IMS
Version 13

Commands, Volume 2:
IMS Commands N - V

IBM
Chapter 19. `/SET command 711
Chapter 20. `/SIGN command 715
Chapter 21. `/SMCOPY command 723
Chapter 22. `/SSR command 725
Chapter 23. `/START commands 727
 `/START APPC command 728
 `/START AREA command 728
 `/START AUTOARCH command 732
 `/START CLASS command 733
 `/START DATAGRP command 733
 `/START DB command 737
 `/START DC command 745
 `/START DESC command 746
 `/START ISOLOG command 747
 `/START LINE command 747
 `/START LTERM command 749
 `/START LUNAME command 751
 `/START MADSIOT command 752
 `/START MSNAME command 753
 `/START NODE command 754
 `/START OLDS command 755
 `/START OTMA command 756
 `/START PGM command 757
 `/START REGION command 759
 `/START RTC command 761
 `/START SB command 762
 `/START SERVGRP command 763
 `/START SLDSREAD command 765
 `/START SUBSYS command 765
 `/START SURV command 767
 `/START THREAD command 767
 `/START TMEM command 768
 `/START TRANC command 771
 `/START TRKIARCH command 774
 `/START USER command 775
 `/START VGR command 776
 `/START WADS command 777
 `/START XRCTRACK command 778

Chapter 24. `/STOP commands 779
 `/STOP ADS command 779
 `/STOP APPC command 780
 `/STOP AREA command 781
 `/STOP AUTOARCH command 785
 `/STOP BACKUP command 785
 `/STOP CLASS command 786
 `/STOP DATAGRP command 787
 `/STOP DB command 788
 `/STOP DC command 792
 `/STOP DESC command 793
 `/STOP LINE command 794
 `/STOP LTERM command 795
 `/STOP LUNAME command 797
 `/STOP MADSIOT command 798
 `/STOP MSNAME command 799
 `/STOP NODE command 800
 `/STOP OLDS command 802
 `/STOP OMA command 803
 `/STOP PGM command 804
 `/STOP REGION command 805
 `/STOP RTC command 813
 `/STOP SB command 814
 `/STOP SERVGRP command 815
 `/STOP SLDSREAD command 815
 `/STOP SUBSYS command 816
 `/STOP SURV command 818
 `/STOP THREAD command 818
 `/STOP TMEM command 821
 `/STOP TRAN command 823
 `/STOP USER command 825
 `/STOP VGR command 827
 `/STOP WADS command 828
 `/STOP XRCTRACK command 828

Chapter 25. `/SWITCH command 831

Chapter 26. TERMINATE commands 837
 TERMINATE OLC command 837
 TERMINATE OLREORG command 849

Chapter 27. `/TEST command 855

Chapter 28. `/TRACE commands 859
 `/TRACE EXIT command 860
 `/TRACE LINE command 861
 `/TRACE LINK command 863
 `/TRACE LUNAME command 866
 `/TRACE MONITOR command 867
 `/TRACE NODE command 870
 `/TRACE OLC command 874
 `/TRACE PI command 875
 `/TRACE PGM command 877
 `/TRACE PSB command 879
 `/TRACE TABLE command 880
 `/TRACE TCO command 886
 `/TRACE Timeout command 886
 `/TRACE TMEMBER command 888
 `/TRACE TRAN command 889
 `/TRACE TRAP command 891
 `/TRACE UNITY command 892

Chapter 29. `/UNLOCK commands 895
 `/UNLOCK DB command 895
 `/UNLOCK LTERM command 897
 `/UNLOCK NODE command 898
 `/UNLOCK PGM command 899
 `/UNLOCK PTERM command 900
 `/UNLOCK SYSTEM command 901
 `/UNLOCK TRAN command 903

Chapter 30. UPDATE commands 905
 UPDATE AREA command 905
 UPDATE DATAGRP command 919
 UPDATE DB command 936
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE DBDESC command</td>
<td>963</td>
</tr>
<tr>
<td>UPDATE IMS command</td>
<td>969</td>
</tr>
<tr>
<td>UPDATE IMSCON commands</td>
<td>981</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(ALIAS) command</td>
<td>981</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(CLIENT) command</td>
<td>986</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(CONFIG) command</td>
<td>991</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(CONVERTER) command</td>
<td>998</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(DATASTORE) command</td>
<td>1002</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(IMSLEX) command</td>
<td>1007</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(ISC) command</td>
<td>1011</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(ISCUSER) command</td>
<td>1017</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(LINK) command</td>
<td>1022</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(MSC) command</td>
<td>1027</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(ODBM) command</td>
<td>1031</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(PORT) command</td>
<td>1035</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(RACFUID) command</td>
<td>1040</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(RMTCICS) command</td>
<td>1044</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(RMTIMSCON) command</td>
<td>1050</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(SENDCLNT) command</td>
<td>1055</td>
</tr>
<tr>
<td>UPDATE LE command</td>
<td>1055</td>
</tr>
<tr>
<td>UPDATE MSLINK command</td>
<td>1061</td>
</tr>
<tr>
<td>UPDATE MSNAME command</td>
<td>1067</td>
</tr>
<tr>
<td>UPDATE MSPLINK command</td>
<td>1078</td>
</tr>
<tr>
<td>UPDATE ODBM commands</td>
<td>1093</td>
</tr>
<tr>
<td>UPDATE ODBM START(CONNECTION) command</td>
<td>1093</td>
</tr>
<tr>
<td>UPDATE ODBM START(TRACE) command</td>
<td>1096</td>
</tr>
<tr>
<td>UPDATE ODBM STOP(CONNECTION) command</td>
<td>1099</td>
</tr>
<tr>
<td>UPDATE ODBM STOP(TRACE) command</td>
<td>1102</td>
</tr>
<tr>
<td>UPDATE ODBM TYPE(CONFIG) command</td>
<td>1105</td>
</tr>
<tr>
<td>UPDATE OLREORG command</td>
<td>1109</td>
</tr>
<tr>
<td>UPDATE OTMADESC command</td>
<td>1115</td>
</tr>
<tr>
<td>UPDATE PGM command</td>
<td>1124</td>
</tr>
<tr>
<td>UPDATE PGMDESC command</td>
<td>1138</td>
</tr>
<tr>
<td>UPDATE POOL command</td>
<td>1147</td>
</tr>
<tr>
<td>UPDATE RM command</td>
<td>1159</td>
</tr>
<tr>
<td>UPDATE RTC command</td>
<td>1170</td>
</tr>
<tr>
<td>UPDATE RTCDESC command</td>
<td>1176</td>
</tr>
<tr>
<td>UPDATE TRAN command</td>
<td>1183</td>
</tr>
<tr>
<td>UPDATE TRANDESC command</td>
<td>1217</td>
</tr>
<tr>
<td>Chapter 31. /VUNLOAD command</td>
<td>1241</td>
</tr>
</tbody>
</table>

Notices 1243

- Trademarks 1245
- Terms and conditions for product documentation 1245
- IBM Online Privacy Statement 1246

Bibliography 1247

Index 1249
About this information

These topics provide command syntax and usage information for the IMS™ type-1 and type-2 commands /NRESTART through /VUNLOAD. The topics also describe the IMS command language and how to send commands to IMS in different environments. Information about all non-type-1 and non-type-2 IMS commands is in IMS Version 13 Commands, Volume 3: IMS Component and z/OS Commands.

This information is available in IBM® Knowledge Center.

Prerequisite knowledge

Before using this information, you should have knowledge of either IMS Database Manager (DB) or IMS Transaction Manager (TM). You should also understand basic z/OS® and IMS concepts, your installation's IMS system, and have general knowledge of the tasks involved in project planning.

Recommendation: Before using this information, you should be familiar with the following resources:

- IMS Version 13 Operations and Automation
- z/OS JES2 Commands
- z/OS JES3 Commands
- z/OS MVS™ System Commands

You can learn more about z/OS by visiting the “z/OS basic skills” topics in IBM Knowledge Center.

You can gain an understanding of basic IMS concepts by reading An Introduction to IMS, an IBM Press publication.

IBM offers a wide variety of classroom and self-study courses to help you learn IMS. For a complete list of courses available, go to the Resources section of the IMS home page at ibm.com/ims and link to the Training and Certification page.

IMS function names used in this information

In this information, the term HALDB Online Reorganization refers to the integrated HALDB Online Reorganization function that is part of IMS Version 13, unless otherwise indicated.

How new and changed information is identified

New and changed information in most IMS library PDF publications is denoted by a character (revision marker) in the left margin. The first edition (-00) of Release Planning, as well as the Program Directory and Licensed Program Specifications, do not include revision markers.

Revision markers follow these general conventions:

- Only technical changes are marked; style and grammatical changes are not marked.
- If part of an element, such as a paragraph, syntax diagram, list item, task step, or figure is changed, the entire element is marked with revision markers, even though only part of the element might have changed.
- If a topic is changed by more than 50%, the entire topic is marked with revision markers (so it might seem to be a new topic, even though it is not).

Revision markers do not necessarily indicate all the changes made to the information because deleted text and graphics cannot be marked with revision markers.

How to read syntax diagrams

The following rules apply to the syntax diagrams that are used in this information:

- Read the syntax diagrams from left to right, from top to bottom, following the path of the line. The following conventions are used:
 - The >>--- symbol indicates the beginning of a syntax diagram.
 - The ---> symbol indicates that the syntax diagram is continued on the next line.
 - The ---> symbol indicates that a syntax diagram is continued from the previous line.
 - The --->< symbol indicates the end of a syntax diagram.
- Required items appear on the horizontal line (the main path).

```plaintext
>>>required_item
```

- Optional items appear below the main path.

```plaintext
>>>required_item
```

If an optional item appears above the main path, that item has no effect on the execution of the syntax element and is used only for readability.

```plaintext
>>>required_item
```

- If you can choose from two or more items, they appear vertically, in a stack. If you **must** choose one of the items, one item of the stack appears on the main path.

```plaintext
>>>required_item
```

If choosing one of the items is optional, the entire stack appears below the main path.

```plaintext
>>>required_item
```

If one of the items is the default, it appears above the main path, and the remaining choices are shown below.
An arrow returning to the left, above the main line, indicates an item that can be repeated.

If the repeat arrow contains a comma, you must separate repeated items with a comma.

A repeat arrow above a stack indicates that you can repeat the items in the stack.

Sometimes a diagram must be split into fragments. The syntax fragment is shown separately from the main syntax diagram, but the contents of the fragment should be read as if they are on the main path of the diagram.

In IMS, a b symbol indicates one blank position.

Keywords, and their minimum abbreviations if applicable, appear in uppercase. They must be spelled exactly as shown. Variables appear in all lowercase italic letters (for example, column-name). They represent user-supplied names or values.

Separate keywords and parameters by at least one space if no intervening punctuation is shown in the diagram.

Enter punctuation marks, parentheses, arithmetic operators, and other symbols, exactly as shown in the diagram.

Footnotes are shown by a number in parentheses, for example (1).

Accessibility features for IMS Version 13

Accessibility features help a user who has a physical disability, such as restricted mobility or limited vision, to use information technology products successfully.

Accessibility features

The following list includes the major accessibility features in z/OS products, including IMS Version 13. These features support:

- Keyboard-only operation.
• Interfaces that are commonly used by screen readers and screen magnifiers.
• Customization of display attributes such as color, contrast, and font size.

Keyboard navigation

You can access IMS Version 13 ISPF panel functions by using a keyboard or keyboard shortcut keys.

For information about navigating the IMS Version 13 ISPF panels using TSO/E or ISPF, refer to the z/OS TSO/E Primer, the z/OS TSO/E User’s Guide, and the z/OS ISPF User’s Guide Volume 1. These guides describe how to navigate each interface, including the use of keyboard shortcuts or function keys (PF keys). Each guide includes the default settings for the PF keys and explains how to modify their functions.

Related accessibility information

Online documentation for IMS Version 13 is available in IBM Knowledge Center.

IBM and accessibility

See the IBM Human Ability and Accessibility Center at www.ibm.com/able for more information about the commitment that IBM has to accessibility.

How to send your comments

Your feedback is important in helping us provide the most accurate and highest quality information. If you have any comments about this or any other IMS information, you can take one of the following actions:

• Click the Feedback link at the bottom of any IBM Knowledge Center topic.
• Send an email to imspubs@us.ibm.com. Be sure to include the book title and the publication number.
Chapter 1. /NRESTART command

The /NRESTART command is used to cold start IMS or warm start IMS following an orderly termination accomplished with a /CHECKPOINT shutdown command.

Subsections:
- “Environment”
- “Syntax”
- “Keywords” on page 3
- “Usage notes” on page 6
- “Examples” on page 8

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/NRESTART</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>BUILDQ</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CHKPT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CMDAUTH</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMDAUTHE</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FORMAT</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MSDBLOAD</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>MULTSIGN</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOBUILDQ</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOCMDAUTH</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NOCMDAUTHE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NOTRANAUTH</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NOUSER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SNGLSIGN</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TRANAUTH</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>USER</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

Cold start with no previous shutdown

```plaintext
/NRESTART

/NRESTART CHKPT 0
```
Notes:

1. The FORMAT keyword must be followed by at least one of the SM, LM, QC, RS, WA, or ALL parameters.

Warm start after a /CHECKPOINT FREEZE command

A:

B:

NODBUILDQ

Notes:

1. The FORMAT keyword must be followed by at least one of the SM, LM, QC, RS, WA, or ALL parameters.

Warm start after a /CHECKPOINT PURGE or /CHECKPOINT DUMPQ command
The following keywords are valid for the `/NRESTART` command:

BUILDQ | NOBUILDQ

BUILDQ requests that the message queues dumped on the log be loaded into the message queue data sets. BUILDQ is optional for a warm start after a `/CHECKPOINT PURGE` or `/CHECKPOINT DUMPQ`.

The BUILDQ keyword must be included if the message queues are to be restored after being formatted. If the BUILDQ keyword is specified, the log from the last `/CHECKPOINT DUMPQ` or `/CHECKPOINT PURGE` is required, slowing down the restart process.

If `/NRESTART FORMAT` is specified without the BUILDQ keyword, the NOBUILDQ keyword must be specified. Specifying NOBUILDQ reformats the queues in question and all messages are lost.

If an `/NRESTART BUILDQ` command fails, and then the `/ERESTART CHECKPOINT 0`, `/ERESTART COLDCOMM`, or `/ERESTART COLDSYS` command is performed, the messages are lost. IBM IMS Queue Control Facility for z/OS can be used to recover the local message queues.

In a shared-queues environment, the BUILDQ keyword is ignored because the message queue data sets are not used.
CHECKPOINT
 Identifies the shutdown/restart sequence. CHECKPOINT 0 must be specified for a
cold start.

CMDAUTH
 Specifies that both signon (user identification verification) and command
authorization for static and ETO terminals are in effect at the end of the
emergency restart. (Command authorization is same as specifying RCF=S on
the startup parameter.)

To specify CMDAUTH, you must specify RCF=A|Y|T|C|S as an initialization
EXEC parameter.

CMDAUTHE
 Specifies that command authorization for ETO terminals (same as RCF=S on
the startup parameter) is in effect at the end of the emergency restart.
CMDAUTHE also resets command authorization for static terminals, if it was
set.

To specify CMDAUTHE, you must specify RCF=A|Y|T|C|S as an initialization
EXEC parameter.

FORMAT
 Specifies which queues or data sets should be formatted as part of the restart
process when:
 • A message queue or data set I/O error occurs.
 • The size of a message queue or data set is to be changed.
 • A message queue or data set is to be reallocated.

Specify one or more of the following or ALL:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Short-message queue</th>
<th>Long-message queue</th>
<th>Control record data set</th>
<th>Restart data set</th>
<th>Write-ahead data set</th>
<th>All message queues (SM and LM) and data sets (QC, WA, and RS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QC</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ALL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

When FORMAT ALL is specified, do not also specify SM, LM, QC, WA, or RS. FORMAT ALL is only required at IMS initialization (first
time use of the system).

You can specify any combination of SM, LM, QC, WA, and RS; for example,
FORMAT LM RS.

In a shared-queues environment, the LM, SM, and QC parameters are ignored
because the message queue data sets are not used. If you specify ALL, IMS
does not attempt to format the message queue data sets.

The following table shows the environments in which the parameters are valid.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LM</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QC</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>RS</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Table 2. /NRESTART FORMAT command parameter environments
Table 2. /NRESTART FORMAT command parameter environments (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>WA</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ALL</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Note:
1. Supports only RS and WA parameters.

MSDBLOAD
Requests that the MSDBs be loaded from the z/OS sequential data set MSDBINIT instead of the MSDB checkpoint data set. Use the MSDBLOAD keyword only when an MSDB initial load is required; otherwise, omit it from the /NRESTART command. After you modify an MSDB DBD, you must specify MSDBLOAD on the next warm start of IMS in order for the changes to be effective.

MSDBLOAD is not required:
• For warm starts when the MSDB checkpoint data set is used.
• For a cold start because the MSDBs are loaded from the z/OS sequential data set MSDBINIT and the MSDB checkpoint data sets are formatted.

MULTSIGN
Permits multiple signons for each user ID.

In an IMSplex with Resource Manager and a resource structure, if MULTSIGN conflicts with the single user signon definition for the IMSplex, a warning message will be issued.

NOCMDAUTH
Resets command authorization on static and ETO terminals.

NOCMDAUTHE
Resets command authorization for static and ETO terminals. The command authorization is reset for static terminals because the command authorization for static terminals cannot exist without the command authorization for ETO terminals.

NOTRANAUTH
Turns off transaction authorization. NOTRANAUTH is not the opposite of TRANAUTH. TRANAUTH sets transaction authorization and also turns on signon (user identification verification).

If you specify NOTRANAUTH, it is rejected with an error message if TRN=F was specified as a JCL EXEC parameter.

NOUSER
Specifies that none of the following is in effect at the end of the emergency restart:
• transaction authorization
• user identification verification
• command authorization

You can use /NRESTART NOUSER for a warm start, but if transaction or command authorization is set from the checkpoint data, NOUSER is ignored, and signon (user identification verification) is set on.

SNGLSIGN
Permits a single signon for each user ID.
In an IMSplex with Resource Manager and a resource structure, if SNGLSIGN conflicts with the single user signon definition for the IMSplex, a warning message will be issued.

TRANAUTH

Specifies both transaction authorization and user identification verification, with or without RACF®.

To specify TRANAUTH, you must specify \(\text{RCF=}\{A|Y|T|C|S\}\) as an initialization EXEC parameter.

USER

Specifies user identification verification. User identification verification means that signon is required by static terminals. This keyword has no effect on ETO terminals, because they are always required to sign on. User identification verification can be forced on by the TRANAUTH or CMDAUTH keyword.

To specify USER, you must specify \(\text{RCF=}\{A|Y|T|C|S\}\) as an initialization EXEC parameter.

Usage notes

This command can be issued to an IMSplex using the Batch SPOC utility.

The /NRESTART command has three forms. The selected form depends on the following conditions:

- Whether a cold start or warm start is required
- In the case of warm starts, whether the previous orderly shutdown was accomplished with:
 - /CHECKPOINT FREEZE
 - /CHECKPOINT PURGE or DUMPQ

Attention: A cold start performed after a processing failure could cause processing against uncommitted data. To ensure data integrity, be sure necessary backout or recovery operations have been performed before restarting.

When IMS initializes, the system parameters used for this initialization can come from the IMS system generation, from a PROCLIB member, or from EXEC statements that can override both the defaults and the PROCLIB members. Therefore, message DFS1929I is displayed showing the system parameters used for this particular initialization. The system parameters are also written to the job log.

For an IMS cold start, the base security definition is created from the IMS system definition and EXEC parameter specifications. For an /NRESTART warm restart, the base security definition is created from the IMS checkpoint data.

To override the base security definitions on a cold start, the security keywords of the /NRESTART command must be used.

The SGN=, TRN=, and RCF= startup parameters can be overridden by the /NRESTART command using the security keywords shown in the following table. A brief description of the keywords is also included.
Table 3. Security keywords and their startup parameter equivalents

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
<th>Startup parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMDAUTH</td>
<td>RACF command authorization on static and ETO terminals only.</td>
<td>RCF=S</td>
</tr>
<tr>
<td>CMDAUTHE</td>
<td>RACF command authorization on ETO terminals only.</td>
<td>RCF=C</td>
</tr>
<tr>
<td>MULTSIGN</td>
<td>Permits multiple signons for each user ID.</td>
<td>SGN=M</td>
</tr>
<tr>
<td>NOCMDAUTH</td>
<td>Resets the command authorization on static and ETO terminals.</td>
<td>Not RCF=S</td>
</tr>
<tr>
<td>NOCMDAUTHE</td>
<td>Resets the command authorization on ETO terminals only.</td>
<td>Not RCF=C</td>
</tr>
<tr>
<td>NOTRANAUTH</td>
<td>Resets the transaction authorization.</td>
<td>Not TRN=F or Y</td>
</tr>
<tr>
<td>NOUSER</td>
<td>Resets user identification verification, transaction authorization, and command authorization.</td>
<td>Not SGN=F or Y (G or Z becomes M) Not TRN=F or Y Not RCF=C or S</td>
</tr>
<tr>
<td>SNGLSIGN</td>
<td>Permits a single signon for each user ID.</td>
<td>SGN=F and Y Not SGN=M (G or Z becomes F or Y)</td>
</tr>
<tr>
<td>TRANAUTH</td>
<td>Transaction authorization.</td>
<td>TRN=F or Y</td>
</tr>
<tr>
<td>USER</td>
<td>Sets user identification verification.</td>
<td>SGN=Y</td>
</tr>
</tbody>
</table>

If IMS is enabled to use the IMSRSC repository, IMS calls Resource Manager (RM) during warm start to read the change list, if one exists, for the IMS. The IMS change list is maintained by RM and is built if the IMPORT command with the SCOPE(ALL) keyword is issued while the IMS is down. If a change list exists for the IMS that is being restarted, the database, program, transaction, and routing code resources and descriptors in the IMS change list and that apply to the IMS environment are quiesced and are not available for use until the stored resource definitions are imported from the repository.

After the IMS log is processed, IMS imports the stored resource definitions from the repository for the database, program, transaction, and routing code resources and descriptors in the IMS change list. It then applies the changes to the runtime resource and descriptor definitions in the IMS.

For the resources or descriptors that are in the IMS change list and that do not exist in IMS, the runtime resource definitions are created from the stored resource definitions in the repository. For the resource or descriptors that exist in IMS, the runtime resource definitions are updated with the stored resource definitions from the repository. The change list for the IMS system is deleted at the end of the warm start.

During cold start, if IMS is enabled to use the repository, the stored resource definitions are read from the repository. The change list is not processed during cold start because all the resource definitions are imported as part of cold start processing. Any change list in RM for the IMS being restarted is deleted.
Examples

The following are examples of the /NRESTART command:

Example 1 for /NRESTART command

This is an example of a cold start with new message queue data sets.

Entry ET:
 /NRESTART CHECKPOINT 0 FORMAT ALL

Response ET:
 DFS058I (time stamp) NRESTART COMMAND IN PROGRESS
 DFS994I *CHKPT 82274/114447**SIMPLE*

Explanation: IMS is started at 114447 (time) on 82274 (Julian date). A simple
checkpoint is written on the system log. All message queue data sets are formatted.
82274/114447 is the checkpoint number.

Example 2 for /NRESTART command

This is an example of a warm start from a FREEZE checkpoint.

Entry ET:
 /NRESTART

Response ET:
 DFS058I (time stamp) NRESTART COMMAND IN PROGRESS
 DFS680I USING CHKPT 82273/180000
 DFS994I *CHKPT 82274/082217**SIMPLE*

Explanation: The restart is being performed from checkpoint 82273/180000, which
was written at the most recent IMS shutdown. IMS is restarted at 082217 (time) on
82274 (Julian date). A simple checkpoint is written on this system log.
82274/082217 is the checkpoint number.

Example 3 for /NRESTART command

This is an example of a warm start to format WADS.

Entry ET:
 /NRESTART FORMAT WA

Response ET:
 DFS058I (time stamp) NRESTART COMMAND IN PROGRESS
 DFS680I USING CHKPT 82119/230000
 DFS994I *CHKPT 82120/101318**SIMPLE*

Explanation: The restart is being performed from checkpoint 82119/230000, which
was written at the most recent IMS shutdown. IMS is restarted at 101318 (time) on
82120 (Julian date). A simple checkpoint is written on the system log. 82120/101318
is the checkpoint number.

Example 4 for /NRESTART command

This is an example of a warm start from a PURGE or DUMPQ checkpoint.
Entry ET:
/NRESTART BUILDQ

Response ET:

DFS058I (time stamp) NRESTART COMMAND IN PROGRESS
DFS680I USING CHKPT 82080/214240
DFS994I *CHKPT 82081/060000**SIMPLE*

Explanation: IMS is restarted at 060000 (time) on 82081 (Julian date) from
checkpoint 82080/214240, which was written at the most recent IMS shutdown. 82081/060000 is the checkpoint number.

Example 5 for /NRESTART command

This is an example of a warm start from a PURGE or DUMPQ checkpoint. The
large and small message queue data sets have been reallocated.

Entry ET:
/NRESTART BUILDQ FORMAT SM LM

Response ET:

DFS058I (time stamp) NRESTART COMMAND IN PROGRESS
DFS680I USING CHKPT 82170/085236
DFS994I *CHKPT 82170/085820**SIMPLE*

Explanation: IMS is restarted at 085820 (time) on 82170 (Julian date) from
checkpoint 82170/085236, which was written at the most recent IMS shutdown. The large and small message queue data sets are reformatted. 82170/085820 is the checkpoint number.

Example 6 for /NRESTART command

This is an example of a warm start from a PURGE or DUMPQ checkpoint. An
initial set of MSDBs is needed.

Entry ET:
/NRESTART BUILDQ MSDBLOAD

Response ET:

DFS058I (time stamp) NRESTART COMMAND IN PROGRESS
DFS680I USING CHKPT 82068/180000
DFS2554 MSDB MSDBHJ01 LOADED
DFS2554 MSDB MSDBHJ02 LOADED
DFS2554 MSDB MSDBAK01 LOADED
DFS2554 MSDB MSDBAK02 LOADED
DFS2554 MSDB MSDBPS01 LOADED
DFS994I *CHKPT 82069/080000**SIMPLE*

Explanation: IMS is restarted at 080000 (time) on 82069 (Julian date) from
checkpoint 82068/180000, which was written at the most recent IMS shutdown. A
simple checkpoint is written on the system log. 82069/080000 is the checkpoint number. An initial set of MSDBs is loaded from the z/OS sequential data set MSDBINIT.

Example 7 for /NRESTART command
This is an example of a warm start from a PURGE or DUMPQ checkpoint with a request for transaction command security.

Entry ET:
/NRESTART TRANCMDS

Response ET:

- DFS058I (time stamp) NRESTART COMMAND IN PROGRESS
- DFS680I USING CHKPT 82080/214240
- DFS994I *CHKPT 82274/114447**SIMPLE*

Explanation: The master terminal operator is warm starting IMS and requesting that transaction command security be in effect at the completion of the normal restart.

Example 8 for /NRESTART command

This is an example of a warm start from a PURGE or DUMPQ checkpoint with a request to negate transaction command security.

Entry ET:
/NRESTART NOTRANCMDS

Response ET:

- DFS2181I CANNOT OVERRIDE FORCED COMMAND SECURITY

Explanation: The master terminal operator is warm starting IMS with a request to negate transaction command security. IMS system definition precludes the authority of the master terminal operator to enter the NOTRANCMDS keyword. IMS returns the DFS2181 message.

Example 9 for /NRESTART command

This is an example of a warm start from a PURGE or DUMPQ checkpoint. The data sets are formatted without rebuilding the message queues.

Entry ET:
/NRESTART FORMAT SM LM NOBUILDQ

Response ET:

- DFS058 NRESTART COMMAND IN PROGRESS

Explanation: The master terminal operator is warm starting IMS with a request to reformat the data sets without rebuilding the message queues. IMS comes up, but all messages are lost.

Related reference:

[IMS Queue Control Facility overview](#)
Chapter 2. /OPNDST command

The /OPNDST command is a multisegment command that causes IMS to initiate a session with either an ISC TCP/IP or a VTAM® terminal.

For VTAM terminals, if the USER keyword is specified, the user is signed on automatically to the terminal after successful session initiation.

For ISC TCP/IP terminals, the user is signed on automatically after successful session initiation.

Subsections:
- “Environment”
- “Syntax”
- “Keywords” on page 12
- “Usage notes” on page 15
- “Examples” on page 16

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 4. Valid environments for the /OPNDST command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/OPNDST</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>ID</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOGOND</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MODE</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Q</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>UDATA</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>USER</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>USERD</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

The /OPNDST command without the USER keyword: Use this form of the command for all static and ETO terminals except ETO SLU P and Finance terminals, ETO output-only devices, and all ISC parallel sessions.
The /OPNDST command with the USER keyword for non-ISC: Use this form of the command for:

- ETO SLU P and Finance terminals
- ETO output-only devices, for example, 3284, 3286, and SLU P1 with a single component of PRINTER1

```
/OPNDST
/OPN
NODE—nodename
USER—username
MODE—modename
Q
```

The /OPNDST command with the USER keyword for ISC TCP/IP: Use this form of the command for all ISC parallel sessions, both static and ETO.

```
/OPNDST
/OPN
NODE—nodename
USER—username
ID—idname
```

The /OPNDST command with the USER keyword for ISC VTAM: Use this form of the command for all ISC parallel sessions, both static and ETO.

```
/OPNDST
/OPN
NODE—nodename
USER—username
ID—idname
```

Keywords

The following keywords are valid for the /OPNDST command:

ID

Is applicable only if the USER keyword is specified and the node is a parallel session ISC VTAM node. ID must not be specified for a single session ISC node.

For ISC VTAM parallel sessions, ID identifies the other system half-session qualifier. ID idname must be specified to open ISC nodes defined with users. The ID idname is passed to the other half-session with the session initiation request. If the other system is another IMS system, idname is the name of an ISC user in that system.

For ISC TCP/IP parallel sessions, the ID keyword does not apply. If the ID keyword is specified, it is ignored.
LOGOND

Indicates the logon descriptor used for session establishment. LOGOND is supported for both dynamic ISC TCP/IP nodes and dynamic non-ISC nodes.

If a logon descriptor name is provided by the Logon exit routine (DFSLGNX0), the name provided by the exit routine overrides the name specified on the LOGOND keyword.

For ISC TCP/IP nodes, the name specified on the LOGOND keyword must match a logon descriptor that specifies the LCLICON keyword for TCP/IP support. If the logon descriptor does not specify TCP/IP support, IMS attempts to open the session as a VTAM node.

MODE

Identifies the LOGON MODE table entry that VTAM must use and can determine operating characteristics for certain VTAM terminals. If a list of node names is given, the MODE keyword is applied to each of them. The command checks whether each node has been defined to accept IMS initiated connections. If the node was defined as NOPNDST, the /OPNDST command accepts all the nodes except the node defined as NOPNDST.

ISC TCP/IP sessions do not support the MODE keyword.

NODE

Specifies the node with which IMS initiates a session.

The /OPNDST NODE ALL command opens sessions for all static terminals except ISC parallel sessions. The command has considerable concurrent activity, both for IMS and for VTAM. Ensure that the system has sufficient pool sizes, buffer sizes, and number of concurrent IMS tasks defined.

If the USER keyword is not specified in the command, the NODE parameter can be generic or ALL, or a range of static nodes, or there can be multiple NODE parameters. If a generic, ALL, or range of node names is specified, any nodes defined with users are ignored and flagged with an error message.

The /OPNDST NODE USER command logs on and signs on a user at the same time, except for ISC terminals. On ISC terminals, the session is allocated.

The following list includes sample /OPNDST NODE USER commands:

- To log on and sign on to a static non-ISC terminal:

  ```
  /OPNDST NODE nodename USER username UDATA userdata
  ```

 This command marks a statically defined terminal as signed on by the user.

- To log on and sign on to an ETO non-ISC terminal:

  ```
  /OPNDST NODE nodename USER username MODE modename LOGOND logonname USERD userdname UDATA userdata
  ```

 This command creates the terminal and user structures, and allocates the newly created user structure to the terminal structure created to indicate signed on status.

- To log on and sign on to a static ISC terminal:

  ```
  /OPNDST NODE nodename USER username ID idname
  ```

 This command finds the subpool structure and allocates the subpool (user) structure to the statically defined ISC terminal. If the terminal is defined to use ISC TCP/IP, the ID keyword does not apply and is ignored by IMS.

- To log on and sign on to an ETO ISC VTAM terminal:

  ```
  /OPNDST NODE nodename USER username ID idname MODE modename LOGOND logonname USERD userdname UDATA userdata
  ```
This command creates the terminal and subpool (user) structure and allocates the newly created user structure to the terminal structure created. The command also signs on the user with the username (the username must be defined to RACF), and remains signed on until the user issues a /SIGN OFF command, or the session is terminated.

- To log on and sign on to an ETO ISC TCP/IP terminal:

 /OPNDST NODE nodename USER username LOGOND logonname

 This command creates the terminal and subpool (user) structure and allocates the newly created user structure to the terminal structure created. The command also signs on the user with the username (the username must be defined to RACF), and remains signed on until the user issues a /SIGN OFF command, or the session is terminated.

 For ISC TCP/IP parallel sessions, a logon descriptor must exist that specifies the LCLICON keyword for TCP/IP support. IMS uses the value of the NODE keyword to search for a logon descriptor only when the LOGOND keyword is not specified. If the logon descriptor does not exist or does not specify TCP/IP support, IMS attempts to open the session as a VTAM node.

 To restart failing ETO sessions (for example, ETO only or printer sessions), use the /OPNDST NODE USER command.

 In an IMSplex, /OPNDST NODE specifies a VTAM node with which IMS initiates a session. Specify ROUTE(imsid), if you want to log the node onto a particular IMS. If ROUTE(imsid) is not specified, and /OPNDST is routed to all the IMS systems, IMS processes the command only on the IMS system designated as the command master. If the ROUTE keyword specifies multiple IMS systems so that the /OPNDST command is routed to more than one IMS systems, IMS processes the command only on the IMS system designated as the command master. On the other IMS systems, the /OPNDST command is rejected.

 Q Causes IMS to request VTAM to queue SIMLOGON requests for VTAM/SNA-supported terminals.

 The /OPNDST NODE Q command also allows IMS to request another subsystem to share a node (usually printers) with IMS. If the other subsystem is using the printer, VTAM queues the SIMLOGON request for IMS for the printer, schedules the owning subsystem’s RELREQ VTAM exit, and acquires the printer for IMS after the current owning system releases the printer. Multiple requests for the same printer are queued by VTAM for processing.

 The /DISPLAY NODE command is used to determine whether IMS has acquired the printer.

 ISC TCP/IP sessions do not support the Q keyword.

 UDATA

 Indicates the user data used with the signon.

 The UDATA keyword is valid only if the USER keyword and parameter are also specified. The UDATA keyword is valid for static and dynamic users. It is not valid for ISC nodes. The user data can be up to 256 bytes long. Passwords can be mixed case or lowercase depending on what is specified on the PSWDC keyword in the DFSPBxxx IMS.PROCLIB member.

 ISC TCP/IP sessions do not support the UDATA keyword.

 RACF password phrases are not supported with UDATA.
USER

Identifies the logical terminal user to be allocated to the half-session to be created for the ISC node that is specified on the NODE keyword.

For dynamic non-ISC users, it specifies the user ID to be signed on to the dynamic node nodename.

The USER keyword applies to ISC sessions when allocating a user to an ISC node, to dynamic users when signing a dynamic user on to a dynamic node, and to static user IDs when signing a user on to a static node.

USER username must be specified to open parallel session ISC nodes with users. It must not be specified for a single session ISC node.

Restrictions for using NODE and USER parameters together:

- Commands with the NODE USER keyword pair are valid only if:
 - The USER is signed on to the NODE
 - In an ISC environment, the USER is allocated to the NODE
 - The nodes and users already exist
- The /OPNDST NODE USER commands are valid for ISC and non-ISC nodes and users.

USERD

Specifies the user descriptor to be used with the signon. It is valid only if the USER keyword and parameter are specified. USERD is only supported for dynamic users and is only valid for dynamic non-ISC nodes. The user descriptor can also be provided through the logon or signon exits.

ISC TCP/IP sessions do not support the USERD keyword.

Usage notes

All forms of logging-on a remote VTAM terminal to IMS, including the use of the /OPNDST command, do not work until the /START DC command has been entered and accepted by IMS.

All /OPNDST formats require an EOM indication to denote end-of-message. An EOS indication must be included for all segments that precede the last segment.

You can issue /OPNDST on the XRF alternate to restart a failed backup session for a class 1 ETO terminal. To do this, the node and the user structure must still exist and be coupled together, and an active session must exist on the active system. If the node and the user are not coupled, or an active session does not exist on the active system, the command is rejected.

This command can be issued to an IMSplex using the Batch SPOC utility.

A period is normally used as the delimiter at the end of IMS commands. When support for special characters is enabled in RACF, a period becomes a valid character in the RACF password. Therefore, when a password is specified at the end of the /OPNDST command, you must insert a space before the period that you are using as the end-of-command delimiter. If a space is not added before the period that is intended to be the end-of-command delimiter and support for special characters is enabled in RACF, the period is treated as part of the password and not as a delimiter.
Examples

The following are examples of the /OPNDST command:

Example 1 for /OPNDST command

Entry ET:
```
/OPNDST NODE L3270*
```
Response ET:
```
   NODE-USR TYPE CID  RECD ENQCT DEQCT  QCT SENT
  L3270A  3277 00000000 0 0 0 0 0 IDLE CIINOP STATIC
  L3270B  3277 00000000 0 0 0 0 0 IDLE CIINOP STATIC
  L3270C  3277 08000002 44 45 45 0 80 CON STATIC
  L3270D  3277 00000000 2 0 0 0 7 IDLE STATIC
*94307/145048*
```

Entry ET:
```
/OPNDST NODE L3270*
```
Response ET:
```
   DFS058I OPNDST COMMAND COMPLETED
```

Entry ET:
```
/OPNDST NODE L3270*
```
Response ET:
```
   NODE-USR TYPE CID  RECD ENQCT DEQCT  QCT SENT
  L3270A  3277 06000004 0 0 0 0 1 IDLE CON STATIC
  L3270B  3277 04000005 0 0 0 0 1 IDLE CON STATIC
  L3270C  3277 08000002 46 46 46 0 82 CON STATIC
  L3270D  3277 04000006 2 0 0 0 8 IDLE CON STATIC
*94307/145750*
```

Explanation: The nodes L3270A through L3270D are logged on to IMS.

Example 2 for /OPNDST command

Entry ET:
```
/OPNDST NODE DT327002 USER IMSUS01 MODE LU032NT4 USERD DFSUSER UDATA=IMSPW01.
```
Response ET:
```
   DFS058I 11:07:48 OPNDST COMMAND COMPLETED
```

Explanation: A session with dynamic node DT327002 is established by using mode table LU032NT4. User IMSUS01 is signed on to the node using user descriptor DFSUSER, username IMSUS01, and password IMSPW01.

Example 3 for /OPNDST command

Entry ET:
```
/OPNDST NODE DTSLU201 USER IMSUS01 MODE SLU2MOD1 USERD DFSUSER LOGOND DFSSLU2 UDATA=IMSPW01.
```
Response ET:
```
   DFS058I 11:07:48 OPNDST COMMAND COMPLETED
```

Explanation: A session with dynamic node DTSLU201 is established by using mode table SLU2MOD1. User IMSUS01 is signed on to the node using user descriptor DFSUSER, username IMSUS01, and password IMSPW01.
Explanation: DTSLU201 is logged on. A session with dynamic node DTSLU201 is established by using logon descriptor DFSSLU2 (type SLU2), and mode table SLU2MOD1. Dynamic user IMSUS01 is signed on to the node using user descriptor DFSUSER and password IMSPW01.

Example 4 for /OPNDST command

Entry ET:
/OPNDST NODE WEST-EAST

Response ET:
DF5058I OPNDST COMMAND COMPLETED

Response RT:
DFS3650 TERMINAL CONNECTED TO IMS XXXXXXXX

Explanation: The nodes, WEST through EAST, are logged on to IMS.

Example 5 for /OPNDST command

The following set of commands illustrate the use of the MODE keyword on the /OPNDST command.

Entry ET:
/DIS NODE LUTYPEP1 MODE

Response ET:
NODE-USR TYPE DEF MODETBL ACT MODETBL
LUTYPEP1 SLUP DEFRESP
90179/100206

Explanation: DEFRESP is the mode table name defined for node LUTYPEP1 at system definition. The session is not active so the ACT MODETBL field is blank.

Entry ET:
/OPN NODE LUTYPEP1.

Response ET:
DF5058I OPNDST COMMAND COMPLETED

Entry ET:
/DIS NODE LUTYPEP1 MODE

Response ET:
NODE-USR TYPE DEF MODETBL ACT MODETBL
LUTYPEP1 SLUP DEFRESP DEFRESP
90179/100508

Explanation: A mode table name was not specified with the /OPNDST command so the default value defined at system definition was used to initiate the session.

Entry ET:
/CLS NODE LUTYPEP1

Response ET:
DFS058I CLSDST COMMAND COMPLETED

Entry ET:
/DIS NODE LUTYPEP1 MODE

Response ET:

NODE-USR TYPE DEF MODETBL ACT MODETBL
LUTYPEP1 SLUP DEFRESP
90179/100630

Explanation: Active mode table name displays as blank at normal session
termination.

Entry ET:
/OPN NODE LUTYPEP1 MODE ALPHA.

Response ET:
DFS058I OPNDST COMMAND COMPLETED

Entry ET:
/DIS NODE LUTYPEP1 MODE

Response ET:

NODE-USR TYPE DEF MODETBL ACT MODETBL
LUTYPEP1 SLUP DEFRESP ALPHA
90179/100805

Explanation: The mode table name specified with the /OPNDST command
(ALPHA) is used to initiate the session. The default value specified at system
definition (DEFRESP) is overridden by the /OPNDST command.

Example 6 for /OPNDST command

In the following example, the /OPNDST NODE command is issued for an ISC
TCP/IP parallel session.

Entry ET:
/OPN NODE CICS USER CICD.

Response ET:
DFS058I OPNDST COMMAND COMPLETED

Entry ET:
/DISPLAY NODE CICS USER CICD

Response ET:

<table>
<thead>
<tr>
<th>CICS</th>
<th>TCP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>CICD</td>
<td>********</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>SIGN(CICD)</td>
</tr>
<tr>
<td>IDLE</td>
<td>CON</td>
</tr>
</tbody>
</table>
|*13175/200817*
Chapter 3. /PSTOP command

Use the /PSTOP command to stop the sending and receiving of messages to a particular communication line, terminal, or logical link.

You can also use this command to stop scheduling messages that contain specific transaction codes, to allow the queuing of output messages and input messages to continue, to halt a stalled synchronous program switch request, and to perform validity checks of all parameters entered by the terminal operator.

Subsections:
- “Environment”
- “Syntax”
- “Keywords” on page 20
- “Usage notes” on page 23
- “Equivalent IMS type-2 commands” on page 24
- “Examples” on page 24

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 5. Valid environments for the /PSTOP command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/PSTOP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>AOITOKEN</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CLASS</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>FORCE</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>JOBNAME</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LINE</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>LINK</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>LTERM</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>MSPLINK</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PTERM</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PURGE</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>REGION</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SYNC</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>TRAN</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Keywords

The following keywords are valid for the /PSTOP command:

LINE

Specifies the IMS communication line to stop.

LINK

Specifies the link to be stopped; the partner link in another IMS system stops itself and notifies the master terminal operator of that system..

PURGE

PURGE can be used only for one logical link whose physical link is channel-to-channel. PURGE must be used when the partner link is in a system that failed. Otherwise, the link will not become idle after it is stopped.

FORCE

The FORCE keyword is for TCP/IP and VTAM links and is intended for use when a link does not clean up and assume a PSTOPPED IDLE status during normal PSTOP processing, even though the session is terminated.
After /PSTOP processing is completed on one side of the link, the other side is displayed. If the other side is not in a PSTOPPED IDLE state, the operation must be repeated in the partner IMS system. When both sides are in the PSTOPPED IDLE state, the /RESTART LINK command can be issued to restart the link.

For TCP/IP links, the FORCE option is useful for shutting down an MSC TCP/IP link that does not shut down normally after the link was shut down in the partner IMS system. A link that does not shut down normally might have a NOTIDLE-C status or might otherwise fail to assume a PSTOPPED, IDLE status.

For TCP/IP links, you can issue /PSTOP with the FORCE option at any time. You are not required to shut down a link normally before using the FORCE option.

IMS performs the following actions when processing the FORCE option for a TCP/IP link:

- Shuts down the link in the IMS where the command is issued
- Notifies the local IMS Connect instance to clean up the send socket
- Issues error message DFS3177E MSC DETECTED AN ERROR RETCODE = 00000000, RSCODE = 00000070, LOSTSESS = FORCESTO
- Issues informational message DFS2169I DISCONNECTION COMPLETED ON LINK
- Places the link in PSTOPPED ERE IDLE status

Note: To determine if a TCP/IP link session is still active in IMS Connect, issue the WTOR command VIEWMSC lclplkid on the local IMS Connect instance. You can also use the z/OS MODIFY command QUERY MSC or the IMS type-2 command QUERY IMSCON TYPE(MSC).

For VTAM links, the FORCE option can be used with some VTAM commands to idle and clean up the VTAM link within IMS.

IMS performs the following actions when processing the FORCE option for VTAM links:

1. Determines if the link started PSTOP processing. If PSTOP processing started, the link displays as PSTOPPED NOTIDLE.
2. Tests if the hang condition is due to an outstanding VTAM request. If so, IMS issues an inquire request to VTAM to determine if the session is inactive. In that case, IMS simulates the completion of the VTAM request to enable the link to complete PSTOP processing.

You can determine if a session is still active to VTAM by issuing the command DISPLAY NET,SESSIONS,LU1=applid1,LU2=applid2,SCOPE=ALL,LIST=ALL. If it is active, note the SID of the session.

If the VTAM session is not active and it has a PSTOPPED NOTIDLE status to IMS, then issue /PSTOP LINK x FORCE.

If the session is still active to VTAM, then issue VARY NET,TERM,SID=x,NOTIFY=YES,SCOPE=ALL,TYP=FORCE to VTAM to terminate the session.

Under normal conditions, the VTAM VARY NET,TERM command terminates the session in VTAM and cause IMS to PSTOP and IDLE the link associated with the VTAM session. If the VTAM VARY command does terminate the VTAM session but does not PSTOP and IDLE the link, then
the IMS /PSTOP LINK FORCE command can be used to complete the PSTOP and cleanup processing within IMS.

IMS replies with DFS058 /PSTOP LINK COMPLETED EXCEPT LINK x, if the /PSTOP LINK x FORCE command cannot be executed because:

- The session is still active to VTAM.
- Normal PSTOP processing is not started (issue /PSTOP without the FORCE keyword in this case).
- PSTOP processing is not completing because of some reason other than an incomplete VTAM request.

LTERM

Specifies the logical terminal that is to be stopped from sending and receiving messages.

The /PSTOP LTERM command has no effect on an LTERM that is in QLOCK state, or is a remote logical terminal. The LTERM parameter can be generic, where the generic parameter specifies existing LTERMs.

The /PSTOP LTERM command is valid only for LTERMs that belong to nodes that are logged on.

If time-controlled operations (TCO) is active, the /PSTOP LTERM command is valid for the DFSTCF TCO LTERM, even if the DFSTCF LTERM is not allocated to a node.

MSPLINK

Stops logons to an MSC TCP/IP or VTAM physical link and enables the operator to issue the /MSASSIGN command to reassign logical links to the physical link. Any links in sessions that were not stopped by the /PSTOP command are not affected by an /MSASSIGN command.

After the /PSTOP command is issued, the status of the link is either PSTOPPED or, for links in a TCP/IP generic resource group, PSTOPGEN.

After the logical link assignments are complete, issue the /RESTART command to permit logons to the physical link.

The /PSTOP MSPLINK command does not apply to CTC or MTM links.

