' ' NAME OF MODULE CREATING TRACE
SSS2DS 1836 TRHP1 DS CL17 =C' PROPAGATING SQL-'
SSS2E1 1837 TRHP2 DS CL8' ' SQL OPERATION
SSS2E9 1838 TRHP3 DS CL11 =C' FOR TABLE='
SSS2F4 1839 TRHP4 DS CL18' ' TABLE NAME

 1841 K--K

1842 K SPACE FOR A TRACE SUBHEADER FOR SQL CODE K
 1843 K--K

 SSS3S6 E2D8D34SC5D9D9D6 1845 TXTSQLC DC C'SQL ERROR CODE=-NNN' TEXT OF TRACE SUBHEADER
 SSS319 SS315 1846 ORG K-4
 SSS315 4S 1847 TXTSQLCS DC C' ' SIGN OF SQL CODE
 SSS316 4S4S4S 1848 TXTSQLCC DC CL3' ' SQL CODE

SS319 185S GETML EQU K-GETM LENGTH OF GETMAINED AREA
 1852 KKK

1853 K DESCRIPTION OF DL/I SEGMENTS AND OF FULLY CONCATENATED KEY K
 1854 KKK

 1856 K--K

1857 K DESCRIPTION OF THE DL/I SEGMENT 'SEG2', WHICH IS K
1858 K PROPAGATED BY THE EXIT TO THE TARGET TABLE 'TAB2' K

 1859 K--K

 SSSSSS 1861 SEG2 DSECT
 SSSSSS 4S4S 1862 SEG2KEY1 DC CL2' ' 1ST KEY SUBFIELD OF SEG2
 SSSSS2 4S4S4S4S4S4S 1863 SEG2KEY2 DC CL6' ' 2ND KEY SUBFIELD OF SEG2
 SSSSS8 4S4S4S4S4S4S4S4S 1864 SEG2DAT1 DC CL8' ' A DATA FIELD OF SEG2
 SSSS1S 4S4S4S4S4S4S4S4S 1865 SEG2DAT2 DC CL8' ' A DATA FIELD OF SEG2

Figure 52 (Part 29 of 40). First Sample Propagation Exit Routine (Assembler)

218 Customization Guide

 1867 K--K

1868 K DESCRIPTION OF THE PARENT SEGMENT 'SEG1' OF 'SEG2'. K
1869 K THE FIELD SEG1DAT1 IS 'PATH DATA' WHICH NEEDS TO K
187S K BE PROPAGATED TOGETHER WITH SEG2 DATA TO THE TARGET K
1871 K DB2 TABLE 'TAB2'. K

 1872 K--K

 SSSSSS 1874 SEG1 DSECT ,
 SSSSSS 4S4S4S4S4S 1875 SEG1KEY1 DC CL5' ' KEY FIELD OF SEG1
 SSSSS5 4S4S4S4S4S4S4S 1876 SEG1DAT1 DC CL7' ' A DATA FIELD OF SEG1
 SSSSSC 4S4S4S4S 1877 SEG1DAT2 DC CL4' ' A DATA FIELD OF SEG1
 SSSS1S 4S4S4S4S4S4S4S4S 1878 SEG1DAT3 DC CL8' ' A DATA FIELD OF SEG1

 188S K--K

1881 K DESCRIPTION OF THE FULLY CONCATENATED KEY K
1882 K OF THE DL/I SEGMENT 'SEG2'. K

 1883 K--K

 SSSSSS 1885 FCKEY DSECT
 SSSSSS 4S4S4S4S4S 1886 FCK_SEG1KEY1 DC CL5' ' KEY FIELD OF SEG1
 SSSSS5 4S4S 1887 FCK_SEG2KEY1 DC CL2' ' 1ST KEY SUBFIELD OF SEG2
 SSSSS7 4S4S4S4S4S4S 1888 FCK_SEG2KEY2 DC CL6' ' 2ND KEY SUBFIELD OF SEG2

 189S KKK
1891 K DESCRIPTION/DECLARATION OF THE 'TAB2' TABLE K

 1892 KKK

 1894 KKK$$$

1895 K EXEC SQL DECLARE TAB2 TABLE C
(TAB2COL1 CHAR(5) NOT NULL , C
TAB2COL2 CHAR(2) NOT NULL , C
TAB2COL3 CHAR(6) NOT NULL , C
TAB2COL4 CHAR(8) NOT NULL , C
TAB2COL5 CHAR(8) NOT NULL , C
TAB2COL6 CHAR(7) NOT NULL)

 1896 KKK$$$
1898 EKYRCPIC , EXIT INTERFACE CONTROL BLOCK
1899+KKKKKKKKKKKKKKKKKK START OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKKKKK/

 19SS+K K/
19S1+K CONTROL BLOCK NAME: K/

 19S2+K EKYRCPIC (PIC) K/
 19S3+K K/
 19S4+K DESCRIPTIVE NAME: K/

19S5+K DPROP PROPAGATION EXIT INTERFACE BLOCK K/
 19S6+K K/
 19S7+K K/
 19S8+KK
 19S9+K K

191S+K THIS PRODUCT CONTAINS "RESTRICTED MATERIALS OF IBM". K
 1911+K K

1912+K 5685-124 (C) COPYRIGHT IBM CORP. 1989, 1992. K
1913+K ALL RIGHTS RESERVED. K

 1914+K K
1915+K U.S. GOVERNMENT USERS RESTRICTED RIGHTS - K
1916+K USE, DUPLICATION, OR DISCLOSURE RESTRICTED BY K
1917+K GSA ADP SCHEDULE CONTRACT WITH IBM CORP. K

 1918+K K
1919+K LICENSED MATERIALS - PROPERTY OF IBM. K

 192S+K K
 1921+KK
 1922+K K/

1923+K STATUS: V1 R2 MS K/
 1924+K K/

Figure 52 (Part 30 of 40). First Sample Propagation Exit Routine (Assembler)

 Chapter 4. Propagation Exit Routines 219

 1925+K FUNCTION: K/

1926+K THIS IS THE CONTROL BLOCK USED TO INTERFACE BETWEEN K/
 1927+K - DPROP K/
 1928+K AND K/

1929+K - A USER'S PROPAGATION EXIT ROUTINE K/
 193S+K K/

1931+K THERE IS ONE PIC CB FOR EACH EXIT PROPAGATION K/
1932+K EXIT ROUTINE, LASTING FOR THE DURATION OF THE EXIT K/
1933+K IN VIRTUAL STORAGE. K/
1934+K FOR SYNCH PROPAGATION IN MPP REGIONS: K/
1935+K - THIS IS THE DURATION OF THE IMS PROGRAM CONTROLLER K/

 1936+K SUBTASK. K/
1937+K FOR SYNCH PROPAGATION IN BATCH/BMP REGIONS, FOR K/
1938+K ASYNCH PROPAGATION, AND FOR CCU PROCESSING: K/
1939+K - THIS IS THE DURATION OF THE JOBSTEP. K/

 194S+K K/
1941+K MODULE TYPE= MACRO K/
1942+K PROCESSOR= ASSEMBLER H K/

 1943+K K/
1944+K INNER CONTROL BLOCKS: NONE K/

 1945+K K/
1946+K MACROS USED FROM MACRO LIBRARY: NONE K/

 1947+K K/
 1948+K CHANGE ACTIVITY: K/
 1949+K KMPSS57 12/13/9S K/

195S+K KMPSS6S S2/S8/91 COPYRIGHT INFORMATION K/
 1951+K K/

1952+KKKKKKKKKKKKKKKKKKKK END OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKKKKK/

 SSSSSS 1954+PIC DSECT
 1955+K--K

1956+K THIS SECTION CONTAINS INFORMATION PROVIDED BY K
1957+K DPROP TO THE INVOKED EXIT AT ENTRY TO CALL. THIS K
1958+K SECTION MUST NOT BE MODIFIED BY THE EXIT. K

 1959+K--K

 SSSSSS C5D2E8D9C3D7C9C3 1961+PICEYE DC CL8'EKYRCPIC' EYE CATCHER
 SSSSS8 4S4S4S4S4S4S4S4S 1962+PICEXIT DC CL8' ' NAME OF THE EXIT ROUTINE
 SSSS1S 4S4S 1963+PICCALL DC CL2' ' TYPE OF CALL TO EXIT

1964+K ...'HR': HIERARCH TO RELATIONAL PROP
1965+K ...'RH': REL. TO HIERARCH

 SSSS12 SS 1966+PICDBLEV DC X'SS' DEBUG LEVEL IN EFFECT
SSSS2 1967+PICDBLV2 EQU X'S2' 2 : EXTERNAL TRACE OF PROPAGATING

1968+K SQL STATEMENTS AND DL/I CALLS
 SSSS13 SS 1969+ DC X'SS' RESERVED
 SSSS14 SSSSSSSS 197S+PICPTD DC A(S) A(DPROP PTD)
 SSSS18 4S4S4S4S4S4S4S4S 1971+PICPRID DC CL8' ' PR-ID
 SSSS2S 4S4S4S4S4S4S4S4S 1972+PICPRSET DC CL8' ' PRSET-ID
 SSSS28 4S4S4S4S4S4S4S4S 1973+PICPRTST DC CL26' ' PR TIMESTAMP
 SSSS42 SSSS 1974+ DC XL2'SS' RESERVED
 SSSS44 4S4S4S4S4S4S4S4S 1975+PICPCBLA DC CL8' ' PCB LABEL AS SPECIFIED ON PR
 SSSS4C SSSSSSSSSSSSSSSS 1976+ DC XL56'SS' RESERVED
 SSSS84 4S4S4S4S 1977+PICOPSYS DC CL4' ' OPERATING SYSTEM

1978+K ...'ESA ': MVS/ESA
 SSSS88 4S4S4S4S 1979+PICTRANS DC CL4' ' IMS REGION TYPE

198S+K ...'MPP ': MPP REGION
1981+K ...'IFP ': IMS FAST PATH REGION
1982+K ...'BMP ': IMS BMP REGION
1983+K ...'BAT ': IMS BATCH REGION
1984+K ...' ': IF NONE OF ABOVE

 SSSS8C 4S4S4S4S 1985+PICPROGM DC CL4' ' CALLING PROGRAM
1986+K ...'DPRS': DPROP SYNCH PROPAGATION
1987+K ...'DPRA': DPROP ASYNCH PROPAGATION

 SSSS9S SSSSSSSSSSSSSSSS 1988+ DC XL12'SS' RESERVED FOR DPROP

Figure 52 (Part 31 of 40). First Sample Propagation Exit Routine (Assembler)

220 Customization Guide

 199S+K--K

1991+K THIS SECTION IS USED BY THE EXIT TO PROVIDE K
1992+K INFORMATION TO DPROP K

 1993+K--K

 SSSS9C 4S 1995+PICENTRD DC CL1' ' SET BY EXIT ROUTINE TO
 1996+K C'X', INDICATES

1997+K THAT EXIT HAS BEEN ENTERED
 1998+K
 SSSS9D 4S 1999+PICINCTL DC CL1' ' SET BY EXIT ROUTINE TO
 2SSS+K C'X', INDICATES

2SS1+K THAT EXIT IS IN CONTROL

 2SS3+KKKKKKKK

2SS4+KKKKKKKK RETURN CODE AND ERROR MESSAGE
 2SS5+KKKKKKKK

 SSSS9E SSSS 2SS7+PICXRETC DC H'S' RETURN CODE

2SS8+K ...4: SQL ERROR
2SS9+K SQL ERROR CODE IS IN THE FIELD
2S1S+K SQLCODE OF THE SQLCA
2S11+K ...8: DLI ERROR
2S12+K AIBRETRN, AIBREASN AND
2S13+K DLI STATUS CODE IN PCB
2S14+K POINTED BY AIBRSA1
2S15+K ..12: ERROR OTHER THAN SQL ERROR:
2S16+K SOME RESOURCES NOT AVAILABLE
2S17+K ..16: ERROR OTHER THAN SQL ERROR:
2S18+K NOT A RESOURCE AVAILABILITY

 2S19+K PROBLEM.
2S2S+K ..2S: SHOULD NOT OCCUR/SHOULD ABEND

 2S21+K
 SSSSAS 2S22+PICXMESG DS SCL28S USER EXIT ERROR/WARNING MESSAGE

2S23+K DPROP WILL WRITE THE MESSAGE
2S24+K TO VARIOUS DESTINATIONS ACCORDING
2S25+K TO USUAL DPROP/RUP ERROR HANDLING

 2S26+K LOGIC.
 SSSSAS 2S27+PICXML1 DS SCL7S' ' 1ST MESSAGE LINE
 SSSSAS 2S28+PICXMSGI DS CL8' ' ...8 BYTES MESSAGE ID
 SSSSA8 2S29+PICXMSGB DS C' ' ...ONE BLANK
 SSSSA9 2S3S+PICXMTXT DS CL61' ' ...61 TEXT BYTES IN 1ST MESSAGE LINE
 SSSSE6 2S31+PICXML2 DS CL7S' ' 2ND MESSAGE LINE
 SSS12C 2S32+PICXML3 DS CL7S' ' 3RD MESSAGE LINE
 SSS172 2S33+PICXML4 DS CL7S' ' 4TH MESSAGE LINE
 2S34+K
 SSS1B8 SSSSSSSSSSSSSSSS 2S35+ DC XL12'SS' RESERVED FOR DPROP

 2S37+KKKKKKKK

2S38+KKKKKKKK NAME OF OBJECTS ASSOCIATED WITH ERROR
 2S39+KKKKKKKK

 SSS1C4 4S4S4S4S4S4S4S4S 2S41+PICDBN DC CL8' ' DBDNAME ASSOCIATED WITH THE ERROR
 SSS1CC 4S4S4S4S4S4S4S4S 2S42+PICSEGN DC CL8' ' SEG NAME ASSOCIATED WITH THE ERROR
 SSS1D4 4S4S4S4S4S4S4S4S 2S43+PICTABQ DC CL8' ' TABLE NAME QUALIFIER ASSOC. W. ERROR
 SSS1DC 4S4S4S4S4S4S4S4S 2S44+PICTABN DC CL18' ' TABLE NAME ASSOCIATED WITH THE ERROR
 SSS1EE SSSSSSSSSSSSSSSS 2S45+ DC XL14'SS' RESERVED FOR DPROP

Figure 52 (Part 32 of 40). First Sample Propagation Exit Routine (Assembler)

 Chapter 4. Propagation Exit Routines 221

 2S47+K--K

2S48+K EXIT WORK AREA K
 2S49+K K

2S5S+K THE EXIT WORK AREA CAN BE USED TO SAVE K
2S51+K INFORMATION ACROSS CALLS TO THE EXIT (E.G. K
2S52+K TO SAVE THE ADDRESSES OF GETMAINED AREAS ACROSS K
2S53+K CALLS TO THE EXIT. K

 2S54+K--K

 SSS2SS 2S56+ DS SD
 SSS2SS SSSSSSSSSSSSSSSS 2S57+PICSWORK DC XL256'SS' WORK AREA FOR THE EXIT
 SSS3SS SSSSSSSSSSSSSSSS 2S58+ DC XL16'SS' RESERVED FOR DPROP

 2S6S+K--K
2S61+K SQL COMMUNICATION AREA (SQLCA). K

 2S62+K K
2S63+K THE EXIT SHOULD USE THIS SQLCA FOR ITS SQL K

 2S64+K STATEMENTS. K
 2S65+K--K

 SSS31S 2S67+SQLCA DS SD
 SSS31S 2S68+SQLCID DS CL8 ID
 SSS318 2S69+SQLCABC DS F BYTE COUNT
 SSS31C 2S7S+SQLCODE DS F RETURN CODE
 SSS32S 2S71+SQLERRM DS H,CL7S ERROR MSG PARMS
 SSS368 2S72+SQLERRP DS CL8 IMPL DEPENDENT
 SSS37S 2S73+SQLERRD DS 6F
 SSS388 2S74+SQLWARN DS SC WARNING FLAGS
 SSS388 2S75+SQLWARNS DS C'W' IF ANY
 SSS389 2S76+SQLWARN1 DS C'W' = WARNING
 SSS38A 2S77+SQLWARN2 DS C'W' = WARNING
 SSS38B 2S78+SQLWARN3 DS C'W' = WARNING
 SSS38C 2S79+SQLWARN4 DS C'W' = WARNING
 SSS38D 2S8S+SQLWARN5 DS C'W' = WARNING
 SSS38E 2S81+SQLWARN6 DS C'W' = WARNING
 SSS38F 2S82+SQLWARN7 DS C'W' = WARNING
 SSS39S 2S83+SQLEXT DS CL8
 SSS398 2S84+ DS 4F RESERVED

 2S86+K---K
2S87+K DLI APPLICATION INTERFACE BLOCK (AIB) K

 2S88+K K
2S89+K THE EXIT SHOULD USE THIS AIB FOR ITS DLI K
2S9S+K CALL. BEFORE FIRST CALL, DPROP INITS K
2S91+K AIBID, AIBLEN, AIBRSNM1 AND AIBSFUNC FIELDS. K

 2S92+K K
 2S93+K---K

 SSS3A8 2S95+PICAIB DS SD AIB INITIALIZED BY DPROP
 SSS3A8 2S96+PIC_AIBID DS CL8'DFSAIB' EYECATCHER
 SSS3BS 2S97+PIC_AIBLEN DS F DFSAIB ALLOCATED LENGTH
 SSS3B4 2S98+PIC_AIBSFUNC DS CL8 SUBFUNCTION CODE
 SSS3BC 2S99+PIC_AIBRSNM1 DS CL8 RESOURCE NAME 1
 SSS3C4 21SS+PIC_AIBRSNM2 DS CL8 RESOURCE NAME 2
 SSS3CC 21S1+ DS 2F RESERVED
 SSS3D4 21S2+PIC_AIBOALEN DS F OUTPUT AREA LENGTH (MAX)
 SSS3D8 21S3+PIC_AIBOAUSE DS F OUTPUT AREA LENGTH (USED)
 SSS3DC 21S4+ DS 2F RESERVED
 SSS3E4 21S5+ DS H RESERVED
 SSS3E6 21S6+ DS H RESERVED

Figure 52 (Part 33 of 40). First Sample Propagation Exit Routine (Assembler)

222 Customization Guide

 SSS3E8 21S7+PIC_AIBRETRN DS F RETURN CODE
 SSS3EC 21S8+PIC_AIBREASN DS F REASON CODE
 SSS3FS 21S9+ DS F RESERVED
SSS3F4 211S+PIC_AIBRSA1 DS A RESOURCE ADDRESS 1
SSS3F8 2111+PIC_AIBRSA2 DS A RESOURCE ADDRESS 2
SSS3FC 2112+PIC_AIBRSA3 DS A RESOURCE ADDRESS 3
 SSS4SS 2113+ DS 1SF RESERVED
 SSS8S 2114+PIC_AIBLL EQU K-PICAIB DFSAIB LENGTH
 SSS428 2115+ DS 4F RESERVED

SS438 2117+PICEND EQU K END OF PIC
SS438 2118+PICLEN EQU K-PIC LENGTH OF PIC

 212S KKK
2121 K REDEFINITIONS OF THE MESSAGE AREA LOCATED IN THE PIC K

 2122 KKK

 SSS438 SSSAS 2124 ORG PICXML1
 SSSSAS 4S4S4S4S4S4S4S4S 2125 MSGSID DC CL8' '
 SSSSA8 4S 2126 MSGSBL1 DC C' ' ONE BLANK
 SSSSA9 4S4S4S4S4S4S4S4S 2127 MSGSTXT DC CL3S' ' =C'PROPAGATION FAILURE FOR TABLE='
 SSSSC7 4S4S4S4S4S4S4S4S 2128 MSGSTABLE DC CL18' ' TABLE NAME

 SSSSD9 SSSE6 213S ORG PICXML2
 SSSSE6 4S4S4S4S4S4S4S4S 2131 MSGSTXT2 DC CL22' ' =C'FAILING SQL STATEMENT='
 SSSSFC 4S4S4S4S4S4S4S4S 2132 MSGSTXTO DC CL8' ' TYPE OF SQL STATEMENT
 SSS1S4 4S4S4S4S4S4S4S4S 2133 MSGSTXT3 DC CL16' ' =C' SQL ERROR CODE='
 SSS114 4S 2134 MSGSSQLCS DC CL1' ' SIGN OF SQL ERROR CODE
 SSS115 4S4S4S 2135 MSGSSQLC DC CL3' ' SQL ERROR CODE

 SSS118 SSSAS 2137 ORG PICXML1
 SSSSAS 4S4S4S4S4S4S4S4S 2138 MSGOID DC CL8' '
 SSSSA8 4S 2139 MSGOBL1 DC C' ' ONE BLANK
 SSSSA9 4S4S4S4S4S4S4S4S 214S MSGOTXT DC CL61' ' TEXT

 SSSSE6 SSSE6 2142 ORG PICXML2
 SSSSE6 4S4S4S4S4S4S4S4S 2143 MSGOTXT2 DC CLS8' ' =C'DBDNAME='
 SSSSEE 4S4S4S4S4S4S4S4S 2144 MSGODBD DC CL8' ' DBDNAME
 SSSSF6 4S4S4S4S4S4S4S4S 2145 MSGOTXT3 DC CLS9' ' =C' SEGNAME='
 SSSSFF 4S4S4S4S4S4S4S4S 2146 MSGOSEG DC CL8' ' SEGNAME
 SSS1S7 4S4S4S4S4S4S 2147 MSGOTXT4 DC CLS6' ' =C' FUNC='
 SSS1SD 4S4S4S4S 2148 MSGOFUNC DC CLS4' ' CALL FUNCTION

215S EKYRCDL1 , DL/I CAPTURE INTERFACE CB'S

 2152+KKK
 2153+K K

2154+K E X T E N D E D D A T A B A S E P C B -- X P C B K
 2155+K K
 2156+KKK

 SSSSSS 2158+XPCB DSECT
 SSSSSS 2159+XPCBEYE DS CL4 "XPCB" EYECATCHER
 SSSSS4 216S+XPCBVER DS CL2 XPCB VERSION INDICATOR
 SSSSS6 2161+XPCBREL DS CL2 XPCB RELEASE INDICATOR
 SSSSS8 2162+XPCBEXIT DS CL8 SEGMENT USER EXIT NAME
SSSS1S 2163+XPCBRC DS H RETURN-CODE
 SSSS12 2164+XPCBRSNC DS H REASON-CODE
 SSSS14 2165+XPCBDBD DS CL8 PHYSICAL DATA BASE NAME
 SSSS1C 2166+XPCBVERA DS A ADDRESS OF DBD VERSION ID
 SSSS2S 2167+XPCBSEG DS CL8 PHYSICAL SEGMENT NAME
 SSSS28 2168+XPCBCALL DS CL4 'CALL FUNCTION' DEFINED BY IMS/ESA

Figure 52 (Part 34 of 40). First Sample Propagation Exit Routine (Assembler)

 Chapter 4. Propagation Exit Routines 223

 2169+K ISRT: INSERT
 217S+K REPL: REPLACE
 2171+K DLET: DELETE

2172+K CASC: CASCADING DELETE
2173+K DLLP: NOW ALSO DELETED FROM LOGICAL PATH

 SSSS2C 2174+XPCBPCALL DS CL4 'PHYSICAL UPDATE TYPE' DEFINED BY IMS
 2175+K ISRT: INSERT

2176+K REIN: RE-INSERT VIA LOGICAL PATH
 2177+K REPL: REPLACE
 2178+K DLET: DELETE

2179+K DLPP: DELETED ONLY FROM PHYSICAL PATH
 SSSS3S 218S+ DS CL4 RESERVED
 SSSS34 2181+XPCBPCBA DS A ADDRESS OF DB PCB
 SSSS38 2182+XPCBPCBN DS CL8 NAME OF DB PCB
 SSSS4S 2183+XPCBINQA DS A ADDRESS OF "INQY" OUTPUT
 SSSS44 2184+XPCBIOPA DS A ADDRESS OF I/O PCB
 SSSS48 2185+ DS H RESERVED
 SSSS4A 2186+XPCBCKEYL DS H LENGTH OF CONCATENATED KEY
 SSSS4C 2187+XPCBCKEYA DS A ADDRESS OF CONCATENATED KEY
 SSSS5S 2188+XPCBXSDBD DS A ADDRESS OF XSDB FOR DATA
 SSSS54 2189+XPCBXSDBB DS A ADDRESS OF XSDB FOR REPL DATA
 SSSS58 219S+XPCBXSDBP DS A ADDRESS OF XSDB FOR PATH DATA
 SSSS5C 2191+ DS F RESERVED
 SSSS6S 2192+ DS F RESERVED
 SSSS64 2193+ DS F RESERVED
 SSSS68 2194+XPCBEXIWP DS A ADDRESS OF 256-BYTE AREA RESERVED FOR EXIT
 SSSS6C 2195+ DS F RESERVED
 SSSS7S 2196+ DS F RESERVED
 SSSS74 2197+XPCBTIMST DS CL8 TIMESTAMP OF CALL
 SSSS7C 2198+ DS F RESERVED

SSS8S 2199+XPCBLEN EQU K-XPCB LENGTH OF XPCB

 22S1+KKK
 22S2+K K

22S3+K E X T E N D E D S E G M E N T D A T A -- X S D B K
 22S4+K K
 22S5+KKK

 SSSSSS 22S7+XSDB DSECT
 SSSSSS 22S8+XSDBEYE DS CL4 "XSDB" EYECATCHER
 SSSSS4 22S9+XSDBVER DS CL2 XSDB VERSION INDICATOR
 SSSSS6 221S+XSDBREL DS CL2 XSDB RELEASE INDICATOR
 SSSSS8 2211+XSDBNXSDB DS A NEXT XSDB POINTER
 SSSSSC 2212+XSDBDBD DS CL8 PHYSICAL DATA BASE NAME
 SSSS14 2213+XSDBSEG DS CL8 PHYSICAL SEGMENT NAME
 SSSS1C 2214+XSDBPHP DS CL1 PHYSICAL PATH ACCESSIBILITY

SSSE8 2215+XSDBPHPY EQU C'Y' ...SEGM ACCESSIBLE VIA PHYSICAL PATH
SSSD5 2216+XSDBPHPN EQU C'N' ...SEGM NOT ACCESSIBLE VIA PH. PATH

 SSSS1D 2217+ DS CL3 RESERVED
 SSSS2S 2218+XSDBSEGLV DS H SEGMENT DATA BASE LEVEL
 SSSS22 2219+XSDBKEYL DS H LENGTH OF PHYSICAL KEY
 SSSS24 222S+XSDBKEYA DS A ADDRESS OF PHYSICAL KEY
 SSSS28 2221+XSDBFIL1 DS H RESERVED
 SSSS2A 2222+XSDBSEGL DS H LENGTH OF SEGMENT DATA
 SSSS2C 2223+XSDBSEGA DS A ADDRESS OF SEGMENT DATA
 SSSS3S 2224+XSDBFIL2 DS F RESERVED
 SSSS34 2225+XSDBFIL3 DS F RESERVED
 SSSS38 2226+XSDBFIL4 DS F RESERVED

SSS3C 2227+XSDBLEN EQU K-XSDB LENGTH OF XSDB

 2229+KKK
 223S+K K

2231+K D A T A B A S E P C B K
 2232+K K
 2233+KKK

Figure 52 (Part 35 of 40). First Sample Propagation Exit Routine (Assembler)

224 Customization Guide

 SSSSSS 2235+DBPCB DSECT
 SSSSSS 2236+DBPCBDBD DS CL8 DBD NAME
 SSSSS8 2237+DBPCBLEV DS CL2 LEVEL FEEDBACK
 SSSSSA 2238+DBPCBSTC DS CL2 STATUS CODES (RETURNED TO USER)
 SSSSSC 2239+DBPCBPRO DS CL4 PROCESSING OPTIONS

 SSSS1S 2241+DBPCBPFX DS F PREFIX ADDRESS
 SSSS14 2242+DBPCBSFD DS CL8 SEGMENT NAME FEEDBACK
 SSSS1C 2243+DBPCBMKL DS F CURRENT LENGTH OF KEY FEEDBACK AREA

2244+K OR GSAM FEEDBACK AREA
 SSSS2S 2245+DBPCBNSS DS F NO OF SENSITIVE SEGMENTS IN PCB

SSS24 2246+DBPCBSZ2 EQU K-DBPCB SIZE OF PCB WITHOUT KEY FEEDBACK AREA
 SSSS24 2247+DBPCBKFD DS SCL256 KEY FEEDBACK AREA

 2249+KKK
 225S+K K

2251+K INQUIRY (INQY) CALL OUTPUT K
 2252+K K

2253+K THE INQY CALL RETURNS DATA TO THE USER'S I/O AREA BASED K
2254+K ON THE SUBFUNCTION SPECIFIED IN THE AIB. K

 2255+K K
2256+K THE FOLLOWING SUBFUNCTIONS RETURN DATA TO THE APPLICATION: K
2257+K 'ENVIRON' - SYSTEM ENVIRONMENT DATA K
2258+K 'NULL' - DATA ASSOCIATED WITH THE PCB NAME K
2259+K THAT WAS PASSED IN THE AIB K

 226S+K K
 2261+KKK

 2263+K---K
 2264+K K
 2265+K ----------------------- K

2266+K SUBFUNCTION = 'ENVIRON' K
 2267+K ----------------------- K
 2268+K K
 2269+K---K

 SSSSSS 2271+INQENVRN DSECT
 SSSSSS 2272+INQEIMID DS CL8 IMS IDENTIFIER
 SSSSS8 2273+INQEIMRL DS F IMS RELEASE LEVEL
 2274+K

2275+KKK CONTROL REGION TYPES:
2276+KKK 'BATCH ' - BATCH DATABASE MANAGER
2277+KKK 'DB ' - ONLINE DATABASE MANAGER SUBSYSTEM
2278+KKK 'DB/DC ' - ONLINE DB AND DC MANAGER SUBSYSTEM

 2279+K
 SSSSSC 228S+INQECRT DS CL8 CONTROL REGION TYPE
 2281+K

2282+KKK APPLICATION REGION TYPES:
2283+KKK 'BATCH ' - BATCH REGION
2284+KKK 'BMP ' - BATCH MESSAGE PROCESSING REGION
2285+KKK 'DRA ' - DATABASE RESOURCE ADAPTER THREAD
2286+KKK 'IFP ' - FAST PATH REGION
2287+KKK 'MPP ' - MESSAGE PROCESSING REGION

 2288+K
 SSSS14 2289+INQEART DS CL8 APPLICATION REGION TYPE
 SSSS1C 229S+INQEARID DS F APPLICATION RGN IDENTIFIER
 SSSS2S 2291+INQEPGM DS CL8 APPLICATION PROGRAM NAME
 SSSS28 2292+INQEPSB DS CL8 ALLOCATED PSB NAME
 SSSS3S 2293+INQETRAN DS CL8 TRANSACTION NAME
 SSSS38 2294+INQEUSER DS CL8 USER IDENTIFIER
 SSSS4S 2295+INQEGPNM DS CL8 GROUP NAME
 2296+K

Figure 52 (Part 36 of 40). First Sample Propagation Exit Routine (Assembler)

 Chapter 4. Propagation Exit Routines 225

2297+KKK STATUS GROUP INDICATOR:
2298+KKK ' ' - NO STATUS GROUP WAS INITIALIZED
2299+KKK 'A ' - INIT STATUS GROUPA CALL WAS ISSUED
23SS+KKK 'B ' - INIT STATUS GROUPB CALL WAS ISSUED

 23S1+K
 SSSS48 23S2+INQESGID DS CL4 HIGHEST STATUS GROUP ID
 SSSS4C 23S3+INQERTA DS A ADDRESS OF RECOVERY TOKEN

23S4+K STRING MAPPED BY INQERTS
 SSSS5S 23S5+INQEAPA DS A ADDRESS OF APPLICATION PARM

23S6+K STRING MAPPED BY INQEAPS
SSS54 23S7+INQELEN EQU K-INQENVRN ENVIRON OUTPUT LENGTH

 SSSS54 23S8+ DS CL12S SPACE FOR UOW-ID AND APPL-PARMS
SSSCC 23S9+INQELEN2 EQU K-INQENVRN IOAREA_LENGTH FOR INQY DL1 CALL

 2311+K---K
 2312+K K

2313+K RECOVERY TOKEN STRING DSECT K
 2314+K K
 2315+K---K
 SSSSSS 2316+INQERTS DSECT
 SSSSSS 2317+INQERTLL DS H RECOVERY TOKEN LENGTH

SSSS2 2318+INQERTKN EQU K START OF RECOVERY TOKEN

 232S+K---K
 2321+K K

2322+K APPLICATION PARAMETER STRING DSECT K
 2323+K K
 2324+K---K
 SSSSSS 2325+INQEAPS DSECT
 SSSSSS 2326+INQEAPLL DS H APPL PARM STRING LENGTH

SSSS2 2327+INQEAPRM EQU K START OF APPL PARM STRING

 2329+KKK
 233S+K K

2331+K DFSAIB DSECT - APPLICATION INTERFACE BLOCK K
 2332+K K

2333+K THE DFSAIB IS THE APPLICATION INTERFACE BLOCK PASSED K
2334+K TO IMS ON APPLICATION CALLS WHICH USE THE DFSAIBLI K
2335+K LANGUAGE INTERFACE ENTRY POINT. APPLICATIONS WHICH K
2336+K USE THIS ENTRY POINT ARE EITHER ISSUING CALLS USING K
2337+K A PCB NAME INSTEAD OF A PCB ADDRESS, OR ARE ISSUING K
2338+K CALLS WHICH ARE NOT ASSOCIATED WITH A PCB. K
2339+K THE DFSAIB PROVIDES A STANDARD MECHANISM FOR IMS AND K
234S+K AND THE APPLICATION TO EXCHANGE INFORMATION. K

 2341+K K
2342+K THE DFSAIB IS ALLOCATED AND INITIALIZED BY THE K
2343+K APPLICATION PROGRAM. INDIVIDUAL DL/I CALLS MAY HAVE K
2344+K DIFFERENT REQUIREMENTS FOR REQUIRED INPUT FIELDS. K
2345+K AT A MINIMUM, THE FOLLOWING FIELDS MUT BE INITIALIZED K
2346+K PRIOR TO ISSUING ANY DL/I CALL. K
2347+K AIBID = CHARACTER STRING 'DFSAIB ' K
2348+K AIBLEN = LENGTH USED BY THE APPLICATION TO ALLOCATE K
2349+K THE STORAGE AREA. K
235S+K AIBOALEN = LENGTH OF APPLICATION I/O AREA K
2351+K (ONLY REQUIRED ON DL/I CALLS IN WHICH IMS K
2352+K WILL RETURN DATA IN THE I/O AREA) K

 2353+K K
2354+K IMS WILL RETURN A RETURN CODE TO THE APPLICATION K
2355+K IN THE DFSAIB. ADDITIONALLY, OTHER INFORMATION SUCH K
2356+K AS A REASON CODE, MAY BE RETURNED AS REQUIRED BY K

 2357+K SPECIFIC CALLS. K
 2358+K K
 2359+KKK

Figure 52 (Part 37 of 40). First Sample Propagation Exit Routine (Assembler)

226 Customization Guide

 SSSSSS 2361+DFSAIB DSECT
SSSSSS 2362+AIBID DS CL8'DFSAIB' EYECATCHER
 SSSSS8 2363+AIBLEN DS F DFSAIB ALLOCATED LENGTH
 SSSSSC 2364+AIBSFUNC DS CL8 SUBFUNCTION CODE
 SSSS14 2365+AIBRSNM1 DS CL8 RESOURCE NAME 1
 SSSS1C 2366+AIBRSNM2 DS CL8 RESOURCE NAME 2
 SSSS24 2367+ DS 2F RESERVED
 SSSS2C 2368+AIBOALEN DS F OUTPUT AREA LENGTH (MAX)
 SSSS3S 2369+AIBOAUSE DS F OUTPUT AREA LENGTH (USED)
 SSSS34 237S+ DS 2F RESERVED
 SSSS3C 2371+ DS H RESERVED
 SSSS3E 2372+ DS H RESERVED
 SSSS4S 2373+AIBRETRN DS F RETURN CODE
 SSSS44 2374+AIBREASN DS F REASON CODE
 SSSS48 2375+ DS F RESERVED
 SSSS4C 2376+AIBRSA1 DS A RESOURCE ADDRESS 1
 SSSS5S 2377+AIBRSA2 DS A RESOURCE ADDRESS 2
 SSSS54 2378+AIBRSA3 DS A RESOURCE ADDRESS 3
 SSSS58 2379+ DS 1SF RESERVED
 SSS8S 238S+AIBLL EQU K-DFSAIB DFSAIB LENGTH

2382 EKYTRB , TRACE REQUEST BLOCK
2383+KKKKKKKKKKKKKKKKKK START OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKKKKKK

 2384+K K
2385+K CONTROL BLOCK NAME: K

 2386+K EKYTRB (TRB) K
 2387+K K
 2388+K DESCRIPTIVE NAME: K

2389+K DPROP TRACE REQUEST BLOCK (TRB) K
 239S+K = = = K
 2391+K K
 2392+KKK
 2393+K K

2394+K THIS PRODUCT CONTAINS "RESTRICTED MATERIALS OF IBM". K
 2395+K K

2396+K 5685-124 (C) COPYRIGHT IBM CORP. 1989, 1992. K
2397+K ALL RIGHTS RESERVED. K

 2398+K K
2399+K U.S. GOVERNMENT USERS RESTRICTED RIGHTS - K
24SS+K USE, DUPLICATION, OR DISCLOSURE RESTRICTED BY K
24S1+K GSA ADP SCHEDULE CONTRACT WITH IBM CORP. K

 24S2+K K
24S3+K LICENSED MATERIALS - PROPERTY OF IBM. K

 24S4+K K
 24S5+KKK
 24S6+K K

24S7+K STATUS: V1 R2 MS K
 24S8+K K
 24S9+K FUNCTION: K

241S+K A TRB IS USED FOR THE COMMUNICATION BETWEEN A K
2411+K 'PROPAGATION USER EXIT ROUTINE' AND THE DPROP TRACE K

 2412+K FUNCTION. K
 2413+K K

2414+K WHEN INVOKING THE DPROP-TRACE FUNCTION, THE CALLING K
2415+K USER EXIT MUST PROVIDE THE TRB AS FIRST CALL-PARAMETER. K

 2416+K K
2417+K THE TRB PROVIDES INFORMATION ABOUT THE TRACE REQUEST. K

 2418+K K
2419+K MODULE TYPE= MACRO K
242S+K PROCESSOR= ASSEMBLER H K

 2421+K K
2422+K ACQUIRED BY MODULE INVOKING THE TRACE K

 2423+K K
2424+K INNER CONTROL BLOCKS: NONE K

 2425+K K
2426+K MACROS USED FROM MACRO LIBRARY: NONE K

 2427+K K

Figure 52 (Part 38 of 40). First Sample Propagation Exit Routine (Assembler)

 Chapter 4. Propagation Exit Routines 227

 2428+K CHANGE ACTIVITY: K
 2429+K KMPSS57 12/13/9S K
 243S+K K

2431+KKKKKKKKKKKKKKKKKKKK END OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKKKKKK

 SSSSSS 2435+TRB DSECT
 SSSSSS E3D9C24S 2436+TRBEYE DC C'TRB ' EYE-CATCHER
 SSSSS4 SSSSSSSS 2437+TRBPTD DC A(S) ADDRESS OF THE DPROP-PTD CONTROL BLOCK

 2439+KKKKKKKK

244S+KKKKKKKK NAME OF OBJECTS ASSOCIATED WITH THE TRACE
 2441+KKKKKKKK

 SSSSS8 4S4S4S4S4S4S4S4S 2443+TRBTABQ DC CL8' ' TABLE-NAME QUALIFIER ASSOC. W. TRACE
 SSSS1S 4S4S4S4S4S4S4S4S 2444+TRBTABN DC CL18' ' TABLE-NAME ASSOCIATED WITH THE TRACE
 SSSS22 4S4S 2445+ DC CL2' '
 SSSS24 4S4S4S4S4S4S4S4S 2446+TRBDBN DC CL8' ' DBD-NAME ASSOCIATED WITH THE TRACE
 SSSS2C 4S4S4S4S4S4S4S4S 2447+TRBSEGN DC CL8' ' SEG-NAME ASSOCIATED WITH THE TRACE

 2449+KKKKKKKK
 245S+KKKKKKKK SOLICITED/UNSOLICITED INDICATION
 2451+KKKKKKKK

 SSSS34 4S 2453+TRBSOLI DC CL1' ' SOLICITED TRACE

SSSE8 2454+TRBSOLY EQU C'Y' ...Y: TRACE SOLICITED BY THE USER
SSSD5 2455+TRBSOLN EQU C'N' ...N: TRACE NOT SOLICITED BY THE USER

 SSSS35 SSSSSSSSSSSSSSSS 2457+ DC 13X'SS' RESERVED/MUST BE ZERO
 SSS42 2458+TRBEND EQU K

SSS42 2459+TRBLEN EQU K-TRB LENGTH OF ONE TRB
2461 EKYTED , TRACE ELEMENT DESCRIPTION
2462+KKKKKKKKKKKKKKKKKK START OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKKKKKK

 2463+K K
2464+K CONTROL BLOCK NAME: K

 2465+K EKYTED (TED) K
 2466+K K
 2467+K DESCRIPTIVE NAME: K

2468+K DPROP TRACE ELEMENT DESCRIPTOR (TED) K
 2469+K = = = K
 247S+K K
 2471+KKK
 2472+K K

2473+K THIS PRODUCT CONTAINS "RESTRICTED MATERIALS OF IBM". K
 2474+K K

2475+K 5685-124 (C) COPYRIGHT IBM CORP. 1989, 1992. K
2476+K ALL RIGHTS RESERVED. K

 2477+K K
2478+K U.S. GOVERNMENT USERS RESTRICTED RIGHTS - K
2479+K USE, DUPLICATION, OR DISCLOSURE RESTRICTED BY K
248S+K GSA ADP SCHEDULE CONTRACT WITH IBM CORP. K

 2481+K K
2482+K LICENSED MATERIALS - PROPERTY OF IBM. K

 2483+K K
 2484+KKK
 2485+K K

2486+K STATUS: V1 R2 MS K
 2487+K K
 2488+K FUNCTION: K

2489+K WHEN INVOKING THE DPROP TRACE FUNCTION, THE CALLING K
249S+K MODULE MUST PROVIDE ONE TED FOR EACH: K

 2491+K - TRACE-HEADER K
 2492+K - TRACE-SUBHEADER K
 2493+K - DATA-AREA K

2494+K WHICH SHOULD BE TRACED/SNAPPED. K
 2495+K K

Figure 52 (Part 39 of 40). First Sample Propagation Exit Routine (Assembler)

228 Customization Guide

2496+K MODULE TYPE= MACRO K
2497+K PROCESSOR= ASSEMBLER H K

 2498+K K
2499+K ACQUIRED BY MODULE INVOKING THE TRACE K

 25SS+K K
25S1+K INNER CONTROL BLOCKS: NONE K

 25S2+K K
25S3+K MACROS USED FROM MACRO LIBRARY: NONE K

 25S4+K K
 25S5+K CHANGE ACTIVITY: K
 25S6+K KMPSS57 12/13/9S K
 25S7+K K

25S8+KKKKKKKKKKKKKKKKKKKK END OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKKKKKK

 SSSSSS 2512+TED DSECT
 SSSSSS E3C5C44S 2513+TEDEYE DC C'TED ' EYE-CATCHER
 SSSSS4 4S 2514+TEDTYPE DC C' ' TYPE OF TRACE ITEM

SSSC8 2515+TEDTYPH EQU C'H' ... HEADER
SSSE2 2516+TEDTYPS EQU C'S' ... SUB-HEADER
SSSC4 2517+TEDTYPD EQU C'D' ... DATA

 SSSSS5 4S 2518+TEDALIGN DC C' ' ALIGNMENT FOR SNAP-FORMATTING
SSSD3 2519+TEDALIGL EQU C'L' ...L = LEFT ALIGNMENT
SSS4S 252S+TEDALIGB EQU C' ' ...BLANK= NO LEFT ALIGNMENT

 SSSSS6 SSSS 2521+ DC XL2'SS' RESERVED
 SSSSS8 SSSSSSSS 2522+TEDTXTA DC A(S) PTR TO TEXT-STRING
 SSSSSC SSSSSSSS 2523+TEDTXTL DC F'S' LENGTH OF TEXT-STRING
 SSSS1S SSSSSSSS 2524+TEDMA DC A(S) VIRTUAL STORAGE ADDR OF AREA TO BE SNAPPED
 SSSS14 SSSSSSSS 2525+TEDALEN DC F'S' LENGTH OF AREA TO BE SNAPPED
 SSSS18 SSSSSSSS 2526+TEDALET DC F'S' ALET OF DATA (MUST BE ZERO IN THIS RELEASE)
 SSSS1C SSSSSSSSSSSSSSSS 2527+ DC 2F'S' RESERVED/MUST BE ZERO
 SSS24 2528+TEDEND EQU K

SSS24 2529+TEDLEN EQU K-TED LENGTH OF ONE TED
 SSSC73 2531 EKYEPR1A CSECT , REQUIRED BECAUSE OF DB2 PRECOMPILER

2532 KKK$$$ SQL WORKING STORAGE
 SSSC73 SS
 SSSC74 SSSSSS9S 2533 SQLDSIZ DC A(SQLDLEN) SQLDSECT SIZE
 SSSSSS 2534 SQLDSECT DSECT
 SSSSSS 2535 SQLPLIST DS F
 SSSSS4 2536 SQLPLLEN DS H PLIST LENGTH
 SSSSS6 2537 SQLFLAGS DS XL2 FLAGS
 SSSSS8 2538 SQLCTYPE DS H CALL-TYPE
 SSSSSA 2539 SQLPROGN DS CL8 PROGRAM NAME
 SSSS12 254S SQLTIMES DS CL8 TIMESTAMP
 SSSS1A 2541 SQLSECTN DS H SECTION
 SSSS1C 2542 SQLCODEP DS A CODE POINTER
 SSSS2S 2543 SQLVPARM DS A VPARAM POINTER
 SSSS24 2544 SQLAPARM DS A AUX PARAM PTR
 SSSS28 2545 SQLSTNUM DS H STATEMENT NUMBER
 SSSS2A 2546 SQLSTYPE DS H STATEMENT TYPE
 SSSS2C 2547 SQLPVARS DS F,6CL12
 SSSS78 2548 SQLAVARS DS F,SCL12
 SSSS7C 2549 SQLTEMP DS CL18 TEMPLATE
 SSSS9S 255S DS SD
 SSS9S 2551 SQLDLEN EQU K-SQLDSECT
 SSSSSS 2552 END EKYEPR1A

Figure 52 (Part 40 of 40). First Sample Propagation Exit Routine (Assembler)

 Chapter 4. Propagation Exit Routines 229

Definitions For First Sample Propagation Exit
This section contains definitions associated with the first sample Propagation exit
routine. It includes the following types of definitions:

� IMS DBDGEN and PSBGEN definitions

� DB2 CREATE TABLE definitions

� DataRefresher definitions required to define the PR DataRefresher and to
extract the IMS data with DataRefresher

� SQL statements defining the PR without DataRefresher in the MVG input tables

 DBDGEN Definitions
Figure 53 shows a DBDGEN definition for the sample Propagation exit routine in
Figure 52 on page 190.

 DBD NAME=DB1,VERSION=V123456789, C
 ACCESS=(HDAM,OSAM),RMNAME=(DFSHDC4S,5,4), C
 EXIT=(EKYRUP��,KEY,PATH,DATA)
 DATASET DD1=HDAM,SIZE=4S96,DEVICE=338S
K
 SEGM NAME=SEG1,PARENT=S,BYTES=24
 FIELD NAME=(SEG1KEY,SEQ,U),BYTES=5,START=1
K
 SEGM NAME=SEG2,PARENT=SEG1,BYTES=24
 FIELD NAME=(SEG2KEY,SEQ,U),BYTES=8,START=1
K
 DBDGEN
 FINISH
 END

Figure 53. DBDGEN Definition

Notes:

1. The EXIT= keyword of the DBD macro specifies that EKYRUP00 (the RUP) be
called when a segment of this DBD is changed. This is required for
synchronous data propagation with DPROP.

2. The EXIT= keyword of the DBD statement requests the PATH data option.
This is required for the mapping performed by this sample Propagation exit
routine (because the Propagation exit routine maps nonkey, path data, from the
parent segment).

CREATE TABLE Statement
Figure 54 on page 231 shows a CREATE TABLE statement for the sample
Propagation exit routine in Figure 52 on page 190.

230 Customization Guide

CREATE TABLE TS966S6.TAB2
 (TAB2COL1 CHAR(5) NOT NULL,
 TAB2COL2 CHAR(2) NOT NULL,
 TAB2COL3 CHAR(6) NOT NULL,
 TAB2COL4 CHAR(8) ,
 TAB2COL5 CHAR(8) ,
 TAB2COL6 CHAR(8) ,

PRIMARY KEY (TAB2COL1, TAB2COL2, TAB2COL3))
 IN DUS966S6.PROPTS;

CREATE UNIQUE INDEX XNS1 ON TAB2 (TAB2COL1, TAB2COL2, TAB2COL3)
USING VCAT KOE ;

Figure 54. CREATE TABLE Statement

Using DataRefresher to Define the PR
This section describes how you can use DataRefresher to define the PR for the
sample Propagation exit routine in Figure 52 on page 190.

 CREATE DXTPSB
Figure 55 shows a CREATE DXTPSB statement for the sample Propagation exit
routine in Figure 52 on page 190.

 CREATE DXTPSB NAME=KOEPSB

DXTPCB NAME=DB1, DBNAME=DB1, DBACCESS=HDAM

SEGMENT NAME=SEG1, PARENT=S, BYTES=24

FIELD NAME=SEG1KEY1, START=1 , BYTES=5, SEQFLD=R
FIELD NAME=SEG1DAT1, START=6 , BYTES=7, TYPE=C
FIELD NAME=SEG1DAT2, START=13, BYTES=4, TYPE=C
FIELD NAME=SEG1DAT3, START=17, BYTES=8, TYPE=C

SEGMENT NAME=SEG2, PARENT=SEG1, BYTES=24

FIELD NAME=SEG2KEY , START=1 , BYTES=8, SEQFLD=R
FIELD NAME=SEG2KEY1, START=1 , BYTES=2, TYPE=C
FIELD NAME=SEG2KEY2, START=3 , BYTES=6, TYPE=C
FIELD NAME=SEG2DAT1, START=9 , BYTES=8, TYPE=C
FIELD NAME=SEG2DAT2, START=17, BYTES=8, TYPE=C ;

Figure 55. CREATE DXTPSB Statement

The Propagation exit routine does not map the key field of segment SEG2 to one
DB2 column. Instead, the key field of SEG2 is mapped as two key subfields to two
columns of the DB2 primary key. Therefore, the key field SEG2KEY is redefined
by the two key subfields SEG2KEY1 and SEG2KEY2 that overlay SEG2KEY.

 CREATE DXTVIEW
Figure 56 on page 232 shows a CREATE DXTVIEW statement for the sample
Propagation exit routine in Figure 52 on page 190.

 Chapter 4. Propagation Exit Routines 231

 CREATE DXTVIEW NAME = VIEWS11,
 DXTPSB = KOEPSB,
 DXTPCB = DB1,
 SEGMENT = SEG2,
 MINSEGM = SEG2,
 FIELDS = K ;

Figure 56. CREATE DXTVIEW Statement

DataRefresher UIM SUBMIT Command and EXTRACT Statement
Figure 57 shows a DataRefresher UIM SUBMIT command and EXTRACT
statement for the Propagation exit routine in Figure 52 on page 190.

 SUBMIT EXTID=PRSS1,
 NODE=NODEX,
 USERID=TS966S6,
 CD=JCS,
 JCS=DDJCSS1,
 FORMAT=SOURCE,
 MAPEXIT=EKYMCE��,
 MAPUPARM='PRTYPE=U,
 MAPDIR=HR,
 ACTION=REPL,
 ERROPT=BACKOUT,
 EXITNAME=EKYEPR1A,
 PROPSEGM=(DB1/SEG2)'

 EXTRACT
 INTO TS966S6.TAB2 (TAB2COL1 NOT NULL,
 TAB2COL2 NOT NULL,
 TAB2COL3 NOT NULL,
 TAB2COL4 ,
 TAB2COL5 ,
 TAB2COL6)
 SELECT SEG1KEY1,
 SEG2KEY1,
 SEG2KEY2,
 SEG2DAT1,
 SEG2DAT2,
 SEG1DAT1

FROM VIEWS11 ;

Figure 57. DataRefresher UIM SUBMIT Command and EXTRACT Statement

Notes:

1. The MAPEXIT= keyword of the SUBMIT command specifies EKYMCE00. This
causes DataRefresher UIM to call the DPROP-provided Map Capture Exit
EKYMCE00 during the processing of the SUBMIT or EXTRACT. This is
required to allow DPROP to create the PR.

2. PRTYPE=U (user mapping) must be specified, because the PR must be
processed by a Propagation exit routine.

3. EXITNAME=EKYEPR1A specifies the name of the Propagation exit routine that
performs the propagation for this PR.

4. PROPSEGM=DB1 or SEG2 identifies the segment types being propagated by
this PR. As explained in the commentary for the source code of the
EKYEPR1A, the sample exit routine propagates changes to the data of SEG2
(together with path data of SEG1). However, the sample exit routine does not
propagate changes to the data of SEG1. Therefore, the PROPSEGM=
keyword identifies only SEG2 as the segment being propagated.

232 Customization Guide

5. The EXTRACT statement describes to DataRefresher which fields must be
mapped to which columns during the data extract. These definitions are
important for the extract but are not important for DPROP (because the
mapping and propagation is not done by the generalized mapping logic of
DPROP).

Using DataRefresher For the Extract
This section covers INITDEM and USE DXTPSB Control Statements. Figure 58
shows INITDEM and USE DXTPSB control statements for the Propagation exit
routine in Figure 52 on page 190.

 INITDEM NAME=BASILEUS;
 USE DXTPSB=KOEPSB;

Figure 58. Using DataRefresher For the Extract: INITDEM and USE DXTPSB Control
Statements

Defining the PR in the MVG Input Tables
Figure 59 on page 234 describes DSNTEP2 SQL statements required to define the
PR in the MVG input tables.

The following rows are inserted into the MVG input tables:

� One row is inserted into the DPRIPR table (the PR table).

This row identifies the PRID, indicates that the PRTYPE is U (user mapping),
and provides in the EXITNAME column the name of the Propagation exit
routine EKYEPR1A that performs the propagation for this PR.

� One row for each segment type being propagated by the PR and the
Propagation exit routine is inserted into the DPRISEG table (the SEG table).

As explained in the commentary of the source code of EKYEPR1A, the sample
exit routine propagates changes to the data of SEG2 (together with path data
of SEG1). However, the sample exit routine does not propagate changes to
the data of SEG1. Therefore, only one row is inserted into the DPRISEG table,
a row indicating that the PR is propagating SEG2.

� One row is inserted into the DPRITAB table (the TAB table).

This row indicates that the target table is T096606.TAB2.

For PRTYPE=U, DPROP does not require that you insert any rows in the DPRIFLD
table; this is why the example below does not insert any row in the DPRITAB table.

 Chapter 4. Propagation Exit Routines 233

DELETE FROM TS966S6.DPRIPR WHERE PRID = 'PRSS1' ;

INSERT INTO TS966S6.DPRIPR
(PRID, USERID, PRTYPE, MAPCASE, MAPDIR,
ERROPT, ACTION, EXITNAME)

 VALUES ('PRSS1', 'TS966S6','U', ' ', 'HR',
 'BACKOUT','REPL', 'EKYEPR1A') ;

INSERT INTO TS966S6.DPRISEG
(PRID, DBNAME, SEGNAME, ROLE)

VALUES ('PRSS1','DB1', 'SEG2', ' ') ;

INSERT INTO TS966S6.DPRITAB
(PRID, TABQUAL, TABNAME)

VALUES ('PRSS1','TS966S6', 'TAB2') ;

COMMIT;

Figure 59. DSNTEP2 SQL Statements Required to Define the PR in the MVG Input Tables

Second Sample Propagation Exit Routine
A second example of a Propagation exit routine written in an HLL is shown in
Figure 62 on page 236.

This is a key range splitting example: the mapping is provided from two different
segment types of two different databases. Both segments have the same structure
and the same key construction, but each key is unique over both databases.

The first database contains the lower key range (000000 to 499999), and the
second one contains the higher key range (500000 to 999999).

Each segment occurrence is mapped to a specific row of the propagated table.

Mapping Performed by the Sample Exit Routine
Figure 60 illustrates an overview of the propagation done by the sample
Propagation exit routine.

Database IMSDB1
┌────────────┐
│ │
│ SEG1 │�──────────�────┐
│ │ │
└────────────┘ │
 │ ┌──────────┐
 └───�──────────────────────�│ │

TW propagation │ TABX │
 ┌───�──────────────────────�│ │
Database IMSDB2 │ └──────────┘
┌────────────┐ │
│ │ │
│ SEG2 │�──────────�────┘
│ │
└────────────┘

Figure 60. Overview of the Propagation Performed By the Exit Routine

Figure 61 shows the mapping of individual IMS source fields to the DB2 target
columns and vice versa.

234 Customization Guide

Figure 61. Mapping IMS Source Fields to DB2 Target Columns

Segment Name Field Name Key attribute Column Name Column Type

SEG1 SEG1KEY1 Key field TABXCOL1 DB2 Primary key

SEG1 SEG1DAT1 - TABXCOL2 -

SEG1 SEG1DAT2 - TABXCOL3 -

SEG1 SEG1DAT3 - TABXCOL4 -

SEG2 SEG2KEY Key field TABXCOL1 DB2 Primary Key

SEG2 SEG2DAT1 - TABXCOL2 -

SEG2 SEG2DAT2 - TABXCOL3 -

SEG2 SEG2DAT3 - TABXCOL4 -

Sample Exit Routine Source Code
The example in Figure 62 on page 236 is intentionally simplified to emphasize the
fundamental logic involved. Your Propagation exit routine will likely be more
complex to meet your propagation requirements.

The source code below is provided in the DPROP Sample Source Library
(EKYSAMP) under the member name EKYEPR2K. The following source code
shows sample module EKYEPR2K after the DB2 precompiler processed it.

Following the source code are definitions related to the sample Propagation exit
routine.

 Chapter 4. Propagation Exit Routines 235

 /KKK
 K K
K Licensed Materials - Property of IBM K

 K K
K 5685-124 (C) Copyright IBM Corp. 1989, 1992. K

 K K
K See Copyright Instructions K

 K K
 KKK

 KK
 K K
 K Module name: EKYEPR2K K
 K K
 K Descriptive name: Sample C Language Propagation User Exit Routine. K
 K K
 K K
 K Function: K
 K K
 K The purpose of this program is to provide a sample propagation K
 K exit routine. This is a key range splitting example, e.g. the K
 K mapping is provided from two different segment types of two K
 K different databases. Both segments have the same structure and K
 K the same key construction, but each key content is unique over K
 K both databases. K
 K K
 K The first database contains the lower key range i.e. K
 K - "SSSSSS" to "499999". K
 K K
 K The second one contains the higher key range i.e. K
 K - "5SSSSS" to "999999". K
 K K
 K Each segment occurrence is mapped to one row of the propagated K
 K table. K
 K K
 KK
#pragma page(1)
 KK
 K K
 K K
 K The figure below provides an overview of the IMS-to-DB2 mapping K
 K performed by this sample propagation exit. K
 K K
 K K--------------------K K----------------------K K
 K | IMS world | | DB2 world | K
 K K--------------------- K----------------------K K
 K K
 K K--------------------K K
 K | database "IMSDB1" | K
K | segment "SEG1" | K
 K K--------------------K K
 K | seg1key key field |<--+ K
 K | seg1dat1 |<---+ K
 K | seg1dat2 |<----+ K----------------------K K
K | seg1dat3 |<-----+ | table "TABX" | K
K K--------------------K |||| K----------------------K K
 K +----->| TABXCOL1 primary key | K
 K K--------------------K |+---->| TABXCOL2 | K
 K | database "IMSDB2" | ||+--->| TABXCOL3 | K
K | segment "SEG2" | |||+-->| TABXCOL4 | K
K K--------------------K |||| | | K

Figure 62 (Part 1 of 18). Second Sample Propagation Exit Routine (C)

236 Customization Guide

 K | SEG2KEY key field |<--+||| | | K
 K | SEG2DAT1 |<---+|| K----------------------K K
 K | SEG2DAT2 |<----+| K
 K | SEG2DAT3 |<-----+ K
 K K--------------------K K
 K K
 K K
 K K
 KK
#pragma page(1)
 KK
 K K
 K Return code = S processing successful - no message set. K
 K K
 K Return code = 4 SQL error: error while propagating from IMS to K
 K DB2. K
 K K
 K Return code = 8 IMS error: error while propagating from DB2 to K
 K IMS. K
 K K
 K Return code = 12 error other than SQL and IMS, unavailable K
 K problem. K
 K K
 K Return code = 16 error other than SQL and IMS, not an unavailable K
 K resource problem. K
 K K
 K Return code = 2S severe error: abend is required. K
 K K
 K K
 K K
 K Error messages issued by EKYEPR2P: K
 K K
 K EKYEPR1E propagation failure for table=@ failing SQL K
 K statement=@ SQL code=@ K
 K EKYEPR2E propagation failure for segment=@ failing IMS K
 K segment=@ K
 K EKYEPR3E invalid propagation direction in PICCALL K
 K EKYEPR4E IMS-to-DB2: unexpected DBD or segname K
 K EKYEPR5E IMS-to-DB2: data is missing for a REPL or an ISRT call K
 K EKYEPR6E IMS-to-DB2: unexpected call function in the IMS XPCB K
 K EKYEPR7E IMS-to-DB2: KFBA is missing for a REPL call K
 K EKYEPR8E DB2-to-IMS: invalid call function in the HEC K
 K EKYEPR9E DB2-to-IMS: PCB label not found K
 K K
 KKKKKKKKKKKKKKKKKKKK End of Specifications KKKKKKKKKKKKKKKKKKKKKKKKKKK
#pragma page(1)
 KKKKKKKKKKKKKKKKKKKK Logic of EKYEPR2P KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK
 K K
 K Processing: K
 K K
 K - Set "module entered" and "module in control" flags into PIC. K
 K K
 K - Check function code to see if the module is called to perform K
 K IMS-to-DB2 propagation (HR) or to perform DB2-to-IMS K
 K propagation (RH). K
 K K
 K Processing for IMS-to-DB2 propagation: K
 K K
 K - Provide addressing for "EKYRCDLP". K
 K K

Figure 62 (Part 2 of 18). Second Sample Propagation Exit Routine (C)

 Chapter 4. Propagation Exit Routines 237

 K - Set table qualifier and table name into PIC. K
 K K
 K - Verify information provided by DL/I capture and/or DPROP. K
 K K
 K - Verify that the exit is invoked to propagate the right K
 K DBD/segname. K
 K K
 K - For ISRT and REPL operations: K
 K Verify that DL/I capture provides the segment data. K
 K K
 K - For DLET operation: K
 K Verify that DL/I capture provides the KFBA. K
 K K
 K - Branch according to type of IMS update operation: K
 K K
 K - For an IMS REPL: K
 K Issue a SQL update statement for a row with columns K
 K originating from SEG1 or SEG2. K
 K K
 K If the SQL update results in an error or warning execute K
 K the SQL error logic. K
 K K
 K - For an IMS ISRT: K
 K Issue a SQL insert statement to insert a row with columns K
 K originating from SEG1 or SEG2. K
 K K
 K If the SQL insert results in an error or warning execute K
 K the SQL error logic. K
 K K
 K - For an IMS DLET: K
 K Issue a SQL delete statement to delete the target row. K
 K K
 K If the SQL delete results in an error or a warning execute K
 K the SQL error logic. K
 KK
#pragma page(1)
 KK
 K K
 K SQL error logic: K
 K K
 K - set return code of 4 K
 K - copy the SQLCA used in this module to the "PIC" SQLCA K
 K - format an error message K
 K - return to the caller. K
 K K
 K K
 K Processing for DB2-to-IMS propagation: K
 K K
 K - provide addressing for "EKYHCHCP" and other appropriate control K
 K blocks K
 K K
 K - get the column data and move it to the IMS segment work area K
 K K
 K - build the SSA, init the AIB and set the correct function code K
 K for the DL/I call K
 K K
 K K
 K - perform the following depending on the DB2 operation: K
 K K

Figure 62 (Part 3 of 18). Second Sample Propagation Exit Routine (C)

238 Customization Guide

 K - for an INSERT call: K
 K K
 K - issue an IMS insert with the IMS segment work area K
 K K
 K - if the IMS insert results in an error or warning K
 K build the error message and set an 8 - return code K
 K K
 K - return to the caller K
 K K
 K K
 K - for an UPDATE or DELETE call: K
 K K
 K - issue an IMS get hold unique K
 K K
 K - if the GHU results in an error or warning K
 K build the error message and set an 8 - return code K
 K K
 K - else issue an IMS REPL or DLET depending on the K
 K SQL operation K
 K K
 K - if the IMS call results in an error or warning K
 K build the error message and set an 8 - return code K
 K K
 K - return to the caller K
 KK
#pragma page(1)
 KK
 K K
 K - Errors other than SQL errors: K
 K K
 K - set return code of 4 K
 K - build an error message in the PIC K
 K - return to caller of the exit K
 K K
 KKKKKKKKKKKKKKKKKKKK End of Logic Description KKKKKKKKKKKKKKKKKKKKKKKK/
#pragma page(1)
#include <leawi.h>
#include <ims.h>
#pragma linkage(ekyepr2k,fetchable)
#include <stdlib.h>
#include <string.h>
#pragma page(1)
/KK
 K Propagated DB2 table K
 KK/

#pragma linkage (DSNHLI,OS)
typedef struct
 { short SQLPLLEN;
 short SQLFLAGS;
 short SQLCTYPE;
 char SQLPROGN[8];
 short SQLTIMES[4];
 short SQLSECTN;
 char KSQLCODEP;
 char KSQLVPARM;
 char KSQLAPARM;
 short SQLSTNUM;
 short SQLSTYPE;
 } SQLPLIST;

Figure 62 (Part 4 of 18). Second Sample Propagation Exit Routine (C)

 Chapter 4. Propagation Exit Routines 239

typedef struct
 { short SQLTYPE;
 short SQLLEN;
 char KSQLADDR;
 char KSQLIND;
 } SQLELTS;
typedef SQLELTS KSQLELTS_PTR;
char SQLTEMP[19] ;

/KKK$$$
 EXEC SQL DECLARE TABX TABLE

(TABXCOL1 CHAR(6) NOT NULL,
TABXCOL2 CHAR(7) NOT NULL,
TABXCOL3 CHAR(4) NOT NULL,
TABXCOL4 CHAR(8) NOT NULL)

$$$KKK/

/KKK$$$
 EXEC SQL INCLUDE SQLCA
$$$KKK/
#ifndef SQLCODE
struct sqlca
 { unsigned char sqlcaid[8];
 long sqlcabc;
 long sqlcode;
 short sqlerrml;
 unsigned char sqlerrmc[7S];
 unsigned char sqlerrp[8];
 long sqlerrd[6];
 unsigned char sqlwarn[11];
 unsigned char sqlstate[5];
 } ;
#define SQLCODE sqlca.sqlcode
#define SQLWARNS sqlca.sqlwarn[S]
#define SQLWARN1 sqlca.sqlwarn[1]
#define SQLWARN2 sqlca.sqlwarn[2]
#define SQLWARN3 sqlca.sqlwarn[3]
#define SQLWARN4 sqlca.sqlwarn[4]
#define SQLWARN5 sqlca.sqlwarn[5]
#define SQLWARN6 sqlca.sqlwarn[6]
#define SQLWARN7 sqlca.sqlwarn[7]
#define SQLWARN8 sqlca.sqlwarn[8]
#define SQLWARN9 sqlca.sqlwarn[9]
#define SQLWARNA sqlca.sqlwarn[1S]
#define SQLSTATE sqlca.sqlstate
#endif
struct sqlca sqlca;

#pragma page(1)
/KK
 K Declare Host variables K
 KK/

/KKK$$$
 EXEC SQL BEGIN DECLARE SECTION
$$$KKK/

Figure 62 (Part 5 of 18). Second Sample Propagation Exit Routine (C)

240 Customization Guide

 char SEGIKEY[7];
 char SEGIDAT1[8];
 char SEGIDAT2[5];
 char SEGIDAT3[9];

/KKK$$$
 EXEC SQL END DECLARE SECTION
$$$KKK/

#pragma page(1)

/KK
 K Include control block structures K
 KK/

#include "ekyrcpck.h"
#include "ekyrcdlk.h"
#include "ekyhcq2k.h"
#include "ekyhchck.h"

/KK
 K Prototypes K
 KK/

void imstodb2 (EKYRCPIC K, XPCB K);

void db2toims (EKYRCPIC K, HEC K);

void segok (EKYRCPIC K, XPCB K);

void db2repl (EKYRCPIC K, XPCB K, SEGI K);

void db2isrt (EKYRCPIC K, SEGI K);

void db2dlet (EKYRCPIC K, XPCB K);

void db2check (EKYRCPIC K);

void sqlerr (EKYRCPIC K);

void imserr (EKYRCPIC K);

void invdir (EKYRCPIC K);

void invseg (EKYRCPIC K, XPCB K);

void datmis (EKYRCPIC K);

void invcal (EKYRCPIC K, XPCB K);

void errcom (EKYRCPIC K, XPCB K);

void invkfb (EKYRCPIC K);

void invfun (EKYRCPIC K);

Figure 62 (Part 6 of 18). Second Sample Propagation Exit Routine (C)

 Chapter 4. Propagation Exit Routines 241

void lablnf (EKYRCPIC K);

#pragma page(1)
/KK
 K Declare global variables K
 KK/

long int x1, x2, x3, x4, ncount;
char opcode[6], wsqlcode[6], funccode[4],
 w77ckey[6];

PICXML1 msg11 = {{""},' ',{"Propagation failure for table=\S"}},
msg21 = {{""},' ',{""}},
msg31 = {{""},' ',{"Propagation failure for segment=\S"}};

struct {
 char msgstxt2[22];
 char msgstxto[6];
 char msgstxt3[16];
 char msgssqlc[4];

} msg12 = {{"Failing SQL statement="},
{""},{" SQL error code="},{""}};

struct {
 char msgotxt2[8];
 char msgodbd[8];
 char msgotxt3[9];
 char msgoseg[8];
 char msgotxt4[6];
 char msgofunc[4];

} msg22 = {{"DBDNAME="},
{""},{" SEGNAME="},{""},{" FUNC="},{""}};

struct {
 char msgitxt2[22];
 char msgitxto[4];

} msg32 = {{"Failing IMS statement="},{""}};

char ssaisrt[9];

struct {
 char ssasegnm[8],
 filler_1,
 ssakeynm[8],
 filler_2,
 ssavalue[6],
 filler_3;

} ssa = {{""},'(',{""},'=',{""},')'};

char segiarea[25];
char segoarea[25];

#pragma page(1)
/KK
 K Main function - ekyepr2k K
 KK/
void ekyepr2k (EKYRCPIC Kekyrcpic, void Ksecondcb)
{
/K XPCB Kxpcb; K/

Figure 62 (Part 7 of 18). Second Sample Propagation Exit Routine (C)

242 Customization Guide

/K Set control flags - exit entered and in control K/
ekyrcpic->picentrd = 'X';
ekyrcpic->picinctl = 'X';

/KK
 K Check function code to determine if module is called K
 K to perform IMS-to-DB2 propagation (HR) or K
 K to perform DB2-to-IMS propagation (RH). K
 KK/

if (strncmp(ekyrcpic->piccall, "HR", 2) == S)
 imstodb2(ekyrcpic, secondcb);
 else

if (strncmp(ekyrcpic->piccall, "RH", 2) == S)
 db2toims(ekyrcpic, secondcb);

 else
invdir(ekyrcpic); /K invalid propagation direction K/

 return;

} /K end of ekyepr2k K/

#pragma page(1)
/KK
 K R U P i s t h e c a l l e r K
 K M a i n IMS_to_DB2 p r o c e s s i n g K
 KK/
void imstodb2 (EKYRCPIC Kekyrcpic, XPCB Kxpcb)
{
 strncpy(ekyrcpic->pictabq, " ", 8);
 strncpy(ekyrcpic->pictabn, "TABX ", 18);

if (strncmp(xpcb->xpcbdbd, "DIVNTZS2", 8) == S)
if (strncmp(xpcb->xpcbseg, "SEG1 ", 8) == S)

 segok(ekyrcpic, xpcb);
 else

invseg(ekyrcpic, xpcb); /K unexpected segment name K/

 else
if (strncmp(xpcb->xpcbdbd, "DHVNTZS2", 8) == S)

if (strncmp(xpcb->xpcbseg, "SEG2 ", 8) == S)
 segok(ekyrcpic, xpcb);
 else

invseg(ekyrcpic, xpcb); /K unexpected segment name K/

 else
invseg(ekyrcpic, xpcb); /K unexpected DBD K/

 return;
} /K end of imstodb2 K/

#pragma page(1)
void segok(EKYRCPIC Kekyrcpic, XPCB Kxpcb)
{

XSDB Kxsdb = NULL;
SEGI Ksegi = NULL;

Figure 62 (Part 8 of 18). Second Sample Propagation Exit Routine (C)

 Chapter 4. Propagation Exit Routines 243

if (strncmp(xpcb->xpcbcall, "DLET", 4) == S)
 {

strncpy(opcode, "DELETE", 6);
 db2dlet(ekyrcpic,xpcb);
 }

 else
 /KK

K Verify that the segment data is provided for "REPL" and "ISRT". K
K Process according to the type of IMS update. K

 KK/
 {

if (xpcb->xpcbxsdbd == NULL)
datmis(ekyrcpic); /K data is missing (EKYEPR5E) K/

else xsdb = xpcb->xpcbxsdbd;

if (xsdb->xsdbsega == NULL)
datmis(ekyrcpic); /K data is missing (EKYEPR5E) K/

else segi = xsdb->xsdbsega;

if (strncmp(xpcb->xpcbcall, "REPL", 4) == S)
 {

strncpy(opcode, "UPDATE", 6);
 db2repl(ekyrcpic,xpcb,segi);
 }
 else

if (strncmp(xpcb->xpcbcall, "ISRT", 4) == S)
 {

strncpy(opcode, "INSERT", 6);
 db2isrt(ekyrcpic,segi);
 }
 else
 invcal(ekyrcpic, xpcb);
 }
 return;
} /K end of segok K/

#pragma page(1)
/KK
 K IMS segment has been replaced. This results in a propagating SQL K
 K UPDATE of the target DB2 row. K
 KK/
void db2repl(EKYRCPIC Kekyrcpic, XPCB Kxpcb, SEGI Ksegi)
{

strncpy(SEGIKEY, segi->segikey, 6);
strncpy(SEGIDAT1, segi->segidat1, 7);
strncpy(SEGIDAT2, segi->segidat2, 4);
strncpy(SEGIDAT3, segi->segidat3, 8);

/KKK$$$
EXEC SQL UPDATE TABX

SET TABXCOL2 = :SEGIDAT1,
TABXCOL3 = :SEGIDAT2,
TABXCOL4 = :SEGIDAT3

WHERE TABXCOL1 = :SEGIKEY
$$$KKK/

Figure 62 (Part 9 of 18). Second Sample Propagation Exit Routine (C)

244 Customization Guide

 {
SQLPLIST SQLPLIST2 =
{4S, -32768, 3S, "EKYEPR2K", S, S, S ,S,
1, S, S, S, 463, 234};

 SQLELTS_PTR SQLELTS_PTR2;
 struct
 { long SQLPVARS;

char SQLPVELT[(sizeof(SQLELTS) K 4)];
 } SQLPVARS2;
SQLELTS_PTR2 = (SQLELTS K) &SQLPVARS2.SQLPVELT;
SQLELTS_PTR2->SQLTYPE = 46S;

 SQLELTS_PTR2->SQLLEN = 8;
SQLELTS_PTR2->SQLADDR = (char K)

 &(SEGIDAT1);
 SQLELTS_PTR2->SQLIND = NULL;
SQLELTS_PTR2 = SQLELTS_PTR2 + 1;
SQLELTS_PTR2->SQLTYPE = 46S;

 SQLELTS_PTR2->SQLLEN = 5;
SQLELTS_PTR2->SQLADDR = (char K)

 &(SEGIDAT2);
 SQLELTS_PTR2->SQLIND = NULL;
SQLELTS_PTR2 = SQLELTS_PTR2 + 1;
SQLELTS_PTR2->SQLTYPE = 46S;

 SQLELTS_PTR2->SQLLEN = 9;
SQLELTS_PTR2->SQLADDR = (char K)

 &(SEGIDAT3);
 SQLELTS_PTR2->SQLIND = NULL;
SQLELTS_PTR2 = SQLELTS_PTR2 + 1;
SQLELTS_PTR2->SQLTYPE = 46S;

 SQLELTS_PTR2->SQLLEN = 7;
SQLELTS_PTR2->SQLADDR = (char K)

 &(SEGIKEY);
 SQLELTS_PTR2->SQLIND = NULL;
SQLPVARS2.SQLPVARS = 52;
SQLPLIST2.SQLVPARM = (char K) &SQLPVARS2.SQLPVARS;
SQLPLIST2.SQLCODEP = (char K) &sqlca;
SQLPLIST2.SQLTIMES[S] = Sx14EA;
SQLPLIST2.SQLTIMES[1] = Sx9521;
SQLPLIST2.SQLTIMES[2] = SxS57S;
SQLPLIST2.SQLTIMES[3] = Sx64AS;
DSNHLI ((unsigned int K) &SQLPLIST2);

 }

 db2check(ekyrcpic);
 return;

} /K end of db2repl K/

#pragma page(1)
/KK
 K IMS segment has been inserted. This results in a propagating SQL K
 K INSERT of the target DB2 row. K
 KK/
void db2isrt(EKYRCPIC Kekyrcpic, SEGI Ksegi)
{

strncpy(SEGIKEY, segi->segikey, 6);
strncpy(SEGIDAT1, segi->segidat1, 7);
strncpy(SEGIDAT2, segi->segidat2, 4);

Figure 62 (Part 10 of 18). Second Sample Propagation Exit Routine (C)

 Chapter 4. Propagation Exit Routines 245

strncpy(SEGIDAT3, segi->segidat3, 8);

/KKK$$$
EXEC SQL INSERT INTO TABX

 (TABXCOL1,
 TABXCOL2,
 TABXCOL3,
 TABXCOL4)
 VALUES
 (:SEGIKEY,
 :SEGIDAT1,
 :SEGIDAT2,
 :SEGIDAT3)
$$$KKK/
 {
SQLPLIST SQLPLIST3 =
{4S, -32768, 3S, "EKYEPR2K", S, S, S ,S,
2, S, S, S, 486, 232};

 SQLELTS_PTR SQLELTS_PTR3;
 struct
 { long SQLPVARS;

char SQLPVELT[(sizeof(SQLELTS) K 4)];
 } SQLPVARS3;
SQLELTS_PTR3 = (SQLELTS K) &SQLPVARS3.SQLPVELT;
SQLELTS_PTR3->SQLTYPE = 46S;

 SQLELTS_PTR3->SQLLEN = 7;
SQLELTS_PTR3->SQLADDR = (char K)

 &(SEGIKEY);
 SQLELTS_PTR3->SQLIND = NULL;
SQLELTS_PTR3 = SQLELTS_PTR3 + 1;
SQLELTS_PTR3->SQLTYPE = 46S;

 SQLELTS_PTR3->SQLLEN = 8;
SQLELTS_PTR3->SQLADDR = (char K)

 &(SEGIDAT1);
 SQLELTS_PTR3->SQLIND = NULL;
SQLELTS_PTR3 = SQLELTS_PTR3 + 1;
SQLELTS_PTR3->SQLTYPE = 46S;

 SQLELTS_PTR3->SQLLEN = 5;
SQLELTS_PTR3->SQLADDR = (char K)

 &(SEGIDAT2);
 SQLELTS_PTR3->SQLIND = NULL;
SQLELTS_PTR3 = SQLELTS_PTR3 + 1;
SQLELTS_PTR3->SQLTYPE = 46S;

 SQLELTS_PTR3->SQLLEN = 9;
SQLELTS_PTR3->SQLADDR = (char K)

 &(SEGIDAT3);
 SQLELTS_PTR3->SQLIND = NULL;
SQLPVARS3.SQLPVARS = 52;
SQLPLIST3.SQLVPARM = (char K) &SQLPVARS3.SQLPVARS;
SQLPLIST3.SQLCODEP = (char K) &sqlca;
SQLPLIST3.SQLTIMES[S] = Sx14EA;
SQLPLIST3.SQLTIMES[1] = Sx9521;
SQLPLIST3.SQLTIMES[2] = SxS57S;
SQLPLIST3.SQLTIMES[3] = Sx64AS;
DSNHLI ((unsigned int K) &SQLPLIST3);

 }

 db2check(ekyrcpic);
 return;
} /K end of db2isrt K/

Figure 62 (Part 11 of 18). Second Sample Propagation Exit Routine (C)

246 Customization Guide

#pragma page(1)
/KK
 K IMS segment has been deleted. This results in a propagating SQL K
 K DELETE of the target DB2 row. K
 KK/
void db2dlet(EKYRCPIC Kekyrcpic, XPCB Kxpcb)
{

if (xpcb->xpcbckeya == NULL)
invkfb(ekyrcpic); /K IMS-to-DB2: KFBA is missing (EKYEPR7E) K/

 else
 {

strncpy(SEGIKEY, xpcb->xpcbckeya, 6);

/KKK$$$
EXEC SQL DELETE FROM TABX

WHERE TABXCOL1 = :SEGIKEY
$$$KKK/
 {
SQLPLIST SQLPLIST4 =
{4S, -32768, 3S, "EKYEPR2K", S, S, S ,S,
3, S, S, S, 514, 233};

 SQLELTS_PTR SQLELTS_PTR4;
 struct
 { long SQLPVARS;

char SQLPVELT[(sizeof(SQLELTS) K 1)];
 } SQLPVARS4;
SQLELTS_PTR4 = (SQLELTS K) &SQLPVARS4.SQLPVELT;
SQLELTS_PTR4->SQLTYPE = 46S;

 SQLELTS_PTR4->SQLLEN = 7;
SQLELTS_PTR4->SQLADDR = (char K)

 &(SEGIKEY);
 SQLELTS_PTR4->SQLIND = NULL;
SQLPVARS4.SQLPVARS = 16;
SQLPLIST4.SQLVPARM = (char K) &SQLPVARS4.SQLPVARS;
SQLPLIST4.SQLCODEP = (char K) &sqlca;
SQLPLIST4.SQLTIMES[S] = Sx14EA;
SQLPLIST4.SQLTIMES[1] = Sx9521;
SQLPLIST4.SQLTIMES[2] = SxS57S;
SQLPLIST4.SQLTIMES[3] = Sx64AS;
DSNHLI ((unsigned int K) &SQLPLIST4);

 }

 }

 db2check(ekyrcpic);
 return;

} /K end of db2dlet K/

#pragma page(1)
/KK
 K Check SQL error code and SQL warnings. K
 KK/
void db2check(EKYRCPIC Kekyrcpic)
{

strncpy (ekyrcpic->picsqlca.sqlcaid, sqlca.sqlcaid, 136);
if ((SQLCODE != S) || (SQLWARNS == 'W')) sqlerr(ekyrcpic);

 return;
} /K end of db2check K/

Figure 62 (Part 12 of 18). Second Sample Propagation Exit Routine (C)

 Chapter 4. Propagation Exit Routines 247

#pragma page(1)
/KK
 K Propagation failure for table = TABX. K
 KK/
void sqlerr(EKYRCPIC Kekyrcpic)
{

unsigned int i, j;

ekyrcpic->picxretc = 4;
strncpy(msg11.picxmsgi, "EKYEPR1E", 8);
i = strlen(msg11.picxmtxt) + 4;

strncat(msg11.picxmtxt, "TABX", 4);
memset(&(msg11.picxmtxt[i]), ' ', 61-i);
strncpy(msg12.msgstxto, opcode, 6);

i = abs(SQLCODE);
for (j = 3; j > S; j--,i/=1S)

wsqlcode[j] = i%1S + 'S';
wsqlcode[S] = (SQLCODE > S)? '+':'-';
strncpy(msg12.msgssqlc, wsqlcode, 4);

strncpy(ekyrcpic->picxmesg.picxm11.picxmsgi, msg11.picxmsgi, 7S);
memset(&(ekyrcpic->picxmesg.picxml2), ' ', 7S);
strncpy(ekyrcpic->picxmesg.picxml2, msg12.msgstxt2, 48);

 return;

} /K end of sqlerr K/

#pragma page(1)
/KK
 K H U P i s t h e c a l l e r K
 K M a i n DB2_to_IMS p r o c e s s i n g K
 KK/
void db2toims(EKYRCPIC Kekyrcpic, HEC Khec)
{

long THREE = 3;
 long FOUR = 4;

int i, j;
 QWS185A KqwS185a;
 QWS185B KqwS185b;

qwS185a = hec->heccdcdd;
qwS185b = hec->heccdcda;

 /KK
K Move the contents of the DB2 columns, one by one, to the IMS K
K segment work area. K

 KK/
for(x1 = S; x1 < qwS185a->qwS185ld; x1++)

 {
 /KKK

K Set x2 to the offset of the column in the dat row. K
 KKK/

x2 = qwS185a->qwS185vr[x1].qwS185sx;

Figure 62 (Part 13 of 18). Second Sample Propagation Exit Routine (C)

248 Customization Guide

 /KKK
K Set output offset depending on the column name. K

 KKK/
 if (strncmp(&(qwS185a->qwS185vr[x1].qwS185cn[S]),

"TABXCOL1", 8) == S)
x3 = S;

 else
 if (strncmp(&(qwS185a->qwS185vr[x1].qwS185cn[S]),

"TABXCOL2", 8) == S)
x3 = 6;

 else
 if (strncmp(&(qwS185a->qwS185vr[x1].qwS185cn[S]),

"TABXCOL3", 8) == S)
x3 = 13;

 else
x3 = 17;

 /KKK
K Move the content of the column, byte by byte. K

 KKK/
for(i = S; i < qwS185a->qwS185vr[x1].qwS185le; i++)

segoarea[x3+i] = qwS185b->qwS185dr[x2+i];

} /K end x1 loop K/

#pragma page(1)
 /KK

K Initialize the AIB and the SSAs K
 KK/

memset(&(ekyrcpic->picaib.aibsfunc), ' ', 8);
memset(&(ekyrcpic->picaib.aibrsnm2), ' ', 8);

 ekyrcpic->picaib.aiboalen =25;
strncpy(ssa.ssavalue, segoarea, 6);

if (strncmp(segoarea, "5SSSSS", 6) < S)
 {
 strncpy(ssa.ssasegnm, "SEG1 ", 8);

strncpy(ssa.ssakeynm, "SEG1KEY ", 8);
 }
 else
 {
 strncpy(ssa.ssasegnm, "SEG2 ", 8);

strncpy(ssa.ssakeynm, "SEG2KEY ", 8);
 }

#pragma page(1)
 /KK

K Search the PCB label K
 KK/

for (x4 = S; x4 < hec->hecdbsln; x4++)
 {
 if (strncmp(ssa.ssasegnm,
 hec->hecdbsla->hecdslds[x4].hecsegnm,

4) == S)
 {
 strncpy(ekyrcpic->picaib.aibrsnm1,
 hec->hecdbsla->hecdslds[x4].hecpcbnm, 8);

Figure 62 (Part 14 of 18). Second Sample Propagation Exit Routine (C)

 Chapter 4. Propagation Exit Routines 249

if (strncmp(qwS185b->qwS185pc, "IN", 2) == S)
 /KK

K IMS segment to be inserted. K
 KK/
 {

strncpy(funccode, "ISRT", 4);
strncpy(ssaisrt, ssa.ssasegnm, 8);
ssaisrt[8] = ' ';
CEETDLI (&FOUR, funccode,

ekyrcpic->picaib, segoarea, ssaisrt);
if (ekyrcpic->picaib.aibretrn != S) imserr(ekyrcpic);

} /K end INSERT call K/

#pragma page(1)
 else

if (strncmp(qwS185b->qwS185pc, "UA", 2) == S)
 /KK

K IMS segment is to be replaced. K
 KK/
 {

strncpy(funccode, "GHU ", 4);
CEETDLI (&FOUR, funccode, ekyrcpic->picaib, segiarea, ssa);
if (ekyrcpic->picaib.aibretrn != S)

 {
 imserr(ekyrcpic);
 return;
 }
 else
 {

strncpy(funccode, "REPL", 4);
CEETDLI (&THREE, funccode, ekyrcpic->picaib, segoarea);
if (ekyrcpic->picaib.aibretrn != S)

 {
 imserr(ekyrcpic);
 return;
 }
 }

} /K end UPDATE call K/

#pragma page(1)
 else

if (strncmp(qwS185b->qwS185pc, "DE", 2) == S)
 /KK

K IMS segment is to be deleted. K
 KK/
 {

strncpy(funccode, "GHU ", 4);
CEETDLI (&FOUR, funccode, ekyrcpic->picaib, segiarea, ssa);

if (ekyrcpic->picaib.aibretrn != S)
{ /K Propagation failure for segment (EKYEPR2E) K/

 imserr(ekyrcpic);
 return;

} /K end AIB return code not equal to zero for GHU call K/

 else
 {

strncpy(funccode, "DLET", 4);

Figure 62 (Part 15 of 18). Second Sample Propagation Exit Routine (C)

250 Customization Guide

CEETDLI (&THREE, funccode, ekyrcpic->picaib, segiarea);
if (ekyrcpic->picaib.aibretrn != S)
{ /K Propagation failure for segment (EKYEPR2E) K/

 imserr(ekyrcpic);
 return;

} /K end AIB return code not zero for DLET call K/
} /K end AIB return code equal to zero for GHU call K/

} /K end DELETE call K/

 /KK
K Invalid function call K

 KK/
else invfun(ekyrcpic); /K not INSERT, UPDATE or DELETE call K/

 return;

} /K SSASEGNM matches HECSEGNM K/
} /K end for x4 loop K/
lablnf(ekyrcpic); /K PCB label not found K/

 return;

} /K end of db2toims K/

#pragma page(1)
/KK
 K IMS error. K
 KK/
void imserr(EKYRCPIC Kekyrcpic)
{
 int i;

ekyrcpic->picxretc = 8;
strncpy(msg31.picxmsgi, "EKYEPR2E", 8);
i = strlen(msg31.picxmtxt) + 8;
strncat(msg31.picxmtxt, ssa.ssasegnm, 8);
memset(&(msg31.picxmtxt[i]), ' ', 61-i);

strncpy(msg32.msgitxto, funccode, 4);
memset(&(ekyrcpic->picxmesg.picxml2), ' ', 7S);
strncpy(ekyrcpic->picxmesg.picxml2, msg32.msgitxt2, 26);

 return;

} /K end of imserr K/

#pragma page(1)
/KK
 K Invalid propagation direction (found in PICCALL) K
 KK/
void invdir(EKYRCPIC Kekyrcpic)
{

ekyrcpic->picxretc = 16;
strncpy(ekyrcpic->picxmesg.picxm11.picxmsgi, "EKYEPR3E", 8);
ekyrcpic->picxmesg.picxm11.picxmsgb = ' ';

 strncpy(ekyrcpic->picxmesg.picxm11.picxmtxt,
"Invalid propagation direction in PICCALL ",

 61);

 return;

} /K end of invdir K/

Figure 62 (Part 16 of 18). Second Sample Propagation Exit Routine (C)

 Chapter 4. Propagation Exit Routines 251

#pragma page(1)
/KK
 K IMS to DB2 - unexpected DBD or segment name. K
 KK/
void invseg(EKYRCPIC Kekyrcpic, XPCB Kxpcb)
{

ekyrcpic->picxretc = 16;
strncpy(ekyrcpic->picxmesg.picxm11.picxmsgi, "EKYEPR4E", 8);
ekyrcpic->picxmesg.picxm11.picxmsgb = ' ';

 strncpy(ekyrcpic->picxmesg.picxm11.picxmtxt,
"IMS-to-DB2: Unexpected DBD or SEGNAME for EKYEPR2K ",

 61);
 errcom(ekyrcpic, xpcb);

 return;

} /K end of invseg K/

#pragma page(1)
/KK
 K IMS to DB2 - data missing for a REPL or ISRT call. K
 KK/
void datmis(EKYRCPIC Kekyrcpic)
{

ekyrcpic->picxretc = 16;
strncpy(ekyrcpic->picxmesg.picxm11.picxmsgi, "EKYEPR5E", 8);
ekyrcpic->picxmesg.picxm11.picxmsgb = ' ';

 strncpy(ekyrcpic->picxmesg.picxm11.picxmtxt,
"IMS-to-DB2: Data is missing for a REPL or ISRT call ",

 61);

 return;

} /K end of datmis K/

#pragma page(1)
/KK
 K IMS to DB2 - unexpected call function in IMS XPCB. K
 KK/
void invcal(EKYRCPIC Kekyrcpic, XPCB Kxpcb)
{

ekyrcpic->picxretc = 16;
strncpy(ekyrcpic->picxmesg.picxm11.picxmsgi, "EKYEPR6E", 8);
ekyrcpic->picxmesg.picxm11.picxmsgb = ' ';

 strncpy(ekyrcpic->picxmesg.picxm11.picxmtxt,
"IMS-to-DB2: Unexpected call function in IMS XPCB ",

 61);
 errcom(ekyrcpic, xpcb);

 return;

} /K end of invcal K/

#pragma page(1)
/KK
 K Additional processing when unexpected DBD or segment encountered K
 K OR when unexpected call function found in IMS XPCB. K
 KK/

Figure 62 (Part 17 of 18). Second Sample Propagation Exit Routine (C)

252 Customization Guide

void errcom(EKYRCPIC Kekyrcpic, XPCB Kxpcb)
{

strncmp(msg22.msgodbd, xpcb->xpcbdbd, 8);
strncmp(msg22.msgoseg, xpcb->xpcbseg, 8);
strncmp(msg22.msgofunc, xpcb->xpcbcall, 4);
memset(&(ekyrcpic->picxmesg.picxml2), ' ', 7S);
strncpy(ekyrcpic->picxmesg.picxml2, msg22.msgotxt2, 43);

 return;

} /K end of errcom K/

#pragma page(1)
/KK
 K IMS to DB2 - KFBA is missing. K
 KK/
void invkfb(EKYRCPIC Kekyrcpic)
{

ekyrcpic->picxretc = 16;
strncpy(ekyrcpic->picxmesg.picxm11.picxmsgi, "EKYEPR7E", 8);
ekyrcpic->picxmesg.picxm11.picxmsgb = ' ';

 strncpy(ekyrcpic->picxmesg.picxm11.picxmtxt,
"IMS-to-DB2: KFBA is missing for REPL call ",

 61);

 return;

} /K end of invkfb K/

#pragma page(1)
/KK
 K DB2 to IMS - Invalid call function in the HEC. K
 KK/
void invfun(EKYRCPIC Kekyrcpic)
{

ekyrcpic->picxretc = 16;
strncpy(ekyrcpic->picxmesg.picxm11.picxmsgi, "EKYEPR8E", 8);
ekyrcpic->picxmesg.picxm11.picxmsgb = ' ';

 strncpy(ekyrcpic->picxmesg.picxm11.picxmtxt,
"DB2-to-IMS: Invalid call function in the HEC ",

 61);

 return;

} /K end of invfun K/

#pragma page(1)
/KK
 K DB2 to IMS - PCB label not found. K
 KK/
void lablnf(EKYRCPIC Kekyrcpic)
{

ekyrcpic->picxretc = 16;
strncpy(ekyrcpic->picxmesg.picxm11.picxmsgi, "EKYEPR9E", 8);
ekyrcpic->picxmesg.picxm11.picxmsgb = ' ';

 strncpy(ekyrcpic->picxmesg.picxm11.picxmtxt,
"DB2-to-IMS: PCBLABEL not found ",

 61);

 return;

} /K end of lablnf K/
/K end of program K/

Figure 62 (Part 18 of 18). Second Sample Propagation Exit Routine (C)

 Chapter 4. Propagation Exit Routines 253

Definitions for Second Sample Propagation Exit
This section contains definitions associated with the second sample Propagation
exit routine. The following types of definitions are provided:

� IMS DBDGEN and PSBGEN definitions

� DB2 CREATE TABLE definitions

� DataRefresher definitions required to define the PR DataRefresher and to
extract the IMS data with DataRefresher

� SQL statements defining the PR without DataRefresher in the MVG input tables

 DBDGEN Definitions
Figure 63 shows a DBDGEN definition for the Propagation exit routine in Figure 62
on page 236.

K
KKK DESCRIPTION OF THE FIRST DBD
K
 DBD NAME=IMSDB1,VERSION=V123456789, C
 ACCESS=(HDAM,OSAM),RMNAME=(DFSHDC4S,5,4), C
 EXIT=(EKYRUP��)
 DATASET DD1=IMSDB1,SIZE=4S96,DEVICE=338S
K
 SEGM NAME=SEG1,PARENT=S,BYTES=25
 FIELD NAME=(SEG1KEY,SEQ,U),BYTES=6,START=1
K
KKK DESCRIPTION OF THE SECOND DBD
K
 DBD NAME=IMSDB2,VERSION=V123456789, C
 ACCESS=(HDAM,OSAM),RMNAME=(DFSHDC4S,5,4), C
 EXIT=(EKYRUP��)
 DATASET DD1=IMSDB2,SIZE=4S96,DEVICE=338S
K
 SEGM NAME=SEG2,PARENT=S,BYTES=25
 FIELD NAME=(SEG2KEY,SEQ,U),BYTES=6,START=1
K
 DBDGEN
 FINISH
 END

Figure 63. DBDGEN Definition

Note: The EXIT= keyword of the DBD macros specify that EKYRUP00 (the RUP)
be called when a segment of these DBDs is changed. This is required for
synchronous data propagation with DPROP.

CREATE TABLE Statement
Figure 64 on page 255 shows a CREATE TABLE statement for the Propagation
exit routine in Figure 62 on page 236.

254 Customization Guide

CREATE TABLE TS966S6.TABX
 (TABXCOL1 CHAR(6) NOT NULL,
 TABXCOL2 CHAR(7) ,
 TABXCOL3 CHAR(4) ,
 TABXCOL4 CHAR(8) ,

PRIMARY KEY (TABXCOL1))
DATA CAPTURE CHANGES

 IN DUS966S6.PROPTS;

CREATE UNIQUE INDEX XNS1 ON TABX (TABXCOL1)
USING VCAT KOE ;

Figure 64. CREATE TABLE Statement

Note: The DATA CAPTURE CHANGES option of the CREATE TABLE command
specifies that the DB2 Changed Data Capture exit (the HUP) be called when a row
of this table is changed under IMS attach.

Using DataRefresher to Define the PR
This section shows how can use DataRefresher to define the PR for the
Propagation exit routine in Figure 62 on page 236.

 CREATE DXTPSB
Figure 65 shows a CREATE DXTPSB statement for the Propagation exit routine in
Figure 62 on page 236.

 CREATE DXTPSB NAME=KOEPSB

DXTPCB NAME=DECADIX1, DBNAME=IMSDB1, DBACCESS=HDAM

SEGMENT NAME=SEG1, PARENT=S, BYTES=25

FIELD NAME=SEG1KEY, START=1 , BYTES=6, SEQFLD=R
FIELD NAME=SEG1DAT1, START=7 , BYTES=7, TYPE=C
FIELD NAME=SEG1DAT2, START=14, BYTES=4, TYPE=C
FIELD NAME=SEG1DAT3, START=18, BYTES=8, TYPE=C

DXTPCB NAME=DECADIX2, DBNAME=IMSDB2, DBACCESS=HDAM

SEGMENT NAME=SEG2, PARENT=S, BYTES=25

FIELD NAME=SEG2KEY, START=1 , BYTES=6, SEQFLD=R
FIELD NAME=SEG2DAT1, START=7 , BYTES=7, TYPE=C
FIELD NAME=SEG2DAT2, START=14, BYTES=4, TYPE=C
FIELD NAME=SEG2DAT3, START=18, BYTES=8, TYPE=C ;

Figure 65. CREATE DXTPSB

The DXTPXB contains two DXTPCBs, each referring to a particular database.

 CREATE DXTVIEW
Figure 66 on page 256 shows a CREATE DXTVIEW statement for the Propagation
exit routine in Figure 62 on page 236.

 Chapter 4. Propagation Exit Routines 255

 CREATE DXTVIEW NAME = VIEWS1,
 DXTPSB = KOEPSB,
 DXTPCB = DECADIX1,
 SEGMENT = SEG1,
 MINSEGM = SEG1,
 FIELDS = K ;

 CREATE DXTVIEW NAME = VIEWS2,
 DXTPSB = KOEPSB,
 DXTPCB = DECADIX2,
 SEGMENT = SEG2,
 MINSEGM = SEG2,
 FIELDS = K ;

Figure 66. CREATE DXTVIEW Statement

DataRefresher UIM SUBMIT Command and EXTRACT Statement
Figure 67 shows a DataRefresher UIM SUBMIT command and EXTRACT
statement for the Propagation exit routine in Figure 62 on page 236.

 SUBMIT EXTID=PROPS1,
 NODE=NODEX,
 USERID=TS966S6,
 CD=JCS,
 JCS=DDJCSS1,
 FORMAT=SOURCE,
 MAPEXIT=EKYMCE��,
 MAPUPARM='PRTYPE=U,
 MAPDIR=TW,
 ACTION=REPL,
 ERROPT=BACKOUT,
 EXITNAME=EKYEPR2K,
 PROPSEGM=(IMSDB1/SEG1,IMSDB2/SEG2)'

 EXTRACT
 INTO TS966S6.TABX (TABXCOL1 NOT NULL,
 TABXCOL2 ,
 TABXCOL3 ,
 TABXCOL4)
 SELECT SEG1KEY,
 SEG1DAT1,
 SEG1DAT2,
 SEG1DAT3

FROM VIEWS1, VIEWS2 ;

 SUBMIT EXTID=EXTRS2,
 NODE=NODEX,
 USERID=TS966S6,
 CD=JCS,
 JCS=DDJCSS1,
 USERDECK='RESUME(YES)',
 FORMAT=SOURCE

 EXTRACT
 INTO TS966S6.TABX (TABXCOL1 NOT NULL,
 TABXCOL2 ,
 TABXCOL3 ,
 TABXCOL4)
 SELECT SEG2KEY,
 SEG2DAT1,
 SEG2DAT2,
 SEG2DAT3
 FROM VIEWS2 ;

Figure 67. DataRefresher UIM SUBMIT Command and EXTRACT Statement

256 Customization Guide

Notes:

1. It is necessary to provide two DataRefresher extract requests (ER) to extract
the complete data by the DEM, but only the first extract request becomes a
propagation request (PR) for DPROP.

In the figure above, the first ER is the PR used by DPROP, and the second ER is
required only to extract the data from the second database.

The following description refers only to the propagation request (PROP01).

2. The MAPEXIT= keyword of the SUBMIT command specifies EKYMCE00. This
causes DataRefresher UIM to call the DPROP-provided Map Capture Exit
EKYMCE00 during the processing of the SUBMIT/EXTRACT. This is required
to allow DPROP to create the PR.

3. PRTYPE=U (user mapping) must be specified, because the PR should be
processed by a Propagation exit routine.

4. EXITNAME=EKYEPR2K specifies the name of the Propagation exit routine
which will perform the propagation for this PR.

5. PROPSEGM=(IMSDB1/SEG1,IMSDB2/SEG2) identifies the segment types and
their respective databases being propagated by this PR.

6. FROM VIEW01,VIEW02 identifies the views for the two databases that this PR
propagates.

7. The EXTRACT statement describes to DataRefresher which fields should be
mapped to which columns during the data extract. These definitions are
important for the extract but are not important for DPROP because the mapping
and propagation is not done by the generalized mapping logic of DPROP.

8. There is no PCBLABEL provided in the MAPUPARM operand. DPROP needs
two different PCB labels (two different databases). The two PCB labels needed
by the HUP to perform DB2-to-IMS propagation are the names of the
DXTPCBs provided at DXTPSB coding (DECADIX1 and DECADIX2). These
names are picked up by DPROP and are passed in the HEC to the
Propagation exit routine.

Using DataRefresher for the Extract
This section covers INITDEM and USE DXTPSB Control Statements. Figure 68
shows a INITDEM and USE DXTPSB control statements for the Propagation exit
routine in Figure 62 on page 236.

 INITDEM NAME=BASILEUS;
 USE DXTPSB=KOEPSB;

Figure 68. Using DataRefresher for the Extract: INITDEM and USE DXTPSB Control
Statements

Defining the PR in the MVG Input Tables
Figure 69 on page 258 describes DSNTEP2 SQL statements required to define the
PR in the MVG input tables.

The following rows are inserted into the MVG input tables:

� One row is inserted into the DPRIPR table (the PR table).

 Chapter 4. Propagation Exit Routines 257

This row identifies the PRID, indicates that the PRTYPE is U (user mapping),
and provides in the EXITNAME column the name of the Propagation exit
routine, EKYEPR2K, which performs the propagation for this PR.

� One row for each segment type being propagated by the PR and the
Propagation exit routine is inserted into the DPRISEG table (the SEG table).

As explained in the commentary of the source code of EKYEPR2K, the sample
exit routine propagates changes to segment SEG1 of database IMSDB1 or to
segment SEG2 of database IMSDB2 depending on the key content.

� One row is inserted into the DPRITAB table (the TAB table).

This row indicates that the target table is T096606.TABX.

For PRTYPE=U, DPROP does not require that you insert any rows in the DPRIFLD
table; this is why the example below does not insert any rows in the DPRIFLD
table.

DELETE FROM TS966S6.DPRIPR WHERE PRID = 'PROPS1' ;

INSERT INTO TS966S6.DPRIPR
(PRID, USERID, PRTYPE, MAPCASE, MAPDIR,
ERROPT, ACTION, EXITNAME)

 VALUES ('PROPS1','TS966S6','U', ' ', 'TW',
 'BACKOUT','REPL', 'EKYEPR2K') ;

INSERT INTO TS966S6.DPRISEG
(PRID, DBNAME, SEGNAME, ROLE, PCBLABEL)

VALUES ('PROPS1','IMSDB1', 'SEG1', ' ', 'DECADIX1') ;

INSERT INTO TS966S6.DPRISEG
(PRID, DBNAME, SEGNAME, ROLE, PCBLABEL)

VALUES ('PROPS1','IMSDB2', 'SEG2', ' ', 'DECADIX2') ;

INSERT INTO TS966S6.DPRITAB
 (PRID, TABQUAL, TABNAME)

VALUES ('PROPS1','TS966S6', 'TABX') ;

COMMIT;

Figure 69. DSNTEP2 SQL Statements

258 Customization Guide

Chapter 5. DB2 Data Capture Subexit Routine

You will need to write a DB2 Data Capture subexit routine if your installation needs
the HUP to coexist with another DB2 Data Capture exit routine. Instead of having
two DB2 Data Capture exit routines (which is not supported by DB2), you will:

� Use the HUP as a DB2 Data Capture exit routine, and

� Define to DPROP the other generalized exit routine as a DB2 Data Capture
subexit routine (definition is done during DPROP installation).

The purpose of the subexit routine is usually not DB2-to-IMS propagation. Instead,
its purpose is usually to:

� Propagate changed DB2 rows to other tables, or
� Perform other generalized functions, such as auditing changed DB2 rows.

DPROP calls your subexit routine when the HUP is invoked by the DB2 Data
Capture function. DPROP calls the subexit routine even if you have not defined a
PR and even if propagation has been emergency stopped.

However, your subexit will not be invoked when the HUP issues a rollback of the
unit of work or an abend. This is not a problem since, in this case, the SQL update
can be considered nonexistent.

When your subexit routine is invoked, the HUP provides it with both the data and
the description of the changed row.

Although DPROP calls the DB2 Data Capture subexit routine, it is not part of its
propagation procedure. Its call occurs regardless of whether:

� Propagation requests exist.
� Propagation is suspended.
� Propagation is deactivated.
� Propagation is emergency stopped.

Therefore, your DB2 Data Capture subexit routine cannot benefit from DPROP
support functions.

Your exit routine can be written in Assembler, COBOL, PL/I, or C. DPROP support
for exit routines written in HLL requires LE/370 Version 1 Release 2.

The DB2 Data Capture subexit routine is called when the HUP receives captured
DB2 data. This applies to IMS batch and online dependent regions accessing DB2.
Your DB2 Data Capture subexit routine runs within the same unit of work (UOW) as
the updating application program and propagation request. Avoid using functions
affecting PR processing, including:

� Execution of SQL COMMIT and ROLLBACK
� IMS CHKP, SETS, ROLS, ROLL, and ROLB calls
� IMS INIT STATUS GROUPA and GROUPB calls
� Execution of IFI calls requesting captured data
� ABENDs of your exit

 Copyright IBM Corp. 1991,2001 259

How To Write a DB2 Data Capture Subexit Routine
Because the DB2 Data Capture subexit routine is not considered to be part of
propagation, DPROP does not have special requirements for it.

DB2 Data Capture Subexit Routine Interface
When DPROP receives the changed data, it performs normal propagation. After
processing a PR for the table for which data was captured, it calls your DB2 Data
Capture subexit routine.

The HUP calls your subexit routine with the following parameters:

� A 64-byte anchor area.
� The HEC. The HEC is a DPROP control block that contains pointers to areas

passed by the DB2 Data Capture exit.

Upon entry to your subexit routine, Register 1 contains the address of the list. This
list is two fullwords long and contains the addresses of the parameters in the order
listed above.

64-Byte Anchor Area
DPROP gives you 64 bytes as a general-purpose storage area. You can use it for
whatever you want. Initially, the area is set to all binary zeros, and DPROP never
changes it again.

The anchor area exists in virtual storage, and remains yours for the duration of the
exit.

� For IMS Batch and BMP regions, the anchor area lasts for the duration of the
application program.

� For MPP regions, the anchor area lasts for the duration of the IMS Program
Controller Subtask. This spans multiple MPP executions.

 HEC Interface
The HEC is the second parameter passed to your DB2 Data Capture subexit
routine when the HUP calls it. It is used to provide the pointers to the areas
received from the DB2 Data Capture (DB2CDC) and passed to your exit. These
areas describe and contain the captured changed data, and are listed below:

QWHC Is the DB2 Instrumentation Facility standard header mapped by
DSNDQWHC

QWHS Is the DB2 Instrumentation Facility correlation data mapped by
DSNDQWHS

CDCDD Contains the Data Capture table description and is mapped by the
QW0185 DSECT within DSNDQW02

CDCDA Contains the Data Capture data row and is also mapped by the
QW0185 DSECT within DSNDQW02

For inserts and deletes there is one data row with the data of the
inserted or deleted row. For updates there is one data row
containing the after-image and one data row with the before-image
of the updated row.

260 Customization Guide

Your exit routine must not modify the HEC or the data pointed to by this control
block.

Figure 70 provides an overview of the interface defined through the HEC.

1
┌──────────┐
│ HEC │
│ │
│ │
│ │ ┌───┐
│ │ 2 │ QWHS │
│ ├────────� │ DB2 Standard Header Data │
│ │ │ │
│ │ └───┘
│ │
│ │
│ │ ┌───┐
│ │ 3 │ QWHC │
│ ├────────� │ DB2 Correlation Data Header │
│ │ │ │
│ │ └───┘
│ │
│ │
│ │ ┌───┐
│ │ 4 │ Table Description │
│ ├────────� │ Description of table and its columns │
│ │ │ │
│ │ └───┘
│ │
│ │
│ │ ┌───┐
│ │ 5 │ Data Row │
│ ├────────� │ Data of changed row after the │
│ │ │ operation has been applied │
│ │ └───┘
│ │
│ │
│ │ ┌───┐
│ │ 6 │ Data Row │
│ ├────────� │ Data of changed row before the │
│ │ │ operation has been applied (for update) │
│ │ └───┘
│ 7 │
├──────────┤
│ │
│ HECRARC2 │
│ │
└──────────┘

Figure 70. HEC, QWHS, QWHC, Table Description and Data Row Control Block Structures

As shown in the numbered sections of the figure, the interface consists of:

1. One HEC control block that provides various pointers.

2. A pointer to the DB2 Instrumentation Facility standard header data that
contains specific DB2 information based on the active trace.

3. A pointer to the DB2 Instrumentation Facility correlation data header containing
information about correlation and authorization.

4. A pointer to the Data Capture table description of the changed table and its
columns.

5. A pointer to the Data Capture Data (data row) record containing the after
image of the captured row. For SQL INSERT and DELETE, this is the only
data row passed to your exit routine.

 Chapter 5. DB2 Data Capture Subexit Routine 261

6. A pointer to the Data Capture Data (data row) record containing the before
image of the captured row. This data row is only present for update
operations.

7. A field containing the reason code returned by DB2 for the generated IFI call to
retrieve the captured data. See DB2 Messages and Codes for a description of
IFI reason codes.

HEC Control Block DSECT
You can generate the following DSECT in your assembler exit routine by coding the
EKYHCHEC macro statement. For HLL exit routines, you can include or copy one
of the following members to map the HUP Exit Communication Block:

EKYHCHCC Exit routines written in COBOL
EKYHCHCP Exit routines written in PL/I
EKYHCHCK Exit routines written in C

262 Customization Guide

 1 EKYHCHEC
2+KKKKKKKKKKKKKKKKKK START OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKKKKK

 3+K K
4+K CONTROL BLOCK NAME: K

 5+K EKYHCHEC (HEC) K
 6+K K
 7+K DESCRIPTIVE NAME: K

8+K DPROP HUP EXIT COMMUNICATION BLOCK K
 9+K = = = K
 1S+K K
 11+KK
 12+K K

13+K THIS PRODUCT CONTAINS "RESTRICTED MATERIALS OF IBM". K
 14+K K

15+K 5685-124 (C) COPYRIGHT IBM CORP. 1989, 1992. K
16+K ALL RIGHTS RESERVED. K

 17+K K
18+K U.S. GOVERNMENT USERS RESTRICTED RIGHTS - K
19+K USE, DUPLICATION, OR DISCLOSURE RESTRICTED BY K
2S+K GSA ADP SCHEDULE CONTRACT WITH IBM CORP. K

 21+K K
22+K LICENSED MATERIALS - PROPERTY OF IBM. K

 23+K K
 24+KK
 25+K K

26+K STATUS: V1 R2 MS K
 27+K K
 28+K FUNCTION: K

29+K THIS IS THE CONTROL BLOCK USED TO PASS INFORMATION K
3S+K GOT BY DPROP FROM THE DB2 CHANGED DATA CAPTURE EXIT K
31+K (USING IFI CALLS) TO THE PROPAGATION EXIT ROUTINE K
32+K AND / OR THE DB2 CHANGED DATA CAPTURE SUBEXIT ROUTINE. K

 33+K K
34+K THE HEC IS BUILD FOR EACH EXIT CALL NEW AND DOES K
35+K CONTAIN DATA TO BE RETAINED BEETWEEN EXIT CALLS. K

 36+K K
37+K MODULE TYPE= MACRO K
38+K PROCESSOR= ASSEMBLER H K

 39+K K
4S+K INNER CONTROL BLOCKS: NONE K

 41+K K
42+K MACROS USED FROM MACRO LIBRARY: NONE K

 43+K K
 44+K CHANGE ACTIVITY: K
 45+K K

46+KKKKKKKKKKKKKKKKKKKK END OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKKKKK

 SSSSSS 48+HEC DSECT , START OF CONTROL BLOCK

5S+K------- EYE CATCHTERS
 SSSSSS 51+HECEYE DS SCL8 EYE-CATCHER AREA
 SSSSSS C5D2E84S 52+HECEYE1 DC CL4'EKY ' EYE-CATCHER DPROP
 SSSSS4 C8C5C34S 53+HECEYE2 DC CL4'HEC ' EYE-CATCHER CONTROL BLOCK
 SSSSS8 SSSSSSSSSSSSSSSS 54+HECRESV1 DC 2F'S' RESERVED

56+K------- POINTERS TO IFI HEADER AREAS
 SSSS1S SSSSSSSS 57+HECQWHS DC A(K-K) ADDRESS OF THE DB2 IFI

58+K STANDARD HEADER AREA
 SSSS14 SSSSSSSS 59+HECQWHC DC A(K-K) ADDRESS OF THE DB2 IFI

6S+K CORRELATION DATA AREA

62+K------- POINTERS TO CDC DATA AREAS
 SSSS18 SSSSSSSS 63+HECCDCDD DC A(K-K) ADDRESS OF CDC DATA DESCRIPT.

64+K ALWAYS PASSED TO EXIT
 SSSS1C SSSSSSSS 65+HECCDCDA DC A(K-K) ADDRESS OF CDC DATA ROW

66+K ALWAYS PASSED TO EXIT.

Figure 71 (Part 1 of 2). HUP Exit Communication Block

 Chapter 5. DB2 Data Capture Subexit Routine 263

67+K ONLY DATA FOR INSERT/DELETE
68+K OR CONTAINS THE AFTER
69+K IMAGE FOR UPDATE OPERATIONS

 SSSS2S SSSSSSSS 7S+HECCDCDB DC A(K-K) ADDRESS OF CDC DATA ROW.
71+K ZERO FOR INSERT AND DELETE
72+K OR BEFORE IMAGE OF ROW FOR

 73+K UPDATE OPERATIONS

75+K------- RETURN CODE FROM IFI CALL
 SSSS24 SSSSSSSS 76+HECRARC2 DC F'S' IFCRC2 REASON CODE

78+K------- DBDNAME/SEGNAME/PCBLABEL AREA (MAPPED BY HECDSLDS BELOW)
 SSSS28 SSSSSSSS 79+HECDBSLA DC A(K-K) ADDR. OF DBD/SEG/PCBLABEL AREA
 SSSS2C SSSSSSSS 8S+HECDBSLN DC F'S' NUMBER OF ENTRIES IN THIS AREA

82+K------- RESERVED SPACE AND CB SIZE
 SSSS3S SSSSSSSSSSSSSSSS 83+HECRESV2 DC 4F'S' RESERVED
 SSSS4S 84+HECEND DS SD END OF CONTROL BLOCK

SSS4S 85+HECLEN EQU K-HEC LENGTH OF CONTROL BLOCK

 87+K---K

88+K FOR PROPAGATION EXIT ROUTINES ONLY, THE HECDBSLA FIELD K
89+K POINTS TO AN AREA (FOR DB2 SUBEXIT ROUTINES THIS FIELD IS K
9S+K ZERO). THIS AREA CONTAINS 24 BYTE ENTRIES (IN TOP TO BOTTOM K
91+K HIERARCHY) WHICH WAS DEFINED TO DPROP FOR THE PR IN PROCESS. K
92+K THE NUMBER OF ENTRIES IN THIS LIST IS CONTAINED IN THE K

 93+K HECDBSLN FIELD. K
 94+K---K
 SSSS4S 95+HECDSLDS DS SD ENTRY FOR DBD/SEG/PCBLABEL
 SSSS4S 96+HECDBDNM DS CL8 - DBD NAME
 SSSS48 97+HECSEGNM DS CL8 - SEGMENT NAME
 SSSS5S 98+HECPCBNM DS CL8 - PCB LABEL NAME

SSS18 99+HECDSLDL EQU K-HECDSLDS LENGTH OF ONE ENTRY
 1SS END

Figure 71 (Part 2 of 2). HUP Exit Communication Block

The QWHS and QWHC Control Blocks
The IFI standard header data and IFI correlation data are passed as received from
the DB2 Instrumentation Facility.

DSNDQWHS Is the DB2 provided macro which maps the standard header data
DSNDQWHC Is the DB2 provided macro which maps the correlation data

Refer to DB2 Administration Guide for information about these control blocks.

The Table Description and Data Row Control Blocks
The Data Capture table description contains a description of the captured data. It
is always present when the HUP calls your DB2 Data Capture subexit routine.

The Data Capture Data (data row) contains a row's data. When the HUP calls your
DB2 Data Capture subexit routine, it passes one or two data row areas, depending
on the type of SQL operation that caused the data to be captured:

� For INSERT and DELETE, there is only one data row that contains either the
inserted or deleted row.

� For UPDATE, there are two data rows, one containing the image of the row
before the update, and one containing the image after the update operation.

Both data rows have the same format and are described by the same Data
Capture table description that is passed to your exit routine.

264 Customization Guide

The table description and data row are composed of a header common to both,
and a data part, which is different for each control block type:

� The header part describes the table, using its qualified table name and the time
stamp of the table description. For the data row, it also contains the RBAs of
log records, the operation code, and the operation code qualifier.

� The data part of the table description contains a description of the columns of
the table. The description is similar to the SQLDA.

� The data part of the data row contains the row data, as described in the table
description data part.

You can generate the following DSECT (provided by DB2) in your assembler exit
routine by coding the DSNDQW02 macro statement. This macro contains the
QW0185 DSECT that represents the mapping of the table description and data row
control blocks that the DB2 Data Capture uses.

For HLL exit routines, you can include or copy one of the following members to
map the table description and data row control blocks:

EKYHCQ2C Exit routines written in COBOL
EKYHCQ2P Exit routines written in PL/I
EKYHCQ2K Exit routines written in C

 Chapter 5. DB2 Data Capture Subexit Routine 265

 1 DSNDQWS2

 3+KK

4+K QWSS185 IS WRITTEN FOR READS REQUESTS FOR IFCID 185. K
5+K FOR IFCID 185, THE PRODUCT SECTION WILL PRECEDE THE DATA K
6+K SECTION. A SINGLE READS REQUEST FOR IFCID 185 MAY RESULT IN K
7+K A SERIES OF 185 RECORDS. ONLY THE FIRST 185 RECORD IN SUCH A K
8+K A SERIES WILL CONTAIN A PRODUCT SECTION. IFCID 185 RECORDS K
9+K MAY BE BROKEN AT ANY POINT IN THE DATA. IT IS UP TO THE K
1S+K READER OF THE RECORD TO INTERPRET SPANNED IFCID 185 RECORDS. K

 11+K K
12+K QWS185 CONTAINS A HEADER SECTION WHICH IS FOLLOWED BY A DATA K
13+K SECTION. THE DATA PORTION OF QWS185 BEGINS WITH FIELD K
14+K - QWS185ID IF QWS185TP=S K

 15+K OR K
16+K - QWS185DR IF QWS185TP=D K

 17+KK
 SSSSSS 18+QWS185 DSECT READS IFCID FOR DATA OF DB2CDC
 SSSSSS 19+QWS185LN DS F LENGTH OF TOTAL DB2CDC DATA
 SSSSS4 2S+QWS185TP DS CL1 TYPE: S = DB2CDC TABLE
 21+K DESCRIPTION

22+K D = DB2CDC DATA ROW
 SSSSS5 23+ DS CL3 RESERVED
 SSSSS8 24+QWS185RC DS CL4 REASON CODE DESCRIBING ERROR

25+K FOR THIS DATA PORTION
 SSSSSC 26+QWS185QT DS SCL26 QUALIFIED TABLE NAME
 SSSSSC 27+QWS185CR DS CL8 CREATOR OF TABLE (AUTH ID)
 SSSS14 28+QWS185TB DS CL18 TABLE NAME
 SSSS26 29+QWS185TS DS CL1S TIMESTAMP (INTERNAL FORMAT) OF

3S+K TABLE DESCRIPTION FROM CATALOG
 SSSS3S 31+QWS185TL DS CL1S TIMESTAMP (INTERNAL FORMAT) OF

32+K LOG BUFFER CI WHEN IT IS EXTERNAL-
33+K IZED OR WHEN THE BUFFER IS

 34+K INITIALIZED
 SSSS3A 35+QWS185UR DS CL8 RBA OF THE FIRST LOG RECORD FOR

36+K THIS UNIT OF WORK.
 SSSS42 37+QWS185LR DS CL8 RBA OF LOG RECORD THAT THIS

38+K DB2CDC DATA ROW WAS DERIVED FROM
 SSSS4A 39+QWS185PC DS CL2 OPERATION CODE.

4S+K USED ONLY IF QWS185TP=D, IN
41+K WHICH CASE, QWS185PC MAY HAVE
42+K ANY OF THE FOLLOWING VALUES:
43+K IN - INSERT
44+K UB - UPDATE BEFORE IMAGE
45+K UA - UPDATE AFTER IMAGE
46+K DE - DELETE
47+K 'SSSS'X IF QWS185TP = 'S'.

 SSSS4C 48+QWS185RI DS CL2 OPERATION CODE QUALIFIER.
49+K 'SSSS'X IF QWS185TP = 'S'.
5S+K 'RI' IF THE OPERATION IS THE
51+K RESULT OF A REFERENTIAL
52+K CONSTRAINT ENFORCEMENT OF
53+K A DELETE SET NULL OR
54+K CASCADE OPERATION AND
55+K IF QWS185TP = 'D'.

 SSSS4E 56+ DS CL6 RESERVED
SSS54 57+QWS185HL EQU 84 TOTAL LENGTH OF HEADER PORTION

 SSSS54 58+QWS185DA DS SC BEGIN OF DATA PORTION
 59+KK
 6S+K K

61+K IFCID 185 DATA PORTION FOLLOWS K
 62+K K

63+K IF QWS185TP = S, THEN K
64+K THE DATA PORTION CONSISTS OF FOUR VARIABLES FOLLOWED BY AN K
65+K ARBITRARY NUMBER OF OCCURRENCES OF THE QWS185VR STRUCTURE. K

 66+K K
 67+KK

Figure 72 (Part 1 of 2). Table Description and Data Row Control Blocks

266 Customization Guide

 SSSS54 SSS54 68+ ORG QWS185DA
 SSSS54 69+QWS185ID DS CL8 EYE CATCHER = 'CDCDD '
 SSSS5C 7S+QWS185BC DS F LENGTH OF THE CDCDD =

71+K (QWS185NO K 44) +16
 SSSS6S 72+QWS185NO DS H TOTAL NUMBER OF OCCURRENCES OF
 73+K QWS185VR
 SSSS62 74+QWS185LD DS H NUMBER OF COLUMNS DESCRIBED BY

75+K OCCURRENCES OF QWS185VR
 SSSS64 76+QWS185VR DS SCL44 DESCRIBES A COLUMN IN A
 77+K CAPTURED TABLE
 SSSS64 78+QWS185ST DS H TELLS THE DATA TYPE OF THE

79+K COLUMN AND WHETHER IT HAS AN
8S+K ASSOCIATED INDICATOR VARIABLE

 SSSS66 81+QWS185LE DS H DEFINES THE EXTERNAL LENGTH OF
82+K A VALUE FROM THE COLUMN

 SSSS68 83+QWS185SD DS F CONTAINS THE CCSID (CODED CHAR
84+K SET ID IN BYTES 3 AND 4.

 SSSS6C 85+QWS185SI DS F OFFSET OF THIS COLUMN INTO THE
 86+K DATA ROW
 SSSS7S 87+QWS185SN DS SC LENGTH OF NAME AND NAME OF THE
 88+K COLUMN
 SSSS7S 89+QWS185NL DS H LENGTH OF COLUMN NAME OR LABEL
 SSSS72 9S+QWS185CN DS CL3S NAME OR LABEL OF COLUMN
 91+K
 92+KK
 93+K K

94+K IF QWS185TP = D, THEN K
95+K THE DATA PORTION CONSISTS OF K
96+K - THE DATA ROW IF QWS185RC EQUAL S. K

 97+K OR K
98+K - AN ERROR MESSAGE IF QWS185RC NOT EQUAL S. K

 99+K K
1SS+K IN THIS CASE, LENGTH OF DATA PORTION IS QWS185LN - QWS185HL. K

 1S1+K K
 1S2+KK
 SSSS9S SSS54 1S3+ ORG QWS185DA
 SSSS54 1S4+QWS185DR DS SC DATA ROW OR ERROR MESSAGE
 1S5 END

Figure 72 (Part 2 of 2). Table Description and Data Row Control Blocks

The Table Description and Data Row Header
The following describes the fields of the table description and data row header part
in more detail:

QW0185LN Length of the total table description or data row (header and data).

QW0185TP Contains the CDC control block type:

S For the DB2CDC table description
D For the DB2CDC data row

QW0185RC Reason code describing errors for this table and used only for the
data row. If a severe error was detected for this table, the HUP
calls your DB2 Data Capture subexit routine only if there is no PR
defined for the captured data. In the other case, to keep
propagated data consistent, the HUP enforces the rollback of the
changes. The reason codes that your DB2 Data Capture subexit
routine must handle are:

X'00E60A01' The following message is returned in the data
portion:

 Chapter 5. DB2 Data Capture Subexit Routine 267

VIOLATION OF INSTALLATION DEFINED EDIT PROCEDURE proc_name,
REASON CODE: reason_code

X'00E60A08' The following message is returned in the data
portion:

COLUMN column_name ON TABLE table_name IN VIOLATION OF
INSTALLATION DEFINED FIELD PROCEDURE RT: return_code,
RS: reason_code, MSG: message_token

X'00E60A09' The following message is returned in the data
portion:

INCORRECT DATA RETURNED FORM FIELD PROCEDURE fieldproc_name
FOR TABLE table_name AND COLUMN column_name, MSG: message_token

X'00E60A0A' The following message is returned in the data
portion:

AN INSTALLATION FIELD PROCEDURE HAS RETURNED A RETURN CODE
IN REGISTER 15 OTHER THAN AN EXPECTED S OR 4

X'00E60A0B' This code indicates that although the date or time
install option was specified as LOCAL, a date or time column
value of the row has been returned in ISO format. The DB2 Data
Capture never calls date and time exits.

QW0185QT The qualified table name, which is composed of the table creator
(QW0185CR) and table name (QW0185TB).

QW0185CR The creator name (authorization ID), which is 8 bytes long and
padded with blanks.

QW0185TB The table name, which is 18 bytes long and padded on the right
with blanks.

QW0185TS The time stamp (internal format) of the table description from the
catalog.

QW0185TL The time stamp (internal format) of the log record within the log
buffer CI. This field is present only in the data row (QW0185TP=D).

QW0185UR RBA of the first log record for this unit of work. This field is present
only in the data row (QW0185TP=D).

QW0185LR RBA of log record of this data row. This field is present only in the
data row (QW0185TP=D).

QW0185PC Operation code describing the type of row image and the SQL
operation that performed the data change. This field is present only
in the data row (QW0185TP=D). The possible values of
QW0185PC are:

Code Description
IN Insert
UB Update before-image
UA Update after-image
DE Delete

QW0185RI Operation code qualifier present only in the data row
(QW0185TP=D). This field is either blanks, or RI if the operation is
a result of a referential constraint enforcement of a DELETE SET
NULL or CASCADE operation.

268 Customization Guide

The Table Description Data
The table description data portion contains a similar form of an SQLDA that
describes the table. It is like the standard SQLDA external format, except for the
field where you usually specify the address of the data area for a particular column.
In the CDC table description, this field is already set and contains the offset to the
column within the data row data section, which is optionally prefixed by a null
indicator variable.

The data portion of the table description consists of four variables followed by an
arbitrary number of occurrences of a sequence of five variables, collectively called
QW0185VR.

QW0185ID An eye catcher for storage dumps containing CDCDD

QW0185BC Length of the table description data portion, which is (QW0185NO *
44) + 16

QW0185NO Total number of occurrences of QW0185VR

QW0185LD The number of columns described by occurrences of QW0185VR

The following five variables are collectively called QW0185VR and occur
QW0185NO times in the table description. Each occurrence of QW0185VR
describes a column in the captured table.

QW0185ST Tells the data type of the column and whether it has an associated
indicator variable. For a description of the type codes, see
Figure 73 on page 270.

QW0185LE Defines the external length of a value of the column, as follows:

Data Type Content
Character Length attribute in bytes
Graphic Length attribute in bytes
Decimal byte 1 = precision

byte 2 = scale
Float 4 (bytes) for single precision

8 (bytes) for double precision
Smallint 2 (bytes)
Integer 4 (bytes)
Date 10 (bytes) or LOCAL value
Time 8 (bytes) or LOCAL value
Time stamp 26 (bytes).

QW0185SD Contains the CCSID (Coded Character Set Identifier) in bytes 3 and
4. It is a two-byte (unsigned) binary number that uniquely identifies
an encoding scheme and one or more pairs of character sets and
code pages.

QW0185SI Contains a flag byte and the offset of this column into the data row.
The flag byte indicates if the column can be nullable or not. If the
column can be NULL, then the column data in the data row is
prefixed by an indicator variable (2 bytes). The offset points to the
null indicator variable instead of the data for the column; the data
immediately follows the indicator and starts at offset + 2. The
indicator variable is a two-byte field in the data row containing
X'FFFF' (value -1) if the field is null, or X'0000' if the field
contains data.

 Chapter 5. DB2 Data Capture Subexit Routine 269

The format of the QW0185SI field is:

Bytes Content

1 Flag byte. If the highest bit (bit 0) is on, then the
column is prefixed with a null indicator variable, and
the real data starts at offset + 2. The rest of the bits
are reserved.

2-4 Offset into the data, or indicator variable for this
column. This offset must be added to the data row
data portion address (QW0185DR) to compute the
virtual storage address of the column data or
indicator variable.

QW0185SN Length of name (QW0185NL) and name of the column
(QW0185CN).

QW0185NL Contains the length of the column name.

QW0185CN Contains the name of the column.

Figure 73 lists values of the QW0185ST field of the table description and their
meanings. There are two values for each data type. The first value means that the
column does not have a null indicator and does not allow nulls; the second means
that the column has a null indicator and allows nulls. For more information about
data types refer to the DB2 SQL Reference.

Figure 73. Values of QW0185ST and Their Meanings

Values Data Type

384/385 Date

388/389 Time

392/393 Time stamp

448/449 Variable-length character string

452/453 Fixed-length character string

456/457 Long character string

460/461 Variable-length, optionally null terminated
character string (C)

464/465 Variable-length graphic string

468/469 Fixed-length graphic string

472/473 Long graphic string

480/481 Floating point

484/485 Decimal

496/497 Large Integer

500/501 Small Integer

270 Customization Guide

The Data Row Data
The data row data portion starts at label QW0185DR. It contains actual data
mapped according to the table description, with DB2 calculated offsets into the
data for each column.

SQL inserts (IN) and SQL deletes (DE) are passed as one row pointed to by
HECCDCDA, a single image that contains all the columns in the table.

SQL updates are passed as two rows, an after-image (UA) pointed to by
HECCDCDA, and a before-image (UB) pointed to by HECCDCDB. Both images
contain all the columns of the table.

As applicable, the rules of the external form of a table description dictate how the
following data items are handled:

� A string of fields, ordered as they were specified in the external form of a table
description of the table, and in standard SQL external format.

� EDITPROCs and FIELDPROCs are called as in standard SQL. The returned
data is as decoded by an EDITPROC or any FIELDPROCs that apply, the
same as in standard SQL.

� DBCS data is supported as in standard SQL.

� VARCHARs are padded to maximum length, but they contain the actual length
in the first two bytes of the data.

� Nulls are represented by an indicator variable (two bytes), which precedes the
field, but this field is not included in the length.

Exit Routine Processing
Using the information in the control blocks described above (HEC, table description,
and data row), you can do your processing in any way you choose. This section
describes some of the things you must consider when developing your DB2 Data
Capture subexit routine.

Calling Your Exit Routine
DPROP loads your DB2 Data Capture subexit routine before its first call, and
keeps it in virtual storage until the OS/VS task terminates. In MPP regions, this
spans multiple MPP executions. Before calling your exit routine, the HUP
determines if there is a PR for the captured data, and performs propagation, using
generalized or user mapping cases, if applicable. If standard propagation must be
aborted, then the HUP does not call your DB2 Data Capture subexit routine. This
is because the whole unit of work is rolled back, and changes that the application
program performs are made nonexistent.

DPROP uses standard OS/VS conventions when calling your exit routine.

Register 1 Points to the parameter list described above.
Register 13 Contains the address of a register save area.
Register 14 Contains the return address.
Register 15 Contains the entry point address of the exit routine

Upon entering the exit routine, the register contents must be saved into the caller's
save area. If your exit routine calls other routines that use standard MVS linkage
conventions, it must also provide a save area of its own. The exit routine must
return to its caller using normal OS/VS conventions after restoring the registers.

 Chapter 5. DB2 Data Capture Subexit Routine 271

DPROP does not analyze the return code that your DB2 Data Capture subexit
routine returns in register 15. Also, like the other DPROP exit routines, your DB2
Data Capture subexit routine gains control in AMODE 31, and must return control in
AMODE 31.

The DB2 Data Capture subexit routine can be called multiple times during the
processing of an SQL statement, if the statement updates or deletes more than one
row. The number of calls, and the order in which they are made, depends on the
DB2 process sequence of the rows, and is unpredictable for DPROP and the DB2
Data Capture subexit routine.

Exit Routine Logic
Your exit routine can do any processing with the supplied captured data. For
performance reasons, it is recommended that your exit routine generate static SQL
calls. Avoid using functions that have a detrimental effect on the performance of
the application program (such as performing an OPEN and CLOSE on an MVS file
each time the exit routine is called). It is also recommended that the DBRMs of
your DB2 Data Capture subexit routine be package bound. The DB2 plans created
for the propagating application programs must then list the packages.

Because the exit routine executes in the same environment as the propagating
application program, it can generate the same type of IMS calls and SQL
statements as the application program can.

The DBRM of your DB2 Data Capture subexit routine must be included in the DB2
plans of those application programs that synchronously propagate the changed
data. If your exit generates IMS calls, use the AIB interface described in IMS/ESA
Application Programming: DL/I Calls, which allows your exit routine to generate
calls without the address of the IMS PCBs.

Any changes you make to propagated data from within your DB2 Data Capture
subexit routine are not captured and cannot be propagated.

A DB2 Data Capture subexit routine must not perform functions that are not
supported by the environment in which it is running. For example, an exit routine
running in an MPP region must not write to OS files, and the exit routine must not
generate STIMER macros in an IMS environment.

It is recommended that you code and link-edit your program as reusable.

 Return Codes
This section discusses how to return from your exit routine to DPROP. Remember
that you must return control to the caller in AMODE 31, using the normal MVS
conventions described in the previous section.

DPROP does not accept return codes from your DB2 Data Capture subexit routine,
because this exit is not intended for propagation. Therefore, the DB2 Data Capture
subexit routine cannot use the DPROP error handling techniques.

272 Customization Guide

Saving Information Across Calls
You can save information across calls to the exit routine. Save the information in
the 64-byte anchor area passed at entry to your DB2 Data Capture subexit routine.
If this area is not large enough, generate a GETMAIN and save the address of the
storage in the 64-byte anchor area.

Updating Your DB2 Data Capture Subexit Routine
DPROP does not provide any online change logic to replace an existing load
module copy of your exit routine with a new version of the load module. If you
need to change your exit routine, stop the affected IMS regions before performing
the change. A change of the exit routine without stopping the IMS regions causes
unpredictable results. For example, some MPP regions use the new version of the
exit routine, while other regions use the old version. After the change, you can
restart the IMS regions.

Telling DPROP About Your Subexit Routine
This section discusses how you can inform DPROP that you want to use a DB2
Data Capture subexit routine. To do this, during DPROP generation, specify which
DB2 Data Capture subexit routine must be called when changes are captured for
DB2 tables. The exit name you define applies to a whole DPROP system. The
DB2 Data Capture subexit routine is called for all captured data, whether or not
propagation for it exists.

Sample DB2 Data Capture Subexit Routine
The sample DB2 Data Capture subexit routine in Figure 74 on page 274 is an
example of DB2-to-DB2 propagation. In this case, the subexit routine intercepts
updates to the table TABLE02 and propagates the same changes to a mirror table
TABLE0M.

The source code in Figure 74 on page 274 is provided in the DPROP Sample
Source Library (EKYSAMP) under the member name EKYEDB2A. Following the
source code are definitions related to the sample DB2 Data Capture subexit
routine.