REGION

If the TRAN keyword is specified, the message region is not stopped. A QC status (no more messages) is returned to the application program currently active in the specified region. The scheduler continues to schedule available transactions in the referenced region.

The /PSTOP REGION command is ignored unless both of the following occur:

- An active transaction type is specified.
- The referenced message region is processing transactions with the wait-for-input option, or the region is an MPP.

If the AOITOKEN keyword is specified, the AO application in wait AOI token state is posted and receives AIB return code X’00000004’ and reason code X’0000004C’.

If JOBNAME keyword is specified, the job name for the dependent region must be 1-8 alphanumeric or national ($,#,@) characters. The first character of the job name must be either alphabetic or national.
If the SYNC keyword is specified, the user application in wait synchronous callout state is posted and receives AIB return code X'00000100' with reason code X'0000010C'.

The X'00000100' return code with the X'0000010C' reason code is also returned if the SYNC keyword is used while a user application is waiting for a reply to a synchronous program switch request.

TRAN

Stops the scheduling of transactions; however, the transactions will continue to be processed until the limit count is reached. If the limit count is large, the processing interval will be long. The /DISPLAY command ascertains the status of the transaction; the /ASSIGN command alters the status of the transaction.

If a region is scheduled against a process stopped transaction and there are no more messages available for that transaction, the region does not wait for the next message (wait-for-input-mode). Instead, a QC status (no more messages) is returned to the application. If the region is scheduled and waiting for the next message when the command is entered, the region is notified and a QC status is returned to the application.

A batch message processing region (BMP) scheduled against wait-for-input (WFI) transactions returns a QC status code (no more messages) for /PSTOP REGION, /DBD, /DBR, or /STA commands only.

The /PSTOP command cannot stop the scheduling of Fast Path exclusive transactions but can be used to stop Fast Path potential transactions.

The /PSTOP TRAN command cannot be used for Fast Path exclusive transactions or CPI Communications driven transaction programs.

The TRAN parameter can be generic where the generic parameter specifies transactions that already exist.

In a shared-queues environment, the /PSTOP TRAN command will result in IMS deregistering interest for the transaction, which indicates that the transaction cannot be scheduled at that IMS.

The /PSTOP TRAN command is not allowed for a transaction that is marked bad with the NOTINIT-15-REPOCHGLIST reason code because the IMS change list processing is not complete for the transaction or the change list processing failed.

Usage notes

If an error is detected on parameters that are independent of one another, only the invalid parameters are indicated as being in error and the /PSTOP command processes the rest of the parameters.

The /PSTOP command can be used to reset conditions previously established with the /START, /RSTART, /PURGE, or /MONITOR command.

In a single IMS system, or in the local system in a multiple system configuration, IMS system messages such as broadcast text and terminal status messages (DFS059 TERMINAL STARTED) are not affected by the /PSTOP command. In a multiple system configuration, broadcast messages are queued but not sent across stopped links.

This command can be issued to an IMSplex using the Batch SPOC utility.
If a synchronous program switch request (a DL/I ICAL request to an IMS transaction) stalls for a long period of time, you can use the /DISPLAY ACTIVE REGION command to determine which region contains the stalled application. Then, issue /PSTOP to stop the application and halt the request.

Equivalent IMS type-2 commands

The following table shows variations of the /PSTOP command and the IMS type-2 commands that perform similar functions.

<table>
<thead>
<tr>
<th>Task</th>
<th>/PSTOP command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stops the scheduling of transactions.</td>
<td>/PSTOP TRAN tranname</td>
<td>UPDATE TRAN(tranname) START(Q) STOP(SCHD)</td>
</tr>
<tr>
<td>Stops logons to the physical link (only for MSC VTAM links).</td>
<td>/PSTOP MSPLINK miplinkname</td>
<td>UPDATE MSPLINK NAME(msplinkname</td>
</tr>
</tbody>
</table>

Examples

The following are examples of the /PSTOP command:

Example 1 for /PSTOP command

Entry ET:

```
/PSTOP LINE 4 PTERM 1
```

Response ET:

```
DFS058I PSTOP COMMAND COMPLETED
```

Response RT:

```
DFS059I TERMINAL PSTOPPED
```

Explanation: LINE 4 PTERM 1 is not sent application program or message switch output and is not allowed to send input. Output messages for the terminal continue to be queued.

Example 2 for /PSTOP command

Entry ET:

```
/PSTOP LINE 4 6 200
```

Response ET:

```
DFS058I PSTOP COMMAND COMPLETED EXCEPT LINE 200
```

Explanation: LINE 4 and LINE 6 are not allowed to send or receive messages. Message queuing continues. Line 200 is an invalid line number.

Example 3 for /PSTOP command

Entry ET:

```
/PSTOP LINK 2 3 4
```

Response ET:
Response ET:
 DFS2169I DISCONNECTION COMPLETED ON LINK 2

Explanation: Logical link 2 is disconnected. This message is received for each logical link that is disconnected.

Response Remote MT:
 DFS2161I LINK 2 STOPPED BY PARTNER
 DFS2161I LINK 3 STOPPED BY PARTNER
 DFS2161I LINK 4 STOPPED BY PARTNER

Explanation: Logical links 2, 3, and 4 stop processing messages. Output queuing continues.

Response ET:
 DFS2169I DISCONNECTION COMPLETED ON LINK 3

Explanation: Logical link 3 is disconnected. This message is also received when logical link 4 disconnects.

Example 4 for /PSTOP command

Entry ET:
 /PSTOP LINK ALL

Response ET:
 DFS058I PSTOP COMMAND COMPLETED

Response Remote MT:
 A DFS2161 LINK n STOPPED BY PARTNER message is received for each logical link that was operational when /PSTOP was entered.

Explanation: Output to all logical links stops. Output queuing continues. Input is not allowed.

Response ET:
 DFS2169I DISCONNECTION COMPLETED ON LINK XXX

Explanation: As each logical link is disconnected, this message is received.

Example 5 for /PSTOP command

Entry ET:
 /PSTOP LINK 1 2 3 PURGE

Response ET:
 DFS2272I PURGE KEYWORD INVALID, ONLY ONE CTC LINK ALLOWED

Explanation: Only one link can be specified with the PURGE keyword.

Example 6 for /PSTOP command
Entry ET:
 /PSTOP LINK 2 PURGE

Response ET:
 DFS2273I PURGE KEYWORD REJECTED, CURRENT STATUS
 OF LINK IS NORMAL

Explanation: The partner system has not failed and the link appears to be working.

Example 7 for /PSTOP command

Entry ET:
 /PSTOP LTERM APPLE, TREE

Response ET:
 DFS058I PSTOP COMMAND COMPLETED

Response RT:
 DFS059I TERMINAL PSTOPPED

Explanation: The physical terminals associated with logical terminals APPLE and TREE are not sent output that is destined for logical terminals APPLE or TREE, or allowed to enter input. Output queuing continues.

Example 8 for /PSTOP command

Entry ET:
 /PSTOP MSPLINK ALL

Response ET:
 DFS058I COMMAND COMPLETED

Explanation: All the VTAM physical links are stopped from receiving logons. Any links in session are not affected.

Example 9 for /PSTOP command

Entry ET:
 /PSTOP TRAN SEED

Response ET:
 DFS058I PSTOP COMMAND COMPLETED

Explanation: Transaction code SEED can no longer be scheduled. Queuing of the transaction continues.

Example 10 for /PSTOP command

Entry ET:
 /PSTOP TRAN ALL CLASS 3

Response ET:
 DFS058I PSTOP COMMAND COMPLETED
Explanation: All transactions associated with class 3 can no longer be scheduled. Queuing of the transactions continues.

Example 11 for /PSTOP command

Entry ET:

/PSTOP REGION 1 TRAN XYZ

Response ET:

DFS058I PSTOP COMMAND IN PROGRESS

Response ET:

DFS0569I PSTOP COMPLETE FOR REGION 1 TRAN XYZ
DFS0566I PSTOP NOT VALID FOR TRAN XYZ

Explanation: If the DFS0569I message prints, processing of the transaction type, xyz, is stopped in message region 1. If the DFS0566I message prints, the command was ignored because the two required conditions were not satisfied.

Example 12 for /PSTOP command

Entry ET:

/PSTOP REGION 2 AOITOKEN AOITOK2

Response ET:

DFS058I PSTOP Command in progress

Response MT:

DFS0569I PSTOP OR STOP COMPLETE FOR REGION 2 AOIT AOITOK2.

Explanation: If the DFS0569I message prints, the AO application in region 2 waiting for a message for AOI token AOITOK2 is posted; the application receives AIB return code X'00000004' and reason code X'0000004C'.

Example 13 for /PSTOP command

Entry ET:

/PSTOP REGION 2 AOITOKEN AOITOK2

Response ET:

DFS058I PSTOP Command in progress

Response MTO:

DFS1190I REGION 2 NOT WAITING ON AOITOKEN AOITOK2

Explanation: If the DFS1190I message prints, the command is ignored because region 2 was not waiting on AOI token AOITOK2.

Example 14 for /PSTOP command

Entry ET:

/DIS ACTIVE REG

Response ET:
Explanation: Message processing program PMVAPZ12 is processing transaction NQF1. The job name of the region is MPP610C

Entry ET:
/PSTOP REGION JOBNAME MPP610C TRAN NQF1

Response ET:
DFS058I PSTOP COMMAND IN PROGRESS
DFS0569I PSTOP OR STOP COMPLETE FOR REGION 00001 TRAN NQF1

Response ET:
DFS058I PSTOP COMMAND IN PROGRESS
DFS0566I PSTOP NOT VALID FOR TRAN NQF1

Explanation: If the DFS0569I message is displayed, processing if the transaction type, NQF1, is stopped in message region 1. If the DFS0566I message is displayed, the command was ignored because the two required conditions were not satisfied.

Example 15 for /PSTOP command

Entry ET:
/DIS ACTIVE REG

Response ET:
REGID JOBNAME TYPE TRAN/STEP PROGRAM STATUS CLASS
1 MPPIA TP APOL11 APOL1 WAIT-CALLOUT 1
TMEM: HWS1 TPIPE: TPIPE1
JMPRGN JMP NONE
JBP RGN JBP NONE
BATCHREG BMP NONE
FPRGN FP NONE
DBTRGN DBT NONE
DBZCSAJ DBRC
DLIZCSAJ DLS
+08235/173441*

Explanation: Message processing program APOL1 is processing transaction APOL11, which is waiting for a response to a synchronous callout request (WAIT-CALLOUT) from transaction pipe TPIPE1.

Entry ET:
/PSTOP REGION 1 SYNC TPIPE1

Response ET:
DFS058I PSTOP COMMAND IN PROGRESS
DFS0569I PSTOP OR STOP COMPLETE FOR REGION 00001 SYNC TPIPE1

Response ET:
Explanation: If the DFS0569I message prints, the user application in wait synchronous callout state is posted; the application receives AIB return code X'00000100' and reason code X'0000010C'. If the DFS1190I message prints, the command is ignored because region 1 was not waiting for a response to a synchronous callout request from transaction pipe TPIPE1.

Example 16 for /PSTOP command

This example demonstrates a scenario for using PSTOP to halt a stalled synchronous program switch request. The following command is issued to determine the status of a waiting program:

/PDIS ACTIVE REG

The following response is returned:

```
REGID  JOBNMTE  TYPE  TRAN/STEP PROGRAM  STATUS   CLASS
1    MPP1A   TP   APOL11  APOL1  WAIT-CALLOUT 1
     TRAN:SKS1   END TIME: 2010.172 12:45:04
     JMPRGN  JMP  NONE
     JBP RN   JBP  NONE
     BATEHREG BMP  NONE
     FPQGN  FP  NONE
     DBTRGN  DBT  NONE
     DBZCSAJ  DBRC
     DLIZCSAJ  DLS
*10172/120101*
```

The message processing program APOL1 is processing transaction APOL12. The transaction is waiting for a synchronous program switch response from transaction SKS2. The following command is issued to end the wait state:

/PSTOP REGION 1 SYNC SKS2

The command will receive one of the two possible responses. The following response indicates that the PSTOP command successfully ended the wait state:

```
DFS0568I PSTOP COMMAND IN PROGRESS
DFS05691 PSTOP OR STOP COMPLETE FOR REGION 00001 SYNC SKS2
```

You will receive a different response if the PSTOP command executes successfully but the specified region is not waiting for the specified transaction to respond:

```
DFS058I PSTOP COMMAND IN PROGRESS
DFS11901 REGION 00001 NOT WAITING ON TRAN SKS2
```

Related reference:

- Chapter 16, “/RSTART command,” on page 697
- “UPDATE TRAN command” on page 1183

Chapter 3. /PSTOP command
Chapter 4. /PURGE command

The /PURGE command stops input for a particular communication line, terminal, or logical link path, or stops input messages destined for a particular transaction code.

Messages can be sent to the specified communication line or terminal, and transactions can still be scheduled.

Subsections:

- “Environment”
- “Syntax”
- “Keywords” on page 32
- “Usage notes” on page 33
- “Equivalent IMS type-2 commands” on page 33
- “Examples” on page 34

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 7. Valid environments for the /PURGE command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/PURGE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>APPC</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CLASS</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>FPPROG</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>FPRGN</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LINE</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>LTERM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MSNAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PTERM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TRAN</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax
Keywords

The following keywords are valid for the /PURGE command:

APPC

Is used to purge incoming transactions. All new requests by APPC/z/OS to schedule a transaction in IMS are rejected with TP_Not Available_No Retry. Transactions that IMS has already received are processed normally. Sending of output to LU 6.2 devices proceeds normally. Because /PURGE APPC does not call to APPC/z/OS, the rejection of transaction scheduling is done by the schedule exit of IMS only.

Note: The sense code returned to the LU 6.2 remote device for an incoming ATTACH to a purged APPC/IMS system is determined by APPC/z/OS, and it might differ from release to release. In general, the remote LU 6.2 application should wait for a period of time after rejection before any attempts to reestablish a session with IMS.

The /PURGE APPC command sets the PURGING status and resets conditions previously set by the /START APPC command. The command is rejected if the APPC is already in DISABLED, FAILED, STOPPED, or CANCEL state.
FPPROG
Specifies the PSB name of the message-driven program to be terminated.
/PURGE takes message-driven programs out of wait-for-input mode and
terminates them as soon as their load balancing group message queue is
empty.
Use the FPPROG keyword with caution, because all Fast Path message-driven
programs that are using a PSB with the same name will be terminated.

FPRGN
Specifies the region identifier of the message-driven program to be terminated.

LINE
Specifies the communication line for which input is to be stopped.

LTERM
Specifies the logical terminal for which input is to be stopped.
The /PURGE LTERM command is rejected for LTERMs in QLOCK state.
(QLOCK indicates that the LTERM is locked from sending any further output
or from receiving input that can create additional output for the same LTERM
until the state is reset by a specific request received on the session.) /PURGE
LTERM is also rejected for remote logical terminals. The LTERM supports
generic parameters where the generic parameter specifies LTERMs that already
exist.
The /PURGE LTERM command is valid only for LTERMs that belong to nodes
that are logged on.

MSNAME
Specifies the logical link path in a multiple systems configuration for which
input is to be stopped. The MSNAME keyword supports generic parameters.

TRAN
Specifies the transaction code for which input messages are to be stopped.
The TRAN parameter can be generic where the generic parameter specifies
transactions that already exist.
The /PURGE TRAN command is not allowed for a transaction that is marked
bad with the NOTINIT-15-REPOCHGLIST reason code because the IMS change list
processing is not complete for the transaction or the change list processing
failed.

Usage notes
The /PURGE command validity checks all parameters entered by the terminal
operator. If an error is detected on parameters that are independent of one another,
only the invalid parameters are indicated as being in error and the /PURGE
command processes the rest of the parameters.
The /PURGE command can be used to reset conditions previously set by the
/START, /RSTART, /STOP, /PSTOP, or /MONITOR command.
This command can be issued to an IMSplex using the Batch SPOC utility.

Equivalent IMS type-2 commands
The following table shows variations of the /PURGE command and the IMS type-2
commands that perform similar functions.
Table 8. Type-2 equivalents for the /PURGE command

<table>
<thead>
<tr>
<th>Task</th>
<th>/PURGE command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stops input messages for</td>
<td>/PURGE TRAN</td>
<td>UPDATE TRAN NAME(TRANNAME)</td>
</tr>
<tr>
<td>a particular transaction</td>
<td>tranname</td>
<td>START(SCHD) STOP(Q)</td>
</tr>
<tr>
<td>code.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Examples

The following are examples of the /PURGE command:

Example 1 for /PURGE command

Entry ET:

/PURGE FPPROG ALL

Response ET:

DF5058I PURGE COMMAND COMPLETED

Explanation: All message-driven programs are taken out of wait-for-input mode and terminated by PSB name as soon as their load balancing group message queue is empty.

Example 2 for /PURGE command

Entry ET:

/PURGE FPRGN ALL

Response ET:

DF5058I PURGE COMMAND COMPLETED

Explanation: All message-driven programs are taken out of wait-for-input mode and terminated by region identifier as soon as their load balancing group message queue is empty.

Example 3 for /PURGE command

Entry ET:

/PURGE LINE 4

Response ET:

DF5058I PURGE COMMAND COMPLETED

Response RT:

DF5059I TERMINAL PURGING

Explanation: All physical terminals associated with line 4 can receive output sent to them but are not allowed to enter input.

Example 4 for /PURGE command

Entry ET:

/PURGE LINE 5 7 400

Response ET:
Explanation: All physical terminals associated with line 5 and line 7 can receive output but are not allowed to enter input. Line 400 is an invalid line number.

Example 5 for /PURGE command

Entry ET:
```
/PURGE MSNAME BOSTON
```

Response ET:
```
DFS058I  PURGE COMMAND COMPLETED
```

Explanation: All messages from a terminal (primary requests), except messages continuing a conversation, will not be queued for the destinations represented by MSNAME BOSTON. This includes all messages destined for remote transactions with the SYSID of the MSNAME, and for remote logical terminals associated with this MSNAME.

Example 6 for /PURGE command

Entry ET:
```
/PURGE TRAN PIT, SEED
```

Response ET:
```
DFS058I  PURGE COMMAND COMPLETED
```

Explanation: Transactions PIT and SEED can still be scheduled but input for these transactions cannot be queued unless the input originates as output from an application program.

Example 7 for /PURGE command

Entry ET:
```
/PURGE TRAN ALL CLASS 2
```

Response ET:
```
DFS058I  PURGE COMMAND COMPLETED
```

Explanation: All transactions associated with class 2 are marked as purged. No further transactions are queued from terminals.

Related reference:

“UPDATE TRAN command” on page 1183

“UPDATE MSNAME command” on page 1078
Chapter 5. QUERY commands

Use the IMS QUERY commands to display information about IMS resources.

The QUERY commands return information based on the keyword specified. All of the QUERY commands are type-2 commands and can be issued from the OM API.

These commands can be issued through TSO SPOC, IBM Management Console for IMS and DB2® for z/OS, the Manage Resources options in the IMS Applications menu, or other user-written programs that issue commands through OM API.

These commands can also be issued to an IMSplex by using the Batch SPOC utility.

The value shown in the QCNT column of the command output has different meanings for different commands, as described in individual QUERY command topics.

QUERY commands are:

- “QUERY AREA command” on page 38
- “QUERY DB command” on page 51
- “QUERY DBDESC command” on page 96
- “QUERY IMS command” on page 109
- “QUERY IMSCON commands” on page 120
- “QUERY IMSPLEX command” on page 262
- “QUERY LE command” on page 273
- “QUERY LTERM command” on page 280
- “QUERY MEMBER command” on page 299
- “QUERY MSLINK command” on page 309
- “QUERY MSNAME command” on page 327
- “QUERY MSPLINK command” on page 334
- “QUERY NODE command” on page 341
- “QUERY ODBM commands” on page 366
- “QUERY OLC command” on page 391
- “QUERY OLREORG command” on page 400
- “QUERY OTMADESC command” on page 407
- “QUERY OTMATI command” on page 420
- “QUERY PGM command” on page 427
- “QUERY PGMDESC command” on page 450
- “QUERY POOL command” on page 465
- “QUERY RM command” on page 486
- “QUERY RTC command” on page 494
- “QUERY RTCDESC command” on page 510
- “QUERY STRUCTURE command” on page 521
- “QUERY TRAN command” on page 526
- “QUERY TRANDESC command” on page 571
- “QUERY USER command” on page 599
- “QUERY USEREXIT command” on page 617
Use the QUERY AREA command, which is a type-2 command, to display information about DEDB areas and area data set information.

Subsections:
- "Environment"
- "Syntax"
- "Keywords" on page 39
- "Usage notes" on page 41
- "Equivalent IMS type-1 commands" on page 43
- "Output fields" on page 43
- "Return, reason, and completion codes" on page 45
- "Examples" on page 46

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) from which the QUERY AREA command and keywords can be issued.

<table>
<thead>
<tr>
<th>Command / Keyword</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY AREA</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OPTION</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SHOW</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>STATUS</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Syntax

```
QUERY AREA
   NAME(*)
   OPTION(REFRESH)
   NAME(areaname)
   NAME(areaname*)
```
Keywords

The following keywords are valid for the QUERY AREA command:

NAME

Specifies the names of the specific areas that are to be processed or the group of areas whose names match the generic or wildcard parameter specified.

If the STATUS filter is not specified, all the area names that match the NAME parameter are returned. The NAME keyword is optional and the default is NAME(*).

OPTION(REFRESH)

Specifies the additional functions to be performed.

REFRESH

Refreshes the control interval information for the sequential dependent space and the independent overflow part of the direct addressable space for the area. OPTION(REFRESH) returns the CI information even if SHOW(CI) is not specified.

OPTION(REFRESH) results in an I/O request that is performed only at the command master IMS if the area is open at the master. If the command is routed to multiple IMS systems in the IMSplex, all non-master IMS systems return local CI information. The age of the local information shown on the non-master IMS systems is at most as old as the value set on the IOVFI= IMS control region startup parameter.

The CI information is returned only if the area is open at the IMS. If the area is not open, blanks will be returned in the output CI columns SDAT, SDAU, LDAT, and LDAU. If the area is not open at the command master IMS, no refresh of the control intervals is performed. The QRY AREA NAME(areaname) SHOW(CI) OPTION(REFRESH) must be routed to the IMS where the area is open to get the current SDEP and IOVF CI information.
If the default NAME(*) is used with the REFRESH keyword, or if large numbers of areas are processed with the REFRESH keyword, performance may be affected depending on the size and number of areas involved. If large areas, numerous areas, or both are involved, the control regions processing the command may appear stopped.

SHOW

Specifies the area output fields to be returned. The area name, the DEDB name, and the area data set information are always returned along with the name of the IMS that created the output for the area and the completion code.

The filters supported with the SHOW keyword are:

ACCTYPE

Returns DEDB area access when the area access has been changed explicitly by an UPDATE AREA START(ACCESS) SET(ACCTYPE()) command. If an area access is not changed explicitly by an UPDATE AREA command, the area access is blank. If none of the areas specified in the NAME() keyword of the QUERY AREA NAME() SHOW(ACCTYPE|ALL) command has an explicit area access value, then the area access (LAcc) output field column is not displayed.

Type of access to the DEDB area, which can be one of the following:

- **BRWS** - Read only
- **EXCL** - Exclusive
- **READ** - Read
- **UPD** - Update

ALL Returns all the output fields.

If global area status is maintained, the QUERY AREA command will return global information from the RM resource structure. The command master IMS returns the status on a separate response line. The area does not have to be defined at the command master.

CI Control intervals.

Returns the total and unused control intervals defined for the sequential dependent space and the total and unused control intervals for the independent overflow part of the direct addressable space.

LOCAL

For output fields that have both local and global values, this option returns only the local values. If used with another SHOW keyword to request a specific output field, this option requests that only the local value of the specified output field is returned. Local output is returned by each IMS that processes the command.

GLOBAL

For output fields that have both local and global values, this option returns only the global values. If used with another SHOW keyword to request a specific output field, this OPTION requests that only the global value of the specified output field is returned. IMS retrieves global information from RM. Global output is returned only by the command master IMS.
If global area status is maintained, the QUERY AREA command will return global information from the RM resource structure. The command master IMS returns the status on a separate response line. The area does not have to be defined at the command master.

STATUS

Local and global area status.

Global status is returned if global area status is maintained in RM. Global status is returned only by command master IMS and is returned on a separate response line.

If the area has an EEQE status, the count of I/O errors or write error EEQE for the area are also returned. If an area’s status is OPEN, that status is not maintained in the RM resource structure.

If global area status is maintained, the QUERY AREA command will return global information from the RM resource structure. The command master IMS returns the status on a separate response line. The area does not have to be defined at the command master.

UTILITY

Returns the utility information about the utility that has the area open. The utility name, the total and available buffers in the private pool, and the utility UOW are returned.

STATUS()

Selects areas for display that match the NAME parameter and possess at least one of the specified area status locally.

The status filter allows for additional filtering by area status. The output returned when the STATUS filter is specified includes the status of the area that caused the area name to be displayed even if the SHOW(STATUS) is not specified.

Status parameters are the same as the values displayed in the QUERY AREA local status output column. See Table 11 on page 42.

Usage notes

The command can only be specified through the Operations Manager (OM) API and can only be processed by DB/DC and DBCTL environments. In addition, the QUERY AREA command is valid on the XRF alternate as well as the RSR tracker.

The command syntax for this command is defined in XML and is available to automation programs which communicate with OM.

How the SHOW keyword on QUERY AREA determines the type of output

The following table provides some examples of how the SHOW keyword determines the type of output returned on the QUERY AREA command.

<table>
<thead>
<tr>
<th>Form of SHOW keyword used</th>
<th>Type of output returned</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHOW(LOCAL)</td>
<td>Only those fields that are local to an IMS system. SHOW(ALL,LOCAL) provides the same output.</td>
</tr>
<tr>
<td>SHOW(GLOBAL)</td>
<td>Only those output fields that are globally maintained, such as data maintained by RM. SHOW(ALL,GLOBAL) provides the same output.</td>
</tr>
</tbody>
</table>

Chapter 5. QUERY commands 41
Table 10. How the SHOW keyword on QUERY AREA determines the type of output (continued)

<table>
<thead>
<tr>
<th>Form of SHOW keyword used</th>
<th>Type of output returned</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHOW(ALL)</td>
<td>All of the output fields for those fields that have both local and global data. Both values are returned in the output.</td>
</tr>
<tr>
<td>SHOW(STATUS,GLOBAL)</td>
<td>Only global STATUS values.</td>
</tr>
<tr>
<td>SHOW(STATUS,LOCAL)</td>
<td>Only local STATUS values.</td>
</tr>
<tr>
<td>SHOW(STATUS)</td>
<td>Both local and global STATUS values.</td>
</tr>
<tr>
<td>SHOW(ALL,GLOBAL)</td>
<td>Only those output fields that are globally maintained, such as data maintained by RM. SHOW(GLOBAL) provides the same output.</td>
</tr>
<tr>
<td>SHOW(ALL,LOCAL)</td>
<td>Only those output fields that are local to an IMS system. SHOW(LOCAL) provides the same output.</td>
</tr>
</tbody>
</table>

QUERY AREA status

The following table lists the local and global area status conditions that may be returned when SHOW(STATUS) is specified.

Table 11. Status conditions for QUERY AREA

<table>
<thead>
<tr>
<th>Status</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEQE</td>
<td>Area has EEQEs.</td>
</tr>
<tr>
<td>IC</td>
<td>Area image copy is active.</td>
</tr>
<tr>
<td>MAS</td>
<td>Area is on a multi-area structure.</td>
</tr>
<tr>
<td>NONE</td>
<td>The area has no global status in the RM resource structure.</td>
</tr>
<tr>
<td>NOTOPEN</td>
<td>Area is not open.</td>
</tr>
<tr>
<td>OFR</td>
<td>Area has online forward recovery in progress to bring it up to current tracking level.</td>
</tr>
<tr>
<td>OPEN</td>
<td>Area is open. Not maintained in the RM resource structure.</td>
</tr>
<tr>
<td>PRELOAD</td>
<td>Area is defined to be preloaded.</td>
</tr>
<tr>
<td>PREOPEN</td>
<td>Area is defined to be preopened.</td>
</tr>
<tr>
<td>QUIESCED</td>
<td>The DEDB area named on the command is currently quiesced by a previous UPDATE DB START(QUIESCE) or UPDATE AREA START(QUIESCE) command.</td>
</tr>
<tr>
<td>QUIESCING</td>
<td>The DEDB area named on the command is currently undergoing quiesce by a previous UPDATE DB START(QUIESCE) or UPDATE AREA START(QUIESCE) command.</td>
</tr>
<tr>
<td>RECALL</td>
<td>Area is in recall.</td>
</tr>
<tr>
<td>RECOVERY</td>
<td>Area recovery in progress.</td>
</tr>
<tr>
<td>RECOVNEEDED</td>
<td>Area needs recovery.</td>
</tr>
<tr>
<td>SAS</td>
<td>Area is on a single area structure.</td>
</tr>
<tr>
<td>SHARED</td>
<td>Area is shared.</td>
</tr>
<tr>
<td>STA</td>
<td>The area is started globally.</td>
</tr>
<tr>
<td>STOACC</td>
<td>The area is stopped for access globally and is offline.</td>
</tr>
<tr>
<td>STOPPED</td>
<td>The area is stopped locally or globally.</td>
</tr>
<tr>
<td>UTIL</td>
<td>Area is open by a utility.</td>
</tr>
<tr>
<td>VSO</td>
<td>Area is a VSO area.</td>
</tr>
</tbody>
</table>
The following table lists the ADS status conditions that can be returned for an ADS associated with an AREA when SHOW(STATUS) is specified.

Table 12. ADS status conditions for QUERY AREA

<table>
<thead>
<tr>
<th>Status</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>COPY-PHASE</td>
<td>The CREATE utility is active on this ADS and is in the COPY phase. The CREATE utility must complete before any action can be processed for the ADS.</td>
</tr>
<tr>
<td>FORMAT-PHASE</td>
<td>The CREATE utility is active on this ADS and is in the FORMAT phase. The CREATE utility must complete before any action can be processed for the ADS.</td>
</tr>
<tr>
<td>LONGBUSY</td>
<td>Area in long busy state or long busy recovery mode.</td>
</tr>
<tr>
<td>PREOPEN-FAIL</td>
<td>XRF PREOPEN failed for this ADS.</td>
</tr>
<tr>
<td>SEVERE-ERROR</td>
<td>The ADS had a severe I/O error (write error to 2nd CI).</td>
</tr>
<tr>
<td>UNAVAIL</td>
<td>The ADS is marked unavailable because of I/O errors.</td>
</tr>
</tbody>
</table>

Equivalent IMS type-1 commands

The following table shows variations of the QUERY AREA command and the type-1 IMS commands that perform similar functions.

Table 13. Type-1 equivalents for the QUERY AREA command

<table>
<thead>
<tr>
<th>QUERY AREA command</th>
<th>Similar IMS type-1 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY AREA</td>
<td>/DIS AREA area1...arean</td>
</tr>
</tbody>
</table>

Output fields

The following table shows the QUERY AREA output fields. The columns in the table are as follows:

- **Short label**: Contains the short label generated in the XML output.
- **Long label**: Contains the long label generated in the XML output.
- **Keyword**: Identifies keyword on the command that caused the field to be generated. `error` appears for output fields that can appear for a nonzero completion code. N/A (not applicable) appears for output fields that are always returned.
- **Scope**: Identifies the scope of the output field.
- **Meaning**: Provides a brief description of the output field.

Table 14. Output fields for QUERY AREA command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADS</td>
<td>ADSName</td>
<td>N/A</td>
<td>N/A</td>
<td>ADS name. The Area data set name or names associated with the AREA.</td>
</tr>
<tr>
<td>AREA</td>
<td>AreaName</td>
<td>N/A</td>
<td>N/A</td>
<td>Area name. The Area name is always returned.</td>
</tr>
<tr>
<td>Short label</td>
<td>Long label</td>
<td>Keyword</td>
<td>Scope</td>
<td>Meaning</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>---------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>N/A</td>
<td>Completion code. The completion code indicates whether IMS was able to process the command for the specified resource. The completion code is always returned. See the return, reason, and completion codes table for QUERY AREA.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>error</td>
<td>LCL</td>
<td>The completion code text that briefly explains the meaning of the completion code. The completion code text can be up to 32 bytes long.</td>
</tr>
<tr>
<td>DB</td>
<td>DBName</td>
<td>N/A</td>
<td>N/A</td>
<td>DEDB name. The DEDB name associated with the Area.</td>
</tr>
<tr>
<td>LDAT</td>
<td>Dir-T</td>
<td>CI</td>
<td>LCL</td>
<td>Local value of the total control intervals for the independent overflow part of the direct addressable space. This value only appears if the area is open.</td>
</tr>
<tr>
<td>LDAU</td>
<td>Dir-U</td>
<td>CI</td>
<td>LCL</td>
<td>Local value of the unused control intervals for the independent overflow part of the direct addressable space. This value only appears if the area is open and the IOVF count ITASK was not disabled when IOVFI=1 on the IMS Control Region startup procedure was specified. When the command is processed on an RSR tracking IMS system, no information will be returned. This value is refreshed during command processing if OPTION(IOVF) was entered on the QUERY AREA command. If OPTION(IOVF) was not specified, the value reflects the updated value from the last IOVF count ITASK.</td>
</tr>
<tr>
<td>LEQ</td>
<td>EqCnt</td>
<td>STATUS</td>
<td>LCL</td>
<td>Local value of the total control intervals for the independent overflow part of the direct addressable space. This value only appears if the area is open.</td>
</tr>
<tr>
<td>LPBA</td>
<td>PBuf-A</td>
<td>UTILITY</td>
<td>LCL</td>
<td>Available number of private buffers in private pool.</td>
</tr>
<tr>
<td>LPBT</td>
<td>PBuf-T</td>
<td>UTILITY</td>
<td>LCL</td>
<td>Total number of private buffers in private pool.</td>
</tr>
<tr>
<td>LSDT</td>
<td>SDep-T</td>
<td>CI</td>
<td>LCL</td>
<td>Local value of the total control intervals defined for the sequential dependent space. This value only appears if the area is open and SDEPs have been defined.</td>
</tr>
<tr>
<td>LSDU</td>
<td>SDep-U</td>
<td>CI</td>
<td>LCL</td>
<td>Local value of the unused control intervals defined for the sequential dependent space. This value only appears if the area is open, SDEPs have been defined, and unused SDEPs are available.</td>
</tr>
<tr>
<td>LSTT</td>
<td>LclStat</td>
<td>STATUS</td>
<td>LCL</td>
<td>Local area status. All area status conditions that apply are returned. Area status can be one or more of the status conditions described in Table 11 on page 42.</td>
</tr>
<tr>
<td>LUOW</td>
<td>UOW</td>
<td>UTILITY</td>
<td>LCL</td>
<td>The current utility UOW for HSREROGR and HSSP, otherwise it is blank.</td>
</tr>
<tr>
<td>LUTIL</td>
<td>UtilName</td>
<td>UTILITY</td>
<td>LCL</td>
<td>Utility name that has area OPEN.</td>
</tr>
</tbody>
</table>
Table 14. Output fields for QUERY AREA command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>N/A</td>
<td>IMSplex member that built the output line. IMS identifier of the IMS that built the output. The IMS identifier is always returned.</td>
</tr>
<tr>
<td>STT</td>
<td>Status</td>
<td>STATUS, GLOBAL</td>
<td>GBL</td>
<td>Global area status. Status can be:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>STA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>STO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>STOACC</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

An IMS return and reason code is returned to OM by the QUERY AREA command. The OM return and reason codes that may be returned as a result of the QUERY AREA command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 15. Return and reason code for the QUERY AREA command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The QUERY AREA command completed successfully.</td>
</tr>
<tr>
<td>X'00000004'</td>
<td>X'00001010'</td>
<td>No resources were found to be returned. The resource name(s) specified may be invalid, or there were no resources that match the filter specified.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000200C'</td>
<td>The QUERY AREA command is not processed because no resources matched any status specified on the STATUS() keyword.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002014'</td>
<td>The QUERY AREA command is not processed because an invalid character is found in the area name parameter.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002040'</td>
<td>More than one filter or keyword value is specified on the QUERY AREA command. Either more than one keyword or an invalid combination of filters was specified. Check the input command and reenter the correct combinations.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003000'</td>
<td>The QUERY AREA command was successful for at least one resource name. The QUERY AREA command was not successful for one or more resource names. The completion code indicates the reason for the error with the resource name. The completion codes that can be returned by the QUERY AREA command are listed in Table 16 on page 46.</td>
</tr>
</tbody>
</table>

Chapter 5. QUERY commands 45
Table 15. Return and reason code for the QUERY AREA command (continued)

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>The QUERY AREA command was not successful for all the resource name(s) specified. The completion code indicates the reason for the error with the resource name. The completion codes that can be returned by the QUERY AREA command are listed in Table 16.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004024'</td>
<td>The QUERY AREA command cannot be processed on a non-Fast Path system.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004025'</td>
<td>The QUERY AREA command is rejected because no Fast Path areas are defined.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005004'</td>
<td>The QUERY AREA command processing terminated as a DFSOCMD response buffer could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005FFF'</td>
<td>The QUERY AREA command processing terminated because of an internal error.</td>
</tr>
</tbody>
</table>

The following table includes an explanation of the completion codes. Errors unique to the processing of QUERY AREA command are returned as completion codes. A completion code is returned for each action against an individual resource.

Table 16. Completion codes for the QUERY AREA command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The QUERY AREA command completed successfully for the resource.</td>
</tr>
<tr>
<td>10</td>
<td>Resource not found. The resource name is unknown to the client that is processing the request. The resource name might have been typed in error or the resource might not be active at this time. Confirm that the correct spelling of the resource name is specified on the command.</td>
</tr>
</tbody>
</table>

Examples

The following are examples of the QUERY AREA command:

Example 1 for QUERY AREA command

In this example, the command returns the CI and STATUS information for the area, DB21AR0, from all the IMS systems in the IMSPlex. Any ADS information, if available, is also returned by each IMS.

TSO SPOC input:
QRY AREA NAME(DB21AR10) SHOW(STATUS,CI)

TSO SPOC output:

<table>
<thead>
<tr>
<th>AreaName</th>
<th>ADSName</th>
<th>MbrName</th>
<th>DBName</th>
<th>CC</th>
<th>SDep-T</th>
<th>SDep-U</th>
<th>Dir-T</th>
<th>Dir-U</th>
<th>EQCnt</th>
<th>LclStat</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB21AR0</td>
<td>IMS2</td>
<td>DEDBJN21</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PREOPEN,NOTOPEN</td>
</tr>
<tr>
<td>DB21AR0</td>
<td>SYS3</td>
<td>DEDBJN21</td>
<td>0</td>
<td>1303</td>
<td>1302</td>
<td>74</td>
<td>74</td>
<td></td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

OM API input:
CMD(QRY AREA NAME(DB21AR10) SHOW(STATUS,CI))
Example 2 for QUERY AREA command

In this example, the command returns all the areas that match the wildcard name and have a status of SHARED. The status is also returned. The ADS information for the AREAs is also returned if it is available. Command response lines are not returned from IMS2 because no AREAs match the status specified. A return and reason code is returned from IMS2.

TSO SPOC input:
QRY AREA NAME(DB21AR1*) STATUS(SHARED)

TSO SPOC output:
Log for . . . : QRY AREA NAME(DB21AR1*) STATUS(SHARED)
IMSplex : PLEX1
Routing :
Return code . . . : 0200000C
Reason code . . . : 00003000
Command master . . : IMS2

Routing :

Return code . . . : 0200000C
Reason code . . . : 00003000

OM API input:
CMD(QRY AREA NAME(DB21AR1*) STATUS(SHARED))

OM API output:
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.2.0</omvsn>
<xmlvsn>1</xmlvsn>
<stotime>2003.132 16:13:37.940959</stotime>
<staseq>B968A2538A73A707</staseq>
<stoseq>B968A2538A9DF027</stoseq>
<rqsttkn1>USRT005 10091337</rqsttkn1>
<rc>0200000C</rc>
<rsn>00003000</rsn>
</ctl>
<cmderr>
<mbr name="IMS2">
<typ>IMS</typ>
<styp>DBDC</styp>
<rc>00000008</rc>
<rsn>0000200C</rsn>
<rsntext>No resources found</rsntext>
</mbr>
</cmderr>
<cmd>
<master>IMS2</master>
<userid>USRT005</userid>
<verb>QRY</verb>
<kwd>AREA</kwd>
<input>QRY AREA NAME(DB21AR1*) STATUS(SHARED)</input>
</cmd>
<cmdrphdr>
<hdr slbl="AREA" llbl="AreaName" scope="LCL" sort="a" key="1"
scroll="no" len="8" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="ADS" llbl="ADSName" scope="LCL" sort="a" key="2" scroll="no"
len="8" dtype="CHAR" align="left" skipb="yes" />
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" key="3" scroll="no"
len="8" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="DB" llbl="DBName" scope="LCL" sort="n" key="0" scroll="no"
len="8" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0" scroll="yes"
len="4" dtype="INT" align="right" skipb="no" />

Example 3 for QUERY AREA command

In this example, the QUERY AREA SHOW(STATUS) command also returns the global status for the area. The global status is returned by the master IMS on a separate global response line.

TSO SPOC input:
QRY AREA NAME(DB21AR0, DB21AR1) SHOW(STATUS)

TSO SPOC output:

<table>
<thead>
<tr>
<th>AreaName</th>
<th>ADSName</th>
<th>MbrName</th>
<th>DBName</th>
<th>CC</th>
<th>Status</th>
<th>LclStat</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB21AR0</td>
<td>IMS1</td>
<td>DEDBJN21</td>
<td>0</td>
<td>STOPPED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DB21AR0</td>
<td>IMS1</td>
<td>DEDBJN21</td>
<td>0</td>
<td>STOPPED,NOTOPEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DB21AR0</td>
<td>IMS2</td>
<td>DEDBJN21</td>
<td>0</td>
<td>STOPPED,NOTOPEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DB21AR1</td>
<td>IMS1</td>
<td>DEDBJN21</td>
<td>0</td>
<td>STA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DB21AR1</td>
<td>IMS1</td>
<td>DEDBJN21</td>
<td>0</td>
<td>OPEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DB21AR1</td>
<td>IMS1</td>
<td>DEDBJN21</td>
<td>0</td>
<td>OPEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DB21AR1</td>
<td>IMS2</td>
<td>DEDBJN21</td>
<td>0</td>
<td>OPEN</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example 4 for QUERY AREA command

In this example, the QUERY AREA SHOW(STATUS) command also returns the global status for the area. The global status is returned by the master IMS on a separate global response line.

TSO SPOC input:
QRY AREA NAME(DB21AR0, DB21AR1) SHOW(STATUS)

TSO SPOC output:

<table>
<thead>
<tr>
<th>AreaName</th>
<th>ADSName</th>
<th>MbrName</th>
<th>DBName</th>
<th>CC</th>
<th>Status</th>
<th>LclStat</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB21AR0</td>
<td>IMS1</td>
<td>DEDBJN21</td>
<td>0</td>
<td>STOPPED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DB21AR0</td>
<td>IMS1</td>
<td>DEDBJN21</td>
<td>0</td>
<td>STOPPED,NOTOPEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DB21AR0</td>
<td>IMS2</td>
<td>DEDBJN21</td>
<td>0</td>
<td>STOPPED,NOTOPEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DB21AR1</td>
<td>IMS1</td>
<td>DEDBJN21</td>
<td>0</td>
<td>STA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DB21AR1</td>
<td>IMS1</td>
<td>DEDBJN21</td>
<td>0</td>
<td>OPEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DB21AR1</td>
<td>IMS1</td>
<td>DEDBJN21</td>
<td>0</td>
<td>OPEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DB21AR1</td>
<td>IMS2</td>
<td>DEDBJN21</td>
<td>0</td>
<td>OPEN</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example 5 for QUERY AREA command

The following example is of a query of the databases that have a status of quiesced.
Example 6 for QUERY AREA command

Example 7 for QUERY AREA command

Related concepts:
- How to interpret CSL request return and reason codes (System Programming APIs)

Related reference:
- /DISPLAY AREA command (Commands)
QUERY DB command

Use the QUERY DB command, which is a type-2 command, to display information about databases.

Subsections:
- “Environment”
- “Syntax”
- “Keywords” on page 52
- “Usage notes” on page 59
- “Equivalent IMS type-1 commands” on page 60
- “Output fields” on page 60
- “Return, reason, and completion codes” on page 69
- “Examples” on page 71

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) from which the QUERY DB command and keywords can be issued.

<table>
<thead>
<tr>
<th>Command / Keyword</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY DB</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SHOW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STATUS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TYPE</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Syntax
Keywords

The following keywords are valid for the QUERY DB command:

NAME()

Specifies the 1- to 8-character name of the database (DBD name). Wildcards can be specified in the name. The name is a repeatable parameter. The default is NAME(*), which returns all database resources.

If the STATUS filter is not specified, all the database names that match the NAME parameter are returned.

The database names that match the generic or wildcard parameters are processed. Response lines are returned for all the databases names that are processed.

The database name specified can be a HALDB master or a HALDB partition. If the database name is the HALDB master, response lines are returned for the HALDB master and all of its partitions. If the database name is the HALDB partition, response lines are returned for the HALDB master and the partition name if the HALDB master has not been taken offline.

If the database name specified is a DEDB name, response lines are returned for the DEDB name and all the DEDB areas.

DEDB area information is not returned if SHOW(DEFN) is specified.

SHOW()

Specifies the database output fields to be returned. The database name and type are always returned, along with the name of the IMS that created the output for the database and the completion code. The filters supported with the SHOW keyword are:

ACCTYPE

Returns the type of access to the database or the area.
If SHOW(ACCTYPE) is specified, and IMS is not using the IMSRSC repository and global DB status is maintained, the global access type from the resource structure is returned.

If SHOW(ACCTYPE) is specified, the command master IMS is using the repository, and global status is also enabled, the global access type from the resource structure is not returned. The access type from the repository is returned.

The access type from the repository is returned if SHOW(DEFN), SHOW(DEFN,ACCTYPE), SHOW(DEFN,GLOBAL), or SHOW(DEFN,ACCTYPE,GLOBAL) is specified.

ALL

Returns all information about the database itself. Other SHOW keywords can be specified to return information about resources related to the database.

The command master IMS returns global information from the RM resource structure on a separate line, even if the database is not defined at the command master.

DEFN

Specifies that the resource definitions are to be returned.

The database attributes that can be returned are ACCTYPE, RESIDENT, the repository create and update time stamps, and the IMS runtime create, update, import, and access time stamps.

If SHOW(DEFN) is specified without any other SHOW filters or with the IMSID filter, all the definitional attributes, including those defined globally in the repository and those defined locally in the IMS system, are returned. The runtime resource definitions from the IMS system are returned by each IMS that receives the command. The stored resource definitions in the repository are returned by the command master IMS if the command master IMS is enabled to use the repository.

The command master IMS returns a response line for each generic stored resource definition obtained from the repository. This response line displays the attributes of the generic resource definition. When SHOW(DEFN) is specified without the IMSID filter and all the IMS systems have the same attribute values defined, only the response line for the generic definition is returned. The IMS IDs of the IMS systems that have the stored resource definition defined are not returned. If an IMS system has a stored resource definition with one or more attribute values that differ from the generic stored resource definition, an additional response line is returned for each IMS that has different attribute values.

If SHOW(DEFN,LOCAL) is specified, the runtime resource definitions from the IMS system are returned by each IMS that received the command.

If SHOW(DEFN,GLOBAL) is specified, the stored resource definitions from the repository are returned by the command master IMS. SHOW(DEFN,GLOBAL) is valid only when the command master IMS is enabled to use the repository.

If SHOW(DEFN) is specified with other parameters, only the requested definitional attributes are returned. For example, if SHOW(DEFN,TIMESTAMP) is specified, only the time stamps are returned.
Restrictions:

- You cannot specify SHOW(DEFN) with DEFNTYPE, MODEL, STATUS, WORK, or PGM.
- When querying database information from the repository, the SHOW(DEFN) filter is not supported when used with either the TYPE or STATUS filter. The runtime filters of TYPE and STATUS are not valid with SHOW(DEFN), SHOW(DEFN,GLOBAL), SHOW(DEFN,LOCAL), SHOW(DEFN,IMSID), SHOW(DEFN,IMSID,GLOBAL) or SHOW(DEFN,IMSID,LOCAL).
- The AreaName, LclStat, LModelName, LModelType, and LDefnType columns, which are returned on the QUERY DB SHOW(ALL) command, are not returned with SHOW(DEFN).
- The Repo and IMSid columns, which are returned with SHOW(DEFN), are not returned with SHOW(ALL).

If SHOW(DEFN,IMSID) is specified, a response line is returned for the generic stored resource definition and an additional response line is returned for each IMS that has the resource defined in the repository, regardless of whether their stored resource definitions are the same as the generic resource definition. There will be some performance overhead for SHOW(DEFN,IMSID) because a list of the IMS systems that have the resource defined is also to be obtained, along with the resource definition.

DEFNTYPE

Returns the definition type. This is how the resource was defined.

GLOBAL

For output fields that have both local and global values, this option returns only the global values. If used with another SHOW keyword to request a specific output field, this option requests that only the global value of the specified output field is returned. IMS retrieves global status information from RM. Global output is returned only by the command master IMS.

The command master IMS returns global status information from the RM resource structure on a separate line, even if the database is not defined at the command master.

If the database name is a HALDB master, global information is returned only for the master database, not for the HALDB partitions associated with the master. If the database name specified is a DEDB, global information is returned only for the DEDB, not the DEDB areas associated to the DEDB.

If SHOW(GLOBAL) is specified without SHOW(DEFN), the repository information is not returned. If GSTSDB=Y is set in IMS, SHOW(GLOBAL) returns global status information from the RM resource structure.

If SHOW(GLOBAL,DEFN) is specified, the global resource definitions from the repository are returned by the command master IMS.

SHOW(GLOBAL,DEFN) is valid only when the command master IMS is enabled to use the repository.

IMSID

Returns the IMSIDs of the IMS systems whose resource lists contain the resource name specified.

SHOW(IMSID) is processed only by the command master IMS and is valid only when command master IMS is enabled to use the repository.
If SHOW(IMSID) is specified with the DEFN filter, a separate line is returned for each IMS that has the resource defined, along with the stored resource definitions.

If SHOW(IMSID) is specified without the DEFN filter, a separate line is returned for each IMS that has the resource defined, along with the resource name. No resource definitions are returned.

SHOW(IMSID) cannot be specified with any other SHOW filters other than DEFN and GLOBAL. If SHOW(IMSID,GLOBAL) is specified, GLOBAL is ignored; that is, SHOW(IMSID,GLOBAL) is treated as SHOW(IMSID). SHOW(DEFN,IMSID,LOCAL) is treated as SHOW(DEFN,LOCAL).

LOCAL
For output fields that have both local and global values, this option returns only the local values. If used with another SHOW keyword to request a specific output field, this option requests that only the local value of the specified output field is returned. Local output is returned by each IMS that processes the command.

SHOW(DEFN,LOCAL) returns only the local definitional attributes from the IMS system that processes the command.

MODEL
The model name and model type used to create this resource. The model name and model type are blanks for databases generated in the MODBLKS data set. The CREATE command specified without the LIKE keyword creates a resource using the default descriptor as a model. The default descriptor is either the IMS descriptor DFSDSDB1 or user-defined. The CREATE command specified with the LIKE keyword creates a resource using a model. The resource is created with all the same attributes as the model. Attributes set explicitly by the CREATE command override the model attributes. The model type can either be a descriptor (DESC) or a resource (RSC). The model name and model type are for reference only. The resource attributes might not match the model, if attributes are overridden by CREATE or UPDATE command values, or the model is updated later. The model name and model type can be used to identify resources that were created with the same model. The model name and model type of a resource are exported and imported. The IMPORT command does not use the model name and model type when creating a resource.

PGM
The names of the programs that reference the specified database.

The QRY DB SHOW(PGM) command will not show the area names if the DB is a DEDB or the partition names if the DB is a HALDB master.

The QRY DB SHOW(PGM) command will not show dynamic (DOPT) PSBs and database names for which the DOPT PSB has intent.

Note: You cannot specify this filter with other SHOW filters; you must specify SHOW(PGM) individually.

RESIDENT
Returns the local runtime value for the resident option. The value returned is always RESIDENT(Y) for Fast Path DEDBs. The resident option definition is also shown, if it is different from the runtime value. The RESIDENT(Y) option takes effect at the next restart, unless the database
was created or updated as RESIDENT(Y) after the checkpoint from which this IMS is performing emergency restart.

SNDX

Returns the names of the associated Fast Path secondary index databases for a DEDB database.

Restriction: You cannot specify this filter with other SHOW filters. You must specify SHOW(SNDX) individually.

STATUS

Returns the local and global database status.

If global status is maintained, the command master IMS returns global information from the RM resource structure on a separate line. The global status information is returned even if the database is not defined at the command master. For a description of the possible database status returned, see the STATUS keyword in the Output fields table under “Output fields” on page 60.

TIMESTAMP

The creation time (TIMECREATE), last update time (TIMEUPDATE), last access time (TIMEACCESS) time, and import time (TIMEIMPORT) time stamps are returned. The time is returned in local time in the format YYYY:JJJ:HH:MM:SS:TH, where:

- YYYY is the year.
- JJJ is the Julian day (001 - 365).
- HH is the hour (01 - 24).
- MM is the minute (00 - 59).
- SS is the seconds (00 - 59).
- TH is the tenths and hundredths of a second (00 - 99).

VERSION

Returns the version number of the database that is currently active in the online IMS system. The active version number of a database is stored in the database control blocks that are loaded by the online IMS system. The control blocks define the actual physical structure of the database to the online IMS system.

The possible version numbers range from 0 - 2147483647.

You cannot specify this filter with other SHOW filters; you must specify SHOW(VERSION) individually.

SHOW(VERSION) is valid only for the following database access types:

- HDAM
- HIDAM
- PHDAM
- PHIDAM
- DEDB
- DEDB

If SHOW(VERSION) is specified for an unsupported database access type, completion code BD is returned in the CC column of the output. This completion code indicates that the query is invalid for the access type of the database.

If SHOW(VERSION) is specified for a HALDB master, the output includes response lines for the HALDB master name and for each of its partitions.
Each partition of the HALDB inherits the version number from the HALDB master, so each response line displays the same version number.

If SHOW(VERSION) is specified for a HALDB partition, the output lists a response line for just that partition. The version number that is displayed is that of the HALDB master. If the partition is disconnected from the HALDB master, such as might happen when the /DBR command is in effect on the database, completion code 10 is returned in the CC column of the output to indicate that no resource was found.

If SHOW(VERSION) is specified for a DEDB, the output lists a response line for only the DEDB. Area information is not listed in the output response.

WORK
Work is in progress for the database that is specified on the NAME parameter and its associated resources. The QRY DB SHOW(WORK) command can be issued before a DELETE, IMPORT or UPDATE command to check for any work in progress for the specified database and any of its associated resources. Any work in progress might cause the subsequent DELETE, IMPORT or UPDATE command to fail. The QRY DB SHOW(WORK) command returns the status for the work in progress for the database that is specified on the NAME parameter.

Specifying SHOW(WORK) with NAME(*) might take a long time to process.

The QRY DB SHOW(WORK) command for a HALDB master database will show the master name if the master has work in progress. The HALDB partition names are shown only if the partitions have work in progress.

Notes:
1. You cannot specify this filter with other SHOW filters; you must specify SHOW(WORK) individually.
2. The QRY DB SHOW(WORK) command is not valid on an XRF alternate.

STATUS()
Selects databases for display that match the NAME parameter and possess at least one of the specified database statuses. This selection allows for additional filtering by database status.

The output returned when the STATUS filter is specified includes the status of the database that caused the database name to be displayed even if SHOW(STATUS) is not specified.

ALLOCF
Sets the STATUS() filter to return information about databases that have allocation failure.

ALLOCS
Sets the STATUS() filter to return information about databases that are allocated successfully.

BACKOUT
Sets the STATUS() filter to return information about databases for which incomplete backout exists that prevents the use of the databases.

EEQE
Sets the STATUS() filter to return information about databases for which one or more extended error queue elements exist.
LOCK
Sets the STATUS() filter to return information about databases that are locked.

NOTINIT
Sets the STATUS() filter to return information about databases that are not initialized and therefore cannot be used.

NOTOPEN
Sets the STATUS() filter to return information about databases that are not open.

OFR
Sets the STATUS() filter to return information about databases that have online forward recovery in progress to bring them to the current tracking level.

OLR
The QUERY DB STATUS(OLR) command displays the status of all 'authorized' partitions with HALDB OLR in progress. The rate information is not returned. Instead, the rate information is returned on the QUERY OLREORG command output. A partition can be authorized by issuing a /START DB partname OPEN or UPDATE DB NAME(partname) OPTION(OPEN) command or by accessing the partition from an application. The SSYS record from a RECON listing can be used to determine whether a partition is authorized and to which subsystem.

OPEN
Sets the STATUS() filter to return information about databases that are open.

QUIESCED
Sets the STATUS() filter to return information about databases that are currently quiesced by a previous UPDATE DB START(QUIESCE) command.

QUIESCING
Sets the STATUS() filter to return information about databases that are undergoing quiesce by a previous UPDATE DB START(QUIESCE) command.

RECALL
Sets the STATUS() filter to return information about databases for which database recalls are in progress.

RECOV
Sets the STATUS() filter to return information about databases for which database recovery is in progress.

RNL
Sets the STATUS() filter to return information about DEDB databases for which randomizers are not loaded.

STOACC
Sets the STATUS() filter to return information about databases that are stopped for access locally or globally and are offline. The SHOW(STATUS) keyword on the QUERY DB command returns a status of STOACC for a DEDB. A status of STOACC indicates that the DEDB is stopped from further access because of a prior /DBR DB or UPDATE DB STOP(ACCESS) command.
STOSCHD
Sets the STATUS() filter to return information about databases that are stopped locally.

STOUPDS
Sets the STATUS() filter to return information about databases that are stopped for updates locally.

TYPE()
Selects databases for display that match the NAME parameter and specific TYPE filter. The supported TYPE filters are:
- DEDB
- DHISNDX (refers to Fast Path secondary index databases)
- DLI
- MSDB
- PART
- PHDAM
- PHIDAM
- PSINDEX

TYPE can be specified with the STATUS filter. If both TYPE and STATUS filters are specified, a response line is returned for each database that matches the NAME parameter and the TYPE and STATUS filters specified.

Usage notes
The command can be specified only through the OM API and can be processed only in DB/DC and DBCTL environments. In addition, QUERY DB is valid on the XRF alternate as well as the RSR tracker.

The command syntax for QUERY DB is defined in XML and is available to automation programs that communicate with OM.

When you enter this command, the database name can be an existing non-HALDB, a HALDB master, or a HALDB partition. A command against a HALDB partition operates exactly like a command against a non-HALDB except for the /START DB command and the UPDATE DB START(ACCESS) command. A HALDB partition is not allocated during the command unless it was previously authorized but not allocated, the OPEN keyword was specified, or the partition has EEQEs. The partition is allocated at first reference.

The HALDB partition reflects conditions such as STOPPED (shown as STOACC or STOSCHD or STOUPDS on QUERY DB), LOCKED, or NOTOPEN. When a HALDB partition is stopped, it must be explicitly started again. The type-1 commands with the keyword ALL, type-2 commands with NAME(*), and commands against a HALDB master do not change the STOPPED (shown as STOACC, STOSCHD or STOUPDS on QUERY DB) and LOCKED indicators in each HALDB partition.

When the command target is a HALDB master, processing acts on all HALDB partitions. For example, if the IMS command is /DBR on the HALDB master, all of the HALDB partitions are closed, deallocated, and deauthorized. On a /DISPLAY DB command, only the HALDB master displays STOPPED (each HALDB partition does not display STOPPED unless it was itself stopped). If a /DBR command was
issued against a HALDB master, the display output of a /DISPLAY DB command shows the HALDB master (as STOPPED), but does not display the status of the partitions.

Each partition inherits the access limitations of its HALDB master. If the /DBD command is issued against a HALDB master, all of its partitions close. A subsequent reference to any of the partitions results in the partition opening for input, although the partition's access might be UPDATE or EXCLUSIVE. The DBRC authorization state reflects the limited access.

If you want to display information about resource definitions, specify SHOW(DEFN). If you want to know which IMS systems have the resource defined and also know the attributes or resource definitions at each IMS system, specify SHOW(DEFN,IMSID). If you want to know which IMS systems have the resource defined, specify SHOW(IMSID).

Equivalent IMS type-1 commands

The following table shows variations of the QUERY DB command and the type-1 IMS commands that perform similar functions.

<table>
<thead>
<tr>
<th>QUERY DB command</th>
<th>Similar IMS type-1 commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY DB</td>
<td>/DIS DB dbname1...dbnamen</td>
</tr>
</tbody>
</table>

Output fields

The following table shows the QUERY DB output fields. The columns in the table are as follows:

- **Short label**
 - Contains the short label generated in the XML output.

- **Long label**
 - Contains the long label generated in the XML output.

- **Keyword**
 - Identifies the keyword on the command that caused the field to be generated. N/A appears for output fields that are always returned. error appears for output fields that are returned only in case of an error.

- **Scope**
 - Identifies the scope of the output field.

- **Meaning**
 - Provides a brief description of the output field.
Table 19. Output fields for QUERY DB command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC</td>
<td>Acc</td>
<td>ACCTYPE, GLOBAL</td>
<td>GBL</td>
<td>Global access type information from RM, which can be one of the following values:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BRWS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Database has global access type of BRWS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EXCL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Database has global access type of EXCL.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>READ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Database has global access type of READ.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UPD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Database has global access type of UPD.</td>
</tr>
<tr>
<td>AREA</td>
<td>AreaName</td>
<td>N/A</td>
<td>N/A</td>
<td>Area name. The area name is returned if there are one or more response lines for DEDB areas in the output.</td>
</tr>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>N/A</td>
<td>Completion code. The completion code indicates whether IMS was able to process the command for the specified resource. The completion code is always returned. Refer to the return, reason, and completion codes for QUERY DB.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>error</td>
<td>LCL</td>
<td>Completion code text that briefly explains the meaning of the non-zero completion code.</td>
</tr>
<tr>
<td>DB</td>
<td>DBName</td>
<td>DB</td>
<td>N/A</td>
<td>Database name.</td>
</tr>
<tr>
<td>DFNT</td>
<td>LDefnType</td>
<td>DEFNTYPE</td>
<td>N/A</td>
<td>Definition type, which can be one of the following values:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CREATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Defined by a CREATE command.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IMPORT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Defined by the IMPORT command.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IMS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Defined by IMS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MODBLKS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Defined by system definition in the MODBLKS data set.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UPDATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Defined by system definition in the MODBLKS data set, but changed into a dynamic resource by the UPDATE command.</td>
</tr>
<tr>
<td>IMSID</td>
<td>IMSid</td>
<td>IMSID</td>
<td>GBL</td>
<td>Returns from the repository the IMSIDs that have resource defined.</td>
</tr>
</tbody>
</table>
Table 19. Output fields for QUERY DB command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>LACC</td>
<td>LAcc</td>
<td>ACCTYPE</td>
<td>LCL</td>
<td>Type of access to database or area, which can be one of the following values:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BRWS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The database is available for read-only processing on this IMS subsystem. The only programs that can use the database on this subsystem are those that have a PCB processing option of GO (PROCOPT=GO). Programs that access the data using the GO processing option might see uncommitted data since a sharing IMS subsystem could be updating the database. The database is opened for read-only processing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EXCL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The named database is to be used exclusively by this IMS subsystem. This exclusive access is guaranteed only when the database is registered to DBRC.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>READ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The database is available for read-only processing in this IMS subsystem. Programs with update intent can be scheduled, but cannot update the database. Access type READ differs from access type BRWS in that the data is read with integrity (locking is performed) and all programs can access the data, not just those with a processing option of GO. The database is opened for read-only processing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UPD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The database is available for update as well as read processing in the IMS subsystem.</td>
</tr>
<tr>
<td>LRSNNT</td>
<td>LRsnt</td>
<td>ALL,</td>
<td>LCL</td>
<td>Local runtime value of the resident option. Indicates whether the database DMB resides in local storage.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RESIDENT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The DMB associated with the named database resource is not made resident in storage. If a database is defined as resident but encounters an error during IMS restart, N is set. The DMB is loaded at scheduling time.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The DMB associated with the named database resource is made resident in storage at the next IMS restart. At the next IMS restart, IMS loads the DMB and initializes it. A resident database is accessed from local storage, which eliminates I/O to the ACBLIB.</td>
</tr>
<tr>
<td>LSTT</td>
<td>LclStat</td>
<td>STATUS</td>
<td>LCL</td>
<td>Local database status. All database status conditions that apply are returned. Database status can be one or more of the status conditions described in Table 20 on page 66.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>N/A</td>
<td>IMSplex member that built the output line. The IMS identifier of the IMS that built the output. The IMS identifier is always returned.</td>
</tr>
<tr>
<td>MDLN</td>
<td>LModelName</td>
<td>MODEL</td>
<td>N/A</td>
<td>Model name. Name of the resource or descriptor that is used as a model to create this resource. DFSDSDB1 is the IMS descriptor name for databases.</td>
</tr>
<tr>
<td>MDLT</td>
<td>LModelType</td>
<td>MODEL</td>
<td>N/A</td>
<td>Model type, either RSC or DESC. RSC means that the resource was created by using another resource as a model. DESC means that the resource was created by using a descriptor as a model.</td>
</tr>
</tbody>
</table>
Table 19. Output fields for QUERY DB command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAR</td>
<td>PartName</td>
<td>N/A</td>
<td>N/A</td>
<td>HALDB partition name. The partition name is returned if there is one or more response lines for HALDB partitions in the output.</td>
</tr>
<tr>
<td>PGM</td>
<td>LPgmName</td>
<td>PGM</td>
<td>LCL</td>
<td>Program name, from the local IMS, that references the database.</td>
</tr>
<tr>
<td>RACC</td>
<td>Acc</td>
<td>DEFN</td>
<td>GBL</td>
<td>Access type information from the repository if SHOW(DEFN) is specified and the repository is enabled.</td>
</tr>
<tr>
<td>REPO</td>
<td>Repo</td>
<td>DEFN</td>
<td>GBL</td>
<td>Indicates whether the information about the line includes stored resource definitions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y Indicates repository definitions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(blank) Indicates local definitions.</td>
</tr>
<tr>
<td>RRSDNT</td>
<td>Rsdnt</td>
<td>DEFN,</td>
<td>GBL</td>
<td>Resident value from the repository.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RESIDENT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSDNT</td>
<td>LDRsdnt</td>
<td>ALL,</td>
<td>LCL</td>
<td>Local deferred resident value that takes effect at the next IMS restart. A value of Y is shown if a database was defined as resident but could not be made resident at IMS restart time because no DMB existed for it in ACBLIB. This database can become resident during the next IMS restart only if there is a DMB for it in the ACBLIB.</td>
</tr>
<tr>
<td>RTMCR</td>
<td>TimeCreate</td>
<td>DEFN</td>
<td>GBL</td>
<td>Create time from the repository. This is the time the resource was first created in the repository.</td>
</tr>
<tr>
<td>RTMUP</td>
<td>TimeUpdate</td>
<td>DEFN</td>
<td>GBL</td>
<td>Update time from the repository. This is the time the resource was last updated in the repository.</td>
</tr>
<tr>
<td>SNDX</td>
<td>SndxName</td>
<td>SNDX</td>
<td>LCL</td>
<td>Name of the Fast Path secondary index database for a DEDB database.</td>
</tr>
<tr>
<td>STT</td>
<td>Status</td>
<td>STATUS,</td>
<td>GBL</td>
<td>Global status information from RM, which can be one of the following values:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLOBAL</td>
<td></td>
<td>ALLOC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Database has a global status of allocated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LOCKED</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Database is a global status of locked.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OPEN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Database has a global status of open.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>STA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Database has a global status of started.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>STOACC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Database has a global status of stopped for access.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>STOSCHD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Database has a global status of stopped.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>STOUPDS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Database has a global status of stopped for updates.</td>
</tr>
<tr>
<td>Short label</td>
<td>Long label</td>
<td>Keyword</td>
<td>Scope</td>
<td>Meaning</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>----------</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>TMAC</td>
<td>LTimeAccess</td>
<td>TIMESTAMP</td>
<td>LCL</td>
<td>The time that the resource was last accessed. The last access time is retained across warm start, emergency restart, export, and import. The updating of the last access time is not logged. After a restart, the last access time reflects the time recorded in the restart checkpoint log records. This access time stamp is obtained from the local IMS. For a database resource, the following actions update the last access time: • Database is accessed by an application program. • CREATE command references the resource as the model. For HALDB and DEDB databases, the last access time stamp is returned in the HALDB partition entry or the AREA entry. The last access time stamp is left blank in the HALDB master and the DEDB entries.</td>
</tr>
<tr>
<td>TMCR</td>
<td>LTimeCreate</td>
<td>TIMESTAMP</td>
<td>LCL</td>
<td>The time the resource was created. This is the result of a CREATE DB command, IMPORT command that creates the database, or IMS initialization. The create time is retained across warm start, emergency restart, EXPORT and IMPORT. This create time stamp is obtained from the local IMS.</td>
</tr>
<tr>
<td>TMIM</td>
<td>LTimeImport</td>
<td>TIMESTAMP</td>
<td>LCL</td>
<td>The time that the resource was last imported, if applicable. The import time is retained across warm start and emergency restart. This import time stamp is obtained from the local IMS.</td>
</tr>
<tr>
<td>TMUP</td>
<td>LTimeUpdate</td>
<td>TIMESTAMP</td>
<td>LCL</td>
<td>The last time the attributes of the runtime resource definition were updated as a result of the UPDATE DB, a type-1 command, or the IMPORT command. The update time is retained across warm start and emergency restart. The output value is obtained from the local IMS.</td>
</tr>
</tbody>
</table>
Table 19. Output fields for QUERY DB command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYP</td>
<td>Type</td>
<td>N/A</td>
<td>N/A</td>
<td>The type of the database.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- AREA - indicates the response line is for a DEDB area</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- blank - if database status is NOTINIT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- DEDB - indicates the database is a DEDB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- DHISNDX - indicates the database is a DEDB HISAM or SHISAM secondary index database</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- DL/I - indicates the database is a full function non-partitioned database</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- MSNR - indicates the database is an MSDB non-related database</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- MSRD - indicates the database is an MSDB-related dynamic database</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- MSRF - indicates the database is an MSDB-related fixed database</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- PART - indicates the database is a HALDB partition</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- PHDAM - indicates the database is the master of a partitioned HDAM database</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- PHIDAM - indicates the database is the master of a Partitioned HIDAM database</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- PSINDEX - indicates the database is the master of a partitioned secondary index database</td>
</tr>
<tr>
<td>VER</td>
<td>Version</td>
<td>VERSION</td>
<td>LCL</td>
<td>Version number of the database that is currently active on the IMS system.</td>
</tr>
<tr>
<td>WRK</td>
<td>Work</td>
<td>WORK</td>
<td></td>
<td>Work is in progress for the database or one of its associated resources. Work in progress can be one of the following values:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AREA OPEN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Area associated with the FP DEDB is open.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DB STOP ACCESS IN PROGRESS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A /DBRECOVERY or UPDATE DB STOP(ACCESS) command to stop database access is in progress for a database. This takes the database offline.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DB STOP UPDATES IN PROGRESS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A /DBDUMP or UPDATE DB STOP(UPDATES) command to stop database updates is in progress for the database.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IN USE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Database is in use.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RECOVER CMD ACTIVE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A /RECOVER START command is in progress to recover one or more databases with the database recovery services.</td>
</tr>
</tbody>
</table>

QUERY DB status

The following table lists local area status conditions that can be returned when SHOW(STATUS) is specified.
Table 20. Local status conditions for QUERY DB

<table>
<thead>
<tr>
<th>Status</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALLOCF</td>
<td>Database has an allocation failure.</td>
</tr>
<tr>
<td>ALLOCS</td>
<td>Database is allocated successfully.</td>
</tr>
<tr>
<td>BACKOUT</td>
<td>Incomplete backout exists for the database that prevents the use of the database.</td>
</tr>
<tr>
<td>EEQE</td>
<td>One or more extended error queue elements exist for the database.</td>
</tr>
<tr>
<td>IC</td>
<td>Area image copy is active.</td>
</tr>
<tr>
<td>LOCK</td>
<td>Database is locked locally.</td>
</tr>
<tr>
<td>NONE</td>
<td>Database has no global status.</td>
</tr>
<tr>
<td>NOTINIT-xx-reason</td>
<td>Database is not initialized and therefore cannot be used. NOTINIT is displayed in the format NOTINIT-xx-reason, where xx is the reason code that identifies the unique location in one module where this reason code is set. NOTINIT-00 indicates that the reason is unknown. Action: 1. DFSDDIR MACRO defines each reason code that might be set in the database bad reason code (field DDIRBADR) and identifies the module that sets it. reason explains the reason code xx in abbreviated text format up to 13 characters.</td>
</tr>
<tr>
<td>NOTOPEN</td>
<td>Area or database is not open.</td>
</tr>
<tr>
<td>OFR</td>
<td>Area or database has online forward recovery in progress to bring it up to current tracking level.</td>
</tr>
<tr>
<td>OLR</td>
<td>Database partition has an online reorganization in progress.</td>
</tr>
<tr>
<td>OPEN</td>
<td>Area or database is open. Not maintained in the RM resource structure.</td>
</tr>
<tr>
<td>PRELOAD</td>
<td>Area is defined to be preloaded.</td>
</tr>
<tr>
<td>PREOPEN</td>
<td>Area is defined to be preopened.</td>
</tr>
<tr>
<td>QUIESCED</td>
<td>Area or database is currently quiesced by a previous UPDATE DB START(QUIESCE) or UPDATE AREA START(QUIESCE) command.</td>
</tr>
<tr>
<td>QUIESGING</td>
<td>Area or database is currently undergoing quiesce by a previous UPDATE DB START(QUIESCE) or UPDATE AREA START(QUIESCE) command.</td>
</tr>
<tr>
<td>RECALL</td>
<td>Area or database recall is in progress.</td>
</tr>
<tr>
<td>RECOVINP</td>
<td>Area or database recovery is in progress.</td>
</tr>
<tr>
<td>RECOVNEEDED</td>
<td>Area needs recovery.</td>
</tr>
<tr>
<td>RNL</td>
<td>Randomizer is not loaded for the DEDB database.</td>
</tr>
<tr>
<td>STOACC</td>
<td>Database is stopped for access locally and is offline. The SHOW(STATUS) keyword on the QUERY DB command returns a status of STOACC for a DEDB. A status of STOACC indicates that the DEDB is stopped from further access because of a prior /DBR DB or UPDATE DB STOP(ACCESS) command.</td>
</tr>
<tr>
<td>STOPPED</td>
<td>Area is stopped locally or globally.</td>
</tr>
<tr>
<td>STOSCHD</td>
<td>Database is stopped locally.</td>
</tr>
</tbody>
</table>
Table 20. Local status conditions for QUERY DB (continued)

<table>
<thead>
<tr>
<th>Status</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>STOPDS</td>
<td>Database is stopped for updates locally.</td>
</tr>
<tr>
<td>VSO</td>
<td>Area is a VSO area.</td>
</tr>
</tbody>
</table>

Table 21. Reason information for NOTINIT-xx-reason status

<table>
<thead>
<tr>
<th>Reason</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALIAS</td>
<td>Alias name error.</td>
</tr>
<tr>
<td>BLDL</td>
<td>BLDL miscellaneous error trying to build ACBLIB directory.</td>
</tr>
<tr>
<td>DBINIT</td>
<td>Database initialization failed.</td>
</tr>
<tr>
<td>DFLTCATALIASN</td>
<td>Default catalog alias not used.</td>
</tr>
<tr>
<td>DMBINCOMPtbl</td>
<td>DMB incompatibility.</td>
</tr>
<tr>
<td>DMBLEVEL</td>
<td>The IMS release level at which this DMB is generated using ACBGEN does not match the IMS release level of this IMS. Perform a DBDGEN, PSBGEN, ACBGEN, and ACBLIB online change as needed to generate this DMB at the correct IMS release level. Action: 4.</td>
</tr>
<tr>
<td>DMBNAME</td>
<td>DMB name missing.</td>
</tr>
<tr>
<td>DMBPOOL</td>
<td>DMB pool shortage.</td>
</tr>
<tr>
<td>DMBPOOLDELETE</td>
<td>DMB delete from DMB pool failed.</td>
</tr>
<tr>
<td>DUPLICATEAREA</td>
<td>Duplicate area name found in this DEDB. Action: 4.</td>
</tr>
<tr>
<td>EOD</td>
<td>EOD marker found before DMB.</td>
</tr>
<tr>
<td>FPDB</td>
<td>The database is a Fast Path MSDB or DEDB that is defined in a non-Fast Path (FP=N) system. The database cannot be used.</td>
</tr>
<tr>
<td>LOADCOMPRESS</td>
<td>An error occurred loading the compression routine.</td>
</tr>
<tr>
<td>LOADRANDOMIZE</td>
<td>An error occurred loading the randomizer routine.</td>
</tr>
<tr>
<td>MAXDBEXCEEDED</td>
<td>Database exceeded maximum database limit of 32767. The database cannot be used. The database can be recovered at IMS cold start from RDDS auto import if the total number of databases in a local system is less than 32767.</td>
</tr>
<tr>
<td>MOLCCOMMIT</td>
<td>Member OLC COMMIT MEMBER failed.</td>
</tr>
<tr>
<td>MSDBCHANGE</td>
<td>MSDB added or changed by online change, which is not allowed. Action: 4.</td>
</tr>
<tr>
<td>MSDBLEVEL</td>
<td>MSDB level of MSDB in ACBLIB is incorrect. Action: 4.</td>
</tr>
<tr>
<td>NODB</td>
<td>No database DDIR control block exists. Action: 5.</td>
</tr>
<tr>
<td>NODMB</td>
<td>No database DMB exists in ACBLIB. For a Fast Path database, this could be an MSDB or a DEDB. Action: 2.</td>
</tr>
<tr>
<td>NOMSDB</td>
<td>No MSDBs defined in system.</td>
</tr>
<tr>
<td>NOSHROINDXDDIR</td>
<td>No shared index database DDIR control block. Action: 5.</td>
</tr>
<tr>
<td>NOSHROINDXDMB</td>
<td>No DMB in ACBLIB for shared index. Action: 2.</td>
</tr>
<tr>
<td>NOTDMB</td>
<td>Not a DMB. A PSB by the same name as the database is defined in ACBLIB instead of a DMB. If this resource should be a program, create the program with a CREATE PGM command. If this resource should be a database, perform a DBDGEN, PSBGEN, ACBGEN, and ACBLIB online change to define this resource as a DMB instead of a PSB. Action: 4.</td>
</tr>
</tbody>
</table>
Table 21. Reason information for NOTINIT-xx-reason status (continued)

<table>
<thead>
<tr>
<th>Reason</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARTBUILD</td>
<td>Partition build failed.</td>
</tr>
<tr>
<td>PSBINCOMPTBL</td>
<td>PSB incompatibility.</td>
</tr>
<tr>
<td>REPOCHGLIST</td>
<td>The database name exists in the change list in the IMSRSC repository for this IMS, and the change list is being processed or the change list processing failed because of an error. This database cannot be used, scheduled, updated, exported, or referenced as a model until it is successfully imported so that the runtime database definition and the stored definition in the repository are synchronized. Action: 6.</td>
</tr>
<tr>
<td>RSCNEEDOLC</td>
<td>A Fast Path DEDB database is created with the IMPORT DEFN command. The DEDB database cannot be brought online for use with the IMPORT DEFN command. Perform ACBLIB online change to bring Fast Path DEDB database online. Action 2.</td>
</tr>
<tr>
<td>RSCNEEDSTADB</td>
<td>A full-function HALDB is created with the IMPORT DEFN command. HALDB master is created. To create HALDB partition databases, issue either the /START DB command or the UPDATE DB command on the HALDB master database.</td>
</tr>
<tr>
<td>SEGMENTNUM</td>
<td>Segment number error. ACBGEN error, more than 127 segments. Action: 4.</td>
</tr>
<tr>
<td>WRONGDMB</td>
<td>Wrong DMB.</td>
</tr>
<tr>
<td>WRONGPSB</td>
<td>Wrong PSB.</td>
</tr>
</tbody>
</table>

Note: Actions that can be taken to initialize the database are:

1. Call IBM.
2. Perform ACBLIB online change to add the DMB to ACBLIB.
3. Perform ACBLIB online change to add the PSB to ACBLIB.
4. Perform ACBLIB online change to correct PSBs or DMBs.
5. Perform MODBLKS online change or issue the CREATE DB command to create the database.
6. If IMS change list processing failed and message DFS4411E was issued, correct the problem and take one of the following actions:
 - Shut down IMS and restart it in order to try processing the change list again.
 - Issue the IMPORT DEFN SOURCE(REPO) NAME(dbname) TYPE(DB) command to import the database, where dbname is the database name.

How the SHOW keyword on QUERY DB determines the type of output

Some examples of how the SHOW keyword determines the type of output returned on the QUERY DB command are provided in the following table.

Table 22. How the SHOW keyword on QUERY DB determines the type of output

<table>
<thead>
<tr>
<th>Form of SHOW keyword used</th>
<th>Type of output returned</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHOW(LOCAL)</td>
<td>Only those output fields that are local to an IMS system. SHOW(ALL,LOCAL) provides the same output.</td>
</tr>
<tr>
<td>SHOW(GLOBAL)</td>
<td>Only those output fields that are globally maintained, such as data maintained by RM. SHOW(ALL,GLOBAL) provides the same output.</td>
</tr>
<tr>
<td>SHOW(ALL)</td>
<td>All of the output fields for those fields that have both local and global data. Both values are returned in the output.</td>
</tr>
</tbody>
</table>
Table 22. How the SHOW keyword on QUERY DB determines the type of output (continued)

<table>
<thead>
<tr>
<th>Form of SHOW keyword used</th>
<th>Type of output returned</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHOW(STATUS,GLOBAL)</td>
<td>Only global STATUS values.</td>
</tr>
<tr>
<td>SHOW(STATUS,LOCAL)</td>
<td>Only local STATUS values.</td>
</tr>
<tr>
<td>SHOW(STATUS)</td>
<td>Both local and global STATUS values.</td>
</tr>
<tr>
<td>SHOW(ALL,GLOBAL)</td>
<td>Only those output fields that are globally maintained, such as data maintained by RM. SHOW(GLOBAL) provides the same output.</td>
</tr>
<tr>
<td>SHOW(ALL,LOCAL)</td>
<td>Only those output fields that are local to an IMS system. SHOW(LOCAL) provides the same output.</td>
</tr>
<tr>
<td>SHOW(DEFN)</td>
<td>The runtime definitions from IMS and the stored definitions from the repository are returned.</td>
</tr>
<tr>
<td>SHOW(DEFN,IMSID)</td>
<td>The runtime definitions from IMS and the stored definitions from the repository are returned. A response line is returned along with the definitional attribute for each IMS that has the resource defined in the repository.</td>
</tr>
<tr>
<td>SHOW(DEFN,LOCAL)</td>
<td>The runtime definitions from IMS are returned.</td>
</tr>
<tr>
<td>SHOW(DEFN,GLOBAL)</td>
<td>The stored definitions from the repository are returned.</td>
</tr>
<tr>
<td>SHOW(DEFN,IMSID,LOCAL)</td>
<td>The runtime definitions from IMS are returned. SHOW(DEFN,IMSID,LOCAL) is the same as SHOW(DEFN,LOCAL).</td>
</tr>
<tr>
<td>SHOW(DEFN,IMSID,GLOBAL)</td>
<td>The stored definitions from the repository are returned. A response line is returned along with the definitional attribute for each IMS that has the resource defined in the repository.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

An IMS return and reason code is returned to OM by the QUERY DB command. The OM return and reason codes that might be returned as a result of the QUERY DB command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 23. Return and reason codes for the QUERY DB command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The QUERY DB command completed successfully.</td>
</tr>
<tr>
<td>X'00000004'</td>
<td>X'00001010'</td>
<td>No resources were found to be returned. The resource names specified might be invalid, or there were no resources that match the filter specified, or there were no resources that had work to display for the SHOW(WORK) specified.</td>
</tr>
<tr>
<td>Return code</td>
<td>Reason code</td>
<td>Meaning</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002004'</td>
<td>Invalid command keyword or invalid command keyword combination.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002014'</td>
<td>The QUERY DB command is not processed because an invalid character is found in the database name parameter.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002040'</td>
<td>More than one filter or keyword value is specified on the QUERY DB command. Either more than one keyword or an invalid combination of filters was specified. Check the input command and reenter the correct combinations.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003000'</td>
<td>The QUERY DB command was successful for some resources but failed for others. The completion code indicates the reason for the error with the resource name. The completion codes that can be returned by the QUERY DB command are listed in the QUERY DB completion code table.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>The QUERY DB command was not successful for any of the resource names specified. The completion code indicates the reason for the error with the resource name. The completion codes that can be returned by the QUERY DB command are listed in the QUERY DB completion code table.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004004'</td>
<td>No CQS address space.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004018'</td>
<td>No resource structure. Or, the resource structure is not available.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004100'</td>
<td>Resource structure is full.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004104'</td>
<td>No RM address space.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004108'</td>
<td>No SCI address space.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004500'</td>
<td>IMS is not enabled to use the repository.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004501'</td>
<td>RM is not enabled to use the repository.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004502'</td>
<td>Repository is not available.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004503'</td>
<td>Repository is stopped.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004504'</td>
<td>Repository spare recovery is in progress.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004505'</td>
<td>No IMS resource list exists, or no resources for the resource type exist in the IMS resource list.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004507'</td>
<td>Repository access was denied.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004508'</td>
<td>Repository maximum put length exceeded.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004509'</td>
<td>RM data version is lower than the IMS data version.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000450A'</td>
<td>Repository Server (RS) is being shut down.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000450B'</td>
<td>RS is not available.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000450C'</td>
<td>RS is busy.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000450D'</td>
<td>RM failed to define some of the internal fields related to the IMSRSC repository.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005004'</td>
<td>The QUERY DB command processing terminated as a DFSOCMD response buffer could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'0000501C'</td>
<td>IMODULE GETMAIN error.</td>
</tr>
</tbody>
</table>
Table 23. Return and reason codes for the QUERY DB command (continued)

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X’00000014’</td>
<td>X’00005100’</td>
<td>RM request error.</td>
</tr>
<tr>
<td>X’00000014’</td>
<td>X’00005104’</td>
<td>CQS error.</td>
</tr>
<tr>
<td>X’00000014’</td>
<td>X’00005108’</td>
<td>SCI request error.</td>
</tr>
<tr>
<td>X’00000014’</td>
<td>X’00005110’</td>
<td>Repository error.</td>
</tr>
<tr>
<td>X’00000014’</td>
<td>X’0000551C’</td>
<td>A request to view the data in the repository was rejected because a corrupted resource list was detected. The QUERY DB command is rejected because the resource list is unusable. Contact IBM Software Support. Send in the output from the command in error, and a dump of the local RM address space where the command executed or the dump of all RM address spaces in the IMSplex. Also send a copy of the IMSRSC repository RID and RMD data sets.</td>
</tr>
<tr>
<td>X’00000014’</td>
<td>X’00005FFF’</td>
<td>The QUERY DB command processing terminated because of an internal error.</td>
</tr>
</tbody>
</table>

The following table includes an explanation of the completion codes. Errors unique to the processing of QUERY DB command are returned as completion codes. A completion code is returned for each action against an individual resource.

Table 24. Completion codes for the QUERY DB command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The QUERY DB command completed successfully for the resource.</td>
</tr>
<tr>
<td>10</td>
<td>RESOURCE NOT FOUND</td>
<td>The resource name is unknown to the client that is processing the request. The resource name might have been typed in error or the resource might not be active at this time. Confirm the correct spelling of the resource name specified on the command.</td>
</tr>
<tr>
<td>193</td>
<td>NOT A DEDB</td>
<td>The SHOW(SNDX) keyword was specified, but the database resource is not a DEDB.</td>
</tr>
<tr>
<td>194</td>
<td>NO SECONDARY INDEX Defined</td>
<td>The SHOW(SNDX) keyword was specified, but the database resource has no Fast Path secondary index database defined.</td>
</tr>
<tr>
<td>195</td>
<td>INVALID DB ACCESS TYPE</td>
<td>Database versioning for this database access type is not supported.</td>
</tr>
</tbody>
</table>

Examples

The following are examples of the QUERY DB command:

Example 1 for QUERY DB command

TSO SPOC input:
```
QUERY DB NAME(BANKATMS, DEDBJN21, DBHDOK01) SHOW(ALL)

TSO SPOC output:

<table>
<thead>
<tr>
<th>DBName</th>
<th>AreaName</th>
<th>MbrName</th>
<th>CC</th>
<th>TYPE</th>
<th>LAcc</th>
<th>LRsdnt</th>
<th>LclStat</th>
</tr>
</thead>
<tbody>
<tr>
<td>BANKATMS</td>
<td>IMS1</td>
<td>0</td>
<td>EXCL</td>
<td>N</td>
<td>NOTOPEN</td>
<td>NOTINIT-1E-NODMB, NOTOPEN</td>
<td></td>
</tr>
<tr>
<td>DBHDOK01</td>
<td>IMS1</td>
<td>0</td>
<td>DL/I</td>
<td>UPD</td>
<td>N</td>
<td>NOTOPEN</td>
<td></td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>IMS1</td>
<td>0</td>
<td>DEOB</td>
<td>UPD</td>
<td>Y</td>
<td>NOTOPEN</td>
<td></td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>DB21AR0</td>
<td>IMS1</td>
<td>0</td>
<td>AREA</td>
<td>NOTOPEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>DB21AR1</td>
<td>IMS1</td>
<td>0</td>
<td>AREA</td>
<td>NOTOPEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>DB21AR10</td>
<td>IMS1</td>
<td>0</td>
<td>AREA</td>
<td>NOTOPEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>DB21AR11</td>
<td>IMS1</td>
<td>0</td>
<td>AREA</td>
<td>NOTOPEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>DB21AR12</td>
<td>IMS1</td>
<td>0</td>
<td>AREA</td>
<td>NOTOPEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>DB21AR13</td>
<td>IMS1</td>
<td>0</td>
<td>AREA</td>
<td>NOTOPEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>DB21AR14</td>
<td>IMS1</td>
<td>0</td>
<td>AREA</td>
<td>NOTOPEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>DB21AR15</td>
<td>IMS1</td>
<td>0</td>
<td>AREA</td>
<td>NOTOPEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>DB21AR16</td>
<td>IMS1</td>
<td>0</td>
<td>AREA</td>
<td>NOTOPEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>DB21AR17</td>
<td>IMS1</td>
<td>0</td>
<td>AREA</td>
<td>NOTOPEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>DB21AR18</td>
<td>IMS1</td>
<td>0</td>
<td>AREA</td>
<td>NOTOPEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>DB21AR19</td>
<td>IMS1</td>
<td>0</td>
<td>AREA</td>
<td>NOTOPEN</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(scrolled right to screen 2)

<table>
<thead>
<tr>
<th>DBName</th>
<th>AreaName</th>
<th>MbrName</th>
<th>LModelName</th>
<th>LModelType</th>
<th>LTimeCreate</th>
</tr>
</thead>
<tbody>
<tr>
<td>BANKATMS</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td>EXCL-1E-NODMB, NOTOPEN</td>
<td></td>
</tr>
<tr>
<td>DBHDOK01</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td>EXCL-1E-NODMB, NOTOPEN</td>
<td></td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td>EXCL-1E-NODMB, NOTOPEN</td>
<td></td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>DB21AR0</td>
<td>IMS1</td>
<td>0</td>
<td>EXCL-1E-NODMB, NOTOPEN</td>
<td></td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>DB21AR1</td>
<td>IMS1</td>
<td>0</td>
<td>EXCL-1E-NODMB, NOTOPEN</td>
<td></td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>DB21AR10</td>
<td>IMS1</td>
<td>0</td>
<td>EXCL-1E-NODMB, NOTOPEN</td>
<td></td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>DB21AR11</td>
<td>IMS1</td>
<td>0</td>
<td>EXCL-1E-NODMB, NOTOPEN</td>
<td></td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>DB21AR12</td>
<td>IMS1</td>
<td>0</td>
<td>EXCL-1E-NODMB, NOTOPEN</td>
<td></td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>DB21AR13</td>
<td>IMS1</td>
<td>0</td>
<td>EXCL-1E-NODMB, NOTOPEN</td>
<td></td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>DB21AR14</td>
<td>IMS1</td>
<td>0</td>
<td>EXCL-1E-NODMB, NOTOPEN</td>
<td></td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>DB21AR15</td>
<td>IMS1</td>
<td>0</td>
<td>EXCL-1E-NODMB, NOTOPEN</td>
<td></td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>DB21AR16</td>
<td>IMS1</td>
<td>0</td>
<td>EXCL-1E-NODMB, NOTOPEN</td>
<td></td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>DB21AR17</td>
<td>IMS1</td>
<td>0</td>
<td>EXCL-1E-NODMB, NOTOPEN</td>
<td></td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>DB21AR18</td>
<td>IMS1</td>
<td>0</td>
<td>EXCL-1E-NODMB, NOTOPEN</td>
<td></td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>DB21AR19</td>
<td>IMS1</td>
<td>0</td>
<td>EXCL-1E-NODMB, NOTOPEN</td>
<td></td>
</tr>
</tbody>
</table>

(scrolled right to screen 3)

<table>
<thead>
<tr>
<th>DBName</th>
<th>AreaName</th>
<th>MbrName</th>
<th>LTimeUpdate</th>
<th>LTimeAccess</th>
<th>LTimeImport</th>
</tr>
</thead>
<tbody>
<tr>
<td>BANKATMS</td>
<td>IMS1</td>
<td>0</td>
<td>2011.181</td>
<td>10:22:15.10</td>
<td>NOTOPEN</td>
</tr>
<tr>
<td>DBHDOK01</td>
<td>IMS1</td>
<td>0</td>
<td>2011.181</td>
<td>10:22:15.10</td>
<td>NOTOPEN</td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>IMS1</td>
<td>0</td>
<td>2011.181</td>
<td>10:22:15.10</td>
<td>NOTOPEN</td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>DB21AR0</td>
<td>IMS1</td>
<td>0</td>
<td>2011.181</td>
<td>10:22:15.10</td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>DB21AR1</td>
<td>IMS1</td>
<td>0</td>
<td>2011.181</td>
<td>10:22:15.10</td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>DB21AR10</td>
<td>IMS1</td>
<td>0</td>
<td>2011.181</td>
<td>10:22:15.10</td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>DB21AR11</td>
<td>IMS1</td>
<td>0</td>
<td>2011.181</td>
<td>10:22:15.10</td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>DB21AR12</td>
<td>IMS1</td>
<td>0</td>
<td>2011.181</td>
<td>10:22:15.10</td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>DB21AR13</td>
<td>IMS1</td>
<td>0</td>
<td>2011.181</td>
<td>10:22:15.10</td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>DB21AR14</td>
<td>IMS1</td>
<td>0</td>
<td>2011.181</td>
<td>10:22:15.10</td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>DB21AR15</td>
<td>IMS1</td>
<td>0</td>
<td>2011.181</td>
<td>10:22:15.10</td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>DB21AR16</td>
<td>IMS1</td>
<td>0</td>
<td>2011.181</td>
<td>10:22:15.10</td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>DB21AR17</td>
<td>IMS1</td>
<td>0</td>
<td>2011.181</td>
<td>10:22:15.10</td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>DB21AR18</td>
<td>IMS1</td>
<td>0</td>
<td>2011.181</td>
<td>10:22:15.10</td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>DB21AR19</td>
<td>IMS1</td>
<td>0</td>
<td>2011.181</td>
<td>10:22:15.10</td>
</tr>
</tbody>
</table>

(scrolled right to screen 4)

<table>
<thead>
<tr>
<th>DBName</th>
<th>AreaName</th>
<th>MbrName</th>
<th>LDefnType</th>
</tr>
</thead>
<tbody>
<tr>
<td>BANKATMS</td>
<td>IMS1</td>
<td>0</td>
<td>MODBLKS</td>
</tr>
<tr>
<td>DBHDOK01</td>
<td>IMS1</td>
<td>0</td>
<td>MODBLKS</td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>IMS1</td>
<td>0</td>
<td>MODBLKS</td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>DB21AR0</td>
<td>IMS1</td>
<td>MODBLKS</td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>DB21AR1</td>
<td>IMS1</td>
<td>MODBLKS</td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>DB21AR10</td>
<td>IMS1</td>
<td>MODBLKS</td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>DB21AR11</td>
<td>IMS1</td>
<td>MODBLKS</td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>DB21AR12</td>
<td>IMS1</td>
<td>MODBLKS</td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>DB21AR13</td>
<td>IMS1</td>
<td>MODBLKS</td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>DB21AR14</td>
<td>IMS1</td>
<td>MODBLKS</td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>DB21AR15</td>
<td>IMS1</td>
<td>MODBLKS</td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>DB21AR16</td>
<td>IMS1</td>
<td>MODBLKS</td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>DB21AR17</td>
<td>IMS1</td>
<td>MODBLKS</td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>DB21AR18</td>
<td>IMS1</td>
<td>MODBLKS</td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>DB21AR19</td>
<td>IMS1</td>
<td>MODBLKS</td>
</tr>
</tbody>
</table>

OM API input:
```
CMD(QUERY DB NAME(BANKATMS, DEDBJN21, DBHDOK01) SHOW(ALL))
```
Chapter 5. QUERY commands

OM API output:

```
<imsout>
<ctl>
<omname>OM1</omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20
<statime>2011.181
18:44:59.208162</statime>
<stotime>2011.181
18:44:59.209123</stotime>
<staseq>C80029508EDE234E</staseq>
<stoseq>C80029508F1A3B8E</stoseq>
<rqsttkn1>USRT005
10114459</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>IMS1</master>
<userid>USRT005</userid>
<verb>QRY</verb>
<kwd>DB</kwd>
<input>QUERY
DB
NAME(BANKATMS,DEDBJN21,DBHDOK01)
SHOW(ALL)</input>
</cmd>
<cmdrsphdr>
<hdr slbl="DB" llbl="DBName" scope="LCL" sort="a" key="1" scroll="no"
len="8" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="AREA" llbl="AreaName" scope="LCL" sort="a" key="4"
scroll="no" len="8" dtype="CHAR" align="left" skipb="yes" />
<hdr slbl="PART" llbl="PartName" scope="LCL" sort="a" key="5"
scroll="no" len="8" dtype="CHAR" align="left" skipb="yes" />
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" key="3"
scroll="no"
len="8" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0"
scroll="yes"
len="4" dtype="INT" align="right" skipb="no" />
<hdr slbl="CCTXT" llbl="CCText" scope="LCL" sort="n"
key="0"
scroll="yes" len="*" dtype="CHAR" align="left" skipb="yes" />
<hdr slbl="TYP" llbl="TYPE" scope="LCL" sort="n"
key="0"
scroll="yes"
len="8" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="LACC" llbl="LAcc" scope="LCL" sort="n"
key="0"
scroll="yes"
len="*" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="LSTT" llbl="LclStat" scope="LCL" sort="n"
key="0"
scroll="yes" len="*" dtype="CHAR" align="left" skipb="yes" />
<hdr slbl="MDLN" llbl="LModelName" scope="LCL"
sort="n"
key="0"
scroll="yes" len="*" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="MDLT" llbl="LModelType" scope="LCL"
sort="n"
key="0"
scroll="yes" len="*" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="TMCR" llbl="LTimeCreate" scope="LCL"
sort="n"
key="0"
scroll="yes" len="20" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="TMUP" llbl="LTimeUpdate" scope="LCL"
sort="n"
key="0"
scroll="yes" len="20" dtype="CHAR" align="left" skipb="yes" />
<hdr slbl="TMAC" llbl="LTimeAccess" scope="LCL"
sort="n"
key="0"
scroll="yes" len="20" dtype="CHAR" align="left" skipb="yes" />
<hdr slbl="TMIM" llbl="LTimeImport" scope="LCL"
sort="n"
key="0"
scroll="yes" len="20" dtype="CHAR" align="left" skipb="yes" />
<hdr slbl="DFNT" llbl="LDefnType" scope="LCL"
sort="n"
key="0"
scroll="yes" len="*" dtype="CHAR" align="left" skipb="yes" />
</cmdrsphdr>
<cmdrspdata>
<rsp>DB(BANKATMS) MBR(IMS1) CC(0) TYP() LACC(EXCL)
LSTT(NOTINIT-1E-NOMDB,NOTOPEN) DFNT(MODBLKS) LRSNDT(N) TMCR(2011.181
10:22:15.10) TMUP() TMIM(
)
TMAC()</rsp>
<rsp>DB(DEDBJN21) MBR(IMS1) CC(0) TYP(DEDB) LACC(UPD)
LSTT(NOTOPEN) DFNT(MODBLKS) LRSNDT(Y) TMCR(2011.181 10:22:15.10) TMUP(
)
TMIM()</rsp>
```
<rsp>DB(DEDBJN21) AREA(DB21AR0 ) MBR(IMS1 ) CC( 0) TYP(AREA )
LSTT(NOTOPEN) TMAC(  ) </rsp>
<rsp>DB(DEDBJN21) AREA(DB21AR1 ) MBR(IMS1 ) CC( 0) TYP(AREA )
LSTT(NOTOPEN) TMAC(  ) </rsp>
<rsp>DB(DEDBJN21) AREA(DB21AR2 ) MBR(IMS1 ) CC( 0) TYP(AREA )
LSTT(NOTOPEN) TMAC(  ) </rsp>
<rsp>DB(DEDBJN21) AREA(DB21AR3 ) MBR(IMS1 ) CC( 0) TYP(AREA )
LSTT(NOTOPEN) TMAC(  ) </rsp>
<rsp>DB(DEDBJN21) AREA(DB21AR4 ) MBR(IMS1 ) CC( 0) TYP(AREA )
LSTT(NOTOPEN) TMAC(  ) </rsp>
<rsp>DB(DEDBJN21) AREA(DB21AR5 ) MBR(IMS1 ) CC( 0) TYP(AREA )
LSTT(NOTOPEN) TMAC(  ) </rsp>
<rsp>DB(DEDBJN21) AREA(DB21AR6 ) MBR(IMS1 ) CC( 0) TYP(AREA )
LSTT(NOTOPEN) TMAC(  ) </rsp>
<rsp>DB(DEDBJN21) AREA(DB21AR7 ) MBR(IMS1 ) CC( 0) TYP(AREA )
LSTT(NOTOPEN) TMAC(  ) </rsp>
<rsp>DB(DEDBJN21) AREA(DB21AR8 ) MBR(IMS1 ) CC( 0) TYP(AREA )
LSTT(NOTOPEN) TMAC(  ) </rsp>
<rsp>DB(DEDBJN21) AREA(DB21AR9 ) MBR(IMS1 ) CC( 0) TYP(AREA )
LSTT(NOTOPEN) TMAC(  ) </rsp>
<rsp>DB(DEDBJN21) AREA(DB21AR10) MBR(IMS1 ) CC( 0) TYP(AREA )
LSTT(NOTOPEN) TMAC(  ) </rsp>
<rsp>DB(DEDBJN21) AREA(DB21AR11) MBR(IMS1 ) CC( 0) TYP(AREA )
LSTT(NOTOPEN) TMAC(  ) </rsp>
<rsp>DB(DBHDOK01) MBR(IMS1 ) CC( 0) TYP(DL/I ) LACC(UPD)
LSTT(NOTOPEN) DFNT(MODBLKS) LRSNNT(N) TMCR(2011.181 00:22:15.10) TMUP(  ) TMIM(  ) TMAC(  ) </rsp>
</cmdrspdata>
</imsout>

**Explanation:** The QUERY DB command is specified with the SHOW keyword to display the resident attribute and the database status. All definition and status information is returned for databases BANKATMS, DEDBJN21, and DBHDOK01 from IMS1. All of the database output fields do not fit on one screen, so you must scroll to the right for additional output fields. The database name, area name, and member name that built the line of output are displayed on every screen. Database BANKATMS has a status of NOTINIT-1E-NODMB, which means there is no DMB in ACBLIB for BANKATMS and BANKATMS cannot be used. DEDBJN21 is a DEDB and the area information is also returned, along with the DEDB information. No model information is returned because the database was loaded from MODBLKS and not created from a model. Time stamps for the DEDB areas are not maintained and so they are not returned.

**Example 2 for QUERY DB command**

**TSO SPOC input:**

```
QUERY DB NAME(BE3PARTS,CUSTDB) SHOW(PGM)
```

**TSO SPOC output:**

<table>
<thead>
<tr>
<th>DBName</th>
<th>MbrName</th>
<th>CC</th>
<th>TYPE</th>
<th>LpgmName</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE3PARTS</td>
<td>IMS1</td>
<td>0</td>
<td>DL/I</td>
<td>PE4CODEL</td>
</tr>
<tr>
<td>BE3PARTS</td>
<td>IMS1</td>
<td>0</td>
<td>DL/I</td>
<td>PE4COINQ</td>
</tr>
<tr>
<td>BE3PARTS</td>
<td>IMS1</td>
<td>0</td>
<td>DL/I</td>
<td>PE4CORDR</td>
</tr>
<tr>
<td>BE3PARTS</td>
<td>IMS1</td>
<td>0</td>
<td>DL/I</td>
<td>PE4CPINV</td>
</tr>
<tr>
<td>BE3PARTS</td>
<td>IMS1</td>
<td>0</td>
<td>DL/I</td>
<td>PE4CPPUR</td>
</tr>
<tr>
<td>CUSTDB</td>
<td>IMS1</td>
<td>0</td>
<td>DEBD</td>
<td>PBBA</td>
</tr>
<tr>
<td>CUSTDB</td>
<td>IMS1</td>
<td>0</td>
<td>DEBD</td>
<td>PSBNO</td>
</tr>
<tr>
<td>CUSTDB</td>
<td>IMS1</td>
<td>0</td>
<td>DEBD</td>
<td>PSBOS</td>
</tr>
<tr>
<td>CUSTDB</td>
<td>IMS1</td>
<td>0</td>
<td>DEBD</td>
<td>PSBPA</td>
</tr>
</tbody>
</table>

**OM API input:**

74 Commands, Volume 2: IMS Commands N - V
OM API output:

```xml
<imsout>
 <ctl>
 <omname>OM1</omname>
 <omvsn>1.5.0</omvsn>
 <xmlvsn>20</xmlvsn>
 <statime>2011.181 18:53:06.988049</statime>
 <stotime>2011.181 18:53:06.989553</stotime>
 <staseq>C8002B21BDC11F98</staseq>
 <stoseq>C8002B21BE1F14D8</stoseq>
 <rqsttkn1>USRT005 10115306</rqsttkn1>
 <rc>00000000</rc>
 <rsn>00000000</rsn>
 </ctl>
 <cmd>
 <master>IMS1</master>
 <userid>USRT005</userid>
 <verb>QRY</verb>
 <input>QUERY DB NAME(BE3PARTS,CUSTDB) SHOW(PGM)</input>
 </cmd>
 <cmdrsphdr>
 <hdr slbl="DB" llbl="DBName" scope="LCL" sort="a" key="1" scroll="no" len="8" dtype="CHAR" align="left" skipb="no"/>
 <hdr slbl="AREA" llbl="AreaName" scope="LCL" sort="a" key="4" scroll="no" len="8" dtype="CHAR" align="left" skipb="yes"/>
 <hdr slbl="PART" llbl="PartName" scope="LCL" sort="a" key="5" scroll="no" len="8" dtype="CHAR" align="left" skipb="yes"/>
 <hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" key="3" scroll="no" len="8" dtype="CHAR" align="left" skipb="no"/>
 <hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0" scroll="yes" len="4" dtype="INT" align="right" skipb="no"/>
 <hdr slbl="CCTXT" llbl="CCText" scope="LCL" sort="n" key="0" scroll="yes" len="*" dtype="CHAR" align="left" skipb="yes"/>
 <hdr slbl="TYP" llbl="TYPE" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left" skipb="no"/>
 <hdr slbl="PGM" llbl="LPgmName" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left" skipb="no"/>
 </cmdrsphdr>
 <cmdrspdata>
 <rsp>DB(BE3PARTS) MBR(IMS1) CC(0) TYP(DL/I) PGM(PE4CODEL)</rsp>
 <rsp>DB(BE3PARTS) MBR(IMS1) CC(0) TYP(DL/I) PGM(PE4COINQ)</rsp>
 <rsp>DB(BE3PARTS) MBR(IMS1) CC(0) TYP(DL/I) PGM(PE4CORDR)</rsp>
 <rsp>DB(BE3PARTS) MBR(IMS1) CC(0) TYP(DL/I) PGM(PE4CPINV)</rsp>
 <rsp>DB(BE3PARTS) MBR(IMS1) CC(0) TYP(DL/I) PGM(PE4CPPUR)</rsp>
 <rsp>DB(CUSTDB) MBR(IMS1) CC(0) TYP(DEDB) PGM(PSBBA)</rsp>
 <rsp>DB(CUSTDB) MBR(IMS1) CC(0) TYP(DEDB) PGM(PSBNO)</rsp>
 <rsp>DB(CUSTDB) MBR(IMS1) CC(0) TYP(DEDB) PGM(PSBOS)</rsp>
 <rsp>DB(CUSTDB) MBR(IMS1) CC(0) TYP(DEDB) PGM(PSBPA)</rsp>
 </cmdrspdata>
</imsout>
```

**Explanation:** Database BE3PARTS has programs BE3PARTS, PE4COINQ, and PE4CORDR referring to it. Database CUSTDB has programs CUSTDB, PSBOS, and PSBPA referring to it.
Example 3 for QUERY DB command

TSO SPOC input:
QRY DB NAME(DEDBRN01,DX41M401,DB000001) SHOW(RESIDENT,STATUS)

TSO SPOC output:

<table>
<thead>
<tr>
<th>DBName</th>
<th>AreaName</th>
<th>MbrName</th>
<th>CC</th>
<th>TYPE</th>
<th>LDRsdnt</th>
<th>LRsdnt</th>
<th>LclStat</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB000001</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td>N</td>
<td>NOTINIT-34-NODMB,NOTOPEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEDBRN01</td>
<td>IMS1</td>
<td>0</td>
<td>DEDB</td>
<td>Y</td>
<td>NOTOPEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEDBRN01 DEDB01D1</td>
<td>IMS1</td>
<td>0</td>
<td>AREA</td>
<td>NOTOPEN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DX41M401</td>
<td>IMS1</td>
<td>0</td>
<td>DL/I</td>
<td>N</td>
<td>NOTOPEN</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OM API input:
CMD(QRY DB NAME(DEDBRN01,DX41M401,DB000001) SHOW(RESIDENT,STATUS))

OM API output:

<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2011.181 18:59:00.325804</statime>
<stotime>2011.181 18:59:00.326647</stotime>
<staseq>C8002C7285DAC610</staseq>
<stoseq>C8002C72860F7850</stoseq>
<rqsttkn1>USRT005 10115900</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>IMS1</master>
<userid>USRT005</userid>
<verb>QRY</verb>
<kwd>DB</kwd>
<input>QRY DB NAME(DEDBRN01,DX41M401,DB000001) SHOW(RESIDENT,STATUS)</input>
</cmd>
</cmdrsphdr>
<hdr slbl="DB" llbl="DBName" scope="LCL" sort="a" key="1" scroll="no"
len="8" dtype="CHAR" align="left" skipb="no"/>
<hdr slbl="AREA" llbl="AreaName" scope="LCL" sort="a" key="4"
scroll="no" len="8" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="PART" llbl="PartName" scope="LCL" sort="a" key="5"
scroll="no" len="8" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" key="3"
scroll="no" len="8" dtype="CHAR" align="left" skipb="no"/>
<hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0"
scroll="yes" len="4" dtype="INT" align="right" skipb="no"/>
<hdr slbl="CCTXT" llbl="CCText" scope="LCL" sort="n" key="0"
scroll="yes" len="*" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="TYP" llbl="TYPE" scope="LCL" sort="n" key="0"
scroll="yes" len="8" dtype="CHAR" align="left" skipb="no"/>
<hdr slbl="RSDNT" llbl="LDRsdnt" scope="LCL" sort="n" key="0"
scroll="yes" len="1" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="LRSDNT" llbl="LRsdnt" scope="LCL" sort="n" key="0"
scroll="yes" len="1" dtype="CHAR" align="left"/>
<hdr slbl="LSTT" llbl="LclStat" scope="LCL" sort="n" key="0"
scroll="yes" len="*" dtype="CHAR" align="left" skipb="no"/>
</cmdrsphdr>
<cmdrspdata>
<rsp>DB(DEDBRN01) MBR(IMS1) CC(0) TYP(DEDB) LSSTT(NOTOPEN) LRSNDNT(Y) </rsp>
<rsp>DB(DEDBRN01) AREA(DEDB01D1) MBR(IMS1) CC(0) TYP(AREA) LSSTT(NOTOPEN) </rsp>

76 Commands, Volume 2: IMS Commands N - V
Explanation: The QUERY DB command is specified with SHOW keywords to display the resident attribute and the database status for a few different types of databases. DEDBRN01 is a DEDB. DEDBs are always resident and defined with RESIDENT(Y). DX41M401 is a DLI database. DX41M401 is defined as Resident(N) and its local runtime resident value is RESIDENT(N). Because Rsndt and LRrsndt values of database DX41M401 are the same, only LRrsndt value is displayed. DB000001 is a new database created by a CREATE DB command. DB000001 shows a status of NOTINIT-34-NODMB, which means it has no DMB defined in ACBLIB and cannot be used. Since there is no DMB, the database type is shown as blanks, because IMS does not know what type of database DB000001 is intended to be. DB000001 is defined as RESIDENT(Y), but because the resident option will not take effect until the next IMS restart, the local resident value is N. If all of the databases being displayed have a LRrsndt (Local Resident) value that is the same as the Rsndt (Definitional Resident) value, the QRY DB output displays the LRrsndt header and value, but not the Rsndt header and value. Since database DB000001 is defined with RESIDENT(Y) but its local runtime resident value is N, both Rsndt and LRrsndt columns are displayed in the QUERY DB output.

Example 4 for QUERY DB command

TSO SPOC input:
QRY DB NAME(+) SHOW(STATUS) STATUS(QUIESCING)

TSO SPOC output:

<table>
<thead>
<tr>
<th>DBName</th>
<th>MbrName</th>
<th>CC</th>
<th>TYPE</th>
<th>LclStat</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBXYZ</td>
<td>IMS03</td>
<td>0</td>
<td>DLI</td>
<td>ALLOCS,OPEN,QUIESCING</td>
</tr>
<tr>
<td>KCIRDBAZ</td>
<td>IMS03</td>
<td>0</td>
<td>DLI</td>
<td>ALLOCS,OPEN,QUIESCING</td>
</tr>
<tr>
<td>GONLXYZ</td>
<td>IMS03</td>
<td>0</td>
<td>DLI</td>
<td>ALLOCS,OPEN,QUIESCING</td>
</tr>
</tbody>
</table>

Explanation: This example is a query of the databases that have a status of QUIESCING.

Example 5 for QUERY DB command

TSO SPOC input:
QUERY DB NAME(DEDBJ001) SHOW(ACCTYPE,STATUS)

TSO SPOC output:

<table>
<thead>
<tr>
<th>DBName</th>
<th>AreaName</th>
<th>MbrName</th>
<th>CC</th>
<th>TYPE</th>
<th>LAcc</th>
<th>LclStat</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDBJ001</td>
<td>IMS1</td>
<td>D0010001</td>
<td>0</td>
<td>DEEB</td>
<td>UPD</td>
<td>OPEN</td>
</tr>
<tr>
<td>DEDBJ001</td>
<td>IMS1</td>
<td>D0010001</td>
<td>0</td>
<td>AREA</td>
<td>READ</td>
<td>OPEN,PREOPEN</td>
</tr>
<tr>
<td>DEDBJ001</td>
<td>IMS1</td>
<td>D0010002</td>
<td>0</td>
<td>AREA</td>
<td>BRWS</td>
<td>OPEN,PREOPEN</td>
</tr>
<tr>
<td>DEDBJ001</td>
<td>IMS1</td>
<td>D0010003</td>
<td>0</td>
<td>AREA</td>
<td>OPEN</td>
<td>OPEN,PREOPEN</td>
</tr>
<tr>
<td>DEDBJ001</td>
<td>IMS1</td>
<td>D0010004</td>
<td>0</td>
<td>AREA</td>
<td>UPD</td>
<td>OPEN,PREOPEN</td>
</tr>
<tr>
<td>DEDBJ001</td>
<td>IMS1</td>
<td>D0010005</td>
<td>0</td>
<td>AREA</td>
<td>OPEN</td>
<td>OPEN,PREOPEN</td>
</tr>
</tbody>
</table>

OM API input:
CMD(QUERY DB NAME(DEDBJ001) SHOW(ACCTYPE,STATUS))

OM API output:
Explanation: DEDB DEDBJ001 has database access of UPD (update). Area access for areas D0010001, D00010002, and D0010004 has been changed with the command; that is, area D0010001 has area access of READ (read), area D0010002 has area access of BRWS (read only), and area D0010004 has area access of UPD (update). Areas D0010003 and D0010005 inherit DEDBJ001 database access of UPD (update).

Example 6 for QUERY DB command
TSO SPOC input:

QUERY DB NAME(BANKATMS,DEDBJN21,BE3PARTS,NEWDB1) SHOW(DEFN,ACCTYPE,RESIDENT)

TSO SPOC output:

(screen 1)

<table>
<thead>
<tr>
<th>DBName</th>
<th>MbrName</th>
<th>CC</th>
<th>CCText</th>
<th>Repo</th>
<th>IMSid</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BANKATMS</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td>IMS1</td>
<td>IMS1</td>
<td>DL/I</td>
</tr>
<tr>
<td>BANKATMS</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td>IMS1</td>
<td>IMS1</td>
<td>DL/I</td>
</tr>
<tr>
<td>BANKATMS</td>
<td>IMS2</td>
<td>0</td>
<td>Y</td>
<td>IMS2</td>
<td>IMS2</td>
<td>DL/I</td>
</tr>
<tr>
<td>BANKATMS</td>
<td>IMS3</td>
<td>0</td>
<td>Y</td>
<td>IMS3</td>
<td>IMS3</td>
<td>DL/I</td>
</tr>
<tr>
<td>BE3PARTS</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td>IMS1</td>
<td>IMS2</td>
<td>DL/I</td>
</tr>
<tr>
<td>BE3PARTS</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td>IMS1</td>
<td>IMS3</td>
<td>DL/I</td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td>IMS1</td>
<td>DEDB</td>
<td></td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td>IMS1</td>
<td>DEDB</td>
<td></td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td>IMS1</td>
<td>DEDB</td>
<td></td>
</tr>
<tr>
<td>NEWDB1</td>
<td>IMS1</td>
<td>1D3</td>
<td>REPOSITORY MEMBER NOT FOUND</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEWDB1</td>
<td>IMS1</td>
<td>0</td>
<td>IMS1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEWDB1</td>
<td>IMS2</td>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEWDB1</td>
<td>IMS3</td>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>N</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(scrolled right to screen 2)

<table>
<thead>
<tr>
<th>DBName</th>
<th>MbrName</th>
<th>Repo</th>
<th>IMSid</th>
<th>TYPE</th>
<th>Acc</th>
<th>LAcc</th>
<th>Rsndt</th>
<th>LDRsndt</th>
<th>LRsndt</th>
</tr>
</thead>
<tbody>
<tr>
<td>BANKATMS</td>
<td>IMS1</td>
<td>Y</td>
<td>EXCL</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BANKATMS</td>
<td>IMS1</td>
<td>IMS1</td>
<td>EXCL</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BANKATMS</td>
<td>IMS2</td>
<td>EXCL</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BANKATMS</td>
<td>IMS3</td>
<td>EXCL</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BE3PARTS</td>
<td>IMS1</td>
<td>Y</td>
<td>EXCL</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BE3PARTS</td>
<td>IMS1</td>
<td>Y</td>
<td>IMS2</td>
<td>UPD</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BE3PARTS</td>
<td>IMS1</td>
<td>Y</td>
<td>IMS3</td>
<td>EXCL</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BE3PARTS</td>
<td>IMS1</td>
<td>IMS1</td>
<td>DL/I</td>
<td>EXCL</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BE3PARTS</td>
<td>IMS2</td>
<td>IMS2</td>
<td>DL/I</td>
<td>EXCL</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BE3PARTS</td>
<td>IMS3</td>
<td>IMS3</td>
<td>DL/I</td>
<td>EXCL</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>IMS1</td>
<td>Y</td>
<td>UPD</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>IMS1</td>
<td>IMS1</td>
<td>DEDB</td>
<td>UPD</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>IMS2</td>
<td>IMS2</td>
<td>DEDB</td>
<td>UPD</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>IMS3</td>
<td>IMS3</td>
<td>DEDB</td>
<td>UPD</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEWDB1</td>
<td>IMS1</td>
<td>IMS1</td>
<td>UPD</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEWDB1</td>
<td>IMS2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEWDB1</td>
<td>IMS3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OM API input:

CMD(QUERY DB NAME(BANKATMS,DEDBJN21,BE3PARTS,NEWDB1) SHOW(DEFN,ACCTYPE,RESIDENT))

OM API output:

<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2011.181 19:51:43.997358</statime>
<stotime>2011.181 19:51:44.021469</stotime>
<staseq>C800383BD29AEE9C</staseq>
<stoseq>C800383BD87DDE80</stoseq>
<rqsttkn1>USRT00510125143</rqsttkn1>
<rc>0200000C</rc>
<r>00003008</r>
<rnsmsg>CSLN054I</rnsmsg>
None of the clients were successful.

---

<rsntxt>None of the clients were successful.</rsntxt>
</ctl>
<cmderr>
<mbr name="IMS1">
<typ>IMS</typ>
<styp>DBDC</styp>
<rc>0000000C</rc>
<rsn>00003000</rsn>
<rsntxt>At least one request successful</rsntxt>
</mbr>
<mbr name="IMS3">
<typ>IMS</typ>
<styp>DBDC</styp>
<rc>0000000C</rc>
<rsn>00003000</rsn>
<rsntxt>At least one request successful</rsntxt>
</mbr>
<mbr name="IMS2">
<typ>IMS</typ>
<styp>DBDC</styp>
<rc>0000000C</rc>
<rsn>00003000</rsn>
<rsntxt>At least one request successful</rsntxt>
</mbr>
</cmderr>

<cmd>
<master>IMS1</master>
<userid>USRT005</userid>
<verb>QRY</verb>
<kwd>DB</kwd>
<input>QUERY DB NAME(BANKATMS,DEDBJN21,BE3PARTS,NEWDB1) SHOW(DEFN,ACCTYPE,RESIDENT) </input>
</cmd>
</cmdrsphdr>

<cmdrspdata>
<rsp>DB(BANKATMS) MBR(IMS1) CC(0) TYP( ) LACC(EXCL)
IMSID(IMS1) LRSNT(N) </rsp>
<rsp>DB(DEDBJN21) MBR(IMS1) CC(0) TYP(DEDB) LACC(UPD)
</cmdrspdata>

80 Commands, Volume 2: IMS Commands N - V
Explanation: This example shows the result of query for the runtime definitions and the definitions stored in the repository for databases BANKATMS, BE3PARTS, DEDBJN21, and NEWDB1, for an IMSplex that contains IMS1, IMS2, and IMS3. IMS1 is the command master IMS.

- In the TSO SPOC output, the response lines 1-4 show the repository and local information for DB BANKATMS.
  - Line 1 indicates that database BANKATMS is defined to the repository, the line was built by command master IMS1, and that the database has a global access type of EXCL and a global resident value of N. The Repo column shows a value of Y, which indicates the global values for database BANKATMS in the repository. The IMSid column is blank, which indicates that this is the global definition of BANKATMS for all IMS systems that it is defined to.
  - Lines 2, 3, and 4 indicate that database BANKATMS is defined locally to IMS1, IMS2, and IMS3 with local access type and resident runtime values that are the same as the repository values. The MbrName column is the IMSID of the IMS that built the response line. The IMSid column shows the IMSID of the IMS to which the resource or descriptor is defined. The command master IMS1 already built repository information for BANKATMS. The output does not indicate whether database BANKATMS is defined in the resource lists for IMS1, IMS2, or IMS3, because SHOW(IMSID) was not specified.

- The response lines 5-10 show the repository and local information for DB BE3PARTS.
Line 5 indicates that database BE3PARTS is defined to the repository, the line was built by command master IMS1, and that the database has a global access type of EXCL and a global resident value of N. The Repo column shows a value of Y, which indicates the global values for database BE3PARTS in the repository. The IMSid column is blank, which indicates that this is the global definition of BE3PARTS for all IMS systems that it is defined to and that do not have their own specific definitions.

Line 6 indicates that database BE3PARTS is defined to the repository with unique values for IMS2 (the access type is UPD instead of EXCL), different from the global values. When IMS2 next imports database BE3PARTS from the repository, it will get its unique access type value of UPD, but the global resident value of N. The resource list for IMS2 contains database BE3PARTS because it must, in order for its unique attributes, be stored in the repository.

Line 7 indicates that database BE3PARTS is defined to the repository with unique values for IMS3 (the resident value is Y instead of N), different from the global values. When IMS3 next imports database BE3PARTS from the repository, it will get its unique resident value of Y, but the global access type of EXCL. The resource list for IMS3 contains database BE3PARTS because it must, in order for its unique attributes, be stored in the repository.

Lines 8-10 indicate that database BE3PARTS is defined locally to IMS1, IMS2, and IMS3 with various local access type and resident runtime values. The output does not indicate whether database BE3PARTS is in the resource lists for IMS1, IMS2, or IMS3, because SHOW(IMSID) was not specified. These IMS systems do not access repository information; the command master IMS1 already accessed it. Runtime values for IMS1, IMS2, and IMS3 match the stored values in the repository, so their definitions are synchronized with the repository and no import is needed.

The response lines 11-14 show the repository and local information for database DEDBJN21.

Line 11 indicates that database DEDBJN21 is defined to the repository, the line was built by command master IMS1, and that the database has a global access type of UPD and a global resident value of Y. The Repo column shows a value of Y and indicates the global values for database DEDBJN21 in the repository.

Lines 12-14 indicate that database DEDBJN21 is defined locally to IMS1, IMS2, and IMS3 with the local access type UPD and resident Y runtime values. The command master IMS1 already built repository information for DEDBJN21. Runtime values for IMS1, IMS2, and IMS3 match the stored values in the repository, so their definitions are synchronized with the repository, and no import is needed. The output does not indicate whether database DEDBJN21 is defined in the resource lists for IMS1, IMS2, or IMS3, because SHOW(IMSID) was not specified.

The response lines 15-18 shows the information for DB NEWDB1.

- Line 15 indicates that the database NEWDB1 is not defined to the repository.
- Line 16 indicates that database NEWDB1 is defined locally to IMS1.
- Line 17-18 indicate that the database NEWDB1 is not defined locally to IMS2 and IMS3.

Example 7 for QUERY DB command

TSO SPOC input:

QUERY DB NAME(BA*) SHOW(DEFN)
TSO SPOC output:

(screenshot 1)

<table>
<thead>
<tr>
<th>DBName</th>
<th>MbrName</th>
<th>Repo</th>
<th>IMSid</th>
<th>TYPE</th>
<th>Acc</th>
<th>LAcc</th>
<th>Rsnt</th>
<th>LRsdnt</th>
</tr>
</thead>
<tbody>
<tr>
<td>BANKATMS</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td>EXCL</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BANKATMS</td>
<td>IMS1</td>
<td>0</td>
<td>IMS1</td>
<td>EXCL</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BANKATMS</td>
<td>IMS2</td>
<td>0</td>
<td>IMS2</td>
<td>EXCL</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BANKFNCL</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td>EXCL</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BANKFNCL</td>
<td>IMS2</td>
<td>0</td>
<td>IMS2</td>
<td>EXCL</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(screenshot right to screen 2)

<table>
<thead>
<tr>
<th>DBName</th>
<th>MbrName</th>
<th>Repo</th>
<th>TimeCreate</th>
<th>LTimeCreate</th>
</tr>
</thead>
<tbody>
<tr>
<td>BANKATMS</td>
<td>IMS1</td>
<td>Y</td>
<td>2011.181</td>
<td>20:08:15.10</td>
</tr>
<tr>
<td>BANKATMS</td>
<td>IMS1</td>
<td></td>
<td>2011.181</td>
<td>20:22:15.10</td>
</tr>
<tr>
<td>BANKATMS</td>
<td>IMS2</td>
<td></td>
<td>2011.181</td>
<td>20:20:47.82</td>
</tr>
<tr>
<td>BANKFNCL</td>
<td>IMS1</td>
<td>Y</td>
<td>2011.181</td>
<td>20:22:15.10</td>
</tr>
<tr>
<td>BANKFNCL</td>
<td>IMS1</td>
<td></td>
<td>2011.181</td>
<td>20:22:15.10</td>
</tr>
<tr>
<td>BANKFNCL</td>
<td>IMS2</td>
<td></td>
<td>2011.181</td>
<td>20:20:47.82</td>
</tr>
</tbody>
</table>

(screenshot right to screen 3)

<table>
<thead>
<tr>
<th>DBName</th>
<th>MbrName</th>
<th>Repo</th>
<th>LTimeUpdate</th>
<th>LTimeAccess</th>
<th>LTimeImport</th>
</tr>
</thead>
<tbody>
<tr>
<td>BANKATMS</td>
<td>IMS1</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BANKATMS</td>
<td>IMS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BANKATMS</td>
<td>IMS2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BANKFNCL</td>
<td>IMS1</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BANKFNCL</td>
<td>IMS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BANKFNCL</td>
<td>IMS2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OM API input:

CMD(QUERY DB NAME(BA*) SHOW(DEFN))

OM API output:

<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2011.181 20:08:12.066851</statime>
<stotime>2011.181 20:08:12.152198</stotime>
<staseq>00000000</staseq>
<rqsttkn1>USRT005 10130812</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>IMS1</master>
<userid>USRT005</userid>
<verb>QRY</verb>
</cmd>

Chapter 5. QUERY commands 83
<kwdb>DB</kwdb>
</kwdb>
</inpb>QRY DB NAME(BA*) SHOW(DEFN) </inpb>
</cmd>
<cmdrsphdr>
<hdr slbl="DB" l1bl="DBName" scope="LCL" sort="a" key="1" scroll="no"
len="8" dtype="CHAR" align="left" skipb="no"/>
<hdr slbl="AREA" l1bl="AreaName" scope="LCL" sort="a" key="4"
scroll="no" len="8" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="PART" l1bl="PartName" scope="LCL" sort="a" key="5"
scroll="no" len="8" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="MBR" l1bl="MbrName" scope="LCL" sort="a" key="0"
scroll="no" len="8" dtype="CHAR" align="left" skipb="no"/>
<hdr slbl="CC" l1bl="CC" scope="LCL" sort="n" key="0"
scroll="yes" len="*" dtype="INT" align="right" skipb="no"/>
</cmdrsphdr>
<cmdrspsdata>
<rsp>DB(BANKATMS) MBR(IMS1 ) CC( O) TYP( ) LACC(EXCL)
IMSID(IMS1 ) LRSNTD(N) TMCR(2011.181 10:22:15.10) TMUP( )
TMIM( ) MAC( ) </rsp>
<rsp>DB(BANKFNCL) MBR(IMS1 ) CC( O) TYP( ) LACC(EXCL)
IMSID(IMS1 ) LRSNTD(N) TMCR(2011.181 10:22:15.10) TMUP( )
TMIM( ) MAC( ) </rsp>
<rsp>DB(BANKLDGR) MBR(IMS1 ) CC( O) TYP( ) LACC(EXCL)
IMSID(IMS1 ) LRSNTD(N) TMCR(2011.181 10:22:15.10) TMUP( )
TMIM( ) MAC( ) </rsp>
<rsp>DB(BANKTERM) MBR(IMS1 ) CC( O) TYP( ) LACC(EXCL)
IMSID(IMS1 ) LRSNTD(N) TMCR(2011.181 10:22:15.10) TMUP( )
TMIM( ) MAC( ) </rsp>
<rsp>DB(BANKATMS) MBR(IMS2 ) CC( O) TYP( ) LACC(EXCL)
RTMCR(2011.181 10:22:15.10) </rsp>
<rsp>DB(BANKFNCL) MBR(IMS2 ) CC( O) TYP( ) LACC(EXCL)
RTMCR(2011.181 10:22:15.10) </rsp>
<rsp>DB(BANKLDGR) MBR(IMS2 ) CC( O) TYP( ) LACC(EXCL)
RTMCR(2011.181 10:22:15.10) </rsp>
<rsp>DB(BANKTERM) MBR(IMS2 ) CC( O) TYP( ) LACC(EXCL)
RTMCR(2011.181 10:22:15.10) </rsp>
</cmdrspsdata>
Explanation: A line is returned for each resource that matches the wildcard name. The resource definitions from each IMS that has the resource defined and the global repository definition are returned. The repository information is returned by the command master IMS. There are no IMS-specific sections in the repository for each resource name that matches the wildcard name.

Example 8 for QUERY DB command

TSO SPOC input:
QRY DB NAME(BANKATMS,DEDBJN21,BE3PARTS,NEWDB1) SHOW(DEFN,IMSID,ACCTYPE,RESIDENT)

TSO SPOC output:

(screen 1)

<table>
<thead>
<tr>
<th>DBName</th>
<th>MbrName</th>
<th>CC</th>
<th>CCText</th>
<th>Repo</th>
<th>IMSid</th>
<th>TYPE</th>
<th>Acc</th>
</tr>
</thead>
<tbody>
<tr>
<td>BANKATMS</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td></td>
<td>Y</td>
<td>EXCL</td>
<td></td>
</tr>
<tr>
<td>BANKATMS</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td></td>
<td>Y</td>
<td>EXCL</td>
<td></td>
</tr>
<tr>
<td>BANKATMS</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td></td>
<td>Y</td>
<td>EXCL</td>
<td></td>
</tr>
<tr>
<td>BANKATMS</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td></td>
<td>Y</td>
<td>EXCL</td>
<td></td>
</tr>
<tr>
<td>BANKATMS</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td></td>
<td>IMS1</td>
<td>EXCL</td>
<td></td>
</tr>
<tr>
<td>BANKATMS</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td></td>
<td>IMS1</td>
<td>EXCL</td>
<td></td>
</tr>
<tr>
<td>BE3PARTS</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td></td>
<td>IMS1</td>
<td>EXCL</td>
<td></td>
</tr>
<tr>
<td>BE3PARTS</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td></td>
<td>IMS1</td>
<td>EXCL</td>
<td></td>
</tr>
<tr>
<td>BE3PARTS</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td></td>
<td>IMS2</td>
<td>EXCL</td>
<td></td>
</tr>
<tr>
<td>BE3PARTS</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td></td>
<td>IMS2</td>
<td>EXCL</td>
<td></td>
</tr>
<tr>
<td>BE3PARTS</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td></td>
<td>IMS3</td>
<td>READ</td>
<td></td>
</tr>
<tr>
<td>BE3PARTS</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td></td>
<td>IMS3</td>
<td>EXCL</td>
<td></td>
</tr>
<tr>
<td>BE3PARTS</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td></td>
<td>IMS1</td>
<td>DL/I</td>
<td></td>
</tr>
<tr>
<td>BE3PARTS</td>
<td>IMS2</td>
<td>0</td>
<td></td>
<td></td>
<td>IMS2</td>
<td>DL/I</td>
<td></td>
</tr>
<tr>
<td>BE3PARTS</td>
<td>IMS3</td>
<td>0</td>
<td></td>
<td></td>
<td>IMS3</td>
<td>DL/I</td>
<td></td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td></td>
<td>Y</td>
<td>UPD</td>
<td></td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td></td>
<td>Y</td>
<td>UPD</td>
<td></td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td></td>
<td>Y</td>
<td>UPD</td>
<td></td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td></td>
<td>Y</td>
<td>UPD</td>
<td></td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td></td>
<td>IMS1</td>
<td>DEDB</td>
<td></td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>IMS2</td>
<td>0</td>
<td></td>
<td></td>
<td>IMS2</td>
<td>DEDB</td>
<td></td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>IMS3</td>
<td>0</td>
<td></td>
<td></td>
<td>IMS3</td>
<td>DEDB</td>
<td></td>
</tr>
<tr>
<td>NEWDB1</td>
<td>IMS1</td>
<td>103</td>
<td></td>
<td></td>
<td>REPOSITORY MEMBER NOT FOUND Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEWDB1</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td></td>
<td>IMS1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEWDB1</td>
<td>IMS2</td>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEWDB1</td>
<td>IMS3</td>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(scrollled to the right screen 2)

<table>
<thead>
<tr>
<th>DBName</th>
<th>MbrName</th>
<th>Repo</th>
<th>IMSid</th>
<th>TYPE</th>
<th>Acc</th>
<th>LAcc</th>
<th>Rsdent</th>
<th>LDRsdnt</th>
<th>LRsdnt</th>
</tr>
</thead>
<tbody>
<tr>
<td>BANKATMS</td>
<td>IMS1</td>
<td>Y</td>
<td>EXCL</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BANKATMS</td>
<td>IMS1</td>
<td>Y</td>
<td>EXCL</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BANKATMS</td>
<td>IMS1</td>
<td>Y</td>
<td>EXCL</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BANKATMS</td>
<td>IMS1</td>
<td>Y</td>
<td>EXCL</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
OM API input:

CMD(QRY DB NAME(BANKATMS,DEDBJN21,BE3PARTS,NEWDB1)
SHOW(DEFN,IMSID,ACCTYPE,RESIDENT))

OM API output:

<imsout>
<ctl>
<omname>OM1OM </omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20 </xmlvsn>
<statime>2011.181 22:47:45.395196</statime>
<stotime>2011.181 22:47:45.414012</stotime>
<staseq>C8005F93F4DFC05C</staseq>
<stoseq>C8005F93F977C345</stoseq>
<rqsttkn1>USRT005 10154745</rqsttkn1>
<rc>0200000C</rc>
<rsn>00003008</rsn>
<rsnmsg>CSLN054I</rsnmsg>
<rsntxt>None of the clients were successful.</rsntxt>
</ctl>
<cmderr>
<mbr name="IMS1 ">
<typ>IMS </typ>
<styp>DBDC </styp>
<rc>0000000C</rc>
<rsn>00003000</rsn>
<rsntxt>At least one request successful</rsntxt>
</mbr>
<mbr name="IMS3 ">
<typ>IMS </typ>
<styp>DBDC </styp>
<rc>0000000C</rc>
<rsn>00003000</rsn>
<rsntxt>At least one request successful</rsntxt>
</mbr>
<mbr name="IMS2 ">
<typ>IMS </typ>
<styp>DBDC </styp>
<rc>0000000C</rc>
<rsn>00003000</rsn>
<rsntxt>At least one request successful</rsntxt>
</mbr>
</cmderr>
</imsout>
Chapter 5. QUERY commands

87
Description: Because SHOW(IMSID) is specified, a line is returned for each IMS that has the resource defined in the repository. Line 5 indicates that the BANKATMS definition for IMS4 is defined in the repository for IMS4, but the definition has not yet been imported into IMS4 because IMS4 shows no local line for database BANKATMS.

Example 9 for QUERY DB command

TSO SPOC input:
QRY DB NAME(BANKATMS,DEDBJN21,BE3PARTS,NEWDB1) SHOW(DEFN,GLOBAL)

TSO SPOC output:

(SCREEN 1)

<table>
<thead>
<tr>
<th>DBName</th>
<th>MbrName</th>
<th>CC</th>
<th>CCText</th>
<th>Repo</th>
<th>IMSid</th>
<th>Acc</th>
<th>Rsdnt</th>
</tr>
</thead>
<tbody>
<tr>
<td>BANKATMS</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td>Y</td>
<td>EXCL</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>BE3PARTS</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td>Y</td>
<td>EXCL</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>BE3PARTS</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td>Y</td>
<td>IMS2</td>
<td>UPD</td>
<td></td>
</tr>
<tr>
<td>BE3PARTS</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td>Y</td>
<td>IMS3</td>
<td>READ</td>
<td>Y</td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td>Y</td>
<td>UPD</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>NEWDB1</td>
<td>IMS1</td>
<td>103</td>
<td>REPOSITORY MEMBER NOT FOUND</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(SCRIBLED RIGHT TO SCREEN 2)

<table>
<thead>
<tr>
<th>DBName</th>
<th>MbrName</th>
<th>Repo</th>
<th>TimeCreate</th>
<th>TimeUpdate</th>
</tr>
</thead>
<tbody>
<tr>
<td>BANKATMS</td>
<td>IMS1</td>
<td>Y</td>
<td>2011.181 15:22:52.65</td>
<td></td>
</tr>
<tr>
<td>BE3PARTS</td>
<td>IMS1</td>
<td>Y</td>
<td>2011.181 15:22:52.65</td>
<td></td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>IMS1</td>
<td>Y</td>
<td>2011.181 15:22:52.65</td>
<td></td>
</tr>
<tr>
<td>NEWDB1</td>
<td>IMS1</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
OM API output:

<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2011.181 22:57:34.679151</statime>
<stotime>2011.181 22:57:34.700833</stotime>
<staseq>C80061C5F106F650</staseq>
<stoseq>C80061C5F652109E</stoseq>
<rqsttkn1>USRT005 10155734</rqsttkn1>
<rc>0200000C</rc>
<rsn>0000300C</rsn>
<rsnmsg>CSLN055I</rsnmsg>
<rsntxt>The command completed with warning(s).</rsntxt>
</ctl>
</cmderr>
</cmd>
</cmdrsphdr>

Chapter 5. QUERY commands
**Explanation:** The stored resource definition information from the repository is returned for the specified resource names because SHOW(DEFN,GLOBAL) is specified. The access type, resident, create time, and update time from the stored resource definitions in the repository are returned. The output contains generic resource definitions and any IMS-specific sections. The generic resource definition has a blank in the IMSId column. The IMS-specific section includes an IMSID of the IMS whose definition is different from the generic definition. For readability, the DBName and MbrName columns are repeated when the output is scrolled to the right.

**Example 10 for QUERY DB command**

TSO SPOC input:

QRY DB NAME(BANKATMS,DEDBJN21,BE3PARTS,NEWDB1) SHOW(DEFN,LOCAL)

TSO SPOC output:

<table>
<thead>
<tr>
<th>DBName</th>
<th>MbrName</th>
<th>CC</th>
<th>CCText</th>
<th>IMSid</th>
<th>TYPE</th>
<th>LAcc</th>
<th>LDRsdnt</th>
<th>LRsdsn</th>
</tr>
</thead>
<tbody>
<tr>
<td>BANKATMS</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td>IMS1</td>
<td>EXCL</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BANKATMS</td>
<td>IMS2</td>
<td>0</td>
<td></td>
<td>IMS2</td>
<td>EXCL</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BANKATMS</td>
<td>IMS3</td>
<td>0</td>
<td></td>
<td>IMS3</td>
<td>EXCL</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BE3PARTS</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td>IMS1</td>
<td>EXCL</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BE3PARTS</td>
<td>IMS2</td>
<td>0</td>
<td></td>
<td>IMS2</td>
<td>UPD</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BE3PARTS</td>
<td>IMS3</td>
<td>0</td>
<td></td>
<td>IMS3</td>
<td>READ</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td>IMS1</td>
<td>DEDB</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>IMS2</td>
<td>0</td>
<td></td>
<td>IMS2</td>
<td>UPD</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>IMS3</td>
<td>0</td>
<td></td>
<td>IMS3</td>
<td>DEDB</td>
<td>UPD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEWDB1</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td>IMS1</td>
<td>UPD</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEWDB1</td>
<td>IMS2</td>
<td>0</td>
<td>10 NO RESOURCES FOUND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEWDB1</td>
<td>IMS3</td>
<td>0</td>
<td>10 NO RESOURCES FOUND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(scrolled right to screen 2)

<table>
<thead>
<tr>
<th>DBName</th>
<th>MbrName</th>
<th>LTimeCreate</th>
<th>LTimeUpdate</th>
<th>LTimeAccess</th>
</tr>
</thead>
<tbody>
<tr>
<td>BANKATMS</td>
<td>IMS1</td>
<td>2011.181 15:22:52.65</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
OM API input:
CMD(QRY DB NAME(BANKATMS,DEDBJN21,BE3PARTS,NEWDB1) SHOW(DEFN,LOCAL) )

OM API output:

<imsout>
<ctl>
<omname>OM1</omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2011.181 23:06:01.535261</statime>
<brstime>2011.181 23:06:01.559762</brstime>
<staseq>C80063A95131DA82</staseq>
<brstseq>C80063A9572D2645</brstseq>
<rqsttkn1>USRT005 10160601</rqsttkn1>
<rc>0200000C</rc>
<rsn>00003000</rsn>
<rsntxt>At least one request was successful.</rsntxt>
</ctl>
</cmderr>
<mbr name="IMS3">
<typ>IMS</typ>
<styp>DBDC</styp>
<rc>0000000C</rc>
<rsn>00003000</rsn>
<rsntxt>At least one request successful</rsntxt>
</mbr>
<mbr name="IMS2">
<typ>IMS</typ>
<styp>DBDC</styp>
<rc>0000000C</rc>
<rsn>00003000</rsn>
<rsntxt>At least one request successful</rsntxt>
</mbr>
</cmderr>
<cmd>
<master>IMS1</master>
<userid>USRT005</userid>
<verb>QRY</verb>
<kwd>DB</kwd>
<input>QRY DB NAME(BANKATMS,DEDBJN21,BE3PARTS,NEWDB1) SHOW(DEFN,LOCAL) </input>
</cmd>
</cmderr>
</cmd>
</cmdrsphdr>
<hdr slbl="DB" llbl="DBName" scope="LCL" sort="a" key="1" scroll="no"
<len="8" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="AREA" llbl="AreaName" scope="LCL" sort="a" key="4"
scroll="no" len="8" dtype="CHAR" align="left" skipb="yes" />
<hdr slbl="PART" llbl="PartName" scope="LCL" sort="a" key="5"
scroll="no" len="8" dtype="CHAR" align="left" skipb="yes" />
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" key="3"
scroll="no" len="8" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0"
scroll="yes" len="4" dtype="INT" align="right" skipb="no" />
<hdr slbl="CCTXT" llbl="CCText" scope="LCL" sort="n" key="0"
scroll="yes" len="*" dtype="CHAR" align="left" skipb="yes" />

Chapter 5. QUERY commands  91
Example 11 for QUERY DB command

Explanation: The runtime resource definitions at the IMS system are returned for the specified resource names. Because SHOW(LOCAL) is specified, only the local runtime definitions from each IMS system are returned. No stored resource definitions from repository are returned.
TSO SPOC input:

QRY DB NAME(BANKATMS,DEDBJN21,BE3PARTS) SHOW(IMSID)

TSO SPOC output:

<table>
<thead>
<tr>
<th>DBName</th>
<th>MbrName</th>
<th>CC</th>
<th>Repo</th>
<th>IMSid</th>
</tr>
</thead>
<tbody>
<tr>
<td>BANKATMS</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td>IMS1</td>
</tr>
<tr>
<td>BANKATMS</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td>IMS2</td>
</tr>
<tr>
<td>BANKATMS</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td>IMS3</td>
</tr>
<tr>
<td>BANKATMS</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td>IMS4</td>
</tr>
<tr>
<td>BE3PARTS</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td>IMS1</td>
</tr>
<tr>
<td>BE3PARTS</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td>IMS2</td>
</tr>
<tr>
<td>BE3PARTS</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td>IMS3</td>
</tr>
<tr>
<td>BE3PARTS</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td>IMS4</td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td>IMS3</td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td>IMS1</td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td>IMS2</td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td>IMS4</td>
</tr>
</tbody>
</table>

OM API input:

CMD(QRY DB NAME(BANKATMS,DEDBJN21,BE3PARTS) SHOW(IMSID))

OM API output:

```xml
<imsout>
 <ctl>
 <omname>OM</omname>
 <omvsn>1.5.0</omvsn>
 <xmlvsn>20</xmlvsn>
 <statime>2011.181 23:14:08.509271</statime>
 <stotime>2011.181 23:14:08.533678</stotime>
 <staseq>C8006579B855578</staseq>
 <stoseq>C8006579C14AE3CA</stoseq>
 <rqsttkn1>USRTOO5 10161408</rqsttkn1>
 <rct>02000004</rc>
 <rsn>00001014</rsn>
 <rsnmsg>CSLN055I</rsnmsg>
 <rsntxt>At least one request completed with warning(s).</rsntxt>
 </ctl>
 <cmderr>
 <mbr name="IMS3">
 <typ>IMS</typ>
 <styp>DBDC</styp>
 <rc>00000004</rc>
 <rsn>00001000</rsn>
 <rsntxt>IMS not master, cmd ignored</rsntxt>
 </mbr>
 <mbr name="IMS2">
 <typ>IMS</typ>
 <styp>DBDC</styp>
 <rc>00000004</rc>
 <rsn>00001000</rsn>
 <rsntxt>IMS not master, cmd ignored</rsntxt>
 </mbr>
 </cmderr>
 <cmd>
 <master>IMS1</master>
 <userid>USRTO05</userid>
 <verb>QRY</verb>
 <kwd>DB</kwd>
 <input>QRY DB NAME(BANKATMS,DEDBJN21,BE3PARTS) SHOW(IMSID)</input>
 </cmd>
</imsout>
```

Chapter 5. QUERY commands 93
Explanation: The SHOW(IMSID) keyword without the DEFN filter is specified. The IMSID information from the repository is returned for the specified resource names. The IMSIDs that have the specified resource names in their IMS resource list in the repository are returned in the IMSid column. All the IMSID information is returned in the IMSid column.

Example 12 for QUERY DB command

In this example, TYPE is set to DHISNDX for a HISAM or a SHISAM secondary index database.

TSO SPOC input:
QUERY DB NAME(D*) SHOW(ACCTYPE)

TSO SPOC output:

<table>
<thead>
<tr>
<th>DATABASE</th>
<th>TYPE</th>
<th>TOTAL</th>
<th>UNUSED</th>
<th>TOTAL</th>
<th>UNUSED</th>
<th>ACC</th>
<th>CONDITIONS</th>
<th>IMS1</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBHDOJ01</td>
<td>PHDAM</td>
<td>UP</td>
<td>IMS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDHDOJA</td>
<td>PART</td>
<td>UP</td>
<td>NOTOPEN</td>
<td>IMS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDHDOJB</td>
<td>PART</td>
<td>UP</td>
<td>NOTOPEN</td>
<td>IMS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDHDOJC</td>
<td>PART</td>
<td>UP</td>
<td>NOTOPEN</td>
<td>IMS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDHDOJD</td>
<td>PART</td>
<td>UP</td>
<td>NOTOPEN</td>
<td>IMS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEDBJN24</td>
<td>DBDB</td>
<td>SEQ</td>
<td>DEPEND</td>
<td>DIRECT</td>
<td>ADDRESS</td>
<td>UP</td>
<td>NOTOPEN</td>
<td>IMS1</td>
</tr>
<tr>
<td>DB24A000</td>
<td>AREA</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>NOTOPEN</td>
<td>IMS1</td>
</tr>
<tr>
<td>DB24A001</td>
<td>AREA</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>NOTOPEN</td>
<td>IMS1</td>
</tr>
<tr>
<td>DB24A239</td>
<td>AREA</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>NOTOPEN</td>
<td>IMS1</td>
</tr>
<tr>
<td>DEHSJX24</td>
<td>DHISNDX</td>
<td>UP</td>
<td>NOTOPEN</td>
<td>IMS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Explanation: DBHDOJ01 is a PHDAM database with four partitions: PDHDOJA, PDHDOJB, PDHDOJC, and PDHDOJD. DEDBJN24 is a HISAM or SHISAM

Commands, Volume 2: IMS Commands N - V
secondary index database with three areas: DB24A000, DB24A001, and DB24A239. DEHSJX24 is a HISAM or a SHISAM secondary index database. The local access of each database is UPDATE.

**Example 13 for QUERY DB command**

In this example, TYPE is set to DHISNDX for a HISAM or a SHISAM secondary index database.

TSO SPOC input:

```
QUERY DB NAME(D*) SHOW(ACCTYPE)
```

TSO SPOC output:

<table>
<thead>
<tr>
<th>DBName</th>
<th>AreaName</th>
<th>MbrName</th>
<th>CC</th>
<th>TYPE</th>
<th>LAcc</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBHDOJ01</td>
<td></td>
<td></td>
<td>0</td>
<td>PHDAM</td>
<td>UPD</td>
</tr>
<tr>
<td>DBHDOJ01</td>
<td>PDHDOJA</td>
<td>IMS1</td>
<td>0</td>
<td>PART</td>
<td>UPD</td>
</tr>
<tr>
<td>DBHDOJ01</td>
<td>PDHDOJB</td>
<td>IMS1</td>
<td>0</td>
<td>PART</td>
<td>UPD</td>
</tr>
<tr>
<td>DBHDOJ01</td>
<td>PDHDOJC</td>
<td>IMS1</td>
<td>0</td>
<td>PART</td>
<td>UPD</td>
</tr>
<tr>
<td>DEDBJN24</td>
<td></td>
<td>IMS1</td>
<td>0</td>
<td>DEDB</td>
<td>UPD</td>
</tr>
<tr>
<td>DEDBJN24</td>
<td>DB24A000</td>
<td>IMS1</td>
<td>0</td>
<td>AREA</td>
<td></td>
</tr>
<tr>
<td>DEDBJN24</td>
<td>DB24A001</td>
<td>IMS1</td>
<td>0</td>
<td>AREA</td>
<td></td>
</tr>
<tr>
<td>DEDBJN24</td>
<td>DB24A239</td>
<td>IMS1</td>
<td>0</td>
<td>AREA</td>
<td></td>
</tr>
<tr>
<td>DEHSJX24</td>
<td></td>
<td>IMS1</td>
<td>0</td>
<td>DHI5NDX</td>
<td>UPD</td>
</tr>
</tbody>
</table>

**Explanation:** DBHDOJ01 is a PHDAM database with four partitions: PDHDOJA, PDHDOJB, PDHDOJC, and PDHDOJD. DEDBJN24 is a HISAM or SHISAM secondary index database with three areas: DB24A000, DB24A001, and DB24A239. DEHSJX24 is a HISAM or a SHISAM secondary index database.

**Example 14 for QUERY DB command**

TSO SPOC input:

```
QUERY DB NAME(DEDBGS1A,FPSI1AH*) SHOW(SNDX)
```

TSO SPOC output:

<table>
<thead>
<tr>
<th>DBName</th>
<th>AreaName</th>
<th>MbrName</th>
<th>CC</th>
<th>TYPE</th>
<th>CCText</th>
<th>LAcc</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDBJN24</td>
<td></td>
<td>IMS1</td>
<td>0</td>
<td>DE0B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEDBJN24</td>
<td>DB24A000</td>
<td>IMS1</td>
<td>0</td>
<td>AREA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEDBJN24</td>
<td>DB24A001</td>
<td>IMS1</td>
<td>0</td>
<td>AREA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEDBJN24</td>
<td>DB24A239</td>
<td>IMS1</td>
<td>0</td>
<td>AREA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEHSJX24</td>
<td></td>
<td>IMS1</td>
<td>0</td>
<td>DHI5NDX</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Explanation:** DEDBJN24 is a HISAM or SHISAM secondary index database with three areas: DB24A000, DB24A001, and DB24A239. DEHSJX24 is a HISAM or a SHISAM secondary index database. The local access type of each database is UPDATE.

**Example 15 for QUERY DB command**

TSO SPOC input:

```
QUERY DB NAME(DEDBGS1A,FPSI1AH+) SHOW(SNDX)
```

TSO SPOC output:

Response for: QUERY DB NAME(DEDBGS1A,FPSI1AH+) SHOW(SNDX)

<table>
<thead>
<tr>
<th>DBName</th>
<th>AreaName</th>
<th>SndxName</th>
<th>MbrName</th>
<th>CC</th>
<th>CCText</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDBG51A</td>
<td></td>
<td></td>
<td>IMS1</td>
<td>0</td>
<td>DE0B</td>
<td></td>
</tr>
<tr>
<td>DEDBG51A</td>
<td>FPSI1AH</td>
<td>IMS1</td>
<td>0</td>
<td>DHI5NDX</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Explanation: DEDBG51A is a DEDB database with seven areas: GS1AAR0, GS1AAR1, GS1AAR2, GS1AAR3, GS1AAR4, GS1AAR5, and GS1AAR6. DEDBG51A has three HISAM or SHISAM secondary index databases: FPSI1AH1, FPSI1AH1, and FPSI1AH2. Because databases FPSI1AH1, FPSI1AH1, and FPSI1AH2 are not DEDB databases, they cannot have Fast Path secondary index databases defined. These databases get a completion code of 193, which indicates that they are not DEDB databases.

Example 16 for QUERY DB command

The following example shows a HALDB master database, DBVHDJ05, and two partitions, PVHDJ5B and PVHDJ5D, that are currently being processed by the HALDB online alter function.

TSO SPOC input:

QRY DBNAME(DBVHDJ05) SHOW(WORK)

TSO SPOC output:

<table>
<thead>
<tr>
<th>DBName</th>
<th>PartName</th>
<th>MbrName</th>
<th>CC</th>
<th>TYPE</th>
<th>Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBVHDJ05</td>
<td>IMS1</td>
<td>0</td>
<td>PHDAM</td>
<td>ALTER</td>
<td>INCOMPLETE</td>
</tr>
<tr>
<td>DBVHDJ05</td>
<td>PVHDJ5B</td>
<td>IMS1</td>
<td>0</td>
<td>PART</td>
<td>ALTER INCOMPLETE</td>
</tr>
<tr>
<td>DBVHDJ05</td>
<td>PVHDJ5D</td>
<td>IMS1</td>
<td>0</td>
<td>PART</td>
<td>ALTER INCOMPLETE</td>
</tr>
</tbody>
</table>

Related concepts:

- How to interpret CSL request return and reason codes (System Programming APIs)

Related reference:

- /DISPLAY DB command (Commands)
- /DISPLAY DBD command (Commands)
- /DISPLAY MODIFY command (Commands)
- /DISPLAY STATUS command (Commands)
- Command keywords and their synonyms (Commands)

**QUERY DBDESC command**

Use the QUERY DBDESC command to query information about database descriptors. A descriptor is a model that can be used to create descriptors or resources.

Subsections:

- "Environment" on page 97
Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 25. Valid environments for the QUERY DBDESC command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY DBDESC</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DEFAULT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SHOW</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
QUERY QRY DBDESC
 NAME(*),
 NAME(name*),
 DEFAULT(N,Y),
```

```
SHOW(ALL,
 ACCTYPE,
 DEFAULT,
 DEFN,
 DEFNTYPE,
 GLOBAL,
 IMSID,
 LOCAL,
 MODEL,
 RESIDENT,
 TIMESTAMP)
```

Keywords

The following keywords are valid for the QUERY DBDESC command:

**DEFAULT()**

Specifies which descriptor or descriptors to display.

- **N** Displays all the database descriptors that are not the default.
- **Y** Displays the default database descriptor.
NAME()

Specifies the 1-8 character name of the database descriptor. Wildcards can be specified in the name. The name is a repeatable parameter. The default is NAME(*), which returns all database descriptors.

SHOW()

Specifies the database descriptor output fields to be returned. The database descriptor name is always returned, along with the name of the IMS that created the output for the database descriptor and the completion code. The filters supported with the SHOW keyword are:

ALL
Returns all information about the database descriptor itself.

ACCTYPE
Type of access to the database created using this database descriptor.

DEFAULT
Default descriptor option.

DEFN
Specifies that the resource definitions are to be returned.

The database descriptor attributes that can be returned are: ACCTYPE, DEFAULT, RESIDENT, the repository create and update time stamps, and the IMS runtime create, update, import, and access time stamps.

If SHOW(DEFN) is specified without any other SHOW filters or with the IMSID filter, all the definitional attributes, including those defined globally in the repository and those defined locally in the IMS system, are returned. The runtime resource definitions from the IMS system are returned by each IMS that receives the command. The stored resource definitions in the IMSRSC repository are returned by the command master IMS if the command master IMS is enabled to use the repository.

The command master IMS returns a response line for each generic stored resource definition obtained from the repository. This response line displays the attributes of the generic resource definition. When SHOW(DEFN) is specified without the IMSID filter and all the IMS systems have the same attribute values defined, only the response line for the generic definition is returned. The IMS IDs of the IMS systems that have the stored resource definition defined are not returned. If an IMS system has a stored resource definition with one or more attribute values that differ from the generic stored resource definition, an additional response line is returned for each IMS that has different attribute values.

If SHOW(DEFN,LOCAL) is specified, the runtime resource definitions from the IMS system are returned by each IMS that received the command.

If SHOW(DEFN,GLOBAL) is specified, the stored resource definitions from the repository are returned by the command master IMS. SHOW(DEFN,GLOBAL) is valid only when the command master IMS is enabled to use the repository.

If SHOW(DEFN) is specified with other parameters, only the requested definitional attributes are returned. For example, if SHOW(DEFN,TIMESTAMP) is specified, only the time stamps are returned.

Restrictions:
- SHOW(DEFN) cannot be specified with DEFNTYPE or MODEL.
The LModelName, LModelType, and LDefnType columns, which are returned on the QRY DBDESC SHOW(ALL) command, are not returned with SHOW(DEFN).

The Repo and IMSid columns, which are returned with SHOW(DEFN), are not returned with SHOW(ALL).

When querying database descriptor information from the repository, the resource definitions stored in the repository are used to determine the response lines with the repository information, and the runtime resource definitions are used to determine the response lines with the IMS runtime resource information. The response lines are returned for each stored resource or runtime resource definition that matches the specified filter. If SHOW(DEFN,GLOBAL) is specified, only the stored resource definitions that match the specified filter are returned. If SHOW(DEFN,LOCAL) is specified, only the runtime resource definitions that match the specified filter are returned.

If SHOW(DEFN,IMSID) is specified, a response line is returned for the generic stored resource definition, and an additional response line is returned for each IMS that has the resource defined in the repository, regardless of whether their stored resource definitions are the same as the generic resource definition.

**DEFNTYPE**
Definition type. This is how the descriptor was defined.

**GLOBAL**
Specifies that the stored resource definitions from the repository are to be returned.

If SHOW(GLOBAL,DEFN) is specified, the global resource definitions from the repository are returned by the command master IMS.

SHOW(GLOBAL,DEFN) is valid only when the command master IMS is enabled to use the repository.

**IMSID**
Specifies that the IMSID of the IMS systems whose resource lists contain the resource name are to be returned.

SHOW(IMSID) is processed only by the command master IMS and is valid only when command master IMS is enabled to use the repository.

When SHOW(IMSID) is specified with the DEFN filter, a separate line is returned for each IMS that has the resource defined, along with the stored resource definitions.

When SHOW(IMSID) is specified without the DEFN filter, a separate line is returned for each IMS that has the resource defined, along with the resource name. No resource definitions are returned.

SHOW(IMSID) cannot be specified with any other SHOW filters other than DEFN and GLOBAL. If SHOW(IMSID,GLOBAL) is specified, GLOBAL is ignored; that is, SHOW(IMSID,GLOBAL) is treated as SHOW(IMSID).

SHOW(DEFN,IMSID,LOCAL) is treated as SHOW(DEFN,LOCAL).

**LOCAL**
Specifies that the runtime resource definitions from the IMS system are to be returned.

SHOW(DEFN,LOCAL) returns only the local definitional attributes from the IMS system that processes the command.
MODEL
The model name and model type used to create this descriptor. The model name and model type is blank for the IMS-defined descriptor DFSDSDB1. The CREATE command specified without the LIKE keyword creates a descriptor using the default descriptor as a model. The default descriptor is either the IMS descriptor DFSDSDB1 or user-defined. The CREATE command specified with the LIKE keyword creates a descriptor using a model. The descriptor is created with all the same attributes as the model. Attributes set explicitly by the CREATE command override the model attributes. The model type can either be a descriptor (DESC) or a resource (RSC). The model name and model type are for reference only. The descriptor attributes might not match the model, if attributes are overridden by CREATE or UPDATE command values, or the model is updated later. The model name and model type can be used to identify descriptors that were created with the same model. The model name and model type of a descriptor are exported and imported. The IMPORT command does not use the model name and model type when creating a descriptor.

RESIDENT
Specifies the resident option. The value is always RESIDENT(Y) for Fast Path DEDBs. The RESIDENT(Y) option takes effect at the next restart, unless the database descriptor was created or updated as RESIDENT(Y) after the checkpoint from which this IMS is performing emergency restart.

TIMESTAMP
The creation time (TIMECREATE), last update time (TIMEUPDATE), last access time (TIMEACCESS) time, and import time (TIMEIMPORT) time stamps are returned. The time is returned in local time in the format YYYY.JJ.MM:SS.TH, where:
- YYYY is the year.
- JJ is the Julian day (001 - 365).
- HH is the hour (01 - 24).
- MM is the minute (00 - 59).
- SS is the seconds (00 - 59).
- TH is the tenths and hundredths of a second (00 - 99).

Usage notes
This command can be issued only through the Operations Manager API. This command applies to DB/DC and DBCTL systems. This command is allowed on XRF alternate and RSR tracker systems. The QUERY DBDESC command is not valid if online change for MODBLKS is enabled (DFSDFxxx or DFSCGxxx defined with MODBLKS=OLC, or MODBLKS not defined).

If you want to display information about resource definitions, specify SHOW(DEFN). If you want to know which IMS systems have the resource defined and also know the attributes or resource definitions at each IMS system, specify SHOW(DEFN,IMSID). If you want to know which IMS systems have the resource defined, specify SHOW(IMSID).

Output fields
The following table shows the QUERY DBDESC output fields. The columns in the table are:
**Short label**
Contains the short label generated in the XML output.

**Long label**
Contains the long label generated in the XML output.

**Keyword**
Identifies keyword on the command that caused the field to be generated.
N/A appears for output fields that are always returned. error appears for output fields that are returned only in case of an error.

**Scope**
Identifies the scope of the output field.

**Meaning**
Provides a brief description of the output field.

### Table 26. Output fields for the QUERY DBDESC command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>N/A</td>
<td>Completion code. The completion code indicates whether IMS was able to process the command for the specified descriptor. The completion code is always returned. Refer to the return, reason, and completion codes for QUERY DBDESC.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>error</td>
<td>LCL</td>
<td>Completion code text that briefly explains the meaning of the nonzero completion code.</td>
</tr>
<tr>
<td>DESC</td>
<td>DescName</td>
<td>DBDESC</td>
<td>N/A</td>
<td>Database descriptor name.</td>
</tr>
<tr>
<td>DFLT</td>
<td>LDflt</td>
<td>DBDESC</td>
<td>LCL</td>
<td>Default descriptor (Y) or not (N).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>N</strong> The descriptor is not the default.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>Y</strong> The descriptor is the default. When a descriptor or resource is created without the LIKE keyword, any attribute not specified on the CREATE command takes the value defined in the default descriptor. Only one descriptor can be defined as the default for a resource type. IMS defines a database descriptor called DFSDSDB1, where all attributes are defined with the default value. Defining a user-defined descriptor to be the default overrides the current default descriptor.</td>
</tr>
<tr>
<td>DFNT</td>
<td>LDefnType</td>
<td>DEFNTYPE</td>
<td>N/A</td>
<td>Definition type, which can be one of the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>CREATE</strong> Defined by a CREATE command.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>IMPORT</strong> Defined by an IMPORT command. The DEFNTYPE is not changed if the descriptor or resource is updated with an UPDATE command.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>IMS</strong> Defined by IMS. DFSDSDB1 is an IMS-defined database descriptor containing the default database descriptor values.</td>
</tr>
<tr>
<td>IMSID</td>
<td>IMSid</td>
<td>IMSID</td>
<td>GBL</td>
<td>Returns the IMS IDs that have resources defined from the repository.</td>
</tr>
</tbody>
</table>
Table 26. Output fields for the QUERY DBDESC command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>LACC</td>
<td>LAcc</td>
<td>ACCTYPE</td>
<td>LCL</td>
<td>Type of access to database descriptor which can be one of the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>BRWS</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The database is available for read-only processing on this IMS subsystem. The only programs that can use the database on this subsystem are those that have a PCB processing option of GO (PROCPT=GO). Programs that access the data using the GO processing option might see uncommitted data since a sharing IMS subsystem could be updating the database. The database is opened for read-only processing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>EXCL</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The named database is to be used exclusively by this IMS subsystem. This exclusive access is guaranteed only when the database is registered to DBRC.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>READ</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The database is available for read-only processing in this IMS subsystem. Programs with update intent can be scheduled, but cannot update the database. Access type READ differs from access type BRWS in that the data is read with integrity (locking is performed) and all programs can access the data, not just those with a processing option of GO. The database is opened for read-only processing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>UPD</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The database is available for update as well as read processing in the IMS subsystem.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>N/A</td>
<td>IMSplex member that built the output line. The IMS identifier of the IMS that built the output. The IMS identifier is always returned.</td>
</tr>
<tr>
<td>MDLN</td>
<td>LModelName</td>
<td>MODEL</td>
<td>N/A</td>
<td>Model name. Name of the resource or descriptor used as a model to create this descriptor. DFSDSDB1 is the IMS descriptor name for databases.</td>
</tr>
<tr>
<td>MDLT</td>
<td>LModelType</td>
<td>MODEL</td>
<td>N/A</td>
<td>Model type, either RSC or DESC. RSC means that the descriptor was created using another resource as a model. DESC means that the descriptor was created using a descriptor as the model.</td>
</tr>
<tr>
<td>PGM</td>
<td>LPgmName</td>
<td>PGM</td>
<td>LCL</td>
<td>Program name from the local IMS.</td>
</tr>
<tr>
<td>RACC</td>
<td>Acc</td>
<td>DEFN</td>
<td>GBL</td>
<td>Access type obtained from the repository.</td>
</tr>
<tr>
<td>RDFLT</td>
<td>Dflt</td>
<td>DEFN</td>
<td>GBL</td>
<td>Default value from the repository.</td>
</tr>
<tr>
<td>REPO</td>
<td>Repo</td>
<td>DEFN</td>
<td>GBL</td>
<td>Indicates whether the line contains stored resource definitions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>Y</strong> Indicates repository definitions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>(blank)</strong> Indicates local definitions.</td>
</tr>
<tr>
<td>RRSDNT</td>
<td>Rsdnt</td>
<td>DEFN</td>
<td>GBL</td>
<td>Resident value obtained from the repository.</td>
</tr>
</tbody>
</table>
Table 26. Output fields for the QUERY DBDESC command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSDNT</td>
<td>LDRsdnt</td>
<td>RESIDENT</td>
<td>LCL</td>
<td>Resident option value. For a database created from the descriptor, it indicates whether the DMB is to reside in local storage at the next IMS restart.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N  The DMB for a database created from the named database descriptor resource is not made resident in storage. The DMB is loaded at scheduling time.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y  The DMB for a database created from the named database descriptor resource is made resident in storage at the next IMS restart. At the next IMS restart, IMS loads the DMB and initializes it. A resident database is accessed from local storage, which eliminates I/O to the ACBLIB.</td>
</tr>
<tr>
<td>RTMCR</td>
<td>TimeCreate</td>
<td>DEFN</td>
<td>GBL</td>
<td>Create time from the repository. This is the time the resource was first created in the repository.</td>
</tr>
<tr>
<td>RTMUP</td>
<td>TimeUpdate</td>
<td>DEFN</td>
<td>GBL</td>
<td>Update time from the repository. This is the time the resource was last updated in the repository.</td>
</tr>
<tr>
<td>TMAC</td>
<td>LTimeAccess</td>
<td>TIMESTAMP</td>
<td>LCL</td>
<td>The time that the descriptor was last accessed. The last access time is retained across warm start, emergency restart, EXPORT and IMPORT. The updating of the last access time is not logged. After a restart, the last access time reflects the time recorded in the restart checkpoint log records. This access time stamp value is obtained from the local IMS. For a database descriptor, when the CREATE command references the descriptor as the model, the last access time is updated.</td>
</tr>
<tr>
<td>TMCR</td>
<td>LTimeCreate</td>
<td>TIMESTAMP</td>
<td>LCL</td>
<td>The time the descriptor was created. This is the result of a CREATE DB command, IMPORT command that creates the database descriptor, or IMS initialization. The create time is retained across warm start, emergency restart, EXPORT and IMPORT. This create time stamp value is obtained from the local IMS.</td>
</tr>
<tr>
<td>TMIM</td>
<td>LTimeImport</td>
<td>TIMESTAMP</td>
<td>LCL</td>
<td>The time that the descriptor was last imported, if applicable. The import time is retained across warm start and emergency restart. This import time stamp value is obtained from the local IMS.</td>
</tr>
<tr>
<td>TMUP</td>
<td>LTimeUpdate</td>
<td>TIMESTAMP</td>
<td>LCL</td>
<td>The last time the attributes of the runtime resource definition were updated as a result of the UPDATE DBDESC command or the IMPORT command. The update time is retained across warm start and emergency restart. The output value is obtained from the local IMS.</td>
</tr>
</tbody>
</table>
Return, reason, and completion codes

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

**Table 27. Return and reason codes for the QUERY DBDESC command**

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000004'</td>
<td>X'00001010'</td>
<td>No descriptors were found to be returned. The descriptor names specified might be invalid, or there were no descriptors that match the filter specified.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002004'</td>
<td>Invalid command keyword or invalid command keyword combination.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00003004'</td>
<td>No requests were successful.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004004'</td>
<td>No CQS address space.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004018'</td>
<td>No resource structure, or resource structure is not available.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004100'</td>
<td>Resource structure is full.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004104'</td>
<td>No RM address space.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004108'</td>
<td>No SCI address space.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004300'</td>
<td>Command is not allowed because online change for MODBLKS is enabled (DFSDFxxx or DFSCGxxx defined with MODBLKS=OLC, or MODBLKS not defined).</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004500'</td>
<td>IMS is not enabled to use the repository.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004501'</td>
<td>RM is not enabled with the repository.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004502'</td>
<td>Repository is not available.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004503'</td>
<td>Repository is stopped.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004504'</td>
<td>Repository spare recovery is in progress.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004505'</td>
<td>No IMS resource list exists, or no resources for the resource type exist in the IMS resource list.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004507'</td>
<td>Repository access was denied.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004508'</td>
<td>Repository maximum put length exceeded.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004509'</td>
<td>RM data version is lower than IMS data version.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000450A'</td>
<td>Repository Server is being shut down.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000450B'</td>
<td>Repository Server is not available.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000450C'</td>
<td>Repository Server is busy.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000450D'</td>
<td>RM failed to define some of the internal fields related to the IMSRSC repository.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'0000501C'</td>
<td>IMODULE GETMAIN error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005100'</td>
<td>RM request error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005104'</td>
<td>Unexpected CQS error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005108'</td>
<td>SCI request error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005110'</td>
<td>Repository error.</td>
</tr>
</tbody>
</table>
Table 27. Return and reason codes for the QUERY DBDESC command (continued)

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000014'</td>
<td>X'0000551C'</td>
<td>A request to view the data in the repository was rejected because a corrupted resource list was detected. The QUERY DBDESC command is rejected because the resource list is unusable. Contact IBM Software Support. Send in the output from the command in error, and a dump of the local RM address space where the command executed or the dump of all RM address spaces in the IMSplex. Also send a copy of the IMSRSC repository RID and RMD data sets.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. The following table includes an explanation of the completion codes.

Table 28. Completion codes for the QUERY DBDESC command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command completed successfully for database or database descriptor.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>Database descriptor name is invalid, or the wildcard parameter specified does not match any database descriptor names.</td>
</tr>
</tbody>
</table>

Examples

The following are examples of the QUERY DBDESC command:

Example 1 for QUERY DBDESC command

TSO SPOC input:
QRY DBDESC SHOW(ALL)

TSO SPOC output:
(screen 1)
DescName MbrName CC LAcc LDRsdnt LDflt LModelName LModelType LTimeCreate
DFSDSDB1 IMS1 0 UPD N Y 2011.181 10:22:15.10
(scrOIIed to the right screeII 2)
DescName MbrName LTimeUpdate LTimeAccess LTimeImport
DFSDSDB1 IMS1
(scrOIIed to the right screen 3)
DescName MbrName LDefnType
DFSDSDB1 IMS1 IMS

OM API input:
CMD(QUERY DBDESC SHOW(ALL))

OM API output:
<imsout>
<ctl>
<omname>OM1OM </omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20 </xmlvsn>
<statime>2011.181 17:40:56.620170</statime>
Explanation: The database descriptors are displayed. There is one database descriptor in the system: the IMS-defined descriptor DFSDSDB1. All output fields are returned for the descriptor. All of the database descriptor output fields do not fit on one screen, so you must scroll to the right for additional output fields. The database descriptor name and member name that built the line of output are displayed on every screen. The time the DFSDSDB1 descriptor was created was at IMS cold start time. IMS-defined descriptors display a blank LModelName and LModelType, since no model is used to create them. The Dflt column shows a value of Y, which indicates that DFSDSDB1 is defined as the default database descriptor.

Example 2 for QUERY DBDESC command

TSO SPOC input:
QUERY DBDESC NAME(*) SHOW(DEFN,ACCTYPE,RESIDENT)

TSO SPOC output:

<table>
<thead>
<tr>
<th>DescName</th>
<th>MbrName</th>
<th>CC</th>
<th>Repo</th>
<th>IMSid</th>
<th>Acc</th>
<th>LAcc</th>
<th>Rsdnt</th>
<th>LDRsdnt</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBDESC1</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td>EXCL</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBDESC1</td>
<td>IMS1</td>
<td>0</td>
<td>IMS1</td>
<td>EXCL</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBDESC1</td>
<td>IMS2</td>
<td>0</td>
<td>IMS2</td>
<td>EXCL</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBDESC1</td>
<td>IMS3</td>
<td>0</td>
<td>IMS3</td>
<td>EXCL</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEDBDESC</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td>EXCL</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEDBDESC</td>
<td>IMS1</td>
<td>0</td>
<td>IMS1</td>
<td>EXCL</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEDBDESC</td>
<td>IMS2</td>
<td>0</td>
<td>IMS2</td>
<td>EXCL</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEDBDESC</td>
<td>IMS3</td>
<td>0</td>
<td>IMS3</td>
<td>EXCL</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFSDSDB1</td>
<td>IMS1</td>
<td>0</td>
<td>IMS1</td>
<td>UD</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFSDSDB1</td>
<td>IMS2</td>
<td>0</td>
<td>IMS2</td>
<td>UD</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFSDSDB1</td>
<td>IMS3</td>
<td>0</td>
<td>IMS3</td>
<td>UD</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEWDESC</td>
<td>IMS1</td>
<td>0</td>
<td>IMS1</td>
<td>READ</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OM API input:

CMD(QUERY DBDESC NAME(*) SHOW(DEFN,ACCTYPE,RESIDENT))

OM API output:

<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2011.181 18:22:06.526302</statime>
<stotime>2011.181 18:22:06.610106</stotime>
<staseq>C8002433775E358</staseq>
<stoseq>C80024338BEBAB18</stoseq>
<rqsttkn1>USRT005 10112206</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn></ctl>
</imsout>

<cmd>
<master>IMS1</master>
<userid>USRT005</userid>
<verb>QRY</verb>
<kwd>DBDESC</kwd>
<input>QUERY DBDESC NAME(*) SHOW(DEFN,ACCTYPE,RESIDENT)</input>
</cmd>

<cmdrsphdr>
<hdr slbl="DESC" llbl="DescName" scope="LCL" sort="a" key="1" scroll="no" len="8" dtype="CHAR" align="left" skipb="no"/>
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" key="3" scroll="no" len="8" dtype="CHAR" align="left" skipb="no"/>
<hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0" scroll="yes" len="4" dtype="INT" align="right" skipb="no"/>
<hdr slbl="CCTX" llbl="CCText" scope="LCL" sort="n" key="0" scroll="yes" len="*" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="REPO" llbl="Repo" scope="LCL" sort="d" key="2" scroll="no" len="1" dtype="CHAR" align="left"/>
<hdr slbl="IMSID" llbl="IMSID" scope="GBL" sort="n" key="0" scroll="yes" len="4" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="RACC" llbl="Acc" scope="GBL" sort="n" key="0" scroll="yes" len="*" dtype="CHAR" align="left" skipb="no"/>
<hdr slbl="LACC" llbl="LAcc" scope="LCL" sort="n" key="0" scroll="yes" len="*" dtype="CHAR" align="left" skipb="no"/>
<hdr slbl="RRSDNT" llbl="Rsndt" scope="GBL" sort="n" key="0" scroll="yes" len="1" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="RSNDT" llbl="LDRsdnt" scope="LCL" sort="n" key="0" scroll="yes" len="1" dtype="CHAR" align="left" skipb="yes"/>
</cmdrsphdr>
</cmdrspdata>

<rsp>DESC(DEDBDESC) MBR(IMSL ) CC( 0) LACC(EXCL) IMSID(IMSL )</rsp>
Explanation: The stored resource definitions and the runtime resource definitions for the specified resources are returned. DBDESC1 and DEDBDESC have the stored resource definitions in the repository and also at the IMS systems. The descriptor NEWDESC is created at IMS1 but does not exist in the repository or at any other IMS systems.

Because SHOW(ACCTYPE,RESIDENT) is specified, only the resident and access type information is returned. DFSDSDB1 is the default descriptor and is only at each of the IMS systems. The default descriptor definitions are not in the repository.

Example 3 for QUERY DBDESC command

TSO SPOC input:
QUERY DBDESC DEFAULT(Y)

TSO SPOC output:

DescName MbrName CC Ldf1t
DFSDSDB1 IMS1 0 Y
DFSDSDB1 IMS2 0 Y
DFSDSDB1 IMS3 0 Y

OM API input:
CMD(QUERY DBDESC DEFAULT(Y))

OM API output:
QUERY IMS command

Use the QUERY IMS command, which is a type-2 command, to display status and attributes information from IMS.

The information that is returned to the user is the IMS status that can be modified with the UPDATE IMS command. The QUERY MEMBER command is used to return other IMS status.

Subsections:
- “Environment” on page 110
- “Syntax” on page 110
- “Keywords” on page 110
- “Usage notes” on page 111
- “Output fields” on page 111
- “Return, reason, and completion codes” on page 113
- “Examples” on page 114

Related concepts:
- How to interpret CSL request return and reason codes (System Programming APIs)

Related reference:
- Command keywords and their synonyms (Commands)
Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) from which the QUERY IMS command and keywords can be issued.

Table 29. Valid environments for QUERY IMS command and keywords

<table>
<thead>
<tr>
<th>Command / Keyword</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY IMS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SHOW</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TYPE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
QUERY IMS TYPE(ALL) SHOW(ALL)
```

Keywords

The following keywords are valid for the QUERY IMS command:

**SHOW()**
- (Required) - Specifies the output fields to be returned.
  - **ALL**
    - Returns all possible output fields for the data specified in the TYPE parameter.
  - **AUTOEXPORT**
    - Returns the AUTOEXPORT status. AUTOEXPORT applies to TYPE(LCLPARM) only.
  - **GENIMSID**
    - Returns the value of the GENIMSID parameter of the IMS DFSDCxxx PROCLIB member. The GENIMSID parameter defines a shared generic IMS ID for an MSC TCP/IP generic resource group.
  - **GLOBAL**
    - Returns the global values for the specified TYPE options.
  - **LOCAL**
    - Returns the local values for the specified TYPE options.
  - **REPO**
    - Returns the IMSRSC repository parameters and indicates whether IMS is enabled with the repository. If IMS is not enabled with the repository, the return and reason codes that indicate “IMS is not enabled with the repository” are returned. REPO applies to TYPE(LCLPARM) only.

**TYPE()**
- Specifies the data to be returned.
ALL
Returns data for all possible types. ALL is the default.

LCLPARM
Displays the local LCLPARM values at the current IMS. Information is returned based on the SHOW options specified.

You cannot specify SHOW(GLOBAL) with TYPE(LCLPARM). SHOW(ALL) and SHOW(LOCAL) return the same local parameter information.

PLEXPARM
Displays the global PLEXPARM values at the current IMS.

If global values are requested, the values from the global PLEXPARM entry in RM are returned by the IMS command master. If local values are requested, the values from each IMS that processes the command are returned.

Usage notes

This command can be specified only through the Operations Manager API.

Output fields

The output provided by QUERY IMS is described in the following table. Specifying SHOW parameter options determines what is returned in the output. Specifying SHOW(ALL) returns all output fields.

The columns in the table are as follows:

- **Short label**: Contains the short label generated in the XML output.
- **Long label**: Contains the long label generated in the XML output.
- **Keyword**: Identifies keyword on the command that caused the field to be generated. N/A appears for output fields that are always returned. error appears for output fields that are returned only in case of an error.
- **Scope**: Identifies the scope of the output field.
- **Meaning**: Provides a brief description of the output field.

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTEXP</td>
<td>AutoExport</td>
<td>LCLPARM, AUTOEXP</td>
<td>LCL</td>
<td>AUTOEXPORT status value.</td>
</tr>
<tr>
<td>BMP</td>
<td>BMP</td>
<td>LCLPARM</td>
<td>LCL</td>
<td>Amount of time that IMS waits before lock requests for BMP regions are timed out. BMP regions include IMS BMP and JBP regions. The value, which represents time in seconds, can range from 1 to 32767.</td>
</tr>
<tr>
<td>BMPOPT</td>
<td>BMPOPT</td>
<td>LCLPARM</td>
<td>LCL</td>
<td>Indicates whether IMS ends a timed-out task abnormally (ABEND) or returns a status code to the application (STATUS).</td>
</tr>
<tr>
<td>Short label</td>
<td>Long label</td>
<td>Keyword</td>
<td>Scope</td>
<td>Meaning</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>---------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>CC</td>
<td>CC</td>
<td>n/a</td>
<td>n/a</td>
<td>Completion code, which indicates whether or not IMS was able to process the command for the specified resource. The completion code is always returned.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>error</td>
<td>LCL</td>
<td>Text returned with the completion code to provide additional information. It can include a return code from a service. Completion code text is returned only if the completion code is nonzero.</td>
</tr>
<tr>
<td>FP64STAT</td>
<td>FPBP64STAT</td>
<td>LCLPARM</td>
<td>LCL</td>
<td>Fast Path 64-bit buffer usage statistics per unit of work for dependent regions. FPBP64STAT output is displayed only when Fast Path 64-bit buffer manager is enabled. Fast Path 64-bit buffer usage statistics are recorded in X'5945' log records. The values include:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N Does not write Fast Path 64-bit buffer usage statistics per unit of work for dependent regions in X'5945' log records to OLDS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y Writes Fast Path 64-bit buffer usage per unit of work for dependent regions in X'5945' log records to OLDS.</td>
</tr>
<tr>
<td>GSTSAREA</td>
<td>GSTSAREA</td>
<td>PLEXPARM</td>
<td>LCL or GBL</td>
<td>The global status for areas. The values include:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y Global status is maintained for areas.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N Global status is not maintained for areas.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NULL Global status has not been set for areas.</td>
</tr>
<tr>
<td>GSTSDB</td>
<td>GSTSDB</td>
<td>PLEXPARM</td>
<td>LCL or GBL</td>
<td>Global status for databases. The values include:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y Global status is maintained for databases.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N Global status is not maintained for databases.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NULL Global status has not been set for databases.</td>
</tr>
<tr>
<td>GSTSTRAN</td>
<td>GSTSTRAN</td>
<td>PLEXPARM</td>
<td>LCL or GBL</td>
<td>Global status for transactions. The values include:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y Global status is maintained for transactions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N Global status is not maintained for transactions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NULL Global status has not been set for transactions.</td>
</tr>
</tbody>
</table>
Table 30. QUERY IMS output fields (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEXPTM</td>
<td>LastExportTime</td>
<td>LCLPARM, REPO</td>
<td>LCL</td>
<td>Time stamp of the last successful export to the repository. The last export time is initialized to the import time if definitions are successfully imported from the repository during cold start or if AUTOIMPORT=REPO is specified in the dynamic resource definition section of the DFSDFxxy PROCLIB member and the repository is empty during cold start.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>n/a</td>
<td>n/a</td>
<td>The IMS identifier of the IMS that built the output. The IMS identifier is always returned.</td>
</tr>
<tr>
<td>MSG</td>
<td>MSG</td>
<td>LCLPARM</td>
<td>LCL</td>
<td>Amount of time that IMS waits before lock requests for MSG regions are timed out. MSG regions include IMS MPP, JMP, and IFP regions as well as DRA threads. The value, which represents time in seconds, can range from 1 to 32767.</td>
</tr>
<tr>
<td>MSGOPT</td>
<td>MSGOPT</td>
<td>LCLPARM</td>
<td>LCL</td>
<td>Indicates whether IMS ends a timed-out task abnormally (ABEND) or returns a status code to the application (STATUS).</td>
</tr>
<tr>
<td>REPONM</td>
<td>RepositoryName</td>
<td>LCLPARM, REPO</td>
<td>LCL</td>
<td>Repository name.</td>
</tr>
<tr>
<td>REPOTP</td>
<td>RepositoryType</td>
<td>LCLPARM, REPO</td>
<td>LCL</td>
<td>Repository type.</td>
</tr>
<tr>
<td>TGN</td>
<td>TcpipGenImssID</td>
<td>LCLPARM, GENIMSID</td>
<td>LCL</td>
<td>Indicates the generic IMS ID name that is used for MSC TCP/IP generic resources, as it is specified on the GENIMSID parameter of the DFSDCxxx PROCLIB member. Remote MSC-enabled IMS systems can use the GENIMSID value to connect to an IMSplex without specifying a specific IMS system.</td>
</tr>
<tr>
<td>VGN</td>
<td>VtamGenName</td>
<td>LCLPARM, GENIMSID</td>
<td>LCL</td>
<td>Indicates the name of the VTAM generic resource group, as it is specified on the GRSNAME parameter of the IMS or DCC startup procedure or the /START VGR command.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The return and reason codes that can be returned as a result of the QUERY IMS command are standard for all commands that are entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 31. Return and reason codes for the QUERY IMS command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The QUERY IMS command completed successfully.</td>
</tr>
<tr>
<td>X'00000004'</td>
<td>X'00001000'</td>
<td>The QUERY IMS command is not processed on the IMS system because the IMS system is not the command master.</td>
</tr>
</tbody>
</table>
Table 31. Return and reason codes for the QUERY IMS command (continued)

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000008'</td>
<td>X'00002040'</td>
<td>The QUERY IMS command is not processed because no filter or an invalid filter was specified for the SHOW keyword.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>No requests were successful.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004500'</td>
<td>IMS is not enabled to use the repository.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005004'</td>
<td>The QUERY IMS command is not processed because the DFSOCMD0 GETBUF storage could not be obtained.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

The following table contains completion codes can be returned on a QUERY IMSPLEX command.

Table 32. Completion codes for the QUERY IMS command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The QUERY IMS command completed successfully.</td>
</tr>
<tr>
<td>50</td>
<td>The QUERY IMS command is not processed because CQS is not available.</td>
</tr>
<tr>
<td>51</td>
<td>The QUERY IMS command is not processed because there is no resource structure.</td>
</tr>
<tr>
<td>52</td>
<td>The QUERY IMS command is not processed because the resource structure is full.</td>
</tr>
<tr>
<td>53</td>
<td>The QUERY IMS command is not processed because RM is not available.</td>
</tr>
<tr>
<td>54</td>
<td>The QUERY IMS command is not processed because SCI is not available.</td>
</tr>
<tr>
<td>90</td>
<td>The QUERY IMS command is not processed because of an IMS internal error.</td>
</tr>
<tr>
<td>94</td>
<td>The QUERY IMS command is not processed because of an RM error.</td>
</tr>
<tr>
<td>95</td>
<td>The QUERY IMS command is not processed because of an RM error.</td>
</tr>
<tr>
<td>98</td>
<td>The QUERY IMS command is not processed because of a CQS error.</td>
</tr>
</tbody>
</table>

Examples

The following are examples of the QUERY IMS command:

Example 1 for the QUERY IMS command

TSO SPOC input:
QRY IMS SHOW(ALL)

TSO SPOC output:

<table>
<thead>
<tr>
<th>MbrName</th>
<th>CC</th>
<th>GLOBAL</th>
<th>GSTSAREA</th>
<th>GSTDDB</th>
<th>GSTSTRAN</th>
<th>FPBP64STAT</th>
<th>MSG</th>
<th>MSGOPT</th>
<th>BMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMS2</td>
<td>0</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N/A</td>
<td>N/A</td>
<td>ABEND</td>
<td>N/A</td>
</tr>
</tbody>
</table>
(scrolled to the right screen 2)

<table>
<thead>
<tr>
<th>MbrName</th>
<th>BMPOPT</th>
<th>AutoExport</th>
<th>RepositoryType</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMS2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMS1</td>
<td>ABEND</td>
<td>N</td>
<td>IMSRSC</td>
</tr>
<tr>
<td>IMS2</td>
<td>ABEND</td>
<td>N</td>
<td></td>
</tr>
</tbody>
</table>

(rolled to the right screen 3)

<table>
<thead>
<tr>
<th>MbrName</th>
<th>RepositoryName</th>
<th>LastExportTime</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMS2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMS1</td>
<td>IMSRSC_REPOSITORY</td>
<td>2011.188 16:48:30.07</td>
</tr>
<tr>
<td>IMS2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(rolled to the right screen 4)

<table>
<thead>
<tr>
<th>MbrName</th>
<th>TcpipGenImgsID</th>
<th>VtamGenName</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMS2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMS1</td>
<td>IMS</td>
<td>AAA</td>
</tr>
<tr>
<td>IMS2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OM API input:

CMD(QRY IMS SHOW(ALL))

OM API output:

```xml
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2011.189 00:02:23.704750</statime>
<stotime>2011.189 00:02:23.720449</stotime>
<staseq>C8093D51082AE9CC</staseq>
<stoseq>C8093D510C00161C</stoseq>
<rqsttkn1>USRT005 10170223</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>IMS2</master>
<userid>USRT005</userid>
<verb>QRY</verb>
<kwd>IMS</kwd>
<input>QRY IMS SHOW(ALL)</input>
</cmd>
</imsout>
```
Explanation: All the local parameter information from all IMS systems, IMS1 and IMS2, is returned. IMS1 is enabled with the IMSRSC repository, Fast Path 64-bit buffers, MSC TCP/IP generic IMS ID, and VTAM generic IMS ID, while IMS2 does not have any of these parameters enabled. IMS2, which is the command master, returns the IMSplex parameter information.

**Example 2 for the QUERY IMS command**

**TSO SPOC input:**

QRY IMS TYPE(LCLPARM) SHOW(ALL)

**TSO SPOC output:**

<table>
<thead>
<tr>
<th>MbrName</th>
<th>CC</th>
<th>FPBP64STAT</th>
<th>MSG</th>
<th>MSGOPT</th>
<th>BMP</th>
<th>BMPOPT</th>
<th>AutoExport</th>
<th>RepositoryType</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td>N/A</td>
<td>ABEND</td>
<td>N/A</td>
<td>ABEND</td>
<td>N</td>
<td>IMSRSC</td>
</tr>
</tbody>
</table>

**Example output:**

<table>
<thead>
<tr>
<th>MbrName</th>
<th>RepositoryName</th>
<th>LastExportTime</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMS1</td>
<td>IMSRSC_REPOSITORY</td>
<td>2011.188 16:48:30.07</td>
</tr>
</tbody>
</table>

**OM API input:**

`CMD(QRY IMS TYPE(LCLPARM) SHOW(ALL))`

**OM API output:**

```xml
<imsout><ctl><omname>OM1OM</omname><omvsn>1.5.0</omvsn><xmlvsn>20</xmlvsn><statime>2011.188 23:49:21.164614</statime></ctl></imsout>
```
Explanation: All the local parameter information from IMS1 is returned. IMS1 is enabled with the IMSRSC repository, Fast Path 64-bit buffers, MSC TCP/IP generic IMS ID, and VTAM generic IMS ID.

Example 3 for the QUERY IMS command

TSO SPOC input:
QUERY IMS TYPE(LCLPARM) SHOW(ALL)

TSO SPOC output:
OM API input:
CMD(QRY IMS TYPE(LCLPARAM) SHOW(ALL))

OM API output:
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2011.182 21:32:47.301031</statime>
<stotime>2011.182 21:32:47.315601</stotime>
<staseq>C80190AFB35A7900</staseq>
<rqsttkn>USR7005 10143247</rqsttkn>
</ctl>
<cmd>
<master>IMS1</master>
<userid>USRT005</userid>
<verb>QRY</verb>
<kwd>IMS</kwd>
<input>QRY IMS TYPE(LCLPARAM) SHOW(ALL)</input>
</cmd>
<cmdrsphdr>
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" key="2" scroll="no" len="8" dtype="CHAR" align="left"/>
<hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0" scroll="yes" len="4" dtype="INT" align="right"/>
<hdr slbl="CCTXT" llbl="CCText" scope="LCL" sort="n" key="0" scroll="yes" len="32" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="FP64STAT" llbl="FP64STAT" scope="LCL" sort="n" key="0" scroll="yes" len="1" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="MSG" llbl="MSG" scope="LCL" sort="n" key="0" scroll="yes" len="4" dtype="CHAR" align="right" skipb="yes"/>
<hdr slbl="MSGOPT" llbl="MSGOPT" scope="LCL" sort="n" key="0" scroll="yes" len="6" dtype="CHAR" align="right" skipb="yes"/>
<hdr slbl="BMP" llbl="BMP" scope="LCL" sort="n" key="0" scroll="yes" len="4" dtype="CHAR" align="right" skipb="yes"/>
<hdr slbl="BMPOPT" llbl="BMPOPT" scope="LCL" sort="n" key="0" scroll="yes" len="6" dtype="CHAR" align="right" skipb="yes"/>
<hdr slbl="AUTEXP" llbl="AutoExport" scope="LCL" sort="n" key="0" scroll="yes" len="1" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="REPOTP" llbl="RepositoryType" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="REPDNAME" llbl="RepositoryName" scope="LCL" sort="n" key="0" scroll="yes" len="44" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="LEXPTM" llbl="LastExportTime" scope="LCL" sort="n" key="0" scroll="yes" len="20" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="TGQ" llbl="TcpipGenId" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left" skipb="yes"/>
</cmdrsphdr>
Explanation: This example shows QUERY IMS command output for TYPE(LCLPARM) when IMS is enabled with IMSRSC repository but is not enabled with Fast Path 64-bit buffer manager or generic IMS ID.

Example 4 for the QUERY IMS command

TSO SPOC input:
QUERY IMS TYPE(LCLPARM) SHOW(REPO)

TSO SPOC output:

<table>
<thead>
<tr>
<th>MbrName</th>
<th>CC</th>
<th>RepositoryType</th>
<th>RepositoryName</th>
<th>LastExportTime</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMS1</td>
<td>0</td>
<td>IMSRSC</td>
<td>IMSRSC_REPO</td>
<td>2011.213 08:57:00.39</td>
</tr>
<tr>
<td>IMS2</td>
<td>0</td>
<td>IMSRSC</td>
<td>IMSRSC_REPO</td>
<td>2011.213 08:57:00.14</td>
</tr>
</tbody>
</table>

OM API input:
CMD(QUERY IMS TYPE(LCLPARM) SHOW(REPO))

OM API output:

<cmdrspdata>
<rsp><MBR(IMS1) CC( 0) MSG( N/A) MSGOPT(ABEND ) BMP( N/A)
BMPOPT(ABEND ) AUTEXP(N) REPOTP(IMSRSC) REPONM(IMSRSC_REPO)
LEXPTM(2011.182 14:15:36.43)</rsp>
<rsp><MBR(IMS3) CC( 0) MSG( N/A) MSGOPT(ABEND ) BMP( N/A)
BMPOPT(ABEND ) AUTEXP(N) REPOTP(IMSRSC) REPONM(IMSRSC_REPO)
LEXPTM(2011.182 14:11:44.28)</rsp>
<rsp><MBR(IMS2) CC( 0) MSG( N/A) MSGOPT(ABEND ) BMP( N/A)
BMPOPT(ABEND ) AUTEXP(N) REPOTP(IMSRSC) REPONM(IMSRSC_REPO)
LEXPTM( )</rsp>
</cmdrspdata>
</imsout>

Chapter 5. QUERY commands
Explanation: The local parameters at IMS for the repository settings are returned. Only the repository information is returned because the SHOW(REPO) keyword is specified.

Related concepts:
- How to interpret CSL return and reason codes (System Programming APIs)

Related reference:
- Command keywords and their synonyms (Commands)

**QUERY IMSCON commands**

Use the QUERY IMSCON commands to display the status and activity of one or more IMS Connect resources.

The TYPE keyword specifies the type of IMS Connect resource to display. The default is TYPE(CONFIG), which displays general IMS Connect information.

The QUERY IMSCON command is processed by every IMS Connect to which OM routes the command, whether or not OM has designated a particular IMS Connect as the command master.

Subsections:
- "QUERY IMSCON TYPE(ALIAS) command" on page 121
- "QUERY IMSCON TYPE(CLIENT) command" on page 126
- "QUERY IMSCON TYPE(CONFIG) command" on page 138
- "QUERY IMSCON TYPE(CONVERTER) command" on page 147
- "QUERY IMSCON TYPE(DATASTORE) command" on page 151
- "QUERY IMSCON TYPE(IMSPLEX) command" on page 160
- "QUERY IMSCON TYPE(ISC) command" on page 165
- "QUERY IMSCON TYPE(ISCUSER) command" on page 175
- "QUERY IMSCON TYPE(LINK) command" on page 184
- "QUERY IMSCON TYPE(MSC) command" on page 192
- "QUERY IMSCON TYPE(ODBM) command" on page 201
- "QUERY IMSCON TYPE(PORT) command" on page 207
- "QUERY IMSCON TYPE(RMTCICS) command" on page 225
- "QUERY IMSCON TYPE(RMTIMSCON) command" on page 234
- "QUERY IMSCON TYPE(SENDCLNT) command" on page 245
- "QUERY IMSCON TYPE(UOR) command" on page 253

Related reference:
QUERY IMSCON TYPE(ALIAS) command

Use the QUERY IMSCON TYPE(ALIAS) command to display the status and activity of one or more IMS aliases and the associated ODBMs defined to IMS Connect.

Subsections:
- "Environment"
- "Syntax"
- "Keywords" on page 122
- "Usage notes" on page 122
- "Equivalent WTOR and z/OS commands" on page 123
- "Output fields" on page 123
- "Return, reason, and completion codes" on page 124
- "Examples" on page 125

Environment

The QUERY IMSCON command is applicable only to IMS Connect. To issue this command, the following conditions must be satisfied:
- IMS Connect must be active and configured to communicate with the Common Service Layer (CSL) Structured Call Interface (SCI).
- A type-2 command environment with Structured Call Interface (SCI) and Operations Manager (OM) must be active.

Syntax

```
QUERY QRY IMSCON TYPE(ALIAS) NAME(*)
 NAME(alias_name)
 ODBM(odbm_name)
 SHOW(ALL ODBM STATUS)
 STATUS(APPLICATION NOTACTIVE)
```
Keywords

The following keywords are valid for the QUERY IMSCON TYPE(ALIAS) command.

NAME
Specifies the name of one or more IMS aliases to be displayed. You can specify a single alias name or a list of alias names separated by commas. Wildcards can be used in the names.

You can specify NAME(*) to display all IMS aliases. NAME(*) is the default.

ODBM
Selects aliases for display that are associated with the specified ODBM name. You can specify a single ODBM name or a list of ODBM names separated by commas. Wildcards can be used in the names.

Only the aliases that are associated with a specified ODBM name are displayed. Aliases that match the NAME parameter, but are not associated with the specified ODBM name, are not displayed.

If the ODBM keyword is specified, ODBM information is displayed even if SHOW(ODBM) is not specified.

SHOW
Specifies the optional output fields to be displayed. Output fields that are always displayed, regardless of whether SHOW is specified, include the alias name, the name of the IMS Connect that processes the command, and the completion code.

The filters that are supported with the SHOW keyword, which can be specified in any order, are:

ALL
Displays all output fields.

ODBM
Displays the name of the ODBM for which the alias is defined.

STATUS
Displays the status of the alias. For a description of the possible alias status returned, see the STATUS keyword in Table 34 on page 123.

STATUS
Displays the ODBM aliases that are in at least one of the specified states. You can specify a single status, or a list of statuses separated by commas, in any order.

ACTIVE
The alias is active.

NOTACTIVE
The alias is not active, either in IMS Connect, ODBM, or both.

If the STATUS keyword is specified, status information is displayed even if SHOW(STATUS) is not specified.

Usage notes

You can issue the QUERY IMSCON TYPE(ALIAS) command only through the Operations Manager (OM) API.
IMS Connect can process IMS Connect type-2 commands only if the IMSplex from which the commands were issued has a status of **ACTIVE**.

**Equivalent WTOR and z/OS commands**

The following table lists WTOR (Write to Operator with Reply) and IMS Connect z/OS commands that perform similar functions as the QUERY IMSCON TYPE(ALIAS) command.

**Notes:**
- IMS Connect WTOR commands are replies to the outstanding IMS Connect reply message.
- IMS Connect z/OS commands are issued through the z/OS (MVS) interface by using the IMS Connect **jobname**.

*Table 33. WTOR and IMS Connect z/OS equivalents for the QUERY IMSCON TYPE(ALIAS) command*

<table>
<thead>
<tr>
<th>QUERY IMSCON TYPE(ALIAS) command</th>
<th>Equivalent IMS Connect WTOR command</th>
<th>Equivalent IMS Connect z/OS command</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY IMSCON TYPE(ALIAS) NAME(*) SHOW(ALL show_parm)</td>
<td>VIEWIA ALL</td>
<td>QUERY ALIAS NAME(*)</td>
</tr>
<tr>
<td>QUERY IMSCON TYPE(ALIAS) NAME(alias_name) SHOW(ALL show_parm)</td>
<td>VIEWIA alias_name</td>
<td>QUERY ALIAS NAME(aliasName)</td>
</tr>
<tr>
<td>QUERY IMSCON TYPE(ALIAS) NAME(alias_name) ODBM(odbm_name)</td>
<td>VIEWIA alias_name odbm_name</td>
<td>QUERY ALIAS NAME(aliasName) ODBM(odbmName)</td>
</tr>
</tbody>
</table>

**Output fields**

**Short label**
- Contains the short label that is generated in the XML output.

**Long label**
- Contains the column heading displayed on the TSO SPOC screen.

**Keyword**
- Identifies the keyword on the command that caused the field to be generated. N/A (not applicable) appears for output fields that are always returned. **error** appears for output fields that are returned only in the case of an error.

**Meaning**
- Provides a brief description of the output field.

*Table 34. Output fields for the QUERY IMSCON TYPE(ALIAS) command*

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALIAS</td>
<td>AliasName</td>
<td>N/A</td>
<td>The alias name of an IMS data store defined to the instance of ODBM. The alias name is always returned.</td>
</tr>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code that indicates whether IMS Connect was able to process the command for the specified resource. The completion code is always returned. See Table 36 on page 125</td>
</tr>
</tbody>
</table>
Table 34. Output fields for the QUERY IMSCON TYPE(ALIAS) command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the nonzero completion code. This field is returned only for an error completion code.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>Identifier of the IMS Connect that built the output line. The identifier is always returned.</td>
</tr>
<tr>
<td>ODBM</td>
<td>ODBMName</td>
<td>ODBM</td>
<td>Name of the ODBM associated with the alias.</td>
</tr>
<tr>
<td>STT</td>
<td>Status</td>
<td>STATUS</td>
<td>Status of the alias, which is one of the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ACTIVE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The alias is active.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NOTACTIVE(IMSCON)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The alias has been deactivated in IMS Connect by using the STOPIA command (or equivalent).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NOTACTIVE(ODBM)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The alias has been deactivated in ODBM by using the ODBM type-2 UPDATE ODBM STOP(CONNECTION) ALIAS command.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NOTACTIVE(IMSCON,ODBM)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The alias has been deactivated both in IMS Connect (by using the STOPIA command or equivalent) and in ODBM (by using the ODBM type-2 UPDATE ODBM STOP(CONNECTION) ALIAS command).</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The return and reason codes that can be returned as a result of the QUERY IMSCON TYPE(ALIAS) command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 35. Return and reason codes for the QUERY IMSCON TYPE(ALIAS) command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The QUERY IMSCON TYPE(ALIAS) command completed successfully. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003000'</td>
<td>The command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003004'</td>
<td>The command was not successful for any resource. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
</tbody>
</table>
Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

Table 36. Completion codes for the QUERY IMSCON TYPE(ALIAS) command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The QUERY IMSCON TYPE(ALIAS) command completed successfully for the resources.</td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>The resource name is unknown to the client that is processing the request. The resource name might have been typed in error or the resource might not be active at this time. If a wildcard was specified in the command, there were no matches for the name. Confirm that the correct spelling of the resource name is specified on the command.</td>
</tr>
</tbody>
</table>

Examples

Example 1 for QUERY IMSCON TYPE(ALIAS) command

TSO SPOC input:
QUERY IMSCON TYPE(ALIAS) NAME(*) SHOW(ALL)

TSO SPOC output:

<table>
<thead>
<tr>
<th>AliasName</th>
<th>MbrName</th>
<th>CC</th>
<th>ODBMName</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSA</td>
<td>HWS1</td>
<td>0</td>
<td>ODBM100D</td>
<td>NOTACTIVE(IMSCON)</td>
</tr>
<tr>
<td>IMSA</td>
<td>HWS1</td>
<td>0</td>
<td>ODBM200D</td>
<td>NOTACTIVE(ODBM)</td>
</tr>
<tr>
<td>IMS1</td>
<td>HWS1</td>
<td>0</td>
<td>ODBM100D</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>IMS1</td>
<td>HWS1</td>
<td>0</td>
<td>ODBM200D</td>
<td>NOTACTIVE(IMSCON,ODBM)</td>
</tr>
<tr>
<td>IMS2</td>
<td>HWS1</td>
<td>0</td>
<td>ODBM200D</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>IMS3</td>
<td>HWS1</td>
<td>0</td>
<td>ODBM300D</td>
<td>NOTACTIVE(IMSCON)</td>
</tr>
</tbody>
</table>

OM API input:

CMD ( QUERY IMSCON TYPE(ALIAS) NAME(*) SHOW(ALL) )

OM API output:

```xml
<imsout>
 <ctl>
 <omname>OM10M</omname>
 <omvsn>1.5.0</omvsn>
 <xmlvsn>20</xmlvsn>
 <statime>2010.290 15:26:08.249532</statime>
 <stotime>2010.290 15:26:08.251073</stotime>
 <staseq>C6C82E53FF2BCD37</staseq>
 <stoseq>C6C82E53FF8C1EB7</stoseq>
 <rqsttkn1>USRT001 10082608</rqsttkn1>
 <rc>00000000</rc>
 <rsn>00000000</rsn>
 </ctl>
 <cmd>
 <master>HWS1</master>
 <userid>USRT001</userid>
 <verb>QRY</verb>
 <kwd>IMSCON</kwd>
 <input>QUERY IMSCON TYPE(ALIAS) NAME(*) SHOW(ALL)</input>
 </cmd>
 <cmdrsphdr>
 <hdr sibl="ALIAS" llbl="AliasName" scope="LCL" sort="a" key="1"
 scroll="no" len="8" dtype="CHAR" align="left" skipb="no"/>
```
Explanation: There are two ODBM resources that have aliases currently defined. IMSA and IMS1 are aliases defined to both ODBM1OD and ODBM2OD. IMS2 is an alias defined only to ODBM2OD, and IMS3 is an alias defined only to ODBM3OD. The status NOTACTIVE(IMSCON) indicates that the alias has been deactivated by the IMS Connect STOPIA (or equivalent) command. The status NOTACTIVE(ODBM) indicates that the alias has been deactivated by the UPDATE ODBM STOP(CONNECTION) ALIAS command.

Related concepts:

How to interpret CSL request return and reason codes (System Programming APIs)

Related reference:

VIEWIA command (Commands)

QUERY IMSCON TYPE(CLIENT) command

Use the QUERY IMSCON TYPE(CLIENT) command to display the status and activity of one or more active client socket connections on which IMS Connect receives messages from a client.

If the connection is to another instance of IMS Connect or a CICS® subsystem, IMS Connect uses a separate send socket on a different port to send transactions and reply data. The QUERY IMSCON TYPE(CLIENT) command does not display these send client socket connections. To display information about send client socket connections, use the QUERY IMSCON TYPE(SENDCLNT) command.
Environment

The QUERY IMSCON command is applicable only to IMS Connect. To issue this command, the following conditions must be satisfied:

- IMS Connect must be active and configured to communicate with the Common Service Layer (CSL) Structured Call Interface (SCI).
- A type-2 command environment with Structured Call Interface (SCI) and Operations Manager (OM) must be active.

Syntax
Keywords

The following keywords are valid for the QUERY IMSCON TYPE(CLIENT) command.

**DATASTORE**
Selects clients for display that have a transaction submitted to the specified data store. You can specify a single data store name or a list of data store names separated by commas. Wildcards can be used.

If the DATASTORE keyword is specified, data store information is displayed even if SHOW(DATASTORE) is not specified.

**NAME**
Specifies the name of one or more clients to be displayed. You can specify a single client name or a list of client names separated by commas. Wildcards can be used.

You can specify NAME(*) to display all clients. NAME(*) is the default.

IMS Connect uses the client name to identify the client socket connection. The name of an IMS Connect client can be provided by the client or, if the client does not provide it, IMS Connect randomly generates the name.

IMS Connect always generates the client name for connections with another IMS Connect instance or a CICS subsystem. In these cases, the first characters of the client name identify the IMS communication type. For example:

ISC  ISC communication with a CICS subsystem
MSC  MSC communication between IMS systems
OTM  OTMA communication between IMS systems

To display the active socket connections for one of the preceding types of IMS communication, you can specify the character identifier followed by a wildcard character. For example, NAME(MSC*), returns all IMS-to-IMS send socket connections for MSC communications.

**PORT**
Selects clients for display that are active on the specified port. You can specify a single port number or a list of port numbers separated by commas. Wildcards can be used.

To filter on the local port used by the IMS TM Resource Adapter, specify NAME(LOCAL).

The SSL port is displayed with the character “S” appended to the end of the port number. To filter on the SSL port, specify the port number either with or without the character “S” appended to the end of the port number.

The port defined for ODBM use is displayed with the character “D” appended to the end of the port number. To filter on the ODBM port, specify the port number either with or without the character “D” appended to the end of the port number.

The port defined for ISC links to CICS is displayed with the character “C” appended to the end of the port number. To filter on a CICS port, specify the port number either with or without the character “C” appended to the end of the port number.

If the PORT keyword is specified, port information is displayed even if SHOW(PORT) is not specified.
SHOW

Specifies the optional output fields to be displayed. Output fields that are always displayed, regardless of whether SHOW is specified, include the client name, the name of the IMS Connect that processes the command, and the completion code.

The filters that are supported with the SHOW keyword, which can be specified in any order, are:

ALL
Displays all output fields.

APSBTOKEN
Displays the ODBM APSB token in use by the client for ODBM access.

CLNTPORT
Displays the client port number, which is a random number that TCP/IP generates to represent a connection from a client.

DATASTORE
Displays the data store to which the transaction was submitted.

IPADDR
Displays the IP address being used by the connection of the client to IMS Connect.

ISC
Displays the name of the Intersystem Communication (ISC) resource that this client is associated with. This value is specified on the ID parameter of the ISC statement in the IMS Connect configuration member.

LCLPLKID
Displays the local MSC physical link ID that is using this connection, as specified on the LCLPLKID parameter of the MSC statement in the IMS Connect configuration member. This filter is valid for MSC messages only.

PORT
Displays the port number of the port on which the client is active. If the port is a local port used by the TM Resource Adapter, LOCAL is displayed. If the port is an SSL port, character “S” is appended to the end of the port number. If the port is an ODBM port, character “D” is appended to the end of the port number.

If the port is a CICS port, character “C” is appended to the end of the port number.

SECOND
Displays the number of seconds that the client has been in its current status.

STATUS
Displays the status of the client. For a description of the possible status returned, see the STATUS keyword in Table 37 on page 131.

TRAN
Displays the transaction code submitted by the client.

USERID
Displays the user ID passed to IMS Connect.
STATUS
Displays the clients that are in at least one of the specified states. You can specify a single client status, or a list of client statuses separated by commas, in any order.

CONN
Waiting for output from IMS.

CONV
In a conversational state.

READ
Reading an input message from the client.

RECV
Waiting for input from the client (in a receive state).

WFCM
Waiting for confirmation (ACK, NAK, or DEALLOCATE) from the client.

XMIT
Sending data to the client.

If the STATUS keyword is specified, status information is displayed even if SHOWSTATUS is not specified.

TRAN
Selects clients for display that have a specified transaction submitted to a data store. You can specify a single transaction name or a list of transaction names separated by commas. Wildcards can be used.

If the TRAN keyword is specified, transaction information is displayed even if SHOWTRAN is not specified.

USERID
Selects clients for display that have one of the specified user IDs. You can specify a single user ID or a list of user IDs separated by commas. Wildcards can be used.

If the USERID keyword is specified, user ID information is displayed even if SHOWUSERID is not specified.

Usage notes
You can issue the QUERY IMSCON TYPE(CLIENT) command only through the Operations Manager (OM) API.

IMS Connect can process IMS Connect type-2 commands only if the IMSplex from which the commands were issued has a status of ACTIVE.

Output fields
Short label
Contains the short label that is generated in the XML output.

Long label
Contains the column heading displayed on the TSO SPOC screen.

Keyword
Identifies the keyword on the command that caused the field to be
generated. N/A (not applicable) appears for output fields that are always returned. *error* appears for output fields that are returned only in the case of an error.

**Meaning**

Provides a brief description of the output field.

*Table 37. Output fields for the QUERY IMSCON TYPE(CLIENT) command*

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>APTK</td>
<td>ApsbToken</td>
<td>APSBTOKEN</td>
<td>The APSB token for ODBM.</td>
</tr>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code that indicates whether IMS Connect was able to process the command for the specified resource. The completion code is always returned. See <a href="#">Table 39 on page 133</a>.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the nonzero completion code. This field is returned only for an error completion code.</td>
</tr>
<tr>
<td>CLID</td>
<td>ClientID</td>
<td>N/A</td>
<td>Name of the client. The client name is always returned.</td>
</tr>
<tr>
<td>CPORT</td>
<td>ClntPort</td>
<td>CLNTPORT</td>
<td>The client port number, which is a random number that TCP/IP generates to represent a connection from a client.</td>
</tr>
<tr>
<td>DS</td>
<td>DataStore</td>
<td>DATASTORE</td>
<td>Data store to which the transaction was submitted by the client.</td>
</tr>
<tr>
<td>IP</td>
<td>IpAddress</td>
<td>IPADDR</td>
<td>The IP address being used by the connection of the client to IMS Connect.</td>
</tr>
<tr>
<td>ISC</td>
<td>ISCName</td>
<td>ISC</td>
<td>Displays the name of the Intersystem Communication (ISC) resource that this client is associated with. This value is specified on the ID parameter of the ISC statement in the IMS Connect configuration member.</td>
</tr>
<tr>
<td>LPLK</td>
<td>LclPlkID</td>
<td>LCLPLKID</td>
<td>The local MSC physical link ID that is using this connection, as specified on the LCLPLKID parameter of the MSC statement in the IMS Connect configuration member. This field is displayed for MSC messages only.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>Identifier of the IMS Connect that built the output line. The identifier is always returned.</td>
</tr>
<tr>
<td>PORT</td>
<td>Port</td>
<td>PORT</td>
<td>The port number on which the client is active. For a local port used by TM Resource Adapter, the port number is “LOCAL”. For an SSL port, the character “S” is appended to the end of the port number. For an ODBM port, the character “D” is appended to the end of the port number. For a CICS port, the character “C” is appended to the end of the port number.</td>
</tr>
<tr>
<td>SEC</td>
<td>Second</td>
<td>SECOND</td>
<td>Number of seconds that the client has been in its current state or status.</td>
</tr>
</tbody>
</table>
Table 37. Output fields for the QUERY IMSCON TYPE(CLIENT) command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>STT</td>
<td>Status</td>
<td>STATUS</td>
<td>Status or state of the thread of the client, which can be one or more of the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CONN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CONV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>READ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RECV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WFCM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>XMIT</td>
</tr>
<tr>
<td>TRAN</td>
<td>Trancode</td>
<td>TRAN</td>
<td>Transaction code submitted by the client.</td>
</tr>
<tr>
<td>UID</td>
<td>UserID</td>
<td>USERID</td>
<td>User ID for the client that is passed to IMS Connect.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The return and reason codes that can be returned as a result of the QUERY IMSCON TYPE(CLIENT) command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 38. Return and reason codes for the QUERY IMSCON TYPE(CLIENT) command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The QUERY IMSCON TYPE(CLIENT) command completed successfully. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003000'</td>
<td>The command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003004'</td>
<td>The command was not successful for any resource. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C000014'</td>
<td>X'00005008'</td>
<td>The command processor failed to obtain storage via BPEGETM.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.
Table 39. Completion codes for the QUERY IMSCON TYPE(CLIENT) command

<table>
<thead>
<tr>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The QUERY IMSCON TYPE(CLIENT) command completed successfully for the resources.</td>
</tr>
<tr>
<td>10 NO RESOURCES FOUND</td>
<td>The resource name is unknown to the client that is processing the request. The resource name might have been typed in error or the resource might not be active at this time. If a wildcard was specified in the command, there were no matches for the name. Confirm that the correct spelling of the resource name is specified on the command.</td>
</tr>
</tbody>
</table>

Equivalent WTOR and z/OS commands

There are no equivalent WTOR and z/OS commands because CLIENT is not supported as a resource type for WTOR and z/OS commands for IMS Connect. You can display client information by using the VIEWPORT and QUERY PORT commands, but you cannot use the client name as a search argument.

Examples

Example 1 for QUER Y IMSCON TYPE(CLIENT) command

TSO SPOC input:
QUERY IMSCON TYPE(CLIENT) NAME(CLIENT*,MSC*) SHOW(ALL)

TSO SPOC output:

(Screen 1)
<table>
<thead>
<tr>
<th>ClientID</th>
<th>MbrName</th>
<th>CC</th>
<th>Port</th>
<th>UserId</th>
<th>Trancode</th>
<th>DataStore</th>
<th>Second</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIENT01</td>
<td>HWS1</td>
<td>0</td>
<td>9999</td>
<td>USRT003</td>
<td>FESTX2</td>
<td>IMS1</td>
<td>2647</td>
</tr>
<tr>
<td>CLIENT02</td>
<td>HWS1</td>
<td>0</td>
<td>9999</td>
<td>USRT003</td>
<td>FESTX2</td>
<td>IMS1</td>
<td>1741</td>
</tr>
<tr>
<td>CLIENT09</td>
<td>HWS1</td>
<td>0</td>
<td>9999</td>
<td>USRT003</td>
<td>FESTX2</td>
<td>IMS1</td>
<td>1658</td>
</tr>
<tr>
<td>CLIENT12</td>
<td>HWS1</td>
<td>0</td>
<td>9999</td>
<td>USRT002</td>
<td>FESTX2</td>
<td>IMS1</td>
<td>15</td>
</tr>
<tr>
<td>CLIENT25</td>
<td>HWS1</td>
<td>0</td>
<td>12345</td>
<td>USRT005</td>
<td>APOL11</td>
<td>IMS1</td>
<td>42</td>
</tr>
<tr>
<td>MSC3333</td>
<td>HWS1</td>
<td>0</td>
<td>9999</td>
<td></td>
<td></td>
<td>UFC12</td>
<td>14</td>
</tr>
<tr>
<td>MSC44444</td>
<td>HWS1</td>
<td>0</td>
<td>9999</td>
<td></td>
<td></td>
<td>UFC12</td>
<td>9</td>
</tr>
</tbody>
</table>

(Screen 2)
<table>
<thead>
<tr>
<th>ClientID</th>
<th>MbrName</th>
<th>ClntPort</th>
<th>IpAddress</th>
<th>ApsbToken</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIENT01</td>
<td>HWS1</td>
<td>2363</td>
<td>0:0:0:0:0:FFFF:930:6E53</td>
<td>RECEV</td>
<td></td>
</tr>
<tr>
<td>CLIENT02</td>
<td>HWS1</td>
<td>2277</td>
<td>0:0:0:0:0:FFFF:930:6E53</td>
<td>RECEV</td>
<td></td>
</tr>
<tr>
<td>CLIENT09</td>
<td>HWS1</td>
<td>2200</td>
<td>0:0:0:0:0:FFFF:930:6E53</td>
<td>RECEV</td>
<td></td>
</tr>
<tr>
<td>CLIENT12</td>
<td>HWS1</td>
<td>2323</td>
<td>0:0:0:0:0:FFFF:930:6E53</td>
<td>RECEV</td>
<td></td>
</tr>
<tr>
<td>CLIENT25</td>
<td>HWS1</td>
<td>2348</td>
<td>0:0:0:0:0:FFFF:930:6E53</td>
<td>RECEV</td>
<td></td>
</tr>
<tr>
<td>MSC3333</td>
<td>HWS1</td>
<td>1739</td>
<td>0:0:0:0:0:FFFF:64A:CB02</td>
<td>CONN</td>
<td></td>
</tr>
<tr>
<td>MSC44444</td>
<td>HWS1</td>
<td>2684</td>
<td>0:0:0:0:0:FFFF:64A:CB02</td>
<td>CONN</td>
<td></td>
</tr>
</tbody>
</table>

OM API input:

CMD ( QUERY IMSCON TYPE(CLIENT) NAME(CLIENT*) SHOW(ALL) )

OM API output:

```xml
<imsout>
<ctl>
<omname>OM10M </omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20 </xmlvsn>
<stotime>2010.297 22:46:36.444137</stotime>
```

Chapter 5. QUERY commands 133
<input>QUERY IMSCON TYPE(CLIENT) NAME(CLIENT*,MSC*) SHOW(ALL) </input>
</cmdrshdr>

Explanation: There are six clients, two of which are associated with an MSC physical link on port 9999, and one client on port 12345. Each line of output displays information and status specific to each of the clients that are active on the port.

Example 2 for QUERY IMSCON TYPE(CLIENT) command

TSO SPOC input:
QUERY IMSCON TYPE(CLIENT) USERID(USRT002)

TSO SPOC output:

OM API input:
CMD ( QUERY IMSCON TYPE(CLIENT) USERID(USRT002) )

OM API output:

Chapter 5. QUERY commands 135
<hdr sbl="SEC" llbl="Second" scope="LCL" sort="n" key="0" scroll="yes"
    len="10" dtype="INT" align="right" skipb="yes" />
<hdr sbl="CPORT" llbl="ClntPort" scope="LCL" sort="n" key="0"
    scroll="yes" len="5" dtype="CHAR" align="left" skipb="yes" />
<hdr sbl="IP" llbl="IpAddress" scope="LCL" sort="n" key="0"
    scroll="yes" len="*" dtype="CHAR" align="left" skipb="yes" />
<hdr sbl="APTK" llbl="ApsbToken" scope="LCL" sort="n" key="0"
    scroll="yes" len="32" dtype="CHAR" align="left" skipb="yes" />
<hdr sbl="STT" llbl="Status" scope="LCL" sort="n" key="0"
    scroll="yes" len="9" dtype="CHAR" align="left" skipb="yes" />
</cmdrsphdr>
<cmdrspdata>
<rsp>CLID(CLIENT12) MBR(HWS1) CC(0) UID(USR002) </rsp>
</cmdrspdata>
</imsout>

**Explanation:** The command requests any client with a user ID of USR002. CLIENT12 is the only client with this user ID. The SHOW keyword was not specified, but SHOW(USERID) is assumed because the USERID keyword was specified.

**Example 3 for QUERY IMSCON TYPE(CLIENT) command**

In the following example, four clients active on the system. One client is an OTMA client on port 9999 that has sent an IMS transaction to the IMS1 datastore. Two clients are ISC clients on CICS port 9876 that are associated with the ISC datastore named IMS1CIC4. One client is an MSC client on port 9999 that is associated with the MSC datastore named MSC12.

**TSO SPOC input:**

QUERY IMSCON TYPE(CLIENT) SHOW(ALL)

**TSO SPOC output:**

**TSO SPOC output:**

(Screen 1)

<table>
<thead>
<tr>
<th>ClientID</th>
<th>MbrName</th>
<th>CC</th>
<th>Port</th>
<th>UserID</th>
<th>LclPlkID</th>
<th>ISCName</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIENT01</td>
<td>HWS1</td>
<td>0</td>
<td>9999</td>
<td>USR003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISC17C1B</td>
<td>HWS1</td>
<td>0</td>
<td>9876C</td>
<td>IMS1CIC4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISC5A81F</td>
<td>HWS1</td>
<td>0</td>
<td>9876C</td>
<td>IMS1CIC4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSC78E94</td>
<td>HWS1</td>
<td>0</td>
<td>9999</td>
<td></td>
<td>MSC12</td>
<td></td>
</tr>
</tbody>
</table>

(Screen 2)

<table>
<thead>
<tr>
<th>ClientID</th>
<th>MbrName</th>
<th>Trancode</th>
<th>DataStore</th>
<th>Second</th>
<th>ClntPort</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIENT01</td>
<td>HWS1</td>
<td>FESTX2</td>
<td>IMS1</td>
<td>26</td>
<td>4758</td>
</tr>
<tr>
<td>ISC17C1B</td>
<td>HWS1</td>
<td></td>
<td></td>
<td>80</td>
<td>1661</td>
</tr>
<tr>
<td>ISC5A81F</td>
<td>HWS1</td>
<td></td>
<td></td>
<td>77</td>
<td>1663</td>
</tr>
<tr>
<td>MSC78E94</td>
<td>HWS1</td>
<td></td>
<td></td>
<td>85</td>
<td>1659</td>
</tr>
</tbody>
</table>

(Screen 3)

<table>
<thead>
<tr>
<th>ClientID</th>
<th>MbrName</th>
<th>IpAddress</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIENT01</td>
<td>HWS1</td>
<td>0:0:0:0:0:FFFF:91E:1688</td>
<td>RECV</td>
</tr>
<tr>
<td>ISC17C1B</td>
<td>HWS1</td>
<td>0:0:0:0:0:FFFF:91E:72F3</td>
<td>RECV</td>
</tr>
<tr>
<td>ISC5A81F</td>
<td>HWS1</td>
<td>0:0:0:0:0:FFFF:91E:72F3</td>
<td>RECV</td>
</tr>
<tr>
<td>MSC78E94</td>
<td>HWS1</td>
<td>0:0:0:0:0:FFFF:91E:72F3</td>
<td>RECV</td>
</tr>
</tbody>
</table>

**OM API input:**

CMD ( QUERY IMSCON TYPE(CLIENT) SHOW(ALL) )

**OM API output:**

<imsout>
<ctl>
<omname>OM1OM</omname>
<xmlversion>1.6</xmlversion>
<statetime>2012.129 22:12:55.400673</statetime>
<sstatime>2012.129 22:12:55.402695</sstatime>
<rsseq>C980DF900E4E141C</rsseq>
<stseq>C980DF900ECC789C</stseq>
<rqsttkn1>USRT001 10151255</rqsttkn1>
<rcsn>00000000</rcsn>
</input>
<cmd>
<master>HWS1</master>
<userid>USRT001</userid>
<verb>QRY</verb>
<kwd>IMSCON</kwd>
<input>QUERY IMSCON TYPE(CLIENT) SHOW(ALL) </input>
</cmd>
<cmdrsphdr>
<hdr slbl="CLID" dtype="CHAR" scope="LCL" sort="a" key="2" len="8" scroll="yes" align="left" skipb="yes" />
<hdr slbl="MBR" dtype="CHAR" scope="LCL" sort="a" key="1" len="8" scroll="no" align="left" skipb="no" />
<hdr slbl="CC" dtype="INT" scope="LCL" sort="n" key="0" len="4" scroll="yes" align="right" skipb="no" />
<hdr slbl="CTX" dtype="CHAR" scope="LCL" sort="n" key="0" len="8" scroll="yes" align="left" skipb="yes" />
<hdr slbl="PORT" dtype="CHAR" scope="LCL" sort="n" key="0" len="8" scroll="yes" align="left" skipb="yes" />
<hdr slbl="UID" dtype="CHAR" scope="LCL" sort="n" key="0" len="8" scroll="yes" align="left" skipb="yes" />
<hdr slbl="LPLK" dtype="CHAR" scope="LCL" sort="n" key="0" len="8" scroll="yes" align="left" skipb="yes" />
<hdr slbl="ISC" dtype="CHAR" scope="LCL" sort="n" key="0" len="8" scroll="yes" align="left" skipb="yes" />
<hdr slbl="TRAN" dtype="CHAR" scope="LCL" sort="n" key="0" len="8" scroll="yes" align="left" skipb="yes" />
<hdr slbl="DS" dtype="CHAR" scope="LCL" sort="n" key="0" len="8" scroll="yes" align="left" skipb="yes" />
<hdr slbl="SEC" dtype="INT" scope="LCL" sort="n" key="0" len="10" scroll="yes" align="right" skipb="yes" />
<hdr slbl="CPORT" dtype="CHAR" scope="LCL" sort="n" key="0" len="8" scroll="yes" align="left" skipb="yes" />
<hdr slbl="IP" dtype="CHAR" scope="LCL" sort="n" key="0" len="8" scroll="yes" align="left" skipb="yes" />
<hdr slbl="APTK" dtype="CHAR" scope="LCL" sort="n" key="0" len="32" scroll="yes" align="left" skipb="yes" />
<hdr slbl="STT" dtype="CHAR" scope="LCL" sort="n" key="0" len="9" scroll="yes" align="left" skipb="yes" />
</cmdrsphdr>
<cmdrspdata>
<rsclid(CLIENT01) MBR(HWS1) CC(0) PORT(9999) UID(USRT003) TRAN(FESTX2) DS(IMS1) SEC(26) CPORT(4758) IP(0:0:0:0:FFFF:91E:1688) STT(RECV)  ></rsclid>
<rsclid(MSC78E94) MBR(HWS1) CC(0) PORT(9999) LPLK(MSCI2) SEC(85) CPORT(1659) IP(0:0:0:0:FFFF:91E:72F3) STT(RECV)  ></rsclid>
<rsclid(ISC5A81F) MBR(HWS1) CC(0) PORT(9876C) ISC(IMSC1C4) SEC(77) CPORT(1663) IP(0:0:0:0:FFFF:91E:72F3) STT(RECV)  ></rsclid>
<rsclid(ISC17C18) MBR(HWS1) CC(0) PORT(9876C) ISC(IMSC1C4) SEC(80) CPORT(1661) IP(0:0:0:0:FFFF:91E:72F3) STT(RECV)  ></rsclid>
</cmdrspdata>
</input>

Related concepts:
How to interpret CSL request return and reason codes (System Programming APIs)

QUERY IMSCON TYPE(CONFIG) command

Use the QUERY IMSCON TYPE(CONFIG) command to display the status and activity of IMS Connect. Unlike the similar WTOR command VIEWHWS or the z/OS command QUERY MEMBER TYPE(IMSCON), individual resources such as PORT and DATASTORE are not displayed with this command.

Subsections:
- “Environment”
- “Syntax”
- “Keywords” on page 139
- “Usage notes” on page 141
- “Equivalent WTOR and z/OS commands” on page 141
- “Output fields” on page 142
- “Return, reason, and completion codes” on page 144
- “Examples” on page 145

Environment

The QUERY IMSCON command is applicable only to IMS Connect. To issue this command, the following conditions must be satisfied:
- IMS Connect must be active and configured to communicate with the Common Service Layer (CSL) Structured Call Interface (SCI).
- A type-2 command environment with Structured Call Interface (SCI) and Operations Manager (OM) must be active.

Syntax
Keywords

The following keywords are valid for the QUERY IMSCON TYPE(CONFIG) command.

SHOW

Specifies the optional output fields to be displayed. Output fields that are always displayed, regardless of whether SHOW is specified, include the name of the IMS Connect that processes the command, and the completion code.

The filters that are supported with the SHOW keyword, which can be specified in any order, are:

ALL

Displays all output fields.

ADAPTER

Displays whether XML adapter support is enabled, the maximum number of XML converters that this instance of IMS Connect can load, and the current number of XML converters that this instance of IMS Connect has loaded.

CM0ATOQ

Display the name of the OTMA CM0 ACK timeout queue, as specified by the CM0ATOQ= keyword in the IMS Connect configuration file.

ICONID

Display the name of the IMS Connect, as defined in the ID substatement of the HWS configuration statement in the HWSCFGxx configuration member.
**IPADDR**
Displays the IP address for this instance of IMS Connect. Client application programs use this IP address to connect to IMS Connect.

**MAXLSSSZ**
Displays the maximum language structure segment size. This value is passed to the XML converter when it is called.

**MAXSOC**
Displays the maximum total number of sockets that this instance of IMS Connect can open. The maximum number of physical connections that can be made is the MAXSOC= value minus the number of ports, because IMS Connect uses one socket on each port for listening.

**NUMSOC**
Displays the current number of sockets.

**ODBMAC**
Displays the ODBM auto connection value, which indicates whether the instance of IMS Connect identified in the ID field is configured to automatically connect to the instances of ODBM in the IMSplex in which IMS Connect is a member.

**ODBMIPMEM**
Displays the ODBM IMSplex member name, which is the name of the IMS Connect that SCI uses to manage communications between IMS Connect and ODBM.

**ODBMTMEM**
Displays the ODBM IMSplex TMEMBER name, which is the name of the SCI that manages the communication between IMS Connect and ODBM.

**ODBMTTO**
Displays the ODBM timeout value, which is the time interval that IMS Connect waits before disconnecting a client application program that uses the Open Database architecture.

**PSWDMC**
Indicates whether mixed-case password support is currently enabled for this instance of IMS Connect.

**RACF**
Indicates whether RACF support is currently enabled for this instance of IMS Connect.

**RECORER**
Indicates whether the line trace data set is open or closed.

**RRS**
Displays the following z/OS Resource Recovery Services (RRS) information for this instance of IMS Connect:
- Whether RRS is enabled in the HWS configuration file
- The current status of RRS

**SMEM**
Displays the OTMA super member name.

**TCP1PQ**
Displays the maximum number of queued connection requests without assigned sockets that this IMS Connect can maintain.
TIMEOUT
Displays the interval of time IMS Connect waits before disconnecting a client application program after either of the following situations:
• Waiting for a response for the client from IMS
• Waiting for data from the client after the client opens a socket connection

UIDAGE
Displays the RACF user ID aging value in seconds. When the RACF user ID aging value is reached, IMS Connect refreshes the user ID before it processes the next input message for that user ID. Valid values are from 0 to 2,147,483,647 seconds. UIDAGE is only effective when RACF user ID caching is enabled.

UIDCACHE
Displays whether RACF user ID caching is used when RACF authentication is enabled.

VERSION
Displays the version of this instance of IMS Connect.

WARNING
Displays the warning incremental percentage, which is a decimal value between 1 - 50. After the warning level (WARSOC value in the TCPIP configuration statement) has been reached, IMS Connect will reissue an HWSS0772W message each time the number of sockets increases by the warning incremental percentage.

WARSOC
Displays the warning level as a percentage of the maximum sockets limit (MAXSOC= value in the TCPIP configuration statement), which is a decimal value between 50 - 99. When the number of sockets increases to this warning level, IMS Connect issues an HWSS0772W message.

Usage notes
You can issue the QUERY IMSCON TYPE(CONFIG) command only through the Operations Manager (OM) API.

IMS Connect can process IMS Connect type-2 commands only if the IMSplex from which the commands were issued has a status of ACTIVE.

Equivalent WTOR and z/OS commands
The following table lists WTOR (Write to Operator with Reply) and IMS Connect z/OS commands that perform similar functions as the QUERY IMSCON TYPE(CONFIG) command.

Notes:
• IMS Connect WTOR commands are replies to the outstanding IMS Connect reply message.
• IMS Connect z/OS commands are issued through the z/OS (MVS) interface by using the IMS Connect jobname.
Table 40. WTOR and IMS Connect z/OS equivalents for the QUERY IMSCON TYPE(CONFIG) command

<table>
<thead>
<tr>
<th>QUERY IMSCON TYPE(CONFIG) command</th>
<th>Equivalent IMS Connect WTOR command</th>
<th>Equivalent IMS Connect z/OS command</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY IMSCON TYPE(CONFIG) SHOW(ALL</td>
<td>VIEWHWS</td>
<td>QUERY MEMBER TYPE(IMSCON) SHOW(ALL)</td>
</tr>
<tr>
<td>show_parm)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Output fields

Short label
Contains the short label that is generated in the XML output.

Long label
Contains the column heading displayed on the TSO SPOC screen.

Keyword
Identifies the keyword on the command that caused the field to be generated. N/A (not applicable) appears for output fields that are always returned. error appears for output fields that are returned only in the case of an error.

Meaning
Provides a brief description of the output field.

Table 41. Output fields for the QUERY IMSCON TYPE(CONFIG) command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADAP</td>
<td>Adapter</td>
<td>ADAPTER</td>
<td>Whether XML adapter support is enabled or disabled: Y XML adapter support is enabled. N XML adapter support is not enabled.</td>
</tr>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code that indicates whether IMS Connect was able to process the command for the specified resource. The completion code is always returned. See Table 43 on page 145.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the nonzero completion code. This field is returned only for an error completion code.</td>
</tr>
<tr>
<td>CM0ATOQ</td>
<td>Cm0Atq</td>
<td>CM0ATOQ</td>
<td>The name of the OTMA CM0 ACK timeout queue, as specified by the CM0ATOQ= keyword in the IMS Connect configuration file.</td>
</tr>
<tr>
<td>ICID</td>
<td>IconID</td>
<td>ICONID</td>
<td>The name of the IMS Connect, as defined in the ID substatement of the HWS configuration statement in the HWSCFGxx configuration member.</td>
</tr>
<tr>
<td>IP</td>
<td>IpAddress</td>
<td>IPADDR</td>
<td>The IP address for this instance of IMS Connect. Client application programs use this IP address to connect to IMS Connect.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>Identifier of the IMS Connect that built the output line. The identifier is always returned.</td>
</tr>
<tr>
<td>MCNV</td>
<td>MaxCvrt</td>
<td>ADAPTER</td>
<td>The maximum number of XML converters that this IMS Connect instance can load concurrently.</td>
</tr>
<tr>
<td>MLSS</td>
<td>MaxLSSSz</td>
<td>MAXLSSSZ</td>
<td>The maximum language structure segment size, which is passed to the XML converters.</td>
</tr>
<tr>
<td>Short label</td>
<td>Long label</td>
<td>Keyword</td>
<td>Meaning</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>MSOC</td>
<td>MaxSoc</td>
<td>MAXSOC</td>
<td>The maximum total number of sockets that this instance of IMS Connect can open. The maximum number of physical connections that can be made is the MAXSOC= value minus the number of ports, because IMS Connect uses one socket on each port for listening.</td>
</tr>
<tr>
<td>NCNV</td>
<td>NumCvrt</td>
<td>ADAPTER</td>
<td>The number of XML converters currently loaded in this instance of IMS Connect.</td>
</tr>
<tr>
<td>NSOC</td>
<td>NumSoc</td>
<td>NUMSOC</td>
<td>The current number of sockets.</td>
</tr>
<tr>
<td>OAC</td>
<td>ODBMAC</td>
<td>ODBMAC</td>
<td>The ODBM auto connection value, which indicates whether the instance of IMS Connect identified in the ID field is configured to automatically connect to the instances of ODBM in the IMSplex in which IMS Connect is a member. Y ODBM auto connection is enabled. N ODBM auto connection is not enabled.</td>
</tr>
<tr>
<td>OIMEM</td>
<td>ODBMIPMem</td>
<td>ODBMIPMEM</td>
<td>The ODBM IMSplex member name, which is the name of the IMS Connect that SCI uses to manage communications between IMS Connect and ODBM.</td>
</tr>
<tr>
<td>OTIMO</td>
<td>ODBMTO</td>
<td>ODBMTO</td>
<td>The ODBM timeout value, which is the time interval that IMS Connect waits before disconnecting a client application program that uses the Open Database Architecture.</td>
</tr>
<tr>
<td>OTMEM</td>
<td>ODBMTMem</td>
<td>ODBMTMEM</td>
<td>The ODBM IMSplex TMEMBER name, which is the name of the SCI that manages the communication between IMS Connect and ODBM.</td>
</tr>
<tr>
<td>PMC</td>
<td>PswdMc</td>
<td>PSWDMC</td>
<td>Whether mixed-case password support is currently enabled for this instance of IMS Connect. One of the following values is displayed: Y Mixed-case password support is enabled. N Mixed-case password support is not enabled. R Mixed-case password support depends on the mixed-case password specification in RACF.</td>
</tr>
<tr>
<td>RACF</td>
<td>Racf</td>
<td>RACF</td>
<td>Whether RACF support is currently enabled for this instance of IMS Connect. One of the following values is displayed: Y RACF support is enabled. N RACF support is not enabled.</td>
</tr>
<tr>
<td>RCDR</td>
<td>Recorder</td>
<td>RECORDER</td>
<td>Whether the line trace data set is open or closed. One of the following values is displayed: Y The line trace data set is open. N The line trace data set is closed.</td>
</tr>
<tr>
<td>RRS</td>
<td>RRS</td>
<td>RRS</td>
<td>Whether RRS is enabled in the HWS configuration file: Y RRS support is enabled. N RRS support is not enabled.</td>
</tr>
<tr>
<td>RSTT</td>
<td>RRSStat</td>
<td>RRS</td>
<td>The current status of RRS: ACTIVE IMS Connect restart with RRS has completed. NOTACTIVE IMS Connect has not registered with RRS. REGISTERED IMS Connect has registered with RRS.</td>
</tr>
</tbody>
</table>
Table 41. Output fields for the QUERY IMSCON TYPE(CONFIG) command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMEM</td>
<td>SMem</td>
<td>SMEMBER</td>
<td>The OTMA super member name.</td>
</tr>
<tr>
<td>TCPQ</td>
<td>TCPIPQ</td>
<td>TCPIPQ</td>
<td>The maximum number of queued connection requests without assigned sockets.</td>
</tr>
</tbody>
</table>
| TIMO        | TimeOut    | TIMEOUT     | The interval of time that IMS Connect waits before disconnecting a client application program after either of the following situations:  
|             |            |             | - Waiting for a response for the client from IMS  
|             |            |             | - Waiting for data from the client after the client opens a socket connection                   |
| UIDA        | UidAge     | UIDAGE      | The RACF user ID aging value in seconds. When the RACF user ID aging value is reached, IMS Connect refreshes the user ID before it processes the next input message for that user ID. Valid values are from 0 to 2,147,483,647 seconds. UIDAGE is effective only when RACF user ID caching is enabled. |
| UIDC        | UidCache   | UIDCACHE    | Whether RACF user ID caching is used when RACF authentication is enabled:  
|             |            |             | Y IMS Connect will cache the RACF user IDs when RACF authentication is enabled.                  |
|             |            |             | N IMS Connect will use the old session level caching.                                             |
| VER         | Version    | VERSION     | The version of this instance of IMS Connect.                                                     |
| WINC        | WarnInc    | WARNINC     | The warning incremental percentage, which is a decimal value between 1 - 50. After the warning level (WARNSOC value in the TCPIP configuration statement) has been reached, IMS Connect reissues an HWSS0772W message each time the number of sockets increases by the warning incremental percentage. |
| WSOCC       | WarnSoc    | WARNSOC     | The warning level as a percentage of the maximum sockets limit (MAXSOC= value in the TCPIP configuration statement), which is a decimal value between 50 - 99. When the number of sockets increases to this warning level, IMS Connect issues an HWSS0772W message. |

Return, reason, and completion codes

The return and reason codes that can be returned as a result of the QUERY IMSCON TYPE(CONFIG) command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 42. Return and reason codes for the QUERY IMSCON TYPE(CONFIG) command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The QUERY IMSCON TYPE(CONFIG) command completed successfully. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
</tbody>
</table>
Table 42. Return and reason codes for the QUERY IMSCON TYPE(CONFIG) command (continued)

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X’0C000000C’</td>
<td>X’00003000’</td>
<td>The command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X’0C000000C’</td>
<td>X’00003004’</td>
<td>The command was not successful for any resource. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X’0C000014’</td>
<td>X’00005008’</td>
<td>The command processor failed to obtain storage via BPEGETM.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

Table 43. Completion codes for the QUERY IMSCON TYPE(CONFIG) command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The QUERY IMSCON TYPE(CONFIG) command completed successfully for the resources.</td>
</tr>
</tbody>
</table>

Examples

Example 1 for QUERY IMSCON TYPE(CONFIG) command

TSO SPOC input:
QUERY IMSCON TYPE(CONFIG) SHOW(ALL)

TSO SPOC output:

(scr 1)
MbrName CC Version IconID IpAddress MaxSoc TimeOut NumSoc WarnSoc WarnInc
HWS1 0 V13 HWS1 127.0.0.1 50 2147483647 4 80 5

(scr 2)
MbrName TCPIPQ UidCache UidAge Racf PswdMc RRS RRSStat Recorder
HWS1 2147483647 Y 2147483647 N N N REGISTERED N

(scr 3)
MbrName SMem CMQAtqq Adapter MaxCvrt NumCvrt ODBMAC ODBMT0 ODBMIPMem
HWS1 SM01 Y 400 15 Y 18000 IMSPLEX1

(scr 4)
MbrName SMem ODBMIMem
HWS1 SM01 PLEX1

OM API input:
CMD ( QUERY IMSCON TYPE(CONFIG) SHOW(ALL) )

OM API output:

<?xml version="1.0"?>
<!DOCTYPE imsout SYSTEM "imsout.dtd">
<imsout>
<ctl>
<omname>OM1OM </omname>
<omvsn>1.6.0</omvsn>

Chapter 5. QUERY commands 145
<xmlvsn>20</xmlvsn>

<statetime>2012.212 21:28:49.532198</statetime>
<stotime>2012.212 21:28:49.532657</stotime>
<staseq>000000000000000F0</staseq>
<stoseq>000000000000000F0</stoseq>
<rqtstklm>USRT002</rqtstklm>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
</cmd>
</master>
</user1d>
</verb>
</kwd>
<input>QUERY IMSCON TYPE(CONFIG) SHOW(ALL)</input>
</cmd>
</cmdrsphdr>
<hdr slbl="MBR" 1bl="MbrName" scope="LCL" sort="a" key="1" scroll="no"
len="8" dtype="CHAR" align="left" skipb="no"/>
<hdr slbl="CC" 1bl="CC" scope="LCL" sort="n" key="0" scroll="yes"
len="4" dtype="INT" align="right" skipb="no"/>
<hdr slbl="CCText" 1bl="CCText" scope="LCL" sort="n" key="0"
scroll="yes" len="32" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="VER" 1bl="Version" scope="LCL" sort="n" key="0"
scroll="yes" len="3" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="ICID" 1bl="IconID" scope="LCL" sort="n" key="0"
scroll="yes" len="8" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="IP" 1bl="IPAddress" scope="LCL" sort="n" key="0"
scroll="yes" len="15" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="MSOC" 1bl="MaxSoc" scope="LCL" sort="n" key="0"
scroll="yes" len="5" dtype="INT" align="right" skipb="yes"/>
<hdr slbl="TIMO" 1bl="TimeOut" scope="LCL" sort="n" key="0"
scroll="yes" len="10" dtype="INT" align="right" skipb="yes"/>
<hdr slbl="NSOC" 1bl="NumSoc" scope="LCL" sort="n" key="0"
scroll="yes" len="5" dtype="INT" align="right" skipb="yes"/>
<hdr slbl="WSOC" 1bl="WarnSoc" scope="LCL" sort="n" key="0"
scroll="yes" len="2" dtype="INT" align="right" skipb="yes"/>
<hdr slbl="TCPO" 1bl="TCPIPO" scope="LCL" sort="n" key="0"
scroll="yes" len="10" dtype="INT" align="right" skipb="yes"/>
<hdr slbl="UIDC" 1bl="UidCache" scope="LCL" sort="n" key="0"
scroll="yes" len="1" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="UIDA" 1bl="UidAge" scope="LCL" sort="n" key="0"
scroll="yes" len="10" dtype="INT" align="right" skipb="yes"/>
<hdr slbl="RACF" 1bl="RACF" scope="LCL" sort="n" key="0"
scroll="yes" len="1" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="PMC" 1bl="PsdMsc" scope="LCL" sort="n" key="0"
scroll="yes" len="1" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="RSTT" 1bl="RRSStat" scope="LCL" sort="n" key="0"
scroll="yes" len="10" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="RCDR" 1bl="Reorder" scope="LCL" sort="n" key="0"
scroll="yes" len="1" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="SMEM" 1bl="SMem" scope="LCL" sort="n" key="0"
scroll="yes" len="8" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="CMOATQO" 1bl="CmOAtq" scope="LCL" sort="n" key="0"
scroll="yes" len="8" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="ADAP" 1bl="Adapter" scope="LCL" sort="n" key="0"
scroll="yes" len="8" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="MCNV" 1bl="MaxCvrt" scope="LCL" sort="n" key="0"
scroll="yes" len="5" dtype="INT" align="right" skipb="yes"/>
<hdr slbl="NCNV" 1bl="NumCvrt" scope="LCL" sort="n" key="0"
scroll="yes" len="5" dtype="INT" align="right" skipb="yes"/>
<hdr slbl="OAC" 1bl="OBBMAC" scope="LCL" sort="n" key="0"
scroll="yes" len="1" dtype="CHAR" align="left" skipb="yes"/>
Explanation: This command shows general status related to IMS Connect.

Related concepts:
- How to interpret CSL request return and reason codes (System Programming APIs)

Related reference:
- VIEWHWS command (Commands)
- IMS Connect QUERY MEMBER command (Commands)

QUERY IMSCON TYPE(CONVERTER) command

Use the QUERY IMSCON TYPE(CONVERTER) command to display the status of IMS Connect XML converters.

Subsections:
- "Environment"
- "Syntax"
- "Keywords" on page 148
- "Usage notes" on page 148
- "Equivalent WTO and z/OS commands" on page 148
- "Output fields" on page 149
- "Return, reason, and completion codes" on page 150
- "Examples" on page 150

Environment

The QUERY IMSCON command is applicable only to IMS Connect. To issue this command, the following conditions must be satisfied:
- IMS Connect must be active and configured to communicate with the Common Service Layer (CSL) Structured Call Interface (SCI).
- A type-2 command environment with Structured Call Interface (SCI) and Operations Manager (OM) must be active.

Syntax

```
QUERY IMSCON TYPE(CONVERTER)
```
Keywords

The following keywords are valid for the QUERY IMSCON TYPE(CONVERTER) command.

**NAME**

Specifies one or more XML converter names to display. You can specify one or more full and wildcard-prefix names in a comma-separated list. If you do not specify this keyword and a value, all XML converters are displayed.

**SHOW**

Specifies which optional output fields to display in addition to the standard output fields. You can specify the following additional output fields:

**ALL**

Display all available output fields.

**TIMESTAMP**

Display the timestamp of the last successful load (TimeCreate) and execution (TimeAccess) for each converter. The timestamp is local time. Timestamps are displayed in the following format:

```
YYYY.JJJ HH:MM:SS.TH
```

- **YYYY** Year
- **JJJ** Julian day
- **HH** Hour
- **MM** Minute
- **SS** Second
- **TH** Tenths and hundredths of a second

**USECOUNT**

The number of times the converter was executed since it was loaded.

Usage notes

You can issue the QUERY IMSCON TYPE(CONVERTER) command only through the Operations Manager (OM) API.

IMS Connect can process IMS Connect type-2 commands only if the IMSplex from which the commands were issued has a status of ACTIVE.

The QUERY IMSCON TYPE(CONVERTER) command is only processed by IMS Connect.

Equivalent WTOR and z/OS commands

The QUERY IMSCON TYPE(CONVERTER) type-2 command does not have an equivalent WTOR or z/OS command.
### Output fields

**Short label**  
Contains the short label that is generated in the XML output.

**Long label**  
Contains the column heading displayed on the TSO SPOC screen.

**Keyword**  
Identifies the keyword on the command that caused the field to be generated. N/A (not applicable) is shown for output fields that are always returned. `error` is shown for output fields that are returned only in the case of an error.

**Meaning**  
Provides a brief description of the output field.

#### Table 44. Output fields for the `QUERY IMSCON TYPE(CONFIG)` command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code that indicates whether IMS Connect was able to process the command for the specified resource. The completion code is always returned.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td><code>error</code></td>
<td>Completion code text that briefly explains the meaning of the nonzero completion code. This field is returned only for an error completion code.</td>
</tr>
<tr>
<td>CVRTR</td>
<td>Converter</td>
<td>N/A</td>
<td>Name of the XML converter.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>Name of the IMS Connect member that built the command output.</td>
</tr>
</tbody>
</table>
| TMAC        | TimeAccess   | TIMESTAMP | The date and time that this XML converter was last executed. This field is returned only if SHOW(TIMESTAMP) is specified in the command. The timestamp is local time. The timestamp is in the following format: YYYY, JJJ HH:MM:SS, TH  
- **YYYY**: Year  
- **JJJ**: Julian day  
- **HH**: Hour  
- **MM**: Minute  
- **SS**: Second  
- **TH**: Tenths and hundredths of a second |
| TMCR        | TimeCreate   | TIMESTAMP | The date and time that this XML converter was loaded. This field is only returned if SHOW(TIMESTAMP) is specified in the command. The field format is the same as for the TMAC output field and the timestamp is local time. |
| UCNT        | UseCount     | USECOUNT | The number of times that this XML converter was executed since the last time it was loaded. This field is returned only if SHOW(USECOUNT) is specified in the command. |
Return, reason, and completion codes

The return and reason codes that can be returned as a result of the QUERY IMSCON TYPE(CONVERTER) command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 45. Return and reason codes for the QUERY IMSCON TYPE(CONVERTER) command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The QUERY IMSCON TYPE(CONVERTER) command completed successfully. The output contains a completion code for each resource.</td>
</tr>
<tr>
<td>X'0C000004'</td>
<td>X'00001010'</td>
<td>No matches were found for the specified NAME value or values.</td>
</tr>
<tr>
<td>X'0C000008'</td>
<td>X'00002004'</td>
<td>The command was not processed because one of the specified keywords was invalid or mutually exclusive keywords were specified.</td>
</tr>
<tr>
<td>X'0C000008'</td>
<td>X'0000200C'</td>
<td>No resources were found.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00002014'</td>
<td>An invalid character was used in one of the specified NAME values.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003000'</td>
<td>The command failed for some of the specified resources. Check the completion codes for each resource in the output.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003004'</td>
<td>The command failed for all of the specified resources. Check the completion codes for each resource in the output.</td>
</tr>
<tr>
<td>X'0C000014'</td>
<td>X'00005004'</td>
<td>IMS Connect could not obtain storage for the command response data.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

Table 46. Completion codes for the QUERY IMSCON TYPE(CONVERTER) command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The QUERY IMSCON TYPE(CONVERTER) command completed successfully for the resources.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>The OM command processing client did not find resources that match the requested names. The resource name might be spelled incorrectly or the resource might be inactive.</td>
</tr>
</tbody>
</table>

Examples

Example 1 for QUERY IMSCON TYPE(CONVERTER) command

The following example shows the TSO SPOC output for an IMS Connect system with two active XML converters.
TSO SPOC input:

```
QUERY IMSCON TYPE(CONVERTER) SHOW(ALL)
```

Output:

<table>
<thead>
<tr>
<th>Converter</th>
<th>MbrName</th>
<th>CC</th>
<th>UseCount</th>
<th>TimeAccess</th>
<th>TimeCreate</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSCVRTD</td>
<td>HWS1</td>
<td>0</td>
<td>30</td>
<td>2012.250</td>
<td>13:15:55.88</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2012.250</td>
<td>13:10:22.01</td>
</tr>
<tr>
<td>IMSPHBKD</td>
<td>HWS1</td>
<td>0</td>
<td>5</td>
<td>2012.251</td>
<td>22:30:42.28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2012.251</td>
<td>22:18:47.33</td>
</tr>
</tbody>
</table>

XML output from the OM API interface:

```xml
<?xml version="1.0"?>
<!DOCTYPE imsout SYSTEM "imsout.dtd">
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.6.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2012.251 22:38:47.382725</statime>
<stotime>2012.251 22:38:47.383079</stotime>
<staseq>CA2348E2602C532A</staseq>
<stoseq>CA2348E260427D2A</stoseq>
<rqsttkn1>USER002 10153847</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>HWS1</master>
<userid>USER002</userid>
<verb>QRY</verb>
<kwd>IMSCON</kwd>
<input>QUERY IMSCON TYPE(CONVERTER) SHOW(ALL)</input>
</cmd>
<cmdrsphdr>
<hdr slbl="CVRTR" llbl="Converter" scope="LCL" sort="a" key="1" scroll="no" len="8" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" key="2" scroll="no" len="8" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0" scroll="yes" len="4" dtype="INT" align="right" skipb="no" />
<hdr slbl="CCTXT" llbl="CCText" scope="LCL" sort="n" key="0" scroll="yes" len="32" dtype="CHAR" align="left" skipb="yes" />
<hdr slbl="UCNT" llbl="UseCount" scope="LCL" sort="n" key="0" scroll="yes" len="5" dtype="INT" align="right" skipb="yes" />
<hdr slbl="TMAC" llbl="TimeAccess" scope="LCL" sort="n" key="0" scroll="yes" len="20" dtype="CHAR" align="left" skipb="yes" />
<hdr slbl="TMCR" llbl="TimeCreate" scope="LCL" sort="n" key="0" scroll="yes" len="20" dtype="CHAR" align="left" skipb="yes" />
</cmdrsphdr>
<cmdrspdata>
<rsp>CVRTR(IMSCVRTD) MBR(HWS1) CC(0) UCNT(30)
<rsp>CVRTR(IMSPHBKD) MBR(HWS1) CC(0) UCNT(5)
</cmdrspdata>
</imsout>
```

**QUERY IMSCON TYPE(DATASTORE) command**

Use the QUERY IMSCON TYPE(DATASTORE) command to display the status and activity of one or more data stores defined to IMS Connect.

Subsections:
- "Environment" on page 152
- "Syntax" on page 152
Environment

The QUERY IMSCON command is applicable only to IMS Connect. To issue this command, the following conditions must be satisfied:

- IMS Connect must be active and configured to communicate with the Common Service Layer (CSL) Structured Call Interface (SCI).
- A type-2 command environment with Structured Call Interface (SCI) and Operations Manager (OM) must be active.

Syntax

```
QUERY QRY IMSCON TYPE(DATASTORE) NAME(*)
 NAME(datastore_name*)
 SHOW(ALL)
 ACKTO
 APPL
 CMQATOQ
 DRL
 GROUP
 MAXI
 MEMBER
 OAAV
 RRNAME
 SMEM
 STATE
 STATUS
 TMEM
```

Keywords

The following keywords are valid for the QUERY IMSCON TYPE(DATASTORE) command.
NAME
Specifies one or more data store names to be displayed. You can specify a single data store name or a list of data store names separated by commas. Wildcards can be used in the names. You can specify NAME(*) to display all data stores. NAME(*) is the default.

SHOW
Specifies the optional output fields to be displayed. Output fields that are always displayed, regardless of whether SHOW is specified, include the data store name, the name of the IMS Connect that processes the command, and the completion code.

The filters that are supported with the SHOW keyword, which can be specified in any order, are:

ALL
Displays all output fields.

ACKTO
Displays the OTMA CM1 ACK timeout value, as specified by the ACKTO= keyword in the IMS Connect configuration file.

APPL
Displays the RACF APPL name for PassTicket and data store access control, as specified by the APPL= keyword in the IMS Connect configuration file.

CM0ATOQ
Displays the name of the OTMA CM0 ACK timeout queue, as specified by the CM0ATOQ= keyword in the IMS Connect configuration file.

DRU
Displays the name of the OTMA destination resolution user exit that is to be passed to OTMA, as specified by the DRU= keyword in the IMS Connect configuration file.

GROUP
Displays the name of the z/OS cross-system coupling facility (XCF) group, as specified by the GROUP= keyword in the IMS Connect configuration file. This is the XCF group to which IMS Connect and IMS OTMA belong.

MAXI
Displays the OTMA input message flood control value, as specified by the MAXI= keyword in the IMS Connect configuration file.

MEMBER
Displays the name of the IMS Connect member in the XCF group, as specified by the MEMBER= keyword in the IMS Connect configuration file.

OAAV
Displays the current OTMA accessor environment element (ACEE) aging value, as specified by the OAAV= keyword in the IMS Connect configuration file. This value determines how frequently OTMA refreshes the security definitions that are cached in an ACEE for IMS Connect.

RRNAME
Displays the name of an alternate destination specified in a client reroute request, as specified by the RRNAME= keyword in the IMS Connect configuration file.
SMEM
Displays the OTMA super member name, as specified by the SMEMBER= keyword in the IMS Connect configuration file.

STATE
Displays the state of the OTMA server. For a description of the possible state returned, see the STATE keyword in Table 48 on page 155.

STATUS
Displays the status of the data store. For a description of the possible state returned, see the STATUS keyword in Table 48 on page 155.

TMEM
Displays the name of the IMS OTMA member in the XCF group, as specified by the TMEMBER= keyword in the IMS Connect configuration file.

SMEM
Selects data stores for display that have one of the specified super member names specified. You can specify a single super member name or a list of super member names separated by commas. Wildcards can be used in the names.

STATE
Selects data stores for display that are in at least one of the specified states. The filters supported with the STATE keyword, which can be specified in any order, are:

AVAIL
Selects data stores that have a state of AVAIL, which means that the OTMA server is available.

WARN
Selects data stores that have a state of WARN, which means that the OTMA server has one or more resources in warning state.

SEVERE
Selects data stores that have a state of SEVERE, which means that the OTMA server is experiencing some severe resource issues.

STATUS
Selects data stores for display that possess at least one of the specified statuses. The filters supported with the STATUS keyword, which can be specified in any order, are:

ACTIVE
Selects data stores that have a status of ACTIVE, which means that the data store is connected and active.

DISCONNECT
Selects data stores that have a status of DISCONNECT, which means that the data store resource in IMS Connect is properly started, but actual communications with IMS are not currently available.

NOTACTIVE
Selects data stores that have a status of NOTACTIVE, which means that the data store resource has been stopped in IMS Connect.

Usage notes
You can issue the QUERY IMSCON TYPE(DATASTORE) command only through the Operations Manager (OM) API.
IMS Connect can process IMS Connect type-2 commands only if the IMSplex from which the commands were issued has a status of ACTIVE.

**Equivalent WTOR and z/OS commands**

The following table lists WTOR (Write to Operator with Reply) and IMS Connect z/OS commands that perform similar functions as the QUERY IMSCON TYPE(DATASTORE) command.

**Notes:**
- IMS Connect WTOR commands are replies to the outstanding IMS Connect reply message.
- IMS Connect z/OS commands are issued through the z/OS (MVS) interface by using the IMS Connect jobname.

<table>
<thead>
<tr>
<th>QUERY IMSCON TYPE(DATASTORE) command</th>
<th>Equivalent IMS Connect WTOR command</th>
<th>Equivalent IMS Connect z/OS command</th>
</tr>
</thead>
</table>
| QUERY IMSCON TYPE(DATASTORE) NAME(*) SHOW(ALL | VIEWDS ALL | QUERY DATASTORE NAME(*) SHOW(ALL)
| QUERY IMSCON TYPE(DATASTORE) NAME(datastore_name) SHOW(ALL | VIEWDS datastore_name | QUERY DATASTORE NAME(datastore_name)

**Output fields**

**Short label**
Contains the short label that is generated in the XML output.

**Long label**
Contains the column heading displayed on the TSO SPOC screen.

**Keyword**
Identifies the keyword on the command that caused the field to be generated. N/A (not applicable) appears for output fields that are always returned. error appears for output fields that are returned only in the case of an error.

**Meaning**
Provides a brief description of the output field.

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKTO</td>
<td>AckTO</td>
<td>ACKTO</td>
<td>OTMA CM1 ACK timeout value, as specified by the ACKTO= keyword in the IMS Connect configuration file.</td>
</tr>
<tr>
<td>APPL</td>
<td>Appl</td>
<td>APPL</td>
<td>RACF APPL name for PassTicket and data store access control, as specified by the APPL= keyword in the IMS Connect configuration file.</td>
</tr>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code that indicates whether IMS Connect was able to process the command for the specified resource. The completion code is always returned. See Table 50 on page 158</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the nonzero completion code. This field is returned only for an error completion code.</td>
</tr>
</tbody>
</table>
Table 48. Output fields for the QUER IMSCON TYPE(DATASTORE) command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM0ATOQ</td>
<td>Cm0Atoc</td>
<td>CM0ATOQ</td>
<td>Name of the OTMA CM0 ACK timeout queue, as specified by the CM0ATOQ= keyword in the IMS Connect configuration file.</td>
</tr>
<tr>
<td>DRU</td>
<td>DRU</td>
<td>DRU</td>
<td>Name of the OTMA destination resolution user exit that is to be passed to OTMA, as specified by the DRU= keyword in the IMS Connect configuration file.</td>
</tr>
<tr>
<td>DS</td>
<td>DataStore</td>
<td>N/A</td>
<td>The data store name. The data store name is always returned.</td>
</tr>
<tr>
<td>MAXI</td>
<td>Maxi</td>
<td>MAXI</td>
<td>OTMA input message flood control value, as specified by the MAXI= keyword in the IMS Connect configuration file.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>Identifier of the IMS Connect that built the output line. The identifier is always returned.</td>
</tr>
<tr>
<td>MEMBER</td>
<td>Member</td>
<td>MEMBER</td>
<td>Name of the IMS Connect member in the XCF group, as specified by the MEMBER= keyword in the IMS Connect configuration file.</td>
</tr>
<tr>
<td>OAAV</td>
<td>OAAV</td>
<td>OAAV</td>
<td>The current OTMA ACEE aging value, as specified by the OAAV= keyword in the IMS Connect configuration file. This value determines how frequently OTMA refreshes the security definitions that are cached in an ACEE for IMS Connect.</td>
</tr>
<tr>
<td>RRNAME</td>
<td>RRName</td>
<td>RRNAME</td>
<td>Name of an alternate destination specified in a client reroute request, as specified by the RRNAME= keyword in the IMS Connect configuration file.</td>
</tr>
<tr>
<td>SMEM</td>
<td>SMem</td>
<td>SMEM</td>
<td>OTMA super member name, as specified by the SMEMBER= keyword in the IMS Connect configuration file.</td>
</tr>
<tr>
<td>STATE</td>
<td>State</td>
<td>STATE</td>
<td>State of the OTMA server. The state can be one of the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>AVAIL</strong> Indicates that the OTMA server is available.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>WARN</strong> Indicates that the OTMA server has one or more resources in warning state.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>SEVERE</strong> Indicates that the OTMA server is experiencing some severe resource problems.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>N/A</strong> Indicates that OTMA has not reported status for this data store.</td>
</tr>
</tbody>
</table>
Table 48. Output fields for the QUERY IMSCON TYPE(DATASTORE) command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>STT</td>
<td>Status</td>
<td>STATUS</td>
<td>Status of the data store. The status can be one of the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ACTIVE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The data store is connected and active.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NOTACTIVE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The data store resource has been stopped in IMS Connect with a command: STOPDS or UPDATE IMCON TYPE (DATASTORE) STOP (COMM). To start communications, the data store resource in IMS Connect must be started with a command: STARTDS or UPDATE IMCON TYPE (DATASTORE) START (COMM).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DISCONNECT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The data store resource in IMS Connect is properly started, but actual communications with IMS are not currently available, either because IMS is down, or OTMA is not started (/STOP OTMA), or the XCF group is down. Communications cannot be restored from IMS Connect commands. Instead, IMS, OTMA, or XCF must be started.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If the data store goes down, IMS Connect is notified (by IMS OTMA through XCF) of the status of the data store. When the data store is brought back up and restarted, IMS Connect is notified and automatically reconnects to the data store.</td>
</tr>
<tr>
<td>TMEM</td>
<td>TMember</td>
<td>TMEM</td>
<td>Name of the IMS OTMA member in the XCF group, as specified by the TMEMBER= keyword in the IMS Connect configuration file.</td>
</tr>
<tr>
<td>XCFG</td>
<td>XCFGroup</td>
<td>GROUP</td>
<td>Name of the XCF group, as specified by the GROUP= keyword in the IMS Connect configuration file. This is the XCF group to which IMS Connect and IMS OTMA belong.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The return and reason codes that can be returned as a result of the QUERY IMSCON TYPE (DATASTORE) command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 49. Return and reason codes for the QUERY IMSCON TYPE (DATASTORE) command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The QUERY IMSCON TYPE (DATASTORE) command completed successfully. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003000'</td>
<td>The command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
</tbody>
</table>
Table 49. Return and reason codes for the QUERY IMSCON TYPE(DATASTORE) command (continued)

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0C00000C'</td>
<td>X'00003004'</td>
<td>The command was not successful for any resource. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

Table 50. Completion codes for the QUERY IMSCON TYPE(DATASTORE) command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The QUERY IMSCON TYPE(DATASTORE) command completed successfully for the resources.</td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>The resource name is unknown to the client that is processing the request. The resource name might have been typed in error or the resource might not be active at this time. If a wildcard was specified in the command, there were no matches for the name. Confirm that the correct spelling of the resource name is specified on the command.</td>
</tr>
</tbody>
</table>

Examples

Example 1: QUERY IMSCON TYPE(DATASTORE) SHOW(ALL)

In the following example, IMS1 and IMSA represent two data stores defined in the IMS Connect configuration file. NAME is omitted, so IMS Connect displays all data stores (the default is NAME(*)).

TSO SPOC input:
QUERY IMSCON TYPE(DATASTORE) SHOW(ALL)

TSO SPOC output:

(screen 1)

<table>
<thead>
<tr>
<th>Datastore</th>
<th>MbrName</th>
<th>CC</th>
<th>XCFGroup</th>
<th>Member</th>
<th>TMember</th>
<th>State</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMS1</td>
<td>HWS1</td>
<td>0</td>
<td>XCFGRP1</td>
<td>HWS1</td>
<td>IMS1</td>
<td>N/A</td>
<td>DISCONNECT</td>
</tr>
<tr>
<td>IMSA</td>
<td>HWS1</td>
<td>0</td>
<td>XCFGRP1</td>
<td>HWSA</td>
<td>IMSA</td>
<td>N/A</td>
<td>DISCONNECT</td>
</tr>
</tbody>
</table>

(screen 2)

<table>
<thead>
<tr>
<th>Datastore</th>
<th>MbrName</th>
<th>RRName</th>
<th>Appl</th>
<th>OAAV</th>
<th>AckTO</th>
<th>MaxI</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMS1</td>
<td>HWS1</td>
<td>HWS$DEF</td>
<td>APPLID1</td>
<td>2147483647</td>
<td>120</td>
<td>5000</td>
</tr>
<tr>
<td>IMSA</td>
<td>HWS1</td>
<td>HWS$DEF</td>
<td>APPLID2</td>
<td>2147483647</td>
<td>120</td>
<td>5000</td>
</tr>
</tbody>
</table>

(screen 3)

<table>
<thead>
<tr>
<th>Datastore</th>
<th>MbrName</th>
<th>SMem</th>
<th>CmOAtq</th>
<th>DRU</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMS1</td>
<td>HWS1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMSA</td>
<td>HWS1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OM API input:
CMD ( QUERY IMSCON TYPE(DATASTORE) SHOW(ALL) )

OM API output:
```
<cmd>
<master>HWS1</master>
<userid>USRT001</userid>
<verb>QRY</verb>
<kwd>IMSCON</kwd>
<input>QUERY IMSCON TYPE(DATASTORE) SHOW(ALL) </input>
</cmd>
<cmdrsphdr>
<hdr slbl="DS" llbl="DataStore" scope="LCL" sort="a" key="1" scroll="no" len="8" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" key="2" scroll="no" len="8" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0" scroll="yes" len="4" dtype="INT" align="right" skipb="no" />
<hdr slbl="CCTXT" llbl="CCText" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="right" skipb="no" />
<hdr slbl="XCFG" llbl="XCFGroup" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="MEMBER" llbl="Member" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="TMEM" llbl="TMember" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="STATE" llbl="State" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="STT" llbl="Status" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="RRNAME" llbl="RRName" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="APPL" llbl="Appl" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="OAAV" llbl="OAAV" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="INT" align="right" skipb="no" />
<hdr slbl="ACKTO" llbl="AckTO" scope="LCL" sort="n" key="0" scroll="yes" len="4" dtype="INT" align="right" skipb="no" />
<hdr slbl="MAXI" llbl="MaxI" scope="LCL" sort="n" key="0" scroll="yes" len="6" dtype="INT" align="right" skipb="no" />
<hdr slbl="SMEM" llbl="SMem" scope="LCL" sort="n" key="0" scroll="yes" len="4" dtype="CHAR" align="right" skipb="no" />
<hdr slbl="CM0ATOQ" llbl="CM0Atoq" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="DRU" llbl="DRU" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left" skipb="no" />
</cmdrsphdr>
<cmdrspdata>
<rsp>DS(IMS1) MBR(HWS1) CC(0) XCFG(XCFGRP1) MEMBER(HWS1) TMEM(IMS1) STATE(N/A) STT(DISCONNECT) RRNAME(HWS$DEF) APPL(APPLID1) OAAV(2147483647) ACKTO(120) MAXI(5000) SMEM() CM0ATOQ() DRU(HWSYDRU0)</rsp>
<rsp>DS(IMS2) MBR(HWS1) CC(0) XCFG(XCFGRP1) MEMBER(HWS1) TMEM(IMS2) STATE(N/A) STT(DISCONNECT) RRNAME(HWS$DEF) APPL(APPLID2) OAAV(2147483647) ACKTO(120) MAXI(5000) SMEM() CM0ATOQ() DRU(HWSYDRU0)</rsp>
</cmdrspdata>
</imsout>
```
Related concepts:

- How to interpret CSL request return and reason codes (System Programming APIs)

Related reference:

- VIEWDS command (Commands)
- IMS Connect QUERY DATASTORE command (Commands)

**QUERY IMSCON TYPE(IMSPLEX) command**

Use the QUERY IMSCON TYPE(IMSPLEX) command to display the status and activity of the IMSplex.

An IMSplex is primarily defined with the IMSPLEX configuration statement in the IMS Connect configuration file. An IMSplex can also be defined using the IMSPLEX keyword in either the ODACCESS or MSC configuration statement in the IMS Connect configuration file.

Subsections:
- “Environment”
- “Syntax”
- “Keywords” on page 161
- “Usage notes” on page 162
- “Equivalent WTOR and z/OS commands” on page 162
- “Output fields” on page 162
- “Return, reason, and completion codes” on page 163
- “Examples” on page 164

**Environment**

The QUERY IMSCON command is applicable only to IMS Connect. To issue this command, the following conditions must be satisfied:

- IMS Connect must be active and configured to communicate with the Common Service Layer (CSL) Structured Call Interface (SCI).
- A type-2 command environment with Structured Call Interface (SCI) and Operations Manager (OM) must be active.

**Syntax**

```
QUERY IMSCON TYPE(IMSPLEX)
```

- `NAME(*)`
- `NAME(imsplex_name)`
- `imsplex_name*`
Keywords

The following keywords are valid for the QUERY IMS CON TYPE(IMS PLEX) command.

NAME
Specifies one or more IMSplex names to be displayed. The IMSplex name is defined in the TMEMBER parameter of the IMSplex configuration statement in the IMS Connect configuration file.

You can specify a single IMSplex name or a list of IMSplex names separated by commas. Wildcards can be used in the names. You can specify NAME(*) to display all IMSplex resources. NAME(*) is the default.

SHOW
Specifies the optional output fields to be displayed. Output fields that are always displayed, regardless of whether SHOW is specified, include the IMSplex name, the name of the IMS Connect that processes the command, and the completion code.

The filters that are supported with the SHOW keyword, which can be specified in any order, are:

   ALL
   Displays all output fields.

   MEMBER
   Displays the name of the IMS Connect member in the IMSplex, as specified by the MEMBER= keyword in the IMSPLEX statement in the IMS Connect configuration file.

   STATUS
   Displays the status of the IMSplex. For a description of the possible state returned, see the STATUS keyword in Table 52 on page 163.

   If the IMSplex goes down, IMS Connect is notified (through SCI) of the status of the IMSplex. When the IMSplex is brought back up and restarted, IMS Connect is notified and automatically reconnects to the IMSplex.

   ACTIVE
   Selects IMSplex resources that have a status of ACTIVE, which means that the IMSplex is connected and active.

   DISCONNECT
   Selects IMSplex resources that have a status of DISCONNECT, which means that SCI is not active so that communication between IMS Connect and the IMSplex is currently not available.
NOTACTIVE
Selects IMSplex resources that have a status of NOTACTIVE, which means that communication between IMS Connect and the IMSplex is stopped.

Usage notes
You can issue the QUERY IMSCON TYPE(IMSPLEX) command only through the Operations Manager (OM) API.

IMS Connect can process IMS Connect type-2 commands only if the IMSplex from which the commands were issued has a status of ACTIVE.

Equivalent WTOR and z/OS commands
The following table lists WTOR (Write to Operator with Reply) and IMS Connect z/OS commands that perform similar functions as the QUERY IMSCON TYPE(IMSPLEX) command.

Notes:
- IMS Connect WTOR commands are replies to the outstanding IMS Connect reply message.
- IMS Connect z/OS commands are issued through the z/OS (MVS) interface by using the IMS Connect jobname.

Table 51. WTOR and IMS Connect z/OS equivalents for the QUERY IMSCON TYPE(IMSPLEX) command

<table>
<thead>
<tr>
<th>QUERY IMSCON TYPE(IMSPLEX) command</th>
<th>Equivalent IMS Connect WTOR command</th>
<th>Equivalent IMS Connect z/OS command</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY IMSCON TYPE(IMSPLEX) NAME(*) SHOW(ALL</td>
<td>VIEWIP ALL</td>
<td>QUERY IMSPLEX NAME(*) SHOW(ALL)</td>
</tr>
<tr>
<td>NAME(IMSplex_name) SHOW(ALL</td>
<td>VIEWIP IMSplex_name</td>
<td>QUERY IMSPLEX NAME(IMSplex_name) SHOW(ALL)</td>
</tr>
</tbody>
</table>

Output fields

Short label
Contains the short label that is generated in the XML output.

Long label
Contains the column heading displayed on the TSO SPOC screen.

Keyword
Identifies the keyword on the command that caused the field to be generated. N/A (not applicable) appears for output fields that are always returned. error appears for output fields that are returned only in the case of an error.

Meaning
Provides a brief description of the output field.
Table 52. Output fields for the QUERY IMSCON TYPE(IMSPLEX) command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code that indicates whether IMS Connect was able to process the command for the specified resource. The completion code is always returned. See Table 54 on page 164.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CText</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the nonzero completion code. This field is returned only for an error completion code.</td>
</tr>
<tr>
<td>IMSPLX</td>
<td>IMSplex</td>
<td>N/A</td>
<td>The IMSplex name. The IMSplex name is always returned.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>Identifier of the IMS Connect that built the output line. The identifier is always returned.</td>
</tr>
<tr>
<td>MEMBER</td>
<td>Member</td>
<td>MEMBER</td>
<td>Name of the IMS Connect member in the IMSplex, as specified by the MEMBER= keyword in the IMSPLEX statement in the IMS Connect configuration file.</td>
</tr>
<tr>
<td>STT</td>
<td>Status</td>
<td>STATUS</td>
<td>Status of the IMSplex. The status can be one of the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ACTIVE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The IMSplex is connected and active.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DISCONNECT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SCI is not active, so communication between IMS Connect and the IMSplex is currently not available.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NOTACTIVE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Communication between IMS Connect and the IMSplex is stopped.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If SCI goes down, IMS Connect is notified (through SCI) of the status of the IMSplex. When SCI is brought back up and restarted, IMS Connect is notified and automatically reconnects to the IMSplex.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The return and reason codes that can be returned as a result of the QUERY IMSCON TYPE(IMSPLEX) command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 53. Return and reason codes for the QUERY IMSCON TYPE(IMSPLEX) command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The QUERY IMSCON TYPE(IMSPLEX) command completed successfully. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
</tbody>
</table>
Table 53. Return and reason codes for the QUERY IMSCON TYPE(IMSPLEX) command (continued)

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0C00000C'</td>
<td>X'00003000'</td>
<td>The command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003004'</td>
<td>The command was not successful for any resource. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

Table 54. Completion codes for the QUERY IMSCON TYPE(IMSPLEX) command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The QUERY IMSCON TYPE(IMSPLEX) command completed successfully for the resources.</td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>The resource name is unknown to the client that is processing the request. The resource name might have been typed in error or the resource might not be active at this time. If a wildcard was specified in the command, there were no matches for the name. Confirm that the correct spelling of the resource name is specified on the command.</td>
</tr>
</tbody>
</table>

Examples

Example 1 for QUERY IMSCON TYPE(IMSPLEX) command

TSO SPOC input:
QUERY IMSCON TYPE(IMSPLEX) SHOW(ALL)

TSO SPOC output:
IMSplex MbrName CC Member Status
PLEX1 HWS1 0 ICON1 ACTIVE
PLEX2 HWS1 0 ICON2 NOTACTIVE

OM API input:
CMD ( QUERY IMSCON TYPE(IMSPLEX) SHOW(ALL) )

OM API output:
<imsout>
<ctl>
<omname>OM1OM </omname>
<omvsn>1.5.0</omvsn>
Explanation: PLEX1 and PLEX2 represent two IMSplex resources defined in the IMS Connect configuration file. NAME is omitted, so IMS Connect displays all IMSplex resources (the default is NAME(*)).

Related concepts:
- How to interpret CSL request return and reason codes (System Programming APIs)

Related reference:
- VIEWIP command (Commands)

QUERY IMSCON TYPE(ISC) command

Use the QUERY IMSCON TYPE(ISC) command to display the status and attributes of one or more ISC links that are defined to IMS Connect.

An ISC link represents the connection between an ISC node in IMS and a remote CICS subsystem. An ISC link in IMS Connect and an ISC node in IMS have a one-to-one relationship.

An ISC link can support multiple ISC parallel sessions (ISCUSERS). ISCUSERs are displayed only when they are active.

Subsections:
- “Environment” on page 166
- “Syntax” on page 166
- “Keywords” on page 166
- “Usage notes” on page 170
- “Equivalent WTO and z/OS commands” on page 170
- “Output fields” on page 170
Environment

The QUERY IMSCON command is applicable only to IMS Connect. To issue this command, the following conditions must be satisfied:

- IMS Connect must be active and configured to communicate with the Common Service Layer (CSL) Structured Call Interface (SCI).
- A type-2 command environment with Structured Call Interface (SCI) and Operations Manager (OM) must be active.

Syntax

```
QUERY IMSCON TYPE(ISC) NAME(*)

ISTATUS(ACTIVE)

ISCUSER(iscuser_name*)

SHOW(ALL)

STATUS(ACTIVE)