 Chapter 5. DB2 Data Capture Subexit Routine 273

 1 MACRO
 2 SQLSECT &TYPE
 3 GBLC &SQLSECT

4 AIF ('&TYPE' EQ 'RESTORE').REST
5 &SQLSECT SETC '&SYSECT'

 6 MEXIT
 7 .REST ANOP

8 &SQLSECT CSECT
 9 MEND
 11 PRINT NOGEN

12 KKKKKKKKKKKKKKKKKK START OF SPECIFICATIONS KKKKKKKKKKKKKKKKKKKKKKKKKKKK
 13 K K

14 K MODULE NAME = EKYEDB2A K
 15 K K

16 K DESCRIPTIVE NAME = SAMPLE 'DB2 CDC SUBEXIT ROUTINE' K
 17 K K

18 K STATUS: V1 R2 MS K
 19 K K

2S K FUNCTION = EKYEDB2A IS A SAMPLE DPROP 'DB2 CDC SUBEXIT ROUTINE' K
21 K WHICH ILLUSTRATES HOW TO USE THE INFORMATION PASSED K
22 K BY HUP TO SUCH A USER EXIT ROUTINE. K

 23 K K
24 K BECAUSE PROPAGATION TO IMS DATABASES IS PERFORMED BY K
25 K DPROP, THE SCOPE OF A DB2 SUBEXIT ROUTINE SHOULD NOT K
26 K BE SUCH A PROPAGATION. K

 27 K K
28 K - FOR PROPAGATION OF CHANGES OF THE DB2 DATA YOU K
29 K SHOULD USE DPROP'S: K

 3S K K
31 K -- GENERALIZED MAPPING CASES FOR PROPAGATION K
32 K TO IMS DATABASES WHERE THE PRESCRIBED RULES K
33 K CAN BE APPLIED K

 34 K K
35 K -- USER MAPPING CASE FOR PROPAGATION TO IMS K
36 K DATABASES WHERE THE RULES OF THE GENERALIZED K
37 K MAPPING CASES ARE NOT FLEXIBLE ENOUGH K

 38 K K
39 K - AND USE A DB2 SUBEXIT FOR ANY OTHER PURPOSE, K
4S K EXCEPT PROPAGATION TO IMS DATABASES, SUCH AS: K

 41 K K
42 K -- MONITORING CHANGES OF THE DB2 DATA K

 43 K K
44 K -- SECURITY CHECKING K

 45 K K
46 K -- PROPAGATION TO OTHER ENVIROMENTS AS IMS DB K

 47 K K
 48 K K

49 K BECAUSE THE SCOPE OF SUCH A DB2 CDC SUBEXIT ROUTINE K
5S K SHOULD NOT BE IMS PROPAGATION, DPROP WILL INVOKE IT K

 51 K REGARDLESS: K
 52 K K

53 K - IF THERE EXIST A DPROP PROPAGATION REQUEST OR NOT K
54 K - IF DPROP PROPAGATION HAS BEEN SUSPENDED K
55 K - IF DPROP PROPAGATION HAS BEEN DEACTIVATED K
56 K - IF DPROP PROPAGATION HAS BEEN EMERGENCY STOPPED K

 57 K K
58 K HOWEVER, IT IS NOT INVOKED: K

 59 K K
6S K - IF THERE IS A PROPAGATION REQUEST FOR THE CHANGED K
61 K DATA WHICH CANNOT BE SUCCESSFULLY APPLIED AND K

 62 K --- K
63 K - IF THE DROP ERROR LOGIC REQUESTS A ROLLBACK OF K
64 K THE CHANGES MADE TO THE DB2 DATA K

 65 K K

Figure 74 (Part 1 of 21). Sample DB2 Data Capture Subexit Routine (Assembler)

274 Customization Guide

66 K THE DB2 CDC SUBEXIT ROUTINE IS INVOKED ONCE FOR EACH K
67 K RETRIEVED UPDATE EVENT IN THE IFI DATA STREAM. IF K
68 K THE ORIGINATING APPLICATION SQL STATEMENT AFFECTED K
69 K MULTIPLE ROWS, THEN THE DB2 CDC SUBEXIT ROUTINE WILL K
7S K BE INVOKED BY DPROP MULTIPLE TIMES, UNTIL ALL UPDATE K
71 K EVENTS HAVE BEEN PROCESSED BY IT. FOR EACH SINGLE K
72 K INVOCATION, THE CAPTURED DATA IS PASSED AS FOLLOWS: K

 73 K K
74 K - A CHANGED DATA CAPTURE DATA DEFINITION (CDCDD) K
75 K IS ALWAYS PASSED TO YOUR EXIT. THIS AREA CONTAINS K
76 K A DEFINITION OF THE ROW DATA IN A SIMILAR FORM K
77 K AS IN THE SQLDA. K

 78 K K
79 K - A CHANGED DATA CAPTURE DATA ROW (CDCDA) WHICH K
8S K CONTAINS THE COLUMN VALUES OF THE AFFECTED ROW. K
81 K THIS AREA IS ALWAYS PASSED TO YOUR EXIT AND K
82 K REPRESENTS EITHER THE ONLY DATA ROW FOR INSERT K
83 K AND UPDATE OPERATIONS, OR CONTAINS THE AFTER K
84 K IMAGE OF THE ROW IN CASE OF UPDATE OPERATIONS. K

 85 K K
86 K - FOR UPDATE OPERATIONS, YOUR DB2 CDC SUBEXIT K
87 K ROUTINE, WILL RECEIVE AN ADDITIONAL CHANGED K
88 K DATA CAPTURE DATA ROW (CDCDA). THIS AREA K
89 K CONTAINS THE BEFORE IMAGE OF THE AFFECTED ROW. K

 9S K K
 91 K DISCLAIMERS: K
 92 K K

93 K - THIS SAMPLE EXIT IS BY PURPOSE VERY SIMPLE, K
94 K IN ORDER TO AVOID TO OBSCURE THE MOST ESSENTIAL K
95 K ASPECTS OF THE LOGIC OF A DB2 CHANGED DATA K
96 K CAPTURE SUBEXIT ROUTINE. K

 97 K K
98 K - THE SCOPE OF THIS SAMPLE EXIT IS THE DB2 TO K
99 K DB2 PROPAGATION. ANY DATA UPDATE (MADE UNDER K
1SS K IMS ATTACH) TO THE TABLE 'TABLES2' IS PROPAGATED K
1S1 K BY THIS DB2 SUBEXIT ROUTINE TO ITS MIRROR TABLE K
1S2 K 'TABLESM'. BOTH TABLES ARE IDENTICAL AND HAVE K
1S3 K THE FOLLOWING COLUMNS: K

 1S4 K K
1S5 K -- KEYFLD1 CHAR(2) NOT NULL K
1S6 K -- KEYFLD2 CHAR(6) NOT NULL K

 1S7 K -- FAMILY VARCHAR(3S) K
 1S8 K -- FIRST VARCHAR(2S) K
 1S9 K -- CITY VARCHAR(35) K
 11S K K

111 K EACH TABLE CONTAINS AN UNIQUE INDEX WITH THE K
112 K COLUMNS KEYFLD1 AND KEYFLD2. K

 113 K K
 114 K K
 115 K NOTES: K

116 K DEPENDENCIES = NONE K
 117 K K

118 K RESTRICTIONS = THE DB2 CHANGED DATA CAPTURE SUBEXIT RUNS K
119 K WITHIN THE SAME UNIT-OF-WORK (UOW) AS THE K
12S K UPDATING APPLICATION PROGRAM AND PROBABLE K
121 K DPROP PROPAGATION REQUEST. THEREFORE YOU K
122 K MUST AVOID THE USAGE OF FUNCTIONS AFFECTING K
123 K THE PROCESS OF THESE, SUCH AS: K

 124 K K
125 K - THE EXECUTION OF SQL COMMIT AND ROLLBACK K
126 K - IMS CHKP, SETS, ROLS, ROLL AND ROLB CALLS K
127 K - IMS INIT STATUS GROUPA AND GROUPB CALLS K
128 K - THE EXECUTION OF IFI CALLS REQUESTING K

 129 K CAPTURED DATA K
13S K - ABENDS OF YOUR EXIT K

 131 K K

Figure 74 (Part 2 of 21). Sample DB2 Data Capture Subexit Routine (Assembler)

 Chapter 5. DB2 Data Capture Subexit Routine 275

 132 K REGISTER CONVENTIONS= K

133 K RS = WORK / LINKAGE K
134 K R1 = WORK / LINKAGE K
135 K R2 = WORK K
136 K R3 = WORK / SQLWA (SQLDSECT) K
137 K R4 = - K
138 K R5 = - K
139 K R6 = - K
14S K R7 = - K
141 K R8 = CDCDA & CDCDD (QWS185) K
142 K R9 = ANCHOR AREA (ANCHOR) K
143 K R1S= HUP EXTERNAL CB (HEC) K

 144 K R11= - K
145 K R12= MODULE BASE REGISTER K
146 K R13= ADDRESS OF SAVE-AREA (WRK) K
147 K R14= WORK / LINKAGE K
148 K R15= WORK / LINKAGE K

 149 K K
 15S K PATCH LABEL = NONE K
 151 K K

152 K MODULE TYPE = PROCEDURE K
153 K PROCESSOR = ASSEMBLER K
154 K MODULE SIZE = APPROXIMATELY 2SSS BYTES K
155 K ATTRIBUTES = REENTRANT K

 156 K RMODE = ANY K
 157 K AMODE = 31 K
 158 K K

159 K ENTRY POINT = EKYEDB2A K
16S K PURPOSE = SEE FUNCTION K
161 K LINKAGE = STANDARD OS/VS ASSEMBLER LINKAGE CONVENTIONS. K

 162 K K
 163 K K
 164 K INPUT: K

165 K - REGISTER 15 = ENTRY POINT ADDRESS K
166 K - REGISTER 14 = RETURN ADDRESS K
167 K - REGISTER 13 = ADDRESS OF SAVEAREA K
168 K - REGISTER 1 = ADDRESS OF STANDARD PARAMETER LIST: K
169 K 1. PARAMETER - ADDRESS OF A 64 BYTE K

 17S K ANCHOR AREA K
171 K 2. PARAMETER - ADDRESS OF THE HUP K
172 K EXTERNAL INTERFACE (HEC) K

 173 K K
 174 K K
 175 K OUTPUT: K

176 K - THE MIRROR TABLE 'TABLESM' HAS BEEN UPDATED IF THE K
177 K CURRENT APPLICATION PROGRAM CHANGED THE ORIGINATING K

 178 K TABLE 'TABLES2'. K
 179 K K
 18S K K
 181 K EXIT-NORMAL= K

182 K STANDARD OS/VS ASSEMBLER RETURN CONVENTIONS. K
 183 K RETURN-CODES= S K
 184 K K
 185 K EXIT-ERROR= NONE K
 186 K K
 187 K K

188 K ABEND-CODE OF EKYEDB2A = NONE K
 189 K K

19S K ERROR-MESSAGES ISSUED BY EKYEDB2A: K
 191 K K

192 K EKYEDB1E INVALID OPERATION CODE IN CDC DATA DEFINITION K
193 K EKYEDB2E KK MESSAGE RETURNED BY DSNTIAR AFTER SQL ERROR KK K
194 K EKYEDB3E UNEXPECTED COLUMN DATA TYPE ENCOUNTERED K
195 K EKYEDB4E EXPECTED COLUMN NOT PASSED IN CDCDD K
196 K EKYEDB5I COLUMN IN ERROR: KK COLUMN NAME KK K

 197 K K

Figure 74 (Part 3 of 21). Sample DB2 Data Capture Subexit Routine (Assembler)

276 Customization Guide

 198 K K
 199 K EXTERNAL REFERENCES K
 2SS K K

2S1 K ROUTINES = SQL LANGUAGE INTERFACE K
 2S2 K K

2S3 K DATA-AREAS = SEE CONTROL BLOCKS K
 2S4 K K

2S5 K CONTROL BLOCKS = WRK MODULE OWN WORKAREA K
2S6 K HOSTTAB HOST VARIABLE MAPPING TABLE K
2S7 K HEC HUP EXTERNAL INTERFACE K
2S8 K ANCHOR ANCHOR AREA PASSED BY HUP K
2S9 K SQLCA DB2 SQL COMMUNICATION AREA K
21S K SQLDSECT DB2 SQL WORK AREA K
211 K DSNDQWHS IFI STANDARD HEADER AREA K
212 K DSNDQWHC IFI CORRELATION DATA AREA K
213 K DSNDQWS2 IFI IFCID 14S UP RECORDS K

 214 K K
215 K MACROS CODED IN MODULE= NONE K

 216 K K
217 K MACROS USED FROM MACRO-LIBRARY= K
218 K SAVE - SAVE REGISTERS K
219 K GETMAIN - OS/VS GETMAIN K
22S K WTO - WRITE TO OPERATOR K
221 K LINK - DYNAMIC PROGRAM CALL K
222 K RETURN - RETURN TO CALLING PROGRAM K
223 K EKYHCHEC - MAPPING OF HUP EXTERNAL INTERFACE K
224 K DSNDQWHS - MAPPING OF IFI STANDARD HEADER AREA K
225 K DSNDQWHC - MAPPING OF IFI CORRELATION DATA AREA K
226 K DSNDQWS2 - MAPPING OF IFI IFCID 14S UP RECORDS K

 227 K K
 228 K TABLES= NONE K
 229 K K

23S K INCLUDE CODE FROM LIBRARY= NONE K
 231 K K
 232 K K
 233 K CHANGE ACTIVITY= K
 234 K K

235 KKKKKKKKKKKKKKKKKK END OF SPECIFICATIONS KKKKKKKKKKKKKKKKKKKKKKKKKKKKKK
237 KKKKKKKKKKKKKKKKKK LOGIC OF EKYEDB2A KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK

 238 K K
 239 K K

24S K (1) PROGRAM PROLOG K
 241 K K

242 K - EXECUTE CSECT AND AMODE/RMODE DECLARATIONS K
243 K - GENERATE SAVE-ID WITH EXITNAME AND COMPILE TIMESTAMP K
244 K - SAVE REGISTERS AND ESTABLISH MODULE ADDRESSABILITY K
245 K - POINT TO PASSED PARAMETERS K

 246 K K
247 K - IF THIS IS THE FIRST INVOCATION K
248 K - GETMAIN AN AREA CONTAINING K
249 K -- OUR SAVEAREA K
25S K -- MODULE WORKSPACE K
251 K - CLEAR THE GETMAINED AREA K

 252 K K
253 K - CHAIN SAVEAREAS AND ESTABLISH ADDRESSABILITY OF WA K

 254 K K
 255 K K

256 K (2) EXECUTE UPDATE OF THE MIRROR TABLE K
 257 K K

258 K - ADDRESS CDCDD AND ANALYZE IF THIS IS THE TABLE K
259 K WE ARE LOOKING FOR (TABLES2) K

 26S K K
261 K - SETUP OLD KEY FIELD VALUES FOR UPDATE OPERATIONS K

 262 K K
263 K - SETUP NEW FIELD VALUES FOR ANY OPERATION K

 264 K K

Figure 74 (Part 4 of 21). Sample DB2 Data Capture Subexit Routine (Assembler)

 Chapter 5. DB2 Data Capture Subexit Routine 277

265 K - ANALYZE OPERATION CODE AND BRANCH ACCORDINGLY K

 266 K K
267 K - IF THERE IS AN INVALID OPERATION CODE K
268 K - ISSUE WTO TO INFORM OPERATOR K
269 K - RETURN TO CALLING PROGRAM K

 27S K K
271 K - IF OPERATION WAS 'INSERT' K
272 K - INSERT ROW IN MIRROR TABLE USING NEW VALUES K

 273 K K
274 K - IF OPERATION WAS 'UPDATE' K
275 K - UPDATE THE ROW IN MIRROR TABLE USING OLD KEYFIELD K
276 K VALUES IN THE WHERE CLAUSE K

 277 K K
278 K - IF OPERATION WAS 'DELETE' K
279 K - DELETE THE ROW USING NEW KEYFIELD VALUES IN K
28S K THE WHERE CLAUSE K

 281 K K
 282 K K

283 K (3) CHECK RESULT OF MIRROR TABLE UPDATE K
 284 K K

285 K - CHECK THE RESULTING SQL CODE K
 286 K K

287 K - IF UPDATE OF MIRROR TABLE WAS SUCCESSFUL K
288 K - CONTINUE WITH RETURN TO CALLING PROGRAM K

 289 K K
29S K - IF MIRROR TABLE UPDATE FAILED K
291 K - EXECUTE THE SQL ERROR LOGIC K

 292 K K
 293 K K

294 K (4) IF SQL ERROR OCCURED K
 295 K K

296 K - PREPARE PARAMETER LIST FOR DSNTIAR K
297 K - CALL DSNTIAR GO GET FORMATTED SQL ERROR MESSAGE K
298 K - WTO ANY NON-BLANK MESSAGE LINE RETURNED BY DSNTIAR K
299 K - CONTINUE WITH RETURN PROCESSING K

 3SS K K
 3S1 K K

3S2 K (5) RETURN PROCESSING K
 3S3 K K

3S4 K - RELOAD REGISTER AND RETURN TO DPROP K
 3S5 K K
 3S6 K K

3S7 KKKKKKKKKKKKKKKKKK END-OF-LOGIC KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK
 3S9 KKK
 31S K K

311 K ASSEMBLER DCLGEN FOR TABLE TABLESM K
 312 K K
 313 KKK

315 K------- TABLE DECLARATION FOR TABLE TABLESM
 316 KKK$$$
 317 K EXEC SQL K

DECLARE TABLESM TABLE K
 (K

KEYFLD1 CHAR(2) NOT NULL K
, KEYFLD2 CHAR(6) NOT NULL K

 , FAMILY VARCHAR(3S) K
 , FIRST VARCHAR(2S) K
 , CITY VARCHAR(35) K
)
 318 KKK$$$
 32S KKK
 321 K K

322 K MODULE WORKAREA DEFINTION K
 323 K K
 324 KKK

Figure 74 (Part 5 of 21). Sample DB2 Data Capture Subexit Routine (Assembler)

278 Customization Guide

 326 K---K

327 K MODULE OWN SAVEAREA - MUST PREFIX THE WORKAREA K
 328 K---K

 SSSSSS 33S WRK DSECT , ENTER DSECT DECLARATION
 SSSSSS SSSSSSSSSSSSSSSS 331 SAVEAREA DC 18F'S' MODULE OWN WORKAREA

 333 K---K

334 K DEFINITION OF SQL HOST VARIABLES K
 335 K---K

337 K------- FIELD DEFINITIONS FOR TABLE TABLESM
 SSSS48 338 NEW_KEYFLD1 DS CL2 CHAR(2) (NOT NULL)

SSSS2 339 LEN_KEYFLD1 EQU K-NEW_KEYFLD1
 SSSS4A 34S NEW_KEYFLD2 DS CL6 CHAR(6) (NOT NULL)

SSSS6 341 LEN_KEYFLD2 EQU K-NEW_KEYFLD2
 SSSS5S 342 NEW_FAMILY DS H,CL3S VARCHAR(3S)
 SSS2S 343 LEN_FAMILY EQU K-NEW_FAMILY
 SSSS7S 344 NEW_FIRST DS H,CL2S VARCHAR(2S)

SSS16 345 LEN_FIRST EQU K-NEW_FIRST
SSSS86 346 NEW_CITY DS H,CL35 VARCHAR(35)
 SSS25 347 LEN_CITY EQU K-NEW_CITY

349 K------- NULL INDICATORS FOR TABLESM
 SSSSAC 35S IND_FAMILY DS H VARCHAR(3S)
 SSSSAE 351 IND_FIRST DS H VARCHAR(2S)
SSSSBS 352 IND_CITY DS H VARCHAR(35)

354 K------- OLD KEY FIELD DEFINITIONS FOR TABLE TABLESM
 SSSSB2 355 OLD_KEYFLD1 DS CL2 CHAR(2) (NOT NULL)
 SSSSB4 356 OLD_KEYFLD2 DS CL6 CHAR(6) (NOT NULL)

 358 K---K

359 K AREA USED TO ISSUE ERROR MESSAGES K
 36S K---K

 SSSSBA SSSSSSSSSSSSSSSS 362 WRKWTO DC XL(WTODSNTL)'S' AREA FOR WTO PARMLIST COPY

SSSC7 363 WRKWTOTM EQU WRKWTO+4+9,11S DEFINITION OF INSERTED TEXT

 365 K---K

366 K AREA USED TO INVOKE DSNTIAR MESSAGE FORMATTER K
 367 K---K

 SSS138 369 WRKDSNT DS SF DSNTIAR PARMLIST
 SSS138 SSSSSSSS 37S WRKDSNT1 DC A(K-K) - ADDRESS OF SQLCA
 SSS13C SSSSSSSS 371 WRKDSNT2 DC A(K-K) - ADDRESS OF WRKMSG
 SSS14S 8SSSSSSS 372 WRKDSNT3 DC A(K-K+X'8SSSSSSS') - ADDRESS OF LINE LENGTH
 SSS144 373 WRKMSG DC SF'S' DSNTIAR MESSAGE AREA
 SSS144 S44C 374 WRKMSGL DC AL2(1SKL'WRKMSG1) LENGTH OF MESSAGE AREA
 SSS146 4S4S4S4S4S4S4S4S 375 WRKMSG1 DC CL11S' ' MESSAGE LINE 1
 SSS1B4 4S4S4S4S4S4S4S4S 376 WRKMSG2 DC CL11S' ' MESSAGE LINE 2
 SSS222 4S4S4S4S4S4S4S4S 377 WRKMSG3 DC CL11S' ' MESSAGE LINE 3
 SSS29S 4S4S4S4S4S4S4S4S 378 WRKMSG4 DC CL11S' ' MESSAGE LINE 4
 SSS2FE 4S4S4S4S4S4S4S4S 379 WRKMSG5 DC CL11S' ' MESSAGE LINE 5
 SSS36C 4S4S4S4S4S4S4S4S 38S WRKMSG6 DC CL11S' ' MESSAGE LINE 6
 SSS3DA 4S4S4S4S4S4S4S4S 381 WRKMSG7 DC CL11S' ' MESSAGE LINE 7
 SSS448 4S4S4S4S4S4S4S4S 382 WRKMSG8 DC CL11S' ' MESSAGE LINE 8
 SSS4B6 4S4S4S4S4S4S4S4S 383 WRKMSG9 DC CL11S' ' MESSAGE LINE 9
 SSS524 4S4S4S4S4S4S4S4S 384 WRKMSG1S DC CL11S' ' MESSAGE LINE 1S

 386 K---K

387 K SQL COMMUNICATION AREA K
 388 K---K

 39S KKK$$$

Figure 74 (Part 6 of 21). Sample DB2 Data Capture Subexit Routine (Assembler)

 Chapter 5. DB2 Data Capture Subexit Routine 279

 391 K EXEC SQL K
 INCLUDE K
 SQLCA

392 KKK$$$ SQLCA
SSS594 393 SQLCA DS SF
 SSS594 394 SQLCAID DS CL8 ID
 SSS59C 395 SQLCABC DS F BYTE COUNT
 SSS5AS 396 SQLCODE DS F RETURN CODE
 SSS5A4 397 SQLERRM DS H,CL7S ERR MSG PARMS
 SSS5EC 398 SQLERRP DS CL8 IMPL-DEPENDENT
 SSS5F4 399 SQLERRD DS 6F
 SSS6SC 4SS SQLWARN DS SC WARNING FLAGS
 SSS6SC 4S1 SQLWARNS DS C'W' IF ANY
 SSS6SD 4S2 SQLWARN1 DS C'W' = WARNING
 SSS6SE 4S3 SQLWARN2 DS C'W' = WARNING
 SSS6SF 4S4 SQLWARN3 DS C'W' = WARNING
 SSS61S 4S5 SQLWARN4 DS C'W' = WARNING
 SSS611 4S6 SQLWARN5 DS C'W' = WARNING
 SSS612 4S7 SQLWARN6 DS C'W' = WARNING
 SSS613 4S8 SQLWARN7 DS C'W' = WARNING
 SSS614 4S9 SQLEXT DS CL8
 SSS61C SS614 41S ORG SQLEXT
 SSS614 411 SQLWARN8 DS C
 SSS615 412 SQLWARN9 DS C
 SSS616 413 SQLWARNA DS C
 SSS617 414 SQLSTATE DS CL5
 SSS61C SS61C 415 ORG
 416 KKK$$$

 418 K---K

419 K SQL WORKAREA DEFINITION K
 42S K---K

 SSS61C SSSSSSSSSSSSSSSS 422 SQLWA DC XL(SQLDLEN)'S' SQL WORKAREA DEFINITION

 424 K---K

425 K END OF WORKAREA DEFINITION K
 426 K---K

SS6BC 428 WRKLEN EQU K-WRK LENGTH OF WHOLE WORKAREA
 43S KKK
 431 K K

432 K DEFINTION OF THE PASSED ANCHOR AREA K
 433 K K
 434 KKK

 436 K---K

437 K DEFINE ANCHOR AREA AS USED BY OUR EXIT K
 438 K---K

 SSSSSS 44S ANCHOR DSECT , ENTER DSECT DECLARATION
 SSSSSS SSSSSSSS 441 ANC_PTR DC A(K-K) ADDRESS OF MODULE WORKAREA
 SSSSS4 SSSSSSSSSSSSSSSS 442 ANC_RES DC 15F'S' RESERVED
 444 KKK
 445 K K

446 K (1) PROGRAM PROLOG K
 447 K K

448 K - EXECUTE CSECT AND AMODE/RMODE DECLARATIONS K
449 K - GENERATE SAVE-ID WITH EXITNAME AND COMPILE TIMESTAMP K
45S K - SAVE REGISTERS AND ESTABLISH MODULE ADDRESSABILITY K
451 K - POINT TO PASSED PARAMETERS K

 452 K K
453 K - IF THIS IS THE FIRST INVOCATION K
454 K - GETMAIN AN AREA CONTAINING K
455 K -- OUR SAVEAREA K
456 K -- MODULE WORKSPACE K
457 K - CLEAR THE GETMAINED AREA K

Figure 74 (Part 7 of 21). Sample DB2 Data Capture Subexit Routine (Assembler)

280 Customization Guide

 458 K K

459 K - CHAIN SAVEAREAS AND ESTABLISH ADDRESSABILITY OF WA K
 46S K K
 461 KKK

 463 K---K

464 K EXECUTE CSECT AND AMODE/RMODE DECLARATIONS K
 465 K---K

 SSSSSS 467 EKYEDB2A CSECT , ENTER CSECT OF SUBEXIT ROUTINE

468 EKYEDB2A AMODE 31 EXIT IS CALLED IN AMODE 31
469 EKYEDB2A RMODE ANY EXIT CAN BE LOADED ANYWHERE

 471 K---K

472 K GENERATE SAVE-ID WITH EXITNAME AND COMPILATION DATE AND TIME K
 473 K---K

475 LCLC &SAVEID DEFINE LOCAL CHAR VARIABLE
476 &SAVEID SETC 'EKYEDB2A DPR12S'.'-'.'&SYSDATE'.'-'.'&SYSTIME'

 478 K---K

479 K SAVE REGISTERS AND ESTABLISH MODULE ADDRESSABILITY K
 48S K---K

482 SAVE (14,12),,&SAVEID DEFINE ID-BLOCK AND SAVE REGS
 SSSS28 18CF 49S LR R12,R15 GET ENTRY POINT IN BASE REG

SSSSS 491 USING EKYEDB2A,R12 ESTABLISH BASE ADDRESSABILITY

 493 K---K

494 K LETS POINT TO PASSED PARAMETERS K
 495 K---K

 SSSS2A 989A 1SSS SSSSS 497 LM R9,R1S,S(R1) GET POINTER TO PARAMETERS

SSSSS 498 USING ANCHOR,R9 DECLARE ANCHOR STORAGE ADDRESS.
SSSSS 499 USING HEC,R1S DECLARE HEC ADDRESSABILITY

 5S1 K---K

5S2 K IF THIS IS THE FIRST INVOCATION K
 5S3 K K

5S4 K - GETMAIN AN AREA CONTAINING K
5S5 K -- OUR SAVEAREA K
5S6 K -- MODULE WORKSPACE K
5S7 K - CLEAR THE GETMAINED AREA K

 5S8 K---K

 SSSS2E 582S 9SSS SSSSS 51S L R2,ANC_PTR GET ADDRESS OF GETMAINED AREA
 SSSS32 1222 511 LTR R2,R2 IS AREA ALREADY GETMAINED?
 SSSS34 477S CS5C SSS5C 512 BNZ CHAINING YES -> THEN USE FROM PREV. CALL
 SSSS38 58SS C6C8 SS6C8 513 L RS,=A(WRKLEN) NO -> GET LENGTH OF AREA

514 GETMAIN RU, THEN ISSUE OS/VS GETMAIN K
LV=(S), TO ACQUIRE OUR MODULE SAVE K
LOC=ANY AND WORK AREA

 SSSS4C 1821 524 LR R2,R1 GET AREA ADDRESS IN CORRECT REG
 SSSS4E 5S2S 9SSS SSSSS 525 ST R2,ANC_PTR SAVE FOR NEXT CALL OF EXIT
 SSSS52 18S1 526 LR RS,R1 GET START ADDRESS OF AREA
 SSSS54 581S C6C8 SS6C8 527 L R1,=A(WRKLEN) GET LENGTH OF WHOLE AREA
 SSSS58 17FF 528 XR R15,R15 CLEAR SOURCE LEN AND PAD BYTE
 SSSS5A SESE 529 MVCL RS,R14 AND MOVE BINARY ZEROES TO AREA

 531 K---K

532 K CHAIN SAVEAREAS AND ESTABLISH ADDRESSABILITY OF WORKAREA K
 533 K---K

Figure 74 (Part 8 of 21). Sample DB2 Data Capture Subexit Routine (Assembler)

 Chapter 5. DB2 Data Capture Subexit Routine 281

 SSSS5C 535 CHAINING DS SH
 SSSS5C 5S2S DSS8 SSSS8 536 ST R2,8(S,R13) FORWARD CHAIN OUR SAVEAREA
 SSSS6S 5SDS 2SS4 SSSS4 537 ST R13,4(S,R2) BACKWARD CHAIN THE PASSED ONE
 SSSS64 18D2 538 LR R13,R2 SETUP CORRECT SAVEAREA POINTER

SSSSS 539 USING WRK,R13 DECLARE WORKAREA ADDRESSABILITY
 541 KKK
 542 K K

543 K EXPLANATIONS ABOUT PASSED DATA K
 544 K K

545 K AT THIS POINT REGISTER 1S POINTS TO THE HUP K
546 K EXTERNAL CONTROL BLOCK (HEC). THE HEC CONTAINS K
547 K ITSELF POINTERS TO THE CHANGED DATA CAPTURE DATA K
548 K WHICH WAS RETRIEVED BY DPROP USING IFI CALL 185: K

 549 K K
55S K - HECQWHS POINTS TO THE IFI STANDARD HEADER AREA. K
551 K THIS AREA IS MAPPED BY THE DSNDQWHS K
552 K MACRO. IF DATA FROM THIS CONTROL BLOCK K
553 K IS NEEDED, THE FOLLOWING INSTRUCTIONS K
554 K CAN BE USED TO ESTABLISH ADDRESSABILITY K

 555 K OF IT: K
 556 K L RX,HECQWHS K
 557 K USING QWHS,RX K
 558 K ... K
 559 K K

56S K - HECQWHC POINTS TO THE IFI CORRELATION DATA AREA. K
561 K THIS AREA IS MAPPED BY THE DSNDQWHC K
562 K MACRO. IF DATA FROM THIS CONTROL BLOCK K
563 K IS NEEDED, THE FOLLOWING INSTRUCTIONS K
564 K CAN BE USED TO ESTABLISH ADDRESSABILITY K

 565 K OF IT: K
 566 K L RX,HECQWHC K
 567 K USING QWHC,RX K
 568 K ... K
 569 K K

57S K - HECCDCDD POINTS TO THE DB2 CHANGED DATA CAPTURE K
571 K DATA DEFININTION (CDCDD). DPROP WILL K
572 K ALWAYS PASS A DATA DEFINITION OF THE K
573 K MODIFIED TABLE TO YOUR CHANGED DATA K
574 K CAPTURE SUBEXIT ROUTINE. THIS AREA K
575 K IS MAPPED BY THE QWS185 DSECT IN THE K
576 K DSNDQWS2 MACRO. AFTER A PREFIX COMMON K
577 K TO CDCDD AND CDCDA (SEE BELOW) THIS K
578 K AREA CONTAINS A DESCRIPTION OF THE K
579 K COLUMNS IN THE TABLE, WHICH IS IN A K
58S K SIMILAR MANNER AS IN THE STANDARD K
581 K EXTERNAL SQLDA. NOTE, THAT QQS195SI K
582 K CONTAINS THE OFFSET OF THE COLUMN K
583 K WITHIN THE DATA ROW (CDCDA) AND THAT K
584 K THE LENGTH OF GRAPHIC AND VARGRAPHIC K
585 K FIELDS IS SPECIFIED IN NUMBER OF BYTES K
586 K (IN OPPOSITION TO THE SQLDA WHICH K
587 K CONTAINS THE NUMBER OF DOUBLE BYTES). K

 588 K K
589 K - HECCDCDA POINTS TO THE FIRST OR ONLY DATA ROW K
59S K OF THE CHANGED DATA CAPTURE DATA ROW K
591 K (CDCDA). THIS AREA IS ALWAYS PASSED K
592 K TO YOUR EXIT ROUTINE AND IT WILL K
593 K CONTAIN EITHER THE ONLY IMAGE OF THE K
594 K ROW (FOR INSERT OR DELETE OPERATIONS) K
595 K OR THE AFTER IMAGE (FOR UPDATES). K
596 K THIS AREA IS ALSO MAPPED BY THE QWS185 K
597 K DSECT OF THE DSNDQWS2 MACRO. AFTER A K
598 K PREFIX COMMON TO CDCDA AND CDCDD (SEE K
599 K ABOVE), THIS AREA CONTAINS THE COLUMN K
6SS K VALUES OF THE AFFECTED ROW. K

 6S1 K K

Figure 74 (Part 9 of 21). Sample DB2 Data Capture Subexit Routine (Assembler)

282 Customization Guide

6S2 K - HECCDCDB POINTS TO THE CHANGED DATA CAPTURE K
6S3 K DATA ROW (CDCDA). THIS AREA CONTAINS K
6S4 K THE BEFORE IMAGE OF THE AFFECTED ROW, K
6S5 K AND IS THEREFORE ONLY PRESENT IF THE K
6S6 K ORIGINATING SQL CALL WAS AN UPDATE. K
6S7 K THIS AREA IS ALSO MAPPED BY THE QWS185 K
6S8 K DSECT OF THE DSNDQWS2 MACRO. AFTER A K
6S9 K PREFIX COMMON TO CDCDA AND CDCDD (SEE K
61S K ABOVE), THIS AREA CONTAINS THE COLUMN K
611 K VALUES OF THE AFFECTED ROW. K

 612 K K
 613 KKK
 615 KKK
 616 K K

617 K (2) EXECUTE FETCH OF USED HOST VARIABLES K
 618 K K

619 K - ADDRESS CDCDD AND ANALYZE IF THIS IS THE TABLE K
62S K WE ARE LOOKING FOR (TABLES2) K

 621 K K
622 K - SETUP OLD KEY FIELD VALUES FOR UPDATE OPERATIONS K

 623 K K
624 K - SETUP NEW FIELD VALUES FOR ANY OPERATION K

 625 K K
626 K - ANALYZE OPERATION CODE AND BRANCH ACCORDINGLY K

 627 K K
628 K - IF THERE IS AN INVALID OPERATION CODE K
629 K - ISSUE WTO TO INFORM OPERATOR K
63S K - RETURN TO CALLING PROGRAM K

 631 K K
632 K - IF OPERATION WAS 'INSERT' K
633 K - INSERT ROW IN MIRROR TABLE USING THE NEW VALUES K

 634 K K
635 K - IF OPERATION WAS 'UPDATE' K
636 K - UPDATE THE ROW IN MIRROR TABLE USING OLD KEYFIELD K
637 K VALUES IN THE WHERE CLAUSE K

 638 K K
639 K - IF OPERATION WAS 'DELETE' K
64S K - DELETE THE ROW USING NEW KEYFIELD VALUES IN K
641 K THE WHERE CLAUSE K

 642 K K
 643 KKK

 645 K---K

646 K ADDRESS CDCDD AND ANALYZE IF REALLY TABLES2 IN PROCESS K
 647 K---K

 SSSS66 588S AS18 SSS18 649 L R8,HECCDCDD POINT CDCDD PASSED BY DPROP

SSSSS 65S USING QWS185,R8 DECLARE CDCDD ADDRESSABILITY
 SSSS6A D511 8S14 C6E8 SSS14 SS6E8 651 CLC QWS185TB,=CL18'TABLES2' IS THIS THE SEARCHED TABLE?
 SSSS7S 477S C3DA SS3DA 652 BNE RETURN NO -> THEN SKIP PROCESS

 654 K---K

655 K SETUP OLD KEY FIELD VALUES FOR UPDATE OPERATIONS K
 656 K---K

 SSSS74 582S AS2S SSS2S 658 L R2,HECCDCDB GET POINTER TO BEFORE IMAGE
 SSSS78 1222 659 LTR R2,R2 IS THERE A BEFORE IMAGE?
 SSSS7A 478S CS86 SSS86 66S BZ SETAFTER NO -> SET ONLY AFTER IMAGE
 SSSS7E 413S C494 SS494 661 LA R3,COLBTAB POINT BEFORE IMAGE TABLE
 SSSS82 4DBS C3E8 SS3E8 662 BAS R11,SETHOST AND SETUP HOST VARIABLES

 664 K---K

665 K SETUP NEW FIELD VALUES (FOR ALL OPERATIONS) K
 666 K---K

Figure 74 (Part 10 of 21). Sample DB2 Data Capture Subexit Routine (Assembler)

 Chapter 5. DB2 Data Capture Subexit Routine 283

 SSSS86 668 SETAFTER DS SH
 SSSS86 582S AS1C SSS1C 669 L R2,HECCDCDA GET POINTER TO AFTER IMAGE
 SSSS8A 413S C4DS SS4DS 67S LA R3,COLATAB POINT AFTER IMAGE TABLE
 SSSS8E 4DBS C3E8 SS3E8 671 BAS R11,SETHOST AND SETUP HOST VARIABLES

 673 K---K

674 K ANALYZE OPERATION CODE AND BRANCH ACCORDINGLY K
 675 K---K

 SSSS92 677 ANALYZE DS SH
 SSSS92 588S AS1C SSS1C 678 L R8,HECCDCDA GET POINTER TO AFTER IMAGE
 SSSS96 413S D61C SS61C 679 LA R3,SQLWA POINT SQL WORK AREA

SSSSS 68S USING SQLDSECT,R3 DECLARE SQLDSECT ADDRESSABILITY
 SSSS9A D5S1 8S4A C6FA SSS4A SS6FA 681 CLC QWS185PC,=C'IN' IS IT AN INSERT OPERATION?
 SSSSAS 478S CSC2 SSSC2 682 BE EXECISRT YES -> INSERT ROW IN MIRROR TAB
 SSSSA4 D5S1 8S4A C6FC SSS4A SS6FC 683 CLC QWS185PC,=C'UA' IS IT AN UPDATE OPERATION?
 SSSSAA 478S C1AC SS1AC 684 BE EXECUPD YES -> UPDATE ROW IN MIRROR TAB
 SSSSAE D5S1 8S4A C6FE SSS4A SS6FE 685 CLC QWS185PC,=C'DE' IS IT AN DELETE OPERATION?
 SSSSB4 478S C2CA SS2CA 686 BE EXECDEL YES -> DELETE ROW IN MIRROR TAB

 688 K---K

689 K THERE IS AN INVALID OPERATION CODE - ISSUE WTO AND RETURN K
 69S K---K

692 WTO MF=(E,WTOERROP) ISSUE OPERATION CODE ERROR WTO
 SSSSBE 47FS C3DA SS3DA 695 B RETURN AND SKIP UPDATE OF MIRROR TAB

 697 K---K

698 K UPDATE MIRROR TABLE FOR AN INSERT OPERATION K
 699 K---K

 SSSSC2 7S1 EXECISRT DS SH
 7S2 KKK$$$
 7S3 K EXEC SQL K
 INSERT K
 INTO K
 TABLESM K
 (K
 KEYFLD1 K
 , KEYFLD2 K
 , FAMILY K
 , FIRST K
 , CITY K
) K
 VALUES K
 (K
 :NEW_KEYFLD1 K
 , :NEW_KEYFLD2 K
 , :NEW_FAMILY:IND_FAMILY K
 , :NEW_FIRST:IND_FIRST K
 , :NEW_CITY:IND_CITY K
)
 SSSSC2 47FS CSE2 SSSE2 7S4 B K+32
 SSSSC6 SS288SSSSS1E 7S5 DC H'4S',X'8SSS',H'3S'
 SSSSCC E74S4S4S4S4S4S4S 7S6 DC CL8'X ',XL8'14E73D27SDAS1CB4',H'1'
 SSSSDE S294SSE8 7S7 DC H'66S,232'
 SSSSE2 D217 3SS4 CSC6 SSSS4 SSSC6 7S8 MVC SQLPLLEN(24),K-28
 SSSSE8 D2S3 3S28 CSDE SSS28 SSSDE 7S9 MVC SQLSTNUM(4),K-1S
 SSSSEE 41FS D594 SS594 71S LA 15,SQLCA
 SSSSF2 5SFS 3S1C SSS1C 711 ST 15,SQLCODEP
 SSSSF6 41FS DS48 SSS48 712 LA 15,NEW_KEYFLD1
 SSSSFA 5SFS 3S34 SSS34 713 ST 15,SQLPVARS+8
 SSSSFE D2S1 3S3S C7SS SSS3S SS7SS 714 MVC SQLPVARS+4(2),=X'S1C4'
 SSS1S4 D2S1 3S32 C7S2 SSS32 SS7S2 715 MVC SQLPVARS+6(2),=H'2'
 SSS1SA 1FFF 716 SLR 15,15
 SSS1SC 5SFS 3S38 SSS38 717 ST 15,SQLPVARS+12

Figure 74 (Part 11 of 21). Sample DB2 Data Capture Subexit Routine (Assembler)

284 Customization Guide

 SSS11S 41FS DS4A SSS4A 718 LA 15,NEW_KEYFLD2
 SSS114 5SFS 3S4S SSS4S 719 ST 15,SQLPVARS+2S
 SSS118 D2S1 3S3C C7SS SSS3C SS7SS 72S MVC SQLPVARS+16(2),=X'S1C4'
 SSS11E D2S1 3S3E C7S4 SSS3E SS7S4 721 MVC SQLPVARS+18(2),=H'6'
 SSS124 1FFF 722 SLR 15,15
 SSS126 5SFS 3S44 SSS44 723 ST 15,SQLPVARS+24
 SSS12A 41FS DS5S SSS5S 724 LA 15,NEW_FAMILY
 SSS12E 5SFS 3S4C SSS4C 725 ST 15,SQLPVARS+32
 SSS132 D2S1 3S48 C7S6 SSS48 SS7S6 726 MVC SQLPVARS+28(2),=X'S1C1'
 SSS138 D2S1 3S4A C7S8 SSS4A SS7S8 727 MVC SQLPVARS+3S(2),=H'3S'
 SSS13E 41FS DSAC SSSAC 728 LA 15,IND_FAMILY
 SSS142 5SFS 3S5S SSS5S 729 ST 15,SQLPVARS+36
 SSS146 41FS DS7S SSS7S 73S LA 15,NEW_FIRST
 SSS14A 5SFS 3S58 SSS58 731 ST 15,SQLPVARS+44
 SSS14E D2S1 3S54 C7S6 SSS54 SS7S6 732 MVC SQLPVARS+4S(2),=X'S1C1'
 SSS154 D2S1 3S56 C7SA SSS56 SS7SA 733 MVC SQLPVARS+42(2),=H'2S'
 SSS15A 41FS DSAE SSSAE 734 LA 15,IND_FIRST
 SSS15E 5SFS 3S5C SSS5C 735 ST 15,SQLPVARS+48
 SSS162 41FS DS86 SSS86 736 LA 15,NEW_CITY
 SSS166 5SFS 3S64 SSS64 737 ST 15,SQLPVARS+56
 SSS16A D2S1 3S6S C7S6 SSS6S SS7S6 738 MVC SQLPVARS+52(2),=X'S1C1'
 SSS17S D2S1 3S62 C7SC SSS62 SS7SC 739 MVC SQLPVARS+54(2),=H'35'
 SSS176 41FS DSBS SSSBS 74S LA 15,IND_CITY
 SSS17A 5SFS 3S68 SSS68 741 ST 15,SQLPVARS+6S
 SSS17E D2S3 3S2C C6CC SSS2C SS6CC 742 MVC SQLPVARS(4),=F'64'
 SSS184 41FS 3S2C SSS2C 743 LA 15,SQLPVARS
 SSS188 5SFS 3S2S SSS2S 744 ST 15,SQLVPARM
 SSS18C D2S3 3S24 C6DS SSS24 SS6DS 745 MVC SQLAPARM,=XL4'SSSSSSSS'
 SSS192 411S 3SS4 SSSS4 746 LA 1,SQLPLLEN
 SSS196 5S1S 3SSS SSSSS 747 ST 1,SQLPLIST
 SSS19A 968S 3SSS SSSSS 748 OI SQLPLIST,X'8S'
 SSS19E 411S 3SSS SSSSS 749 LA 1,SQLPLIST
 SSS1A2 58FS C6D4 SS6D4 75S L 15,=V(DSNHLI)
 SSS1A6 S5EF 751 BALR 14,15
 752 KKK$$$
 SSS1A8 47FS C36S SS36S 753 B CHECKSQL

 755 K---K

756 K UPDATE MIRROR TABLE FOR AN UPDATE OPERATION K
 757 K---K

 SSS1AC 759 EXECUPD DS SH
 76S KKK$$$
 761 K EXEC SQL K
 UPDATE K
 TABLESM K
 SET K
 KEYFLD1 = :NEW_KEYFLD1 K
 , KEYFLD2 = :NEW_KEYFLD2 K
 , FAMILY = :NEW_FAMILY:IND_FAMILY K
 , FIRST = :NEW_FIRST:IND_FIRST K
 , CITY = :NEW_CITY:IND_CITY K
 WHERE K
 KEYFLD1 = :OLD_KEYFLD1 AND K
 KEYFLD2 = :OLD_KEYFLD2
 SSS1AC 47FS C1CC SS1CC 762 B K+32
 SSS1BS SS288SSSSS1E 763 DC H'4S',X'8SSS',H'3S'
 SSS1B6 E74S4S4S4S4S4S4S 764 DC CL8'X ',XL8'14E73D27SDAS1CB4',H'2'
 SSS1C8 S2AESSEA 765 DC H'686,234'
 SSS1CC D217 3SS4 C1BS SSSS4 SS1BS 766 MVC SQLPLLEN(24),K-28
 SSS1D2 D2S3 3S28 C1C8 SSS28 SS1C8 767 MVC SQLSTNUM(4),K-1S
 SSS1D8 41FS D594 SS594 768 LA 15,SQLCA
 SSS1DC 5SFS 3S1C SSS1C 769 ST 15,SQLCODEP
 SSS1ES 41FS DS48 SSS48 77S LA 15,NEW_KEYFLD1
 SSS1E4 5SFS 3S34 SSS34 771 ST 15,SQLPVARS+8
 SSS1E8 D2S1 3S3S C7SS SSS3S SS7SS 772 MVC SQLPVARS+4(2),=X'S1C4'

Figure 74 (Part 12 of 21). Sample DB2 Data Capture Subexit Routine (Assembler)

 Chapter 5. DB2 Data Capture Subexit Routine 285

 SSS1EE D2S1 3S32 C7S2 SSS32 SS7S2 773 MVC SQLPVARS+6(2),=H'2'
 SSS1F4 1FFF 774 SLR 15,15
 SSS1F6 5SFS 3S38 SSS38 775 ST 15,SQLPVARS+12
 SSS1FA 41FS DS4A SSS4A 776 LA 15,NEW_KEYFLD2
 SSS1FE 5SFS 3S4S SSS4S 777 ST 15,SQLPVARS+2S
 SSS2S2 D2S1 3S3C C7SS SSS3C SS7SS 778 MVC SQLPVARS+16(2),=X'S1C4'
 SSS2S8 D2S1 3S3E C7S4 SSS3E SS7S4 779 MVC SQLPVARS+18(2),=H'6'
 SSS2SE 1FFF 78S SLR 15,15
 SSS21S 5SFS 3S44 SSS44 781 ST 15,SQLPVARS+24
 SSS214 41FS DS5S SSS5S 782 LA 15,NEW_FAMILY
 SSS218 5SFS 3S4C SSS4C 783 ST 15,SQLPVARS+32
 SSS21C D2S1 3S48 C7S6 SSS48 SS7S6 784 MVC SQLPVARS+28(2),=X'S1C1'
 SSS222 D2S1 3S4A C7S8 SSS4A SS7S8 785 MVC SQLPVARS+3S(2),=H'3S'
 SSS228 41FS DSAC SSSAC 786 LA 15,IND_FAMILY
 SSS22C 5SFS 3S5S SSS5S 787 ST 15,SQLPVARS+36
 SSS23S 41FS DS7S SSS7S 788 LA 15,NEW_FIRST
 SSS234 5SFS 3S58 SSS58 789 ST 15,SQLPVARS+44
 SSS238 D2S1 3S54 C7S6 SSS54 SS7S6 79S MVC SQLPVARS+4S(2),=X'S1C1'
 SSS23E D2S1 3S56 C7SA SSS56 SS7SA 791 MVC SQLPVARS+42(2),=H'2S'
 SSS244 41FS DSAE SSSAE 792 LA 15,IND_FIRST
 SSS248 5SFS 3S5C SSS5C 793 ST 15,SQLPVARS+48
 SSS24C 41FS DS86 SSS86 794 LA 15,NEW_CITY
 SSS25S 5SFS 3S64 SSS64 795 ST 15,SQLPVARS+56
 SSS254 D2S1 3S6S C7S6 SSS6S SS7S6 796 MVC SQLPVARS+52(2),=X'S1C1'
 SSS25A D2S1 3S62 C7SC SSS62 SS7SC 797 MVC SQLPVARS+54(2),=H'35'
 SSS26S 41FS DSBS SSSBS 798 LA 15,IND_CITY
 SSS264 5SFS 3S68 SSS68 799 ST 15,SQLPVARS+6S
 SSS268 41FS DSB2 SSSB2 8SS LA 15,OLD_KEYFLD1
 SSS26C 5SFS 3S7S SSS7S 8S1 ST 15,SQLPVARS+68
 SSS27S D2S1 3S6C C7SS SSS6C SS7SS 8S2 MVC SQLPVARS+64(2),=X'S1C4'
 SSS276 D2S1 3S6E C7S2 SSS6E SS7S2 8S3 MVC SQLPVARS+66(2),=H'2'
 SSS27C 1FFF 8S4 SLR 15,15
 SSS27E 5SFS 3S74 SSS74 8S5 ST 15,SQLPVARS+72
 SSS282 41FS DSB4 SSSB4 8S6 LA 15,OLD_KEYFLD2
 SSS286 5SFS 3S7C SSS7C 8S7 ST 15,SQLPVARS+8S
 SSS28A D2S1 3S78 C7SS SSS78 SS7SS 8S8 MVC SQLPVARS+76(2),=X'S1C4'
 SSS29S D2S1 3S7A C7S4 SSS7A SS7S4 8S9 MVC SQLPVARS+78(2),=H'6'
 SSS296 1FFF 81S SLR 15,15
 SSS298 5SFS 3S8S SSS8S 811 ST 15,SQLPVARS+84
 SSS29C D2S3 3S2C C6D8 SSS2C SS6D8 812 MVC SQLPVARS(4),=F'88'
 SSS2A2 41FS 3S2C SSS2C 813 LA 15,SQLPVARS
 SSS2A6 5SFS 3S2S SSS2S 814 ST 15,SQLVPARM
 SSS2AA D2S3 3S24 C6DS SSS24 SS6DS 815 MVC SQLAPARM,=XL4'SSSSSSSS'
 SSS2BS 411S 3SS4 SSSS4 816 LA 1,SQLPLLEN
 SSS2B4 5S1S 3SSS SSSSS 817 ST 1,SQLPLIST
 SSS2B8 968S 3SSS SSSSS 818 OI SQLPLIST,X'8S'
 SSS2BC 411S 3SSS SSSSS 819 LA 1,SQLPLIST
 SSS2CS 58FS C6D4 SS6D4 82S L 15,=V(DSNHLI)
 SSS2C4 S5EF 821 BALR 14,15
 822 KKK$$$
 SSS2C6 47FS C36S SS36S 823 B CHECKSQL

 825 K---K

826 K UPDATE MIRROR TABLE FOR AN DELETE OPERATION K
 827 K---K

 SSS2CA 829 EXECDEL DS SH
 83S KKK$$$

Figure 74 (Part 13 of 21). Sample DB2 Data Capture Subexit Routine (Assembler)

286 Customization Guide

 831 K EXEC SQL K
 DELETE K
 FROM K
 TABLESM K
 WHERE K
 KEYFLD1 = :NEW_KEYFLD1 AND K
 KEYFLD2 = :NEW_KEYFLD2
 SSS2CA 47FS C2EA SS2EA 832 B K+32
 SSS2CE SS288SSSSS1E 833 DC H'4S',X'8SSS',H'3S'
 SSS2D4 E74S4S4S4S4S4S4S 834 DC CL8'X ',XL8'14E73D27SDAS1CB4',H'3'
 SSS2E6 S2C1SSE9 835 DC H'7S5,233'
 SSS2EA D217 3SS4 C2CE SSSS4 SS2CE 836 MVC SQLPLLEN(24),K-28
 SSS2FS D2S3 3S28 C2E6 SSS28 SS2E6 837 MVC SQLSTNUM(4),K-1S
 SSS2F6 41FS D594 SS594 838 LA 15,SQLCA
 SSS2FA 5SFS 3S1C SSS1C 839 ST 15,SQLCODEP
 SSS2FE 41FS DS48 SSS48 84S LA 15,NEW_KEYFLD1
 SSS3S2 5SFS 3S34 SSS34 841 ST 15,SQLPVARS+8
 SSS3S6 D2S1 3S3S C7SS SSS3S SS7SS 842 MVC SQLPVARS+4(2),=X'S1C4'
 SSS3SC D2S1 3S32 C7S2 SSS32 SS7S2 843 MVC SQLPVARS+6(2),=H'2'
 SSS312 1FFF 844 SLR 15,15
 SSS314 5SFS 3S38 SSS38 845 ST 15,SQLPVARS+12
 SSS318 41FS DS4A SSS4A 846 LA 15,NEW_KEYFLD2
 SSS31C 5SFS 3S4S SSS4S 847 ST 15,SQLPVARS+2S
 SSS32S D2S1 3S3C C7SS SSS3C SS7SS 848 MVC SQLPVARS+16(2),=X'S1C4'
 SSS326 D2S1 3S3E C7S4 SSS3E SS7S4 849 MVC SQLPVARS+18(2),=H'6'
 SSS32C 1FFF 85S SLR 15,15
 SSS32E 5SFS 3S44 SSS44 851 ST 15,SQLPVARS+24
 SSS332 D2S3 3S2C C6DC SSS2C SS6DC 852 MVC SQLPVARS(4),=F'28'
 SSS338 41FS 3S2C SSS2C 853 LA 15,SQLPVARS
 SSS33C 5SFS 3S2S SSS2S 854 ST 15,SQLVPARM
 SSS34S D2S3 3S24 C6DS SSS24 SS6DS 855 MVC SQLAPARM,=XL4'SSSSSSSS'
 SSS346 411S 3SS4 SSSS4 856 LA 1,SQLPLLEN
 SSS34A 5S1S 3SSS SSSSS 857 ST 1,SQLPLIST
 SSS34E 968S 3SSS SSSSS 858 OI SQLPLIST,X'8S'
 SSS352 411S 3SSS SSSSS 859 LA 1,SQLPLIST
 SSS356 58FS C6D4 SS6D4 86S L 15,=V(DSNHLI)
 SSS35A S5EF 861 BALR 14,15
 862 KKK$$$
 SSS35C 47FS C36S SS36S 863 B CHECKSQL
 865 KKK
 866 K K

867 K (3) CHECK RESULT OF MIRROR TABLE UPDATE K
 868 K K

869 K - CHECK THE RESULTING SQL CODE K
 87S K K

871 K - IF UPDATE OF MIRROR TABLE WAS SUCCESSFUL K
872 K - CONTINUE WITH RETURN TO CALLING PROGRAM K

 873 K K
874 K - IF MIRROR TABLE UPDATE FAILED K
875 K - EXECUTE THE SQL ERROR LOGIC K

 876 K K
 877 KKK
 879 K---K

88S K CHECK RESULTING SQL CODE K
 881 K---K

 SSS36S 883 CHECKSQL DS SH
 SSS36S 58FS D5AS SS5AS 884 L R15,SQLCODE GET SQLCODE IN REGISTER
 SSS364 12FF 885 LTR R15,R15 WAS MONITOR TABLE UPDATE OK?
 SSS366 478S C3DA SS3DA 886 BZ RETURN YES -> RETURN TO DPROP

887 DROP R3 RELINQUISH SQLDSECT ADDRESS.

Figure 74 (Part 14 of 21). Sample DB2 Data Capture Subexit Routine (Assembler)

 Chapter 5. DB2 Data Capture Subexit Routine 287

 889 KKK
 89S K K

891 K (4) AN SQL ERROR OCCURED K
 892 K K

893 K - PREPARE PARAMETER LIST FOR DSNTIAR K
894 K - CALL DSNTIAR GO GET FORMATTED SQL ERROR MESSAGE K
895 K - WTO ANY NON-BLANK MESSAGE LINE RETURNED BY DSNTIAR K
896 K - CONTINUE WITH RETURN PROCESSING K

 897 K K
 898 KKK

 9SS K---K

9S1 K PREPARE PARAMETER LIST FOR DSNTIAR K
 9S2 K---K

 SSS36A 9S4 SQLERR DS SH
 SSS36A 411S D594 SS594 9S5 LA R1,SQLCA GET POINTER TO SQLCA
 SSS36E 5S1S D138 SS138 9S6 ST R1,WRKDSNT1 AND STORE AS PARAMETER 1
 SSS372 411S D144 SS144 9S7 LA R1,WRKMSG GET POINTER TO MESSAGE AREA
 SSS376 5S1S D13C SS13C 9S8 ST R1,WRKDSNT2 AND STORE AS PARAMETER 2
 SSS37A 411S C6ES SS6ES 9S9 LA R1,=A(L'WRKMSG1) GET POINTER TO LINE LENGTH
 SSS37E 5S1S D14S SS14S 91S ST R1,WRKDSNT3 AND STORE AS PARAMETER 3
 SSS382 968S D14S SS14S 911 OI WRKDSNT3,X'8S' INDICATE LAST IN LIST
 SSS386 D2S1 D144 C7SE SS144 SS7SE 912 MVC WRKMSGL,=AL2(1SKL'WRKMSG1) SETUP LENGTH OF MSG AREA

 914 K---K

915 K CALL DSNTIAR TO GET FORMATTED SQL ERROR MESSAGE K
 916 K---K

 SSS38C 411S D138 SS138 918 LA R1,WRKDSNT GET POINTER TO PARMLIST

919 LINK EP=DSNTIAR THEN LINK TO DSNTIAR MODULE
 SSS3A6 49FS C71S SS71S 926 CH R15,=H'4' WAS MESSAGE FORMATTED?
 SSS3AA 472S C3DA SS3DA 927 BH RETURN NO -> THEN IGNORE ERROR

 929 K---K

93S K WTOA ANY NON-BLANK MESSAGE LINE RETURNED BY DSNTIAR K
 931 K---K

 SSS3AE 413S D146 SS146 933 LA R3,WRKMSG1 POINT FIRST MESSAGE LINE
 SSS3B2 412S SSSA SSSSA 934 LA R2,1S INITIALYZE THE LOOP REGISTER
 SSS3B6 935 DSNTLOOP DS SH
 SSS3B6 D56D 3SSS C712 SSSSS SS712 936 CLC S(L'WRKMSG1,R3),=CL(L'WRKMSG1)' ' IS THE LINE BLANK?
 SSS3BC 478S C3DA SS3DA 937 BE RETURN YES -> THEN LEAVE THE LOOP
 SSS3CS D27D DSBA C5AS SSSBA SS5AS 938 MVC WRKWTO,WTODSNTM ELSE MOVE WTO SKEL TO WORKAREA
 SSS3C6 D26D DSC7 3SSS SSSC7 SSSSS 939 MVC WRKWTOTM,S(R3) SETUP TEXT RETURNED BY DSNTIAR

94S WTO MF=(E,WRKWTO) AND ISSUE THE WTO
 SSS3D2 413S 3S6E SSS6E 943 LA R3,L'WRKMSG1(S,R3) POINT NEXT MESSAGE LINE
 SSS3D6 462S C3B6 SS3B6 944 BCT R2,DSNTLOOP AND REPEAT THE WTO LOOP
 946 KKK
 947 K K

948 K (5) RETURN PROCESSING K
 949 K K

95S K - RELOAD REGISTER AND RETURN TO DPROP K
 951 K K
 952 KKK

 954 K---K

955 K RELOAD REGISTERS AND RETURN TO DPROP K
 956 K---K

 SSS3DA 958 RETURN DS SH
 SSS3DA 58DS DSS4 SSSS4 959 L R13,4(S,R13) POINT CALLERS SAVEAREA

96S RETURN (14,12),RC=S AND RETURN TO DPROP

Figure 74 (Part 15 of 21). Sample DB2 Data Capture Subexit Routine (Assembler)

288 Customization Guide

 965 KKK
 966 K K

967 K SETUP HOST VARIABLE ROUTINE K
 968 K K

969 K - ENTRY: R2 - POINTER TO CDCDA OF BEFORE OR AFTER IMG. K
97S K R3 - POINTER TO HOST VARIABLE SETUP TABLE K
971 K R8 - POINTER TO CDCDD K
972 K R11 - RETURN ADDRESS K
973 K R13 - POINTER TO HOST VARIABLE WORK AREA K

 974 K K
975 K - RETURN: HOST VARIABLES ARE COPIED IN THE WORK AREA K
976 K ACCORDING TO THE DESCRIPTIONS IN THE SETUP TABLE. K

 977 K K
 978 KKK

 98S K---K

981 K POINT TO CORRECT CDCDA START ADDRESS AND DECLARE ADDRESS. K
 982 K---K

SSSSS 984 USING QWS185,R8 DECLARE CDCDD ADDRESSABILITY
SSSSS 985 USING HOSTTAB,R3 DECLARE HOSTTAB ENTRY ADDRESS.

 SSS3E8 986 SETHOST DS SH
 SSS3E8 412S 2S54 SSS54 987 LA R2,QWS185DA-QWS185(S,R2) POINT TO CORRECT DATA START

 989 K---K

99S K PROCESS NEXT ENTRY IN PASSED HOST VARIABLE TABLE K
 991 K---K

 SSS3EC 993 SETHS1S DS SH
 SSS3EC D5S1 C78S 3SSS SS78S SSSSS 994 CLC =X'FFFF',S(R3) END OF TABLE REACHED?
 SSS3F2 S78B 995 BER R11 YES -> RETURN TO CALLER
 SSS3F4 48ES 8S62 SSS62 996 LH R14,QWS185LD GET NUMBER OF QWS185VR
 SSS3F8 41FS 8S64 SSS64 997 LA R15,QWS185VR POINT FIRST QWS185VR OCCURENCE

SSS64 998 USING QWS185VR,R15 DECLARE QWS185VR ADDRESSABILITY

 1SSS K---K

1SS1 K FIND CORRESPONDING COLUMN IN CDCDD K
 1SS2 K---K

 SSS3FC 1SS4 SETHS2S DS SH
 SSS3FC D5S1 FSSC 3SSS SSS7S SSSSS 1SS5 CLC QWS185NL,HOSTTBNL SAME COLUMN NAME LENGTH?
 SSS4S2 477S C414 SS414 1SS6 BNE SETHS3S NO -> PROCESS NEXT QWS185VR
 SSS4S6 481S 3SSS SSSSS 1SS7 LH R1,HOSTTBNL YES -> GET LENGTH OF COLNAME
 SSS4SA S61S 1SS8 BCTR R1,S ADJUST IT FOR EXECUTE
 SSS4SC 441S C48E SS48E 1SS9 EX R1,CLCTBNL CHECK IF COLUMN NAME MATCH
 SSS41S 478S C42S SS42S 1S1S BE SETHS4S YES -> LOOK IF SAME DATA TYPE

 1S12 K---K

1S13 K SETUP TO PROCESS NEXT QWS185VR IN CDCDD K
 1S14 K---K

 SSS414 1S16 SETHS3S DS SH
 SSS414 41FS FS2C SSS2C 1S17 LA R15,L'QWS185VR(S,R15) POINT NEXT QWS185VR ENTRY
 SSS418 46ES C3FC SS3FC 1S18 BCT R14,SETHS2S AND REPEAT THE SEARCH LOOP
 SSS41C 47FS C464 SS464 1S19 B SETHE1S COLUMN NOT FOUND -> ERROR

 1S21 K---K

1S22 K COLUMN FOUND - LOOK IF SAME DATA TYPE K
 1S23 K---K

 SSS42S 1S25 SETHS4S DS SH
 SSS42S D5S1 FSSS 3S14 SSS64 SSS14 1S26 CLC QWS185ST,HOSTTBST SAME COLUMN DATA TYPE?
 SSS426 477S C46E SS46E 1S27 BNE SETHE2S NO -> MISMATCHING DATA TYPES

 1S29 K---K

1S3S K SETUP HOST VARIABLE VALUES FROM CDCDA K

Figure 74 (Part 16 of 21). Sample DB2 Data Capture Subexit Routine (Assembler)

 Chapter 5. DB2 Data Capture Subexit Routine 289

 1S31 K---K

 SSS42A 1S33 SETHS5S DS SH
 SSS42A 581S FSS8 SSS6C 1S34 L R1,QWS185SI GET COLUMN OFFSET IN CDCDA
 SSS42E 541S C6E4 SS6E4 1S35 N R1,=X'SSFFFFFF' RESET UNUSED HIGH ORDER BYTE
 SSS432 1E12 1S36 ALR R1,R2 POINT TO COLUMN DATA IN CDCDA

1S38 K------- FILL EVENTUALLY NULL INDICATOR VARIABLE
 SSS434 91S1 3S15 SSS15 1S39 TM HOSTTBST+1,NULL IS THE COLUMN NULLABLE?
 SSS438 478S C44C SS44C 1S4S BZ SETHS6S NO -> CONTINUE BELOW
 SSS43C 48ES 3S16 SSS16 1S41 LH R14,HOSTTBIO GET OFFSET OF NULL INDICATOR
 SSS44S 1EED 1S42 ALR R14,R13 AND POINT TO NULL INDICATOR
 SSS442 D2S1 ESSS 1SSS SSSSS SSSSS 1S43 MVC S(2,R14),S(R1) COPY NULL INDICATOR FROM CDCDA
 SSS448 411S 1SS2 SSSS2 1S44 LA R1,2(S,R1) THEN POINT PAST NULL INDICATOR

1S46 K------- COPY HOST VARIABLE FROM PASSED CDCDA AREA
 SSS44C 1S47 SETHS6S DS SH
 SSS44C 18S1 1S48 LR RS,R1 POINT TO SOURCE (IN CDCDA)
 SSS44E 48ES 3S18 SSS18 1S49 LH R14,HOSTTBDO GET OFFSET OF TARGET (IN WRK)
 SSS452 1EED 1S5S ALR R14,R13 THEN POINT TO TARGET (IN WRK)
 SSS454 48FS 3S1A SSS1A 1S51 LH R15,HOSTTBDL GET LENGTH OF TARGET
 SSS458 181F 1S52 LR R1,R15 SET ALSO AS SOURCE LENGTH
 SSS45A SEES 1S53 MVCL R14,RS THEN COPY THE HOST VARIABLE

 1S55 K---K

1S56 K POINT PAST HOSTTAB ENTRY AND BRANCH TO PROCESS NEXT K
 1S57 K---K

 SSS45C 1S59 SETHS7S DS SH
 SSS45C 413S 3S1C SSS1C 1S6S LA R3,HOSTTABN POINT NEXT ENTRY IN HOSTTAB
 SSS46S 47FS C3EC SS3EC 1S61 B SETHS1S AND BRANCH TO PROCESS IT

 1S63 K---K

1S64 K A FIELD WAS NOT FOUND IN THE CDCDD DATA STREAM K
 1S65 K---K

 SSS464 1S67 SETHE1S DS SH

1S68 WTO MF=(E,WTOERRMF) ISSUE MISSING COLUMN ERROR WTO
 SSS46A 47FS C478 SS478 1S71 B SETHE9S THEN CONTINUE BELOW

 1S73 K---K

1S74 K A FIELD DOES NOT MATCH THE EXPECTED DATA TYPE K
 1S75 K---K

 SSS46E 1S77 SETHE2S DS SH

1S78 WTO MF=(E,WTOERRDT) ISSUE DATA TYPE ERROR WTO
 SSS474 47FS C478 SS478 1S81 B SETHE9S THEN CONTINUE BELOW

 1S83 K---K

1S84 K REPORT THE COLUMN IN ERROR K
 1S85 K---K

 SSS478 1S87 SETHE9S DS SH
 SSS478 D232 DSBA C694 SSSBA SS694 1S88 MVC WRKWTO(WTOCOLEL),WTOCOLEM MOVE WTO SKEL TO WORKAREA
 SSS47E D211 DSD8 3SS2 SSSD8 SSSS2 1S89 MVC WRKWTO+3S(L'HOSTTBCN),HOSTTBCN SETUP COLUMN NAME

1S9S WTO MF=(E,WRKWTO) AND ISSUE THE WTO
 SSS48A 47FS C3DA SS3DA 1S93 B RETURN THEN RETURN TO CALLER

1S95 K------- EXECUTED SUBJECT INSTRUCTIONS WITHIN SETHOST ROUTINE
 SSS48E D5SS FSSE 3SS2 SSS72 SSSS2 1S96 CLCTBNL CLC QWS185CN(K-K),HOSTTBCN EXECUTED SUBJECT INSTRUCTION

1S97 DROP R15 RELINQUISH QWS185VR ADDRESS.
 1S98 DROP R8 RELINQUISH CDCDD ADDRESS.
 1S99 DROP R3 RELINQUISH HOSTTAB ADDRESS.

Figure 74 (Part 17 of 21). Sample DB2 Data Capture Subexit Routine (Assembler)

290 Customization Guide

 11S1 KKK
 11S2 K K
 11S3 K DEFINITIONS K
 11S4 K K

11S5 K - READ-ONLY CONSTANTS K
11S6 K - LITERAL POOL K

 11S7 K - EQUATES K
 11S8 K K
 11S9 KKK

 1111 K---K

1112 K HOST VARIABLE MAPPING TABLE FOR BEFORE IMAGE COLUMNS K
 1113 K---K

 SSS494 1115 COLBTAB DS SF

1116 K------- ENTRY FOR OLD_KEYFLD1 HOST VARIABLE
 SSS494 SSS7 1117 DC AL2(7) LENGTH OF COLUMN NAME
 SSS496 D2C5E8C6D3C4F14S 1118 DC CL18'KEYFLD1' COLUMN NAME
 SSS4A8 S1C4 1119 DC AL2(CHAR) COLUMN DATA TYPE
 SSS4AA SSSS 112S DC AL2(S) OFFSET OF NULL INDICATOR
 SSS4AC SSB2 1121 DC AL2(OLD_KEYFLD1-WRK) OFFSET OF HOST VARIABLE
 SSS4AE SSS2 1122 DC AL2(LEN_KEYFLD1) LENGTH OF HOST VARIABLE

1123 K------- ENTRY FOR OLD_KEYFLD2 HOST VARIABLE
 SSS4BS SSS7 1124 DC AL2(7) LENGTH OF COLUMN NAME
 SSS4B2 D2C5E8C6D3C4F24S 1125 DC CL18'KEYFLD2' COLUMN NAME
 SSS4C4 S1C4 1126 DC AL2(CHAR) COLUMN DATA TYPE
 SSS4C6 SSSS 1127 DC AL2(S) OFFSET OF NULL INDICATOR
 SSS4C8 SSB4 1128 DC AL2(OLD_KEYFLD2-WRK) OFFSET OF HOST VARIABLE
 SSS4CA SSS6 1129 DC AL2(LEN_KEYFLD2) LENGTH OF HOST VARIABLE

113S K------- END OF TABLE MARKER
 SSS4CC FFFF 1131 DC X'FFFF' END OF TABLE MARKER

 1133 K---K

1134 K HOST VARIABLE MAPPING TABLE FOR AFTER IMAGE COLUMNS K
 1135 K---K

 SSS4DS 1137 COLATAB DS SF

1138 K------- ENTRY FOR NEW_KEYFLD1 HOST VARIABLE
 SSS4DS SSS7 1139 DC AL2(7) LENGTH OF COLUMN NAME
 SSS4D2 D2C5E8C6D3C4F14S 114S DC CL18'KEYFLD1' COLUMN NAME
 SSS4E4 S1C4 1141 DC AL2(CHAR) COLUMN DATA TYPE
 SSS4E6 SSSS 1142 DC AL2(S) OFFSET OF NULL INDICATOR
 SSS4E8 SS48 1143 DC AL2(NEW_KEYFLD1-WRK) OFFSET OF HOST VARIABLE
 SSS4EA SSS2 1144 DC AL2(LEN_KEYFLD1) LENGTH OF HOST VARIABLE

1145 K------- ENTRY FOR NEW_KEYFLD2 HOST VARIABLE
 SSS4EC SSS7 1146 DC AL2(7) LENGTH OF COLUMN NAME
 SSS4EE D2C5E8C6D3C4F24S 1147 DC CL18'KEYFLD2' COLUMN NAME
 SSS5SS S1C4 1148 DC AL2(CHAR) COLUMN DATA TYPE
 SSS5S2 SSSS 1149 DC AL2(S) OFFSET OF NULL INDICATOR
 SSS5S4 SS4A 115S DC AL2(NEW_KEYFLD2-WRK) OFFSET OF HOST VARIABLE
 SSS5S6 SSS6 1151 DC AL2(LEN_KEYFLD2) LENGTH OF HOST VARIABLE

1152 K------- ENTRY FOR NEW_FAMILY HOST VARIABLE
 SSS5S8 SSS6 1153 DC AL2(6) LENGTH OF COLUMN NAME
 SSS5SA C6C1D4C9D3E84S4S 1154 DC CL18'FAMILY' COLUMN NAME
 SSS51C S1C1 1155 DC AL2(VARCHAR+NULL) COLUMN DATA TYPE
 SSS51E SSAC 1156 DC AL2(IND_FAMILY-WRK) OFFSET OF NULL INDICATOR
 SSS52S SS5S 1157 DC AL2(NEW_FAMILY-WRK) OFFSET OF HOST VARIABLE
 SSS522 SS2S 1158 DC AL2(LEN_FAMILY) LENGTH OF HOST VARIABLE

1159 K------- ENTRY FOR NEW_FIRST HOST VARIABLE
 SSS524 SSS5 116S DC AL2(5) LENGTH OF COLUMN NAME
 SSS526 C6C9D9E2E34S4S4S 1161 DC CL18'FIRST' COLUMN NAME
 SSS538 S1C1 1162 DC AL2(VARCHAR+NULL) COLUMN DATA TYPE
 SSS53A SSAE 1163 DC AL2(IND_FIRST-WRK) OFFSET OF NULL INDICATOR
 SSS53C SS7S 1164 DC AL2(NEW_FIRST-WRK) OFFSET OF HOST VARIABLE
 SSS53E SS16 1165 DC AL2(LEN_FIRST) LENGTH OF HOST VARIABLE

Figure 74 (Part 18 of 21). Sample DB2 Data Capture Subexit Routine (Assembler)

 Chapter 5. DB2 Data Capture Subexit Routine 291

1166 K------- ENTRY FOR NEW_CITY HOST VARIABLE

 SSS54S SSS4 1167 DC AL2(4) LENGTH OF COLUMN NAME
 SSS542 C3C9E3E84S4S4S4S 1168 DC CL18'CITY' COLUMN NAME
 SSS554 S1C1 1169 DC AL2(VARCHAR+NULL) COLUMN DATA TYPE
 SSS556 SSBS 117S DC AL2(IND_CITY-WRK) OFFSET OF NULL INDICATOR
 SSS558 SS86 1171 DC AL2(NEW_CITY-WRK) OFFSET OF HOST VARIABLE
 SSS55A SS25 1172 DC AL2(LEN_CITY) LENGTH OF HOST VARIABLE

1173 K------- END OF TABLE MARKER
 SSS55C FFFF 1174 DC X'FFFF' END OF TABLE MARKER

 1176 K---K

1177 K WTO MACRO LIST FORMATS K
 1178 K---K

118S WTOERROP WTO 'EKYEDB1E INVALID OPERATION CODE IN CDC DATA DEFINITIONK
 ', K
 ROUTCDE=11, K
 MF=L

1187 WTODSNTM WTO 'EKYEDB2E ----+----1----+----2----+----3----+----4----+-K
 ---5----+----6----+----7----+----8----+----9----+----S--K
 -+----1', K
 ROUTCDE=11, K
 MF=L

SSS7E 1194 WTODSNTL EQU K-WTODSNTM LENGTH OF WTO PARMLIST
1195 WTOERRDT WTO 'EKYEDB3E UNEXPECTED COLUMN DATA TYPE ENCOUNTERED', K

 ROUTCDE=11, K
 MF=L

12S2 WTOERRMF WTO 'EKYEDB4E EXPECTED COLUMN NOT IN PASSED CDCDD', K
 ROUTCDE=11, K
 MF=L

12S9 WTOCOLEM WTO 'EKYEDB5I COLUMN IN ERROR: ----+----1----+--', K
 ROUTCDE=11, K
 MF=L

SSS33 1216 WTOCOLEL EQU K-WTOCOLEM LENGTH OF WTO PARMLIST

 1218 K---K
 1219 K LITERAL POOL K
 122S K---K

 SSS6C8 1222 LTORG , EXPAND LITERAL POOL
 SSS6C8 SSSSS6BC 1223 =A(WRKLEN)
 SSS6CC SSSSSS4S 1224 =F'64'
 SSS6DS SSSSSSSS 1225 =XL4'SSSSSSSS'
 SSS6D4 SSSSSSSS 1226 =V(DSNHLI)
 SSS6D8 SSSSSS58 1227 =F'88'
 SSS6DC SSSSSS1C 1228 =F'28'
 SSS6ES SSSSSS6E 1229 =A(L'WRKMSG1)
 SSS6E4 SSFFFFFF 123S =X'SSFFFFFF'
 SSS6E8 E3C1C2D3C5FSF24S 1231 =CL18'TABLES2'
 SSS6FA C9D5 1232 =C'IN'
 SSS6FC E4C1 1233 =C'UA'
 SSS6FE C4C5 1234 =C'DE'
 SSS7SS S1C4 1235 =X'S1C4'
 SSS7S2 SSS2 1236 =H'2'
 SSS7S4 SSS6 1237 =H'6'
 SSS7S6 S1C1 1238 =X'S1C1'
 SSS7S8 SS1E 1239 =H'3S'
 SSS7SA SS14 124S =H'2S'
 SSS7SC SS23 1241 =H'35'
 SSS7SE S44C 1242 =AL2(1SKL'WRKMSG1)
 SSS71S SSS4 1243 =H'4'
 SSS712 4S4S4S4S4S4S4S4S 1244 =CL(L'WRKMSG1)' '
 SSS78S FFFF 1245 =X'FFFF'

Figure 74 (Part 19 of 21). Sample DB2 Data Capture Subexit Routine (Assembler)

292 Customization Guide

 1247 K---K
 1248 K EQUATES K
 1249 K---K

SSSSS 1251 RS EQU S WORK / LINKAGE
SSSS1 1252 R1 EQU 1 WORK / LINKAGE

 SSSS2 1253 R2 EQU 2 WORK
SSSS3 1254 R3 EQU 3 WORK / SQLWA (SQLDSECT)

 SSSS4 1255 R4 EQU 4 -
 SSSS5 1256 R5 EQU 5 -
 SSSS6 1257 R6 EQU 6 -
 SSSS7 1258 R7 EQU 7 -

SSSS8 1259 R8 EQU 8 CDCDA & CDCDD (QWS185)
 SSSS9 126S R9 EQU 9 ANCHOR AREA (ANCHOR)

SSSSA 1261 R1S EQU 1S HUP EXTERNAL CB (HEC)
 SSSSB 1262 R11 EQU 11 -

SSSSC 1263 R12 EQU 12 MODULE BASE REGISTER
SSSSD 1264 R13 EQU 13 SAVE AND WORKAREA (WRK)
SSSSE 1265 R14 EQU 14 WORK / LINKAGE
SSSSF 1266 R15 EQU 15 WORK / LINKAGE

 1268 KKK
 1269 K K
 127S K DUMMY SECTIONS K
 1271 K K

1272 K - HOST VARIABLE SETUP TABLE (HOSTTAB) K
1273 K - HUP EXTERNAL INTERFACE (HEC) K
1274 K - IFI STANDARD HEADER AREA (QWHS) K
1275 K - IFI CORRELATION DATA AREA (QWHC) K
1276 K - IFI IFCIDS 14S UP MAPPING (QWS2) K

 1277 K K
 1278 KKK

 128S K---K

1281 K HOST VARIABLE SETUP TABLE - HOSTTAB K
 1282 K---K

 SSSSSS 1284 HOSTTAB DSECT ,
 SSSSSS 1285 HOSTTBNL DS H LENGTH OF COLUMN NAME
 SSSSS2 1286 HOSTTBCN DS CL18 NAME OF COLUMN
 SSSS14 1287 HOSTTBST DS H DATA TYPE OF COLUMN
 SSSS16 1288 HOSTTBIO DS H OFFSET (IN WRK) OF NULL IND.
 SSSS18 1289 HOSTTBDO DS H OFFSET (IN WRK) OF DATA FIELD
 SSSS1A 129S HOSTTBDL DS H LENGTH (IN WRK) OF DATA FIELD

SSS1C 1291 HOSTTABN EQU K NEXT ENTRY OF HOSTTAB

1293 K------- EQUATES FOR COLUMN DATA TYPES (HOSTTBST)
SS18S 1294 DATE EQU 384 - DATE TYPE COLUMN
SS184 1295 TIME EQU 388 - TIME TYPE COLUMN
SS188 1296 TIMESTMP EQU 392 - TIMESTAMP TYPE COLUMN
SS1CS 1297 VARCHAR EQU 448 - VARCHAR COLUMN
SS1C4 1298 CHAR EQU 452 - CHAR COLUMN
SS1C8 1299 LONGVAR EQU 456 - LONGVARCHAR COLUMN
SS1DS 13SS VARG EQU 464 - VARGRAPHIC COLUMN
SS1D4 13S1 GRAPHIC EQU 468 - GRAPHIC COLUMN
SS1D8 13S2 LONGVARG EQU 472 - LONG VARGRAPHIC COLUMN
SS1ES 13S3 FLOAT EQU 48S - FLOAT TYPE COLUMN
SS1E4 13S4 DECIMAL EQU 484 - DECIMAL TYPE COLUMN
SS1FS 13S5 INTEGER EQU 496 - INTEGER TYPE COLUMN
SS1F4 13S6 SMALLINT EQU 5SS - SMALL INTEGER TYPE COLUMN
SSSS1 13S7 NULL EQU 1 - ADDITIONAL NULL INDICATOR

 13S9 K---K

131S K HUP EXTERNAL INTERFACE - HEC K
 1311 K---K

 1313 EKYHCHEC

Figure 74 (Part 20 of 21). Sample DB2 Data Capture Subexit Routine (Assembler)

 Chapter 5. DB2 Data Capture Subexit Routine 293

 1413 K---K

1414 K INSTRUMENTATION FACILITY STANDARD HEADER AREA - QWHS K
 1415 K---K

 1417 DSNDQWHS
 1475+ PRINT NOGEN

 188S K---K

1881 K INSTRUMENTATION FACILITY CORRELATION DATA AREA - QWHC K
 1882 K---K

 1884 DSNDQWHC

 1927 K---K

1928 K INSTRUMENTATION FACILITY IFCIDS 14S UP MAPPING - QWS2 K
 1929 K---K

 1931 DSNDQWS2

4891 KKK$$$ SQL WORKING STORAGE
 SSSS1S SSSSSSAS 4892 SQLDSIZ DC A(SQLDLEN) SQLDSECT SIZE
 SSSSSS 4893 SQLDSECT DSECT
 SSSSSS 4894 SQLPLIST DS F
 SSSSS4 4895 SQLPLLEN DS H PLIST LENGTH
 SSSSS6 4896 SQLFLAGS DS XL2 FLAGS
 SSSSS8 4897 SQLCTYPE DS H CALL-TYPE
 SSSSSA 4898 SQLPROGN DS CL8 PROGRAM NAME
 SSSS12 4899 SQLTIMES DS CL8 TIMESTAMP
 SSSS1A 49SS SQLSECTN DS H SECTION
 SSSS1C 49S1 SQLCODEP DS A CODE POINTER
 SSSS2S 49S2 SQLVPARM DS A VPARAM POINTER
 SSSS24 49S3 SQLAPARM DS A AUX PARAM PTR
 SSSS28 49S4 SQLSTNUM DS H STATEMENT NUMBER
 SSSS2A 49S5 SQLSTYPE DS H STATEMENT TYPE
 SSSS2C 49S6 SQLPVARS DS F,7CL12
 SSSS84 49S7 SQLAVARS DS F,SCL12
 SSSS88 49S8 SQLTEMP DS CL18 TEMPLATE
 SSSSAS 49S9 DS SD
 SSSAS 491S SQLDLEN EQU K-SQLDSECT
 4911 END

Figure 74 (Part 21 of 21). Sample DB2 Data Capture Subexit Routine (Assembler)

Definitions for Sample DB2 Data Capture Subexit Routine
The following statements illustrate how to specify the use of the DB2 Data Capture
subexit routine and illustrate the environment that was set up for the exit routine
shown in Figure 74 on page 274.

 DPROPGEN Definitions
Figure 75 on page 295 shows a DBDGEN definition for the Segment exit routine in
Figure 74 on page 274.

294 Customization Guide

EKYGJCL JCL='//TS96277G JOB (SS,SSS,,5SS),''DPROP GEN'','
 EKYGJCL JCL='// REGION=SK,NOTIFY=TS96277'
 EKYGSYS K
 ROUTCDE=11, K
 SVCNO=227, K
 ILOGREC=ES, K
 SQLDLM=D, K
 SMFREC=245, K
 PRSET=PRSET1, K
 DATE=ISO, K
 TIME=ISO, K
 DBDV=(6,S), K
 EKYRESLB='KOE.DPM12S.LOAD'
 EKYGDPR K
 SNAME=TS96277, K
 SNR=4, K
 SUBX=EKYEDB2A, K
 STATF='KOE.FF.STATF', K
 TQUAL=TS96277, K
 DB2SYS=DSN, K
 VLFCLASS=PM1
 EKYGEN
 END

Figure 75. DPROPGEN Definition

Note: The SUBX= keyword of the EKYGSYS Macro specifies the use of a DB2
Data Capture subexit routine for this DPROP system.

CREATE TABLE Statement for Source Table
Figure 76 shows a CREATE TABLE statement for the source table for the
Segment exit routine in Figure 74 on page 274.

 CREATE TABLE TABLES2
 (KEYFLD1 CHAR(2) NOT NULL,
 KEYFLD2 CHAR(6) NOT NULL,

FAMILY VARCHAR(3S) ,
 FIRST VARCHAR(2S) ,
 CITY VARCHAR(35) ,
 PRIMARY KEY (KEYFLD1, KEYFLD2))

DATA CAPTURE CHANGES
 IN DUS96277.DPROPTS2 ;

CREATE UNIQUE INDEX DPROPIX2
 ON TABLES2 (KEYFLD1, KEYFLD2)

USING VCAT KOE ;

Figure 76. CREATE TABLE Statement for Source Table

Note: The DATA CAPTURE CHANGES clause specifies that the changed DB2
rows are captured and that the DB2CDCEX routine (the HUP) is called when a row
of this table is changed.

CREATE TABLE Statement for Mirror Table
Figure 77 on page 296 shows a CREATE TABLE statement for the mirror table for
the Segment exit routine in Figure 74 on page 274.

 Chapter 5. DB2 Data Capture Subexit Routine 295

 CREATE TABLE TABLESM
 (KEYFLD1 CHAR(2) NOT NULL,
 KEYFLD2 CHAR(6) NOT NULL,

FAMILY VARCHAR(3S) ,
 FIRST VARCHAR(2S) ,
 CITY VARCHAR(35) ,
 PRIMARY KEY (KEYFLD1, KEYFLD2))
 IN DUS96277.DPROPTSM ;

CREATE UNIQUE INDEX DPROPIXM
 ON TABLESM (KEYFLD1, KEYFLD2)

USING VCAT KOE ;

Figure 77. CREATE TABLE Statement for Mirror Table

Note: The mirror table cannot have the DATA CAPTURE CHANGES clause
because table updates done within the DB2 Data Capture exit cannot be captured
themselves.

296 Customization Guide

Chapter 6. EKYRESLB Dynamic Allocation Exit Routine

DPROP needs to load some DPROP modules from an APF-authorized library
allocated to the EKYRESLB DD name. The EKYRESLB DD name is either:

� Allocated through a JCL DD statement that you provide, or

� Dynamically allocated by DPROP to a data set name that your System
Administrator provided during DPROP installation.

If neither of these methods suits your needs, then you can provide an EKYRESLB
Dynamic Allocation exit routine. For example, the EKYRESLB Dynamic Allocation
exit routine can be useful if your installation uses an online change philosophy
based on two load module libraries (for example, DPROP.RESLB1 and
DPROP.RESLB2), and switches dynamically between these two libraries. Your
EKYRESLB Dynamic Allocation exit routine can be used to decide dynamically
which one of the two libraries must be dynamically allocated; for example, making
the decision based on a specification located in a SYS1.PARMLIB member, or in a
linklist load module.

Providing an EKYRESLB Dynamic Allocation exit routine is optional. Its load
module name must be EKYDAEX0 and DPROP loads it from the usual //STEPLIB,
//JOBLIB, linklist, LPA concatenation.

Your exit routine can be written in Assembler, but not in COBOL, PL/I, or C.

DPROP calls this exit routine with two different call functions: an AL (ALLOCATE)
call function and a DE (DEALLOCATE) call function.

AL During an ALLOCATE call, your exit routine must dynamically allocate the
EKYRESLB DD statement (if not already allocated).

DPROP tells your exit routine whether the EKYRESLB DD statement is already
allocated or not. If upon return from your exit routine, the EKYRESLB DD
statement is not allocated, DPROP dynamically allocates the data set name
that your System Administrator identified during DPROP installation.

DE During the DEALLOCATE call, your exit routine can dynamically deallocate the
EKYRESLB DD statement, or return without doing any processing.

Your exit routine is called with one ALLOCATE and one DEALLOCATE call function
within each OS/VS task executing DPROP functions. This can occur multiple times
within the same job step, for example, in MPP regions after pseudo-ABENDs that
do not result in a job step ABEND. This can also occur when the RUP is called to
perform asynchronous data propagation.

Make sure that each allocation is performed in the same way. To avoid
inconsistent allocations, your exit routine must deallocate the EKYRESLB DD
Statement during DEALLOCATE calls only if your exit routine performed the original
allocation.

 Copyright IBM Corp. 1991,2001 297

Interface Control Block
Code the EKYDAE macro statement to create the following DSECT in your
Assembler exit routine.

The interface control block is followed by a detailed description of its fields.

298 Customization Guide

 1 EKYDAE
2+KKKKKKKKKKKKKKKKKK START OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKKKKK/

 3+K K/
4+K CONTROL BLOCK NAME: K/

 5+K EKYDAE (DAE) K/
 6+K K/
 7+K DESCRIPTIVE NAME: K/

8+K INTERFACE CONTROL BLOCK FOR DPROP USER EXIT ROUTINE K/
9+K PERFORMING DYNAMIC ALLOCATION OF THE EKYRESLB DD STATEMENTK/

 1S+K K/
 11+K K/
 12+KK
 13+K K

14+K THIS PRODUCT CONTAINS "RESTRICTED MATERIALS OF IBM". K
 15+K K

16+K 5685-124 (C) COPYRIGHT IBM CORP. 1989, 1992. K
17+K ALL RIGHTS RESERVED. K

 18+K K
19+K U.S. GOVERNMENT USERS RESTRICTED RIGHTS - K
2S+K USE, DUPLICATION, OR DISCLOSURE RESTRICTED BY K
21+K GSA ADP SCHEDULE CONTRACT WITH IBM CORP. K

 22+K K
23+K LICENSED MATERIALS - PROPERTY OF IBM. K

 24+K K
 25+KK
 26+K K/

27+K STATUS: V1 R2 MS K/
 28+K K/
 29+K FUNCTION: K/

3S+K THIS IS THE CONTROL BLOCK USED TO INTERFACE BETWEEN K/
 31+K - DPROP K/
 32+K AND K/

33+K - A USER'S EXIT ROUTINE SUPPORTING DYNAMIC K/
34+K ALLOCATION AND DEALLOCATION OF THE EKYRESLB DD K/

 35+K STATEMENT. K/
 36+K K/
 37+K K/

38+K MODULE TYPE= MACRO K/
39+K PROCESSOR= ASSEMBLER H K/

 4S+K K/
41+K INNER CONTROL BLOCKS: NONE K/

 42+K K/
43+K MACROS USED FROM MACRO LIBRARY: NONE K/

 44+K K/
45+K CHANGE ACTIVITY: NONE K/

 46+K K/
47+KKKKKKKKKKKKKKKKKKKK END OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKKKKK/

 SSSSSS 49+EKYDAE DSECT
 SSSSSS C5D2E8C4C1C54S4S 5S+DAENAME DC CL8'EKYDAE ' EYE CATCHER 'EKYDAE '
 SSSSS8 4S4S 51+DAECALL DC CL2' ' TYPE OF CALL TO EXIT:

52+K - 'AL': ALLOCATE EKYRESLB
53+K - 'DE': DEALLOCATE EKYRESLB

 SSSSSA 4S 55+DAEALLOC DC C' ' FLAG INDICATING WHETHER //EKYRESLB

56+K IS ALREADY ALLOCATED.
SSSE8 57+DAEALLOY EQU C'Y' - Y: ALREADY ALLOCATED
SSSD5 58+DAEALLON EQU C'N' - N: NOT ALREADY ALLOCATED

 SSSSSB 4S 59+ DC CL1' ' RESERVED FOR DPROP
 SSSSSC SSSSSSSSSSSSSSSS 6S+ DC 5F'S' RESERVED FOR DPROP

 SSSS2S 62+ DS SD
 SSSS2S SSSSSSSSSSSSSSSS 63+DAEUSER DC 256X'SS' CAN BE USED BY USER EXIT ROUTINE

SS12S 64+DAEEND EQU K END OF DAE DSECT
SS12S 65+DAELEN EQU K-EKYDAE LENGTH OF DAE DSECT

 66 END

Figure 78. Interface Control Block for EKYRESLB Dynamic Allocation Exit Routine

 Chapter 6. EKYRESLB Dynamic Allocation Exit Routine 299

DAENAME Contains the constant EKYDAE, which is used to identify the control
block in a storage dump.

DAECALL The call function that describes whether the exit routine is called to
allocate or deallocate the EKYRESLB DD name.

DAEALLOC When called for an ALLOCATE call function, your exit routine must
test the content of this field. When called for a DEALLOCATE call
function, this field has no meaning. The content can be:

Y The EKYRESLB is already allocated; for example, it was
allocated either through a JCL DD statement, or because your
exit routine called it, but it was never deallocated.

N The EKYRESLB DD statement is not yet allocated. Your exit
routine must allocate the EKYRESLB DD statement
dynamically. If your exit routine does not allocate the
EKYRESLB DD statement, DPROP dynamically allocates it to
the data set name that your System Administrator provided
during DPROP installation.

DAEUSER Your exit routine can use this field to exchange information between
the ALLOCATE and DEALLOCATE call.

At entry to an ALLOCATE call, DPROP sets this field to binary
zeros. DPROP does not change the content of DAEUSER after this
first call to your exit routine.

Exit Routine Processing
Your EKYDAEX0 routine must be written in Assembler and must conform to the
following linkage conventions:

1. Your exit routine is called and must return in AMODE 31. The call parameter
that DPROP provides to your exit routine is usually located above the 16-MB
line.

2. On entry, your exit routine must save the registers into the save area that the
caller provides, and must provide a save area of its own.

The exit routine must return to its caller using normal OS/VS conventions after
restoring the registers.

 3. On entry:

Register 1 Points to a parameter list pointing to one single parameter, an
interface control block.

Register 13 Points to a register save area.

Register 14 Contains the return address.

Register 15 Contains the entry point address of your exit routine.

4. It is recommended that your exit routine be written and linked as reentrant.

When dynamically allocating the EKYRESLB DD statement, your exit routine must
not specify deallocation at CLOSE. This is because DPROP opens and closes the
EKYRESLB DD name more than once.

300 Customization Guide

To avoid possible conflicts with STIMER and STIMERM macros generated when
application programs perform synchronous data propagation, DPROP calls the exit
in an MVS subtask created specifically for the call of your exit routine. DPROP
attaches and detaches this subtask for every call of your exit routine.

 Return Codes
When returning, your exit routine must provide a return code in register 15.

A nonzero return code results in an ABEND.

Telling DPROP about The EKYRESLB Dynamic Allocation Exit
To activate your EKYRESLB dynamic allocation exit, compile and link edit your exit
routine with the load module name EKYDAEX0 into the //JOBLIB, //STEPLIB, and
linklist LPA concatenation.

During DPROP Installation, your DPROP System Administrator can create a
dummy, IEFBR14-type, EKYDAEX0 load module in your DPROP RESLIB. In this
case, to use your real EKYDAEX0, one of the following must be done:

� The dummy, IEFBR14-type, EKYDAEX0 load module must be deleted from the
DPROP RESLIB.

� The load module library containing your real EKYDAEX0 module must be
concatenated ahead of the DPROP RESLIB in the //JOBLIB, STEPLIB, and
LINKLIB LPA concatenation.

Sample EKYRESLB Dynamic Allocation Exit
The sample EKYRESLB dynamic allocation exit below is provided in the DPROP
Sample Source Library (EKYSAMP) under the member name EKYEDA1A. To
activate the dynamic allocation exit, you must link edit the load module as
EKYDAEX0 in the //STEPLIB, //JOBLIB, linklist, or LPA concatenation.

 Chapter 6. EKYRESLB Dynamic Allocation Exit Routine 301

 2 PRINT NOGEN
3 KKKKKKKKKK START OF SPECIFICATIONS KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK
4 K MODULE NAME = EKYEDA1A K

 5 K K
6 K DESCRIPTIVE NAME = SAMPLE 'EKYRESLB DYNAMIC ALLOCATION EXIT K

 7 K ROUTINE' K
 8 K K

9 K STATUS: V1 R2 MS K
 1S K K

11 K FUNCTION = EKYEDA1A IS A SAMPLE DPROP USER EXIT ROUTINE K
12 K USED TO ALLOCATE DYNAMICALLY THE EKYRESLB K

 13 K DD STATEMENT. K
 14 K K

15 K EKYEDA1A IS CALLED WITH ONE SINGLE PARAMETER: K
16 K THE EKYDAE PARAMETER BLOCK. K
17 K IN THIS PARAMETER BLOCK THE FIELD DAECALL K
18 K CONTAINS THE CALL FUNCTION. THE CALL FUNCTION K

 19 K IS EITHER: K
2S K - 'AL' (= 'ALLOCATE') K
21 K - 'DE' (= 'DE-ALLOCATE') K
22 K THE FUNCTIONS OF THIS SAMPLE EXIT ROUTINE CAN BE K
23 K SKETCHED AS FOLLOWS: K

 24 K K
25 K FOR AN 'AL' CALL FUNCTION ('ALLOCATE'): K

 26 K -- K
27 K WHEN BEING CALLED WITH AN 'AL' CALL-FUNCTION THIS K
28 K SAMPLE EXIT ROUTINE CHECKS IN INFORMATION PROVIDED K
29 K BY THE CALLER IN EKYDAE WHETHER //EKYRESLB K
3S K IS ALREADY ALLOCATED. K

 31 K K
32 K - IF //EKYRESLB IS ALREADY ALLOCATED, THE SAMPLE K
33 K EXIT ROUTINE RETURNS WITHOUT FURTHER PROCESSING. K

 34 K K
35 K - IF //EKYRESLB IS NOT ALREADY ALLOCATED, THE K
36 K SAMPLE EXIT ROUTINE USES MVS DYNALLOC SERVICES K
37 K TO ALLOCATE DYNAMICALLY THE //EKYRESLB K
38 K DD STATEMENT WITH A DISPOSITION OF 'SHR'. K

 39 K K
4S K THE DATASET-NAME ALLOCATED TO //EKYRESLB IS K
41 K A HARD-CODED/FIXED DATA-SET NAME. IN REAL-LIFE, K
42 K YOUR INSTALLATION WILL PROBABLY PROVIDE SOME K
43 K ADDITIONAL LOGIC ALLOWING TO ALLOCATE K
44 K DIFFERENT/VARIABLE DATA-SET NAMES TO EKYRESLB. K
45 K FOR EXAMPLE, THIS CAN BE ACHIEVED BY READING A K
46 K SYS1.PARMLIB MEMBER CONTAINING THE DATASET-NAME K
47 K TO BE ALLOCATED. K

 48 K K
49 K 'DE' CALL FUNCTION ('DE-ALLOCATE') K

 5S K ----------------------------------- K
51 K WHEN BEING CALLED WITH A 'DE' CALL-FUNCTION, THIS K
52 K SAMPLE EXIT ROUTINE CHECKS WHETHER THE ALLOCATION K
53 K OF //EKYRESLB WAS PERFORMED BY THE SAMPLE EXIT K

 54 K ROUTINE. K
 55 K K

56 K - IF THIS IS NOT THE CASE, THE SAMPLE K
57 K EXIT ROUTINE RETURNS WITHOUT FURTHER PROCESSING. K

 58 K K
59 K - ELSE, THE SAMPLE EXIT ROUTINE K
6S K USES MVS DYNALLOC SERVICES TO K
61 K DE-ALLOCATE DYNAMICALLY THE //EKYRESLB K

 62 K DD STATEMENT. K
 63 K K

Figure 79 (Part 1 of 12). Sample EKYRESLB Dynamic Allocation Exit

302 Customization Guide

 64 K NOTES: K

65 K 1) IF WRITING YOUR OWN EXIT ROUTINE, THERE IS NO K
66 K REAL NEED TO DE-ALLOCATE THE //EKYRESLB K
67 K DD-STATEMENT. FOR A 'DE' CALL FUNCTION, YOUR K
68 K ROUTINE CAN RETURN WITHOUT ANY PROCESSING. IN K
69 K THIS CASE, //EKYRESLB WILL REMAIN ALLOCATED K
7S K UNTIL THE END OF THE JOBSTEP. K

 71 K K
72 K IN FACT, WE RECOMMEND THAT YOU DO KKKNOTKKK K
73 K DE-ALLOCATE THE //EKYRESLB DD-STATEMENT, SINCE K
74 K THIS REDUCES THE AMOUNT OF CODING THAT YOU K
75 K MUST PROVIDE FOR YOUR OWN EXIT ROUTINE. K

 76 K K
77 K 2) BE CAREFUL, IF IGNORING ABOVE RECOMMENDATION. K
78 K YOUR EXIT SHOULD DE-ALLOCATE DURING K
79 K A 'DE' CALL THE //EKYRESLB DD-STATEMENT ONLY IF K
8S K THE ALLOCATION HAS ALSO BEEN DONE PREVIOUSLY BY K
81 K YOUR EXIT. IGNORING THIS WARNING CAN RESULT IN K
82 K SOME ENVIRONMENTS (FOR EXAMPLE MPP REGIONS) K
83 K IN DIFFERENT/INCONSISTENT CONSECUTIVE K
84 K ALLOCATIONS OF //EKYRESLB. K

 86 K K
 87 K K

88 K ACTIVATION OF THIS EXIT ROUTINE= K
89 K THIS EXIT ROUTINE GETS ACTIVATED BY COMPILING AND K
9S K LINKING THIS EXIT-ROUTINE INTO K
91 K THE USUAL JOBLIB/STEPLIB/LINKLIB-CONCATENATION USED K
92 K FOR THE EXECUTION OF YOUR DPROP JOBSTEPS. K

 93 K K
94 K NOTE THAT THE LOAD MODULE NAME OF THIS EXIT ROUTINE K
95 K MUST BE EKYDAEXS (NOT EKYEDA1A) IN ORDER TO GET K
96 K INVOKED BY DPROP. K

 97 K K
 98 K RESTRICTIONS: K

99 K THIS EXIT ROUTINE SHOULD NOT PERFORM ANY FUNCTION K
1SS K WHICH IS NOT SUPPORTED IN THE ENVIRONMENT IT K
1S1 K EXECUTES (FOR EXAMPLE, IF DPROP IS USED TO PERFORM K
1S2 K SYNCHRONOUS PROPAGATION IN MPP REGIONS, THEN THE K
1S3 K EXIT ROUTINE SHOULD NOT PERFORM ANY FUNCTION WHICH K
1S4 K IS NOT SUPPORTED BY IMS IN A MPP ENVIRONMENT). K

 1S5 K K
 1S6 K REGISTER CONVENTIONS= K

1S7 K R13= ADDRESS OF SAVE AREA K
1S8 K R12= MODULE BASE REGISTER K
1S9 K R11= BAS REGISTER TO CALL SUBROUTINE K
11S K R9 = EKYDAE INTERFACE PARAMETER BLOCK K
111 K PATCH LABEL = - (NONE) K

 112 K K
113 K MODULE TYPE = PROCEDURE K
114 K PROCESSOR = ASSEMBLER K
115 K MODULE SIZE = LESS THAN 1SSS BYTES. K
116 K ATTRIBUTES = REENTRANT K

 117 K RMODE = ANY K
 118 K AMODE = 31 K
 119 K K

12S K ENTRY POINT = EKYEDA1A K
121 K PURPOSE = SEE FUNCTION K
122 K LINKAGE = STANDARD OS/VS ASSEMBLER LINKAGE CONVENTIONS. K

 123 K K
124 K INPUT : R1 = POINTING TO A STANDARD PARAMETER ADDRESS LIST. K
125 K 1ST AND ONLY PARAMETER: EKYDAE CONTROL-BLOCK K

 126 K K
127 K OUTPUT : FOR A 'AL' CALL, IF THE //EKYRESLB DD-STATEMENT HAS K

 128 K BEEN ALLOCATED: K
129 K - DAEALLOC IS SET TO 'Y' K

 13S K K

Figure 79 (Part 2 of 12). Sample EKYRESLB Dynamic Allocation Exit

 Chapter 6. EKYRESLB Dynamic Allocation Exit Routine 303

 131 K EXIT-NORMAL= K

132 K STANDARD OS/VS ASSEMBLER RETURN CONVENTIONS. K
133 K RETURN CODES = S K

 134 K K
 135 K EXIT-ERROR= K

136 K STANDARD OS/VS ASSEMBLER RETURN CONVENTIONS. K
 137 K RETURN CODE = 4 K
 138 K K
 139 K K

14S K ABEND-CODE OF EKYEDA1A = 11S6 K
 141 K ABEND-REASON CODES = X'99999999' K
 142 K K

143 K ERROR MESSAGES ISSUED BY EKYEDA1A K
144 K EKYEDA1E : FAILURE DURING DYNAMIC ALLOCATION. K
145 K EKYEDA2E : INVALID-CALL FUNCTION. K
146 K EKYEDA3E : FAILURE DURING DYNAMIC DEALLOCATION. K
147 K ADDITIONAL ERROR-MESSAGES MIGHT BY ISSUED BY SVC 99/DYNALLOC.K

 148 K K
 149 K K
 15S K K
 151 K EXTERNAL REFERENCES K
 152 K K
 153 K ROUTINES= = NONE K
 154 K K

155 K CONTROL BLOCKS = DAE INTERFACE CB FOR DYNALLOC EXIT ROUTINE K
156 K S99RB SVC 99 REQUEST BLOCK K
157 K S99RBX SVC 99 REQUEST BLOCK EXTENSION K
158 K S99TUNIT SVC 99 TEXT UNITS K

 159 K K
 16S K K

161 K MACROS USED FROM MACRO LIBRARY= K
162 K SAVE - SAVE REGISTERS K
163 K GETMAIN - OS/VS GETMAIN K
164 K DYNALLOC - OS/VS SVC 99 CALL K

 165 K K
166 K EKYDAE - INTERFACE CONTROL-BLOCK FOR DYNALLOC K

 167 K EXIT ROUTINE. K
168 K IEFZB4D2 - OS/VS SVC 99 DYNALLOC KEYS K

 169 K K
17S K CHANGE ACTIVITY= NONE K

 171 K K
172 KKKKKKKKKKKKK END OF SPECIFICATIONS KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK
174 KKKKKKKKKKKK LOGIC OF EKYEDA1A KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK

 175 K K
 176 K K

177 K MAIN LINE LOGIC: K
 178 K ================ K
 179 K K

18S K 1) MODULE ENTRY LOGIC: K
 181 K ---------------------- K

182 K - PROVIDE REGISTER EQUATES K
 183 K K

184 K - GENERATE A MODULE SAVEID K
 185 K K

186 K - SAVE REGISTERS AND ESTABLISH MODULE-BASE REGISTER K
 187 K K

188 K - LOAD ADDRESSES OF CALL PARAMETER K
 189 K K

19S K - GETMAIN AN AREA CONTAINING K
191 K A MODULE SAVE AREA AND MODULE WORKSPACE. K
192 K CLEAR THE GETMAINED AREA. K

 193 K K
194 K - CHAIN MODULE SAVE AREA AND SAVE AREA OF CALLER. K

 195 K K

Figure 79 (Part 3 of 12). Sample EKYRESLB Dynamic Allocation Exit

304 Customization Guide

196 K 2) FOR 'AL' (='ALLOCATE') CALLS K

 197 K -------------------------------- K
198 K - IF THE EKYRESLB DD-STATEMENT IS ALREADY ALLOCATED: K
199 K RETURN WITHOUT FURTHER PROCESSING. K

 2SS K K
2S1 K - IF THE EKYRESLB DD-STATEMENT IS NOT ALREADY ALLOCATED: K

 2S2 K K
2S3 K - PREPARE INFORMATION REQUIRED TO CALL THE MVS K
2S4 K DYNALLOC MACRO FOR DYNAMIC ALLOCATION OF K
2S5 K THE EKYRESLB DD STATEMENT WITH DISP=SHR. K

 2S6 K K
2S7 K THE PREPARED DYNALLOC CALL-PARAMETERS REQUEST K
2S8 K AMONG OTHER THAT MVS GENERATES AND WRITES ERROR K
2S9 K MESSAGES ABOUT DYNALLOC FAILURE. K

 21S K K
211 K - ISSUE DYNALLOC MACRO. K

 212 K K
213 K - IF RETURN-CODE FROM DYNALLOC IS NON-ZERO: K
214 K -- ISSUE ERROR-MESSAGE K
215 K -- BRANCH TO THE RETURN-CODE 4 LOGIC (THIS WILL K
216 K (RESULT IN A ABEND ISSUED BY DPROP). K

 217 K K
218 K - IF RETURN-CODE FROM DYNALLOC IS ZERO: K
219 K -- RECORD THAT THE EKYRESLB DD STATEMENT HAS BEEN K
22S K ALLOCATED BY EKYEDA1A. K
221 K -- BRANCH TO THE RETURN-CODE S LOGIC. K

 222 K K
 223 K K

224 K 3) FOR 'DE' (='DE-ALLOCATE') CALLS K
 225 K ---------------------------------- K

226 K - IF IT IS NOT THIS SAMPLE EXIT ROUTINE WHICH ALLOCATED K
 227 K PREVIOUSLY //EKYRESLB: K

228 K - THE EXIT RETURNS WITHOUT FURTHER PROCESSING. K
 229 K K

23S K - IF IT IS THIS SAMPLE EXIT ROUTINE WHICH ALLOCATED K
 231 K PREVIOUSLY //EKYRESLB: K
 232 K K

233 K - PREPARE INFORMATION REQUIRED TO CALL THE MVS K
234 K DYNALLOC MACRO FOR DYNAMIC ALLOCATION OF K
235 K THE EKYRESLB DD STATEMENT WITH DISP=SHR. K

 236 K K
237 K THE PREPARED DYNALLOC CALL-PARAMETERS REQUEST K
238 K AMONG OTHER THAT MVS GENERATES AND WRITES ERROR K
239 K MESSAGES ABOUT DYNALLOC FAILURE. K

 24S K K
241 K - ISSUE DYNALLOC MACRO. K

 242 K K
243 K - BRANCH TO RETURN-CODE S LOGIC. K

 244 K K
245 K 4) RETURN LOGIC K

 246 K ---------------- K
247 K - FREEMAIN AREA CONTAING SAVE-AREA AND WORKSPACE. K

 248 K K
249 K - RESTORE REGISTERS OF THE CALLER K

 25S K K
251 K - RETURN TO THE CALLER. K

 252 K K
 253 K K

254 KKKKKKKKKKKK END-OF-LOGIC KK
 256 KK
 257 KK
 258 KK
 259 KKKK KKKK

26S KKKK MODULE ENTRY LOGIC KKKK
 261 KKKK KKKK
 262 KK

Figure 79 (Part 4 of 12). Sample EKYRESLB Dynamic Allocation Exit

 Chapter 6. EKYRESLB Dynamic Allocation Exit Routine 305

 263 KK
 264 KK

 SSSSSS 266 EKYEDA1A START
 267 K

268 EKYEDA1A AMODE 31 EXIT EXPECTS TO BE CALLED IN AMODE-31
269 EKYEDA1A RMODE ANY EXIT CAN BE LOADED ANYWHERE

 27S K
 271 K---K

272 K DEFINITION OF REGISTER EQUATES K
 273 K---K
 274 K
 SSSSS 275 RS EQU S
 SSSS1 276 R1 EQU 1
 SSSS2 277 R2 EQU 2
 SSSS3 278 R3 EQU 3
 SSSS4 279 R4 EQU 4
 SSSS5 28S R5 EQU 5

SSSS6 281 R6 EQU 6 ABEND REASON CODE
 SSSS7 282 R7 EQU 7
 SSSS8 283 R8 EQU 8
 SSSS9 284 R9 EQU 9 A(DAE)
 SSSSA 285 R1S EQU 1S

SSSSB 286 R11 EQU 11 BAS REGISTER TO CALL SUBROUTINES
SSSSC 287 R12 EQU 12 MODULE BASE REGISTER
SSSSD 288 R13 EQU 13 A(SAVEAREA / GETMAINED AREA)

 SSSSE 289 R14 EQU 14
 SSSSF 29S R15 EQU 15

 292 K---K

293 K GENERATE SAVE-ID CONSISTING OF EXIT NAME, K
294 K COMPILATION DATE AND COMPILATION TIME. K

 295 K---K

 297 LCLC &SAVEID

298 &SAVEID SETC 'EKYEDA1A DPR12S'.'-'.'&SYSDATE'.'-'.'&SYSTIME'

 3SS K---K

3S1 K SAVE REGISTERS AND ESTABLISH MODULE-BASE REGISTER K
 3S2 K---K

3S4 SAVE (14,12),,&SAVEID SAVE REGISTERS

 SSSS28 18CF 313 LR R12,R15 R12=ENTRY POINT OF THIS EXIT

SSSSS 314 USING EKYEDA1A,R12 ESTABLISH BASE REGISTER

 316 K---K

317 K LOAD ADDRESS OF CALL PARAMETERS K
 318 K---K

 SSSS2A 5891 SSSS SSSSS 32S L R9,S(R1) LOAD ADDRESS OF 1ST CALL PARAMETERS

SSSSS 321 USING EKYDAE,R9 R9=BASE FOR INTERFACE CONTROL BLOCK

 323 K---K

324 K - GETMAIN AN AREA CONTAINING K
325 K -- OUR SAVE AREA K
326 K -- MODULE WORKSPACE K
327 K - CLEAR THE GETMAINED AREA WITH BINARY ZEROES K

 328 K---K

33S GETMAIN RU,LV=GETML,LOC=ANY GETMAIN AN AREA

 SSSS48 18B1 343 LR R11,R1 R11=A(GETMAINED AREA)

Figure 79 (Part 5 of 12). Sample EKYRESLB Dynamic Allocation Exit

306 Customization Guide

 SSSS4A 18S1 345 LR RS,R1 SET UP
 SSSS4C 411S SSDF SSSDF 346 LA R1,GETML ...FOR A
 SSSS5S 1BFF 347 SR R15,R15 ...ZEROING
 SSSS52 SESE 348 MVCL RS,R14 ...MVCL

 35S K---K

351 K CHAIN TOGETHER OUR SAVEAREA AND THE HIGHER-LEVEL SAVEAREA K
352 K AND LOAD INTO R13 THE ADDRESS OF OUR SAVEAREA K

 353 K---K

 SSSS54 5SBD SSS8 SSSS8 355 ST R11,8(R13) CHAIN OUR SAVEAREA INTO HIGHER
 SSSS58 5SDB SSS4 SSSS4 356 ST R13,4(R11) CHAIN HIGHER SAVEAREA INTO OUR
 SSSS5C 18DB 357 LR R13,R11 R13=A(OUR SAVEAREA)

SSSSS 358 USING GETM,R13 ESTABLISH BASE REGISTER FOR WORKAREA

 36S K---K

361 K BRANCH DEPENDING ON CALL-FUNCTION. K
 362 K---K

 SSSS5E D5S1 9SS8 C3S8 SSSS8 SS3S8 364 CLC DAECALL,=CL2'AL' CALLED TO ALLOCATE EKYRESLB?
 SSSS64 478S CS76 SSS76 365 BE ALLOC ...YES>>>B
 SSSS68 D5S1 9SS8 C3SA SSSS8 SS3SA 366 CLC DAECALL,=CL2'DE' CALLED TO DE-ALLOCATE EKYRESLB?
 SSSS6E 478S C184 SS184 367 BE DEALLOC ...YES>>>B
 SSSS72 47FS C242 SS242 368 B INVFUNC CALL-FUNCTION IS INVALID
 37S KK
 371 KK
 372 KK
 373 KKKK KKKK

374 KKKK 'AL' (ALLOCATE) CALL KKKK
375 KKKK - THE EXIT IS INVOKED TO PERFORM A DYNAMIC KKKK
376 KKKK ALLOCATION OF THE EKYRESLB DD STATEMENT KKKK

 377 KKKK KKKK
 378 KK
 379 KK
 38S KK

SSSS76 382 ALLOC DS SH
 SSSS76 95E8 9SSA SSSSA 383 CLI DAEALLOC,DAEALLOY EKYRESLB ALREADY ALLOCATED?
 SSSS7A 477S CS88 SSS88 384 BNE ALLOC2S ...NO>>>LETS DO THE ALOCATION
 SSSS7E D7SS 9S2S 9S2S SSS2S SSS2S 385 XC OURALLO,OURALLO CLEAR OURALLO FLAG
 SSSS84 47FS C294 SS294 386 B RETURNS ...AND RETURN

 388 K--K

389 K PERFORM THE DYNAMIC ALLOCATION BY PREPARING: K
39S K - DYNALLOC REQUEST BLOCK K
391 K - DYNALLOC REQUEST BLOCK EXTENSION K
392 K - DYNALLOC TEXT UNITS K
393 K AND BY CALLING THE DYNALLOC MACRO. K

 394 K K
395 K PLEASE REFER TO MVS/ESA DOCUMENTATION, IF YOU NEED K
396 K EXPLANATIONS ON THIS SUBJECT (SEE 'MVS/ESA APPLICATION K
397 K DEVELOPMENT GUIDE: AUTHORIZED ASSEMBLER LANGUAGE K
398 K PROGRAMS (GC28-1645)' CHAPTER 'REQUESTING SVC 99 K

 399 K FUNCTIONS'). K
 4SS K--K

 SSSS88 4S2 ALLOC2S DS SH

4S4 K------- PREPARE SVC 99 REQUEST BLOCK

 SSSS88 D792 DS4C DS4C SSS4C SSS4C 4S6 XC Z99RB(Z99END-Z99RB),Z99RB CLEAR SVC 99 AREA

 SSSS8E 411S DS4C SSS4C 4S8 LA R1,Z99RB GET POINTER TO RB AREA
 SSSS92 5S1S DS48 SSS48 4S9 ST R1,Z99RBPTR STORE ADDRESS INTO RBPTR
 SSSS96 968S DS48 SSS48 41S OI Z99RBPTR,X'8S' AND TURN HIGH BIT ON
 SSSS9A 9214 DS4C SSS4C 411 MVI Z99RBLN,Z99RBEND-Z99RB SETUP CB LENGTH

Figure 79 (Part 6 of 12). Sample EKYRESLB Dynamic Allocation Exit

 Chapter 6. EKYRESLB Dynamic Allocation Exit Routine 307

 SSSS9E 92S1 DS4D SSS4D 412 MVI Z99VERB,Z99VRBAL SETUP VERB CODE
 SSSSA2 92SS DS4E SSS4E 413 MVI Z99FLG11,S SETUP FLAG BYTES
 SSSSA6 411S DS84 SSS84 414 LA R1,Z99TUPL GET POINTER TO TEXT UNITS
 SSSSAA 5S1S DS54 SSS54 415 ST R1,Z99TXTPP AND STORE INTO RB
 SSSSAE 411S DS6S SSS6S 416 LA R1,Z99RBX GET POINTER TO RB EXTENSION
 SSSSB2 5S1S DS58 SSS58 417 ST R1,Z99Z99X AND STORE INTO RB

419 K------- PREPARE REQUEST BLOCK EXTENSION

 SSSSB6 D2S5 DS6S C3SC SSS6S SS3SC 421 MVC Z99EID,=CL6'S99RBX' SETUP REQUEST BLOCK ID
 SSSSBC 92S1 DS66 SSS66 422 MVI Z99EVER,Z99RBXVR SETUP VERSION NUMBER
 SSSSCS 9284 DS67 SSS67 423 MVI Z99EOPTS,Z99EIMSG+Z99EWTP REQUEST MESSAGE WRITING
 SSSSC4 92SS DS6A SSS6A 424 MVI Z99EMGSV,Z99XINFO SETUP MESSAGE LEVEL

426 K------- PREPARE POINTER LIST TO UNIT TEXT-UNITS

 SSSSC8 411S DS9S SSS9S 428 LA R1,Z99T1NIT R1=A(1ST TEXT-UNIT)
 SSSSCC 5S1S DS84 SSS84 429 ST R1,Z99TUPT1 STORE A(1ST TEXT UNIT)
 SSSSDS 411S DSAS SSSAS 43S LA R1,Z99T2NIT R1=A(2ND TEXT-UNIT)
 SSSSD4 5S1S DS88 SSS88 431 ST R1,Z99TUPT2 STORE A(2ND TEXT UNIT)
 SSSSD8 411S DSD8 SSSD8 432 LA R1,Z99T3NIT R1=A(3RD TEXT-UNIT)
 SSSSDC 5S1S DS8C SSS8C 433 ST R1,Z99TUPT3 STORE A(3RD TEXT UNIT)
 SSSSES 968S DS8C SSS8C 434 OI Z99TUPT3,X'8S' INDICATE LAST POINTER

436 K------- PREPARE DDNAME TEXT UNIT

 SSSSE4 D2S1 DS9S C312 SSS9S SS312 438 MVC Z99T1KEY,=AL2(DALDDNAM) SETUP UNIT KEY
 SSSSEA D2S1 DS92 C314 SSS92 SS314 439 MVC Z99T1NUM,=AL2(1) SETUP NUMBER OF ENTRIES
 SSSSFS D2S1 DS94 C316 SSS94 SS316 44S MVC Z99T1LNG,=AL2(8) SETUP PARM LENGTH
 SSSSF6 D2S7 DS96 C2DS SSS96 SS2DS 441 MVC Z99T1DDN(8),=CL8'EKYRESLB' SETUP DDNAME IN PARM

443 K------- PREPARE DSNAME TEXT UNIT

 SSSSFC D2S1 DSAS C318 SSSAS SS318 445 MVC Z99T2KEY,=AL2(DALDSNAM) SETUP UNIT KEY
 SSS1S2 D2S1 DSA2 C314 SSSA2 SS314 446 MVC Z99T2NUM,=AL2(1) SETUP NUMBER OF ENTRIES
 SSS1S8 D2S1 DSA4 C31A SSSA4 SS31A 447 MVC Z99T2LNG,=AL2(44) SETUP PARM LENGTH
 SSS1SE D22B DSA6 C2D8 SSSA6 SS2D8 448 MVC Z99T2DSN(44),=CL44'KOE.DPM12S.LOAD' DSNAME IN PARM

45S K------- PREPARE DATASET STATUS TEXT UNIT

 SSS114 D2S1 DSD8 C31C SSSD8 SS31C 452 MVC Z99T3KEY,=AL2(DALSTATS) SETUP UNIT KEY
 SSS11A D2S1 DSDA C314 SSSDA SS314 453 MVC Z99T3NUM,=AL2(1) SETUP NUMBER OF ENTRIES
 SSS12S D2S1 DSDC C314 SSSDC SS314 454 MVC Z99T3LNG,=AL2(1) SETUP PARM LENGTH
 SSS126 92S8 DSDE SSSDE 455 MVI Z99T3ST,X'S8' SETUP DISPOSITION

457 K------- LETS CALL SVC 99 FOR DYNAMIC ALLOCATION

 SSS12A 411S DS48 SSS48 459 LA R1,Z99RBPTR R1=A(RB-POINTER)

46S DYNALLOC , AND CALL SVC 99

 SSS13S 12FF 464 LTR R15,R15 IS ALL OK?
 SSS132 477S C13E SS13E 465 BNZ ALERROR YES -> RETURN TO CALLER

 467 K--K

468 K DYNAMIC ALLOCATION WAS SUCESSFULL. K
 469 K K

47S K - RECORD IN OUR GETMAINED-AREA THAT THE DYNAMIC ALLOCATION K
471 K WAS PERFORMED BY THIS EXIT ROUTINE. K
472 K - BRANCH TO RETURN WITH A RETURN-CODE S. K

 473 K--K

 SSS136 96E8 9S2S SSS2S 475 OI OURALLO,OURALLOY EKYRESLB ALLOCATED BY US
 SSS13A 47FS C294 SS294 476 B RETURNS

Figure 79 (Part 7 of 12). Sample EKYRESLB Dynamic Allocation Exit

308 Customization Guide

 478 K--K

479 K DYNAMIC ALLOCATION FAILED. K
 48S K K

481 K - ISSUE ERROR-MESSAGE. K
482 K - BRANCH TO RETURN WITH A RETURN-CODE 4. K

 483 K--K

 SSS13E 485 ALERROR DS SH

486 WTO 'EKYEDA1A: DYNAMIC ALLOCATION OF //EKYRESLB FAILED', C
 ROUTCDE=11

 SSS18S 47FS C29C SS29C 497 B RETURN4
 499 KK
 5SS KK
 5S1 KK
 5S2 KKKK KKKK

5S3 KKKK 'DE' (DE-ALLOCATE) CALL KKKK
5S4 KKKK - THE EXIT IS INVOKED TO ALLOW A DYNAMIC KKKK
5S5 KKKK DE-ALLOCATION OF THE EKYRESLB DD STATEMENT KKKK

 5S6 KKKK KKKK
 5S7 KK
 5S8 KK
 5S9 KK

 SSS184 511 DEALLOC DS SH
 SSS184 91E8 9S2S SSS2S 512 TM OURALLO,OURALLOY DID WE ALLOCATE?
 SSS188 478S C294 SS294 513 BZ RETURNSNO>>>RETURN

 515 K--K

516 K PERFORM THE DYNAMIC DE-ALLOCATION BY PREPARING: K
517 K - DYNALLOC REQUEST BLOCK K
518 K - DYNALLOC REQUEST BLOCK EXTENSION K
519 K - DYNALLOC TEXT UNITS K
52S K AND BY CALLING THE DYNALLOC MACRO. K

 521 K K
522 K PLEASE REFER TO MVS/ESA DOCUMENTATION, IF YOU NEED K
523 K EXPLANATIONS ON THIS SUBJECT. K

 524 K--K

526 K------- PREPARE SVC 99 REQUEST BLOCK

 SSS18C D792 DS4C DS4C SSS4C SSS4C 528 XC Z99RB(Z99END-Z99RB),Z99RB CLEAR SVC 99 RB/PARMS

 SSS192 411S DS4C SSS4C 53S LA R1,Z99RB GET POINTER TO RB AREA
 SSS196 5S1S DS48 SSS48 531 ST R1,Z99RBPTR STORE ADDRESS INTO RBPTR
 SSS19A 968S DS48 SSS48 532 OI Z99RBPTR,X'8S' AND TURN HIGH BIT ON
 SSS19E 9214 DS4C SSS4C 533 MVI Z99RBLN,Z99RBEND-Z99RB SETUP CB LENGTH
 SSS1A2 92S2 DS4D SSS4D 534 MVI Z99VERB,Z99VRBUN SETUP VERB CODE
 SSS1A6 92SS DS4E SSS4E 535 MVI Z99FLG11,S SETUP FLAG BYTES
 SSS1AA 411S DS84 SSS84 536 LA R1,Z99TUPL GET POINTER TO TEXT UNITS
 SSS1AE 5S1S DS54 SSS54 537 ST R1,Z99TXTPP AND STORE INTO RB
 SSS1B2 411S DS6S SSS6S 538 LA R1,Z99RBX GET POINTER TO RB EXTENSION
 SSS1B6 5S1S DS58 SSS58 539 ST R1,Z99Z99X AND STORE INTO RB

541 K------- PREPARE REQUEST BLOCK EXTENSION

 SSS1BA D2S5 DS6S C3SC SSS6S SS3SC 543 MVC Z99EID,=CL6'S99RBX' SETUP REQUEST BLOCK ID
 SSS1CS 92S1 DS66 SSS66 544 MVI Z99EVER,Z99RBXVR SETUP VERSION NUMBER
 SSS1C4 9284 DS67 SSS67 545 MVI Z99EOPTS,Z99EIMSG+Z99EWTP REQUEST MESSAGE WRITING
 SSS1C8 92SS DS6A SSS6A 546 MVI Z99EMGSV,Z99XINFO SETUP MESSAGE LEVEL

548 K------- PREPARE POINTER LIST TO UNIT TEXT-UNITS

 SSS1CC 411S DS9S SSS9S 55S LA R1,Z99T1NIT R1=A(1ST TEXT UNIT)
 SSS1DS 5S1S DS84 SSS84 551 ST R1,Z99TUPT1 STORE A(1ST TEXT UNIT)
 SSS1D4 968S DS84 SSS84 552 OI Z99TUPT1,X'8S' INDICATE LAST POINTER

Figure 79 (Part 8 of 12). Sample EKYRESLB Dynamic Allocation Exit

 Chapter 6. EKYRESLB Dynamic Allocation Exit Routine 309

554 K------- PREPARE DDNAME TEXT UNIT

 SSS1D8 D2S1 DS9S C312 SSS9S SS312 556 MVC Z99T1KEY,=AL2(DALDDNAM) SETUP UNIT KEY
 SSS1DE D2S1 DS92 C314 SSS92 SS314 557 MVC Z99T1NUM,=AL2(1) SETUP NUMBER OF ENTRIES
 SSS1E4 D2S1 DS94 C316 SSS94 SS316 558 MVC Z99T1LNG,=AL2(8) SETUP PARM LENGTH
 SSS1EA D2S7 DS96 C2DS SSS96 SS2DS 559 MVC Z99T1DDN(8),=CL8'EKYRESLB' SETUP DDNAME IN PARM

561 K------- LETS CALL SVC 99 FOR DYNAMIC DE-ALLOCATION

 SSS1FS 411S DS48 SSS48 563 LA R1,Z99RBPTR R1=A(RB-POINTER)

564 DYNALLOC , AND CALL SVC 99

 SSS1F6 12FF 568 LTR R15,R15 DE-ALLOCATION OK?
 SSS1F8 478S C294 SS294 569 BZ RETURNS ...YES>>>RETURN

 571 K--K

572 K DYNAMIC DE-ALLOCATION FAILED K
 573 K K

574 K - ISSUE ERROR-MESSAGE. K
575 K - BRANCH TO RETURN WITH A RETURN-CODE S K
576 K (SINCE DE-ALLOCATION FAILURES DO NOT PREVENT K
577 K SUCCESSFUL DPROP OPERATIONS, IT IS BY PURPOSE THAT WE K
578 K RETURN WITH RC=S -- AS OPPOSED TO RC=4). K

 579 K--K

581 WTO 'EKYEDA3E: DYNAMIC DE-ALLOCATION OF //EKYRESLB FAILED', C
 ROUTCDE=11

 SSS23E 47FS C294 SS294 592 B RETURNS RETURN WITH ZERO RC
 594 KK
 595 KK
 596 KK
 597 KKKK KKKK

598 KKKK INVALID CALL FUNCTION IN DAECALL. KKKK
 599 KKKK KKKK
 6SS KK
 6S1 KK
 6S2 KK

 SSS242 6S4 INVFUNC DS SH

6S5 WTO 'EKYEDA2E: INVALID CALL-FUNCTION FOR EKYEDA1A', C
 ROUTCDE=11

 SSS27E 586S C3S4 SS3S4 616 L R6,=X'99999999' R6= ABEND REASON CODE

 618 ABEND 11S6,REASON=(R6),DUMP
 627 KK
 628 KK
 629 KK
 63S KKKK KKKK
 631 KKKK RETURN LOGIC: KKKK

632 KKKK - RETURN TO CALLER OF EXIT KKKK
 633 KKKK KKKK
 634 KK
 635 KK
 636 KK
 637 KK

 SSS294 639 RETURNS DS SH
 SSS294 41FS SSSS SSSSS 64S LA R15,S LOAD S AS RETURN-CODE
 SSS298 47FS C2AS SS2AS 641 B RETURN99

 SSS29C 643 RETURN4 DS SH
 SSS29C 41FS SSS4 SSSS4 644 LA R15,4 LOAD 4 AS RETURN-CODE

Figure 79 (Part 9 of 12). Sample EKYRESLB Dynamic Allocation Exit

310 Customization Guide

 SSS2AS 646 RETURN99 DS SH
 SSS2AS 181D 647 LR R1,R13 R1=A(AREA TO BE FREEMAINED)
 SSS2A2 58DD SSS4 SSSS4 648 L R13,4(R13) R13=A(HIGHER SAVE AREA)
 SSS2A6 183F 649 LR R3,R15 SAVE RETURN-CODE INTO R3
 65S FREEMAIN RU,LV=GETML,A=(R1)

 SSS2CS 18F3 663 LR R15,R3 RESTORE RETURN-CODE INTO R15
 SSS2C2 98SC DS14 SSS14 664 LM RS,R12,2S(R13) RELOAD REGISTERS OF CALLER
 SSS2C6 58ED SSSC SSSSC 665 L R14,12(R13) RELOAD REGISTER 14 OF CALLER
 SSS2CA 96S1 DSSF SSSSF 666 OI 15(R13),X'S1' SET RETURN INDICATION
 SSS2CE S7FE 667 BR R14 RETURN TO CALLER

 SSS2DS 669 LTORG
 SSS2DS C5D2E8D9C5E2D3C2 67S =CL8'EKYRESLB'
 SSS2D8 D2D6C54BC4D7D4F1 671 =CL44'KOE.DPM12S.LOAD'
 SSS3S4 99999999 672 =X'99999999'
 SSS3S8 C1D3 673 =CL2'AL'
 SSS3SA C4C5 674 =CL2'DE'
 SSS3SC E2F9F9D9C2E7 675 =CL6'S99RBX'
 SSS312 SSS1 676 =AL2(DALDDNAM)
 SSS314 SSS1 677 =AL2(1)
 SSS316 SSS8 678 =AL2(8)
 SSS318 SSS2 679 =AL2(DALDSNAM)
 SSS31A SS2C 68S =AL2(44)
 SSS31C SSS4 681 =AL2(DALSTATS)

683 EKYDAE , EXIT INTERFACE CONTROL BLOCK

 SSS12S SSS2S 749 ORG DAEUSER
 SSSS2S SS 75S OURALLO DC X'SS' ALLOCATION FLAG

SSSE8 751 OURALLOY EQU C'Y' ...EKYRESLB ALLOCATED BY EKYEDA1A
 SSSS21 SS12S 752 ORG
 754 KK
 755 KK
 756 KK

757 KKKK DESCRIPTION OF GETMAINED AREA CONTAINING AMONG OTHER: KKK
 758 KKKK - SAVEAREA KKK

759 KKKK - EXIT WORKSPACE KKK
 76S KK
 761 KK
 762 KK

 SSSSSS 764 GETM DSECT
 765 KK
 766 K REGISTER SAVEAREA K
 767 KK
 SSSSSS 768 SAVE DS 18F'S' REGISTER SAVEAREA

 77S KK

771 K WORK SPACE FOR EXIT K
 772 KK

 774 K--K

775 K SVC 99 REQUEST BLOCK-POINTER K
 776 K--K
 SSSS48 SSSSSSSS 777 Z99RBPTR DC F'S' REQUEST BLOCK POINTER

 779 K--K
78S K SVC 99 REQUEST BLOCK K

 781 K--K
 SSSS4C 782 Z99RB DS SF
 SSSS4C 783 Z99RBLN DS CL1 LENGTH OF REQUEST BLOCK
 SSSS4D 784 Z99VERB DS CL1 VERB CODE

SSSS1 785 Z99VRBAL EQU X'S1' ALLOCATION

Figure 79 (Part 10 of 12). Sample EKYRESLB Dynamic Allocation Exit

 Chapter 6. EKYRESLB Dynamic Allocation Exit Routine 311

SSSS2 786 Z99VRBUN EQU X'S2' UNALLOCATION
SSSS3 787 Z99VRBCC EQU X'S3' CONCATENATION
SSSS4 788 Z99VRBDC EQU X'S4' DECONCATENATION
SSSS5 789 Z99VRBRI EQU X'S5' REMOVE IN-USE
SSSS6 79S Z99VRBDN EQU X'S6' DDNAME ALLOCATION
SSSS7 791 Z99VRBIN EQU X'S7' INFORMATION RETRIEVAL

 SSSS4E 792 Z99FLAG1 DS SCL2 FLAGS
 SSSS4E 793 Z99FLG11 DS CL1 FIRST FLAGS BYTE
 SSSS4F 794 Z99FLG12 DS CL1 SECOND BYTE OF FLAGS

 SSSS5S 796 Z99RSC DS SCL4 REASON CODE FIELDS
 SSSS5S 797 Z99ERROR DS XL2 ERROR REASON CODE
 SSSS52 798 Z99INFO DS XL2 INFORMATION REASON CODE

 SSSS54 8SS Z99TXTPP DS F ADDR OF LIST OF TEXT UNIT PTRS
 SSSS58 8S1 Z99Z99X DS F ADDR OF REQ BLK EXTENSION

 SSSS5C 8S3 Z99FLAG2 DS SCL4 FLAGS FOR AUTHORIZED FUNCTIONS
 SSSS5C 8S4 Z99FLG21 DS CL1 FIRST BYTE OF FLAGS

SSS4S 8S5 Z99WTDSN EQU X'4S' ALLOC FUNCTION-WAIT FOR DSNAME
SSS1S 8S6 Z99WTUNT EQU X'1S' ALLOC FUNCTION-WAIT FOR UNITS

 SSSS5D 8S7 Z99FLG22 DS CL1 SECOND BYTE OF FLAGS
 SSSS5E 8S8 Z99FLG23 DS CL1 THIRD BYTE OF FLAGS
 SSSS5F 8S9 Z99FLG24 DS CL1 FOURTH BYTE OF FLAGS

SSS6S 81S Z99RBEND EQU K END MARKER

 812 K---K
813 K SVC 99 REQUEST BLOCK EXTENSION

 814 K---K
 SSSS6S 815 Z99RBX DS SD REQUEST BLOCK EXTENSION
 SSSS6S 816 Z99EID DS CL6 CONTROL BLOCK ID ='S99RBX'
 SSSS66 817 Z99EVER DS CL1 VERSION NUMBER

SSSS1 818 Z99RBXVR EQU X'S1' CURRENT VERSION NUMBER
 SSSS67 819 Z99EOPTS DS CL1 PROCESSING OPTIONS

SSS8S 82S Z99EIMSG EQU X'8S' ISSUE MSG BEFORE RETURNING
 821 K TO CALLER

SSSS4 822 Z99EWTP EQU X'S4' USE WTO FOR MESSAGE OUTPUT
 SSSS68 823 DS CL2 SUBPOOL FOR MESSAGE BLOCKS
 SSSS6A 824 Z99EMGSV DS CL1 SEVERITY LEVEL FOR MESSAGES
 825 K PROCESSING

SSSSS 826 Z99XINFO EQU X'SS' INFORMATIONAL MSG SEVERITY
SSSS4 827 Z99XWARN EQU X'S4' WARNING MESSAGE SEVERITY
SSSS8 828 Z99XSEVE EQU X'S8' SEVERE MESSAGE SEVERITY

 SSSS6B 829 DS CL1 NUMBER OF MESSAGE BLOCKS
 83S K RETURNED
 SSSS6C 831 Z99ECPPL DS 6F ADDRESS OF CPPL

 833 K---K
834 K SVC 99 TEXT UNIT POINTER LIST

 835 K---K

 SSSS84 837 Z99TUPL DS SF TEXT UNIT POINTER LIST
 SSSS84 838 Z99TUPT1 DS F POINTER TO 1ST TEXT UNIT
 SSSS88 839 Z99TUPT2 DS F POINTER TO 2ND TEXT UNIT
 SSSS8C 84S Z99TUPT3 DS F POINTER TO 3RD TEXT UNIT

 842 K---K
843 K SVC 99 TEXT UNIT'S

 844 K---K

Figure 79 (Part 11 of 12). Sample EKYRESLB Dynamic Allocation Exit

312 Customization Guide

 SSSS9S 846 Z99T1NIT DS SD 1ST TEXT UNIT -- DDNAME
 SSSS9S 847 Z99T1KEY DS XL2 KEY
 SSSS92 848 Z99T1NUM DS XL2 NO. OF ENTRIES
 SSSS94 849 Z99T1ENT DS SC ENTRY OF LENGTH+PARAMETER
 SSSS94 85S Z99T1LNG DS XL2 LENGH OF PARAMTER
 SSSS96 851 Z99T1DDN DS CL8 DDN PARAMETER

 SSSSAS 853 Z99T2NIT DS SD 2ND TEXT UNIT -- DSNAME
 SSSSAS 854 Z99T2KEY DS XL2 KEY
 SSSSA2 855 Z99T2NUM DS XL2 NO. OF ENTRIES
 SSSSA4 856 Z99T2ENT DS SC ENTRY OF PARAMETER
 SSSSA4 857 Z99T2LNG DS XL2 LENGH OF 1ST (OR ONLY) PARAMETER
 SSSSA6 858 Z99T2DSN DS CL44 DSN PARAMETER

 SSSSD8 86S Z99T3NIT DS SD 3RD TEXT UNIT -- DATASET STATUS
 SSSSD8 861 Z99T3KEY DS XL2 KEY
 SSSSDA 862 Z99T3NUM DS XL2 NO. OF ENTRIES
 SSSSDC 863 Z99T3ENT DS SC LENGTH OF PARAMETER
 SSSSDC 864 Z99T3LNG DS XL2 LENGH OF 1ST (OR ONLY) PARAMETER
 SSSSDE 865 Z99T3ST DS CL1 STATUS PARAMETER

SSSDF 867 Z99END EQU K END OF SVC 99 INFO

SSSDF 869 GETML EQU K-GETM LENGTH OF GETMAINED AREA
871 IEFZB4D2 , TEXT UNIT MNEMONICS

 SSSSSS 1155 END EKYEDA1A

Figure 79 (Part 12 of 12). Sample EKYRESLB Dynamic Allocation Exit

 Chapter 6. EKYRESLB Dynamic Allocation Exit Routine 313

A Chapter 7. TSMF Callable Interface

| This Chapter describes the timestamp marker facility (TSMF) callable interface.
| This interface is used with LOG-ASYNC.

A The timestamp marker facility (TSMF) callable interface allows a user application
A program to create a stop timestamp marker (TSM) for one or more propagation
A groups. Refer to IMS DPROP Reference for details on the use of TSMs.

A The user application program can pass the stop timestamp in ISO/DB2 format
A (local time) or in MVS TOD time format (GMT time).

A The user application program must include the object module EKYT099X in its
A link-edit. EKYT099X is an assembler module provided with IMS DPROP to
A dynamically link the user application program with the TSMF. This means that if
A changes are made to IMS DPROP, the user application program does not need to
A be relinked.

A The TSMF callable interface provides an alternative to the SCU for creating group
A stop timestamps. The JCL to run the user application program should fulfill the
A requirements for the JCL used to run the SCU with the CREATETSM STOP control
A statement. Refer to IMS DPROP Reference for details on using the SCU.

A TSMF Callable Interface Parameters
A The user application program invokes one of two entry points within EKYT099X,
A depending on the format of timestamp being passed:

A EKYBS97X (RC,TODTIME,ID,GRPLIST_COUNT,GRPLIST_ARRAY)
A EKYBS98X (RC,DB2TIME,ID,GRPLIST_COUNT,GRPLIST_ARRAY)

A The parameters to be used when you call EKYT099X are detailed in Figure 80.

A Figure 80. Parameters passed to the TSMF callable interface

A ParameterA TypeA No.
A of
A Bytes

A Purpose

A RCA BIN(31)A 4A Passes the return code back to the caller.

A DB2TIMEA BIT(64)A 8A Contains ISO/DB2 format timestamp.

A TODTIMEA CHAR(26)A 26A Contains MVS TOD format timestamp.

A IDA CHAR(8)A 8A Contains the timestamp ID, left aligned,
A padded with blanks. All blanks means that an
A ID is not supplied.

A GRPLIST_COUNTA BIN(31)A 4A Contains the number of group IDs.

A GRPLIST_ARRAYA CHAR(8)A 8A Array of group IDs. Each group ID is 8 bytes,
A left-aligned, padded with blanks.

314 Copyright IBM Corp. 1991,2001

A Calling the TSMF Callable Interface from PL/I
A To call the callable interface from PL/I you must declare the assembler module
A (EKYT97X or EKYT98X) as an external module and then declare the variables and
A array used in the call to the TSMF callable interface. Refer to Figure 81 for an
A example of these declarations.

A /K DECLARE THE ASSEMBLER MODULE (EKYT98X) AS AN EXTERNAL MODULE. K/

A DCL EKYT98X
A ENTRY
A (FIXED BIN(31), /K return code K/
A CHAR(26), /K USERTIME in ISO/DB2 format K/
A CHAR(8), /K TSMID K/
A FIXED BIN(31), /K Count of group IDs K/
A (3) CHAR(8)) /K Array of group IDs, in this case 3 K/
A EXTERNAL OPTIONS(ASSEMBLER INTER);

A /K DECLARE LOCAL VARIABLES K/

A DCL CURRENT_TSTAMP CHAR(26) INIT('1993-S1-S1-SS.SS.SS.SSSSSS');
A
A

A /K DECLARE THE VARIABLES USED IN THE CALL TO THE TSMF CALLABLE K/
A /K INTERFACE. K/

A DCL 1 TSMF,
A 2 RC FIXED BIN(31) INIT(SSSS),
A 2 USERTIME CHAR(26) INIT('SSS1-S1-S1-S1.S1.S1.SSSSS1'),
A 2 TSMID CHAR(8) INIT('DEFAULT '),
A 2 GRPLIST_COUNT FIXED BIN(31) INIT(SSS3);

A /K DECLARE THE ARRAY USED IN THE CALL TO THE TSMF. K/
A /K IN THIS EXAMPLE AN ARRAY WITH THREE GROUP NAMES IS USED. YOU CAN K/
A /K DEFINE AS MANY GROUP NAMES AS YOU WISH BY MAKING THE ARRAY BIGGER K/
A /K AND PASSING THE NUMBER OF GROUP NAMES IN THE GRPLIST_COUNT VARIABLE.K/

A DCL GRPLIST (3) CHAR(8) INIT('GROUPS1 ','GROUPS2 ','GROUP3 ');

A Figure 81. TSMF Callable Interface, Declarations for PL/I

 Chapter 7. TSMF Callable Interface 315

A Figure 82 is an example of how to call the TSMF callable interface from a PL/I
A program by using EKYT98X. The PL/I program uses a timestamp which is in DB2
A format.

A /K SET THE VARIABLE VALUES AS APPROPRIATE TO YOUR SITUATION K/

A TSMF.USERTIME = CURRENT_TSTAMP ;
A
A

A /K CALL THE TSMF CALLABLE INTERFACE PASSING A TIMESTAMP IN DB2 FORMAT K/

A CALL EKYT98X(TSMF.RC,
A TSMF.USERTIME,
A TSMF.TSMID,
A TSMF.GRPLIST_COUNT,
A GRPLIST) ;

A /K CHECK THE RETURN CODE FROM THE TSMF CALLABLE INTERFACE AND K/
A /K HANDLE ANY ERRORS WHICH OCCUR. K/

A IF TSMF.RC ¬= S THEN
A DO;
A /K handle error K/
A END;
A END;

A Figure 82. TSMF Callable Interface, Call from a PL/I Program

316 Customization Guide

A Calling the TSMF Callable Interface from COBOL
A To call the callable interface from COBOL you must declare the local variables and
A then declare the variables used in the call to the TSMF callable interface. Refer to
A Figure 83 for an example of this.

A K DECLARE LOCAL VARIABLES K

A WORKING-STORAGE SECTION.

A S1 CURRENT-TSTAMP PIC(26) VALUE
A '1993-S1-S1-SS.SS.SS.SSSSSS'.
A S1
A S1

A K DECLARE THE VARIABLES USED IN THE CALL TO THE TSMF CALLABLE K
A K INTERFACE. K
A K IN THIS EXAMPLE THREE GROUP NAMES ARE SPECIFIED IN THE K
A K VARIABLE TS-GROUPS. YOU CAN DEFINE AS MANY GROUP NAMES AS YOU K
A K WISH BY MAKING THE VARIABLE TS-GROUPS BIGGER AND PASSING THE K
A K NUMBER OF GROUP NAMES IN THE TS-GROUP-COUNT VARIABLE. K

A S1 TSMF-PARMETERS.
A S3 TS-RETURN-CODE PIC 9(8) COMP VALUE ZERO.
A S3 TS-USERTIME PIC X(26) VALUE
A '1994-S2-17-13.SS.SS.SSSSSS'.
A S3 TS-TSMID PIC X(8) VALUE
A 'TSMSSSS3'.
A S3 TS-GROUP-COUNT PIC 9(8) COMP VALUE 3.
A S3 TS-GROUPS PIC X(24) VALUE
A 'GROUPS1 GROUPS2 GROUPS3 '.

A Figure 83. TSMF Callable Interface, Declarations for COBOL

A Figure 84 is an example of how to call the TSMF callable interface from a COBOL
A program by using EKYT98X. The PL/I program uses a timestamp which is in DB2
A format.

A K SET THE VARIABLE VALUES AS APPROPRIATE TO YOUR SITUATION K

A TS-USERTIME = CURRENT-TSTAMP.
A
A

A K CALL THE TSMF CALLABLE INTERFACE PASSING A TIMESTAMP IN DB2 K
A K FORMAT K

A CALL 'EKYT98X' USING BY REFERENCE
A TS-RETURN-CODE,
A TS-USERTIME,
A TS-TSMID,
A TS-GROUP-COUNT,
A TS-GROUPS.

A IF TS-RETURN-CODE NOT EQUAL ZERO THEN
A K handle error K

A Figure 84. TSMF Callable Interface, Call from a COBOL Program

 Chapter 7. TSMF Callable Interface 317

A Return Codes from the TSMF Callable Interface
A The TSMF Callable Interface provides the following return codes:

A Code Meaning

A 0 Successful creation of stop timestamp for group(s)

A 4 Warning message has been issued.

A One or more of the groups may already have a group stop timestamp equal
A to the timestamp passed by the user application.

A 8 Error message has been issued.

A The group stop timestamp is not created. This result occurs when there is
A insufficient information supplied to the callable interface. For example:
A Unable to Open SCF means that the user did not supply the //EKYSCF DD
A statement.

A 12 Error message has been issued.

A Invalid parameter passed by the user application.

A 16 Error message has been issued.

A The group stop timestamp was not created, probably because of an internal
A DPROP error. It is unlikely that this error would occur as a result of invalid
A data supplied by the user application.

A 20 Error message has been issued

A The group stop timestamp was not created. This error can probably be
A traced to environmental considerations that are not specific to the request.
A For example: Out of Storage means that the request would complete
A normally if there was only one user or if sufficient resources were supplied to
A the system.

318 Customization Guide

Q Chapter 8. EMF Callable Interface

Q The event marker facility (EMF) callable interface allows a user application program
Q to create an event marker (EM) for one or more Propagation Data Streams. Refer
Q to IMS DPROP Reference for details on the use of EMs.

Q The EMF callable interface provides an alternative to the Capture System Utility
Q (CUT) for creating Event Markers. The JCL to run the user application program
Q should fulfill the requirements for the JCL used to run the CUT with the EM control
Q statement. Refer to IMS DPROP Reference for details on using the CUT.

Q Note: when the EMF callable interface is called by IMS Batch Application Programs
Q or by a non-IMS Batch Application Programs that isssue their own MQSeries calls,
Q then these Application Programs:

Q � must issue their MQSeries calls through the use of the CSQBRSTB batch stub
Q of MQSeries (this is the RRS batch stub, that provides a RRS-based two phase
Q commit coordination between multiple Resource Managers).

Q � should not issue following types of MQSeries calls: MQCMIT and MQBACK.

Q EMF Callable Interface Parameters
Q The user application program invokes EKYI950X as follows:

Q EKYI95SX (RC,RESERVD,ID,PRSTREAM_COUNT,PRSTREAM_ARRAY)

Q The parameters to be used when you call EKYI950X are detailed in Figure 85.

Q Figure 85. Parameters passed to the EMF callable interface

Q ParameterQ TypeQ No.
Q of
Q Bytes

Q Purpose

Q RCQ BIN(31)Q 4Q Passes the return code back to the caller.

Q RESERVDQ CHAR(26)Q 26Q A reserved Field

Q IDQ CHAR(8)Q 8Q Contains the Event Marker ID, left aligned,
Q padded with blanks.

Q PRSTREAM_COUNTQ BIN(31)Q 4Q Contains the number of PRSTREAM Names.

Q PRSTREAM_ARRAYQ CHAR(8)Q 8Q Array of PRSTREAM Names. Each
Q PRSTREAM Name is 8 bytes, left-aligned,
Q padded with blanks.

 Copyright IBM Corp. 1991,2001 319

Q Calling the EMF Callable Interface from COBOL
Q To call the callable interface from COBOL you must declare the local variables and
Q then declare the variables used in the call to the EMF callable interface. Refer to
Q Figure 86 for an example of this.

Q K DECLARE LOCAL VARIABLES K

Q WORKING-STORAGE SECTION.

Q S1
Q S1

Q K DECLARE THE VARIABLES USED IN THE CALL TO THE EMF CALLABLE K
Q K INTERFACE. K
Q K IN THIS EXAMPLE THREE PRSTREAM NAMES ARE SPECIFIED IN THE K
Q K VARIABLE TS-PRSTREAMS. YOU CAN DEFINE AS MANY PRSTREAM's AS YOU K
Q K WISH BY MAKING THE VARIABLE TS-PRSTREAMS BIGGER AND PASSING THE K
Q K NUMBER OF PRSTREAM NAMES IN THE TS-PRSTREAM-COUNT VARIABLE. K

Q S1 EMF-PARMETERS.
Q S3 TS-RETURN-CODE PIC 9(8) COMP VALUE ZERO.
Q S3 TS-RESERVD PIC X(26) VALUE
Q ' '.
Q S3 TS-EMID PIC X(8) VALUE
Q 'EMSSSS3'.
Q S3 TS-PRSTREAM-COUNT PIC 9(8) COMP VALUE 3.
Q S3 TS-PRSTREAMS PIC X(24) VALUE
Q 'PRSTRS1 PRSTRS2 PRSTRS3 '.

Q Figure 86. EMF Callable Interface, Declarations for COBOL

Q Figure 87 is an example of how to call the EMF callable interface from a COBOL
Q program by using EKYI950X.

Q K CALL THE EMF CALLABLE INTERFACE K

Q CALL 'EKYI95SX' USING BY REFERENCE
Q TS-RETURN-CODE,
Q TS-RESERVD,
Q TS-EMID,
Q TS-PRSTREAM-COUNT,
Q TS-PRSTREAMS.

Q IF TS-RETURN-CODE NOT EQUAL ZERO THEN
Q K handle error K

Q Figure 87. EMF Callable Interface, Call from a COBOL Program

Q Return Codes from the EMF Callable Interface
Q The EMF Callable Interface provides the following return codes:

Q Code Meaning

Q 0 Successful creation of Event Marker.

320 Customization Guide

Q 4 Warning: the requested Event Marker has not been created, for example,
Q because the IMS DPROP Capture System is in emergency stopped status or
Q because the Jobstep executes with a 'PROP OFF' Control Statement in the
Q //EKYIN File.

Q 8 Error: the requested Event Marker has not been created, for example,
Q because a specified PRSTREAM name is not defined in the //EKYTRANS
Q File.

 Chapter 8. EMF Callable Interface 321

A Chapter 9. User-Implemented Asynchronous Data
A Propagation (USER-ASYNC)

| IMS DPROP Version 3 supports two methods of asynchronous propagation:
| MQ-ASYNC and LOG-ASYNC. These methods of asynchronous propagation are
| fully described in the appropriate Administrators Guide for your propagation mode.

| This chapter describes a third method of asynchronous propagation:
| USER-ASYNC. USER-ASYNC propagation is implemented by combining IMS
| DPROP components with user-provided programs. USER-ASYNC propagation was
| previously documented in the IMS DataPropagator for OS/390 and z/OS library
| when IMS DataPropagator for OS/390 and z/OS did not support either MQ-ASYNC
| nor LOG-ASYNC. With the advent of MQ-ASYNC and of LOG-ASYNC, you will no
| longer be required to develop programs to implement your own USER-ASYNC
| solutions. Instead, you can use MQ-ASYNC or LOG-ASYNC methods.

| However, if you still want to implement your own solution, this chapter outlines what
| is required to develop a USER-ASYNC solution.

A User asynchronous propagation can be based on either of the following :

A � The IMS Asynchronous Data Capture function to harden the data on the log

A � A user-written IMS Data Capture exit routine to capture the data and harden it

A Refer to the following for information on the IMS Asynchronous Data Capture
A function and user-written IMS Data Capture exit routines:

A � IMS/ESA Administration Guide: Database Manager
A � IMS/ESA Utilities Reference: Database Manager
A � IMS/ESA Customization Guide

A For a detailed description of the log records written by the IMS Asynchronous Data
A Capture function, see:

A � IMS/ESA Customization Guide

A Implementation Based on IMS Asynchronous Data Capture Function
A IMS application programs update the IMS databases. The IMS Asynchronous Data
A Capture function writes the changed data to the IMS log.

A Later, a program that you write gathers the changed data from the IMS log data
A sets. This program is often referred to as the selector. It selects and gathers
A changed data to be propagated from all those IMS logs that contain changed data.
A It makes the changed data available (in sequential files, for example) for processing
A by another program that you write, the receiver.

A When you want to apply the updates, the receiver accesses or receives the
A changed data, and calls the RUP to update the DB2 table.

A The selector and receiver are discussed in more detail in “Writing A Selector
A Program” on page 326 and “Writing A Receiver Program” on page 327.

A Figure 88 on page 323 provides an overview of this implementation.

322 Copyright IBM Corp. 1991,2001

IMS
Application

Asynchronous
Propagator
(Receiver)

IMS Asynch
Changed Data
Capture
Function

User-provided
Selector

Asynchronous

Transmission of
changed IMS data

Relational
Update
Program

(EKYRUP00)

DB2

IMS DB

IMS
Log

A Figure 88. HR Asynchronous Propagation With the IMS Asynchronous Data Capture
A Function

A An implementation based on the IMS Asynchronous Changed Data Capture
A function supports propagation of updates performed by IMS application programs
A executing in the following environments:

A � IMS Fast Path Regions
A � IMS MPP Regions
A � IMS BMP Regions
A � IMS Batch Regions
A � CICS (only when executing with DBCTL)

A Implementation Based on User-Written IMS Data Capture Exit
A IMS application programs update the IMS databases. The IMS data capture
A function provides the changed data to your IMS Data Capture exit routine, which is
A referred to as the sender program. Your sender program must either store the IMS
A updates until you want to apply the updates to the DB2 table, or send them directly
A to the receiver. When you want to apply the updates, the receiver accesses or
A receives the changed data, and calls the RUP to update the DB2 table. The
A sender and receiver are discussed in more detail in “Writing A Selector Program”
A on page 326 and “Writing A Receiver Program” on page 327.

A Figure 89 on page 324 provides an overview of this implementation.

 Chapter 9. User-Implemented Asynchronous Data Propagation (USER-ASYNC) 323

IMS
Application

Asynchronous
Propagator
(receiver)

IMS
Data
Capture
Function

User-provided
IMS Data Capture
Exit Routine
(sender)

Asynchronous
transmission of
changed IMS data

Relational
Update
Program

(EKYRUP00)

DB2

IMS-DB

A Figure 89. HR Asynchronous Propagation With a User-Written IMS Data Capture Exit
A Routine

A An implementation based on a user-written IMS Data Capture exit routine supports
A propagation of updates performed by IMS application programs executing in the
A following environments:

A � IMS Fast Path Regions
A � IMS MPP Regions
A � IMS BMP Regions
A � IMS Batch Regions

A This implementation does not support propagation of updates performed by IMS
A application programs executing in a CICS environment.

A Developing Your Asynchronous System
A This section explains how you can develop your asynchronous system.

A Setting Up Your Asynchronous System
A You must determine the exact processes that the selector, sender, and receiver
A use to call the RUP asynchronously.

A Because the IMS Data Capture function does not call the RUP directly, your
A programs must provide several processing features that are described in this
A section. Keep these features in mind while developing your asynchronous system.

324 Customization Guide

A Calling the RUP
A The fact that data propagation is asynchronous must be invisible to the RUP. That
A is, your programs must call the RUP in exactly the same way as the IMS Data
A Capture function during synchronous propagation. Therefore, if you develop
A asynchronous propagation based on an IMS Data Capture exit routine, your sender
A must record all the information passed to it by the IMS Data Capture Function. If
A you develop asynchronous propagation based on the IMS Asynchronous Changed
A Data Capture Function, your selector must record all the information available in the
A IMS log records containing changed data. The receiver must call the RUP using
A this information exactly as the IMS Data Capture function uses it. This is discussed
A further in “Writing A Receiver Program” on page 327.

A Programming languages supported
A The RUP can be called from a program written in Assembler, COBOL, PL/I, or C
A languages. However, this too must be transparent to the RUP. Support of COBOL
A and PL/I programs assumes that the RUP can function as though it were called by
A a program written in Assembler.

A Handling the Changed Data
A While you want your programs to be efficient and provide a reasonable throughput,
A your programs must ensure that the propagated data changes are presented to the
A RUP in the correct sequence. Your programs must also avoid losing propagated
A data, or propagating changes multiple times. These situations cause
A inconsistencies between the IMS data and DB2 data.

A When called for asynchronous propagation, the RUP always propagates IMS
A inserts, including those made with an IMS processing option load. Your programs
A must filter out the inserts that you do not want propagated.

A Your programs must also provide some operational support; for example, avoid
A losing changed data in both normal and abnormal situations.

A Propagation Failures
A With asynchronous data propagation, failures do not automatically trigger a
A coordinated backout of the IMS update and the DB2 updates. If you encounter a
A propagation failure, the RUP signals the failure to your calling receiver program.
A The RUP does not perform a rollback.

A Your receiver program must provide the logic to handle any propagation failures
A that can occur. The receiver must not call the RUP after a propagation failure until
A the problem is fixed. This can cause many more data inconsistencies and
A propagation failures.

A More information on error handling for the receiver is discussed in “Writing A
A Receiver Program.” Also, because the RUP can abend, your programs must
A provide restart logic.

A You can also provide trace and audit capabilities for those parts of your system that
A the DPROP tracing functions do not trace.

 Chapter 9. User-Implemented Asynchronous Data Propagation (USER-ASYNC) 325

A Sync Point Processing
A Your asynchronous propagation system must perform its own sync point
A processing. You can begin processing after completing each original unit of work
A (UOW).

A Splitting the IMS Data
A The sender and selector store IMS data. To increase efficiency, split this data into
A parts. Then call multiple copies of the receiver in parallel. Each copy of the
A receiver is called in a distinct address space to process its portion of the IMS data.

A You can split the IMS data many different ways. Examples include splitting the
A data by DBD name, segment type, key range values of the root segment, and so
A on.

A Writing A Selector Program
A The selector gathers the log records containing changed data from the IMS log
A datasets, and makes the data available for receiver processing.

A If multiple IMS subsystems are updating the same databases, the selector needs to
A merge the IMS log records containing changed data in a sequence consistent with
A that in which IMS generated them. If your selector and receiver programs maintain
A the correct sequence, this ensures that your data remains consistent between IMS
A and DB2.

A The selector creates output data sets containing the changed data to be
A propagated. If the receiver executes on a different remote MVS system, the output
A data sets can be transmitted with file transfer programs.

A Processing log records containing changed data requires a detailed understanding
A of the format of these log records. Refer to IMS/ESA Customization Guide for a
A detailed description of these log records.

A Writing A Sender Program
A The sender program is defined to IMS in the DBDGEN as an IMS Data Capture
A exit routine. The sender stores the propagated data changes and IMS Data
A Capture interface information, or sends this information directly to the receiver. If
A the IMS updates are made in an IMS online environment, the sender can
A continuously send the updates to the receiver or a remote destination by inserting
A the data into IMS output messages; or, if the sender and receiver are on different
A MVS systems, the messages can be sent across MSC or ISC links. If you plan to
A temporarily store the updates before sending them to the receiver, you can store
A them in the:

A � IMS log
A � IMS full-function database
A � DEDB sequential dependent segments
A � MVS flat file

A If you store the changed data on the IMS log, use the Remote Recovery Data
A Facility (RRDF) when you send the data to a remote destination or to the receiver.
A For more information on RRDF, refer to RRDF Program Description and
A Operations.

326 Customization Guide

A Remember to present the updates to the RUP in a sequence consistent with that
A which IMS created. If your sender and receiver programs maintain the correct
A sequence, your data remains consistent between IMS and DB2.

A See IMS/ESA Customization Guide for details on the IMS Data Capture interface
A that IMS uses to call the sender. Also, see the next section for more details on
A duplicating the interface to call the RUP.

A Writing A Receiver Program
A The receiver program receives the changed data information from the sender or
A selector, and calls the RUP to update the propagated DB2 table. You can write the
A receiver program in Assembler, COBOL, C, or PL/I. Whatever language you
A choose, the RUP must run as though it were called from an Assembler program.

A Your receiver must provide the necessary JCL to call the RUP. Also, because the
A RUP accesses the DPROP directory, you must provide a usable DB2 plan. If you
A are using DPROP for both synchronous and asynchronous data propagation, you
A must generate two DPROP systems.

A The fact that data propagation is asynchronous must be invisible to the RUP.
A Therefore, your receiver must duplicate the IMS Data Capture interface. This and
A other requirements for the receiver are discussed in more detail below.

A For each job step in which your receiver program calls the RUP, the receiver must
A generate:

A 1. One initialization call to the housekeeping module EKYZ800X. This module
A initializes the DPROP environment.

A 2. One call to the RUP for each changed data segment. Again, the receiver must
A provide all the IMS Data Capture interface information.

A 3. Termination calls to the housekeeping module to complete DPROP activities.

A When calling the RUP, it is very important to present the updates to the RUP in a
A sequence that ensures the consistency of your data between IMS and DB2. To do
A this, present the updates to the RUP in the same sequence as that in which IMS
A created them. The receiver must maintain the concept of the original unit of work
A (UOW) while presenting updates to the RUP.

A Interface Used to Call the RUP
A Your receiver program must duplicate the IMS Data Capture Interface to call the
A RUP. The IMS Data Capture interface consists of eight parts; one part is a
A parameter that is passed to the RUP, and this part contains pointers to the other
A parts. The parameter and pointers include:

A 1. A DL/I XPCB control block containing pointers to the next parts

A 2. One or more DL/I XSDB control blocks

A 3. The output of a DL/I INQY call, which IMS created when the DL/I data changed

A 4. The fully concatenated key of the changed DL/I segment

A 5. The changed DL/I segment (for replace calls, both the before- and
A after-images)

 Chapter 9. User-Implemented Asynchronous Data Propagation (USER-ASYNC) 327

A 6. The hierarchical parent and ancestors of the changed segment, if the IMS data
A capture function provided them

A 7. The DBD version ID

A 8. A 256-byte area reserved for the RUP

A The RUP is called with only one parameter: the XPCB. It contains both a
A description of the data change and pointers to the other information listed above.
A When your receiver program calls the RUP, the receiver program must provide the
A XPCB parameter. The XPCB must have the same format and content as when
A used in the IMS Data Capture interface.

A Your receiver must also provide the RUP with access to all the other information in
A the list above. For example, you must provide the same XSDB control blocks that
A IMS provided to the Data Capture exit routine (the sender) when the segment was
A changed; all of the XSDB fields must be filled in before calling the RUP. You must
A provide the same INQY call output.

A Observe the following conventions for the 256-byte area pointed to by the XPCB:

A � The receiver must initialize this area with binary zeroes before the first call to
A the RUP, and must not change its content afterward.

A � If your receiver program uses more than one XPCB copy, then each XPCB
A copy must point to the same copy of the 256-byte area.

A This interface information is described in detail in IMS/ESA Customization Guide.
A The return and reason codes that the RUP returns to your program are discussed
A in “Error Handling” on page 337.

A To make maintenance and migration activities easier, avoid link-editing your
A receiver program with the RUP. Instead, the receiver must call the RUP
A dynamically. If the receiver is written in Assembler:

A 1. Generate an MVS LOAD macro to load the RUP (EKYRUP00) and save its
A entry point address.

A 2. Provide all interface information.

A 3. Branch to the RUP entry point (using a BASR).

A If the receiver is written in COBOL, you can call the RUP dynamically. Use a Call
A Identifier statement.

A If the receiver is written in PL/I, refer to PL/I documentation for the interface used to
A call an Assembler program.

A XPCB and XSDB Interfaces: The XPCB is the only parameter passed by your
A receiver to the RUP. It is used to provide information about the changed data and
A to point to XSDBs. An XSDB points to, and describes, either a changed segment
A occurrence or a physical ancestor of a changed segment.

A IMS defines the XPCB and the XSDB control blocks.

328 Customization Guide

A 1
A ┌───────────┐
A │ XPCB │
A │ │
A │ │
A │ │ 2
A │ ├───────────────────────────� Fully concatenated key of
A │ │ changed IMS segment
A │ │
A │ │
A │ │
A │ │ 3 ┌─────────┐
A │ │ │ XSDB │
A │ ├────────� │ changed │──────� Data of changed IMS segment
A │ │ │ segment │
A │ │ └─────────┘
A │ │
A │ │
A │ │ 4 ┌─────────┐
A │ │ │ XSDB │
A │ ├────────� │ "before │──────� "Before─replace"
A │ │ │ image" │ Data of changed IMS segment
A │ │ └─────────┘
A │ │
A │ │
A │ │ 5 ┌─────────┐
A │ │ │ XSDB │
A │ ├────────� │ Path │──────� Data of root IMS segment
A │ │ │ Data │
A │ │ └────┬────┘
A │ │ │
A │ │ �
A │ │ ┌─────────┐
A │ │ │ XSDB │
A │ │ │ Path │──────� Data of ancestor of changed IMS segment
A │ │ │ Data │
A │ │ └─────────┘
A │ │ │
A │ │ │
A │ │ �
A │ │ ┌─────────┐
A │ │ │ XSDB │
A │ │ │ Path │──────� Data of parent of changed IMS segment
A │ │ │ Data │
A │ │ └─────────┘
A │ │
A │ │ 6
A │ ├───────────────────────────� DBD─version ID
A │ │
A │ │
A │ │
A │ │
A │ │ 7 ┌─────────┐
A │ │ │ INQY │
A │ ├────────� │ Output │──────� Recovery Token
A │ │ │ Area │
A │ │ └─────────┘
A │ │
A │ │
A │ │ 8
A │ │ 256─Byte Area
A │ ├───────────────────────────� (reserved for RUP─usage)
A │ │
A │ │
A │ │
A └───────────┘

A Figure 90. The XPCB and XSDB Control Block Structure

A As shown by the numbered sections of the figure, the interface consists of:

A 1. One XPCB control block, which provides a description of the changed data and
A contains various pointers.

A 2. A pointer to the fully concatenated key of the changed segment.

A 3. A pointer to the XSDB control block describing the changed segment. This
A XSDB points to the data of the changed segment.

A 4. For Replace operations, a pointer to an XSDB describing the segment before it
A was replaced. The XSDB also points to the data of the before image of the
A segment.

 Chapter 9. User-Implemented Asynchronous Data Propagation (USER-ASYNC) 329

A 5. A pointer to the first XSDB in a chain of XSDBs for the hierarchical ancestors
A of the changed segment. The chain is in descending hierarchical order, with
A each XSDB pointing to the segment data of the segment itself and to the next
A XSDB in descending order.

A 6. A pointer to the DBD version ID.

A 7. A pointer to an area containing the output of an implied IMS INQY ENVIRON
A call.

A 8. A pointer to a 256-byte area reserved for RUP-usage.

A The XPCB Control Blocks: Figure 91 on page 331 shows the DSECT for the
A XPCB. In the figure, each field is marked with a note number, which refers to a
A note (located after the figure) describing how the receiver should set the field.

A You can generate the XPCB control block (together with the XSDB and the output
A area of an IMS INQY call) by coding the EKYRCDL1 macro statement.

330 Customization Guide

A 1 EKYRCDL1
A 3+KKK
A 4+K K
A 5+K E X T E N D E D D A T A B A S E P C B -- X P C B K
A 6+K K
A 7+KKK
A SSSSSS 9+XPCB DSECT , NOTE
A SSSSSS 1S+XPCBEYE DS CL4 2.a "XPCB" EYECATCHER
A SSSSS4 11+XPCBVER DS CL2 2.b XPCB VERSION INDICATOR
A SSSSS6 12+XPCBREL DS CL2 2.c XPCB RELEASE INDICATOR
A SSSSS8 13+XPCBEXIT DS CL8 1.a SEGMENT USER EXIT NAME
A SSSS1S 14+XPCBRC DS H 11 RETURN-CODE
A SSSS12 15+XPCBRSNC DS H 11 REASON-CODE
A SSSS14 16+XPCBDBD DS CL8 3 PHYSICAL DATA BASE NAME
A SSSS1C 17+XPCBVERA DS A 4 ADDRESS OF DBD VERSION ID
A SSSS2S 18+XPCBSEG DS CL8 3 PHYSICAL SEGMENT NAME
A SSSS28 19+XPCBCALL DS CL4 3 'CALL FUNCTION' DEFINED BY IMS/ESA
A 2S+K ISRT: INSERT
A 21+K REPL: REPLACE
A 22+K DLET: DELETE
A 23+K CASC: CASCADING DELETE
A 24+K DLLP: NOW ALSO DELETD FROM LOGI.PATH
A SSSS2C 25+XPCBPCALL DS CL4 3 'PHYSICAL UPDATE TYPE' DEFINED BY IMS
A 26+K ISRT: INSERT
A 27+K REIN: RE-INSERT VIA LOGICAL PATH
A 28+K REPL: REPLACE
A 29+K DLET: DELETE
A 3S+K DLPP: DELETED ONLY FROM PHYSIC. PATH
A SSSS3S 31+ DS CL4 1.a RESERVED
A SSSS34 32+XPCBPCBA DS A 1.b ADDRESS OF DB PCB
A SSSS38 33+XPCBPCBN DS CL8 1.a NAME OF DB PCB
A SSSS4S 34+XPCBINQA DS A 5 ADDRESS OF "INQY" OUTPUT
A SSSS44 35+XPCBIOPA DS A 1.b ADDRESS OF I/O PCB
A SSSS48 36+ DS H 1.b RESERVED
A SSSS4A 37+XPCBCKEYL DS H 3 LENGTH OF FULLY CONCATENATED KEY
A SSSS4C 38+XPCBCKEYA DS A 6 ADDRESS OF FULLY CONCATENATED KEY
A SSSS5S 39+XPCBXSDBD DS A 7 ADDRESS OF XSDB FOR DATA
A SSSS54 4S+XPCBXSDBB DS A 8 ADDRESS OF XSDB FOR REPL DATA
A SSSS58 41+XPCBXSDBP DS A 9 ADDRESS OF XSDB FOR PATH DATA
A SSSS5C 42+ DS F 1.b RESERVED
A SSSS6S 43+ DS F 1.b RESERVED
A SSSS64 44+ DS F 1.b RESERVED
A SSSS68 45+XPCBEXIWP DS A 1S ADDRESS OF 256-BYTE AREA RESERVED FOR RUP
A SSSS6C 46+ DS F 1.b RESERVED
A SSSS7S 47+ DS F 1.b RESERVED
A SSSS74 48+XPCBTIMST DS CL8 3 TIMESTAMP OF CALL
A SSSS7C 49+ DS F 1.b RESERVED
A SSS8S 5S+XPCBLEN EQU K-XPCB LENGTH OF XPCB

A Figure 91. Extended Program Communication Block (XPCB)

A Notes:

A 1. Before calling the RUP, the receiver should set:

A a. Blanks in the XPCB fields
A b. Binary zeroes in the XPCB fields

A 2. Before calling the RUP, the receiver should initialize the following fields of the
A XPCB with constants as follows:

A XPCBEYE Should be initialized with the value XPCB
A XPCBVER Should be initialized with the value V1
A XPCBREL Should be initialized with the value R1

A 3. Before calling the RUP, the receiver should set the XPCB fields identified with
A 3, to the value provided by IMS, either:

A � In the XPCB, when calling your user-written IMS Data Capture exit routine

 Chapter 9. User-Implemented Asynchronous Data Propagation (USER-ASYNC) 331

A � In the CAPD block of the changed data capture IMS log records, if using
A the IMS Asynchronous Data Capture function

A 4. XPCBVERA (pointer to the DBD Version ID):

A Before calling the RUP, the receiver should provide in this field a pointer to a
A variable-length character string that contains the DBD version. Unless the
A character string is set from the DBD VERSION= keyword, it will be the time
A stamp of the DBDGEN. The first two bytes are a halfword containing the
A length of the string, and are followed by the string itself.

A The DBD Version ID must have the same value provided by IMS either:

A � Via the XPCBVERA pointer, when calling your user-written IMS Data
A Capture exit routine

A � In the changed data capture IMS log record, if using the IMS Asynchronous
A Data Capture function

A 5. XPCBINQA (pointer to INQY ENVIRON output area):

A Before calling the RUP, the receiver should provide in this field a pointer to an
A area that has the same layout as the output area of a INQY ENVIRON DL/I
A call. See “The INQY ENVIRON output area” on page 335 for more information
A on the output area.

A 6. XPCBCKEYA (pointer to the fully concatenated key)

A Before calling the RUP, the receiver should provide in this field a pointer to the
A fully concatenated key of the changed IMS segment.

A The fully concatenated key must have the same value provided by IMS either:

A � Via the XPCBCKEYA pointer, when calling your user-written IMS Data
A Capture exit routine

A � In the changed data capture IMS log record, if using the IMS Asynchronous
A Data Capture function

A 7. XPCBXSDBD (pointer to the XSDB describing changed segment):

A Before calling the RUP, the receiver should provide in this field a pointer to the
A XSDB control block describing the changed IMS segment.

A Your receiver should set this field to zero before calling RUP if IMS does not
A provide a description of the changed IMS segment:

A � In an XSDB control block, when calling your user-written IMS Data Capture
A exit routine, or

A � In a CAPD_DATA block in the changed data capture IMS log records

A 8. XPCBXSDBB (pointer to the XSDB describing the “before-image” of the
A changed segment):

A Before calling the RUP, the receiver should provide in this field a pointer to the
A XSDB control block describing the before-image of the changed IMS segment.

A Your receiver should set this field to zero before calling RUP if IMS does not
A provide a description of the before-image of the changed IMS segment either:

A � In an XSDB control block, when calling your user-written IMS Data Capture
A exit routine, or

A � In a CAPD_DATA block within the changed data capture IMS log records

332 Customization Guide

A 9. XPCBXSDBP (pointer to the first XSDB describing the segments in the
A hierarchic path, in descending order, above the changed segment):

A Before calling the RUP, the receiver should provide in this field a pointer to the
A XSDB control block that describes the first segment in the hierarchic path
A above the changed segment.

A Your receiver should set this field to zero before calling RUP if IMS does not
A provide a description of the segments in the hierarchic path above the changed
A segment either:

A � In XSDB Control blocks when calling your user-written IMS Data Capture
A exit routine, or

A � In CAPD_DATA blocks within the changed data capture IMS log records.

A 10. XPCBEXIWP (pointer to a 256-byte area reserved for RUP):

A Before calling the RUP, the receiver should provide in this field a pointer to a
A 256-byte area reserved for RUP usage.

A Your receiver should observe the following conventions for the 256-byte that
A area the XPCB points to:

A � The receiver must initialize this area with binary zeroes before the first call
A to the RUP.

A � The receiver must not change its content afterward.

A If your receiver uses more than one XPCB copy, then each XPCB copy should
A point to the same copy of the 256-byte area.

A 11. XPCBRC and XPCBRSNC (return code and reason code)

A The RUP returns on call completion a return code and a reason code in these
A fields. See “Error Handling” on page 337 for a description of the return codes
A and reason codes.

A The XSDB Control blocks: Figure 92 on page 334 shows the DSECT for the
A XSDB. In the figure, each field is marked with a note number, which refers to a
A note (located after the figure) describing how the receiver should set the field.

A You can generate the XSDB control block (together with the XPCB and the output
A area of an IMS INQY call) by coding the EKYRCDL1 macro statement.

 Chapter 9. User-Implemented Asynchronous Data Propagation (USER-ASYNC) 333

A 52+KKK
A 53+K K
A 54+K E X T E N D E D S E G M E N T D A T A -- X S D B K
A 55+K K
A 56+KKK
A SSSSSS 58+XSDB DSECT , NOTE
A SSSSSS 59+XSDBEYE DS CL4 2.a "XSDB" EYECATCHER
A SSSSS4 6S+XSDBVER DS CL2 2.b XSDB VERSION INDICATOR
A SSSSS6 61+XSDBREL DS CL2 2.c XSDB RELEASE INDICATOR
A SSSSS8 62+XSDBNXSDB DS A 4 NEXT XSDB POINTER
A SSSSSC 63+XSDBDBD DS CL8 8 PHYSICAL DATA BASE NAME
A SSSS14 64+XSDBSEG DS CL8 3 PHYSICAL SEGMENT NAME
A SSSS1C 65+XSDBPHP DS CL1 5 PHYSICAL PATH ACCESSIBILITY
A SSSE8 66+XSDBPHPY EQU C'Y' ...SEGM ACCESSIBLE VIA PHYSICAL PATH
A SSSD5 67+XSDBPHPN EQU C'N' ...SEGM NOT ACCESSIBLE VIA PH. PATH
A SSSS1D 68+ DS CL3 1.a RESERVED
A SSSS2S 69+XSDBSEGLV DS H 3 SEGMENT DATA BASE LEVEL
A SSSS22 7S+XSDBKEYL DS H 3 LENGTH OF PHYSICAL KEY
A SSSS24 71+XSDBKEYA DS A 6 ADDRESS OF PHYSICAL KEY
A SSSS28 72+XSDBFIL1 DS H 1.b RESERVED
A SSSS2A 73+XSDBSEGL DS H 3 LENGTH OF SEGMENT DATA
A SSSS2C 74+XSDBSEGA DS A 7 ADDRESS OF SEGMENT DATA
A SSSS3S 75+XSDBFIL2 DS F 1.b RESERVED
A SSSS34 76+XSDBFIL3 DS F 1.b RESERVED
A SSSS38 77+XSDBFIL4 DS F 1.b RESERVED
A SSS3C 78+XSDBLEN EQU K-XSDB LENGTH OF XSDB

A Figure 92. Extended Segment Data block (XSDB)

A Notes:

A 1. Before calling the RUP, the receiver should set:

A a. Blanks in the XSDB fields
A b. Binary zeroes in the XSDB fields

A 2. Before calling the RUP, the receiver should initialize the following fields of the
A XSDB with constants as follows:

A XSDBEYE Should be initialized with the value XSDB
A XSDBVER Should be initialized with the value V1
A XSDBREL Should be initialized with the value R1

A 3. Before calling the RUP, the receiver should set the XSDB fields identified with
A 3 to the value provided by IMS, either:

A � In the XSDB, when calling your user-written IMS Data Capture exit routine)

A � In the CAPD_DATA block of the changed data capture IMS log records, if
A using the IMS Asynchronous Data Capture function)

A 4. XSDBNXSDB (pointer to the next XSDB describing the segments in the
A hierarchic path, in descending order, above the changed segment).

A Before calling the RUP, the receiver should provide in this field a pointer to that
A XSDB control block that describes the next segment in the hierarchic path
A above the changed segment.

A Your receiver should set this field to zero before calling the RUP if IMS did not
A provide a description of the next segment in the hierarchic path above the
A changed segment either:

A � In an XSDB Control block, when calling your user-written IMS Data Capture
A exit routine, or

A � In a CAPD_DATA block within the changed data capture IMS log records.

334 Customization Guide

A 5. XSDBPHPY (physical path accessibility):

A Before calling the RUP, the receiver should set this field to N if either:

A � IMS set this field to N when calling your user-written IMS Data Capture exit
A routine, or

A � The DEL_ON_PHY_PATH flag is set to On in the CAPD_DATA block of
A the changed data capture IMS log records, if using the IMS Asynchronous
A Data Capture function).

A In other cases, XSDBPHPY should be set to Y.

A 6. XSDBKEYA (address of physical key)

A Before calling the RUP, the receiver should provide in this field a pointer to the
A keyfield of the segment described by this XSDB.

A Your receiver should set this field to zero before calling RUP if IMS did not
A provide a pointer to the keyfield either:

A � In the XSDB Control block when calling your user-written IMS Data Capture
A exit routine, or

A � In a CAPD_DATA block within the changed data capture IMS log records.

A 7. XSDBSEGA (address of segment data)

A Before calling the RUP, the receiver should provide in this field a pointer to the
A segment described by this XSDB.

A Your receiver should set this field to zero before calling the RUP if IMS did not
A provide either one of the following:

A � In the XSDB control block a pointer to the segment data when calling your
A user-written IMS Data Capture exit routine, or

A � The segment data in the changed data capture IMS log records.

A 8. XSDBDBD (physical database name)

A Before calling the RUP, the receiver should provide in this field the same value
A as in XPCBDBD.

A The INQY ENVIRON output area: Figure 93 on page 336 shows the DSECT for
A the output area of the INQY output area. In the figure, each field is marked with a
A note number, which refers to a note (located after the figure) describing how the
A receiver should set the field.

A You can generate the DSECT for the INQY ENVIRON output area, together with
A the XPCB and the XSDB, by coding the EKYRCDL1 macro statement.

 Chapter 9. User-Implemented Asynchronous Data Propagation (USER-ASYNC) 335

A 1SS+KKK
A 1S1+K K
A 1S2+K INQUIRY (INQY) CALL OUTPUT K
A 111+K K
A 112+KKK
A
A 114+K---K
A 115+K K
A 116+K ----------------------- K
A 117+K SUBFUNCTION = 'ENVIRON' K
A 118+K ----------------------- K
A 119+K K
A 12S+K---K
A
A SSSSSS 122+INQENVRN DSECT , NOTE
A SSSSSS 123+INQEIMID DS CL8 3 IMS IDENTIFIER
A SSSSS8 124+INQEIMRL DS F 3 IMS RELEASE LEVEL
A SSSSSC 131+INQECRT DS CL8 3 CONTROL REGION TYPE
A SSSS14 14S+INQEART DS CL8 3 APPLICATION REGION TYPE
A SSSS1C 141+INQEARID DS F 3 APPLICATION RGN IDENTIFIER
A SSSS2S 142+INQEPGM DS CL8 3 APPLICATION PROGRAM NAME
A SSSS28 143+INQEPSB DS CL8 2 ALLOCATED PSB NAME
A SSSS3S 144+INQETRAN DS CL8 2 TRANSACTION NAME
A SSSS38 145+INQEUSER DS CL8 2 USER IDENTIFIER
A SSSS4S 146+INQEGPNM DS CL8 3 GROUP NAME
A SSSS48 153+INQESGID DS CL4 3 HIGHEST STATUS GROUP ID
A SSSS4C 154+INQERTA DS A 4 ADDRESS OF RECOVERY TOKEN
A SSSS5S 156+INQEAPA DS A 1 ADDRESS OF APPLICATION PARM
A SSS54 158+INQELEN EQU K-INQENVRN ENVIRON OUTPUT LENGTH

A Figure 93. INQY ENVIRON Output Area

A Notes:

A 1. Before calling the RUP, the receiver should set binary zeroes in the INQEAPA
A field.

A 2. Before calling the RUP, the receiver should set the fields identified with 2 to the
A value provided by IMS, either:

A � In the INQY ENVIRON output area, when calling your user-written IMS
A Data Capture exit routine.

A � In the LOG_INQY_PSBNAME, LOG_INQY_TRANNAME, and
A LOG_INQY_USERID fields of the LOG_DCAP_DATA portion of the
A changed data capture IMS log records, if using the IMS Asynchronous Data
A Capture function. These fields can be set to blank, if the Receiver does not
A find the required information in the IMS log records.

A 3. Before calling the RUP, the receiver should set the fields identified with 3:

A � To the value provided by IMS in the INQY ENVIRON output area, when
A calling your user-written IMS Data Capture exit routine.

A � To blanks or binary zeroes, if using the IMS Asynchronous Data Capture
A function.

A 4. INQERTA

A Before calling the RUP, the receiver should provide in this field a pointer to a
A variable-length field. The two first bytes of the variable-length field are a
A halfword containing the length of the field, and are followed by:

A � In the case where the Data Staging Area of DataPropagator Relational is
A being fed by the RUP:

336 Customization Guide

A – 8 bytes containing binary zeros

A – 8 bytes containing a commit timestamp in TOD format

A – 16 bytes containing the CVT adjustment (CVTLDTO and CVTLSO)
A which converts the above TOD timestamp to local time

A � In the case where DataPropagator Relational is not being used, a recovery
A token that must have the same value as that provided by IMS, either:

A – Via the INQERTA pointer, when calling your user-written IMS Data
A Capture exit routine

A – In the RECOVTKN field of the LOG_DCAP_DATA portion of the
A changed data capture IMS log record, if using the IMS Asynchronous
A Data Capture function

A Error Handling
A When it is called for asynchronous data propagation, the RUP recognizes three
A types of propagation errors. They are failures caused:

A � By deadlocks
A � By unavailable resources
A � For other reasons (typically mapping errors)

A Your receiver must handle propagation failures. If not handled correctly,
A propagation failures can result in data inconsistencies.

A The RUP does not perform rollbacks when it encounters an error. Therefore,
A design your receiver to generate rollbacks that preserve the concept of the original
A UOW. This can help you to maintain the correct sequence of updates presented to
A the RUP.

A When the RUP returns a return code of 8 (indicating an error), it writes error
A messages to the //EKYPRINT data set, the DPROP audit trail, and the optional
A trace data set //EKYTRACE to help with diagnosis.

A Return codes and reason codes: The RUP places the following return (RC) and
A reason (RSNC) codes in the XPCB when a propagation error occurs:

A RC=0, RSNC=0
A Propagation completed successfully. For PRs defined with ERROPT=IGNORE,
A the RUP can return RC=0, RSNC=0 even if propagation failed.

A RC=0, RSNC=4
A This is a warning. The RUP completed propagation without errors. However, the
A number of successfully processed PRs is zero. This can occur, for example, if
A the DPROP directory did not contain a PR defined for the segment type of the
A changed data.

A RC=8, RSNC=4
A Propagation failed because of a DB2 deadlock. DB2 performed a rollback for the
A entire UOW. The receiver can restart processing of the failed UOW.

A RC=8, RSNC=8
A Propagation failed because of a DB2 deadlock. However, rollback processing for
A the failing UOW was not performed. The receiver can generate an SQL rollback
A and restart processing of the failed UOW. This combination of codes is never
A returned if you are running under IMS.

 Chapter 9. User-Implemented Asynchronous Data Propagation (USER-ASYNC) 337

A RC=8, RSNC=12
A Propagation failed due to an unavailable resource problem. Rollback processing
A for the failing UOW was not performed. The receiver must generate a rollback
A and terminate, or Abend. To maintain data consistency, you must solve the
A unavailable resource problem before restarting processing of the failed UOW.

A RC=8, RSNC=16
A Propagation failed because of another type of error. Rollback processing for the
A failing UOW was not performed.

A For PRs defined with ERROPT=BACKOUT, the receiver must generate a
A rollback and terminate, or Abend. To maintain data consistency, you must solve
A the error before restarting processing of the failed UOW.

A For PRs defined with ERROPT=IGNORE, the RUP rarely returns with RC=8,
A RSNC=16. Instead, it often provides diagnosis information and returns to the
A receiver without error indications. The RUP still generates error messages to the
A //EKYPRINT data set and the optional trace data set. The RUP can also write
A error messages to the audit trail and snaps to the trace data set. The amount of
A these messages to the audit trail and snaps to the trace data set can be
A controlled with the MAXERROR value during PR generation.

A After writing error messages, the RUP processes any remaining PRs for the
A same segment type and returns to the receiver with zero return and reason
A codes.

A Calling the Housekeeping Module EKYZ800X
A The first call to DPROP within an address space must be an initialization call to the
A DPROP housekeeping module (EKYZ800X). This call tells DPROP what
A environment it is in and that it is being called asynchronously.

A The last call to DPROP within an address space must be a termination call to the
A housekeeping module. This tells DPROP to perform its cleanup processing (for
A example, to close files).

A Avoid generating initialization and termination calls frequently because of their
A significant performance impact.

A The housekeeping module must be called according to the standard OS/VS
A conventions for calling Assembler modules.

A Parameters for the initialization Call: For DPROP initialization, call the module
A with the following two parameters:

A Call Function A four-byte character field that contains the string INIT

A Environment A four-byte character field that describes the environment. DPROP
A uses this value to determine which language interface to use for
A SQL calls. The value of the string must be one of the following:

A IMS The receiver is running in an IMS environment. DPROP
A generates its SQL statements through the language interface
A of the IMS Attach facility.

A TSO The receiver is running in a TSO environment. DPROP
A generates its SQL statements through the language interface
A of the TSO Attach facility.

338 Customization Guide

A CAF The receiver is running in a Call Attach facility (CAF)
A environment. DPROP generates its SQL statements through
A the language interface of the CAF Attach.

A If running in a CAF environment, the receiver must establish
A a CAF connection to DB2 before calling the housekeeping
A module, and close the connection after terminating the
A housekeeping module. The receiver can establish the
A connection with CAF CONNECT and OPEN requests; it can
A close the connection with CAF CLOSE and DISCONNECT
A requests.

A The RUP and the housekeeping module must be called from
A the task that establishes and closes the CAF connection.

A Remember that you must link-edit any DPROP exit routine that
A generates SQL statements with the SQL language interface of the
A proper DB2 Attach.

A Parameter for the termination Call: For DPROP termination, only the first
A parameter is required:

A Call Function A four-byte character field containing the string TERM.

A Environment This parameter is optional. The housekeeping module does not use
A it, but it can be useful for consistency with the initialization call.

A Calling the Module: As with the RUP, the receiver must not be link-edited with
A the housekeeping module. Instead, you must call the module dynamically using the
A same methods described above.

A Return codes: This section describes the return codes from the housekeeping
A module. After a termination call, the module (EKYZ800X) always returns with a
A zero in Register 15 (R15).

A After an initialization call, the following codes can be returned in R15:

A 0 DPROP initialization was successful.

A 4 DPROP initialization failed because a DB2 deadlock condition was
A encountered. Rollback processing for the failing UOW was performed. The
A receiver can restart any processing done during the failing UOW, and
A regenerate the INIT call.

A 8 DPROP initialization failed because a DB2 deadlock condition was
A encountered. However, rollback processing was not performed. The receiver
A can generate an SQL rollback, and restart any processing done during the
A failing UOW.

A 12 DPROP initialization failed because of an unavailable resource. Rollback
A processing for the failing UOW was not performed. The receiver must either
A generate an SQL rollback and return (if running under TSO/CAF), or Abend.

A 16 DPROP initialization failed for another type of error. The receiver must either
A generate an SQL rollback and return (if running under TSO/CAF), or Abend.

 Chapter 9. User-Implemented Asynchronous Data Propagation (USER-ASYNC) 339

A Supported Environments and Restrictions
A This section describes the environment DPROP supports when your receiver calls
A DPROP:

A � The RUP runs as a DB2 application; your receiver can call it in the following
A environments:

A – In an IMS/ESA batch or BMP region
A – under TSO foreground or TSO batch
A – In a DB2 CAF environment

A IMS MPP or IFP regions, and CICS environments are not supported. DPROP
A does not test if it is being called in one of these environments.

A � If your receiver is running in a TSO or CAF environment, any DPROP exit
A routines must not generate DL/I calls, because IMS does not support TSO or
A CAF.

A � DPROP does not support access to remote or distributed DB2 systems. This
A applies to both synchronous and asynchronous data propagation systems.

A � The RUP and the housekeeping module (EKYZ800X) must be link-edited in
A AMODE 31, and must be called in AMODE 31. Remember that, for
A maintenance and migration considerations, you must not link-edit your receiver
A with these modules.

A � DPROP must be called by a program running in the ordinary problem-program
A mode, with PSW protection key 8. DPROP cannot be called in:

A – SVC or SRB mode
A – Cross memory mode
A – Access register mode
A – Authorized mode
A – Any protection key other than 8

A � If DPROP is running in a subtask, the attaching mother task must not share
A any OS/VS virtual storage subpool with the subtask, if it intends to reattach
A DPROP after termination. Also, in a multiple task environment, higher level
A OS/VS tasks must not preload DPROP modules.

A JCL Requirements
A To run the receiver, in a TSO or IMS environment, you must provide:

A � The JCL that DB2 and DB2 Attach require (the IMS, TSO, or CAF Attach), and
A � The JCL that DPROP requires.

A This section describes DPROP's JCL requirements. In addition to the DPROP JCL
A for //STEPLIB and //EKYRESLB, this includes:

A 1. An //EKYPRINT DD statement, which the RUP uses to write error messages. It
A is typically coded as:

A //EKYPRINT DD SYSOUT=A

A 2. An //EKYLOG DD statement or an //EKYTRACE DD statement, which contain
A information that the RUP usually writes to the IMS log (for example, traces,
A snaps, or error messages). They are typically coded as:

A //EKYLOG DD DSN=xxxx,DISP=(,CATLG),
A // UNIT=xxx,SPACE=(CYL,(nn,nn))
A //EKYTRACE DD SYSOUT=A

340 Customization Guide

A 3. An optional //EKYIN DD statement, which is used to provide a TRACE control
A statement used to activate the DPROP Trace module. Refer to IMS DPROP
A Reference for the syntax of the TRACE statement.

A Binding a DB2 Plan for the Receiver
A When your receiver calls DPROP, DPROP generates SQL statements to access
A DPROP directory tables and to update the propagated tables. Therefore, you need
A to bind a DB2 plan for running the receiver.

A For details on how to perform the bind, see the appropriate Administrators Guide
A for your propagation mode.

A Installation Considerations: Asynchronous Data Propagation
A If you are using DPROP for both synchronous and asynchronous propagation, you
A must define two different DPROP systems, each with its own DPROP directory.

A When installing each DPROP system, you must define whether the system is used
A for synchronous or asynchronous data propagation. Specify the type of system in
A the System Type field of the EKYGP42E installation panel:

A SYNC For synchronous propagation
A ASYNC For asynchronous propagation

A Specifying the type of system is part of the DPROP generation and customization
A process. Refer to IMS DPROP Installation Guide for more details.

A The Status Change Utility (SCU)
A The Status Change utility supports only the following control statements for an
A asynchronous DPROP system:

A � INIT DPROP=
A � DISPLAY STATUS

A Because you cannot activate or deactivate PRs in an asynchronous DPROP
A system, the RUP considers all PRs in such a system as active.

A Multiple MVS Images
A As explained in the appropriate Administrators Guide for your propagation mode,
A additional restrictions apply if IMS and DB2 reside on different MVS images.

A DPROP must execute on the target MVS system, the same MVS system that owns
A the DB2 tables. The DPROP directory must also reside on this system.

A MVG and MVGU must run on the target MVS system. They must have access to
A the DBDLIB of the source MVS system, the system on which IMS runs. If the MVS
A images share DASD, the DBDLIB can reside on the shared storage. Otherwise, an
A up-to-date copy of the DBDLIB must be provided on the target MVS system.

A As described in the appropriate Administrators Guide for your propagation mode
A and IMS DPROP Reference, special considerations are required for:

A � Use of the CCU

 Chapter 9. User-Implemented Asynchronous Data Propagation (USER-ASYNC) 341

A � Combined use of DXT for data extract and DPROP for asynchronous
A propagation

A Database Maintenance
A With asynchronous propagation, you can reorganize or repair the DB2 side while
A you are collecting or storing updates. Then, when you are applying those updates
A to DB2, you can stop updating the IMS database and perform database
A maintenance activities on the IMS side. Conversely, when you are collecting
A updates on the IMS side, you can perform database table space maintenance on
A the DB2 side.

A With asynchronous propagation, out-of-sync conditions are normal, and data can be
A truly synchronized for only brief periods. Asynchronous propagation gives you
A some allowance for unavailable resources that is not possible in the synchronous
A environment. You can generally operate on the IMS and DB2 components
A independently without having one affect the other.

A With asynchronous propagation in IMS online or BMP environments, your stored
A updates must be backed out with a failing IMS UOW if you use a database
A (full-function or DEDB) or a message queue for warehousing the propagating
A updates. The IMS synchronization point manager performs this backout. If you
A use the IMS Batch Backout utility or dynamic backout in IMS batch jobs, your
A propagating updates must also be backed out from databases used to store
A changes intended for the receiving program.

A However, if you use the IMS log or an MVS flat file for storing propagating updates,
A then no backout can occur if failure occurs. You must restore data integrity by
A eliminating the failed updates from the log or flat file.

A Recovering the DPROP Directory
A For information on recovering the DPROP directory, see the appropriate
A Administrators Guide for your propagation mode.

342 Customization Guide

Appendix A. Calling the Trace Module

This appendix describes the interface for the optional DPROP trace module from a
Propagation exit routine. Some reasons for calling the trace module are also
discussed. For more general information about DPROP trace support, refer to IMS
DPROP Diagnosis.

To complement the RUP's and HUP's trace support, your Propagation exit routine
can also call the trace module (module EKYR410X) directly. By activating the
DPROP Trace with the appropriate debug level, you can request that the RUP and
HUP trace the parameters, control blocks, and other areas involved in calling your
exit routine. (For information about debug levels see the IMS DPROP Diagnosis.)
The RUP and HUP can also trace this information when your exit routine signals a
propagation failure by returning a nonzero return code. Therefore, your exit routine
does not need to provide the code for tracing this interface information.

Typically, your exit routine can call the trace module for two purposes:

1. To trace updating SQL calls (HR propagation) and IMS calls (RH propagation)
that your exit routine creates upon request. If the PICDBLV2 bit is on in the
Propagation Interface Control Block (PICB), you are requesting the tracing of
SQL calls and IMS Calls.

2. To trace information needed for problem determination. If you have a
propagation failure, even if you have not requested tracing, you can snap or
trace whatever information you think is needed to solve the problem. When
your exit routine returns with an error return code, the RUP snaps or traces all
relevant interface information.

The DPROP trace module can trace multiple items with each call. For example,
when tracing an SQL call, each DB2 column involved in the call is traced as a
separate item. the trace module writes its results to the //EKYTRACE data set, to
the //EKYLOG data set, or to the IMS log. To find out how to format and print
these records and interpret the trace output, refer to IMS DPROP Diagnosis.

Trace Module Interface
Your exit routine must use standard OS/VS linkage conventions when calling the
trace module.

Register 1 Points to the parameter list described below
Register 13 Contains the address of the standard save area
Register 14 Contains the return address
Register 15 Contains the entry address of the DPROP trace module

 Parameter list
The first parameter in the parameter list pointed to by Register 1 must be the
address of the Trace Request Block (TRB). Following this address, the parameter
list must include the address of one Trace Element Descriptor (TED) for each item
included in the trace. The TRB and TED are described below.

 Copyright IBM Corp. 1991,2001 343

The trace module must be called in AMODE 31, and returns control to your exit
routine in AMODE 31.

The sample Propagation exit routine (see Figure 52 on page 190) contains a
macro called SETTED. This macro simplifies calling the trace module. You can
create a similar macro to use in your system. See Figure 52 on page 190, where
the SETTED macro is used in the sample Propagation exit routine.

Trace Request Block (TRB)
Figure 94 on page 345 contains the DSECT for the TRB. Following the DSECT,
the fields are described in detail.

The EKYTRB DSECT is provided in the DPROP macro library. Code the EKYTRB
macro statement to create the DSECT in your exit routine.

344 Customization Guide

 1 EKYTRB
2+KKKKKKKKKKKKKKKKKK START OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKKKKKK

 3+K K
4+K CONTROL BLOCK NAME: K

 5+K EKYTRB (TRB) K
 6+K K
 7+K DESCRIPTIVE NAME: K

8+K DPROP TRACE REQUEST BLOCK (TRB) K
 9+K = = = K
 1S+K K
 11+KKK
 12+K K

13+K THIS PRODUCT CONTAINS "RESTRICTED MATERIALS OF IBM". K
 14+K K

15+K 5685-124 (C) COPYRIGHT IBM CORP. 1989, 1992. K
16+K ALL RIGHTS RESERVED. K

 17+K K
18+K U.S. GOVERNMENT USERS RESTRICTED RIGHTS - K
19+K USE, DUPLICATION, OR DISCLOSURE RESTRICTED BY K
2S+K GSA ADP SCHEDULE CONTRACT WITH IBM CORP. K

 21+K K
22+K LICENSED MATERIALS - PROPERTY OF IBM. K

 23+K K
 24+KKK
 25+K K

26+K STATUS: V1 R2 MS K
 27+K K
 28+K FUNCTION: K

29+K A TRB IS USED FOR THE COMMUNICATION BETWEEN A K
3S+K 'PROPAGATION USER EXIT ROUTINE' AND THE DPROP TRACE K

 31+K FUNCTION. K
 32+K K

33+K WHEN INVOKING THE DPROP-TRACE FUNCTION, THE CALLING K
34+K USER EXIT MUST PROVIDE THE TRB AS FIRST CALL-PARAMETER. K

 35+K K
36+K THE TRB PROVIDES INFORMATION ABOUT THE TRACE REQUEST. K

 37+K K
38+K MODULE TYPE= MACRO K
39+K PROCESSOR= ASSEMBLER H K

 4S+K K
41+K ACQUIRED BY MODULE INVOKING THE TRACE K

 42+K K
43+K INNER CONTROL BLOCKS: NONE K

 44+K K
45+K MACROS USED FROM MACRO LIBRARY: NONE K

 46+K K
 47+K CHANGE ACTIVITY: K
 48+K KMPSS57 12/13/9S K
 49+K K

5S+KKKKKKKKKKKKKKKKKKKK END OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKKKKKK

 SSSSSS 54+TRB DSECT
 SSSSSS E3D9C24S 55+TRBEYE DC C'TRB ' EYE-CATCHER
 SSSSS4 SSSSSSSS 56+TRBPTD DC A(S) ADDRESS OF THE DPROP-PTD CONTROL BLOCK

 58+KKKKKKKK

59+KKKKKKKK NAME OF OBJECTS ASSOCIATED WITH THE TRACE
 6S+KKKKKKKK

 SSSSS8 4S4S4S4S4S4S4S4S 62+TRBTABQ DC CL8' ' TABLE-NAME QUALIFIER ASSOC. W. TRACE
 SSSS1S 4S4S4S4S4S4S4S4S 63+TRBTABN DC CL18' ' TABLE-NAME ASSOCIATED WITH THE TRACE
 SSSS22 4S4S 64+ DC CL2' '
 SSSS24 4S4S4S4S4S4S4S4S 65+TRBDBN DC CL8' ' DBD-NAME ASSOCIATED WITH THE TRACE
 SSSS2C 4S4S4S4S4S4S4S4S 66+TRBSEGN DC CL8' ' SEG-NAME ASSOCIATED WITH THE TRACE

Figure 94 (Part 1 of 2). Trace Request Block

 Appendix A. Calling the Trace Module 345

 68+KKKKKKKK
 69+KKKKKKKK SOLICITED/UNSOLICITED INDICATION
 7S+KKKKKKKK
 SSSS34 4S 72+TRBSOLI DC CL1' ' SOLICITED TRACE

SSSE8 73+TRBSOLY EQU C'Y' ...Y: TRACE SOLICITED BY THE USER
SSSD5 74+TRBSOLN EQU C'N' ...N: TRACE NOT SOLICITED BY THE USER

 SSSS35 SSSSSSSSSSSSSSSS 76+ DC 13X'SS' RESERVED/MUST BE ZERO
 SSS42 77+TRBEND EQU K

SSS42 78+TRBLEN EQU K-TRB LENGTH OF ONE TRB
 79 END

Figure 94 (Part 2 of 2). Trace Request Block

TRB Field Descriptions
TRBEYE Your exit routine must set this field to TRB. The trace module

validates its content.

TRBPTD Your exit routine must provide the address of the PTD control block
in this field. This PTD address can be found in the PICPTD field of
the PICB.

When performing HR propagation, your exit routine must also set the next two
fields, which are used in the trace records to identify data objects associated with
the trace. DPROP includes the data you provide below, in both the trace record (to
allow selective trace formatting), and the formatted trace output.

TRBTABQ The table name qualifier of the table involved in the trace
TRBTABN The unqualified table name of the table involved in the trace

When performing RH propagation, your exit routine must set the next two fields,
which are used in the trace records to identify data objects associated with the
trace. DPROP includes the data you provide, in both the trace record (to allow
selective trace formatting), and the formatted trace output.

TRBDBN The name of the physical IMS database involved in the trace
TRBSEGN The name of the physical IMS segment involved in the trace

Your exit must also set the next field:

TRBSOLI The Propagation exit routine must set this field to determine if the
trace was requested by the user. If the user requested it, the exit
routine must set this field to Y. If the user did not request it, (for
example, if errors occurred), the exit routine must set this field to N.

Trace Element Descriptor (TED)
This section describes the Trace Element Descriptor (TED). You specify one TED
in the keyword list for each item you want to trace.

DPROP distinguishes between the following three different types of items that can
be traced:

 � Header items
 � Subheader items
 � Data items

346 Customization Guide

The DPROP Trace module formats each of the three types of items differently. In
each TED in the parameter list, your exit routine must identify the type of item the
TED describes.

DPROP requires that the first TED in the keyword list describe a header item.
TEDs describing subheader items are optional; they can be provided to make
reading of the formatted trace easier by helping to structure the information
presented in the trace output. An exit routine provides one or more TEDs that
describe data items to be traced.

Figure 95 is an example of a formatted trace. The figure and the explanations that
follow show how the DPROP trace module formats the different item types.

 KKK 15:14:49.88 9S.S52 PROPAGATING SQL-UPDATE CALL FOR TABLE=PROD.PARTS
 DPR ID = TS966S6 IMS ID = KOEX USER ID =

JOB NAME = TS966S6X PSB NAME = KOEPSB3 RECOV TK = SSSSSSS3SSSSSSS5
DBD NAME = DB1 SEG NAME = SEG1 TAB NAME = PROD.PARTS
RUP CALL = SSSSSS2S PR ID = PRSSS1

 . SQLCODE:
 S2F8C94C SSSSSSSS K K

 ... COLUMNS IN WHERE CLAUSE:

 . BRANCH-OFFICE :
 S2F958S6 F3F3 K33 K

 . PART-NBR :
 S2F95816 F8F8F4F5 F6F7 K884567 K

 ... PROPAGATED COLUMNS:

 . MANUFACTURER :
 S2F95832 C9C2D44S 4S4S4S4S 4S4S4S4S 4S4S4S4S 4S4S4S KIBM K

 . ZIP-CODE :
 S2F95822 C3C14SF9 F5FSF3FS KCA 95S3S K

 . CITY :
 S2F95812 E2C1D54S D1D6E2C5 4S4S4S4S 4S4S4S4S KSAN JOSE K

 . PRICE :
 S2F95912 12344567 8F K K

Figure 95. Example of Formatted Trace

This is an example of formatted trace. The DPROP Trace module creates it, using
the following TEDs:

1. A TED for a header item, which provides a text string that is printed exactly as
entered (the text string “PROPAGATING SQL-UPDATE FOR
TABLE=PROD.PARTS” at the top of the figure).

DPROP Trace formatting prefixes the text string of a header item with asterisks,
the time, and the date.

For header items, the DPROP formatting routine prints additional lines with
identifying information (DPR ID, IMS ID, and so forth.)

2. A TED for a data item. The second TED consists of the text string
“SQLCODE:,” followed on the next print line by the snapped SQL error code.

Note the difference between TEDs for header items and TEDs for data items:

� TEDs for header items (and subheader items) provide only a text string.

 Appendix A. Calling the Trace Module 347

� TEDs for data items provide both:

a. A descriptive text string (in the example: “SQLCODE:”) printed on the
first print line. DPROP formatting prefixes the text string with a period
and some blanks to help identify it.

b. A virtual storage area to be snapped both in hexadecimal and
character/EBCDIC format printed on the following lines. DPROP Trace
formatting prefixes each print line with the virtual storage address of the
first byte represented in the print line.

3. A TED for a subheader item, consisting of the text string “COLUMNS IN
WHERE CLAUSE”

In this example, the DPROP trace module's caller provides a subheader item to
add additional structure to the formatted trace. It identifies the columns used in
the WHERE clause of the SQL statement, and columns that the SQL statement
propagates.

DPROP Trace formatting prefixes the text string in a subheader item with three
dots and some blanks for easier identification.

4. A TED for a data item (the BRANCH OFFICE).

5. A TED for a data item (the PART NBR).

6. A TED for a subheader item (PROPAGATED COLUMNS).

7. A TED for a data item (the MANUFACTURER).

8. A TED for a data item (the ZIP CODE).

9. A TED for a data item (the CITY).

10. A TED for a data item (the PRICE).

Figure 96 on page 349 shows the DSECT for the Trace Element Descriptors.
Field descriptions follow the figure.

The EKYTED DSECT is provided in the DPROP macro library. Code the EKYTED
macro statement to create the DSECT in your exit routine.

348 Customization Guide

 1 EKYTED
2+KKKKKKKKKKKKKKKKKK START OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKKKKKK

 3+K K
4+K CONTROL BLOCK NAME: K

 5+K EKYTED (TED) K
 6+K K
 7+K DESCRIPTIVE NAME: K

8+K DPROP TRACE ELEMENT DESCRIPTOR (TED) K
 9+K = = = K
 1S+K K
 11+KKK
 12+K K

13+K THIS PRODUCT CONTAINS "RESTRICTED MATERIALS OF IBM". K
 14+K K

15+K 5685-124 (C) COPYRIGHT IBM CORP. 1989, 1992. K
16+K ALL RIGHTS RESERVED. K

 17+K K
18+K U.S. GOVERNMENT USERS RESTRICTED RIGHTS - K
19+K USE, DUPLICATION, OR DISCLOSURE RESTRICTED BY K
2S+K GSA ADP SCHEDULE CONTRACT WITH IBM CORP. K

 21+K K
22+K LICENSED MATERIALS - PROPERTY OF IBM. K

 23+K K
 24+KKK
 25+K K

26+K STATUS: V1 R2 MS K
 27+K K
 28+K FUNCTION: K

29+K WHEN INVOKING THE DPROP TRACE FUNCTION, THE CALLING K
3S+K MODULE MUST PROVIDE ONE TED FOR EACH: K

 31+K - TRACE-HEADER K
 32+K - TRACE-SUBHEADER K
 33+K - DATA-AREA K

34+K WHICH SHOULD BE TRACED/SNAPPED. K
 35+K K

36+K MODULE TYPE= MACRO K
37+K PROCESSOR= ASSEMBLER H K

 38+K K
39+K ACQUIRED BY MODULE INVOKING THE TRACE K

 4S+K K
41+K INNER CONTROL BLOCKS: NONE K

 42+K K
43+K MACROS USED FROM MACRO LIBRARY: NONE K

 44+K K
 45+K CHANGE ACTIVITY: K
 46+K KMPSS57 12/13/9S K
 47+K K

48+KKKKKKKKKKKKKKKKKKKK END OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKKKKKK

 SSSSSS 52+TED DSECT
 SSSSSS E3C5C44S 53+TEDEYE DC C'TED ' EYE-CATCHER
 SSSSS4 4S 54+TEDTYPE DC C' ' TYPE OF TRACE ITEM

SSSC8 55+TEDTYPH EQU C'H' ... HEADER
SSSE2 56+TEDTYPS EQU C'S' ... SUB-HEADER
SSSC4 57+TEDTYPD EQU C'D' ... DATA

 SSSSS5 4S 58+TEDALIGN DC C' ' ALIGNMENT FOR SNAP-FORMATTING
SSSD3 59+TEDALIGL EQU C'L' ...L = LEFT ALIGNMENT
SSS4S 6S+TEDALIGB EQU C' ' ...BLANK= NO LEFT ALIGNMENT

 SSSSS6 SSSS 61+ DC XL2'SS' RESERVED
 SSSSS8 SSSSSSSS 62+TEDTXTA DC A(S) PTR TO TEXT-STRING
 SSSSSC SSSSSSSS 63+TEDTXTL DC F'S' LENGTH OF TEXT-STRING
 SSSS1S SSSSSSSS 64+TEDMA DC A(S) VIRTUAL STORAGE ADDR OF AREA TO BE SNAPPED
 SSSS14 SSSSSSSS 65+TEDALEN DC F'S' LENGTH OF AREA TO BE SNAPPED
 SSSS18 SSSSSSSS 66+TEDALET DC F'S' ALET OF DATA (MUST BE ZERO IN THIS RELEASE)
 SSSS1C SSSSSSSSSSSSSSSS 67+ DC 2F'S' RESERVED/MUST BE ZERO

Figure 96 (Part 1 of 2). Trace Element Descriptor

 Appendix A. Calling the Trace Module 349

 SSS24 68+TEDEND EQU K

SSS24 69+TEDLEN EQU K-TED LENGTH OF ONE TED
 7S END

Figure 96 (Part 2 of 2). Trace Element Descriptor

TED Field Descriptions
TEDEYE Your exit routine must set this field to TED. The trace module

validates its content.

TEDTYPE The type of the item to be traced. DPROP recognizes three types
of items:

Header For a header, your exit routine must set this field to
H. You must also provide a text string to be used
as the header, and store its address in TEDTXTA
and its length in TEDTXTL. For a header item, the
fields TEDMA, TEDALEN, and TEDALIGN do not
apply. Therefore, you do not need to provide values
for these fields.

Subheader For a subheader, your exit routine must set this field
to S. You must also provide a text string to be used
as the subheader, and store its address in
TEDTXTA and its length in TEDTXTL. For a
subheader item, the fields TEDMA, TEDALEN, and
TEDALIGN do not apply. Therefore, you do not
need to provide values for these fields.

Data For data, your exit routine must set this field to D. It
must store the address of the data item to be traced
in TEDMA, and the length in TEDALEN. Depending
on the length of the data item, the trace is formatted
on one or more print lines.

Your exit routine must also provide a descriptive text
string explaining what information is being traced.
This text string is printed in the formatted trace
output. The address of the text string must be
placed in TEDTXTA, and the length in TEDTXTL.
When tracing a DB2 column, It is recommended that
the text string be the DB2 column name.

Also for a data item, your exit routine must set
TEDALIGN to indicate whether the traced area must
be left-aligned on the formatted print line.

For more information on headers, subheaders, and data items, and
on the format of the trace output, see IMS DPROP Diagnosis.

TEDALIGN This field determines if the first byte of the formatted trace output is
aligned to the left of the page. If you want the output to be
left-aligned, set this field to L. If you do not want the output
left-aligned, the field must be blank.

350 Customization Guide

Left-alignment can make the trace output much easier to read,
especially when the output length is small and you do not need to
locate the area using virtual storage address. DPROP uses
left-alignment when tracing SQL calls, and it is recommended that
your exit routine use the same convention.

If, however, the traced area is large, or you want to locate traced
information using a virtual storage address, do not align the trace
output on the left. The output then resembles a storage dump.
This can be useful when tracing entire control blocks or work areas.
It simplifies location of information when you search using virtual
addresses.

To see an example of formatting with left-alignment, refer to
Figure 95 on page 347. To see an example of formatting without
left-alignment, see IMS DPROP Diagnosis.

TEDTXTA The address of the text string that is printed in the formatted trace
output.

TEDTXTL The length of the text string that is printed in the formatted trace
output.

TEDMA For a data item, the address of the area in storage that is traced.

TEDALEN For a data item, the length of the area in storage that is traced.

 Appendix A. Calling the Trace Module 351

Appendix B. Sample Segment Exit Control Blocks

This appendix contains sample Segment exit control blocks which map the existing
DPROP interface control blocks. This appendix provides the exit control blocks in
three languages:

 � COBOL
 � PL/I
 � C

The Assembler version of the Segment exit control block is shown in Figure 7 on
page 28.

352 Copyright IBM Corp. 1991,2001

Sample Segment Exit Control Block for COBOL
Figure 97 shows an example of the EKYRCDAX control block in COBOL. This
control block, called EKYRCDXC, resides in the DPROP Sample Source library
(EKYSAMP).

SSS1SSKKKKKKKKKKKKKKKK START OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKK SSS1SSSS
SSS2SSK K SSS2SSSS
SSS3SSK CONTROL BLOCK NAME: K SSS3SSSS
SSS4SSK EKYRCDXC (DAX) K SSS4SSSS
SSS5SSK K SSS5SSSS
SSS6SSK DESCRIPTIVE NAME: K SSS6SSSS
SSS7SSK DPROP COBOL SEGMENT EXIT INTERFACE BLOCK K SSS7SSSS
SSS8SSK K SSS8SSSS
SSS9SSK COBOL VERSION OF EKYRCDAX K SSS9SSSS
SS1SSSK K SS1SSSSS
SS11SSKKK SS11SSSS
SS12SSK K SS12SSSS
SS13SSK THIS PRODUCT CONTAINS "RESTRICTED MATERIALS OF IBM". K SS13SSSS
SS14SSK K SS14SSSS
SS15SSK 5685-124 (C) COPYRIGHT IBM CORP. 1989, 1992. K SS15SSSS
SS16SSK ALL RIGHTS RESERVED. K SS16SSSS
SS17SSK K SS17SSSS
SS18SSK U.S. GOVERNMENT USERS RESTRICTED RIGHTS - K SS18SSSS
SS19SSK USE, DUPLICATION, OR DISCLOSURE RESTRICTED BY K SS19SSSS
SS2SSSK GSA ADP SCHEDULE CONTRACT WITH IBM CORP. K SS2SSSSS
SS21SSK K SS21SSSS
SS22SSK LICENSED MATERIALS - PROPERTY OF IBM. K SS22SSSS
SS23SSK K SS23SSSS
SS24SSKKK SS24SSSS
SS25SSK K SS25SSSS
SS26SSK STATUS: V1 R2 MS K SS26SSSS
SS27SSK K SS27SSSS
SS28SSK FUNCTION: K SS28SSSS
SS29SSK THIS IS THE COBOL CONTROL BLOCK USED TO INTERFACE BETWEEN K SS29SSSS
SS3SSSK - DPROP OR DXT K SS3SSSSS
SS31SSK AND K SS31SSSS
SS32SSK - A USER'S SEGMENT EXIT ROUTINE (THESE USER K SS32SSSS
SS33SSK EXIT ROUTINES ARE CALLED BY DXT 'USER DATA K SS33SSSS
SS34SSK EXIT ROUTINES') K SS34SSSS
SS35SSK K SS35SSSS
SS36SSK THERE IS ONE DAX CONTROL BLOCK FOR EACH SEGMENT K SS36SSSS
SS37SSK EXIT ROUTINE, LASTING FOR THE DURATION OF THE EXIT K SS37SSSS
SS38SSK IN VIRTUAL STORAGE. K SS38SSSS
SS39SSK FOR SYNCH PROPAGATION IN MPP REGIONS: K SS39SSSS
SS4SSSK - THIS IS THE DURATION OF THE IMS PROGRAM CONTROLLER K SS4SSSSS
SS41SSK SUBTASK. K SS41SSSS
SS42SSK FOR SYNCH PROPAGATION IN BATCH/BMP REGIONS, FOR K SS42SSSS
SS43SSK CCU AND DLU PROCESSING, AND FOR ASYNCH PROPAGATION K SS43SSSS
SS44SSK (DEPENDING ON HOW AYSNCH PROPAGATION IS IMPLEMENTED): K SS44SSSS
SS45SSK - THIS IS THE DURATION OF THE JOBSTEP. K SS45SSSS
SS46SSK K SS46SSSS
SS47SSK---K SS47SSSS
SS48SSK IMPORTANT NOTES: K SS48SSSS
SS49SSK ================ K SS49SSSS
SS5SSSK - SINCE THE SAME USER EXIT ROUTINE CAN BE INVOKED BOTH K SS5SSSSS
SS51SSK BY DPROP AND BY DXT: CHANGES TO THIS CONTROL BLOCK MUST K SS51SSSS
SS52SSK BE COORDINATED BETWEEN DPROP DEVELOPMENT AND DXT K SS52SSSS
SS53SSK DEVELOPMENT. K SS53SSSS
SS54SSK K SS54SSSS
SS55SSK - FIELDS MARKED IN THE COMMENT WITH 'KKDXT ONLYKK' K SS55SSSS
SS56SSK HAVE NO MEANING, WHEN THE SEGMENT USER EXIT K SS56SSSS

Figure 97 (Part 1 of 5). COBOL Interface Control Block for a Segment Exit Routine

 Appendix B. Sample Segment Exit Control Blocks 353

SS57SSK ROUTINE IS INVOKED BY DPROP. K SS57SSSS
SS58SSK K SS58SSSS
SS59SSK---K SS59SSSS
SS6SSSK K SS6SSSSS
SS61SSK CHANGE ACTIVITY: K SS61SSSS
SS62SSK K SS62SSSS
SS63SSKKKKKKKKKKKKKKKK END OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKKKK SS63SSSS
SS64SSK SS64SSSS
SS65SS S1 DAX. SS65SSSS
SS66SSK SS66SSSS
SS67SSK---K SS67SSSS
SS68SSK THIS SECTION OF THE CB MAY NOT BE MODIFIED BY EXIT K SS68SSSS
SS69SSK---K SS69SSSS
SS7SSSK SS7SSSSS
SS71SS S2 DAXPFX. SS71SSSS
SS72SSK PREFIX OF CONTROL BLOCK SS72SSSS
SS73SS S3 DAXTNAME PIC X(8). SS73SSSS
SS74SSK EYE CATCHER: "DVRXCDAX" SS74SSSS
SS75SS S3 DAXRSVD PIC X(24). SS75SSSS
SS76SSK RESERVED FOR DXT INTERNAL USE SS76SSSS
SS77SS S2 DAXPFXE. SS77SSSS
SS78SSK PREFIX EXTENSION SS78SSSS
SS79SSK SS79SSSS
SS8SSS S3 DAXCALL PIC XX. SS8SSSSS
SS81SSK TYPE OF CALL TO EXIT: SS81SSSS
SS82SSK "NO" - NORMAL CALL, ISSUED TO CONVERT DATA SS82SSSS
SS83SSK FROM IMS DATABASE FORMAT TO DPROP/DXT FORMAT SS83SSSS
SS84SSK "RV" - REVERSE CALL, ISSUED TO CONVERT DATA SS84SSSS
SS85SSK FROM DPROP/DXT FORMAT TO IMS DATABASE FORMAT SS85SSSS
SS86SSK SS86SSSS
SS87SS S3 DAXDATYP PIC XX. SS87SSSS
SS88SSK TYPE OF DATA BEING PASSED: SS88SSSS
SS89SSK "DL" - DL/I DATA SS89SSSS
SS9SSSK SS9SSSSS
SS91SS S3 DAXFIL PIC X(32). SS91SSSS
SS92SSK NAME OF FILE OR PCB FROM WHICH DATA IS BEING PASSED SS92SSSS
SS93SSK SS93SSSS
SS94SS S3 DAXPSB PIC X(8). SS94SSSS
SS95SSK NAME OF PSB IF TYPE IS "DL" SS95SSSS
SS96SSK SS96SSSS
SS97SS S3 DAXSEGM PIC X(32). SS97SSSS
SS98SSK NAME OF SEGMENT IF TYPE IS "DL" SS98SSSS
SS99SSK IF CALLER IS DPROP: NAME OF PHYSICAL SEGMENT SS99SSSS
S1SSSSK IF CALLER IS DXT: NAME OF SEGMENT SPECIFIED IN S1SSSSSS
S1S1SSK THE USED DBD (DBD CAN BE PHYSICAL OR LOGICAL) S1S1SSSS
S1S2SSK S1S2SSSS
S1S3SS S3 DAXPCBAD POINTER. S1S3SSSS
S1S4SSKKDXT ONLYKK PTR TO PCB IF TYPE IS "DL" S1S4SSSS
S1S5SSK S1S5SSSS
S1S6SS S3 DAXPCBLS POINTER. S1S6SSSS
S1S7SSKKDXT ONLYKK PTR TO LIST OF DEM'S PCBS, IF DEM IS A DL/I DEM S1S7SSSS
S1S8SSK S1S8SSSS
S1S9SS S3 DAXKFBAD POINTER. S1S9SSSS
S11SSSK PTR TO SEGMENT'S FULLY CONCAT KEY (IF DL/I). S11SSSSS
S111SSK ZERO IF CALLER IS DPROP AND IF 'NOKEY' HAS BEEN S111SSSS
S112SSK SPECIFIED ON EXIT= OF DBDGEN. S112SSSS

Figure 97 (Part 2 of 5). COBOL Interface Control Block for a Segment Exit Routine

354 Customization Guide

S113SSK S113SSSS
S114SS S3 DAXKFBLN PIC S9(8) COMP. S114SSSS
S115SSK LENGTH OF SEGM'S FULLY CONCAT KEY (IF DL/I) S115SSSS
S116SSK ZERO IF CALLER IS DPROP AND IF 'NOKEY' HAS BEEN S116SSSS
S117SSK SPECIFIED ON EXIT= OF DBDGEN. S117SSSS
S118SSK S118SSSS
S119SS S3 DAXINLN. S119SSSS
S12SSSK S12SSSSS
S121SS S4 DAXDLEN PIC S9(8) COMP. S121SSSS
S122SSK LENGTH OF IMS DB SEGMENT BUFFER S122SSSS
S123SSK S123SSSS
S124SS S3 DAXOUTLN. S124SSSS
S125SSK S125SSSS
S126SS S4 DAXFLEN PIC S9(8) COMP. S126SSSS
S127SSK LENGTH OF DPROP SEGMENT BUFFER S127SSSS
S128SSK S128SSSS
S129SS S3 DAXSYSPR POINTER. S129SSSS
S13SSSKKDXT ONLYKK POINTER TO SYSPRINT DCB S13SSSSS
S131SSK S131SSSS
S132SS S3 DAXENVT. S132SSSS
S133SSK ENVIRONMENT SUBFIELDS S133SSSS
S134SS S4 DAXOPSYS PIC X(4). S134SSSS
S135SSK OPERATING SYSTEM: S135SSSS
S136SSK "ESA " IF MVS/ESA S136SSSS
S137SSK S137SSSS
S138SS S4 DAXTRANS PIC X(4). S138SSSS
S139SSK DB/DC ENVIRONMENT S139SSSS
S14SSSK S14SSSSS
S141SS S4 DAXPROGM PIC X(4). S141SSSS
S142SSK CALLING PROGRAM: S142SSSS
S143SSK "DXT " IF DXT S143SSSS
S144SSK "DPRS" IF DPROP SYNCH PROP S144SSSS
S145SSK "DPRA" IF DPROP ASYNCH PROP S145SSSS
S146SSK "DPRC" IF DPROP CCU PROP S146SSSS
S147SSK "DPRL" IF DPROP DLU S147SSSS
S148SSK S148SSSS
S149SS S3 DAXEXIT PIC X(8). S149SSSS
S15SSSK NAME OF THIS EXIT ROUTINE S15SSSSS
S151SSK S151SSSS
S152SS S3 DAXDBNM PIC X(8). S152SSSS
S153SSK NAME OF IMS DATABASE S153SSSS
S154SSK IF CALLER IS DPROP: NAME OF PHYSICAL DBD. S154SSSS
S155SSK IF CALLER IS DXT: NAME OF USED DBD (CAN BE NAME S155SSSS
S156SSK OF A PHYSICAL OR LOGICAL DBD) S156SSSS
S157SSK S157SSSS
S158SS S3 DAXDPRPN PIC X(24). S158SSSS
S159SSK RESERVED S159SSSS
S16SSSK S16SSSSS
S161SS S3 DAXASGNO PIC S9(8) COMP. S161SSSS
S162SSKKDXT ONLYKK NUMBER OF DAXASEGS ARRAY ELEMENTS S162SSSS
S163SSK S163SSSS
S164SS S3 DAXASEGS PIC X(12) OCCURS 15. S164SSSS
S165SSKKDXT ONLYKK ARRAY OF ANCESTOR SEGMS S165SSSS
S166SSK S166SSSS
S167SS S3 DAXRSVD1 PIC X(46). S167SSSS
S168SSK RESERVED FOR DXT USE S168SSSS

Figure 97 (Part 3 of 5). COBOL Interface Control Block for a Segment Exit Routine

 Appendix B. Sample Segment Exit Control Blocks 355

S169SS S3 FILLER REDEFINES DAXRSVD1. S169SSSS
S17SSSK RESERVED FOR DXT USE S17SSSSS
S171SS S4 DAXDPRCT PIC X(4). S171SSSS
S172SSK IF CALLER IS DPROP, EXIT IS CALLED TO PROCESS: S172SSSS
S173SSK "ISRT" - A DL/I OR DB2 INSERT S173SSSS
S174SSK "DLET" - A DL/I OR DB2 DELETE S174SSSS
S175SSK "REPL" - A DL/I OR DB2 REPLACE (AFTER-IMAGE) S175SSSS
S176SSK S176SSSS
S177SS S4 DAXREPL PIC X. S177SSSS
S178SSK IF CALLER IS DPROP AND IF DAXDPRCT IS "REPL": S178SSSS
S179SS 88 DAXREPLA VALUE "A". S179SSSS
S18SSSK AFTER-REPLACE IMAGE S18SSSSS
S181SS 88 DAXREPLB VALUE "B". S181SSSS
S182SSK BEFORE-REPLACE IMAGE S182SSSS
S183SSK S183SSSS
S184SS S4 DAXSEGT PIC X. S184SSSS
S185SSK IF CALLER IS DPROP, TYPE OF SEGMENT PROCESSED: S185SSSS
S186SS 88 DAXSEGTU VALUE "U". S186SSSS
S187SSK UPDATED IMS SEGMENT S187SSSS
S188SS 88 DAXSEGTA VALUE "A". S188SSSS
S189SSK ANCESTOR OF UPDATED SEGM S189SSSS
S19SSS 88 DAXSEGTI VALUE "I". S19SSSSS
S191SSK INTERNAL SEGMENT S191SSSS
S192SSK S192SSSS
S193SS S4 DAXPSUP PIC X. S193SSSS
S194SSK IF CALLER IS DPROP: DESCRIPTION WHETHER S194SSSS
S195SSK PROPAGATION-SUPPRESSION IS ALLOWED: S195SSSS
S196SS 88 DAXPSUPN VALUE "N". S196SSSS
S197SSK SUPPRESSION NOT ALLOWED S197SSSS
S198SS 88 DAXPSUPY VALUE "Y". S198SSSS
S199SSK SUPPRESSION ALLOWED S199SSSS
S2SSSSK S2SSSSSS
S2S1SS S4 FILLER PIC X. S2S1SSSS
S2S2SSK S2S2SSSS
S2S3SS S4 DAXISEGM PIC X(8). S2S3SSSS
S2S4SSK IF CALLER IS DPROP AND FOR RH PROPAGATION: NAME OF S2S4SSSS
S2S5SSK SEGMENT TO PROCESS. SAME AS PHYSICAL IMS SEGMENT S2S5SSSS
S2S6SSK NAME IN DAXSEGM IF NOT MAPPING CASE 3 ENTITY S2S6SSSS
S2S7SSK (INTERNAL) SEGMENT IN PROCESS. S2S7SSSS
S2S8SSK S2S8SSSS
S2S9SS S4 DAXIDDSB POINTER. S2S9SSSS
S21SSSK IF CALLER IS DPROP AND FOR RH PROPAGATION: POINTER S21SSSSS
S211SSK TO THE BUFFER CONTAINING THE BEFORE-CHANGE IMS DATA- S211SSSS
S212SSK BASE SEGMENT. THIS BUFFER CONTAINS THE BEFORE IMAGE S212SSSS
S213SSK OF THE IMS SEGMENT IF: S213SSSS
S214SSK - DAXDPRCT EQ REPL, OR S214SSSS
S215SSK - DAXDPRCT EQ DLET, OR S215SSSS
S216SSK - DAXSEGT EQ DAXSEGTI (INTERNAL SEGMENT) S216SSSS
S217SSK OR CONTAINS ALL BINARY ZEROES IN OTHER CASES. S217SSSS
S218SSK BUFFER IS READ ONLY FOR THE EXIT ROUTINE. S218SSSS
S219SSK S219SSSS
S22SSS S4 DAXIDDSL POINTER. S22SSSSS
S221SSK IF CALLER IS DPROP AND FOR RH PROPAGATION: LENGTH S221SSSS
S222SSK OF THE 'BEFORE-CHANGE' IMS DB SEGMENT POINTED-TO S222SSSS
S223SSK BY DAXIDDSB. S223SSSS
S224SSK S224SSSS

Figure 97 (Part 4 of 5). COBOL Interface Control Block for a Segment Exit Routine

356 Customization Guide

S225SS S4 FILLER PIC X(22). S225SSSS
S226SSK S226SSSS
S227SSK---K S227SSSS
S228SSK THE NEXT GROUP OF FIELDS MAY BE MODIFIED BY THE EXIT ROUTINE K S228SSSS
S229SSK---K S229SSSS
S23SSSK S23SSSSS
S231SS S3 DAXENTRD PIC X. S231SSSS
S232SSK SET BY EXIT ROUTINE TO "X", INDICATES THAT EXIT S232SSSS
S233SSK HAS BEEN ENTERED S233SSSS
S234SSK S234SSSS
S235SS S3 DAXINCTL PIC X. S235SSSS
S236SSK SET BY EXIT ROUTINE TO "X", INDICATES THAT EXIT S236SSSS
S237SSK IS IN CONTROL S237SSSS
S238SSK S238SSSS
S239SS S3 DAXRETC PIC S9(8) COMP. S239SSSS
S24SSSK RETURN CODE. S24SSSSS
S241SS 88 DAXRCOK VALUE S. S241SSSS
S242SSK S = NORMAL, OUTPUT DATA RETURNED S242SSSS
S243SS 88 DAXRCOKR VALUE 4. S243SSSS
S244SSK 4 = KKDXT ONLYKKK S244SSSS
S245SS 88 DAXRCNQ VALUE 8. S245SSSS
S246SSK 8 = IF CALLER IS DPROP: DPROP WILL SUPPRESS S246SSSS
S247SSK THE PROPAGATION OF THE CHANGED DL/I DATA S247SSSS
S248SSK IF CALLER IS DXT: DXT SHOULD NOT CONSIDER S248SSSS
S249SSK DATA TO BE ELIGIBLE FOR EXTRACT S249SSSS
S25SSS 88 DAXRCERB VALUE 12. S25SSSSS
S251SSK 12 = ERROR S251SSSS
S252SSK - IF CALLER IS DPROP: PROPAGATION FAILURE. S252SSSS
S253SSK DPROP/RUP WILL GO THROUGH ITS USUAL S253SSSS
S254SSK ERROR HANDLING LOGIC. S254SSSS
S255SSK - IF CALLER IS DXT: DXT SHOULD TERMINATE S255SSSS
S256SS 88 DAXRCERD VALUE 16. S256SSSS
S257SSK 16 = ERROR S257SSSS
S258SSK - IF CALLER IS DPROP: RUP WILL ABEND S258SSSS
S259SSK - IF CALLER IS DXT: DXT SHOULD TERMINATE S259SSSS
S26SSSK DEM EXECUTION S26SSSSS
S261SSK S261SSSS
S262SS S3 DAXSMESG PIC X(64). S262SSSS
S263SSK TEXT OF MESSAGE PASSED FROM EXIT ROUTINE S263SSSS
S264SSK TO DPROP/DXT. ALL BLANKS MEANS NO MESSAGE. S264SSSS
S265SSK - IF CALLER IS DPROP: MSG WILL BE WRITTEN TO S265SSSS
S266SSK VARIOUS DESTINATIONS ACCORDING TO USUAL S266SSSS
S267SSK DPROP/RUP ERROR HANDLING LOGIC IN MESSAGE S267SSSS
S268SSK EKYR98SI OR EKYR981E. S268SSSS
S269SSK - IF CALLER IS DXT: TEXT OF MESSAGE WILL BE S269SSSS
S27SSSK WRITTEN TO SYSPRINT DATA SET IN MESSAGE S27SSSSS
S271SSK DVRAS_5S. (UNDERSCORE IS REPLACED BY ONE OF S271SSSS
S272SSK SEVERAL DIGITS) HAS EFFECT FOR ALL CALLS. S272SSSS
S273SSK S273SSSS
S274SS S3 DAXDPRPM PIC X(24). S274SSSS
S275SSK STORAGE RESERVED FOR DATA EXIT S275SSSS
S276SSK S276SSSS
S277SS S3 DAXRSVD2 PIC X(32). S277SSSS
S278SSK RESERVED FOR DXT USE S278SSSS
S279SS S3 DAXSCRT1 PIC X(128). S279SSSS
S28SSSK WORK SPACE (SCRATCHPAD) MAY BE USED BY EXIT S28SSSSS
S281SSK S281SSSS

Figure 97 (Part 5 of 5). COBOL Interface Control Block for a Segment Exit Routine

 Appendix B. Sample Segment Exit Control Blocks 357

Sample Segment Exit Control Block for PL/I
Figure 98 shows an example of the EKYRCDAX control block in PL/I. This control
block, called EKYRCDXP, resides in the (EKYSAMP) library.

1/KKKKKKKKKKKKKKK START OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKKKKKKK
 K K
 K Control Block name: K
 K EKYRCDXP (DAX) K
 K K
 K Descriptive name: K
 K DPROP PL/1 segment exit interface block. K
 K K
 K PL/1 version of EKYRCDAX K
 KK
 K K
 K THIS PRODUCT CONTAINS "RESTRICTED MATERIALS OF IBM". K
 K K
 K 5685-124 (C) COPYRIGHT IBM CORP. 1989, 1992. K
 K ALL RIGHTS RESERVED. K
 K K
 K U.S. GOVERNMENT USERS RESTRICTED RIGHTS - K
 K USE, DUPLICATION, OR DISCLOSURE RESTRICTED BY K
 K GSA ADP SCHEDULE CONTRACT WITH IBM CORP. K
 K K
 K LICENSED MATERIALS - PROPERTY OF IBM. K
 K K
 KK
 K K
 K STATUS: V1 R2 MS K
 K K
 K Function: K
 K This is the PL/1 control block used to interface between K
 K - DPROP OR DXT K
 K and K
 K - a user segment exit routine (these user exit routines are K
 K called by DXT "user data exit routines") K
 K K
 K There is one DAX control block for each segment exit routine, K
 K lasting for the duration of the exit in virtual storage. K
 K For synchronous propagation in MPP regions: K
 K this is the duration of the IMS program controller subtask. K
 K For synchronous propagation in batch/BMP regions, for CCU and K
 K DLU processing, and for asynchronous propagation (depending K
 K on how aysnchronous propagation is implemented): K
 K this is the duration of the jobstep. K
 KK
 K K
 K Important note: K
 K - Fields marked in the comment with 'KKKKK DXT only KKKKK' have K
 K no meaning, when the segment user exit routine is invoked by K
 K DPROP. K
 KK
 K K
 K Change activity: K
 K None K
 KKKKKKKKKKKKKKKK END OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKKKKKKKKK/
1DECLARE 1 DAX BASED(DAX_POINTER),
 /KKK
K This section of the control block may not be modified by exit K

 KKK/
2 DAXPFX, /K Prefix of control block (32 bytes) K/

3 DAXTNAME CHAR(8), /K eye catcher ("DVRXCDAX") K/
3 DAXRSVD CHAR(24), /K reserved for DXT internal use K/

Figure 98 (Part 1 of 5). PL/I Interface Control Block for a Segment Exit Routine

358 Customization Guide

2 DAXPFXE, /K Prefix extension (448 bytes) K/
3 DAXCALL CHAR(2), /K Type of call to exit:

"NO" - normal call, ISSUED TO
convert data from DL/I IO-area
format to DPROP/DXT format.
"RV" - reverse call issued to
convert data from DPROP/DXT
format to DL/I IOarea format.

KKDXT onlyKK "RE" - return call issued by DXT.
KKDXT onlyKK "ED" - end-of-data call issued by

 DXT. K/

3 DAXDATYP CHAR(2), /K Type of data being passed:
"DL" - DL/I data

KKDXT onlyKK "PS" - physical sequential data
KKDXT onlyKK "VK" - VSAM KSDS data
KKDXT onlyKK "VE" - VSAM ESDS data
KKDXT onlyKK "GD" - GDI RECRD data K/

3 DAXFIL CHAR(32), /K Name of file or PCB from which
data is being passed K/

3 DAXPSB CHAR(8), /K Name of PSB if type is "DL" K/

3 DAXSEGM CHAR(32), /K Name of segment if type is "DL".
If caller is DPROP: name of

 physical segment.
If caller is DXT: name of segment
specified in the used DBD (DBD can
be physical or logical). K/

3 DAXPCBAD POINTER, /K KKKKK DXT only KKKKK pointer to
PCB if type is "DL" K/

3 DAXPCBLS POINTER, /K KKKKK DXT only KKKKK Pointer to
list of DEM's PCBs, if DEM is a

 DL/I DEM. K/

3 DAXKFBAD POINTER, /K Pointer to segment's fully
concatenated key (if DL/I).
Zero if caller is DPROP and if
"NOKEY" has been specified on
"EXIT=" of DBDGEN. K/

1 3 DAXKFBLN FIXED BIN(31), /K Length of segm's fully concatenated
concatenated key (if DL/I).
Zero if caller is dprop and if
"NOKEY" has been specified on
"EXIT=" of DBDGEN. K/

3 DAXINLN, /K Length of input segment/record
passed to segment exit routine. K/

4 DAXDLEN FIXED BIN(31), /K Alternate name, refers to length
of DL/I ioarea format buffer.K/

3 DAXOUTLN, /K Length of output segment/record to
be built by segment exit routine.K/

4 DAXFLEN FIXED BIN(31), /K Alternate name, refers to
length of DPROP format buffer. K/

3 DAXSYSPR POINTER, /K KKKKK DXT only KKKKK pointer

Figure 98 (Part 2 of 5). PL/I Interface Control Block for a Segment Exit Routine

 Appendix B. Sample Segment Exit Control Blocks 359

to sysprint DCB K/

3 DAXENVT, /K Environment subfields (12 bytes) K/
4 DAXOPSYS CHAR(4), /K operating system:

"ESA " if MVS/ESA
KKDXT onlyKK "XA " if MVS/XA
KKDXT onlyKK "MVS " if MVS K/

4 DAXTRANS CHAR(4), /K DB/DC environment:
"BAT " if IMS BATCH/BMP
"MPP " if IMS MPP
"IFP " if Fast Path
"CICS" if CICS
" " if none of the above K/

4 DAXPROGM CHAR(4), /K Calling program:
"DXT " if DXT
"DPRS" if DPROP SYNCH PROP
"DPRA" if DPROP ASYNCH PROP
"DPRC" if DPROP CCU PROP
"DPRL" if DPROP DLU K/

3 DAXEXIT CHAR(8), /K Name of this exit routine K/

3 DAXDBNM CHAR(8), /K Name of IMS data base.
If caller is DPROP:

name of physical DBD.
If caller is DXT:

name of used dbd (can be name
of a physical or logical DBD) K/

3 DAXDPRPN CHAR(24), /K Reserved K/

3 DAXASGNO FIXED BIN(31), /K KKKKK DXT only KKKKK number
of DAXASEGS array elements K/

3 DAXASEGS(15) CHAR(12), /K KKKKK DXT only KKKKK array
of ancestor segments K/

1 3 DAXDPRCT CHAR(4), /K If caller is DPROP,
exit is called to process:
"ISRT" - a DL/I or DB2 insert
"DLET" - a DL/I or DB2 delete
"REPL" - a DL/I or

DB2 replace (after-image) K/

3 DAXREPL CHAR(1), /K If caller is DPROP and
if DAXDPRCT is "REPL":

"A" - after replace
"B" - before replace K/

3 DAXSEGT CHAR(1), /K If caller is DPROP,
type of segment processed:

"U" - updated IMS segment
"A" - ancestor of updated seg
"I" - internal segment K/

3 DAXPSUP CHAR(1), /K If caller is DPROP: description
whether propagation-suppression is

 allowed:
"N" - suppression not allowed
"Y" - suppression is allowed K/

Figure 98 (Part 3 of 5). PL/I Interface Control Block for a Segment Exit Routine

360 Customization Guide

 3 FILLS1 CHAR(1), /K Reserved K/
3 DAXISEGM CHAR(8), /K If caller is DPROP and for RH

propagation: name of segment to
process. Same as physical IMS
segment name in DAXSEGM if not
mapping case 3 entity (internal)
segment in process. K/

3 DAXIDDSB POINTER, /K If caller is DPROP and for RH
propagation: pointer to DL/I DB

 segment buffer.
This buffer contains contains the
before image of the IMS segment if:

- DAXDPRCT equals REPL, or DLET
 or

- DAXSEGT equals DAXSEGTI
 (internal seg)

else contains all binary zeroes
in other cases.
Buffer is read only for
the exit routine. K/

3 DAXIDDSL POINTER, /K If caller is DPROP and for RH
propagation: length of the
'before-change' IMS DB segment
pointed-to by DAXIDDSB. K/

3 FILL22 CHAR(22), /K Filler K/
1 /KKK

KThe next group of fields may be modified by the exit routine.K
 KKK/

3 DAXENTRD CHAR(1), /K Set by exit to "X" indicating
that the exit has been entered. K/

3 DAXINCTL CHAR(1), /K Set by exit to "X" indicating
that exit is in control. K/

3 DAXRETC FIXED BIN(31), /K Return code.
S = normal, output data returned.
4 = KKDXT ONLYKKK
8 = If caller is DPROP:

Propagation of the DL/I
changed data will be

 suppressed.
If caller is DXT:
DXT should not consider data
to be eligible for extract.

12 = ERROR
If caller is DPROP:

 Propagation failure.
DPROP/RUP will go through
its usual error handling

 logic.
If caller is DXT:

DXT should terminate.

16 = ERROR
If caller is DPROP:
RUP will abend.
If caller is DXT:
DXT should terminate DEM

 execution. K/

Figure 98 (Part 4 of 5). PL/I Interface Control Block for a Segment Exit Routine

 Appendix B. Sample Segment Exit Control Blocks 361

3 DAXSMESG CHAR(64), /K Text of message passed from exit
routine to DPROP/DXT.
All blanks means no message.

If caller is DPROP:
Message will be written to various
destinations according to usual
DPROP/RUP error handling logic in
message EKYR98SI or EKYR981E.

If caller is DXT: text of message
will be written to SYSPRINT dataset
in message DVRAS_5S, (underscore is
replaced by one of several digits)
has effect for all calls. K/

3 DAXDPRPM CHAR(24), /K Storage reserved for data exit. K/
3 DAXRSVD2 CHAR(32), /K Reserved for DXT use. K/
3 DAXSCRT1 CHAR(128); /K Work space (scratchpad), may be

used by the exit as desired. K/

Figure 98 (Part 5 of 5). PL/I Interface Control Block for a Segment Exit Routine

362 Customization Guide

Sample Segment Exit Control Block for C
Figure 99 shows an example of the EKYRCDAX control block in C. This control
block, called EKYRCDXK, resides in the (EKYSAMP) library.

/KKKKKKKKKKKKKKK START OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKKKKKKKK
K K
K Control Block name: K
K EKYRCDXK (DAX) K
K K
K Descriptive name: K
K DPROP C language segment exit interface block. K
K C language version of EKYRCDAX K
KKK
K THIS PRODUCT CONTAINS "RESTRICTED MATERIALS OF IBM". K
K K
K 5685-124 (C) COPYRIGHT IBM CORP. 1989, 1992. K
K ALL RIGHTS RESERVED. K
K K
K U.S. GOVERNMENT USERS RESTRICTED RIGHTS - K
K USE, DUPLICATION, OR DISCLOSURE RESTRICTED BY K
K GSA ADP SCHEDULE CONTRACT WITH IBM CORP. K
K K
K LICENSED MATERIALS - PROPERTY OF IBM. K
KKK
K K
K STATUS: V1 R2 MS K
K K
K Function: K
K This is the C language control block used to interface between K
K - DPROP OR DXT K
K and K
K - a user's segment exit routine (these user exit routines K
K are called by dxt 'user data exit routines') K
K K
K There is one DAX control block for each segment exit routine, K
K lasting for the duration of the exit in virtual storage. K
K For synchronous propagation in MPP regions: K
K - this is the duration of the IMS program controller subtask. K
K For synchronous propagation in batch/BMP regions, for CCU and K
K DLU processing, and for asynchronous propagation (depending K
K on how asynchronous propagation is implemented): K
K - this is the duration of the jobstep. K
KKK
K Important notes: K
K Since the same user exit routine can be invoked both by DPROP K
K and by DXT: changes to this control block must be coordinated K
K between DPROP development and DXT development. K
K K
K Fields marked in the comment with 'KKKKK DXT only KKKKK' have K
K no meaning, when the segment user exit routine is invoked by K
K DPROP. K
KKK
K K
K Change activity: K
K None K
KKKKKKKKKKKKKKKK END OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKKKKKKKKKK/

#pragma page(1)

typedef
struct
{ /K DAX K/
/KK
 K This section of the control block may not be modified by exit K
 KK/

Figure 99 (Part 1 of 5). C Interface Control Block for a Segment Exit Routine

 Appendix B. Sample Segment Exit Control Blocks 363

 /K DAXPFX K/
/K Control block prefix (32 bytes) K/

unsigned char daxtname[8]; /K Eye catcher ("dvrxcdax") K/
unsigned char daxrsvd[24]; /K Reserved for DXT internal use K/

 /KKK/
 /K DAXPFXE K/

/K Prefix extension (448 bytes) K/
unsigned char daxcall[2]; /K Type of call to exit:

"NO" - normal call, ISSUED TO
convert data from DL/I IO-area
format to DPROP/DXT format.
"RV" - reverse call issued to
convert data from DPROP/DXT
format to DL/I IOarea format.

KKDXT onlyKK "RE" - return call issued by DXT.
KKDXT onlyKK "ED" - end-of-data call issued by

 DXT. K/

unsigned char daxdatyp[2]; /K Type of data being passed:
"DL" - DL/I data

KKDXT onlyKK "PS" - physical sequential data
KKDXT onlyKK "VK" - VSAM KSDS data
KKDXT onlyKK "VE" - VSAM ESDS data
KKDXT onlyKK "GD" - GDI RECRD data K/

unsigned char daxfil[32]; /K Name of file or PCB from which
data is being passed K/

unsigned char daxpsb[8]; /K Name of PSB if type is "DL" K/

unsigned char daxsegm[32]; /K Name of segment if type is "DL".
If caller is DPROP: name of

 physical segment.
If caller is DXT: name of segment
specified in the used DBD (DBD can
be physical or logical). K/

char Kdaxpcbad; /K KKKKK DXT only KKKKK pointer to
PCB if type is "DL" K/

char Kdaxpcbls; /K KKKKK DXT only KKKKK pointer to
list of DEM's PCBs, if DEM is a

 DL/I DEM. K/
#pragma page(1)

char Kdaxkfbad; /K Pointer to segment's fully
concatenated key (if DL/I).
Zero if caller is DPROP and if
"NOKEY" has been specified on
"EXIT=" of DBDGEN. K/

long daxkfbln; /K Length of segm's fully concatenated
concatenated key (if DL/I).
Zero if caller is dprop and if
"NOKEY" has been specified on
"EXIT=" of DBDGEN. K/

/KK/
 /K DAXINLN K/

/K Length of input segment/record
passed to segment exit routine. K/

long daxdlen; /K alternate name, refers to length

Figure 99 (Part 2 of 5). C Interface Control Block for a Segment Exit Routine

364 Customization Guide

of DL/I ioarea format buffer. K/
/KK/
 /K DAXOUTLN K/

/K Length of output segment/record to
be built by segment exit routine. K/

long daxflen; /K Alternate name, refers to length
of DPROP format buffer. K/

/KK/
char Kdaxsyspr; /K KKKKK DXT only KKKKK pointer

to sysprint DCB K/
/KK/
 /K DAXENVT K/

/K Environment subfields (12 bytes) K/
unsigned char daxopsys[4]; /K Operating system:

"ESA " if MVS/ESA
KKDXT onlyKK "XA " if MVS/XA
KKDXT onlyKK "MVS " if MVS K/

unsigned char daxtrans[4]; /K DB/DC environment:
"BAT " if IMS BATCH/BMP
"MPP " if IMS MPP
"IFP " if Fast Path
"CICS" if CICS
" " if none of the above K/

unsigned char daxprogm[4]; /K Calling program:
"DXT " if DXT
"DPRS" if DPROP SYNCH PROP
"DPRA" if DPROP ASYNCH PROP
"DPRC" if DPROP CCU PROP
"DPRL" if DPROP DLU K/

/KK/
#pragma page(1)

unsigned char daxexit[8]; /K Name of this exit routine K/

unsigned char daxdbnm[8]; /K Name of IMS data base.
If caller is DPROP:

name of physical DBD.
If caller is DXT:

name of used DBD (can be name
of a physical or logical DBD) K/

unsigned char daxdprpn[24]; /K Reserved K/

long daxasgno; /K KKKKK DXT only KKKKK number
of DAXASEGS array elements K/

char daxasegs[15][12]; /K KKKKK DXT only KKKKK array
of ancestor segments K/

unsigned char daxdprct[4]; /K If caller is DPROP,
exit is called to process:

"ISRT" - a DL/I or DB2 insert
"DLET" - a DL/I or DB2 delete
"REPL" - a DL/I or

DB2 replace (after-image) K/

unsigned char daxrepl; /K If caller is DPROP and
if DAXDPRCT is "REPL":

"A" - after replace
"B" - before replace K/

Figure 99 (Part 3 of 5). C Interface Control Block for a Segment Exit Routine

 Appendix B. Sample Segment Exit Control Blocks 365

unsigned char daxsegt; /K If caller is DPROP,
type of segment processed:

"U" - updated IMS segment
"A" - ancestor of updated seg
"I" - internal segment K/

unsigned char daxpsup; /K If caller is DPROP: description
whether propagation-suppression is

 allowed:
"N" - suppression not allowed
"Y" - suppression is allowed K/

unsigned char fillS1; /K Reserved K/
unsigned char daxisegm[8]; /K If caller is DPROP and for RH

propagation: name of segment to
process. Same as physical IMS
segment name in DAXSEGM if not
mapping case 3 entity (internal)
segment in process. K/

#pragma page(1)

char Kdaxiddsb; /K If caller is DPROP and for RH
propagation: pointer to DL/I DB

 segment buffer.
This buffer contains contains the
before image of the IMS segment if:

- DAXDPRCT equals REPL, or DLET
 or

- DAXSEGT equals DAXSEGTI
 (internal seg)

else contains all binary zeroes
in other cases.
Buffer is read only for
the exit routine. K/

char Kdaxiddsl; /K If caller is DPROP and for RH
propagation: length of the
'before-change' IMS DB segment
pointed-to by DAXIDDSB. K/

unsigned char fill22[22]; /K Filler K/

 /KKK
KThe next group of fields may be modified by the exit routine. K

 KK/
unsigned char daxentrd; /K Set by exit to "x" indicating

that the exit has been entered. K/
unsigned char daxinctl; /K Set by exit to "x" indicating

that exit is in control. K/
long daxretc; /K Return code.

S = normal, output data returned.
4 = KKDXT ONLYKKK
8 = If caller is DPROP:

Propagation of the DL/I
changed data will be

 suppressed.
If caller is DXT:
DXT should not consider data
to be eligible for extract.

12 = ERROR
If caller is DPROP:

 Propagation failure.
DPROP/RUP will go through
its usual error handling

 logic.

Figure 99 (Part 4 of 5). C Interface Control Block for a Segment Exit Routine

366 Customization Guide

If caller is DXT:
DXT should terminate.

16 = ERROR
If caller is DPROP:
RUP will abend.
If caller is DXT:
DXT should terminate DEM

 execution. K/
#pragma page(1)

unsigned char daxsmesg[64]; /K Text of message passed from exit
routine to DPROP/DXT.
All blanks means no message.

If caller is DPROP:
Message will be written to various
destinations according to usual
DPROP/RUP error handling logic in
message EKYR98SI or EKYR981E.

If caller is DXT: text of message
will be written to SYSPRINT dataset
in message DVRAS_5S, (underscore is
replaced by one of several digits)
has effect for all calls. K/

unsigned char daxdprpm[24]; /K Storage reserved for data exit. K/
unsigned char daxrsvd2[32]; /K Reserved for DXT use. K/
unsigned char daxscrt1[128]; /K Work space (scratchpad), may be

used by the exit as desired. K/
 } EKYRCDAX;

#pragma page(1)

Figure 99 (Part 5 of 5). C Interface Control Block for a Segment Exit Routine

 Appendix B. Sample Segment Exit Control Blocks 367

Appendix C. Sample Field Exit Control Blocks

This appendix contains sample Field exit control blocks which map the existing
DPROP interface control blocks. This appendix provides the exit control blocks in
three languages:

 � COBOL
 � PL/I
 � C

Figure 28 on page 115 shows the Assembler version of the Field exit control block.

368 Copyright IBM Corp. 1991,2001

Sample Field Exit Control Block for COBOL
Figure 100 shows an example of the EKYRCUDT control block in COBOL. This
control block, called EKYRCUDC, resides in the DPROP Sample Source library
(EKYSAMP).

SSS1SSKKKKKKKKKKKKKKKK START OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKK SSS1SSSS
SSS2SSK K SSS2SSSS
SSS3SSK CONTROL BLOCK NAME: K SSS3SSSS
SSS4SSK EKYRCUDC (UDT) K SSS4SSSS
SSS5SSK K SSS5SSSS
SSS6SSK DESCRIPTIVE NAME: K SSS6SSSS
SSS7SSK DPROP COBOL FIELD EXIT INTERFACE K SSS7SSSS
SSS8SSK K SSS8SSSS
SSS9SSK COBOL VERSION OF EKYRCUDT K SSS9SSSS
SS1SSSK K SS1SSSSS
SS11SSKKK SS11SSSS
SS12SSK K SS12SSSS
SS13SSK THIS PRODUCT CONTAINS "RESTRICTED MATERIALS OF IBM". K SS13SSSS
SS14SSK K SS14SSSS
SS15SSK 5685-124 (C) COPYRIGHT IBM CORP. 1989, 1992. K SS15SSSS
SS16SSK ALL RIGHTS RESERVED. K SS16SSSS
SS17SSK K SS17SSSS
SS18SSK U.S. GOVERNMENT USERS RESTRICTED RIGHTS - K SS18SSSS
SS19SSK USE, DUPLICATION, OR DISCLOSURE RESTRICTED BY K SS19SSSS
SS2SSSK GSA ADP SCHEDULE CONTRACT WITH IBM CORP. K SS2SSSSS
SS21SSK K SS21SSSS
SS22SSK LICENSED MATERIALS - PROPERTY OF IBM. K SS22SSSS
SS23SSK K SS23SSSS
SS24SSKKK SS24SSSS
SS25SSK K SS25SSSS
SS26SSK STATUS: V1 R2 MS K SS26SSSS
SS27SSK K SS27SSSS
SS28SSK FUNCTION: K SS28SSSS
SS29SSK THIS IS THE COBOL CONTROL BLOCK USED TO INTERFACE BETWEEN K SS29SSSS
SS3SSSK - DPROP OR DXT K SS3SSSSS
SS31SSK AND K SS31SSSS
SS32SSK - A USER'S FIELD EXIT ROUTINE (THESE USER K SS32SSSS
SS33SSK EXIT ROUTINES ARE CALLED BY DXT 'USER DATA TYPE K SS33SSSS
SS34SSK EXIT ROUTINES') K SS34SSSS
SS35SSK K SS35SSSS
SS36SSK THERE IS ONE CONTROL BLOCK FOR EACH FIELD K SS36SSSS
SS37SSK EXIT ROUTINE, LASTING FOR THE DURATION OF THE EXIT K SS37SSSS
SS38SSK IN VIRTUAL STORAGE. K SS38SSSS
SS39SSK FOR SYNCH PROPAGATION IN MPP REGIONS: K SS39SSSS
SS4SSSK - THIS IS THE DURATION OF THE IMS PROGRAM CONTROLLER K SS4SSSSS
SS41SSK SUBTASK. K SS41SSSS
SS42SSK FOR SYNCH PROPAGATION IN BATCH/BMP REGIONS, FOR K SS42SSSS
SS43SSK ASYNCH PROPAGATION, AND FOR CCU PROCESSING: K SS43SSSS
SS44SSK - THIS IS THE DURATION OF THE JOBSTEP. K SS44SSSS
SS45SSK K SS45SSSS
SS46SSK---K SS46SSSS
SS47SSK IMPORTANT NOTES: K SS47SSSS
SS48SSK ================ K SS48SSSS
SS49SSK K SS49SSSS
SS5SSSK - SINCE THE SAME USER EXIT ROUTINE CAN BE INVOKED BOTH K SS5SSSSS
SS51SSK BY DPROP AND BY DXT: CHANGES TO THIS CONTROL BLOCK MUST K SS51SSSS

Figure 100 (Part 1 of 4). COBOL Interface Control Block for a Field Exit Routine

 Appendix C. Sample Field Exit Control Blocks 369

SS52SSK BE COORDINATED BETWEEN DPROP DEVELOPMENT AND DXT K SS52SSSS
SS53SSK DEVELOPMENT. K SS53SSSS
SS54SSK K SS54SSSS
SS55SSK---K SS55SSSS
SS56SSK K SS56SSSS
SS57SSK CHANGE ACTIVITY: K SS57SSSS
SS58SSK K SS58SSSS
SS59SSKKKKKKKKKKKKKKKK END OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKKKK SS59SSSS
SS6SSSK SS6SSSSS
SS61SS S1 EKYRCUDC. SS61SSSS
SS62SSK SS62SSSS
SS63SSK---K SS63SSSS
SS64SSK THIS SECTION OF THE CB MAY NOT BE MODIFIED BY THE EXIT. K SS64SSSS
SS65SSK---K SS65SSSS
SS66SSK SS66SSSS
SS67SS S2 UDTPFX. SS67SSSS
SS68SS S3 UDTTNAME PIC X(8). SS68SSSS
SS69SSK NAME OF CONTROL BLOCK. MAPS TO DVRXCUDT SS69SSSS
SS7SSS S3 FILLER PIC X(24). SS7SSSSS
SS71SSK RESERVED FOR DXT USE SS71SSSS
SS72SSK SS72SSSS
SS73SS S2 UDTPFXE. SS73SSSS
SS74SSK PREFIX EXTENSION SS74SSSS
SS75SSK SS75SSSS
SS76SS S3 UDTPNMOD. SS76SSSS
SS77SS S4 UDTCALL PIC X(2). SS77SSSS
SS78SSK TYPE OF CALL TO EXIT... SS78SSSS
SS79SS 88 UDTCSRTG VALUE "ST". SS79SSSS
SS8SSSK "SRC --> TRG" CALL ISSUED BY DXT AND BY DPROP SS8SSSSS
SS81SSK DURING HR MAPPING. EXIT SHOULD CONVERT THE DATA SS81SSSS
SS82SSK FROM THE USER FORMAT TO THE DPROP FORMAT. SS82SSSS
SS83SS 88 UDTCTGSR VALUE "TS". SS83SSSS
SS84SSK "TRG --> SRC" CALL ISSUED BY DPROP DURING RH SS84SSSS
SS85SSK MAPPING. EXIT SHOULD CONVERT DATA FROM THE SS85SSSS
SS86SSK DPROP FORMAT TO THE USER FORMAT. SS86SSSS
SS87SS 88 UDTCDEFN VALUE "DF". SS87SSSS
SS88SSK KKNOTKK ISSUED BY DPROP. SS88SSSS
SS89SSK DEFINITION CALL ISSUED BY DXT-UIM FOR EACH DATATYPE. SS89SSSS
SS9SSSK EXIT CAN VALIDATE REQUEST AND RETURN REQUIRED VALUES SS9SSSSS
SS91SSK SS91SSSS
SS92SS S4 FILLER PIC X(2). SS92SSSS
SS93SSK RESERVED FOR DXT USE SS93SSSS
SS94SS S4 UDTENVRN. SS94SSSS
SS95SSK ENVIRONMENTAL INFORMATION SS95SSSS
SS96SS S5 UDTOPSYS PIC X(4). SS96SSSS
SS97SSK OPERATING SYSTEM CALLING PROGRAM IS EXECUTING IN: SS97SSSS
SS98SS 88 UDTOSMVS VALUE "MVS ". SS98SSSS
SS99SSK INDICATES DXT IS RUNNING IN MVS/37S ENVIRONMENT. SS99SSSS
S1SSSS 88 UDTOSXA VALUE "XA ". S1SSSSSS
S1S1SSK INDICATES DXT IS RUNNING IN MVS/XA ENVIRONMENT. S1S1SSSS
S1S2SS 88 UDTOSESA VALUE "ESA ". S1S2SSSS

Figure 100 (Part 2 of 4). COBOL Interface Control Block for a Field Exit Routine

370 Customization Guide

S1S3SSK INDICATES DXT IS RUNNING IN MVS/ESA ENVIRONMENT. S1S3SSSS
S1S4SS S5 UDTTRANS PIC X(4). S1S4SSSS
S1S5SSK DB/DC ENVIRONMENT: 'BAT ' IF IMS BATCH/BMP S1S5SSSS
S1S6SSK 'MPP ' IF IMS MP S1S6SSSS
S1S7SSK 'IFP ' IF FAST PATH S1S7SSSS
S1S8SSK 'CICS' IF CICS S1S8SSSS
S1S9SSK ' ' IF NONE OF ABOVE S1S9SSSS
S11SSS S5 UDTPROGM PIC X(4). S11SSSSS
S111SSK CALLING PROGRAM: 'DXT ' IF DXT S111SSSS
S112SSK 'DPRS' IF DPROP SYNCH PROP S112SSSS
S113SSK 'DPRA' IF DPROP ASYNCH PROP S113SSSS
S114SSK 'DPRC' IF DPROP CCU PROCESSING S114SSSS
S115SSK 'DPRL' IF DPROP DLU S115SSSS
S116SS S4 UDTEXIT PIC X(8). S116SSSS
S117SSK NAME OF THE USER EXIT S117SSSS
S118SS S4 UDTPCBLS PIC X(4). S118SSSS
S119SS S4 UDTDPRP1 PIC X(24). S119SSSS
S12SSSK-- S12SSSSS
S121SSK THIS SECTION CONTAINS DATA PERTINENT TO THE SOURCE FIELD S121SSSS
S122SSK-- S122SSSS
S123SS S4 UDTSTYPE PIC X(2). S123SSSS
S124SSK SOURCE DATA TYPE VALUE S124SSSS
S125SS S4 UDTSBYTI PIC X(1). S125SSSS
S126SSK LENGTH INDICATOR FOR USER FORMAT (DXT ONLY) S126SSSS
S127SS 88 UDTSBYIN VALUE "N". S127SSSS
S128SSK LENGTH OF USER FORMAT RESIDES WITH THE DEFINITION. S128SSSS
S129SS 88 UDTSBYIV VALUE "V". S129SSSS
S13SSSK LENGTH OF USER FORMAT VARIES AND MUST BE RETURNED S13SSSSS
S131SSK AT "DEFINITION" TIME. S131SSSS
S132SS S4 FILLER PIC X(1). S132SSSS
S133SSK RESERVED FOR DXT USE S133SSSS
S134SS S4 UDTSBYTV PIC S9(4) COMP. S134SSSS
S135SSK LENGTH OF FIELD IN USER FORMAT. S135SSSS
S136SS S4 UDTSSCLI PIC X(1). S136SSSS
S137SSK SCALE INDICATOR FOR USER FORMAT (DXT ONLY) S137SSSS
S138SS 88 UDTSSCLN VALUE "N". S138SSSS
S139SSK SCALE OF USER FORMAT RESIDES WITH THE DEFINITION. S139SSSS
S14SSS 88 UDTCSCLV VALUE "V". S14SSSSS
S141SSK SCALE OF USER FORMAT VARIES AND MUST BE RETURNED S141SSSS
S142SSK AT "DEFINITION" TIME. S142SSSS
S143SS S4 FILLER PIC X(3). S143SSSS
S144SSK RESERVED FOR DXT USE S144SSSS
S145SS S4 UDTSSCLV PIC S9(4) COMP. S145SSSS
S146SSK VALUE OF SCALE IN USER FORMAT S146SSSS
S147SSK S147SSSS
S148SSK-- S148SSSS
S149SSK THIS SECTION CONTAINS DATA PERTINENT TO THE TARGET FIELD S149SSSS
S15SSSK-- S15SSSSS
S151SS S4 UDTTTYPE PIC X(2). S151SSSS
S152SSK DATA TYPE OF DPROP FORMAT S152SSSS
S153SS S4 UDTTBYTI PIC X(1). S153SSSS

Figure 100 (Part 3 of 4). COBOL Interface Control Block for a Field Exit Routine

 Appendix C. Sample Field Exit Control Blocks 371

S154SSK LENGTH INDICATOR FOR DPROP FORMAT (DXT ONLY) S154SSSS
S155SS 88 UDTTBYIN VALUE "N". S155SSSS
S156SSK LENGTH OF DPROP FORMAT RESIDES WITH THE DEFINITION. S156SSSS
S157SS 88 UDTTBYIV VALUE "V". S157SSSS
S158SSK LENGTH OF DPROP FORMAT VARIES AND MUST BE RETURNED S158SSSS
S159SSK AT "DEFINITION" TIME. S159SSSS
S16SSS S4 FILLER PIC X(1). S16SSSSS
S161SSK RESERVED FOR DXT USE S161SSSS
S162SS S4 UDTTBYTV PIC S9(4) COMP. S162SSSS
S163SSK LENGTH OF FIELD IN DPROP FORMAT S163SSSS
S164SS S4 UDTTSCLI PIC X(1). S164SSSS
S165SSK SCALE INDICATOR FOR DPROP FORMAT (DXT ONLY) S165SSSS
S166SS 88 UDTTSCLN VALUE "N". S166SSSS
S167SSK SCALE OF DPROP FORMAT RESIDES WITH THE DEFINITION. S167SSSS
S168SS 88 UDTTSCLV VALUE "V". S168SSSS
S169SSK SCALE OF DPROP FORMAT VARIES AND MUST BE RETURNED S169SSSS
S17SSSK AT "DEFINITION" TIME. S17SSSSS
S171SS S4 FILLER PIC X(3). S171SSSS
S172SSK RESERVED FOR DXT USE S172SSSS
S173SS S4 UDTTSCLV PIC S9(4) COMP. S173SSSS
S174SSK VALUE OF SCALE IN DPROP FORMAT S174SSSS
S175SSK-- S175SSSS
S176SSK THIS SECTION IS THE COMMUNICATIONS AREA BETWEEN THE EXIT S176SSSS
S177SSK AND DPROP/DXT. S177SSSS
S178SSK-- S178SSSS
S179SS S3 UDTXICOM. S179SSSS
S18SSSK DEFINE A COMMUNICATIONS AREA S18SSSSS
S181SS S4 UDTDPRP2 PIC X(24). S181SSSS
S182SSK RESERVED S182SSSS
S183SS S4 UDTSCRT1 PIC X(128). S183SSSS
S184SS S4 UDTXITWS REDEFINES UDTSCRT1 PIC X(128). S184SSSS
S185SSK USER EXIT WORK AREA S185SSSS
S186SS S4 UDTENTRD PIC X(1). S186SSSS
S187SSK 'ENTERED' FLAG - SET TO X BY EXIT TO INDICATE S187SSSS
S188SSK THAT DATA TYPE ROUTINE HAS BEEN ENTERED. S188SSSS
S189SS S4 UDTINCTL PIC X(1). S189SSSS
S19SSSK 'IN-CONTROL' FLAG - SET TO X BY EXIT TO INDICATE S19SSSSS
S191SSK THAT DATA TYPE ROUTINE IS IN CONTROL. S191SSSS
S192SS S4 UDTNULLT PIC X(1). S192SSSS
S193SSK DATA RETURNED FROM EXIT IS NULL. S193SSSS
S194SS 88 UDTNULLY VALUE "Y". S194SSSS
S195SSK RETURN DATA IS NULL. S195SSSS
S196SS 88 UDTNULLN VALUE "N". S196SSSS
S197SSK RETURNED DATA IS NOT NULL. S197SSSS
S198SS S4 FILLER PIC X(1). S198SSSS
S199SSK RESERVED S199SSSS
S2SSSS S4 UDTXRETC PIC S9(8) COMP. S2SSSSSS
S2S1SSK USER EXIT RETURN CODE S2S1SSSS
S2S2SSK S - SUCCESSFUL COMPLETION S2S2SSSS
S2S3SSK OTHER - ERROR ENCOUNTERED S2S3SSSS
S2S4SSK IF CALLER IS DPROP: S2S4SSSS
S2S5SSK 4 ---> RUP WILL USE IST USUAL S2S5SSSS
S2S6SSK ERROR HANDLING LOGIC. S2S6SSSS
S2S7SSK ⅛4 ---> RUP ABENDS S2S7SSSS
S2S8SS S4 UDTXMESG PIC X(64). S2S8SSSS
S2S9SSK USER EXIT MESSAGE TEXT INSERTED INTO DPROP/DXT S2S9SSSS
S21SSSK MESSAGE. IF CALLER IS DPROP, TEXT WILL BE S21SSSSS
S211SSK INSERTED INTO MSG EKYR97SI/EKYR971E. S211SSSS

Figure 100 (Part 4 of 4). COBOL Interface Control Block for a Field Exit Routine

372 Customization Guide

Sample Field Exit Control Block for PL/I
Figure 101 shows an example of the EKYRCUDT control block in PL/I. This
control block, called EKYRCUDP, resides in the (EKYSAMP) library.

1/KKKKKKKKKKKKKKKKKKKK START OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKK
 K K
K Control Block name: K

 K EKYRCUDP K
 K K
K Descriptive name: K
K DPROP PL/1 field exit interface. K

 K K
K PL/1 version of EKYRCUDT. K

 K K
 KKK
 K K
K THIS PRODUCT CONTAINS "RESTRICTED MATERIALS OF IBM". K

 K K
K 5685-124 (C) COPYRIGHT IBM CORP. 1989, 1992. K
K ALL RIGHTS RESERVED. K

 K K
K U.S. GOVERNMENT USERS RESTRICTED RIGHTS - K
K USE, DUPLICATION, OR DISCLOSURE RESTRICTED BY K
K GSA ADP SCHEDULE CONTRACT WITH IBM CORP. K

 K K
K LICENSED MATERIALS - PROPERTY OF IBM. K

 K K
 KKK
 K K
K Status: V1 R2 MS K

 K K
 K Function: K
K This is the PL/1 control block used to interface between K
K - DPROP or DXT K

 K and K
K - a user's field exit routine (these user exit routines K
K are called by DXT 'user data type exit routines') K

 K K
K There is one control block for each field exit routine, K
K lasting for the duration of the exit in virtual storage. K
K For synchronous propagation in MPP regions: K
K - this is the duration of the IMS program controller subtask. K
K For synchronous propagation in Batch/BMP regions, for K
K asynchronous propagation, and for CCU processing: K
K - this is the duration of the jobstep. K

 KKK
 K Important Notes: K
 K K
K Since the same user exit routine can be invoked both by K
K DPROP and by DXT: changes to this control block must be K
K coordinated between DPROP development and DXT development. K

 K K
 KKK
 K K
K Change activity: K

 K None. K
KKKKKKKKKKKKKKKKKKKK END OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKKKK/

1DECLARE UDT_PTR POINTER;
 DECLARE 1 EKYRCUDP BASED (UDT_PTR),
 /KKK
K This section of the control block may not be modified by the exit.K

 KKK/
2 UDTPFX, /K DXT prefix (32 bytes) K/

3 UDTTNAME CHAR(8), /K Name of block, "DVRXCUDT" K/
3 UDTXADDR POINTER, /K Address of loaded routine K/

Figure 101 (Part 1 of 4). PL/I Interface Control Block for a Field Exit Routine

 Appendix C. Sample Field Exit Control Blocks 373

3 FILL2S CHAR(2S), /K Reserved for DXT use K/

2 UDTPFXE, /K Prefix extension (3SS bytes) K/
3 UDTPNMOD, /K (76 bytes) K/

 4 UDTCALL CHAR(2),
 /KKK

K Type of call to exit: K
K "DF" - This is KKK NOT KKK issued by DPROP. But is a K
K definition call issued by DXT-UIM for each datatype. K
K Exit can validate request and return required values. K
K "ST" - Source->target call issued by DXT and by DPROP K
K during HR mapping. Exit should convert data from the K
K DL/I IOarea format to DPROP supported target datatype.K
K "TS" - Target->source call issued by DPROP during RH K
K mapping.Exit should convert data from DPROP supported K
K datatype to DL/I IOarea format not issued by DXT. K

 KK/

4 FILLS2 CHAR(2), /K Reserved for DXT use K/
1 4 UDTENVRN, /K Environmental information
 (12 bytes) K/

5 UDTOPSYS CHAR(4),
 /KKK

K Operating system calling program is executing in: K
K When UDTOPSYS = "MVS ". K
K This indicates DXT is running in MVS/37S environment. K
K When UDTOPSYS = "XA ". K
K This indicates DXT is running in MVS/XA environment. K
K When UDTOPSYS = "ESA ". K
K This indicates DXT is running in MVS/ESA environment. K

 KKK/

5 UDTTRANS CHAR(4),
 /KKK

K DB/DC environment: 'BAT ' if IMS Batch/BMP K
K 'MPP ' if IMS MPP K
K 'IFP ' if Fast Path K
K 'CICS' if CICS K
K ' ' if none of the above. K

 KKK/

5 UDTPROGM CHAR(4),
 /KKK

K Calling program: 'DXT ' if DXT K
K 'DPRS' if DPROP synchronous PROP K
K 'DPRA' if DPROP asynchronous PROP K
K 'DPRC' if DPROP CCU processing K
K 'DPRL' if DPROP DLU K

 KKK/

4 UDTEXIT CHAR(8), /K Name of the user exit K/

4 UDTPCBLS POINTER, /K KKK DXT only KKK
/K Address list of all PCB

addresses if DLI environment K/
4 UDTDPRP1 CHAR(24), /K Additional work space K/

1 /KK
K This section contains data pertinent to the source field K

 KK/

Figure 101 (Part 2 of 4). PL/I Interface Control Block for a Field Exit Routine

374 Customization Guide

4 UDTSTYPE CHAR(2), /K Source data type value K/

4 UDTSBYTI CHAR(1),
 /KKK

K Source bytes indicator (DXT only). K
K "N" - indicates value resides with the definition. K
K "V" - indicates value is returned at "DEF" call to UIMK

 KKK/

4 FILLS1A CHAR(1), /K Reserved for DXT use K/

4 UDTSBYTV FIXED BIN(15), /K Number of source bytes K/

4 UDTSSCLI CHAR(1),
 /KKK

K Source scale indicator (DXT only). K
K "N" - indicates value resides with the definition. K
K "V" - indicates value is returned at "DEF" call to UIMK

 KKK/

4 FILLS3A CHAR(3), /K Reserved for DXT use K/

4 UDTSSCLV FIXED BIN(15), /K Value of source scale K/
1 /KK

K This section contains data pertinent to the target field K
 KK/

4 UDTTTYPE CHAR(2), /K Target data type value K/

4 UDTTBYTI CHAR(1),
 /KKK

K Target bytes indicator (DXT only). K
K "N" - indicates value resides with the definition. K
K "V" - indicates value is returned at "DEF" call to UIMK

 KKK/

4 FILLS1B CHAR(1), /K Reserved for dxt use K/

4 UDTTBYTV FIXED BIN(15), /K Number of target bytes K/

4 UDTTSCLI CHAR(1),
 /KKK

K Target scale indicator (DXT only). K
K "N" - indicates value resides with the definition. K
K "V" - indicates value is returned at "DEF" call to UIMK

 KKK/

4 FILLS3B CHAR(3), /K Reserved for DXT use K/

4 UDTTSCLV FIXED BIN(15), /K Value of target scale K/
1 /KK

K This section is the communications area between the exit and K
 K DPROP/DXT. K
 KK/

3 UDTXICOM, /K Define a communications area
 (224 bytes) K/

4 UDTDPRP2 CHAR(24), /K Reserved K/

4 UDTSCRT1 CHAR(128),

Figure 101 (Part 3 of 4). PL/I Interface Control Block for a Field Exit Routine

 Appendix C. Sample Field Exit Control Blocks 375

4 UDTENTRD CHAR(1),
 /KKK

K 'entered' flag - set to "X" by exit to indicate that K
K data type routine has been entered. K

 KKK/

4 UDTINCTL CHAR(1),
 /KKK

K 'in-control' flag - set to "X" by exit to indicate K
K data type routine is in control. K

 KKK/

4 UDTNULLT CHAR(1),
 /KKK

K "Y" - indicates data returned from exit is NULL. K
K "N" - indicates data returned from exit is NOT NULL K

 KKK/

 4 FILLS1C CHAR(1), /K Reserved K/

4 UDTXRETC FIXED BIN(31),
 /KKK

K User exit return code:
K S - successful completion else error encountered. K
K if caller is DPROP: K
K 4 ---> RUP will use its usual error handling logic. K
K >4 ---> RUP ABENDS. K

 KKK/

4 UDTXMESG CHAR(64);
 /KKK

K user exit message text inserted into DPROP/DXT K
K message if caller is DPROP, text will be inserted K
K into message EKYR97SI/EYKR971E. K

 KKK/

Figure 101 (Part 4 of 4). PL/I Interface Control Block for a Field Exit Routine

376 Customization Guide

Sample Field Exit Control Block for C
Figure 102 shows an example of the EKYRCUDT control block in C. This control
block, called EKYRCUDK, resides in the (EKYSAMP) library.

/KKKKKKKKKKKKKKKKKKKKK START OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKK
 K K
 K Control Block name: K
 K EKYRCUDK K
 K K
 K Descriptive name: K
 K DPROP C language field exit interface. K
 K K
 K C language version of EKYRCUDT. K
 K K
 KK
 K K
 K THIS PRODUCT CONTAINS "RESTRICTED MATERIALS OF IBM". K
 K K
 K 5685-124 (C) COPYRIGHT IBM CORP. 1989, 1992. K
 K ALL RIGHTS RESERVED. K
 K K
 K U.S. GOVERNMENT USERS RESTRICTED RIGHTS - K
 K USE, DUPLICATION, OR DISCLOSURE RESTRICTED BY K
 K GSA ADP SCHEDULE CONTRACT WITH IBM CORP. K
 K K
 K LICENSED MATERIALS - PROPERTY OF IBM. K
 K K
 KK
 K K
 K Status: V1 R2 MS K
 K K
 K Function: K
 K This is the C control block used to interface between K
 K - DPROP or DXT K
 K and K
 K - a user's field exit routine (these user exit routines K
 K are called by DXT 'user data type exit routines') K
 K K
 K There is one control block for each field exit routine, K
 K lasting for the duration of the exit in virtual storage. K
 K For synchronous propagation in MPP regions: K
 K - this is the duration of the IMS program controller subtask. K
 K For synchronous propagation in Batch/BMP regions, for K
 K asynchronous propagation, and for CCU processing: K
 K - this is the duration of the jobstep. K
 KK
 K K
 K Change activity: K
 K None. K
 KKKKKKKKKKKKKKKKKKKKK END OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKKKK/

#pragma page(1)

typedef
struct /K EKYRCUDT K/
{
 /KKK
K This section of the control block may not be modified by the exit.K

 KKK/
/K DXT prefix (32 bytes) udtpfx K/

unsigned char udttname[8]; /K Name of block, "DVRXCUDT" K/
char Kudtxaddr; /K Address of loaded routine K/

unsigned char fill2S[2S]; /K Reserved for DXT use K/

Figure 102 (Part 1 of 4). C Interface Control Block for a Field Exit Routine

 Appendix C. Sample Field Exit Control Blocks 377

 /KKK/
/K Prefix extension (3SS bytes) udtpfxe K/

/K (76 bytes) udtpnmod K/
unsigned char udtcall[2];

 /KKK
K Type of call to exit: K
K "DF" - This is KKK NOT KKK issued by DPROP. But is a K
K definition call issued by DXT-UIM for each datatype. K
K Exit can validate request and return required values. K
K "ST" - Source->target call issued by DXT and by DPROP K
K during HR mapping. Exit should convert data from the K
K DL/I IOarea format to DPROP supported target datatype. K
K "TS" - Target->source call issued by DPROP during RH K
K mapping.Exit should convert data from DPROP supported K
K datatype to DL/I IO area format not issued by DXT. K

 KKK/
unsigned char fillS2[2]; /K Reserved for DXT use K/

/K Environmental information
(12 bytes) udtenvrn K/

unsigned char udtopsys[4];
 /KKK

K Operating system calling program is executing in: K
K When UDTOPSYS = "MVS ". K
K This indicates DXT is running in MVS/37S environment. K
K When UDTOPSYS = "XA ". K
K This indicates DXT is running in MVS/XA environment. K
K When UDTOPSYS = "ESA ". K
K This indicates DXT is running in MVS/ESA environment. K

 KKK/
unsigned char udttrans[4];

 /KKK
K DB/DC environment: 'BAT ' if IMS Batch/BMP K
K 'MPP ' if IMS MPP K
K 'IFP ' if Fast Path K
K 'CICS' if CICS K
K ' ' if none of the above. K

 KKK/

#pragma page(1)

unsigned char udtprogm[4];
 /KKK

K Calling program: 'DXT ' if DXT K
K 'DPRS' if DPROP synchronous PROP K
K 'DPRA' if DPROP asynchronous PROP K
K 'DPRC' if DPROP CCU processing K
K 'DPRL' if DPROP DLU K

 KKK/
unsigned char udtexit[8]; /K Name of the user exit K/

char Kudtpcbls; /K KKK DXT only KKK
Address list of all PCB
addresses if DLI environment K/

unsigned char udtdprp1[24]; /K Additional work space K/
 /KK

K This section contains data pertinent to the source field K
 KK/
unsigned char udtstype[2]; /K source data type value K/
unsigned char udtsbyti;

Figure 102 (Part 2 of 4). C Interface Control Block for a Field Exit Routine

378 Customization Guide

 /KK
K Source bytes indicator (DXT only). K
K "N" - indicates value resides with the definition. K
K "V" - indicates value is returned at "DEF" call to UIM K

 KK/
unsigned char fillS1a; /K Reserved for DXT use K/
short udtsbytv; /K number of source bytes K/
unsigned char udtsscli;

 /KK
K Source scale indicator (DXT only). K
K "N" - indicates value resides with the definition. K
K "V" - indicates value is returned at "DEF" call to UIM K

 KK/
unsigned char fillS3a[3]; /K Reserved for DXT use K/
short udtssclv; /K Value of source scale K/

 /KK
K This section contains data pertinent to the target field K

 KK/
unsigned char udtttype[2]; /K Target data type value K/
unsigned char udttbyti;

 /KK
K Target bytes indicator (DXT only). K
K "N" - indicates value resides with the definition. K
K "V" - indicates value is returned at "DEF" call to UIM. K

 KK/

unsigned char fillS1b; /K Reserved for DXT use K/
short udttbytv; /K Number of target bytes K/

#pragma page(1)

unsigned char udttscli;
 /KK

K Target scale indicator (DXT only). K
K "N" - indicates value resides with the definition. K
K "V" - indicates value is returned at "DEF" call to UIM. K

 KK/
unsigned char fillS3b[3]; /K Reserved for DXT use K/
short udttsclv; /K Value of target scale K/

 /KK
K This section is the communications area between the exit and K

 K DPROP/DXT. K
 KK/

/K Define a communications area
(224 bytes) udtxicom K/

unsigned char udtdprp2[24]; /K Reserved K/
unsigned char udtscrt1[128];
unsigned char udtentrd;

 /KK
K 'entered' flag - set to "X" by exit to indicate that K
K data type routine has been entered. K

 KK/
unsigned char udtinctl;

 /KK
K 'in-control' flag - set to "X" by exit to indicate K
K data type routine is in control. K

 KK/

Figure 102 (Part 3 of 4). C Interface Control Block for a Field Exit Routine

 Appendix C. Sample Field Exit Control Blocks 379

unsigned char udtnullt;
 /KK

K "Y" - indicates data returned from exit is NULL. K
K "N" - indicates data returned from exit is NOT NULL K

 KK/
unsigned char fillS1c; /K Reserved K/

 long udtxretc;
 /KK

K User exit return code: K
K S - successful completion else error encountered. K
K if caller is DPROP: K
K 4 ---> RUP will use its usual error handling logic. K
K >4 ---> RUP ABENDS. K

 KK/
unsigned char udtxmesg[64];

 /KK
K user exit message text inserted into DPROP/DXT K
K message if caller is DPROP, text will be inserted K
K into message EKYR97SI/EYKR971E. K

 KK/
 } EKYRCUDT;

#pragma page(1)

Figure 102 (Part 4 of 4). C Interface Control Block for a Field Exit Routine

380 Customization Guide

Appendix D. Sample Propagation Exit Control Blocks

This appendix contains sample Propagation exit control blocks which map the
existing DPROP interface control blocks. This appendix provides the exit control
blocks in three languages:

 � COBOL
 � PL/I
 � C

Chapter 4, “Propagation Exit Routines” on page 153 shows the Assembler version
of the Propagation exit control blocks.

 Copyright IBM Corp. 1991,2001 381

Sample Propagation Exit Control Blocks for COBOL
Figure 103 shows an example of the Propagation Exit control blocks in COBOL.
These control blocks, called EKYRCPCC, EKYRCDLC, EKYHCHCC, and
EKYHCQ2C reside in the DPROP Sample Source library (EKYSAMP).

COBOL Propagation Exit Interface (PIC)
Figure 103 shows a COBOL Propagation Exit Interface.

SSS1SSKKKKKKKKKKKKKKKK START OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKK SSS1SSSS
SSS2SSK K SSS2SSSS
SSS3SSK CONTROL BLOCK NAME: K SSS3SSSS
SSS4SSK EKYRCPCC (PIC) K SSS4SSSS
SSS5SSK K SSS5SSSS
SSS6SSK DESCRIPTIVE NAME: K SSS6SSSS
SSS7SSK DPROP COBOL PROPAGATION EXIT INTERFACE K SSS7SSSS
SSS8SSK K SSS8SSSS
SSS9SSK COBOL VERSION OF EKYRCPIC K SSS9SSSS
SS1SSSK K SS1SSSSS
SS11SSKKK SS11SSSS
SS12SSK K SS12SSSS
SS13SSK THIS PRODUCT CONTAINS "RESTRICTED MATERIALS OF IBM". K SS13SSSS
SS14SSK K SS14SSSS
SS15SSK 5685-124 (C) COPYRIGHT IBM CORP. 1989, 1992. K SS15SSSS
SS16SSK ALL RIGHTS RESERVED. K SS16SSSS
SS17SSK K SS17SSSS
SS18SSK U.S. GOVERNMENT USERS RESTRICTED RIGHTS - K SS18SSSS
SS19SSK USE, DUPLICATION, OR DISCLOSURE RESTRICTED BY K SS19SSSS
SS2SSSK GSA ADP SCHEDULE CONTRACT WITH IBM CORP. K SS2SSSSS
SS21SSK K SS21SSSS
SS22SSK LICENSED MATERIALS - PROPERTY OF IBM. K SS22SSSS
SS23SSK K SS23SSSS
SS24SSKKK SS24SSSS
SS25SSK K SS25SSSS
SS26SSK STATUS: V1 R2 MS K SS26SSSS
SS27SSK K SS27SSSS
SS28SSK FUNCTION: K SS28SSSS
SS29SSK THIS IS THE COBOL CONTROL BLOCK USED TO INTERFACE BETWEEN K SS29SSSS
SS3SSSK - DPROP K SS3SSSSS
SS31SSK AND K SS31SSSS
SS32SSK - A USER'S PROPAGATION EXIT ROUTINE K SS32SSSS
SS33SSK K SS33SSSS
SS34SSK THERE IS ONE CONTROL BLOCK FOR EACH EXIT PROPAGATION K SS34SSSS
SS35SSK EXIT ROUTINE, LASTING FOR THE DURATION OF THE EXIT K SS35SSSS
SS36SSK IN VIRTUAL STORAGE. K SS36SSSS
SS37SSK FOR SYNCH PROPAGATION IN MPP REGIONS: K SS37SSSS
SS38SSK - THIS IS THE DURATION OF THE IMS PROGRAM CONTROLLER K SS38SSSS
SS39SSK SUBTASK. K SS39SSSS
SS4SSSK FOR SYNCH PROPAGATION IN BATCH/BMP REGIONS, FOR K SS4SSSSS
SS41SSK ASYNCH PROPAGATION, AND FOR CCU PROCESSING: K SS41SSSS
SS42SSK - THIS IS THE DURATION OF THE JOBSTEP. K SS42SSSS
SS43SSK K SS43SSSS
SS44SSK CHANGE ACTIVITY: K SS44SSSS
SS45SSK K SS45SSSS
SS46SSKKKKKKKKKKKKKKKK END OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKKKK SS46SSSS
SS47SSK SS47SSSS
SS48SS S1 EKYRCPCC. SS48SSSS
SS49SSK SS49SSSS
SS5SSSK---K SS5SSSSS
SS51SSK THIS SECTION CONTAINS INFORMATION PROVIDED BY DPROP TO THE K SS51SSSS

Figure 103 (Part 1 of 5). COBOL Propagation Exit Interface

382 Customization Guide

SS52SSK INVOKED EXIT AT ENTRY TO CALL. THIS SECTION MUST NOT BE K SS52SSSS
SS53SSK MODIFIED BY THE EXIT. K SS53SSSS
SS54SSK---K SS54SSSS
SS55SSK SS55SSSS
SS56SS S2 PICEYE PIC X(8). SS56SSSS
SS57SSK EYE CATCHER SS57SSSS
SS58SS S2 PICEXIT PIC X(8). SS58SSSS
SS59SSK NAME OF THE EXIT ROUTINE SS59SSSS
SS6SSS S2 PICCALL PIC XX. SS6SSSSS
SS61SSK TYPE OF CALL TO EXIT SS61SSSS
SS62SSK ... HR = HIERARCHICAL TO RELATIONAL SS62SSSS
SS63SSK ... RH = RELATIONAL TO HIERARCHICAL SS63SSSS
SS64SS S2 PICDBLEV PIC X. SS64SSSS
SS65SSK DEBUG LEVEL IN EFFECT SS65SSSS
SS66SSK HEX'S2' : EXTERNAL TRACE OF PROPAGATING SS66SSSS
SS67SSK SQL STATEMENTS AND DL/I CALLS SS67SSSS
SS68SS S2 FILLER PIC X. SS68SSSS
SS69SSK RESERVED SS69SSSS
SS7SSS S2 PICPTD POINTER. SS7SSSSS
SS71SSK ADDRESS OF DPROP PTD SS71SSSS
SS72SS S2 PICPRID PIC X(8). SS72SSSS
SS73SSK PRID SS73SSSS
SS74SS S2 PICPRSET PIC X(8). SS74SSSS
SS75SSK PRSET-ID SS75SSSS
SS76SS S2 PICPRTST PIC X(26). SS76SSSS
SS77SSK PR TIMESTAMP SS77SSSS
SS78SS S2 FILLER PIC XX. SS78SSSS
SS79SSK RESERVED SS79SSSS
SS8SSS S2 PICPCBLA PIC X(8). SS8SSSSS
SS81SSK PCB LABEL AS SPECIFIED ON PR SS81SSSS
SS82SS S2 FILLER PIC X(56). SS82SSSS
SS83SSK RESERVED SS83SSSS
SS84SS S2 PICOPSYS PIC X(4). SS84SSSS
SS85SSK OPERATING SYSTEM SS85SSSS
SS86SSK ...'ESA ': MVS/ESA SS86SSSS
SS87SS S2 PICTRANS PIC X(4). SS87SSSS
SS88SSK IMS REGION TYPE SS88SSSS
SS89SSK ...'MPP ': MPP REGION SS89SSSS
SS9SSSK ...'IFP ': IMS FAST PATH REGION SS9SSSSS
SS91SSK ...'BMP ': IMS BMP REGION SS91SSSS
SS92SSK ...'BAT ': IMS BATCH REGION SS92SSSS
SS93SSK ...' ': IF NONE OF ABOVE SS93SSSS
SS94SS S2 PICPROGM PIC X(4). SS94SSSS
SS95SSK CALLING PROGRAM SS95SSSS
SS96SSK ...'DPRS': DPROP SYNCH PROPAGATION SS96SSSS
SS97SSK ...'DPRA': DPROP ASYNCH PROPAGATION SS97SSSS
SS98SS S2 FILLER PIC X(12). SS98SSSS
SS99SSK RESERVED FOR DPROP SS99SSSS
S1SSSSK---K S1SSSSSS
S1S1SSK THIS SECTION IS USED BY THE EXIT TO PROVIDE K S1S1SSSS
S1S2SSK INFORMATION TO DPROP K S1S2SSSS

Figure 103 (Part 2 of 5). COBOL Propagation Exit Interface

 Appendix D. Sample Propagation Exit Control Blocks 383

S1S3SSK---K S1S3SSSS
S1S4SSK S1S4SSSS
S1S5SS S2 PICENTRD PIC X. S1S5SSSS
S1S6SSK SET BY EXIT ROUTINE TO C'X', INDICATES S1S6SSSS
S1S7SSK THAT EXIT HAS BEEN ENTERED S1S7SSSS
S1S8SS S2 PICINCTL PIC X. S1S8SSSS
S1S9SSK SET BY EXIT ROUTINE TO C'X', INDICATES S1S9SSSS
S11SSSK THAT EXIT IS IN CONTROL S11SSSSS
S111SSK S111SSSS
S112SSKKK RETURN CODE AND ERROR MESSAGE S112SSSS
S113SSK S113SSSS
S114SS S2 PICXRETC PIC S9(4) COMP. S114SSSS
S115SSK RETURN CODE S115SSSS
S116SSK ...4: SQL ERROR. SQL ERROR CODE IS IN THE FIELD S116SSSS
S117SSK SQLCODE OF THE SQLCA S117SSSS
S118SSK ...8: DLI ERROR. AIBRETRN, AIBREASN AND DL/I S118SSSS
S119SSK STATUS CODE IN PCB POINTED BY AIBRSA1 S119SSSS
S12SSSK ..12: ERROR OTHER THAN SQL ERROR: S12SSSSS
S121SSK SOME RESOURCES NOT AVAILABLE S121SSSS
S122SSK ..16: ERROR OTHER THAN SQL ERROR: S122SSSS
S123SSK NOT A RESOURCE AVAILABILITY PROBLEM. S123SSSS
S124SSK ..2S: SHOULD NOT OCCUR/SHOULD ABEND S124SSSS
S125SS S2 PICXMESG. S125SSSS
S126SSK USER EXIT ERROR/WARNING MESSAGE S126SSSS
S127SSK DPROP WILL WRITE THE MESSAGE TO VARIOUS S127SSSS
S128SSK DESTINATIONS ACCORDING TO USUAL DPROP/RUP S128SSSS
S129SSK ERROR HANDLING LOGIC. S129SSSS
S13SSS S3 PICXML1. S13SSSSS
S131SSK 1ST MESSAGE LINE S131SSSS
S132SS S4 PICXMSGI PIC X(8). S132SSSS
S133SSK ...8 BYTES MESSAGE ID S133SSSS
S134SS S4 PICXMSGB PIC X. S134SSSS
S135SSK ...ONE BLANK S135SSSS
S136SS S4 PICXMTXT PIC X(61). S136SSSS
S137SSK ...61 TEXT BYTES IN 1ST MESSAGE LINE S137SSSS
S138SS S3 PICXML2 PIC X(7S). S138SSSS
S139SSK 2ND MESSAGE LINE S139SSSS
S14SSS S3 PICXML3 PIC X(7S). S14SSSSS
S141SSK 3RD MESSAGE LINE S141SSSS
S142SS S3 PICXML4 PIC X(7S). S142SSSS
S143SSK 4TH MESSAGE LINE S143SSSS
S144SS S2 FILLER PIC X(12). S144SSSS
S145SSK RESERVED FOR DPROP S145SSSS
S146SSK S146SSSS
S147SSKKK NAME OF OBJECTS ASSOCIATED WITH ERROR S147SSSS
S148SSK S148SSSS
S149SS S2 PICDBN PIC X(8). S149SSSS
S15SSSK DBDNAME ASSOCIATED WITH THE ERROR S15SSSSS
S151SS S2 PICSEGN PIC X(8). S151SSSS
S152SSK SEG NAME ASSOCIATED WITH THE ERROR S152SSSS
S153SS S2 PICTABQ PIC X(8). S153SSSS

Figure 103 (Part 3 of 5). COBOL Propagation Exit Interface

384 Customization Guide

S154SSK TABLE NAME QUALIFIER ASSOC. W. ERROR S154SSSS
S155SS S2 PICTABN PIC X(18). S155SSSS
S156SSK TABLE NAME ASSOCIATED WITH THE ERROR S156SSSS
S157SS S2 FILLER PIC X(14). S157SSSS
S158SSK RESERVED FOR DPROP S158SSSS
S159SSK---K S159SSSS
S16SSSK EXIT WORK AREA K S16SSSSS
S161SSK K S161SSSS
S162SSK THE EXIT WORK AREA CAN BE USED TO SAVE INFORMATION ACROSS K S162SSSS
S163SSK CALLS TO THE EXIT (E.G. TO SAVE THE ADDRESSES OF GETMAINED K S163SSSS
S164SSK AREAS ACROSS CALLS TO THE EXIT. K S164SSSS
S165SSK---K S165SSSS
S166SSK S166SSSS
S167SS S2 FILLER PIC X(4). S167SSSS
S168SSK 4 BYTES FOR DOUBLE WORD ALIGNMENT (IN ASM: DS SD) S168SSSS
S169SS S2 PICSWORK PIC X(256). S169SSSS
S17SSSK WORK AREA FOR THE EXIT S17SSSSS
S171SS S2 FILLER PIC X(16). S171SSSS
S172SSK RESERVED FOR DPROP S172SSSS
S173SSK---K S173SSSS
S174SSK SQL COMMUNICATION AREA (SQLCA). K S174SSSS
S175SSK K S175SSSS
S176SSK THIS SQLCA IS NOT USED BY COBOL EXITS K S176SSSS
S177SSK---K S177SSSS
S178SSK S178SSSS
S179SS S2 PICSQLCA PIC X(136). S179SSSS
S18SSS S2 FILLER PIC X(16). S18SSSSS
S181SSK S181SSSS
S182SSK---K S182SSSS
S183SSK DLI APPLICATION INTERFACE BLOCK (AIB) K S183SSSS
S184SSK K S184SSSS
S185SSK THE EXIT SHOULD USE THIS AIB FOR ITS DLI CALL. BEFORE FIRST K S185SSSS
S186SSK CALL, DPROP INITS AIBID, AIBLEN, AIBRSNM1 AND AIBSFUNC FIELDSK S186SSSS
S187SSK---K S187SSSS
S188SSK S188SSSS
S189SS S2 PICAIB. S189SSSS
S19SSSK S19SSSSS
S191SS S3 AIBID PIC X(8). S191SSSS
S192SSK EYECATCHER S192SSSS
S193SS S3 AIBLEN PIC S9(8) COMP. S193SSSS
S194SSK DFSAIB ALLOCATED LENGTH S194SSSS
S195SS S3 AIBSFUNC PIC X(8). S195SSSS
S196SSK SUBFUNCTION CODE S196SSSS
S197SS S3 AIBRSNM1 PIC X(8). S197SSSS
S198SSK RESOURCE NAME 1 S198SSSS
S199SS S3 AIBRSNM2 PIC X(8). S199SSSS
S2SSSSK RESOURCE NAME 2 S2SSSSSS
S2S1SS S3 FILLER PIC X(8). S2S1SSSS
S2S2SSK RESERVED S2S2SSSS
S2S3SS S3 AIBOALEN PIC S9(8) COMP. S2S3SSSS
S2S4SSK OUTPUT AREA LENGTH (MAX) S2S4SSSS

Figure 103 (Part 4 of 5). COBOL Propagation Exit Interface

 Appendix D. Sample Propagation Exit Control Blocks 385

S2S5SS S3 AIBOAUSE PIC S9(8) COMP. S2S5SSSS
S2S6SSK OUTPUT AREA LENGTH (USED) S2S6SSSS
S2S7SS S3 FILLER PIC X(12). S2S7SSSS
S2S8SSK RESERVED S2S8SSSS
S2S9SS S3 AIBRETRN PIC S9(8) COMP. S2S9SSSS
S21SSSK RETURN CODE S21SSSSS
S211SS S3 AIBREASN PIC S9(8) COMP. S211SSSS
S212SSK REASON CODE S212SSSS
S213SS S3 FILLER PIC X(4). S213SSSS
S214SSK RESERVED S214SSSS
S215SS S3 AIBRSA1 POINTER. S215SSSS
S216SSK RESOURCE ADDRESS 1 S216SSSS
S217SS S3 AIBRSA2 POINTER. S217SSSS
S218SSK RESOURCE ADDRESS 2 S218SSSS
S219SS S3 AIBRSA3 POINTER. S219SSSS
S22SSSK RESOURCE ADDRESS 3 S22SSSSS
S221SS S3 FILLER PIC X(4S). S221SSSS
S222SSK RESERVED S222SSSS
S223SSK S223SSSS
S224SS S2 FILLER PIC X(16). S224SSSS
S225SSK S225SSSS
S226SSK---K S226SSSS

Figure 103 (Part 5 of 5). COBOL Propagation Exit Interface

386 Customization Guide

COBOL DL/I Capture Interface (XPCB and XSDB)
Figure 104 shows a COBOL DL/I capture interface.

SSS1SSKKKKKKKKKKKKKKKK START OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKK SSS1SSSS
SSS2SSK K SSS2SSSS
SSS3SSK CONTROL BLOCK NAME: K SSS3SSSS
SSS4SSK EKYRCDLC K SSS4SSSS
SSS5SSK K SSS5SSSS
SSS6SSK DESCRIPTIVE NAME: K SSS6SSSS
SSS7SSK DPROP RUP: COBOL DL/I CAPTURE INTERFACE K SSS7SSSS
SSS8SSK K SSS8SSSS
SSS9SSK COBOL VERSION OF EKYRCDL1 K SSS9SSSS
SS1SSSK K SS1SSSSS
SS11SSKKK SS11SSSS
SS12SSK K SS12SSSS
SS13SSK THIS PRODUCT CONTAINS "RESTRICTED MATERIALS OF IBM". K SS13SSSS
SS14SSK K SS14SSSS
SS15SSK 5685-124 (C) COPYRIGHT IBM CORP. 1989, 1992. K SS15SSSS
SS16SSK ALL RIGHTS RESERVED. K SS16SSSS
SS17SSK K SS17SSSS
SS18SSK U.S. GOVERNMENT USERS RESTRICTED RIGHTS - K SS18SSSS
SS19SSK USE, DUPLICATION, OR DISCLOSURE RESTRICTED BY K SS19SSSS
SS2SSSK GSA ADP SCHEDULE CONTRACT WITH IBM CORP. K SS2SSSSS
SS21SSK K SS21SSSS
SS22SSK LICENSED MATERIALS - PROPERTY OF IBM. K SS22SSSS
SS23SSK K SS23SSSS
SS24SSKKK SS24SSSS
SS25SSK K SS25SSSS
SS26SSK STATUS: V1 R2 MS K SS26SSSS
SS27SSK K SS27SSSS
SS28SSK FUNCTION: K SS28SSSS
SS29SSK EKYRCDLC IS A COPYAREA PROVIDING DESCRIPTIONS FOR THE K SS29SSSS
SS3SSSK INTERFACE-AREAS USED TO COMMUNICATE BETWEEN K SS3SSSSS
SS31SSK - DL/I CHANGED DATA CAPTURE K SS31SSSS
SS32SSK - THE EKYRUPSS DL/I CHANGED DATA EXIT ROUTINE K SS32SSSS
SS33SSK EKYRCDLC GENERATES DESCRIPTIONS OF FOLLOWING AREAS: K SS33SSSS
SS34SSK - THE DL/I XPCB K SS34SSSS
SS35SSK - THE DL/I XSDB K SS35SSSS
SS36SSK - THE DL/I DBPCB K SS36SSSS
SS37SSK K SS37SSSS
SS38SSK CHANGE ACTIVITY: K SS38SSSS
SS39SSK K SS39SSSS
SS4SSSKKKKKKKKKKKKKKKK END OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKKKK SS4SSSSS
SS41SSK SS41SSSS
SS42SSK---K SS42SSSS
SS43SSK E X T E N D E D D A T A B A S E P C B -- X P C B K SS43SSSS
SS44SSK---K SS44SSSS
SS45SSK SS45SSSS
SS46SS S1 XPCB. SS46SSSS
SS47SSK SS47SSSS
SS48SS S2 XPCBEYE PIC X(4). SS48SSSS
SS49SSK "XPCB" EYECATCHER SS49SSSS
SS5SSS S2 XPCBVER PIC XX. SS5SSSSS
SS51SSK XPCB VERSION INDICATOR SS51SSSS

Figure 104 (Part 1 of 4). COBOL DL/I Capture Interface

 Appendix D. Sample Propagation Exit Control Blocks 387

SS52SS S2 XPCBREL PIC XX. SS52SSSS
SS53SSK XPCB RELEASE INDICATOR SS53SSSS
SS54SS S2 XPCBEXIT PIC X(8). SS54SSSS
SS55SSK SEGMENT USER EXIT NAME SS55SSSS
SS56SS S2 XPCBRC PIC S9(4) COMP. SS56SSSS
SS57SSK RETURN-CODE SS57SSSS
SS58SS S2 XPCBRSNC PIC S9(4) COMP. SS58SSSS
SS59SSK REASON-CODE SS59SSSS
SS6SSS S2 XPCBDBD PIC X(8). SS6SSSSS
SS61SSK PHYSICAL DATA BASE NAME SS61SSSS
SS62SS S2 XPCBVERA POINTER. SS62SSSS
SS63SSK ADDRESS OF DBD VERSION ID SS63SSSS
SS64SS S2 XPCBSEG PIC X(8). SS64SSSS
SS65SSK PHYSICAL SEGMENT NAME SS65SSSS
SS66SS S2 XPCBCALL PIC X(4). SS66SSSS
SS67SSK "CALL FUNCTION" DEFINED BY IMS/ESA SS67SSSS
SS68SSK ISRT: INSERT SS68SSSS
SS69SSK REPL: REPLACE SS69SSSS
SS7SSSK DLET: DELETE SS7SSSSS
SS71SSK CASC: CASCADING DELETE SS71SSSS
SS72SSK DLLP: NOW ALSO DELETED FROM LOGICAL PATH SS72SSSS
SS73SS S2 XPCBPCALL PIC X(4). SS73SSSS
SS74SSK "PHYSICAL UPDATE TYPE" DEFINED BY IMS SS74SSSS
SS75SSK ISRT: INSERT SS75SSSS
SS76SSK REIN: RE-INSERT VIA LOGICAL PATH SS76SSSS
SS77SSK REPL: REPLACE SS77SSSS
SS78SSK DLET: DELETE SS78SSSS
SS79SSK DLPP: DELETED ONLY FROM PHYSICAL PATH SS79SSSS
SS8SSS S2 FILLED PIC X(4). SS8SSSSS
SS81SSK RESERVED SS81SSSS
SS82SS S2 XPCBPCBA POINTER. SS82SSSS
SS83SSK ADDRESS OF DB PCB SS83SSSS
SS84SS S2 XPCBPCBN PIC X(8). SS84SSSS
SS85SSK NAME OF DB PCB SS85SSSS
SS86SS S2 XPCBINQA POINTER. SS86SSSS
SS87SSK ADDRESS OF "INQY" OUTPUT SS87SSSS
SS88SS S2 XPCBIOPA POINTER. SS88SSSS
SS89SSK ADDRESS OF I/O PCB SS89SSSS
SS9SSS S2 FILLER PIC S9(4) COMP. SS9SSSSS
SS91SSK RESERVED SS91SSSS
SS92SS S2 XPCBCKEYL PIC S9(4) COMP. SS92SSSS
SS93SSK LENGTH OF CONCATENATED KEY SS93SSSS
SS94SS S2 XPCBCKEYA POINTER. SS94SSSS
SS95SSK ADDRESS OF CONCATENATED KEY SS95SSSS
SS96SS S2 XPCBXSDBD POINTER. SS96SSSS
SS97SSK ADDRESS OF XSDB FOR DATA SS97SSSS
SS98SS S2 XPCBXSDBB POINTER. SS98SSSS
SS99SSK ADDRESS OF XSDB FOR REPL DATA SS99SSSS
S1SSSS S2 XPCBXSDBP POINTER. S1SSSSSS
S1S1SSK ADDRESS OF XSDB FOR PATH DATA S1S1SSSS
S1S2SS S2 FILLER PIC X(12). S1S2SSSS

Figure 104 (Part 2 of 4). COBOL DL/I Capture Interface

388 Customization Guide

S1S3SSK RESERVED S1S3SSSS
S1S4SS S2 XPCBEXIWP POINTER. S1S4SSSS
S1S5SSK ADDRESS OF 256-BYTE AREA RESERVED FOR EXIT S1S5SSSS
S1S6SS S2 FILLER PIC X(8). S1S6SSSS
S1S7SSK RESERVED S1S7SSSS
S1S8SS S2 XPCBTIMST PIC X(8). S1S8SSSS
S1S9SSK TIMESTAMP OF CALL S1S9SSSS
S11SSS S2 FILLER PIC X(4). S11SSSSS
S111SSK RESERVED S111SSSS
S112SSK---K S112SSSS
S113SSK E X T E N D E D S E G M E N T D A T A -- X S D B K S113SSSS
S114SSK---K S114SSSS
S115SSK S115SSSS
S116SS S1 XSDB. S116SSSS
S117SSK S117SSSS
S118SS S2 XSDBEYE PIC X(4). S118SSSS
S119SSK "XSDB" EYECATCHER S119SSSS
S12SSS S2 XSDBVER PIC XX. S12SSSSS
S121SSK XSDB VERSION INDICATOR S121SSSS
S122SS S2 XSDBREL PIC XX. S122SSSS
S123SSK XSDB RELEASE INDICATOR S123SSSS
S124SS S2 XSDBNXSDB POINTER. S124SSSS
S125SSK NEXT XSDB POINTER S125SSSS
S126SS S2 XSDBDBD PIC X(8). S126SSSS
S127SSK PHYSICAL DATA BASE NAME S127SSSS
S128SS S2 XSDBSEG PIC X(8). S128SSSS
S129SSK PHYSICAL SEGMENT NAME S129SSSS
S13SSS S2 XSDBPHP PIC X. S13SSSSS
S131SSK PHYSICAL PATH ACCESSIBILITY S131SSSS
S132SS 88 XSDBPHPY VALUE "Y". S132SSSS
S133SSK ...SEGM ACCESSIBLE VIA PHYSICAL PATH S133SSSS
S134SS 88 XSDBPHPN VALUE "N". S134SSSS
S135SSK ...SEGM NOT ACCESSIBLE VIA PH. PATH S135SSSS
S136SS S2 FILLER PIC X(3). S136SSSS
S137SSK S137SSSS
S138SS S2 XSDBSEGLV PIC S9(4) COMP. S138SSSS
S139SSK SEGMENT DATA BASE LEVEL S139SSSS
S14SSS S2 XSDBKEYL PIC S9(4) COMP. S14SSSSS
S141SSK LENGTH OF PHYSICAL KEY S141SSSS
S142SS S2 XSDBKEYA POINTER. S142SSSS
S143SSK ADDRESS OF PHYSICAL KEY S143SSSS
S144SS S2 FILLER PIC XX. S144SSSS
S145SSK RESERVED S145SSSS
S146SS S2 XSDBSEGL PIC S9(4) COMP. S146SSSS
S147SSK LENGTH OF SEGMENT DATA S147SSSS
S148SS S2 XSDBSEGA POINTER. S148SSSS
S149SSK ADDRESS OF SEGMENT DATA S149SSSS
S15SSS S2 FILLER PIC X(12). S15SSSSS
S151SSK S151SSSS
S152SSK---K S152SSSS
S153SSK D A T A B A S E P C B K S153SSSS

Figure 104 (Part 3 of 4). COBOL DL/I Capture Interface

 Appendix D. Sample Propagation Exit Control Blocks 389

S154SSK---K S154SSSS
S155SSK S155SSSS
S156SS S1 DBPCB. S156SSSS
S157SSK S157SSSS
S158SS S2 DBPCBDBD PIC X(8). S158SSSS
S159SSK DBD NAME S159SSSS
S16SSS S2 DBPCBLEV PIC XX. S16SSSSS
S161SSK LEVEL FEEDBACK S161SSSS
S162SS S2 DBPCBSTC PIC XX. S162SSSS
S163SSK STATUS CODES (RETURNED TO USER) S163SSSS
S164SS S2 DBPCBPRO PIC X(4). S164SSSS
S165SSK PROCESSING OPTIONS S165SSSS
S166SS S2 DBPCBPFX PIC S9(8) COMP. S166SSSS
S167SSK PREFIX ADDRESS S167SSSS
S168SS S2 DBPCBSFD PIC X(8). S168SSSS
S169SSK SEGMENT NAME FEEDBACK S169SSSS
S17SSS S2 DBPCBMKL PIC S9(8) COMP. S17SSSSS
S171SSK CURRRENT LENGTH OF KFBA OR GSAM FEEDBACK AREA S171SSSS
S172SS S2 DBPCBNSS PIC S9(8) COMP. S172SSSS
S173SSK NO OF SENSITIVE SEGMENTS IN PCB S173SSSS
S174SSK S174SSSS
S175SS S2 DBPCBKFD PIC X. S175SSSS
S176SSK KEY FEEDBACK AREA (MAY BE 256 BYTES LONG) S176SSSS
S177SSK S177SSSS
S178SSK---K S178SSSS

Figure 104 (Part 4 of 4). COBOL DL/I Capture Interface

390 Customization Guide

COBOL HUP Exit Communication Block (HEC)
Figure 105 shows a COBOL HUP exit communication block.

SSS1SSKKKKKKKKKKKKKKKK START OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKK SSS1SSSS
SSS2SSK K SSS2SSSS
SSS3SSK CONTROL BLOCK NAME: K SSS3SSSS
SSS4SSK EKYHCHCC (HEC) K SSS4SSSS
SSS5SSK K SSS5SSSS
SSS6SSK DESCRIPTIVE NAME: K SSS6SSSS
SSS7SSK DPROP COBOL HUP EXIT COMMUNICATION BLOCK K SSS7SSSS
SSS8SSK K SSS8SSSS
SSS9SSK COBOL VERSION OF EKYHCHEC K SSS9SSSS
SS1SSSK K SS1SSSSS
SS11SSKKK SS11SSSS
SS12SSK K SS12SSSS
SS13SSK THIS PRODUCT CONTAINS "RESTRICTED MATERIALS OF IBM". K SS13SSSS
SS14SSK K SS14SSSS
SS15SSK 5685-124 (C) COPYRIGHT IBM CORP. 1989, 1992. K SS15SSSS
SS16SSK ALL RIGHTS RESERVED. K SS16SSSS
SS17SSK K SS17SSSS
SS18SSK U.S. GOVERNMENT USERS RESTRICTED RIGHTS - K SS18SSSS
SS19SSK USE, DUPLICATION, OR DISCLOSURE RESTRICTED BY K SS19SSSS
SS2SSSK GSA ADP SCHEDULE CONTRACT WITH IBM CORP. K SS2SSSSS
SS21SSK K SS21SSSS
SS22SSK LICENSED MATERIALS - PROPERTY OF IBM. K SS22SSSS
SS23SSK K SS23SSSS
SS24SSKKK SS24SSSS
SS25SSK K SS25SSSS
SS26SSK STATUS: V1 R2 MS K SS26SSSS
SS27SSK K SS27SSSS
SS28SSK FUNCTION: K SS28SSSS
SS29SSK THIS IS THE COBOL CONTROL BLOCK USED TO PASS INFORMATION K SS29SSSS
SS3SSSK GOT BY DPROP FROM THE DB2 CHANGED DATA CAPTURE EXIT K SS3SSSSS
SS31SSK (USING IFI CALLS) TO THE PROPAGATION EXIT ROUTINE. K SS31SSSS
SS32SSK K SS32SSSS
SS33SSK THE HEC IS NEWLY BUILD FOR EACH EXIT CALL AND DOES K SS33SSSS
SS34SSK CONTAIN DATA TO BE RETAINED BEETWEEN EXIT CALLS. K SS34SSSS
SS35SSK K SS35SSSS
SS36SSK CHANGE ACTIVITY: K SS36SSSS
SS37SSK K SS37SSSS
SS38SSKKKKKKKKKKKKKKKK END OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKKKK SS38SSSS
SS39SSK SS39SSSS
SS4SSS S1 HEC. SS4SSSSS
SS41SSK SS41SSSS
SS42SS S2 HECEYE PIC X(8). SS42SSSS
SS43SSK EYE CATCHER SS43SSSS
SS44SS S2 FILLER PIC X(8). SS44SSSS
SS45SSK RESERVED SS45SSSS
SS46SSK SS46SSSS
SS47SSK------ POINTERS TO IFI HEADER AREAS SS47SSSS
SS48SSK SS48SSSS
SS49SS S2 HECQWHS POINTER. SS49SSSS
SS5SSSK ADDRESS OF THE DB2 IFI STANDARD HEADER AREA SS5SSSSS
SS51SS S2 HECQWHC POINTER. SS51SSSS

Figure 105 (Part 1 of 2). COBOL HUP Exit Communication Block

 Appendix D. Sample Propagation Exit Control Blocks 391

SS52SSK ADDRESS OF THE DB2 IFI CORRELATION DATA AREA SS52SSSS
SS53SSK SS53SSSS
SS54SSK------ POINTERS TO CDC DATA AREAS SS54SSSS
SS55SSK SS55SSSS
SS56SS S2 HECCDCDD POINTER. SS56SSSS
SS57SSK ADDRESS OF CDC DATA DESCRIPT. SS57SSSS
SS58SS S2 HECCDCDA POINTER. SS58SSSS
SS59SSK ADDRESS OF CDC DATA ROW: ONLY DATA FOR ISRT/DLET SS59SSSS
SS6SSSK OR CONTAINS THE AFTER IMAGE FOR UPDATE OPERATIONS SS6SSSSS
SS61SS S2 HECCDCDB POINTER. SS61SSSS
SS62SSK ADDRESS OF CDC DATA ROW. ZERO FOR ISRT AND DLET SS62SSSS
SS63SSK OR BEFORE IMAGE OF ROW FOR UPDATE OPERATIONS SS63SSSS
SS64SSK SS64SSSS
SS65SSK------ RETURN CODE FROM IFI CALL SS65SSSS
SS66SSK SS66SSSS
SS67SS S2 HECRARC2 PIC S9(8) COMP. SS67SSSS
SS68SSK IFCRC2 REASON CODE SS68SSSS
SS69SSK SS69SSSS
SS7SSSK------ DBDNAME/SEGNAME/PCBLABEL AREA (MAPPED BY HECDSLDS BELOW) SS7SSSSS
SS71SSK SS71SSSS
SS72SS S2 HECDBSLA POINTER. SS72SSSS
SS73SSK ADDRESS OF DBD/SEG/PCBLABEL AREA (HECDSLDS) SS73SSSS
SS74SS S2 HECDBSLN PIC S9(8) COMP. SS74SSSS
SS75SSK NUMBER OF ENTRIES IN HECDSLDS SS75SSSS
SS76SSK SS76SSSS
SS77SSK------ RESERVED SPACE AND CB SIZE SS77SSSS
SS78SSK SS78SSSS
SS79SS S2 HECRESV2 PIC X(16). SS79SSSS
SS8SSSK SS8SSSSS
SS81SSK---K SS81SSSS
SS82SSK FOR PROPAGATION EXIT ROUTINES ONLY, THE HECDBSLA FIELD K SS82SSSS
SS83SSK POINTS TO AN AREA. THIS AREA CONTAINS 24 BYTE ENTRIES K SS83SSSS
SS84SSK (IN TOP TO BOTTOM HIERARCHY) WHICH WAS DEFINED TO DPROP K SS84SSSS
SS85SSK FOR THE PR IN PROCESS. THE NUMBER OF ENTRIES IN THIS LIST K SS85SSSS
SS86SSK IS CONTAINED IN THE HECDBSLN FIELD. K SS86SSSS
SS87SSK---K SS87SSSS
SS88SSK SS88SSSS
SS89SS S1 HECDSLDS. SS89SSSS
SS9SSSK ENTRY FOR DBD/SEG/PCBLABEL SS9SSSSS
SS91SS S2 HECDSELM OCCURS 1. SS91SSSS
SS92SSK SS92SSSS
SS93SS S3 HECDBDNM PIC X(8). SS93SSSS
SS94SSK DBD NAME SS94SSSS
SS95SS S3 HECSEGNM PIC X(8). SS95SSSS
SS96SSK SEGMENT NAME SS96SSSS
SS97SS S3 HECPCBNM PIC X(8). SS97SSSS
SS98SSK PCB LABEL NAME SS98SSSS
SS99SSK---K SS99SSSS

Figure 105 (Part 2 of 2). COBOL HUP Exit Communication Block

392 Customization Guide

COBOL IFC Copyarea for IFCIDS 0185
Figure 106 shows a COBOL IFC copyarea for IFCIDS 0185.

SSS1SSKKKKKKKKKKKKKKKK START OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKK SSS1SSSS
SSS2SSK K SSS2SSSS
SSS3SSK CONTROL BLOCK NAME: K SSS3SSSS
SSS4SSK EKYHCQ2C K SSS4SSSS
SSS5SSK K SSS5SSSS
SSS6SSK DESCRIPTIVE NAME: K SSS6SSSS
SSS7SSK DPROP COBOL IFC COPYAREA FOR IFCIDS S185 K SSS7SSSS
SSS8SSK K SSS8SSSS
SSS9SSK COBOL VERSION OF A PORTION OF ASM MACRO DSNDQWS2 K SSS9SSSS
SS1SSSK K SS1SSSSS
SS11SSKKK SS11SSSS
SS12SSK K SS12SSSS
SS13SSK THIS PRODUCT CONTAINS "RESTRICTED MATERIALS OF IBM". K SS13SSSS
SS14SSK K SS14SSSS
SS15SSK 5685-124 (C) COPYRIGHT IBM CORP. 1989, 1992. K SS15SSSS
SS16SSK ALL RIGHTS RESERVED. K SS16SSSS
SS17SSK K SS17SSSS
SS18SSK U.S. GOVERNMENT USERS RESTRICTED RIGHTS - K SS18SSSS
SS19SSK USE, DUPLICATION, OR DISCLOSURE RESTRICTED BY K SS19SSSS
SS2SSSK GSA ADP SCHEDULE CONTRACT WITH IBM CORP. K SS2SSSSS
SS21SSK K SS21SSSS
SS22SSK LICENSED MATERIALS - PROPERTY OF IBM. K SS22SSSS
SS23SSK K SS23SSSS
SS24SSKKK SS24SSSS
SS25SSK K SS25SSSS
SS26SSK STATUS: V1 R2 MS K SS26SSSS
SS27SSK K SS27SSSS
SS28SSK FUNCTION: K SS28SSSS
SS29SSK COPYAREA FOR ICF EVENTS. K SS29SSSS
SS3SSSK K SS3SSSSS
SS31SSK QWS185 IS WRITTEN FOR READS REQUESTS FOR IFCID 185. K SS31SSSS
SS32SSK IT CONTAINS A HEADER SECTION WHICH IS FOLLOWED BY K SS32SSSS
SS33SSK A DATA SECTION. K SS33SSSS
SS34SSK K SS34SSSS
SS35SSK THE DATA PORTION OF QWS185 BEGINS WITH FIELD: K SS35SSSS
SS36SSK - QWS185DD, IF QWS185TP=S K SS36SSSS
SS37SSK OR K SS37SSSS
SS38SSK - QWS185DR, IF QWS185TP=D K SS38SSSS
SS39SSK K SS39SSSS
SS4SSSK K SS4SSSSS
SS41SSK IF QWS185TP = S, THE DATA PORTION CONSISTS OF FOUR K SS41SSSS
SS42SSK FIELDS FOLLOWED BY AN ARBITRARY NUMBER OF OCCURRENCES K SS42SSSS
SS43SSK OF THE QWS185VR STRUCTURE. K SS43SSSS
SS44SSK K SS44SSSS
SS45SSK IF QWS185TP = D, THE DATA PORTION CONSISTS OF: K SS45SSSS
SS46SSK ---> THE DATA ROW, IF QWS185RC = S K SS46SSSS
SS47SSK OR K SS47SSSS
SS48SSK ---> AN ERROR MESSAGE, OTHERWISE. K SS48SSSS
SS49SSK K SS49SSSS
SS5SSSKKKKKKKKKKKKKKKK END OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKKKK SS5SSSSS
SS51SSK SS51SSSS

Figure 106 (Part 1 of 4). COBOL IFC Copyarea for IFCIDS 0185

 Appendix D. Sample Propagation Exit Control Blocks 393

SS52SS S1 QWS185 PIC X. SS52SSSS
SS53SSK SS53SSSS
SS54SSK---K SS54SSSS
SS55SSK K SS55SSSS
SS56SSK QWS185A IS THE STRUCTURE CONTAINING THE TABLE DESCRIPTION K SS56SSSS
SS57SSK IN ITS DATA PORTION (QWS185TP=S). K SS57SSSS
SS58SSK K SS58SSSS
SS59SSK THE DATA PORTION (QWS185DD) CONSISTS OF 4 FIELDS FOLLOWED K SS59SSSS
SS6SSSK AN ARBITRARY NUMBER OF OCCURRENCES OF THE QWS185VR STRUCTURE K SS6SSSSS
SS61SSK K SS61SSSS
SS62SSK---K SS62SSSS
SS63SSK SS63SSSS
SS64SS S1 QWS185A REDEFINES QWS185. SS64SSSS
SS65SSK SS65SSSS
SS66SS S2 QWS185LN PIC S9(8) COMP. SS66SSSS
SS67SSK LENGTH OF TOTAL DB2CDC DATA SS67SSSS
SS68SS S2 QWS185TP PIC X. SS68SSSS
SS69SSK TYPE OF CONTROL BLOCK SS69SSSS
SS7SSS 88 QWS185DS VALUE "S". SS7SSSSS
SS71SSK DB2CDC TABLE DESCRIPTION SS71SSSS
SS72SS 88 QWS185DO VALUE "D". SS72SSSS
SS73SSK DB2CDC DATA ROW SS73SSSS
SS74SS S2 FILLER PIC XXX. SS74SSSS
SS75SSK RESERVED SS75SSSS
SS76SS S2 QWS185RC PIC X(4). SS76SSSS
SS77SSK REASON CODE DESCRIBING ERROR FOR THIS DATA PORTION SS77SSSS
SS78SS S2 QWS185QT. SS78SSSS
SS79SSK QUALIFIED TABLE NAME SS79SSSS
SS8SSS S3 QWS185CR PIC X(8). SS8SSSSS
SS81SSK CREATOR OF TABLE (AUTH ID) SS81SSSS
SS82SS S3 QWS185TB PIC X(18). SS82SSSS
SS83SSK TABLE NAME SS83SSSS
SS84SS S2 QWS185TS PIC X(1S). SS84SSSS
SS85SSK TIMESTAMP OF TABLE DESCRIPTION FROM CATALOG SS85SSSS
SS86SS S2 QWS185TL PIC X(1S). SS86SSSS
SS87SSK TIMESTAMP OF LOG BUFFER CI WHEN IT IS EXTERNALIZED SS87SSSS
SS88SSK OR WHEN THE BUFFER IS INITIALIZED SS88SSSS
SS89SS S2 QWS185UR PIC X(8). SS89SSSS
SS9SSSK RBA OF THE FIRST LOG RECORD FOR THIS UNIT OF WORK. SS9SSSSS
SS91SS S2 QWS185LR PIC X(8). SS91SSSS
SS92SSK RBA OF LOG RECORD FROM WHICH THIS DB2CDC DATA ROW SS92SSSS
SS93SS S2 FILLER PIC XX. SS93SSSS
SS94SSK OPERATION CODE, NOT USED WHEN QWS185TP=S. SS94SSSS
SS95SS S2 QWS185RI PIC XX. SS95SSSS
SS96SSK OPERATION CODE QUALIFIER. SS96SSSS
SS97SS 88 QWS185RE VALUE "RI". SS97SSSS
SS98SSK RESULT OF A REFERENTIAL CONSTRAINT ENFORCEMENT OF SS98SSSS
SS99SSK A DELETE SET NULL OR CASCADE, IF QWS185TP = "D". SS99SSSS
S1SSSS S2 FILLER PIC X(6). S1SSSSSS
S1S1SSK RESERVED S1S1SSSS
S1S2SSK S1S2SSSS

Figure 106 (Part 2 of 4). COBOL IFC Copyarea for IFCIDS 0185

394 Customization Guide

S1S3SSK----------------------- DATA PORTION ------------------------K S1S3SSSS
S1S4SSK S1S4SSSS
S1S5SS S2 QWS185DD. S1S5SSSS
S1S6SSK S1S6SSSS
S1S7SS S3 QWS185ID PIC X(8). S1S7SSSS
S1S8SSK EYE CATCHER = "CDCDD " S1S8SSSS
S1S9SS S3 QWS185BC PIC S9(8) COMP. S1S9SSSS
S11SSSK LENGTH OF THE QWS185DD SECTION S11SSSSS
S111SS S3 QWS185NO PIC S9(4) COMP. S111SSSS
S112SSK TOTAL NUMBER OF OCCURRENCES OF QWS185VR S112SSSS
S113SS S3 QWS185LD PIC S9(4) COMP. S113SSSS
S114SSK NUMBER OF COLS DESCRIBED BY OCCURRENCES OF QWS185VR S114SSSS
S115SS S3 QWS185VR OCCURS 1. S115SSSS
S116SSK DESCRIBES A COLUMN IN A CAPTURED TABLE S116SSSS
S117SS S4 QWS185ST PIC S9(4) COMP. S117SSSS
S118SSK TELLS THE DATA TYPE OF THE COLUMN AND WHETHER S118SSSS
S119SSK IT HAS AN ASSOCIATED INDICATOR VARIABLE S119SSSS
S12SSS S4 QWS185LE PIC S9(4) COMP. S12SSSSS
S121SSK DEFINES THE EXTERNAL LG OF A VALUE FROM THE COLUMN S121SSSS
S122SS S4 QWS185SD PIC S9(8) COMP. S122SSSS
S123SSK CONTAINS THE CCSID S123SSSS
S124SS S4 QWS185SI PIC S9(8) COMP. S124SSSS
S125SSK OFFSET OF THIS COLUMN INTO THE DATA ROW S125SSSS
S126SS S4 FILLER REDEFINES QWS185SI. S126SSSS
S127SS S5 FILLER PIC XX. S127SSSS
S128SS S5 QWS185SX PIC S9(4) COMP. S128SSSS
S129SSK OFFSET IS IN A HALF WORD S129SSSS
S13SSS S4 QWS185SN. S13SSSSS
S131SSK LENGTH OF NAME AND NAME OF THE COLUMN S131SSSS
S132SS S5 QWS185NL PIC S9(4) COMP. S132SSSS
S133SSK LENGTH OF COLUMN NAME S133SSSS
S134SS S5 QWS185CN PIC X(3S). S134SSSS
S135SSK NAME OF COLUMN S135SSSS
S136SSK S136SSSS
S137SSK---K S137SSSS
S138SSK K S138SSSS
S139SSK QWS185B IS THE STRUCTURE CONTAINING THE DATA ROW OR ERROR K S139SSSS
S14SSSK MESSAGE IN ITS DATA PORTION (QWS185TP=D). K S14SSSSS
S141SSK K S141SSSS
S142SSK THE DATA PORTION (QWS185DR) CONSISTS OF: K S142SSSS
S143SSK - THE DATA ROW, IF QWS185RC = S K S143SSSS
S144SSK OR K S144SSSS
S145SSK - AN ERROR MESSAGE, OTHERWISE. K S145SSSS
S146SSK K S146SSSS
S147SSK---K S147SSSS
S148SSK S148SSSS
S149SS S1 QWS185B REDEFINES QWS185. S149SSSS
S15SSSK S15SSSSS
S151SS S2 FILLER PIC X(74). S151SSSS
S152SSK REDEFINITION OF 74 BYTES OF THE HEADER PORTION S152SSSS
S153SS S2 QWS185PC PIC XX. S153SSSS

Figure 106 (Part 3 of 4). COBOL IFC Copyarea for IFCIDS 0185

 Appendix D. Sample Propagation Exit Control Blocks 395

S154SSK OPERATION CODE, USED WHEN QWS185TP=D. S154SSSS
S155SSK IT HAS ONE OF THE FOLLOWING VALUES: S155SSSS
S156SS 88 QWS185IN VALUE "IN". S156SSSS
S157SSK INSERT S157SSSS
S158SS 88 QWS185UB VALUE "UB". S158SSSS
S159SSK UPDATE BEFORE IMAGE S159SSSS
S16SSS 88 QWS185UA VALUE "UA". S16SSSSS
S161SSK UPDATE AFTER IMAGE S161SSSS
S162SS 88 QWS185DE VALUE "DE". S162SSSS
S163SSK DELETE S163SSSS
S164SS S2 FILLER PIC X(8). S164SSSS
S165SSK REDEFINITION OF 8 BYTES MORE. S165SSSS
S166SSK S166SSSS
S167SSK----------------------- DATA PORTION ------------------------K S167SSSS
S168SSK S168SSSS
S169SS S2 QWS185DR PIC X OCCURS 1. S169SSSS
S17SSSK DATA ROW OR ERROR MESSAGE S17SSSSS
S171SSK S171SSSS
S172SSK---K S172SSSS

Figure 106 (Part 4 of 4). COBOL IFC Copyarea for IFCIDS 0185

396 Customization Guide

Sample Propagation Exit Control Blocks for PL/I
Figure 107 on page 398 shows an example of the Propagation Exit control block in
PL/I. These control blocks, called EKYRCPCP, EKYRCDLP, EKYHCHCP, and
EKYHCQ2P, reside in the (EKYSAMP) library.

PL/I Propagation Exit Interface (PIC)
Figure 107 on page 398 shows a PL/I Propagation exit interface.

 Appendix D. Sample Propagation Exit Control Blocks 397

1/KKKKKKKKKKKKKKKKKKKK START OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKK
 K K
K Control Block name: K

 K EKYRCPCP K
 K K
 K Descriptive name: K
K DPROP PL/1 propagation exit interface. K

 K K
K PL/1 version of EKYRCPIC. K

 K K
 KKK
 K K
K THIS PRODUCT CONTAINS "RESTRICTED MATERIALS OF IBM". K

 K K
K 5685-124 (C) COPYRIGHT IBM CORP. 1989, 1992. K
K ALL RIGHTS RESERVED. K

 K K
K U.S. GOVERNMENT USERS RESTRICTED RIGHTS - K
K USE, DUPLICATION, OR DISCLOSURE RESTRICTED BY K
K GSA ADP SCHEDULE CONTRACT WITH IBM CORP. K

 K K
K LICENSED MATERIALS - PROPERTY OF IBM. K

 K K
 KKK
 K K
K Status: V1 R2 MS K

 K K
 K Function: K
K This is the PL/1 control block used to interface between K

 K - DPROP K
 K and K
K - a user's propagation exit routine K

 K K
K There is one control block for each exit propagation exit K
K routine, lasting for the duration of the exit in virtual K

 K storage. K
 K K
K For synchronous propagation in MPP regions: K
K - this is the duration of the IMS program controller K

 K subtask. K
 K K
K For synchronous propagation in batch/BMP regions, for K
K asynchronous propagation, and for CCU processing: K
K - this is the duration of the jobstep. K

 K K
K Change activity: K

 K None K
KKKKKKKKKKKKKKKKKKKK END OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKKKK/

1DECLARE EKYRCPCP_PTR POINTER;
 DECLARE 1 EKYRCPCP BASED(EKYRCPCP_PTR),
 /KKK
K This section contains information provided by DPROP to the K
K invoked exit at entry to call. This section MUST NOT be modified K
K by the exit. K

 KKK/
2 PICEYE CHAR(8), /K Eye catcher ("EKYRCPIC") K/
2 PICEXIT CHAR(8), /K Name of the exit routine K/
2 PICCALL CHAR(2), /K Type of call to exit:

HR = hierarchical to relational
RH = relational to hierarchical K/

Figure 107 (Part 1 of 3). PL/I Propagation Exit Interface

398 Customization Guide

2 PICDBLEV CHAR(1), /K Debug level in effect. Hex'S2':
external trace of propagating
SQL statements and DL/I calls. K/

 2 FILLS1 CHAR(1), /K Reserved K/
2 PICPTD POINTER, /K Address of DPROP PTD K/

 2 PICPRID CHAR(8), /K PR-ID K/
2 PICPRSET CHAR(8), /K PRSET-ID K/
2 PICPRTST CHAR(26), /K PR timestamp K/

 2 FILLS2 CHAR(2), /K Reserved K/
2 PICPCBLA CHAR(8), /K PCB label as specified on PR K/

 2 FILL56 CHAR(56), /K Reserved K/
2 PICOPSYS CHAR(4), /K Operating system. 'ESA ': MVS/ESA K/

2 PICTRANS CHAR(4), /K IMS region type:
'MPP ' = MPP region
'IFP ' = IMS fast path region
'BMP ' = IMS BMP region
'BAT ' = IMS batch region
' ' = none of above K/

2 PICPROGM CHAR(4), /K calling program
'DPRS' - DPROP synch propagation
'DPRA' - DPROP asynch propagation K/

2 FILL12A CHAR(12), /K Reserved for DPROP K/
1 /KK

K This section is used by exit to provide information to DPROP K
 KK/

2 PICENTRD CHAR(1), /K Set by exit routine to 'X', to
indicate that exit has been entered K/

2 PICINCTL CHAR(1), /K Set by exit routine to 'X', to
indicate that exit is in control K/

 /KK
K Return code and error message K

 KK/
2 PICXRETC FIXED BIN(15), /K Return code:

4 = SQL error. SQL error code is in
the field SQLCODE of the SQLCA.

8 = DLI error. AIBRETRN, AIBREASN
and DL/I status code in PCB
pointed by AIBRSA1.

12 = error other than SQL error,
some resources not available.

16 = error other than SQL error, not
a resource availability problem.

2S = should not occur/should abend. K/

2 PICXMESG, /K User exit error/warning message DPROP
will write the message to various
destinations according to the usual
DPROP/RUP error handling logic.
(28S byte area) K/

3 PICXML1, /K 1st message line (7S text bytes) K/
4 PICXMSGI CHAR(8), /K 8 byte message ID K/
4 PICXMSGB CHAR(1), /K one blank K/
4 PICXMTXT CHAR(61), /K 61 text bytes K/

3 PICXML2 CHAR(7S), /K 2nd message line (7S text bytes) K/

Figure 107 (Part 2 of 3). PL/I Propagation Exit Interface

 Appendix D. Sample Propagation Exit Control Blocks 399

3 PICXML3 CHAR(7S), /K 3rd message line (7S text bytes) K/
3 PICXML4 CHAR(7S), /K 4th message line (7S text bytes) K/

2 FILL12B CHAR(12), /K Reserved for DPROP K/

 /KK
K Names of objects associated with error K

 KK/
2 PICDBN CHAR(8), /K DBD name K/
2 PICSEGN CHAR(8), /K Segment name K/
2 PICTABQ CHAR(8), /K Table name qualifier K/
2 PICTABN CHAR(18), /K Table name K/
2 FILL14 CHAR(14), /K Reserved for DPROP K/

1 /KK
K Exit Work Area K

 K The exit work area can be used to save information across K
 K calls to the exit (e.g. to save the addresses of getmained K
 K areas across calls to the exit). K
 KK/

2 FILLFLO FLOAT BIN(S), /K for double word alignment
(in ASM: DS SD) K/

2 PICSWORK CHAR(256), /K Work area for the exit K/
2 FILL16A CHAR(16), /K Reserved for DPROP K/

 /KK
K SQL communication area (SQLCA). K

 KK/
2 PICSQLCA CHAR(136),

 2 FILL16B CHAR(16),

 /KK
K DLI application interface block (AIB). K
K The exit should use this AIB for its DLI call. Before first K
K call, DPROP inits AIBID, AIBLEN, AIBRSNM1 and AIBSFUNC fields. K

 KK/
2 PICAIB, /K AIB initialized by DPROP K/

 3 AIBID CHAR(8), /K Eyecatcher K/
3 AIBLEN FIXED BIN(31), /K DFSAIB ALLOCATED LENGTH K/
3 AIBSFUNC CHAR(8), /K Subfunction code K/
3 AIBRSNM1 CHAR(8), /K Resource name 1 K/
3 AIBRSNM2 CHAR(8), /K Resource name 2 K/

 3 FB1(2) FIXED BIN(31), /K Reserved K/
3 AIBOALEN FIXED BIN(31), /K Output area length (max) K/
3 AIBOAUSE FIXED BIN(31), /K Output area length (used) K/

 3 FB2(2) FIXED BIN(31), /K Reserved K/
 3 FIXB(2) FIXED BIN(15), /K Reserved K/

3 AIBRETRN FIXED BIN(31), /K Return code K/
3 AIBREASN FIXED BIN(31), /K Reason code K/

 3 FB3 FIXED BIN(31), /K Reserved K/
3 AIBRSA1 POINTER, /K Resource address 1 K/
3 AIBRSA2 POINTER, /K Resource address 2 K/
3 AIBRSA3 POINTER, /K Resource address 3 K/

 3 FB4(1S) FIXED BIN(31), /K Reserved K/

 2 FB5(4) FIXED BIN(31); /K Reserved K/

Figure 107 (Part 3 of 3). PL/I Propagation Exit Interface

400 Customization Guide

PL/I (RUP) DL/I Capture Interface
Figure 108 shows a PL/I DL/I capture interface.

1/KKKKKKKKKKKKKKKKKKKK START OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKK
 K K
K Control Block name: K

 K EKYRCDLP K
 K K
K Descriptive name: K
K DPROP RUP: PL/1 DL/I capture interface. K

 K K
K PL/1 VERSION OF EKYRCDL1. K

 K K
 KKK
 K K
K THIS PRODUCT CONTAINS "RESTRICTED MATERIALS OF IBM". K

 K K
K 5685-124 (C) COPYRIGHT IBM CORP. 1989, 1992. K
K ALL RIGHTS RESERVED. K

 K K
K U.S. GOVERNMENT USERS RESTRICTED RIGHTS - K
K USE, DUPLICATION, OR DISCLOSURE RESTRICTED BY K
K GSA ADP SCHEDULE CONTRACT WITH IBM CORP. K

 K K
K LICENSED MATERIALS - PROPERTY OF IBM. K

 K K
 KKK
 K K
K STATUS: V1 R2 MS K

 K K
 K FUNCTION: K
 K K
K EKYRCDLP is an include library member providing descriptions K
K for the interface-areas used to communicate between K
K - DL/I changed data capture K
K - the EKYRUPSS DL/I changed data exit routine K

 K K
K EKYRCDLP contains descriptions of following areas: K
K - the DL/I XPCB K
K - the DL/I XSDB K
K - the DL/I DBPCB K

 K K
K CHANGE ACTIVITY: K

 K None K
KKKKKKKKKKKKKKKKKKKK END OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKKKK/

1/KKK
K E x t e n d e d D a t a B a s e P C B -- X P C B K

 KKK/
 DECLARE XPCB_POINTER POINTER;
 DECLARE 1 XPCB BASED (XPCB_POINTER),

2 XPCBEYE CHAR(4), /K "XPCB" eyecatcher K/
2 XPCBVER CHAR(2), /K XPCB version indicator K/
2 XPCBREL CHAR(2), /K XPCB release indicator K/
2 XPCBEXIT CHAR(8), /K Segment user exit name K/
2 XPCBRC FIXED BIN(15), /K Return-code K/
2 XPCBRSNC FIXED BIN(15), /K Reason-code K/
2 XPCBDBD CHAR(8), /K Physical Data Base name K/
2 XPCBVERA POINTER, /K Address of DBD version ID K/
2 XPCBSEG CHAR(8), /K Physical segment name K/
2 XPCBCALL CHAR(4), /K "Call Function" defined by IMS/ESA

 ISRT: Insert
 REPL: Replace
 DLET: Delete

Figure 108 (Part 1 of 3). PL/I (RUP) DL/I Capture Interface

 Appendix D. Sample Propagation Exit Control Blocks 401

CASC: Cascading delete
DLLP: now also deleted from

 logical path K/
2 XPCBPCALL CHAR(4), /K "Physical Update Type" defined by IMS

 ISRT: Insert
REIN: Re-insert via logical path

 REPL: Replace
 DLET: Delete

DLPP: Deleted only from
 physical path K/
 2 FILL CHAR(4), /K Reserved K/

2 XPCBPCBA POINTER, /K Address of DB PCB K/
2 XPCBPCBN CHAR(8), /K Name of DB PCB K/
2 XPCBINQA POINTER, /K Address of "INQY" output K/
2 XPCBIOPA POINTER, /K Address of I/O PCB K/
2 FILLER FIXED BIN(15), /K Reserved K/
2 XPCBCKEYL FIXED BIN(15), /K Length of concatenated key K/
2 XPCBCKEYA POINTER, /K Address of concatenated key K/
2 XPCBXSDBD POINTER, /K Address of XSDB for data K/
2 XPCBXSDBB POINTER, /K Address of XSDB for REPL data K/
2 XPCBXSDBP POINTER, /K Address of XSDB for path data K/
2 XPCBFIL1 FIXED BIN(31), /K Reserved K/
2 XPCBFIL2 FIXED BIN(31), /K Reserved K/
2 XPCBFIL3 FIXED BIN(31), /K Reserved K/
2 XPCBEXIWP POINTER, /K Address of 256-byte area reserved

 for exit K/
2 XPCBFIL4 FIXED BIN(31), /K Reserved K/
2 XPCBFIL5 FIXED BIN(31), /K Reserved K/
2 XPCBTIMST CHAR(8), /K Timestamp of call K/
2 XPCBFIL6 FIXED BIN(31); /K Reserved K/

1/KKK
 K E x t e n d e d S e g m e n t D a t a -- X S D B K
 KK/
 DECLARE XSDB_POINTER POINTER;
 DECLARE 1 XSDB BASED(XSDB_POINTER),

2 XSDBEYE CHAR(4), /K "XSDB" eyecatcher K/
2 XSDBVER CHAR(2), /K XSDB version indicator K/
2 XSDBREL CHAR(2), /K XSDB release indicator K/
2 XSDBNXSDB POINTER, /K Next XSDB pointer K/
2 XSDBDBD CHAR(8), /K Physical data base name K/
2 XSDBSEG CHAR(8), /K Physical segment name K/
2 XSDBPHP CHAR(1), /K Physical path accessibility

If value is "y" then segment is
accessible via physical path.
If value is "N" then segment is not
accessible via physical path. K/

 2 FILLER CHAR(3), /K Reserved K/
2 XSDBSEGLV FIXED BIN(15), /K Segment data base level K/
2 XSDBKEYL FIXED BIN(15), /K Length of physical key K/
2 XSDBKEYA POINTER, /K Address of physical key K/
2 XSDBFIL1 FIXED BIN(15), /K Reserved K/
2 XSDBSEGL FIXED BIN(15), /K Length of segment data K/
2 XSDBSEGA POINTER, /K Address of segment data K/
2 XSDBFIL2 FIXED BIN(31), /K Reserved K/
2 XSDBFIL3 FIXED BIN(31), /K Reserved K/
2 XSDBFIL4 FIXED BIN(31); /K Reserved K/

Figure 108 (Part 2 of 3). PL/I (RUP) DL/I Capture Interface

402 Customization Guide

1/KKK
K D a t a B a s e P C B K

 KKK/
 DECLARE S1 DBPCB,

2 DBPCBDBD CHAR(8), /K DBD name K/
2 DBPCBLEV CHAR(2), /K Level feedback K/
2 DBPCBSTC CHAR(2), /K Status codes (returned to user) K/
2 DBPCBPRO CHAR(4), /K Processing options K/
2 DBPCBPFX FIXED BIN(31), /K Prefix address K/
2 DBPCBSFD CHAR(8), /K Segment name feedback K/
2 DBPCBMKL FIXED BIN(31), /K Currrent length of KFBA or

GSAM feedback area K/
2 DBPCBNSS FIXED BIN(31), /K Number of sensitive segments in

 the PCB K/
2 DBPCBKFD CHAR(S); /K Key feedback area K/

Figure 108 (Part 3 of 3). PL/I (RUP) DL/I Capture Interface

 Appendix D. Sample Propagation Exit Control Blocks 403

PL/I HUP Exit Communication Block
Figure 109 shows a PL/I HUP exit communication block.

1/KKKKKKKKKKKKKKKKKKKK START OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKK
 K K
K Control Block name: K

 K EKYHCHCP (HEC) K
 K K
K Descriptive name: K
K DPROP PL/I HUP exit communication block. K

 K K
K PL/I version of EKYHCHEC. K

 K K
 KKK
 K K
K THIS PRODUCT CONTAINS "RESTRICTED MATERIALS OF IBM". K

 K K
K 5685-124 (C) COPYRIGHT IBM CORP. 1989, 1992. K
K ALL RIGHTS RESERVED. K

 K K
K U.S. GOVERNMENT USERS RESTRICTED RIGHTS - K
K USE, DUPLICATION, OR DISCLOSURE RESTRICTED BY K
K GSA ADP SCHEDULE CONTRACT WITH IBM CORP. K

 K K
K LICENSED MATERIALS - PROPERTY OF IBM. K

 K K
 KKK
 K K
K Status: V1 R2 MS K

 K K
 K Function: K
K This is the PL/I control block used to pass information K
K received by DPROP from the DB2 changed data capture exit K
K (using IFI calls) to the propagation exit routine. K

 K K
K The HEC is newly built for each exit call and does contain K
K data to be retained between exit calls. K

 KKK
 K K
K Change activity: K

 K None K
KKKKKKKKKKKKKKKKKKKK END OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKKKK/

1DECLARE HEC_POINTER POINTER;
 DECLARE 1 HEC BASED(HEC_POINTER),

2 HECEYE CHAR(8), /K Eye catcher ("EKY HEC ") K/
2 HECRESV1 CHAR(8), /K Reserved K/

/K Pointers to IFI header areas K/
2 HECQWHS POINTER, /K Addr DB2 IFI standard header area K/
2 HECQWHC POINTER, /K Addr DB2 IFI correlation data area K/

/K Pointers to CDC data areas K/
2 HECCDCDD POINTER, /K Address of CDC data description

(always passed to exit) K/
2 HECCDCDA POINTER, /K Address of CDC data row:

(always passed to exit)
- only data for INSERT/DELETE
- OR contains the after image
for UPDATE operations K/

2 HECCDCDB POINTER, /K Address of CDC data row:
- Zero for INSERT and DELETE
- Otherwise, BEFORE image of row
for UPDATE operations. K/

Figure 109 (Part 1 of 2). PL/I HUP Exit Communication Block

404 Customization Guide

/K Return code from IFI call K/
2 HECRARC2 FIXED BIN(31), /K IFCRC2 reason code K/

/K DBDname/SEGname/PCBlabel area (mapped by HECDSLDS below) K/
2 HECDBSLA POINTER, /K Address of DBD/SEG/PCBlabel area

 HECDSLDS K/
2 HECDBSLN FIXED BIN(31), /K Number of entries in HECDSLDS K/

/K Reserved space K/
2 HECRESV2 CHAR(16);

 /KKK
K For propagation exit routines only, the HECDBSLA field points to K
K an area (for DB2 subexit routines this field is zero). This area K
K contains 24 byte entries (in top to bottom hierarchy) which were K
K defined to DPROP for the PR in process. The number of entries in K
K this list is contained in the HECDBSLN field. K

 KKK/
 DECLARE HECDSLDS_PTR POINTER;
 DECLARE 1 HECDSLDS(1) BASED(HECDSLDS_PTR),

/K Entry for DBD/SEG/PCB label K/
2 HECDBDNM CHAR(8), /K DBD name K/
2 HECSEGNM CHAR(8), /K SEGMENT name K/
2 HECPCBNM CHAR(8); /K PCB label name K/

 /KKK/

Figure 109 (Part 2 of 2). PL/I HUP Exit Communication Block

 Appendix D. Sample Propagation Exit Control Blocks 405

PL/I IFC Copyarea for IFCIDS 0185
Figure 110 shows a PL/I IFC copyarea for IFCIDS 0185.

1/KKKKKKKKKKKKKKKK START OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKKKKKK
 K K
 K Control Block name: K
 K EKYHCQ2P K
 K K
 K Descriptive name: K
K DPROP PL/1 IFC copyarea for IFCIDS S185 K

 K K
K PL/1 VERSION OF A PORTION OF ASM MACRO DSNDQWS2 K

 K K
 KKK
 K K
K THIS PRODUCT CONTAINS "RESTRICTED MATERIALS OF IBM". K

 K K
K 5685-124 (C) COPYRIGHT IBM CORP. 1989, 1992. K
K ALL RIGHTS RESERVED. K

 K K
K U.S. GOVERNMENT USERS RESTRICTED RIGHTS - K
K USE, DUPLICATION, OR DISCLOSURE RESTRICTED BY K
K GSA ADP SCHEDULE CONTRACT WITH IBM CORP. K

 K K
K LICENSED MATERIALS - PROPERTY OF IBM. K

 K K
 KKK
 K K
 K STATUS: V1 R2 MS K
 K K
 K FUNCTION: K
K Copyarea for IFC events. K

 K K
K QWS185 is written for reads requests for IFCID 185. K
K It contains a header section which is followed by K
K a data section. K

 K K
K The data portion of QWS185 begins with field: K
K - QWS185DD, if QWS185TP=S K

 K or K
K - QWS185DR, if QWS185TP=D K

 K K
 K K
K If QWS185TP = S, the data portion consists of four K
K fields followed by an arbitrary number of occurrences K
K of the QWS185VR structure. K

 K K
K If QWS185TP = D, the data portion consists of: K
K ---> the data row, if QWS185RC = S K

 K or K
K ---> an error message, otherwise. K
KKKKKKKKKKKKKKKK END OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKKKKKKKK/

1/KKK
 K K
 K QWS185A is the structure containing the table description K
 K in its data portion (QWS185TP=S). K
 K K
 K The data portion (QWS185DD) consists of 4 fields followed K
 K an arbitrary number of occurrences of the QWS185VR structure K
 K K
 KKK/

 DECLARE HECCDCDD_PTR POINTER;

Figure 110 (Part 1 of 3). PL/I IFC Copyarea for IFCIDS 0185

406 Customization Guide

 DECLARE 1 QWS185A BASED(HECCDCDD_PTR),

2 QWS185LN FIXED BIN(31), /K Length of total db2cdc data K/
2 QWS185TP CHAR(1), /K type of control block K

K S - DB2CDC table description K
K D - DB2CDC data row K/

 2 FILLER1 CHAR(3), /K Reserved K/
2 QWS185RC CHAR(4), /K Reason code describing error K

K for this data portion K/
2 QWS185QT, /K qualified table name K/
3 QWS185CR CHAR(8), /K Creator of table (Auth id) K/
3 QWS185TB CHAR(18), /K table name K/

2 QWS185TS CHAR(1S), /K Timestamp of table K
K description from catalog K/

2 QWS185TL CHAR(1S), /K Timestamp of log buffer ci K
K when it is externalized or K
K when the buffer is initialized K/

2 QWS185UR CHAR(8), /K RBA of the first log record K
K for this unit of work. K/

2 QWS185LR CHAR(8), /K RBA of log record from K
K which this DB2CDC data row K/

2 FILLER2 CHAR(2), /K Operation code, K
K not used when QWS185TP=S. K/

2 QWS185RI CHAR(2), /K operation code qualifier. K
K RI - result of a referential K
K constraint enforcement of K
K a delete set null or K
K cascade, if QWS185TP = "D". K/

 /K K/
 2 FILLER3 CHAR(6), /K Reserved K/
1/KKKKKKKKKKKKKKKKKKKKKKKK DATA PORTION KKKKKKKKKKKKKKKKKKKKKKKKKKKKK/

 2 QWS185DD,
3 QWS185ID CHAR(8), /K Eye catcher = "CDCDD " K/
3 QWS185BC FIXED BIN(31), /K Length of the QWS185DD section K/
3 QWS185NO FIXED BIN(15), /K Total number of occurrences K

K of QWS185VR K/
3 QWS185LD FIXED BIN(15), /K Number of cols described by K

K occurrences of QWS185VR K/
3 QWS185VR(1), /K Describes a column in K

K a captured table K/
4 QWS185ST FIXED BIN(15), /K Tells the data type of K

K the column and whether K
K it has an associated K
K indicator variable K/

4 QWS185LE FIXED BIN(15), /K Defines the external lg K
K of a value from the column K/

4 QWS185SD FIXED BIN(31), /K contains the CCSID K/
4 QWS185SI, /K offset of this column K

K into the data row K/
 5 FILLER CHAR(2),

5 QWS185SX FIXED BIN(15), /K Offset is in a half word K/
4 QWS185SN, /K Length of name and K

K name of the column K/
5 QWS185NL FIXED BIN(15), /K Length of column name K/
5 QWS185CN CHAR(3S); /K Name of column K/

Figure 110 (Part 2 of 3). PL/I IFC Copyarea for IFCIDS 0185

 Appendix D. Sample Propagation Exit Control Blocks 407

1/KKK
 K K
 K QWS185B is the structure containing the data row or error K
 K message in its data portion (QWS185TP=D). K
 K K
 K The data portion (QWS185DR) consists of: K
K - the data row, if QWS185RC = S K

 K otherwise K
K - an error message. K

 K K
 KKK/

 DECLARE HECCDCDA_PTR POINTER;
 DECLARE 1 QWS185B BASED(HECCDCDA_PTR),

2 FILLER5 CHAR(74), /K Redefinition of 74 bytes K
K of the header portion K/

2 QWS185PC CHAR(2), /K Operation code, K
K used when QWS185TP=d. K
K IN - Insert K
K UB - Update before image K
K UA - Update after image K
K DE - Delete K/

 2 FILLER6 CHAR(8),

 /KKKKKKKKKKKKKKKKKKKKKKKK DATA PORTION KKKKKKKKKKKKKKKKKKKKKKKKKKKKK/

2 QWS185DR(1) CHAR(1); /K Data row or error message K/

Figure 110 (Part 3 of 3). PL/I IFC Copyarea for IFCIDS 0185

408 Customization Guide

Sample Propagation Exit Control Blocks for C
Figure 111 on page 410 shows an example of the Propagation Exit control blocks
in C. These control blocks, called EKYRCPCK, EKYRCDLK, EKYHCHCK, and
EKYHCQ2K, reside in the (EKYSAMP) library.

C Propagation Exit Interface (PIC)
Figure 111 on page 410 shows a C Propagation exit interface.

 Appendix D. Sample Propagation Exit Control Blocks 409

 /KKKKKKKKKKKKKKKKKKKK START OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKK
 K K
K Control Block name: K

 K EKYRCPCK K
 K K
 K Descriptive name: K
K DPROP C propagation exit interface. K

 K K
K C version of EKYRCPIC. K

 K K
 KKK
 K K
K THIS PRODUCT CONTAINS "RESTRICTED MATERIALS OF IBM". K

 K K
K 5685-124 (C) COPYRIGHT IBM CORP. 1989, 1992. K
K ALL RIGHTS RESERVED. K

 K K
K U.S. GOVERNMENT USERS RESTRICTED RIGHTS - K
K USE, DUPLICATION, OR DISCLOSURE RESTRICTED BY K
K GSA ADP SCHEDULE CONTRACT WITH IBM CORP. K

 K K
K LICENSED MATERIALS - PROPERTY OF IBM. K

 K K
 KKK
 K K
K Status: V1 R2 MS K

 K K
 K Function: K
K This is the PL/1 control block used to interface between K

 K - DPROP K
 K and K
K - a user's propagation exit routine K

 K K
K There is one control block for each exit propagation exit K
K routine, lasting for the duration of the exit in virtual K

 K storage. K
 K K
K For synchronous propagation in MPP regions: K
K - this is the duration of the IMS program controller K

 K subtask. K
 K K
K For synchronous propagation in batch/BMP regions, for K
K asynchronous propagation, and for CCU processing: K
K - this is the duration of the jobstep. K

 K K
K Change activity: K

 K None K
KKKKKKKKKKKKKKKKKKKK END OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKKKK/

#pragma page(1)

typedef struct /K PICXMESG K/
{ /K User exit error/warning message DPROP

will write the message to various
destinations according to the usual
DPROP/RUP error handling logic.
(28S byte area) K/

/K 1st message line (7S text bytes) K/
unsigned char picxmsgi[8]; /K 8 byte message id K/
unsigned char picxmsgb; /K one blank K/
unsigned char picxmtxt[61]; /K 61 text bytes K/

} PICXML1;

Figure 111 (Part 1 of 4). C Propagation Exit Interface

410 Customization Guide

typedef struct
{
 PICXML1 picxm11;

unsigned char picxml2[7S]; /K 2nd message line (7S text bytes) K/
unsigned char picxml3[7S]; /K 3rd message line (7S text bytes) K/
unsigned char picxml4[7S]; /K 4th message line (7S text bytes) K/

} PICXMESG;

#pragma page(1)

/KK
 K DLI application interface block (AIB). K
 K The exit should use this AIB for its DLI call. Before first call, K
 K DPROP inits AIBID, AIBLEN, AIBRSNM1 and AIBSFUNC fields. K
 KK/
typedef struct /K PICAIB K/
{ /K AIB initialized by DPROP K/

unsigned char aibid[8]; /K Eyecatcher K/
long aiblen; /K DFSAIB allocated length K/
unsigned char aibsfunc[8]; /K Subfunction code K/
unsigned char aibrsnm1[8]; /K Resource name 1 K/
unsigned char aibrsnm2[8]; /K Resource name 2 K/

 long fb1[2]; /K Reserved K/
long aiboalen; /K Output area length (max) K/
long aiboause; /K Output area length (used) K/

 long fb2[2]; /K Reserved K/
 short fixb[2]; /K Reserved K/

long aibretrn; /K Return code K/
long aibreasn; /K Reason code K/
long fb3; /K Reserved K/

char Kaibrsa1; /K Resource address 1 K/
char Kaibrsa2; /K Resource address 2 K/
char Kaibrsa3; /K Resource address 3 K/

 long fb4[1S]; /K Reserved K/
} PICAIB;

#pragma page(1)

typedef struct
{ /K EKYRCPIC K/
 /KKK
K This section contains information provided by DPROP to the K
K invoked exit at entry to call. This section MUST NOT be modified K
K by the exit. K

 KKK/
unsigned char piceye[8]; /K Eye catcher ("EKYRCPIC") K/
unsigned char picexit[8]; /K Name of the exit routine K/
unsigned char piccall[2]; /K Type of call to exit:

HR = hierarchical to relational
RH = relational to hierarchical K/

unsigned char picdblev; /K Debug level in effect. hex'S2':
external trace of propagating
SQL statements and DL/I calls. K/

unsigned char fillS1; /K Reserved K/
char Kpicptd; /K Address of DPROP PTD K/

unsigned char picprid[8]; /K PR-ID K/
unsigned char picprset[8]; /K PRset-ID K/
unsigned char picprtst[26];/K PR timestamp K/

Figure 111 (Part 2 of 4). C Propagation Exit Interface

 Appendix D. Sample Propagation Exit Control Blocks 411

unsigned char fillS2[2]; /K Reserved K/
unsigned char picpcbla[8]; /K PCB label as specified on PR K/
unsigned char fill56[56]; /K Reserved K/
unsigned char picopsys[4]; /K Operating system. ESA : MVS/ESA K/

unsigned char pictrans[4]; /K IMS region type:
'MPP ' = MPP region
'IFP ' = IMS fast path region
'BMP ' = IMS BMP region
'BAT ' = IMS batch region
' ' = none of above K/

unsigned char picprogm[4]; /K Calling program:
'DPRS' - DPROP synch propagation
'DPRA' - DPROP asynch propagation K/

unsigned char fill12a[12]; /K Reserved for DPROP K/

#pragma page(1)

 /KK
K This section is used by exit to provide information to DPROP K

 KK/
unsigned char picentrd; /K Set by exit routine to 'X', to

indicate that exit has been entered K/
unsigned char picinctl; /K Set by exit routine to 'X', to

indicate that exit is in control K/

 /KK
K Return code and error message K

 KK/
short picxretc; /K Return code:

4 = SQL error. SQL error code is in
the field SQLCODE of the SQLCA.

8 = DLI error. AIBRETRN, AIBREASN
and DL/I status code in PCB
pointed by AIBRSA1.

12 = error other than SQL error,
some resources not available.

16 = error other than SQL error, not
a resource availability problem.

2S = should not occur/should abend. K/

 PICXMESG picxmesg;
unsigned char fill12b[12]; /K Reserved for DPROP K/

 /KK
K Names of objects associated with error K

 KK/
unsigned char picdbn[8]; /K DBD name K/
unsigned char picsegn[8]; /K Segment name K/
unsigned char pictabq[8]; /K Table name qualifier K/
unsigned char pictabn[18]; /K Table name K/
unsigned char fill14[14]; /K Reserved for DPROP K/

#pragma page(1)

Figure 111 (Part 3 of 4). C Propagation Exit Interface

412 Customization Guide

 /KK
K Exit Work Area K

 K The exit work area can be used to save information across K
 K calls to the exit (e.g. to save the addresses of getmained K
 K areas across calls to the exit). K
 KK/

unsigned char floater[4];
unsigned char picswork[256];/K Work area for the exit K/
unsigned char fill16a[16]; /K Reserved for DPROP K/

 /KK
K SQL communication area (SQLCA). K

 KK/
 struct sqlca picsqlca;

unsigned char fill16b[16];
 PICAIB picaib;

 long fb5[4]; /K Reserved K/
 } EKYRCPIC;

#pragma page(1)

Figure 111 (Part 4 of 4). C Propagation Exit Interface

C (RUP) DL/I Capture Interface
Figure 112 on page 414 shows a C DL/I capture interface.

 Appendix D. Sample Propagation Exit Control Blocks 413

 /KKKKKKKKKKKKKKKKKKKK START OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKK
 K K
K Control Block name: K

 K EKYRCDLK K
 K K
K Descriptive name: K
K DPROP RUP: C DL/I capture interface. K

 K K
K C VERSION OF EKYRCDL1. K

 K K
 KKK
 K K
K THIS PRODUCT CONTAINS "RESTRICTED MATERIALS OF IBM". K

 K K
K 5685-124 (C) COPYRIGHT IBM CORP. 1989, 1992. K
K ALL RIGHTS RESERVED. K

 K K
K U.S. GOVERNMENT USERS RESTRICTED RIGHTS - K
K USE, DUPLICATION, OR DISCLOSURE RESTRICTED BY K
K GSA ADP SCHEDULE CONTRACT WITH IBM CORP. K

 K K
K LICENSED MATERIALS - PROPERTY OF IBM. K

 K K
 KKK
 K K
K STATUS: V1 R2 MS K

 K K
 K FUNCTION: K
 K K
K EKYRCDLI is a copyarea providing descriptions for the K
K interface-areas used to communicate between K
K - DL/I changed data capture K
K - the EKYRUPSS DL/I changed data exit routine K

 K K
K EKYRCDLI generates descriptions of following areas: K
K - the DL/I XPCB K
K - the DL/I XSDB K
K - the DL/I DBPCB K

 K K
K CHANGE ACTIVITY: K

 K None K
KKKKKKKKKKKKKKKKKKKK END OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKKKK/

#pragma page(1)

 typedef struct
 {

unsigned char segikey[6];
unsigned char segidat1[7];
unsigned char segidat2[4];
unsigned char segidat3[8];

 } SEGI;

 /KKK
 K E x t e n d e d S e g m e n t D a t a -- X S D B K
 KK/
 typedef struct /K XSDB K/
 {

unsigned char xsdbeye[4]; /K "XSDB" eyecatcher K/
unsigned char xsdbver[2]; /K XSDB version indicator K/

Figure 112 (Part 1 of 3). C (RUP) DL/I Capture Interface

414 Customization Guide

unsigned char xsdbrel[2]; /K XSDB release indicator K/
char Kxsdbnxsdb; /K Next XSDB pointer K/

unsigned char xsdbdbd[8]; /K Physical data base name K/
unsigned char xsdbseg[8]; /K Physical segment name K/
unsigned char xsdbphp; /K Physical path accessibility

If value is "Y" then segment is
accessible via physical path.
If value is "N" then segment is not
accessible via physical path. K/

unsigned char filler[3]; /K Reserved K/
short xsdbseglv; /K Segment data base level K/
short xsdbkeyl; /K Length of physical key K/

char Kxsdbkeya; /K Address of physical key K/
 short xsdbfil1; /K Reserved K/

short xsdbsegl; /K Length of segment data K/
SEGI Kxsdbsega; /K Address of segment data K/

 long xsdbfil2; /K Reserved K/
 long xsdbfil3; /K Reserved K/
 long xsdbfil4; /K Reserved K/
 } XSDB;

#pragma page(1)

 /KKK
K E x t e n d e d D a t a B a s e P C B -- X P C B K

 KKK/

 typedef struct /K XPCB K/
 {

unsigned char xpcbeye[4]; /K "XPCB" eyecatcher K/
unsigned char xpcbver[2]; /K XPCB version indicator K/
unsigned char xpcbrel[2]; /K XPCB release indicator K/
unsigned char xpcbexit[8]; /K Segment user exit name K/

 short xpcbrc; /K Return-code K/
 short xpcbrsnc; /K Reason-code K/

unsigned char xpcbdbd[8]; /K Physical data base name K/
char Kxpcbvera; /K Address of DBD version ID K/

unsigned char xpcbseg[8]; /K Physical segment name K/
unsigned char xpcbcall[4];

/K "Call function" defined by IMS/ESA
 ISRT: Insert
 REPL: Replace
 DLET: Delete

CASC: Cascading delete
DLLP: now also deleted from

 logical path K/
unsigned char xpcbpcall[4]; /K "Physical update type" defined

 by IMS
 ISRT: Insert

REIN: Re-insert via logical path
 REPL: Replace
 DLET: Delete

DLPP: Deleted only from
 physical path K/

unsigned char fill[4]; /K Reserved K/
char Kxpcbpcba; /K Address of DB PCB K/

unsigned char xpcbpcbn[8]; /K Name of DB PCB K/
char Kxpcbinqa; /K Address of "INQY" output K/
char Kxpcbiopa; /K Address of I/O PCB K/

 short filler; /K Reserved K/
short xpcbckeyl; /K Length of concatenated key K/

Figure 112 (Part 2 of 3). C (RUP) DL/I Capture Interface

 Appendix D. Sample Propagation Exit Control Blocks 415

char Kxpcbckeya; /K Address of concatenated key K/
XSDB Kxpcbxsdbd; /K Address of XSDB for data K/

char Kxpcbxsdbb; /K Address of XSDB for REPL data K/
char Kxpcbxsdbp; /K Address of XSDB for path data K/

 long xpcbfil1; /K Reserved K/
 long xpcbfil2; /K Reserved K/
 long xpcbfil3; /K Reserved K/

char Kxpcbexiwp; /K Address of 256-byte area reserved
 for exit K/
 long xpcbfil4; /K Reserved K/
 long xpcbfil5; /K Reserved K/

unsigned char xpcbtimst[8];/K Timestamp of call K/
 long xpcbfil6; /K Reserved K/
 } XPCB;

#pragma page(1)

 /KKK
K D a t a B a s e P C B K

 KKK/
 typedef struct
 { /K DBPCB K/

unsigned char DBPCBDBD[8]; /K DBD name K/
unsigned char DBPCBLEV[2]; /K Level feedback K/
unsigned char DBPCBSTC[2]; /K Status codes (returned to user) K/
unsigned char DBPCBPRO[4]; /K Processing options K/
long DBPCBPFX; /K Prefix address K/
unsigned char DBPCBSFD[8]; /K Segment name feedback K/
long DBPCBMKL; /K Currrent length of KFBA or

GSAM feedback area K/
long DBPCBNSS; /K Number of sensitive segments in

 the PCB K/
unsigned char DBPCBKFD; /K Key feedback area K/

 } DBPCB;

#pragma page(1)

Figure 112 (Part 3 of 3). C (RUP) DL/I Capture Interface

C HUP Exit Communication Block
Figure 113 on page 417 shows a C HUP exit communication block.

416 Customization Guide

/KKKKKKKKKKKKKKKKKKKK START OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKK
 K K
 K Control Block name: K
 K EKYHCHCK (HEC) K
 K K
 K Descriptive name: K
 K DPROP C HUP exit communication block. K
 K K
 K C version of EKYHCHEC. K
 K K
 KKK
 K K
 K THIS PRODUCT CONTAINS "RESTRICTED MATERIALS OF IBM". K
 K K
 K 5685-124 (C) COPYRIGHT IBM CORP. 1989, 1992. K
 K ALL RIGHTS RESERVED. K
 K K
 K U.S. GOVERNMENT USERS RESTRICTED RIGHTS - K
 K USE, DUPLICATION, OR DISCLOSURE RESTRICTED BY K
 K GSA ADP SCHEDULE CONTRACT WITH IBM CORP. K
 K K
 K LICENSED MATERIALS - PROPERTY OF IBM. K
 K K
 KKK
 K K
 K Status: V1 R2 MS K
 K K
 K Function: K
 K This is the PL/I control block used to pass information K
 K received by DPROP from the DB2 changed data capture exit K
 K (using IFI calls) to the propagation exit routine. K
 K K
 K The HEC is newly built for each exit call and does contain K
 K data to be retained between exit calls. K
 KKK
 K K
 K Change activity: K
 K None K
 KKKKKKKKKKKKKKKKKKKK END OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKKKK/

#pragma page(1)

/KKK
 K For propagation exit routines only, the HECDBSLA field points to K
 K an area (for DB2 subexit routines this field is zero). This area K
 K contains 24 byte entries (in top to bottom hierarchy) which were K
 K defined to DPROP for the PR in process. The number of entries in K
 K this list is contained in the HECDBSLN field. K
 KKK/
typedef struct /K HECDSLDS1 K/
{ /K Entry for DBD/SEG/PCB label K/

unsigned char hecdbdnm[8]; /K DBD name K/
unsigned char hecsegnm[8]; /K Segment name K/
unsigned char hecpcbnm[8]; /K PCB label name K/

} HECDSLDS1;

typedef struct /K HECDSLDS1 array K/
{
 HECDSLDS1 hecdslds[3S];
} HECDSLDS;

Figure 113 (Part 1 of 2). C HUP Exit Communication Block

 Appendix D. Sample Propagation Exit Control Blocks 417

typedef struct
{ /K HEC K/

unsigned char heceye[8]; /K Eye catcher ("EKY HEC ") K/
unsigned char hecresv1[8]; /K Reserved K/

/K Pointers to IFI header areas K/
char Khecqwhs; /K Addr DB2 ifi standard header area K/
char Khecqwhc; /K Addr DB2 ifi correlation data area K/

/K Pointers to CDC data areas K/
void Kheccdcdd; /K Address of CDC data description

(always passed to exit) K/
void Kheccdcda; /K Address of CDC data row:

(always passed to exit)
- only data for INSERT/DELETE
- OR contains the after image
for UPDATE operations K/

char Kheccdcdb; /K Address of CDC data row:
- Zero for INSERT and DELETE
- Otherwise, BEFORE image of row
for UPDATE operations. K/

/K Return code from IFI call K/
long hecrarc2; /K IFCRC2 reason code K/

/K DBDname/SEGname/PCBlabel area (mapped by HECDSLDS below) K/
HECDSLDS Khecdbsla; /K Address of DBD/SEG/PCBlabel area

 HECDSLDS K/
long hecdbsln; /K Number of entries in hecdslds K/

/K Reserved space K/
unsigned char hecresv2[16]; /K reserved K/

} HEC;

/KKK/
#pragma page(1)

Figure 113 (Part 2 of 2). C HUP Exit Communication Block

C IFC Copyarea for IFCIDS 0185
Figure 114 on page 419 shows a C IFC copyarea for IFCIDS 0185.

418 Customization Guide

/KKKKKKKKKKKKKKKKK START OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKKKKKK
 K K
 K Control Block name: K
 K EKYHCQ2K K
 K K
 K Descriptive name: K
 K DPROP C IFC copyarea for IFCIDS S185 K
 K K
 K C VERSION OF A PORTION OF ASM MACRO DSNDQWS2 K
 K K
 KK
 K K
 K THIS PRODUCT CONTAINS "RESTRICTED MATERIALS OF IBM". K
 K K
 K 5685-124 (C) COPYRIGHT IBM CORP. 1989, 1992. K
 K ALL RIGHTS RESERVED. K
 K K
 K U.S. GOVERNMENT USERS RESTRICTED RIGHTS - K
 K USE, DUPLICATION, OR DISCLOSURE RESTRICTED BY K
 K GSA ADP SCHEDULE CONTRACT WITH IBM CORP. K
 K K
 K LICENSED MATERIALS - PROPERTY OF IBM. K
 K K
 KK
 K K
 K STATUS: V1 R2 MS K
 K K
 K FUNCTION: K
 K Copyarea for IFC events. K
 K K
 K QWS185 is written for reads requests for IFCID 185. K
 K It contains a header section which is followed by K
 K a data section. K
 K K
 K The data portion of QWS185 begins with field: K
 K - QWS185DD, if QWS185TP=S K
 K or K
 K - QWS185DR, if QWS185TP=D K
 K K
 K K
 K If QWS185TP = S, the data portion consists of four K
 K fields followed by an arbitrary number of occurrences K
 K of the QWS185VR structure. K
 K K
 K If QWS185TP = D, the data portion consists of: K
 K ---> the data row, if QWS185RC = S K
 K or K
 K ---> an error message, otherwise. K
 K K
 KKKKKKKKKKKKKKKK END OF CONTROL BLOCK SPECIFICATION KKKKKKKKKKKKKKKKKK/

#pragma page(1)

typedef struct /K Describes a column in K
K a captured table K/

{
short qwS185st; /K Tells the data type of K

K the column and whether K
K it has an associated K
K indicator variable K/

Figure 114 (Part 1 of 3). C IFC Copyarea for IFCIDS 0185

 Appendix D. Sample Propagation Exit Control Blocks 419

short qwS185le; /K Defines the external lg K
K of a value from the column K/

long qwS185sd; /K Contains the ccsid K/
 char filler[2];

short qwS185sx; /K Offset of this column K
K into the data row K/

short qwS185nl; /K Length of column name K/
char qwS185cn[3S]; /K Name of column K/

} QWS185VR;

#pragma page(1)

/KKK
 K K
 K QWS185A is the structure containing the table description K
 K in its data portion (QWS185TP=S). K
 K K
 K The data portion (QWS185DD) consists of 4 fields followed K
 K an arbitrary number of occurrences of the QWS185VR structure K
 K K
 KKK/

typedef struct
{

long qwS185ln; /K Length of total db2cdc data K/
char qwS185tp; /K Type of control block K

K S - DB2CDC table description K
K D - DB2CDC data row K/

char filler1[3]; /K Reserved K/
char qwS185rc[4]; /K Reason code describing error K

K for this data portion K/
char qwS185cr[8]; /K Creator of table (auth id) K/
char qwS185tb[18]; /K Table name K/
char qwS185ts[1S]; /K Timestamp of table K

K description from catalog K/
char qwS185tl[1S]; /K Timestamp of log buffer CI K

K when it is externalized or K
K when the buffer is initialized K/

char qwS185ur[8]; /K RBA of the first log record K
K for this unit of work. K/

char qwS185lr[8]; /K RBA of log record from K
K which this DB2CDC data row K/

char filler2[2]; /K Operation code, K
K not used when QWS185TP=S. K/

char qwS185ri[2]; /K operation code qualifier. K
K RI - result of a referential K
K constraint enforcement of K
K a delete set null or K
K cascade, if QWS185TP = "D". K/

 /K K/
char filler3[6]; /K reserved K/

 /KKKKKKKKKKKKKKKKKKKKKKKK DATA PORTION KKKKKKKKKKKKKKKKKKKKKKKKKKKKK/

/K Qualified table name K/
char qwS185id[8]; /K Eye catcher = "CDCDD " K/
long qwS185bc; /K Length of the QWS185DD section K/
short qwS185no; /K Total number of occurrences K

K of QWS185VR K/

Figure 114 (Part 2 of 3). C IFC Copyarea for IFCIDS 0185

420 Customization Guide

short qwS185ld; /K Number of cols described by K
K occurrences of QWS185VR K/

 QWS185VR qwS185vr[1];
} QWS185A;

#pragma page(1)

 /KKK
 K K
 K QWS185B is the structure containing the data row or error K
 K message in its data portion (QWS185TP=D). K
 K K
 K The data portion (QWS185DR) consists of: K
K - the data row, if QWS185RC = S K

 K or K
K - an error message, otherwise. K

 K K
 KKK/

typedef struct
{

char filler5[74]; /K Redefinition of 74 bytes K
K of the header portion K/

char qwS185pc[2]; /K Operation code, K
K used when QWS185TP=D. K
K IN - Insert K
K UB - Update before image K
K UA - Update after image K
K DE - Delete K/

 char filler6[8];

 /KKKKKKKKKKKKKKKKKKKKKKKK DATA PORTION KKKKKKKKKKKKKKKKKKKKKKKKKKKKK/

char qwS185dr[6S]; /K Data row or error message K/
} QWS185B;

#pragma page(1)

Figure 114 (Part 3 of 3). C IFC Copyarea for IFCIDS 0185

 Appendix D. Sample Propagation Exit Control Blocks 421

 Notices

| This information was developed for products and
| services offered in the U.S.A. IBM may not offer the
| products, services, or features discussed in this
| document in other countries. Consult your local IBM
| representative for information on the products and
| services currently available in your area. Any reference
| to an IBM product, program, or service is not intended
| to state or imply that only that IBM product, Program, or
| service may be used. Any functionally equivalent
| product, Program, or service that does not infringe any
| IBM intellectual property right may be used instead.
| However, it is the user's responsibility to evaluate and
| verify the operation of any non-IBM product, program,
| or service.

| IBM may have patents or pending patent applications
| covering subject matter described in this document. The
| furnishing of this document does not give you any
| license to these patents. You can send license inquiries
| in writing, to:

| IBM Director of Licensing
| IBM Corporation
| North Castle Drive
| Armonk, NY 10504-1785
| U.S.A.

| For license inquiries regarding double-byte (DBCS)
| information, contact the IBM Intellectual Property
| Department in your country or send inquiries, in writing,
| to:

| IBM World Trade Asia Corporation
| Licensing
| 2-31 Roppongi 3-chome, Minato-ku
| Tokyo 106, Japan

| The following paragraph does not apply to the United
| Kingdom or any other country where such provisions
| are inconsistent with local law:

| INTERNATIONAL BUSINESS MACHINES
| CORPORATION PROVIDES THIS PUBLICATION "AS
| IS" WITHOUT WARRANTY OF ANY KIND, EITHER
| EXPRESS OR IMPLIED, INCLUDING, BUT NOT
| LIMITED TO, THE IMPLIED WARRANTIES OF
| NON-INFRINGEMENT, MERCHANTABILITY OR
| FITNESS FOR A PARTICULAR PURPOSE. Some
| states do not allow disclaimer of express or implied
| warranties in certain transactions, therefore, this
| statement may not apply to you.

| This information could include technical inaccuracies or
| typographical errors.Changes are periodically made to
| the information herein; these changes will be
| incorporated in new editions of the publication. IBM may

| make improvements and/or changes in the product(s)
| and/or the program(s) described in this publication at
| any time without notice.

| Any references in this information to non-IBM Web sites
| are provided for convenience only and do not in any
| manner serve as an endorsement of those Web sites.
| The materials at those Web sites are not part of the
| materials for this IBM product and use of those Web
| sites is at your own risk.

| IBM may use or distribute any of the information you
| supply in any way it believes appropriate without
| incurring any obligation to you.

| Licensees of this program who wish to have information
| about it for the purpose of enabling: (i) the exchange of
| information between independently created programs
| and other programs (including this one) and (ii) the
| mutual use of the information which has been
| exchanged, should contact:

| IBM Corporation
| J74/G4
| 555 Bailey Avenue
| P.O. Box 49023
| San Jose, CA 95161-9023
| U.S.A.

| Such information may be available, subject to
| appropriate terms and conditions, including in some
| cases, payment of a fee.

| The licensed program described in this information and
| all licensed material available for it are provided by IBM
| under terms of the IBM Customer Agreement, IBM
| International Program License Agreement, or any
| equivalent agreement between us.

| Any performance data contained herein was determined
| in a controlled environment. Therefore, the results
| obtained in other operating environments may vary
| significantly. Some measurements may have been
| made on development-level systems and there is no
| guarantee that these measurements will be the same
| on generally available systems. Furthermore, some
| measurement may have been estimated through
| extrapolation. Actual results may vary. Users of this
| document should verify the applicable data for their
| specific environment.

| Information concerning non-IBM products was obtained
| from the suppliers of those products, their published
| announcements or other publicly available sources. IBM
| has not tested those products and cannot confirm the
| accuracy of performance, compatibility or any other
| claims related to non-IBM products. Questions on the

422 Copyright IBM Corp. 1991,2001

| capabilities of non-IBM products should be addressed to
| the suppliers of those products.

| All statements regarding IBM's future direction or intent
| are subject to change or withdrawal without notice, and
| represent goals and objectives only.

| This information is for planning purposes only. The
| information herein is subject to change before the
| products described become available.

| This information contains examples of data and reports
| used in daily business operations. To illustrate them as
| completely as possible, the examples include the
| names of individuals, companies, brands, and products.
| All of these names are fictitious and any similarity to the
| names and addresses used by an actual business
| enterprise is entirely coincidental.

| COPYRIGHT LICENSE:

| This information contains sample application programs
| in source language, which illustrates programming
| techniques on various operating platforms. You may
| copy, modify, and distribute these sample programs in
| any form without payment to IBM, for the purposes of
| developing, using, marketing or distributing application
| programs conforming to the application programming
| interface for the operating platform for which the sample
| programs are written. These examples have not been
| thoroughly tested under all conditions. IBM, therefore,
| cannot guarantee or imply reliability, serviceability, or

| function of these programs. You may copy, modify, and
| distribute these sample programs in any form without
| payment to IBM for the purposes of developing, using,
| marketing, or distributing application programs
| conforming to IBM's application programming interfaces.

| Each copy or any portion of these sample programs or
| any derivative work, must include a copyright notice as
| follows:

| fl (your company name) (year). Portions of this code are
| derived from IBM Corp. Sample Programs. fl Copyright
| IBM Corp. _enter the year or years_. All rights reserved.

| If you are viewing this information in softcopy, the
| photographs and color illustrations may not appear.

 Programming Interface
Information

This publication is intended to help you administer IMS
DataPropagator, hereafter called IMS DPROP.

This publication also documents general-use
programming interface and associated guidance
information provided by IMS DPROP.

General-use programming interfaces allow the customer
to write programs that obtain the services of IMS
DPROP.

 Notices 423

General-use programming interface and associated
guidance information is identified where it occurs, either
by an introductory statement to a chapter or section or
by the following marking:

 Notice

This chapter documents general-use programming
interface and associated guidance information.

 Trademarks

The following terms are trademarks of the IBM
Corporation in the United States or other countries or
both:

AD/Cycle
AT
CICS
CICS/ESA
CICS/MVS
COBOL/370
Database 2
DataPropagator
DataRefresher
DB2
DFSMS
DXT
IBM
IMS

IMS Client Server/2
IMS/ESA
Information Warehouse
Language Environment
MVS
MVS/ESA
OS/390
QMF
RACF
SAA
z/OS

424 Customization Guide

 Bibliography

The IMS DataPropagator for z/OS
Version 3 Release 1 Library

Order Number Book Title
GC27-1216 Administrators Guide for Log Asynchronous Propagation
GC27-1217 Administrators Guide for MQSeries Asynchronous Propagation
GC27-1215 Administrators Guide for Synchronous Propagation
SC27-1544 Concepts
GC27-1214 Customization Guide
GC27-1209 Diagnosis
GC27-1211 An Introduction
GC27-1212 Installation Guide
GC27-1213 Messages and Codes
GC27-1210 Reference
GC27-1208 Licensed Program Specification

Other Books Referenced in This
Book

The following books are referred to in this book or might
be helpful in understanding customization tasks:

� DB2 Administration Guide, SC26-4888
� DB2 Messages and Codes, SC26-4892
� DB2 SQL Reference, SC26-4890
� DXT Writing Exit Routines, SC26-4636
� IMS/ESA General Information, GC26-3068
� IMS/ESA Customization Guide, SC26-3064-00
� IMS/ESA Administration Guide: Database Manager,

SC26-3065-00

� IMS/ESA Application Programming: DL/I Calls,
SC26-3062-00

� IMS/ESA Utilities Reference: Database Manager,
SC26-4627-00

� IMS/ESA Utilities Reference: System,
SC26-4629-00

� OS/390 Language Environment Programming
Reference, SC26-4841

� IBM SAA AD/Cycle PL/I MVS & VM Language
Reference, SC26-3114

� Remote Recovery Data Facility Program Description
and Operation, LY37-3710-03

� OS/390 Language Environment Programming
Guide, SC26-4818

 Copyright IBM Corp. 1991,2001 425

Glossary of Terms and Abbreviations

A
abort record. An IMS DataPropagator propagation log
record (38nn or 5938), indicating that the associated
unit of work will not be committed by IMS and should
not be propagated to DB2. Compare with commit
record.

ACB. Application control block. Located in IMS.

ACDC. Asynchronous changed data capture.

| Apply Program. A component of IMS MQ-DPROP
| that reads the MQSeries messages containing the
| changed data and passes it to the RUP. RUP
| transforms the changed data into relational format and
| updates the DB2 target tables.

Archive utility. A utility that filters out propagation log
records from the records written to the IMS logs and
writes them to Changed Data Capture data sets
(CDCDSs).

asynchronous changed data capture. An IMS
function that captures the changes needed for IMS
DPROP asynchronous propagation and saves them on
the IMS logs. The function is mandatory for IMS
DPROP asynchronous propagation and is either
implemented by an SPE (IMS 3.1) or built into the
program (subsequent releases of IMS).

asynchronous propagation. The propagation of data
at a later time, not within the same unit of work as the
update call.

Audit Extract utility. An IMS DPROP utility that
inserts the IMS DPROP audit records written to SMF
into the IMS DPROP audit table.

AUDU. Audit Extract utility.

B
Batch Log data set. A data set that an IMS batch job
uses to store propagation log records needed for IMS
DPROP asynchronous propagation.

C
CAF. Call attach facility.

CCU. Consistency Check utility.

CDCDS. Changed Data Capture data sets.

CDCDS Registration utility. An IMS DPROP
asynchronous propagation utility that registers new
CDCDS to DBRC.

CDCDS Unregistration utility. An IMS DPROP
asynchronous propagation utility that deletes CDCDS
entries from DBRC.

CDU. CDCDS Unregistration utility.

| CEC. central electronics complex.

Changed Data Capture data set (CDCDS). The data
sets that the archive utility uses to store the IMS
DPROP asynchronous propagation log records filtered
during the archive process. CDCDSs contain only the
propagation log records. These log records are used
by the Selector in place of the corresponding SLDSs,
that contain all IMS changes.

Changed Data Capture exit routine. See DB2
Changed Data Capture exit routine

Changed Data Capture function. See DB2 Changed
Data Capture function.

commit record. An IMS DPROP asynchronous
propagation log record (9928, 37nn, 41nn, or 5937)
indicating that the associated unit of work has been
committed by IMS and should be propagated to DB2.
Compare with abort record.

concatenated key. See “IMS concatenated key” and
“conceptual concatenated key.”

conceptual concatenated key. The conceptual
concatenated key of a segment consists of the
concatenated keys of the segment's immediate physical
parent and physical ancestors. Unlike the Conceptual
fully Concatenated key, the conceptual concatenated
key does not include the concatenated key of the
segment itself.

conceptual fully concatenated key. The conceptual
fully concatenated key is an IMS DPROP concept
useful for the propagation of entity segments that do not
have a unique IMS fully concatenated key; but that are
nevertheless uniquely identifiable.

The conceptual fully concatenated key of a segment
consists of these parts:

� the concatenated key of the segment
� the concatenated keys of the segment's physical

parent and physical ancestors

The conceptual fully concatenated key is therefore the
combination of these parts:

426 Copyright IBM Corp. 1991,2001

� the IMS fully concatenated key
� the ID fields (if any) of the segment that contribute

to the concatenated key of the segment
� the ID fields (if any) of the physical parent or

ancestors that contribute to the concatenated keys
of the physical parent or ancestor

So, the conceptual fully concatenated key is equal to
that hypothetical IMS fully concatenated key, that you
would see if including the ID fields into the IMS key-field
at each hierarchical level.

The concept of conceptual fully concatenated key
allows the support of segments with a unique
conceptual fully concatenated key, much in the same
way as segments with a unique IMS fully concatenated
key.

concatenated key. The concatenated key is an IMS
DPROP concept useful for the propagation of entity
segments that are neither unique under their parent nor
have a unique IMS key, but that are nevertheless
uniquely identifiable through ID fields.

The concatenated key is a combination of these fields
that identify the segment uniquely under its parent:

� the non-unique IMS key field (if any)
 � ID fields

For segments having a unique IMS key field, the
conceptual key and the IMS key field are identical.

Consistency Check utility (CCU). An IMS DPROP
utility that checks whether the data that has been
propagated between IMS and DB2 databases is
consistent. If not, it reports the inconsistencies and
generates statements the DBA can use to fix the
inconsistencies. The CCU is applicable when
generalized mapping cases are being used.

containing IMS segment. An IMS segment that
contains internal segments (embedded structures)
propagated by mapping case 3 Propagation Requests.
It is referred to interchangeably as a “containing IMS
segment” or “containing segment.”

containing segment. See containing IMS segment.

CRU. CDCDS Registration utility.

D
Data Capture exit routine. See IMS data capture exit
routine.

data capture function. An IMS function that captures
the changes needed for data propagation.

DataRefresher. An IBM licensed program that lets you
extract selected operational data on a periodic or
one-time basis.

Data Extract Manager (DEM). A DataRefresher
component that extracts the IMS data to which changes
will subsequently be propagated. DEM also creates
control statements for the DB2 Load utility to load the
extracted IMS data into DB2 tables.

data propagation. The application of changes to one
set of data to the copy of that data in another database
system. See also synchronous propagation and IMS
DPROP asynchronous propagation.

DataRefresher DEM. DataRefresher data extract
manager.

DataRefresher Map Capture exit routine (MCE). See
Map Capture exit routine.

DataRefresher UIM. See User Input Manager.

DBRM. Database Request Module.

DB2 commit count. The number of IMS commit
records that the IMS DPROP asynchronous propagation
receiver is to apply to DB2 before it issues a DB2
commit.

DB2 Changed Data Capture exit routine. The routine
to which the DB2 Changed Data Capture function
passes the DB2 changes it has captured for
propagation. This routine can be the IMS DPROP HUP
routine, that propagates data, or your own exit routine.

DB2 Changed Data Capture function. A DB2
function that captures the DB2 changes needed for data
propagation.

DB2 Changed Data Capture subexit routine. An
optional IMS DPROP exit routine invoked whenever the
HUP is called by DB2 changed data capture. The DB2
Changed Data Capture subexit routine can typically be
used to perform generalized functions such as auditing
all of the captured DB2 changes.

DB2-to-IMS propagation. Propagation of changed
DB2 tables to IMS segments. It can be either:

� One-way DB2-to-IMS propagation
� DB2-to-IMS propagation, as part of two-way

propagation

DBD. Database definition. The collection of
macroparameter statements that describes an IMS
database. These statements describe the hierarchical
structure, IMS organization, device type, segment
length, sequence fields, and alternate search fields.
The statements are assembled to produce database
description blocks.

DBDLIB. Database definition library.

DBPCB. Database program communication block.

 Glossary of Terms and Abbreviations 427

DEDB. Data entry database.

DEM. Data Extract Manager.

directory. See IMS DPROP directory.

DLU. DL/1 Load Utilities. IMS DPROP utilities that are
used to create (or re-create) the IMS databases from
the content of the propagated DB2 tables. You can use
DLU if you have implemented DB2 to IMS or two-way
propagation.

DPROP-NR. The abbreviation for IBM IMS
DataPropagator MVS/ESA through Version 2.2. At
Version 3.1 the product name changed to IMS
DataPropagator, abbreviated as IMS DPROP.

E
| EKYMQCAP. The Capture component of MQ-DPROP.
| EKYMQCAP is an IMS data Capture exit routine. It runs
| as an extension to the updating IMS application
| programs, but it is transparent to them. EKYMQCAP
| obtains the changed data from the IMS Data Capture
| function and sends this data via MQSeries messages to
| the Apply Program.

EKYRESLB Dynamic Allocation exit routine. An
IMS DPROP exit routine that can be used to allocate
dynamically the IMS DPROP load module library to the
EKYRESLB DD-name.

entity segment. The data being mapped from IMS to
DB2 comes from one single hierarchic path down to a
particular segment. This segment is called the entity
segment. See also mapping case 1.

ER. Extract request.

| Event Marker. A component of MQ-DPROP that runs
| on the same system as the IMS source databases. It is
| used to identify an event that occurs on the Source
| System. The customer must execute the Event Marker
| on the Source System at the time that the event occurs.

| The Event Marker transmits an MQSeries message that
| identifies the event to the Apply Program. This
| MQSeries message is transmitted in FIFO sequence
| and in the same Propagation Data Streams as the
| changed IMS data.

| When an occurrence of the Apply Program processes
| this message, the content of the target DB2 tables of
| this occurrence of the Apply Program reflect the content
| of the IMS source databases at the time that the Event
| Marker was executed on the Source System.

| The Event Marker is used for an automated stop of the
| Apply Program when the content of the target DB2
| tables reflects a particular Source System point in time.

exit routines. IMS DPROP contains seven exit
routines. See the individual glossary entries for:

� DB2 Changed Data Capture exit routine
� DB2 Changed Data Capture subexit routine
� IMS Data Capture exit routine
� Field exit routine
� Map Capture exit routine
� Propagation exit routine
� Segment exit routine
� User exit routine

extension segment. The data being mapped from
IMS to DB2 comes from a single hierarchic path down
to an entity segment and from any segments
immediately subordinate to the entity segment. The
segments subordinate to the entity segment can have
zero or one occurrence beneath a single occurrence of
the entity segment. This type of subordinate segment is
called an extension segment (as it extends the data in
the entity segment). See also mapping case 2.

extract request (ER). A DataRefresher request to
extract IMS data. Extract requests become IMS
DPROP propagation requests once they are validated
by the IMS DPROP MCE.

F
Field exit routine. An IMS DPROP exit routine you
can write to complement the logic of IMS DPROP's
generalized mapping cases. Field exit routines are
typically used to convert an individual IMS data field
between a customer format IMS DPROP does not
support and a format you have defined in your
propagation request.

| FIFO. First-In-First-Out

fully concatenated key. See IMS fully concatenated
key and conceptual fully concatenated key.

G
generalized mapping cases. The mapping cases
provided by IMS DPROP. See mapping case 1,
mapping case 2 and mapping case 3.

group definition file. The file that the Group Unload
utility (GUU) uses to store the IMS sources that it
extracts from the IMS DPROP directory tables. See
also, SCF Compare job and SCF Apply job.

Group Unload utility (GUU). The IMS DPROP
asynchronous propagation utility that extracts details of
all IMS sources for the specified propagation group from
the IMS DPROP directory tables at the receiver site and
writes them to the Group Definitions File. See also,
SCF Compare job and SCF Apply job.

428 Customization Guide

GUU. Group Unload utility.

H
hierarchical update program (HUP). The IMS
DPROP component that does the actual DB2-to-IMS
propagation. HUP is the IMS DPROP-provided DB2
Changed Data Capture exit routine. The DB2 Changed
Data Capture function calls HUP and provides to HUP
the changed IMS rows.

Hierarchical to Relational propagation. This is
one-way hierarchical to relational propagation: the
one-way propagation of changed IMS segments to DB2
tables. The terms hierarchical to relational propagation
and one-way IMS-to-DB2 propagation are
interchangeable.

HUP. Hierarchical Update program.

HSSR. High speed sequential retrieval.

I
ID fields. Identification (ID) fields are non-key fields
that:

� uniquely identify a segment under its parent
� do not change their value

Typical examples of IMS segments with ID fields, are
segments where the data base administrator has not
defined the ID fields as part of the IMS Key field. For
example because the IMS applications need to retrieve
the segment in another sequence than the ascending
sequence of the ID fields.

identification fields. See ID fields.

IMS concatenated key. For an IMS segment, the
concatenated key consists of:

� The key of the segment's immediate parent, and
� The keys of the segment's ancestors

Unlike the IMS fully concatenated key of the segment,
the concatenated key does not include the key of the
segment itself.

A logical child segment has two concatenated keys: a
physical concatenated key and a logical concatenated
key. The physical concatenated key consists of the key
of the segment's physical parent and the keys of the
physical ancestors of the physical parent. The logical
concatenated key consists of the key of the segment's
logical parent and the keys of the physical ancestors of
the logical parent.

IMS Data Capture exit routine. The routine to which
the IMS Data Capture function passes the IMS changes
it has captured for propagation. For synchronous

propagation, this routine can be the IMS DPROP RUP
routine, that propagates data, or your own exit routine.
For IMS DPROP asynchronous propagation, the data
capture exit routine is a program you write that gets the
changed data from IMS. Other programs that you write
will later invoke IMS DPROP with the changed IMS
data.

IMS data capture function. An IMS function that
captures the changes needed for data propagation.

| IMS DPROP. The abbreviated name for the IBM IMS
| DataPropagator product. Previously, this product was
| called IMS DataPropagator, abbreviated as DPROP-NR.

| IMS DPROP directory. A set of DB2 tables containing
| the mapping and control information necessary to
| perform propagation.

IMS fully concatenated key. For an IMS segment, the
fully concatenated key consists of:

� The key of the segment,
� The key of the segment's immediate parent, and
� The keys of the segment's ancestors.

Unlike the IMS concatenated key of the segment, the
fully concatenated key includes the key of the segment
itself.

IMS INQY data. The first 9904 (update) record in each
IMS unit of work (UOW) contains IMS INQY data
(transaction name, PSB name, and user ID). This
information is written to the PRDS for the propagation
group as the first record of the UOW.

IMS log files. The files that IMS uses to store details
of all changes to IMS data. See also, batch log data
sets, online data sets (OLDSs), system log data sets
(SLDSs), and Changed Data Capture data sets
(CDCDSs).

IMS logical concatenated key. One of the two IMS
concatenated keys of a logical child segment (the other
is an IMS physical concatenated key). The logical
concatenated key consists of:

� The key of the segment's logical parent, and
� The keys of the physical ancestors of the logical

parent.

IMS physical concatenated key. One of the two IMS
concatenated keys of a logical child segment (the other
is an IMS logical concatenated key). The physical
concatenated key consists of:

� The key of the segment's physical parent, and
� The keys of the physical ancestors of the physical

parent.

IMS-to-DB2 propagation. This is the propagation of
changed IMS segments to DB2 tables. Distinguish
between:

 Glossary of Terms and Abbreviations 429

� One-way IMS-to-DB2 propagation
� IMS-to-DB2 propagation, as part of two-way

propagation

internal segments. Internal Segments is the IMS
DPROP and DataRefresher term for structures
embedded in IMS Segments, that are propagated
through mapping case-3 propagation requests. Each
embedded structure (i.e. each internal segment), is
propagated to a different table; each occurrence of the
embedded structure to one row of the table.

invalid unit of work. An IMS UOW that is missing a
first record (containing the INQY data). If the IMS
DPROP asynchronous propagation Selector detects an
invalid unit, it responds according to what you specified
on the INVUOW keyword of the SELECT control
statements. If you specified:

IGNORE The Selector continues processing

STOP The Selector issues an error message and
terminates

ISC. Inter-system communications.

ISPF. Interactive system production facility or
Interactive structured programming facility.

IXF. Integrated exchange format.

L
| LOG-ASYNC. The IMS log-based, asynchronous
| propagation functions of IMS DPROP.

| Once the IMS log records are archived (IMS Online
| Logs) or de-allocated (IMS Batch Logs) by IMS and
| then stored in time-stamp sequence, LOG-DPROP
| reads the IMS logs to find the changed data and then
| stores the changed data in PRDS datasets. The
| Receiver component of IMS DPROP reads the PRDSs,
| transforms the data into the relational format, and
| applies the changes to the target DB2 tables.

| See asynchronous propagation.

logical concatenated key. See IMS logical
concatenated key

M
Map Capture exit (MCE) routine. The map capture
exit routine provided by DPROP. MCE is used when
you provide mapping information through
DataRefresher. MCE is called by DataRefresher during
mapping and data extract to perform various validation
and checking operations. The IMS DPROP MCE
should be distinguished from the DataRefresher Map
Capture exit, the DataRefresher routine that calls MCE.

mapping case. A definition of how IMS segments are
to be mapped to DB2 tables. IMS DPROP
distinguishes between mapping case 1, mapping case
2, and user mapping cases.

mapping case 1. One of the generalized mapping
cases provided by IMS DPROP. Mapping case 1 maps
one single segment type, with the keys of all parents up
to the root, to a row in a single DB2 table.

mapping case 2. One of the generalized mapping
cases provided by IMS DPROP. Mapping case 2 maps
one single segment type, with the keys of all parents up
to the root, plus data from one or more immediately
subordinate segment types (with a maximum of one
occurrence of each segment type per parent), to a row
in a single DB2 table.

mapping case 3. One of the generalized mapping
cases provided by IMS DPROP. Mapping case 3
supports the propagation of segments containing
embedded structures. A typical example of an
embedded structure is a repeating group of fields.

� each embedded structure can be propagated
to/from a different table. Mapping case 3
propagates each occurrence of an embedded
structure, with the key of the IMS segment, and the
keys of the physical parent and ancestor, to/from a
row of one DB2 table.

� the remaining data of the IMS segment (that is the
fields that are not located in a embedded structure)
can be propagated to/from another table.

Mapping Verification and Generation (MVG). An
IMS DPROP component that validates the mapping
information for each propagation request and stores it in
the IMS DPROP directory. For a propagation request
belonging to a generalized mapping case, MVG
generates an SQL update module. MVG is invoked
internally by MCE and MVGU.

Mapping Verification and Generation utility
(MVGU). An IMS DPROP utility invoked by the DBA.
MVGU creates propagation requests when
DataRefresher is not used to provide mapping
information (i.e., when you put the mapping information
directly into the MVG input tables). MVGU also deletes
or rebuilds propagation requests in the IMS DPROP
directory.

master table. The IMS DPROP directory master table,
that is created when IMS DPROP is initialized. It
consists of one row, containing system and error
information.

MCE. Map Capture exit routine.

MIT. Master Index Table.

430 Customization Guide

| MQ-ASYNC. The MQSeries-based, asynchronous
| propagation functions of IMS DPROP.

| An IMS Data Capture Exit routine provided by IMS
| DPROP obtains the IMS Database changes in real time
| from IMS and sends the changes via MQSeries
| messages to an IMS DPROP Apply program. The Apply
| program reads the MQSeries messages, transforms the
| data into relational format, and then applies the new
| data to the target DB2 tables.

| MQ-ASYNC supports both near-real time propagation
| and automated point-in-time propagation.

| MQSeries. A family of IBM licensed programs that
| provide message queuing services.

| MQSeries for OS/390. The members of the MQSeries
| that run on OS/390 systems.

MSDB. Main storage database.

MSC. Multisystem communication.

MVG. Mapping Verification and Generation.

MVG input tables. A group of DB2 tables into which
the DBA stores propagation request definitions when
DataRefresher is not used to provide mapping
information. Once the propagation requests are stored,
the DBA invokes MVGU. MVGU invokes MVG, that
validates the propagation request and copies the
mapping definitions from the MVG input tables to the
IMS DPROP directory.

MVGU. Mapping Verification and Generation utility.

N
Near RealTime. A delay of only a couple of seconds.

O
OLDS. Online Data Set.

One-way DB2-to-IMS propagation. This is the
propagation of changed DB2 tables to IMS segments.
Distinguish between:

� One-way DB2-to-IMS propagation
� DB2-to-IMS propagation, as part of two-way

propagation

One-way IMS-to-DB2 propagation. This is the
propagation of changed IMS segments to DB2 tables.
Distinguish between:

� One-way IMS-to-DB2 propagation
� IMS-to-DB2 propagation, as part of two-way

propagation

P
PCB. Program communication block.

| persistent MQSeries message. An MQSeries
| message that survives a restart of the MQSeries Queue
| Manager.

physical concatenated key. See IMS physical
concatenated key.

| Point In Time Propagation. An Asynchronous
| propagation is said to operate in 'Point In Time' mode,
| when the data content of the target databases matches
| the content of the source databases at a previous,
| clearly identified Point In Time. For example, a Point In
| Time Propagation can be used to reflect in the content
| of the target databases the logical end of a business
| day, or the logical end of business month, or the end of
| specific Batch jobstream that updated the source
| databases.

PR. Propagation request.

PR ID. Propagation request identifier.

PRCT. Propagation Request Control Table

PRDS. Propagation Request Data Set

PRDS register file. A data set created by the IMS
DPROP asynchronous propagation Selector that
contains details of the associated PRDS.

PRDS register table. An IMS DPROP directory table
that is created at the Receiver site when IMS DPROP is
installed. The table is initially empty and you must
populate it, using the PRU REGISTER control
statements.

PRDS Registration utility (PRU). An IMS DPROP
asynchronous propagation utility that registers PRDSs
in the PRDS Register Table.

propagation. See data propagation.

| Propagation Data Stream. A stream of changed IMS
| data that flows in MQSeries messages from the Capture
| Component of IMS DPROP to the Apply Component of
| IMS DPROP. Propagation data streams are defined
| with PRSTREAM control statements in the
| //EKYTRANS file of EKYMQCAP.

| propagation delay. The time elapsed between the
| update of the IMS source database by the application
| programs and the update of the target DB2 table by
| IMS DPROP.

Propagation exit routine. An IMS DPROP exit routine
you can write to propagate data when the generalized

 Glossary of Terms and Abbreviations 431

mapping cases don't meet your needs. A Propagation
exit routine must provide all the logic for data mapping,
field conversion, and propagation.

propagation group. A subset of the propagation
requests in the IMS DPROP directory propagation
request table (IMS DPROP asynchronous only).

You can define as many propagation groups as you
like, but any propagation request can be associated
with one and only one propagation group.

propagation log records. IMS log records that the
IMS DPROP asynchronous propagation Selector writes
to PRDSs:

� 9904 (update) records
� Commit or abort records

 � SETS/ROLS records

propagation request control table (PRCT). An IMS
DPROP directory table that is created at the Receiver
site when IMS DPROP is installed. It contains details of
all propagation requests defined to IMS DPROP and, in
combination with the RCT, enables the Receiver to
ascertain:

� Which propagation requests are assigned to which
Receivers

� The activity status of all defined Receivers

� The activity status of all propagation requests that
are assigned to defined Receivers

Propagation Request data set (PRDS). A sequential
file into which the IMS DPROP asynchronous
propagation Selector writes all propagation log records
for a propagation group.

propagation request (PR). A request to propagate
data between IMS and DB2. You define propagation
requests for each segment type that is to be
propagated.

PR set. A group of logically related propagation
requests, identified by having the same PRSET ID. PR
sets are typically used when you propagate the same
IMS data to multiple sets of DB2 tables.

PRU. PRDS Registration utility.

PSB. Program specification block.

R
RCT. Receiver control table.

| Receiver. An IMS DPROP asynchronous propagation
| component that retrieves the propagation log records
| from a PRDS and passes them to the RUP, that uses
| them to update the DB2 target tables.

| Applies to LOG-DPROP.

| RECEIVER control statement. A control statement
| that is input directly into the IMS DPROP asynchronous
| propagation Receiver JCL to specify:

| � The name of the Receiver that is to process a
| PRDS

| � The names of the DB2 subsystem to be accessed
| and the DB2 plan

| � The number of committed UOWs to process before
| a DB2 commit is issued

| Applies to LOG-DPROP.

| Receiver control table (RCT). An IMS DPROP
| directory table, that is created at the Receiver site when
| IMS DPROP is installed. The table is initially empty
| and you must populate it, using the SCU CREATEREC
| control statement. It contains details of all Receivers
| and, in combination with the PRCT, enables the
| Receiver to ascertain:

| � Which propagation requests are assigned to which
| Receivers

| � The activity status of all defined Receivers

| � The activity status of all propagation requests that
| are assigned to defined Receivers

| Applies to LOG-DPROP.

Relational to Hierarchical propagation. This is
one-way relational to hierarchical propagation: the
one-way propagation of changed DB2 tables to IMS
segments. The terms relational to hierarchical
propagation and one-way DB2-to-IMS propagation are
interchangeable.

| relational update program (RUP). The IMS DPROP
| component that does the actual IMS to DB2
| propagation. RUP is the IMS DPROP-provided IMS
| Data Capture exit routine.

| For synchronous propagation, the IMS Data Capture
| function calls RUP with the changed IMS segments.

| For user asynchronous propagation, your routine gets
| the changes from IMS and later calls RUP.

| For IMS DPROP asynchronous propagation, the
| Receiver gets the changes from the Selector-Receiver
| Interface and later calls RUP. In either case, RUP
| propagates the changes to DB2.

RIR. RIR is an IMS DPROP abbreviation for DB2
Referential Integrity Relationship. Database
administrators can define RIRs between tables in order
to request that DB2 catches and prevents update
anomalies in the relational databases.

Implementation of RIRs between propagated tables is:

� Optional for one-way IMS to DB2 propagation

432 Customization Guide

� Strongly recommended for DB2 to IMS and two-way
propagation

RTT. Resource translation table.

RUP. Relational Update program.

RUP control block table. A single IMS DPROP
directory table that contains one RUP propagation
control block (PRCB) for each propagated segment
type. Each RUP PRCB contains details of the relevant
database and segment.

S
SCF. Selector Control File.

SCF Apply job. Uses the SCF control statements to
create new propagation groups and to list and modify
existing propagation groups in the SCF.

SCF Compare job. Used to compare the contents of
the Group Definitions File with the propagation groups
in the SCF and to generate SCF control statements to
bring the SCF into line with the Group Definitions File.

SCF control statements. Can be generated
automatically by the IMS DPROP asynchronous
propagation GUU or input directly into the IMS DPROP
asynchronous propagation SCF Apply utility JCL. The
control statements modify the contents of the SCF
records.

SCU. Status Change utility.

segment exit routine. An IMS DPROP exit routine
you can write to complement the logic of the
generalized mapping cases. Segment exit routines are
typically used to convert a changed data segment from
the form it has in your IMS database to a form you have
defined in your propagation request.

| SELECT control statements. Control statements that
| are input directly into the IMS DPROP asynchronous
| propagation Selector JCL to define the execution
| options for the Selector.

| Applies to LOG-DPROP.

| Selector. An IMS DPROP asynchronous propagation
| component that collects propagation log records from
| the IMS log files and writes them to PRDSs for later
| processing by the IMS DPROP asynchronous
| propagation Receiver component.

| Applies to LOG-DPROP.

| Selector control file. Created at Selector installation
| or generation time and contains the following control
| information that is essential to the operation of the
| Selector:

| � Database records and propagation group records

| � DBRC information

| � Timestamp information

| Applies to LOG-DPROP.

SLDS. System Log Data Set.

SNAP. system network analysis program

| Source System. An OS/390 system where IMS
| source databases of the IMS DPROP propagation
| reside.

SQL update module. A module generated by MVG for
each propagation request belonging to a generalized
mapping case. An SQL update module contains all the
SQL statements required to propagate to DB2 the
changed IMS data for that propagation request.

| SSM. Subsystem member. An IMS JCL parameter
| that identifies the PDS member that describes
| connection between IMS and the DB2 subsystems.

Status Change utility (SCU). An IMS DPROP utility
that:

1. Changes the status of propagation requests in the
synchronous environment. Propagation requests
can be active, inactive, or suspended. The SCU
also performs a variety of other service functions.

2. Maintains the Timestamp Marker Facility and
populates the RCT and the PRCT in IMS DPROP
asynchronous propagation.

synchronous propagation. The propagation of data
within the same unit-of-work as the update call.

T
| Target System. An OS/390 system where DB2 target
| tables of the IMS DPROP propagation reside.

Timestamp Marker Facility. Supports the statements
that create, assign, and delete timestamp markers in
the SCF. It is run as part of the SCU.

TSMF. Timestamp Marker Facility.

TSMF Callable Interface. A facility that allows a user
application to create a stop timestamp for one or more
propagation groups.

| Two-way propagation. The combination of
| IMS-to-DB2 propagation and DB2-to-IMS propagation
| for the same data.

TW propagation. See two-way propagation.

 Glossary of Terms and Abbreviations 433

U
UIM. User Input Manager.

ULR. Uncommitted Log Record.

uncommitted log records (ULR). When the IMS
DPROP asynchronous propagation Selector terminates,
it writes all uncommitted log records (propagation log
records that have not yet been either committed or
aborted by IMS) to the uncommitted log record data set.
On a subsequent Selector execution, these records will
be either written to the appropriate PRDS (if they have
been committed by IMS) or deleted from the
uncommitted log record data set (if they have been
aborted by IMS).

UOW. Unit of work.

| USER-ASYNC. The User asynchronous propagation
| functions of IMS DPROP.

user exit. See exit routines.

User Input Manager (UIM). A DataRefresher
component to which you describe your IMS databases
and the mapping between IMS databases and DB2
tables. The mapping is defined by submitting extract
requests. You can specify on an extract requests that
the UIM is to invoke the DataRefresher Map Capture
exit routine provided by IMS DPROP and pass it the
DataRefresher mapping definitions of the extract
request.

user mapping case. A mapping case you can develop
if the generalized mapping cases don't meet your
needs.

V
| Virtual Lookaside Facility (VLF). An MVS/ESA
| component that is a specific implementation of data
| spaces. IMS DPROP exploits VLF for a
| high-performance retrieval of mapping information and
| other control information.

VLF. Virtual Lookaside Facility.

434 Customization Guide

 Index

Numerics
64-byte anchor area

Field exit routine 114, 124
saving information across calls 41
Segment exit routine 26, 41

A
asynchronous propagation

database maintenance 342
developing 322
installing 341
TSMF callable interface 314
writing 326

B
Before-Change IMS DB segment buffer 26
binding a DB2 plan for the receiver 341

C
C

exit routines in 15
sample control block 377
sample Propagation exit control block 409
sample Segment exit control block 363

call
normal 17
reverse 17
saving information across 185

callable interface
See EMF callable interface
See TSMF callable interface

CCU Propagation exit routine 154
COBOL

exit routines in 15
sample control block 369
sample Propagation exit control block 382
sample Segment exit control block 353

conversion routine, DPROP 1

D
Data Capture exit routine

See also DB2 Data Capture exit routine
See also IMS Data Capture exit routine
subexit routine 259

data conversions 122
Data Extract

See DataRefresher

data propagation
selective suppression 44
user asynchronous 322

data type exit routine 3, 4
DataRefresher

and exit routines 9
propagation exit routine 186
Segment exit routine 18

DataRefresher (Data Extract)
CREATE DATATYPE statement 126
DEFINITION call 126
Field exit routine

calling 111
PR 125

Segment exit routine
informing DPROP 43
interface control block duration 41
selective suppression of data propagation 44

variable definitions 126
DB2

Data Capture exit routine, IBM-supplied 7
Data Capture subexit routine

64-byte anchor area 260
calling 260
data row 264, 267
data row data 271
description 10, 259
environment 259, 272
HEC 260, 262
informing DPROP about 273
performance 272
processing 271
QWHS control block 264
requirements 271
return codes 272
sample exit routine 273, 294
table description 264, 267
table description data 269
updating your exit routine 273
writing 260

interface 260
plan, binding for the receiver 341
propagating data to multiple tables 188

definitions for Segment exit routine
first sample 68
second sample 75

DLU (DL/I Load utilities)
Propagation exit routine 154

DPROP
buffer

format 113
segment 38

 Copyright IBM Corp. 1991,2001 435

DPROP (continued)
conversion routine 1
directory, recovering 342
segment buffer 25
trace module 343

DXT
See DataRefresher

Dynamic Allocation exit routine (EKYRESLB) 11

E
EKYRESLB Dynamic Allocation exit routine

description 297
Interface Control Block

details 298
source code 298

JCL requirements 300
processing 300
return codes 301
sample 301
source code 301
telling DPROP about 301
using 11

EKYTED DSECT 346
EKYTRB DSECT 344
EMF callable interface

description 12, 319
parameters 319
return codes 320
sample COBOL program 320

environments
for receiver programs 340

error
handling

asynchronous data propagation 337
Field exit routine 124
Propagation exit routine 185
Segment exit routine 40

messages
Field exit routine 124
Propagation exit routine 161, 185
Segment exit routine 40

processing, in exit routines 9
exit control blocks

field samples 368
propagation samples 381
segment samples 352

exit routine
third sample 97

exit routines 1
DataRefresher, relationship to 9
DB2

Data Capture exit routine 7
Data Capture subexit routine 10

description 12
EKYRESLB Dynamic Allocation exit routine 11

exit routines (continued)
error processing 9
Field exit first sample 138
Field exit routine 3, 110
Field exit second sample 143
general considerations 11
general description 1
guidelines in developing 122
high-level languages

C 15
COBOL 15
general information 13
PL/I 15

IMS Data Capture exit routine 5
processing 5—9, 300
Propagation exit first sample 188
Propagation exit routine 4, 153
Propagation second sample 234
relationship to DataRefresher 1
restrictions 122
Segment exit routine 3
tracing 41, 185

Extended Program Communication Block
See XPCB

Extended Segment Data Block
See XSDB

F
Field exit routine

64-byte anchor area 114, 124
data conversions 122
DataRefresher, relationship to 9
description 1, 3
DPROP format buffer 113
environment 111, 123
error

handling techniques 124
messages 124

HUP, returning to 123
interface control block

details 118
source code 114
structure 112

performance 123
processing

requirements 122
sequence 1

requirements 111, 122
return codes 123
RUP, returning to 123
sample control blocks

C 377
COBOL 369
PL/I 373

sample exit routine 127, 143

436 Customization Guide

Field exit routine (continued)
specifying

DataRefresher 125
MVG input tables 126

tracing 125
typical uses 110
updating your exit routine 125
user format buffer 113
validating results 123
writing 111

G
generalized mapping

HUP and exit routine processing 7
RUP and exit routine processing 5

H
HEC (HUP exit communication block)

control block 173
DB2 data capture subexit routine 260
propagation exit routine 171

high-level languages (HLLs)
exit routines in

C 15
COBOL 15
general information 13
PL/I 15

requirements 14
housekeeping module

calling during asynchronous propagation 338
return codes 339

HUP (Hierarchical Update program)
and exit routine processing 7
calling

Field exit routine 111
Propagation exit routine 153, 155
Segment exit routine 17, 23

DB2 data capture subexit routine
calling 260
duration 271
programming conventions 271
validation 271

Field exit routine
calling 17
validating results 123

propagation exit routine
duration 182
programming conventions 182
validation 182

HUP Exit Communication Block
See HEC

I
IMS

Data Capture exit routine
IBM-supplied, description 5
user-supplied comparison 4

DB segment buffer 24, 38
multiple segments, propagating data to 188

installation, asynchronous propagation 341
interface control block

DSECT
field exits 114
generating 27

duration 41
EKYRESLB dynamic allocation exit routine

details 298
source code 298

field descriptions 33
Field exit routine

details 118
source code 114
structure 112

generating DSECT 298
Propagation exit routine 156, 160
Segment exit routine

description 23
source code 27

J
JCL requirements

for a receiver program 340
for EKYDAEX0 dynamic allocation exit routine 300

K
keys, mapping 154

L
logic

See processing

M
mapping

logic
DPROP to IMS 19, 21
IMS segments with internal segments 20
IMS segments with no internal segments 19
IMS to DPROP 19, 21

provided by segment exit 19
user format 3

MCE, SUBMIT command 141
MQ-ASYNC propagation

EMF callable interface 319

 Index 437

multiple MVS images 341
MVG (Multiple Verification and Generation)

input tables
Field exit routine 126
Propagation exit routine 187
Segment exit routine 43

verification
Field exit routine 123, 127
Segment exit routine 43

N
normal call 17

P
performance

DB2 data capture subexit routine 272
Field exit routine 123
propagation exit routine 183
Segment exit routine 39

PL/I
exit routines in 15
sample control block 373
sample Propagation exit control block 397
sample Segment exit control block 358

processing
DB2 data capture subexit routine 271
errors in exit routines 9
Field exit routine 122
HUP and exit routines 7
propagation exit routine 182
RUP and exit routines 5
Segment exit routine 38

programming conventions
DB2 data capture subexit routine 271
propagation exit routines 182

programs
receiver

description 12
writing 327

selector
description 12
writing 326

sender
description 12
writing 326

propagation
exit routines

CCU 154
DLU 154
supported DPROP functions 154

requests
entered through DataRefresher UIM 43
entering in MVG input tables 43
telling DPROP about your propagation exit

routine 186

propagation (continued)
setting up field exit routine 125
to multiple DB2 tables 188
to multiple IMS segments 188
user asynchronous 322

Propagation exit control blocks
sample source code

C 409
COBOL 382
PL/I 397

Propagation exit routine
binding the PR 188
calling the trace module 343
CCU 154
compared to IMS Data Capture exit routine 4
data row 175, 178
description 4, 163
DL/I calls 162
DPROP, returning to 184
environment 153, 183
error

handling techniques 185
messages 161, 185

general description 1
HEC 171
HR-propagation only 188
HUP 155
informing DPROP 186
interface control block

example 156
field descriptions 160

keys, mapping 154
multiple

calls 182
DB2 tables 188
IMS segments 188

performance 183
processing 182
referential integrity relationships 154
relationship to DataRefresher 10
requirements 153, 182
return codes 161, 184
returning to DPROP 184
RUP 155
sample

EKYEPR1A 189, 230
first sample 188, 230
second sample 235, 254

specifying
DataRefresher 186
MVG input tables 187

SQL statements 162, 184
table description 175, 178
unavailable resource problem 184
updating your exit routine 185
work area 162

438 Customization Guide

Propagation exit routine (continued)
writing 154
XPCB

control block 165
description 163
field descriptions 166

XSDB
chaining 169
control block 165
field descriptions 169

Q
QWHC control block 175, 264
QWHS control block 175

R
receiver program

binding a DB2 plan for 341
description 12
JCL requirements 340
RUP, calling 327
writing 327
XPCB 328
XSDB 328

recovery, DPROP directory 342
referential integrity relationship (RIR), mapping 154
Relational Update program

See RUP (Relational Update program)
requirements

DB2 data capture subexit routine 271
Field exit routine 111, 122
Propagation exit routine 153, 182
Segment exit routine 18, 38

restrictions for receiver programs 340
return codes

DB2 data capture subexit routine 272
EKYRESLB dynamic allocation exit routine 301
Field exit routine 123
housekeeping module 339
propagation exit routine 161, 184
saving information across calls 273
Segment exit routine 39

reverse call 17
RH-Propagation, interface for 171
RUP (Relational Update program)

and exit routine processing 5
calling

Field exit routine 111
Propagation exit routine 153, 155
Segment exit routine 17, 23

Field exit routine
calling 17
validating results 123

propagation exit routine
calling 182

RUP (Relational Update program) (continued)
propagation exit routine (continued)

duration 182
programming conventions 182
validation 182

S
sample exit routines

DB2 data capture subexit routine
details 294
source code 273

EKYRESLB dynamic allocation exit routine 301
Field exit routine 127, 143
first sample

details 230
source code 189

Propagation exit routine 188, 234
second sample

details 254
source code 235

Segment exit routine
first sample 45
second sample 75
third sample 97

sample Field exit
first sample

details 138
source code 127

second sample, source code 144
sample Propagation exit routine

writing in HLL 234
sample Segment exit

first sample
details 68
source code 45

second sample
details 88
source code 76

third sample
source code 97

sample Segment exit control block
C 363
COBOL 353
PL/I 358

saving information across calls
Field exit routine 124
Propagation exit routine 185
Segment exit routine 41

segment buffer, Before-Change IMS DB 26
Segment exit routine

64-byte anchor area
description 26
saving information across calls 41

Before-Change IMS DB segment buffer 26
call

normal 17

 Index 439

Segment exit routine (continued)
call (continued)

reverse 17
calling

from DataRefresher 42
from DPROP 42
with DataRefresher 18
with HUP 17
with RUP 17

DataRefresher, relationship to 9
description 1, 3
DPROP

returning to 39
segment buffer 25, 38

environment 18, 39
error

handling techniques 40
messages 40

IMS DB segment buffer 24, 38
informing DPROP 43
interface control block

description 23
field descriptions 33
source code 27

mapping logic
IMS segments with internal segments 20
IMS segments with no internal segments 19
provided by routine 19

performance 39
processing

guidelines 38
requirements 38
sequence 1

requirements 18
return codes 39
returning to DPROP 39
sample

first sample 45
second sample 75
third sample 97

selective suppression of data propagation 40, 44
specifying

DataRefresher 43
MVG input tables 43

SQL statements 39
tracing 41
typical uses 17
updating your exit routine 41
writing 23

selective suppression of data propagation 40, 44
selector program

description 12
writing 326

sender program
description 12
writing 326

Status Change utility (SCU) 341
subexit routine

See DB2 Data Capture subexit routine
syntax diagrams - how to read xiv

T
trace element descriptor (TED)

description 346
details 350
field descriptions 350
formatted example 346

trace module
calling 343
interface 343
TED

See trace element descriptor 346
TRB field descriptions 346

trace request block (TRB)
DSECT 344
field descriptions 346

tracing
Field exit routine 125
Segment exit routines 41
your exit routine 185

trademarks 424
TSMF callable interface

description 11, 314
parameters 314
return codes 318
sample COBOL program 317
sample PL/I program 315

U
unavailable resources, RUP or HUP handling 184
updating your exit routine

DB2 data capture subexit routine 273
Field exit routine 125
Propagation exit routine 185
Segment exit routine 41

user format
buffer 113
Field exit routine 3

user LOG-ASYNC propagation
implementing

general description 322
receiver program 12
selector program 12
sender program 12

user mapping
HUP and exit routine processing 8
RUP and exit routine processing 5

USER-ASYNC propagation
and database maintenance 342
developing system

receiver program, writing 327

440 Customization Guide

USER-ASYNC propagation (continued)
developing system (continued)

selector program, writing 326
sender program, writing 326
setting up 324

error handling 337
implementing

IMS Asynchronous Data Capture Function 322
user-written IMS Data Capture exit routine 323

installation considerations
general description 341
multiple MVS images 341
Status Change utility (SCU) 341

W
work area, propagation exits 162

X
XPCB (Extended Program Communication Block)

DSECT 165
Propagation exit routine 163
receiver program 328
XSDB 163, 328

XSDB (Extended Segment Data Block)
chained 169
control block 169
DSECT 169
Propagation exit routine 163
receiver program 328

 Index 441

How to send your comments

IMS DataPropagator for z/OS
Customization Guide
Version 3 Release 1

Publication No. SC27-1214-00

Your feedback helps IBM to provide quality information. Please send any comments that
you have about this book or other Data Management Tools documentation. You can use the
following methods to send your comments.

� Send your comments by e-mail to comments@vnet.ibm.com and include the name of the
product, the version number of the product the number of the book. If you are
commenting on specific text, please list the location of the text (for example, a chapter
and section title, page number, or a help topic title).

� Complete the readers' comment form at the back of the book and return it by mail, by
fax (800-426-7773 for the United States and Canada), or by giving it to an IBM
representative.

 Readers' Comments

IMS DataPropagator for z/OS
Customization Guide
Version 3 Release 1

Publication No. SC27-1214-00

How satisfied are you with the information in this book?

Please tell us how we can improve this book:

May we contact you to discuss your comments? � Yes � No

Name Address

Company or Organization

Phone No.

Very
Satisfied Satisfied Neutral Dissatisfied

Very
Dissatisfied

Technically accurate � � � � �
Complete � � � � �
Easy to find � � � � �
Easy to understand � � � � �
Well organized � � � � �
Applicable to your tasks � � � � �
Grammatically correct and consistent � � � � �
Graphically well designed � � � � �
Overall satisfaction � � � � �

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments
SC27-1214-00 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department HHX/H3
PO Box 49023
San Jose, CA 95161-9023

Fold and Tape Please do not staple Fold and Tape

SC27-1214-00

IBM

Program Number: 5655-E52

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC27-1214-SS

	Preface
	What is New in Version 3, Release 1
	Product Changes
	Product Library Changes

	Terms Used in This Book
	What You Should Know
	What is in This Book
	How to Read the Syntax Diagrams

	Chapter 1. Introduction
	Segment, Field, and Propagation Exit Routines
	Segment Exit Routine
	Field Exit Routine
	Propagation Exit Routine
	Propagation Exit Routine or IMS Data Capture Exit Routine

	Overview of RUP and Exit Routine Processing
	Overview of the HUP and Exit Routine Processing
	Error Handling Logic of Exit Routines
	Exit Routine Relationship to DataRefresher
	Segment and Field Exit Routines
	Propagation Exit Routines

	DB2 Data Capture Subexit Routine
	EKYRESLB Dynamic Allocation Exit Routine
	General Considerations for Exit Routines
	TSMF Callable Interface
	EMF Callable Interface
	User Asynchronous Programs
	Coding Exit Routines in High Level Languages
	Preinitializing an HLL Environment
	Specifying LE/370 Runtime Options
	The //EKYLEOPT DD Statement
	The TRAP Runtime Option

	LE/370 and DPROP Installation
	Additional Requirements and Recommendations For COBOL
	Additional Requirements and Recommendations For PL/I
	Additional Requirements and Recommendations For C

	Chapter 2. Segment Exit Routines
	Providing Required Mapping Logic in Segment Exits
	Mapping Logic for IMS Segments With No Internal Segments
	IMS-to-DPROP Mapping
	DPROP-to-IMS Mapping

	Mapping Logic for IMS Segments
	IMS-to-DPROP Mapping
	DPROP-to-IMS Mapping

	How To Write A Segment Exit Routine
	Interface Control Block
	IMS DB Segment Buffer
	DPROP Segment Buffer
	Buffers and Variable-Length Segments

	Before-Change IMS DB Segment Buffer
	64-Byte Anchor Area
	Interface Control Block DSECT
	Interface Control Block Field Descriptions
	Exit Routine Processing
	Return Codes and Error Handling Techniques
	Return Codes
	Error Handling Techniques

	Saving Information Across Calls
	Updating Your Segment Exit Routine
	Tracing Your Exit Routine
	Differences Between Exit Routine Calls From DPROP or DataRefresher

	Telling DPROP About Your Segment Exit Routine
	PRs Entered Through DataRefresher UIM
	PRs Entered Into the MVG Input Tables
	Selective Suppression of Data Propagation

	First Sample Segment Exit Routine
	Definitions for the First Sample Segment Exit Routine
	DBDGEN Definitions
	PSBGEN Definitions
	CREATE TABLE Statement
	Using DataRefresher to Define the PR
	CREATE DXTPSB
	CREATE DXTVIEW
	DataRefresher UIM SUBMIT Command and EXTRACT Statement

	Using DataRefresher for the Extract
	Defining the PR in the MVG Input Tables

	Second Sample Segment Exit Routine
	Definitions for the Second Sample Segment Exit Routine
	DBDGEN Definitions
	PSBGEN Definitions
	CREATE TABLE Statements
	Using DataRefresher To Define the PR: CREATE DXTPSB
	Using DataRefresher to Define the PR: CREATE DXTVIEW
	Using DataRefresher To Define the PR
	Using DataRefresher For the Extract
	Defining the PR in the MVG Input Tables

	Third Sample Segment Exit Routine

	Chapter 3. Field Exit Routines
	How To Write A Field Exit Routine
	Interface Control Block
	User Format Buffer
	DPROP Format Buffer
	64-Byte Anchor Area
	Interface Control Block DSECT
	Interface Control Block Field Descriptions
	Performing Data Conversions
	Exit Routine Processing
	Return Codes and Error Handling Techniques
	Return Codes
	Error Handling Techniques

	Saving Information Across Calls
	Updating Your Field Exit Routine
	Tracing Your Exit Routine

	Telling DPROP About Your Field Exit Routine
	PRs Entered Through DataRefresher UIM
	Defining the User Data Type
	Requesting Exit Routine Use

	PRs Entered into the MVG Input Tables

	First Sample Field Exit Routine
	Definitions for the First Sample Field Exit Routine
	DBDGEN Definitions
	PSBGEN Definitions
	CREATE TABLE Statement
	Using DataRefresher to Define the PR
	CREATE DATATYPE
	CREATE DXTPSB
	CREATE DXTVIEW
	DataRefresher UIM SUBMIT Command and EXTRACT Statement

	Using DataRefresher for the Extract
	Defining the PR in the MVG Input Tables

	Second Sample Field Exit Routine

	Chapter 4. Propagation Exit Routines
	Environment Considerations for a Propagation Exit Routine
	How To Write A Propagation Exit Routine
	Supported DPROP Functions
	Propagation Exit Routine Interface
	Propagation Interface Control Block (PIC)
	Interface Control Block Field Descriptions

	Interface for HR Propagation
	The XPCB and XSDB Control Blocks
	XPCB DSECT
	XPCB Field Descriptions
	XSDB DSECT
	XSDB Field Descriptions
	The XPCBPCALL, XPCBCALL, and XSDBPHP Fields

	Interface for RH-Propagation
	The HEC Control Block
	The QWHS and QWHC Control Blocks
	The Table Description and Data Row Control Blocks
	The Table Description and Data Row Header
	The Table Description Data
	The Data Row Data

	Exit Routine Processing
	Calling Your Exit Routine
	Exit Routine Logic

	Return Codes and Error Handling Techniques
	Return Codes
	Error Handling Techniques

	Saving Information Across Calls
	Updating Your Propagation Exit Routine
	Tracing Your Exit Routine

	Telling DPROP About Your Propagation Exit
	Creating a PR Using DataRefresher
	Creating a PR Using the MVG Input Tables
	Propagating Data To More Than One DB2 Table
	Propagating Data To More Than One IMS Segment
	Binding the PR

	First Sample Propagation Exit Routine
	Mapping Performed By the Sample Exit Routine
	Sample Exit Routine Source Code

	Definitions For First Sample Propagation Exit
	DBDGEN Definitions
	CREATE TABLE Statement
	Using DataRefresher to Define the PR
	CREATE DXTPSB
	CREATE DXTVIEW
	DataRefresher UIM SUBMIT Command and EXTRACT Statement

	Using DataRefresher For the Extract
	Defining the PR in the MVG Input Tables

	Second Sample Propagation Exit Routine
	Mapping Performed by the Sample Exit Routine
	Sample Exit Routine Source Code

	Definitions for Second Sample Propagation Exit
	DBDGEN Definitions
	CREATE TABLE Statement
	Using DataRefresher to Define the PR
	CREATE DXTPSB
	CREATE DXTVIEW
	DataRefresher UIM SUBMIT Command and EXTRACT Statement

	Using DataRefresher for the Extract
	Defining the PR in the MVG Input Tables

	Chapter 5. DB2 Data Capture Subexit Routine
	How To Write a DB2 Data Capture Subexit Routine
	DB2 Data Capture Subexit Routine Interface
	64-Byte Anchor Area
	HEC Interface
	HEC Control Block DSECT
	The QWHS and QWHC Control Blocks
	The Table Description and Data Row Control Blocks
	The Table Description and Data Row Header
	The Table Description Data
	The Data Row Data

	Exit Routine Processing
	Calling Your Exit Routine
	Exit Routine Logic

	Return Codes
	Saving Information Across Calls
	Updating Your DB2 Data Capture Subexit Routine

	Telling DPROP About Your Subexit Routine
	Sample DB2 Data Capture Subexit Routine
	Definitions for Sample DB2 Data Capture Subexit Routine
	DPROPGEN Definitions
	CREATE TABLE Statement for Source Table
	CREATE TABLE Statement for Mirror Table

	Chapter 6. EKYRESLB Dynamic Allocation Exit Routine
	Interface Control Block
	Exit Routine Processing
	Return Codes
	Telling DPROP about The EKYRESLB Dynamic Allocation Exit
	Sample EKYRESLB Dynamic Allocation Exit

	Chapter 7. TSMF Callable Interface
	TSMF Callable Interface Parameters
	Calling the TSMF Callable Interface from PL/I
	Calling the TSMF Callable Interface from COBOL
	Return Codes from the TSMF Callable Interface

	Chapter 8. EMF Callable Interface
	EMF Callable Interface Parameters
	Calling the EMF Callable Interface from COBOL
	Return Codes from the EMF Callable Interface

	Chapter 9. User-Implemented Asynchronous Data Propagation (USER-ASYNC)
	Implementation Based on IMS Asynchronous Data Capture Function
	Implementation Based on User-Written IMS Data Capture Exit
	Developing Your Asynchronous System
	Setting Up Your Asynchronous System
	Calling the RUP
	Programming languages supported
	Handling the Changed Data
	Propagation Failures
	Sync Point Processing
	Splitting the IMS Data

	Writing A Selector Program
	Writing A Sender Program
	Writing A Receiver Program
	Interface Used to Call the RUP
	Error Handling
	Calling the Housekeeping Module EKYZ800X
	Supported Environments and Restrictions
	JCL Requirements
	Binding a DB2 Plan for the Receiver

	Installation Considerations: Asynchronous Data Propagation
	The Status Change Utility (SCU)
	Multiple MVS Images

	Database Maintenance
	Recovering the DPROP Directory

	Appendix A. Calling the Trace Module
	Trace Module Interface
	Parameter list
	Trace Request Block (TRB)
	TRB Field Descriptions

	Trace Element Descriptor (TED)
	TED Field Descriptions

	Appendix B. Sample Segment Exit Control Blocks
	Sample Segment Exit Control Block for COBOL
	Sample Segment Exit Control Block for PL/I
	Sample Segment Exit Control Block for C

	Appendix C. Sample Field Exit Control Blocks
	Sample Field Exit Control Block for COBOL
	Sample Field Exit Control Block for PL/I
	Sample Field Exit Control Block for C

	Appendix D. Sample Propagation Exit Control Blocks
	Sample Propagation Exit Control Blocks for COBOL
	COBOL Propagation Exit Interface (PIC)
	COBOL DL/I Capture Interface (XPCB and XSDB)
	COBOL HUP Exit Communication Block (HEC)
	COBOL IFC Copyarea for IFCIDS 0185

	Sample Propagation Exit Control Blocks for PL/I
	PL/I Propagation Exit Interface (PIC)
	PL/I (RUP) DL/I Capture Interface
	PL/I HUP Exit Communication Block
	PL/I IFC Copyarea for IFCIDS 0185

	Sample Propagation Exit Control Blocks for C
	C Propagation Exit Interface (PIC)
	C (RUP) DL/I Capture Interface
	C HUP Exit Communication Block
	C IFC Copyarea for IFCIDS 0185

	Notices
	Programming Interface Information
	Trademarks

	Bibliography
	The IMS DataPropagator for z/OS Version 3 Release 1 Library
	Other Books Referenced in This Book

	Glossary of Terms and Abbreviations
	Index