CICSPAPPL
CICSAPPL
CICSAPPL
CICSNETID
CICSNETID
CICSPORT
CICSPORT
HOSTNAME
HOSTNAME
IMSPLEX
IMSPLEX
IPADDR
IPADDR
IPMEMBER
IPMEMBER
ISCUSER
ISCUSER
LCLIMS
LCLIMS
NODE
NODE
PORT
PORT
RMTCICS
RMTCICS
STATUS
STATUS
SUMMARY
SUMMARY
```

Keywords

The following keywords are valid for the QUERY IMSCON TYPE(ISC) command.

**ISCUSER**

This filter selects ISC link resources for display that have one of the specified ISC parallel sessions (ISCUSERs) defined. You can specify a single ISCUSER name, a wildcard name, or a list of ISCUSER names separated by commas.
Only those ISC link resources that have a specified ISCUSER are displayed. ISC link resources that match the NAME() parameter, but that do not have the specified ISCUSER, are not displayed.

When the ISCUSER filter is specified, ISCUSER information is displayed even if SHOW(ISCUSER) is not specified.

Only those ISCUSERs that match the names specified by the ISCUSER filter are displayed. ISCUSERs that are associated with the ISC link that do not match the filter are not displayed.

**IUSTATUS**

This filter selects ISC link resources for display that have at least one ISC parallel session (ISCUSER) that is in the specified state.

The parameter supported with the IUSTATUS keyword is:

**ACTIVE**

This ISCUSER is active.

Only those ISC links that have an ISCUSER that is in the specified state are displayed. ISC links that match the NAME() parameter, but that do not have such an ISCUSER, are not displayed.

When the IUSTATUS filter is specified, ISCUSER information is displayed even if SHOW(ISCUSER) is not specified.

Only those ISCUSERs that are in the specified state are displayed. ISCUSERs that are not in the specified states are not displayed.

**NAME**

Specifies one or more ISC links to be displayed. You can specify a single ISC link name or a list of ISC link names separated by commas. Wildcards can be used in the name.

You can specify NAME(*) to display all ISC link definitions. NAME(*) is the default.

If the NAME keyword is omitted, then all ISC link resources are displayed.

**SHOW**

Specifies the optional output fields to be displayed.

Certain output fields that are always displayed, even when they are not specified in the SHOW keyword. Output fields that are always displayed include the ISC link name, the name of the IMS Connect that processes the command, and the completion code.

The filters that are supported with the SHOW keyword, which can be specified in any order, are:

**ALL**

Displays all output fields.

**CICSAPPL**

Displays the APPLID of the remote CICS subsystem, as defined to IMS Connect on the CICSAPPL parameter of the ISC configuration statement. This value matches the APPLID value defined to CICS on the APPLID parameter of the DFHSITxx member.

**CICSNETID**

Displays the network ID of the remote CICS subsystem.

**CICSPORT**

Displays the port on which an ISC link receives transactions and data.
replies from CICS. This receive port is defined in IMS Connect on the CICSPORT keyword in both the TCPIP and ISC configuration statements. This port number must be specified to the CICS subsystem on the PORT keyword of the IPCONN resource definition.

**HOSTNAME**
Displays the host name of the remote CICS subsystem. The host name of a remote CICS is defined in the RMTCICS parameter of the ISC statement in the IMS Connect configuration member.

**IMSPLEX**
Displays the name of the IMSPlex, as defined in the TMEMBER subparameter of the IMSPLEX parameter of the ISC statement in the IMS Connect configuration member.

**IPADDR**
Displays the IP address of the remote CICS subsystem.

**IPMEMBER**
Displays the IMSPlex member name, as defined in the MEMBER subparameter of the IMSPLEX parameter of the ISC statement in the IMS Connect configuration member. This is the IMS Connect member name registered to the IMSPlex.

**ISCUSER**
Display information and status for the ISC parallel sessions (ISCUSERs) that are active on the specified ISC link. If the ISC link has one or more active ISCUSERs, the command output includes information about each ISCUSER. A separate output line is displayed for each ISCUSER. This is in addition to any output lines that display general ISC link information. If there are no active ISCUSERs, then no additional output line is displayed.

Information displayed for the ISCUSER includes:
- The name of the ISCUSER.
  For ISC terminals that are statically defined in IMS, the ISCUSER name is derived from the NAME keyword of the IMS SUBPOOL stage-1 system definition macro. For ISC terminals that are dynamically defined in IMS gen, the ISCUSER name is derived from the USER keyword on the /OPNDST NODE command.
- The receive client name, which is the client name that IMS Connect assigns to the receive socket for this ISCUSER.
- The send client name, which is the client name that IMS Connect assigns to the send socket for this ISCUSER.
- The status or state of the ISCUSER. The possible states of an ISCUSER can be:
  - **ACTIVE**
    The ISCUSER is active.

**LCLIMS**
Displays the name of the local IMS as defined in the LCLIMS parameter of the ISC statement in the IMS Connect configuration member.

**NODE**
Displays the ISC node names as they are defined to IMS Connect and the local IMS system. Node names are defined to IMS Connect on the NODE parameter of the ISC statements that define the ISC links.
PORT
Displays the port on which the remote CICS subsystem receives transactions and data replies from IMS Connect on this ISC link. This port is defined in CICS on the PORT keyword of the TCPIPSERVICE resource definition. This port is specified in IMS Connect on the PORT keyword of the RMTCICS statement that defines the connection to the remote CICS subsystem.

RMTCICS
Displays the name of the remote CICS connection as defined in the RMTCICS parameter of the ISC statement in the IMS Connect configuration member.

STATUS
Displays the status of the ISC link. The status can be one of the following:

ACTIVE
The link is active.

DISCONNECT
The link is active, but communication with IMS is not currently available because IMS or SCI has terminated, or the IMSplex datastore associated with the ISC link has been stopped.

NOTACTIVE
The link is not active.

For a description of the possible state returned, see the STATUS keyword in Table 55 on page 170.

SUMMARY
Displays summary information related to the ISC parallel sessions (ISCUSERs) that are active on the ISC link. To view specific ISCUSER information, specify the ISCUSER parameter in addition to the SUMMARY parameter.

Information displayed includes:
• Total number of ISCUSERs active on the ISC link.
• Total number of ISCUSERs in ACTIVE state.
• Total number of ISCUSERs not in any of these states.

STATUS
Selects ISC links for display that possess at least one of the specified statuses.

When the STATUS filter is specified, status information is displayed even if SHOWSTATUS is not specified.

The filters supported with the STATUS keyword, which can be specified in any order, are:

ACTIVE
Selects ISC links that have a status of ACTIVE.

DISCONNECT
Selects ISC links that have a status of DISCONNECT.

NOTACTIVE
Selects ISC links that have a status of NOTACTIVE.
Usage notes

You can issue the QUERY IMSCON TYPE(ISC) command only through the Operations Manager (OM) API.

IMS Connect can process IMS Connect type-2 commands only if the IMSplex from which the commands were issued has a status of ACTIVE.

Typically, this command results in one output display line for each ISC link definition being displayed. However, if SHOW(ISCUSER) or ISCUSER(iscuser_name) is specified, an additional line is displayed for each ISC parallel sessions (ISCUSERs) associated with the specified ISC link definition that matches the ISCUSER() filter.

Equivalent WTOR and z/OS commands

The QUERY IMSCON TYPE(ISC) command does not have any equivalent WTOR or z/OS MODIFY commands.

Output fields

Short label
Contains the short label that is generated in the XML output.

Long label
Contains the column heading displayed on the TSO SPOC screen.

Keyword
Identifies the keyword on the command that caused the field to be generated. N/A (not applicable) appears for output fields that are always returned. error appears for output fields that are returned only in the case of an error.

Meaning
Provides a brief description of the output field.

Table 55. Output fields for the QUERY IMSCON TYPE(ISC) command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code that indicates whether IMS Connect was able to process the command for the specified resource. The completion code is always returned. See Table 57 on page 173.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CText</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the non-zero completion code. This field is returned only for an error completion code.</td>
</tr>
<tr>
<td>CIAPC</td>
<td>CICSApplid</td>
<td>CICSAPPL</td>
<td>The APPLID of the remote CICS.</td>
</tr>
<tr>
<td>CIAPNT</td>
<td>CICSNETID</td>
<td>CICSNETID</td>
<td>The network ID of the remote CICS.</td>
</tr>
<tr>
<td>CIAPPT</td>
<td>CICSPORT</td>
<td>CICSPORT</td>
<td>The CICSPORT port ID that is defined in the TCPIP statement in the IMS Connect configuration member.</td>
</tr>
<tr>
<td>HOST</td>
<td>HostName</td>
<td>HOSTNAME</td>
<td>The host name of the remote CICS subsystem. Remote CICS subsystems are defined in the RMTCICS parameter of the ISC statement in the IMS Connect configuration member.</td>
</tr>
</tbody>
</table>
Table 55. Output fields for the QUERY IMSCON TYPE(ISC) command  (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMEM</td>
<td>IpMember</td>
<td>IPMEMBER</td>
<td>The IMSplex member name, as defined in the MEMBER subparameter of the IMSPLEX parameter of the ISC statement in the IMS Connect configuration member. This name is the IMS Connect member name registered to the IMSplex.</td>
</tr>
<tr>
<td>IMSPLX</td>
<td>IMSplex</td>
<td>IMSPLEX</td>
<td>The name of the IMSplex, as defined in the TMEMBER subparameter of the IMSPLEX parameter of the ISC statement in the IMS Connect configuration member.</td>
</tr>
<tr>
<td>IP</td>
<td>IpAddress</td>
<td>IAPADDR</td>
<td>The IP address of the remote CICS. The remote CICS is defined in the RMTCICS of the ISC statement in the IMS Connect configuration member.</td>
</tr>
<tr>
<td>ISC</td>
<td>ISCName</td>
<td>N/A</td>
<td>The name of the ISC link, as it is defined on the ID keyword of the ISC statement in the IMS Connect configuration member. The ISC name is always returned.</td>
</tr>
<tr>
<td>IUSER</td>
<td>ISCUser</td>
<td>ISCUSER</td>
<td>The name of an ISC parallel session (ISCUSER) that is active on the ISC link. For ISC terminals that are statically defined in IMS, the ISCUSER name is derived from the NAME keyword of the IMS SUBPOOL stage-1 system definition macro. For ISC terminals that are dynamically defined in IMS gen, the ISCUSER name is derived from the USER keyword on the /OPNDST NODE command.</td>
</tr>
</tbody>
</table>
| IUSTT       | IUStatus   | ISCUSER | For an ISC parallel session (ISCUSER) on an ISC link, this is the status or state of the ISCUSER. An ISCUSER can be in the following states:  
* ACTIVE. The ISCUSER is active. |
| LIMS        | LclIMS     | LCLIMS  | The name of the local IMS as defined in the LCLIMS parameter of the ISC statement in the IMS Connect configuration member. |
| MBR         | MbrName    | N/A     | Identifier of the IMS Connect that built the output line. The identifier is always returned. |
| NODE        | Node       | NODE    | The local ISC terminal name that is using this connection, as specified on the NODE parameter of the ISC statement in the IMS Connect configuration member. |
| PORT        | Port       | PORT    | The port of the associated remote CICS subsystem. The remote CICS is defined on the RMTCICS parameter of the ISC statement. |
| RCICS       | RmtCICS    | RMTCICS | The name of the remote CICS connection as defined in the RMTCICS parameter of the ISC statement in the IMS Connect configuration member. |
Table 55. Output fields for the QUER YMScOn TYPE(ISC) command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCL</td>
<td>RecvClnt</td>
<td>ISCUSER</td>
<td>The client name that IMS Connect assigns to the socket on the CICSPORT that is used to receive the transactions and data replies from a remote CICS subsystem (RMTCICS) for the ISC parallel session that is identified in the corresponding IUSER output field.</td>
</tr>
<tr>
<td>SCL</td>
<td>SendClnt</td>
<td>ISCUSER</td>
<td>The client name that IMS Connect assigns to the socket that is used to send the transactions and data replies to a remote CICS subsystem (RMTCICS) for the ISC parallel session that is identified in the corresponding IUSER output field.</td>
</tr>
<tr>
<td>STT</td>
<td>Status</td>
<td>STATUS</td>
<td>Status of the ISC link. The status can be one of the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ACTIVE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The ISC link is active.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DISCONNECT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The link is active, but communication with IMS is not currently available because IMS or SCI has terminated, or the IMSplex datastore associated with the ISC link has been stopped.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NOTACTIVE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The ISC link is not active.</td>
</tr>
<tr>
<td>TACT</td>
<td>TotActiv</td>
<td>SUMMARY</td>
<td>Total number of ISC parallel sessions (ISCUSERs) that have a status of ACTIVE on the ISC link.</td>
</tr>
<tr>
<td>TOTH</td>
<td>TotOther</td>
<td>SUMMARY</td>
<td>Total number of ISC parallel sessions (ISCUSERs) that have a status that is other than ACTIVE on the ISC link.</td>
</tr>
<tr>
<td>TUSR</td>
<td>TotUsers</td>
<td>SUMMARY</td>
<td>Total number of ISC parallel sessions (ISCUSERs) that are active on the ISC link.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The return and reason codes that can be returned as a result of the QUERY IMSCON TYPE(ISC) command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 56. Return and reason codes for the QUERY IMSCON TYPE(ISC) command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The QUERY IMSCON TYPE(ISC) command completed successfully. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C000008'</td>
<td>X'00002004'</td>
<td>An invalid keyword or keyword parameter was specified.</td>
</tr>
</tbody>
</table>
Table 56. Return and reason codes for the QUERY IMSCON TYPE(ISC) command (continued)

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0C000008'</td>
<td>X'00002014'</td>
<td>An invalid character was specified in the NAME() parameter.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003000'</td>
<td>The command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003004'</td>
<td>The command was not successful for any resource. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C000014'</td>
<td>X'00005008'</td>
<td>The command processor failed to obtain storage via BPEGETM.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

Table 57. Completion codes for the QUERY IMSCON TYPE(ISC) command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The QUERY IMSCON TYPE(ISC) command completed successfully for the resources.</td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>The resource name is unknown to the client that is processing the request. The resource name might have been typed in error or the resource might not be active at this time. If a wildcard was specified in the command, there were no matches for the name. Confirm that the correct spelling of the resource name is specified on the command.</td>
</tr>
</tbody>
</table>

Examples

In the following example, IMS1CIC4 is the ID of the ISC statement that defines the ISC link to IMS Connect. The link is between a local IMS system that is name IMS1 and a remote CICS system that is identified by its APPLID: CICS1.

The TCP/IP connection to the CICS subsystem is defined by a RMTCICS statement. The ID of the RMTCICS statement is CICS4.

In IMS, the connection is identified by its ISC node name, CIC4.

Two parallel sessions are active on the ISC link: CIC4U07 and CIC4U08.

TSO SPOC input:
QUERY IMSCON TYPE(ISC) NAME(IMS1CIC4) SHOW(ALL)

TSO SPOC output:
(screen 1)
<table>
<thead>
<tr>
<th>ISCNName</th>
<th>MbrName</th>
<th>CC Node</th>
<th>LCлIMS</th>
<th>IpMember</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMS1CIC4</td>
<td>HWS1</td>
<td>0</td>
<td>CIC4</td>
<td>IMS1</td>
</tr>
<tr>
<td>IMS1CIC4</td>
<td>HWS1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMS1CIC4</td>
<td>HWS1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(screen 2)
### ISCName MbrName IMSplex RmtCics IpAddress
- IMS1CIC4 HWS1 PLEX1 CICS4 127.0.0.1
- IMS1CIC4 HWS1
- IMS1CIC4 HWS1

(screen 3)

### ISCName MbrName HostName Port CICSApplid CICSPort
- IMS1CIC4 HWS1 WWW.EXAMPLE.COM 7777 CICS1 9876
- IMS1CIC4 HWS1
- IMS1CIC4 HWS1

(screen 4)

### ISCName MbrName CICSNetid Status TotUsers TotActiv TotOther
- IMS1CIC4 HWS1 IMSNET ACTIVE 2 2 0
- IMS1CIC4 HWS1
- IMS1CIC4 HWS1

(screen 5)

### ISCName MbrName ISCUser SendClnt RecvClnt IUStatus
- IMS1CIC4 HWS1 CIC4U07 ISCC2714 ISC41218 ACTIVE
- IMS1CIC4 HWS1 CIC4U08 ISCB5D1A ISCC279A ACTIVE

---

**OM API input:**

```plaintext
OM API input:

CMD (QUERY IMSCON TYPE(ISC) NAME(IMS1CIC4) SHOW(ALL))
```

**OM API output:**

```
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.6.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2012.221 18:20:04.944914</statime>
<stotime>2012.221 18:20:04.946923</stotime>
<staseq>C9FD571B32812594</staseq>
<stoseq>C9FD571B32FEB114</stoseq>
<rqsttkn1>USRT00110112004</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>HWS1</master>
<userid>USRT001</userid>
<verb>QRY</verb>
<kwd>IMSCON</kwd>
<input>QUERY IMSCON TYPE(ISC) NAME(IMS1CIC4) SHOW(ALL)</input>
</cmd>
<cmdrshdr>
<hdr slbl="ISC" llbl="ISCName" scope="LCL" sort="a" scroll="no" len="8" dtype="CHAR" align="left" skipb="no"/>
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" scroll="no" len="8" dtype="CHAR" align="left" skipb="no"/>
<hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0" scroll="yes" len="4" dtype="INT" align="right" skipb="no"/>
<hdr slbl="CCTXT" llbl="CCText" scope="LCL" sort="n" key="0" scroll="yes" len="32" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="NODE" llbl="Node" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="LIMS" llbl="LclIMS" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="IMEM" llbl="IpMember" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="IMSPLEX" llbl="IMSPlex" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="RIC" llbl="RmtImconc" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="RCICS" llbl="RmtCics" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="IP" llbl="IpAddress" scope="LCL" sort="n" key="0" scroll="yes" len="*" dtype="CHAR" align="left" skipb="yes"/>
```

---

**OM API output:**

```
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.6.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2012.221 18:20:04.944914</statime>
<stotime>2012.221 18:20:04.946923</stotime>
<staseq>C9FD571B32812594</staseq>
<stoseq>C9FD571B32FEB114</stoseq>
<rqsttkn1>USRT00110112004</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>

```

---

**OM API output:**

```
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.6.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2012.221 18:20:04.944914</statime>
<stotime>2012.221 18:20:04.946923</stotime>
<staseq>C9FD571B32812594</staseq>
<stoseq>C9FD571B32FEB114</stoseq>
<rqsttkn1>USRT00110112004</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>

```

---

**OM API output:**

```
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.6.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2012.221 18:20:04.944914</statime>
<stotime>2012.221 18:20:04.946923</stotime>
<staseq>C9FD571B32812594</staseq>
<stoseq>C9FD571B32FEB114</stoseq>
<rqsttkn1>USRT00110112004</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
```

---

**OM API output:**

```
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.6.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2012.221 18:20:04.944914</statime>
<stotime>2012.221 18:20:04.946923</stotime>
<staseq>C9FD571B32812594</staseq>
<stoseq>C9FD571B32FEB114</stoseq>
<rqsttkn1>USRT00110112004</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
```

---

**OM API output:**

```
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.6.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2012.221 18:20:04.944914</statime>
<stotime>2012.221 18:20:04.946923</stotime>
<staseq>C9FD571B32812594</staseq>
<stoseq>C9FD571B32FEB114</stoseq>
<rqsttkn1>USRT00110112004</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
```

---

**OM API output:**

```
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.6.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2012.221 18:20:04.944914</statime>
<stotime>2012.221 18:20:04.946923</stotime>
<staseq>C9FD571B32812594</staseq>
<stoseq>C9FD571B32FEB114</stoseq>
<rqsttkn1>USRT00110112004</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
```
<table>
<thead>
<tr>
<th>HOST</th>
<th>HostName</th>
<th>LCL</th>
<th>n</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PORT</td>
<td>Port</td>
<td>LCL</td>
<td>n</td>
<td>0</td>
</tr>
<tr>
<td>CICAP</td>
<td>CICSApplid</td>
<td>LCL</td>
<td>n</td>
<td>0</td>
</tr>
<tr>
<td>CICPT</td>
<td>CICSPort</td>
<td>LCL</td>
<td>n</td>
<td>0</td>
</tr>
<tr>
<td>CICNT</td>
<td>CICSNetid</td>
<td>LCL</td>
<td>n</td>
<td>0</td>
</tr>
<tr>
<td>STT</td>
<td>Status</td>
<td>LCL</td>
<td>n</td>
<td>0</td>
</tr>
<tr>
<td>TUSR</td>
<td>TotUsers</td>
<td>LCL</td>
<td>d</td>
<td>0</td>
</tr>
<tr>
<td>TACT</td>
<td>TotActiv</td>
<td>LCL</td>
<td>d</td>
<td>0</td>
</tr>
<tr>
<td>TOTH</td>
<td>TotOther</td>
<td>LCL</td>
<td>d</td>
<td>0</td>
</tr>
<tr>
<td>IUSER</td>
<td>ISCUser</td>
<td>LCL</td>
<td>a</td>
<td>0</td>
</tr>
<tr>
<td>SCL</td>
<td>SendClnt</td>
<td>LCL</td>
<td>n</td>
<td>0</td>
</tr>
<tr>
<td>RCL</td>
<td>RecvClnt</td>
<td>LCL</td>
<td>n</td>
<td>0</td>
</tr>
<tr>
<td>IUSTT</td>
<td>IUStatus</td>
<td>LCL</td>
<td>n</td>
<td>0</td>
</tr>
</tbody>
</table>

**Related reference:**

- ISC statement (System Definition)
- “UPDATE IMSCON TYPE(ISC) command” on page 1011
- “UPDATE IMSCON TYPE(RMTCICS) command” on page 1044

**QUERY IMSCON TYPE(ISCUSER) command**

Use the QUERY IMSCON TYPE(ISCUSER) command to display the current status of one or more ISC parallel sessions that are active in IMS Connect.

You specify the ISC parallel sessions that you need to display by the user name of the parallel session. The ISC parallel session is associated with an ISC link. ISC links are defined to IMS Connect by ISC statements in the IMS Connect configuration member.

Subsections:

- “Environment” on page 176
- “Syntax” on page 176
- “Keywords” on page 176
- “Usage notes” on page 179
- “Equivalent WTOR and z/OS commands” on page 179
Environment

The QUERY IMSCON command is applicable only to IMS Connect. To issue this command, the following conditions must be satisfied:

- IMS Connect must be active and configured to communicate with the Common Service Layer (CSL) Structured Call Interface (SCI).
- A type-2 command environment with Structured Call Interface (SCI) and Operations Manager (OM) must be active.

Syntax

```
QUERY IMSCON TYPE(ISCUSER) NAME(*)

NAME(iscuser_id)

SHOW(ALL)

STATUS(ACTIVE)

CICSAPPL
CICSNETID
CICSPORT
HOSTNAME
IMSPLEX
IPADDR
IMSPLEX
ISC
ISTATUS
LCLIMS
NODE
PORT
RECVCLNT
RMTCICS
SENDCLNT
STATUS
```

Keywords

The following keywords are valid for the QUERY IMSCON TYPE(ISCUSER) command.

NAME

Specify the ISC user names (ISCUSER) of the parallel sessions that you need to display. You can specify one or more ISC user names separated by commas. Wildcards can be used in the name.

The ISC user names that you specify must match the user names that were used when the parallel session was started.
If the ISC terminals were statically defined in IMS, the user names are defined on the NAME keyword of the SUBPOOL macro.

If the ISC terminals are dynamically defined and the parallel session was started from IMS, the user name is defined on the USER keyword of the /OPNDST NODE command that started the session. If the parallel session of a dynamically defined terminal is started from CICS, the user name is defined on the NAME and APPLID parameters of the IPCONN resource definition.

You can specify NAME(*) to display all ISCUSER resources. NAME(*) is the default.

If the NAME keyword is omitted, all ISCUSER resources are displayed.

SHOW
Specifies the optional output fields to be displayed.

Certain output fields that are always displayed, even when they are not specified in the SHOW keyword. Output fields that are always displayed include the ISCUSER name, the name of the IMS Connect that processes the command, and the completion code.

The SHOW keyword supports the following parameters, which can be specified in any order:

ALL
Displays all output fields.

CICSAPPL
Displays the APPLID of the remote CICS subsystem, as defined to IMS Connect on the CICSAPPL parameter of the ISC configuration statement. This value matches the APPLID value defined to CICS on the APPLID parameter of the DFHSITxx member.

CICSNETID
Displays the network ID of the remote CICS subsystem.

CICSPORT
Displays the port on which an ISC link receives transactions and data replies from CICS. This receive port is defined in IMS Connect on the CICSPORT keyword in both the TCPIP and ISC configuration statements. This port number must be specified to the CICS subsystem on the PORT keyword of the IPCONN resource definition.

HOSTNAME
Displays the host name of the remote CICS subsystem. The host name of a remote CICS is defined in the RMTCICS parameter of the ISC statement in the IMS Connect configuration member.

IMSPLEX
Displays the name of the IMSplex, as defined in the TMEMBER subparameter of the IMSPLEX parameter of the ISC statement in the IMS Connect configuration member.

IPADDR
Displays the IP address of the remote CICS subsystem.

IPMEmBER
Displays the IMSplex member name, as defined in the MEMBER subparameter of the IMSPLEX parameter of the ISC statement in the IMS Connect configuration member. This is the IMS Connect member name registered to the IMSplex.
Displays the name of the ISC link that is associated with the ISCUSER, as defined by the ID parameter of the ISC statement in the IMS Connect configuration member.

**ISTATUS**
Displays the status of the ISC terminal. The status can be one of the following:

**ACTIVE**
The terminal is active.

**NOTACTIVE**
The terminal is not active.

**LCLIMS**
Displays the name of the local IMS as defined in the LCLIMS parameter of the ISC statement in the IMS Connect configuration member.

**NODE**
Displays the ISC node names as they are defined to IMS Connect and the local IMS system. Node names are defined to IMS Connect on the NODE parameter of the ISC statements that define the ISC links.

**PORT**
Displays the port on which the remote CICS subsystem receives transactions and data replies from IMS Connect on this ISC link. This port is defined in CICS on the PORT keyword of the TCPIPSERVICE resource definition. This port is specified in IMS Connect on the PORT keyword of the RMTCICS statement that defines the connection to the remote CICS subsystem.

**RECVCLNT**
Displays the receive client name that identifies the socket on which IMS receives transactions and reply data from the remote CICS subsystem for this ISC parallel session (ISCUSER). The receive client name is randomly generated by IMS Connect and persists only while the ISC parallel session is active. Receive client names for ISC parallel sessions start with the characters “ISC”.

**RMTCICS**
Displays the name of the remote CICS connection as defined in the RMTCICS parameter of the ISC statement in the IMS Connect configuration member.

**SENDCLNT**
Displays the send client name that identifies the socket that IMS uses to send transactions and reply data to the remote CICS subsystem for this ISC parallel session (ISCUSER). The send client name is randomly generated by IMS Connect and persists only while the ISC parallel session is active. Send client names for ISC parallel sessions start with the characters “ISC”.

**STATUS**
Displays the status of the ISCUSER. The status can be one of the following:

**ACTIVE**
The ISCUSER is active.

For a description of the possible state returned, see the STATUS keyword in Table 58 on page 179.
STATUS

This filter selects ISCUSER resources for display that possess at least one of the specified statuses.

When the STATUS filter is specified, status information is displayed even if SHOW(STATUS) is not specified.

The filters supported with the STATUS keyword, which can be specified in any order, are:

ACTIVE

Selects ISC links that have a status of ACTIVE.

Usage notes

You can issue the QUERY IMSCON TYPE(ISCUSER) command only through the Operations Manager (OM) API.

IMS Connect can process IMS Connect type-2 commands only if the IMSplex from which the commands were issued has a status of ACTIVE.

This command results in one output display line for each ISCUSER that is displayed.

Equivalent WTOR and z/OS commands

The QUERY IMSCON TYPE(ISCUSER) command does not have any equivalent WTOR or z/OS MODIFY commands.

Output fields

Short label

Contains the short label that is generated in the XML output.

Long label

Contains the column heading displayed on the TSO SPOC screen.

Keyword

Identifies the keyword on the command that caused the field to be generated. N/A (not applicable) appears for output fields that are always returned. error appears for output fields that are returned only in the case of an error.

Meaning

Provides a brief description of the output field.

Table 58. Output fields for the QUERY IMSCON TYPE(ISCUSER) command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code that indicates whether IMS Connect was able to process the command for the specified resource. The completion code is always returned. See Table 60 on page 182.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the non-zero completion code. This field is returned only for an error completion code.</td>
</tr>
<tr>
<td>CICAP</td>
<td>CICSApplid</td>
<td>CICSAPPL</td>
<td>The APPLID of the remote CICS.</td>
</tr>
</tbody>
</table>
Table 58. Output fields for the QUERY IMSCON TYPE(ISCUSER) command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CICNT</td>
<td>CICSNetid</td>
<td>CICSNETID</td>
<td>The network ID of the remote CICS.</td>
</tr>
<tr>
<td>CICPT</td>
<td>CICSPort</td>
<td>CICSPORT</td>
<td>The CICSPORT port ID that is defined in the TCPIP statement in the IMS Connect configuration member.</td>
</tr>
<tr>
<td>HOST</td>
<td>HostName</td>
<td>HOSTNAME</td>
<td>The host name of the remote CICS subsystem. Remote CICS subsystems are defined in the RMTCICS parameter of the ISC statement in the IMS Connect configuration member.</td>
</tr>
<tr>
<td>IMEM</td>
<td>IpMember</td>
<td>IPMEMBER</td>
<td>The IMSplex member name, as defined in the MEMBER subparameter of the IMSPLEX parameter of the ISC statement in the IMS Connect configuration member. This name is the IMS Connect member name registered to the IMSPlx.</td>
</tr>
<tr>
<td>IMSPLX</td>
<td>IMSplex</td>
<td>IMSPLEX</td>
<td>The name of the IMSplex, as defined in the TMEMBER subparameter of the IMSPLEX parameter of the ISC statement in the IMS Connect configuration member.</td>
</tr>
<tr>
<td>IP</td>
<td>IpAddress</td>
<td>IPADDR</td>
<td>The IP address of the remote CICS. The remote CICS is defined in the RMTCICS of the ISC statement in the IMS Connect configuration member.</td>
</tr>
<tr>
<td>ISC</td>
<td>ISCName</td>
<td>ISC</td>
<td>The name of the ISC link that is associated with the ISCUSER, as defined by the ISC configuration statement in the IMS Connect configuration member.</td>
</tr>
</tbody>
</table>
| ISTT        | ISCStatus  | ISTATUS  | The status of the ISC link that associated with the parallel session (ISCUSER) output field. The status can be one of the following:

ACTIVE
   The link is active.

NOTACTIVE
   The link is not active.

IUSER       | ISCUser    | N/A      | Name of the ISCUSER that represents an ISC parallel session. The name of the ISCUSER is always returned. |
LIMS	LclIMS	LCLIMS	The name of the local IMS as defined in the LCLIMS parameter of the ISC statement in the IMS Connect configuration member.
MBR	MbrName	N/A	Identifier of the IMS Connect that built the output line. The identifier is always returned.
NODE	Node	NODE	The local ISC terminal name that is using this connection, as specified on the NODE parameter of the ISC statement in the IMS Connect configuration member.
PORT	Port	PORT	The port of the associated remote CICS subsystem. The remote CICS is defined on the RMTCICS parameter of the ISC statement.
Table 58. Output fields for the QUERY IMSCON TYPE(ISCUSER) command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCICS</td>
<td>RmtCICS</td>
<td>RMTCICS</td>
<td>The name of the remote CICS connection as defined in the RMTCICS parameter of the ISC statement in the IMS Connect configuration member.</td>
</tr>
<tr>
<td>RCL</td>
<td>RecvClnt</td>
<td>RECVCLNT</td>
<td>The client name that IMS Connect assigns to the socket on the CICSPORT that is used to receive the transactions and data replies from a remote CICS subsystem (RMTCICS) for the ISC parallel session that is identified in the corresponding IUSER output field.</td>
</tr>
<tr>
<td>SCL</td>
<td>SendClnt</td>
<td>SENDCLNT</td>
<td>The client name that IMS Connect assigns to the socket that is used to send the transactions and data replies to a remote CICS subsystem (RMTCICS) for the ISC parallel session that is identified in the corresponding IUSER output field.</td>
</tr>
</tbody>
</table>

| STT | Status | STATUS | Status of the ISCUSER. The status can be one of the following: ACTIVE | The ISCUSER is active. |

Return, reason, and completion codes

The return and reason codes that can be returned as a result of the QUERY IMSCON TYPE(ISCUSER) command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 59. Return and reason codes for the QUERY IMSCON TYPE(ISCUSER) command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The QUERY IMSCON TYPE(ISCUSER) command completed successfully. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C000008'</td>
<td>X'00002004'</td>
<td>An invalid keyword or keyword parameter was specified.</td>
</tr>
<tr>
<td>X'0C000008'</td>
<td>X'00002014'</td>
<td>An invalid character was specified in the NAME() parameter.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003000'</td>
<td>The command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003004'</td>
<td>The command was not successful for any resource. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C000014'</td>
<td>X'00005008'</td>
<td>The command processor failed to obtain storage via BPEGETM.</td>
</tr>
</tbody>
</table>
Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

Table 60. Completion codes for the QUERY IMSCON TYPE(ISCUSER) command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The QUERY IMSCON TYPE(ISCUSER) command completed successfully for the resources.</td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>The resource name is unknown to the client that is processing the request. The resource name might have been typed in error or the resource might not be active at this time. If a wildcard was specified in the command, there were no matches for the name. Confirm that the correct spelling of the resource name is specified on the command.</td>
</tr>
</tbody>
</table>

Examples

Example 1 for QUERY IMSCON TYPE(ISCUSER) command

In the following example, there are two parallel sessions active on the ISC link CICS that have active communications between CICS system CICSA1 and IMS system IMS1. The CICS link is defined to IMS as terminal node name CICSTRM1.

TSO SPOC input:

QUERY IMSCON TYPE(ISCUSER) NAME(IMSUS*) SHOW(ALL)

TSO SPOC output:

(Screen 1)

<table>
<thead>
<tr>
<th>ISCUser</th>
<th>MbrName</th>
<th>CC</th>
<th>SendClnt</th>
<th>RecvClnt</th>
<th>Status</th>
<th>ISCName</th>
<th>ISCStatus</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSUS01</td>
<td>HWS1</td>
<td>0</td>
<td>ISC11111</td>
<td>ISC3333</td>
<td>ACTIVE</td>
<td>CICS</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>IMSUS02</td>
<td>HWS1</td>
<td>0</td>
<td>ISC22222</td>
<td>ISC4444</td>
<td>ACTIVE</td>
<td>CICS</td>
<td>ACTIVE</td>
</tr>
</tbody>
</table>

(Screen 2)

<table>
<thead>
<tr>
<th>ISCUser</th>
<th>MbrName</th>
<th>Node</th>
<th>LclIMS</th>
<th>IpMember</th>
<th>IMSplex</th>
<th>RmtCICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSUS01</td>
<td>HWS1</td>
<td>CICSTRM1</td>
<td>IMS1</td>
<td>ICON1</td>
<td>PLEX1</td>
<td>ICONNT1</td>
</tr>
<tr>
<td>IMSUS02</td>
<td>HWS1</td>
<td>CICSTRM1</td>
<td>IMS1</td>
<td>ICON1</td>
<td>PLEX1</td>
<td>ICONNT1</td>
</tr>
</tbody>
</table>

(Screen 3)

<table>
<thead>
<tr>
<th>ISCUser</th>
<th>MbrName</th>
<th>IpAddress</th>
<th>HostName</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSUS01</td>
<td>HWS1</td>
<td>127.0.0.1</td>
<td><a href="http://WWW.EXAMPLE.COM">WWW.EXAMPLE.COM</a></td>
<td>9998</td>
</tr>
<tr>
<td>IMSUS02</td>
<td>HWS1</td>
<td>127.0.0.1</td>
<td><a href="http://WWW.EXAMPLE.COM">WWW.EXAMPLE.COM</a></td>
<td>9998</td>
</tr>
</tbody>
</table>

(Screen 4)

<table>
<thead>
<tr>
<th>ISCUser</th>
<th>MbrName</th>
<th>CICSApplid</th>
<th>CICSPort</th>
<th>CICSNetid</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSUS01</td>
<td>HWS1</td>
<td>CICSA1</td>
<td>7777</td>
<td>CICSNET</td>
</tr>
<tr>
<td>IMSUS02</td>
<td>HWS1</td>
<td>CICSA1</td>
<td>7777</td>
<td>CICSNET</td>
</tr>
</tbody>
</table>

OM API input:

CMD ( QUERY IMSCON TYPE(ISCUSER) NAME(IMSUS*) SHOW(ALL) )

OM API output:

<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.6.0</omvsn>
<xmlvsn>20</xmlvsn>  
<statime>2012.137 23:27:03.321818</statime>  
<stotime>2012.137 23:27:03.323791</stotime>  
<stseq>C939F0D98BDA01C</stseq>  
<stseq>C939F0D9D08F69C</stseq>  
<rqsttkn1>USRRT001 10162703</rqsttkn1>  
<rc>00000000</rc>  
<rqn>00000000</rqn>  
</ctl>  
</cmd>  
</master>HWS1 
</master>  
</userid>USRT001 </userid>  
</verb>QRY </verb>  
</kwd>IMSCon </kwd>  
<input>QRY IMSCON TYPE(ISCUSER) SHOW(ALL) </input>  
</cmd>  
</cmdrsphdr>  
<hdr slbl="IUSER" llbl="ISCUser" scope="LCL" sort="a" key="2" scroll="no" len="8" dtype="CHAR" align="left" skipb="yes" />  
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" key="1" scroll="no" len="8" dtype="CHAR" align="left" skipb="no" />  
<hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0" scroll="yes" len="4" dtype="INT" align="right" skipb="no" />  
<hdr slbl="CCTxt" llbl="CCText" scope="LCL" sort="n" key="0" scroll="yes" len="32" dtype="CHAR" align="left" skipb="yes" />  
<hdr slbl="SCL" llbl="SendClint" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left" skipb="yes" />  
<hdr slbl="RCL" llbl="RecvClint" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left" skipb="yes" />  
<hdr slbl="STT" llbl="Status" scope="LCL" sort="n" key="0" scroll="yes" len="9" dtype="CHAR" align="left" skipb="yes" />  
<hdr slbl="ISC" llbl="ISCName" scope="LCL" sort="a" key="3" scroll="yes" len="8" dtype="CHAR" align="left" skipb="no" />  
<hdr slbl="ISTT" llbl="ISCStatus" scope="LCL" sort="n" key="0" scroll="yes" len="9" dtype="CHAR" align="left" skipb="yes" />  
<hdr slbl="NODE" llbl="Node" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left" skipb="yes" />  
<hdr slbl="LIMS" llbl="Lc1LIMS" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left" skipb="yes" />  
<hdr slbl="IMEM" llbl="IpMember" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left" skipb="yes" />  
<hdr slbl="IMSPLX" llbl="IMSplex" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left" skipb="yes" />  
<hdr slbl="RCICS" llbl="RmtCics" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left" skipb="yes" />  
<hdr slbl="IP" llbl="IpAddress" scope="LCL" sort="n" key="0" scroll="yes" len="*" dtype="CHAR" align="left" skipb="yes" />  
<hdr slbl="HOST" llbl="HostName" scope="LCL" sort="n" key="0" scroll="yes" len="*" dtype="CHAR" align="left" skipb="yes" />  
<hdr slbl="PORT" llbl="Port" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="INT" align="right" skipb="yes" />  
<hdr slbl="CICAP" llbl="CICSApplid" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left" skipb="yes" />  
<hdr slbl="CICPT" llbl="CICSPort" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="INT" align="right" skipb="yes" />  
<hdr slbl="CICNT" llbl="CICSnetid" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left" skipb="yes" />  
</cmdrsphdr>  
</cmdrdspdata>  
<rsps USER(IMSUS01) MBR(HWS1) CC( 0) SCL(ISCS11111) RCL(ISCS33333) STT(ACTIVE) ISC(CICS) ISTT(ACTIVE) NODE(CICSTRM1) LIMS(IMS1) IMEM(ICONI) IMSPLX(PLEX1) RCICS(ICONNT1) IP(127.0.0.1) HOST(www.example.com) PORT(9998) CICAP(CICSA1) CICPT(7777) CICNT(CICSNET) </rsps>  
<rsps USER(IMSUS02) MBR(HWS1) CC( 0) SCL(ISCS22222) RCL(ISCS44444) STT(ACTIVE) ISC(CICS) ISTT(ACTIVE)
Related reference:

- ISC statement (System Definition)
- RMTCICS statement (System Definition)
- “UPDATE IMSCON TYPE(ISC) command” on page 1011
- “UPDATE IMSCON TYPE(ISCUSER) command” on page 1017
- “UPDATE IMSCON TYPE(RMTCICS) command” on page 1044

QUERY IMSCON TYPE(LINK) command

Use the QUERY IMSCON TYPE(LINK) command to display the status of one or more MSC logical links defined to IMS Connect.

Subsections:
- “Environment”
- “Syntax”
- “Keywords” on page 185
- “Usage notes” on page 187
- “Equivalent WTO and z/OS commands” on page 187
- “Output fields” on page 187
- “Return, reason, and completion codes” on page 189
- “Examples” on page 190

Environment

The QUERY IMSCON command is applicable only to IMS Connect. To issue this command, the following conditions must be satisfied:

- IMS Connect must be active and configured to communicate with the Common Service Layer (CSL) Structured Call Interface (SCI).
- A type-2 command environment with Structured Call Interface (SCI) and Operations Manager (OM) must be active.

Syntax
Keywords

The following keywords are valid for the QUERY IMSCON TYPE(LINK) command.

NAME
Specifies one or more MSC logical links to be displayed. You can specify a single MSC logical link name or a list of MSC logical link names separated by commas. Wildcards can be used in the names.

You can specify NAME(*) to display all MSC logical link definitions. NAME(*) is the default.

SHOW
Specifies the optional output fields to be displayed. Output fields that are always displayed, regardless of whether SHOW is specified, include the MSC logical link name, the name of the IMS Connect that processes the command, and the completion code.

The filters that are supported with the SHOW keyword, which can be specified in any order, are:

ALL
Displays all output fields.

GENIMSID
Displays the name of the generic IMS as defined in the GENIMSID parameter of the MSC statement in the IMS Connect configuration member. If there is any active MSC logical link, specifying this keyword also displays the IMS ID that the MSC logical link has affinity with.

HOSTNAME
Displays the host name of the remote IMS Connect. The remote IMS Connect is defined in the RMTIMSCON parameter of the MSC statement in the IMS Connect configuration member.
IMSPLEX
Displays the name of the IMSplex, as defined in the TMEMBER subparameter of the IMSPLEX parameter of the MSC statement in the IMS Connect configuration member.

IPADDR
Displays the IP address of the remote IMS Connect. The remote IMS Connect is defined in the RMTIMSCON parameter of the MSC statement in the IMS Connect configuration member.

IPMEMBER
Displays the IMSplex member name, as defined in the MEMBER subparameter of the IMSPLEX parameter of the MSC statement in the IMS Connect configuration member. This name is the IMS Connect member name registered to the IMSplex.

LCLIMS
Displays the name of the local IMS as defined in the LCLIMS parameter of the MSC statement in the IMS Connect configuration member.

MSC
Displays the name of the MSC physical link associated with this logical link, as defined by the MSC statement in the IMS Connect configuration member.

MSTATUS
Displays the status of the MSC physical link associated with the logical link. The status can be either ACTIVE or NOTACTIVE.

PARTNER
Displays the name of the partner ID associated with the logical link.

PORT
Displays the port of the associated remote IMS Connect. The remote IMS Connect is defined in the RMTIMSCON parameter of the MSC statement in the IMS Connect configuration member.

RECVCLNT
Displays the receive client name, which is the name of the client ID of the remote IMS Connect that this IMS Connect receives messages from for this logical link.

RMTIMS
Displays the name of the remote IMS as defined in the RMTIMS parameter of the MSC statement in the IMS Connect configuration member.

RMTIMSCON
Displays the name of the remote IMS Connect connection as defined in the RMTIMSCON parameter of the MSC statement in the IMS Connect configuration member.

RMTPLKID
Displays the name of the remote MSC physical link ID as defined in the RMTPLKID parameter of the MSC statement in the IMS Connect configuration member.

SENDCLNT
Displays the send client name, which is the name of the client ID that IMS Connect uses to send messages to the remote IMS Connect for this logical link.
**STATUS**
Displays the status of the logical link. The status can be ACTIVE, which indicates that the logical link is active.

**STATUS**
Selects logical links for display that possess the following status. When the STATUS filter is specified, status information is displayed even if SHOW(STATUS) is not specified. The filter supported with the STATUS keyword is:

**ACTIVE**
Selects logical links that have a status of ACTIVE.

**Usage notes**
You can issue the QUERY IMSCON TYPE(LINK) command only through the Operations Manager (OM) API.

IMS Connect can process IMS Connect type-2 commands only if the IMSplex from which the commands were issued has a status of ACTIVE.

**Equivalent WTOR and z/OS commands**
There are no equivalent WTOR and IMS Connect z/OS commands that perform similar functions as the QUERY IMSCON TYPE(LINK) command.

**Output fields**

**Short label**
Contains the short label that is generated in the XML output.

**Long label**
Contains the column heading displayed on the TSO SPOC screen.

**Keyword**
Identifies the keyword on the command that caused the field to be generated. N/A (not applicable) appears for output fields that are always returned. error appears for output fields that are returned only in the case of an error.

**Meaning**
Provides a brief description of the output field.

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFFIN</td>
<td>Affinity</td>
<td>GENIMSID</td>
<td>The name of the IMS with which the MSC logical link has affinity.</td>
</tr>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code that indicates whether IMS Connect was able to process the command for the specified resource. The completion code is always returned. See Table 63 on page 189.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the nonzero completion code. This field is returned only for an error completion code.</td>
</tr>
<tr>
<td>GIMS</td>
<td>GenIMSID</td>
<td>GENIMSID</td>
<td>The name of the generic IMS as defined in the GENIMSID parameter of the MSC statement in the IMS Connect configuration member.</td>
</tr>
</tbody>
</table>
Table 61. Output fields for the QUERY IMSCON TYPE(LINK) command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOST</td>
<td>HostName</td>
<td>HOSTNAME</td>
<td>The host name of the remote IMS Connect. The remote IMS Connect is defined in the RMTIMSCON parameter of the MSC statement in the IMS Connect configuration member.</td>
</tr>
<tr>
<td>IMEM</td>
<td>IpMember</td>
<td>IPMEMBER</td>
<td>The IMSplex member name, as defined in the MEMBER subparameter of the IMSPLEX parameter of the MSC statement in the IMS Connect configuration member. This name is the IMS Connect member name registered to the IMSplex.</td>
</tr>
<tr>
<td>IP</td>
<td>IpAddress</td>
<td>IPADDR</td>
<td>The IP address of the remote IMS Connect. The remote IMS Connect is defined in the RMTIMSCON parameter of the MSC statement in the IMS Connect configuration member.</td>
</tr>
<tr>
<td>IMSPLX</td>
<td>IMSplex</td>
<td>IMSPLEX</td>
<td>The name of the IMSplex, as defined in the TMEMBER subparameter of the IMSPLEX parameter of the MSC statement in the IMS Connect configuration member.</td>
</tr>
<tr>
<td>LIMS</td>
<td>LclIMS</td>
<td>LCLIMS</td>
<td>The name of the local IMS as defined in the LCLIMS parameter of the MSC statement in the IMS Connect configuration member.</td>
</tr>
<tr>
<td>LINK</td>
<td>Link</td>
<td>N/A</td>
<td>The name of the MSC logical link. The name of the logical link is always returned.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>Identifier of the IMS Connect that built the output line. The identifier is always returned.</td>
</tr>
<tr>
<td>MSC</td>
<td>MscName</td>
<td>MSC</td>
<td>Name of the MSC physical link as defined in the LCLPLKID parameter of the MSC configuration statement in the IMS Connect configuration member.</td>
</tr>
<tr>
<td>MSTT</td>
<td>MscStatus</td>
<td>MSTATUS</td>
<td>For the MSC physical link associated with the logical link, this field indicates the status or state of the physical link. The value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ACTIVE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The physical link is active.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NOTACTIVE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The physical link is not active.</td>
</tr>
<tr>
<td>PID</td>
<td>Partner</td>
<td>PARTNER</td>
<td>The name of the partner ID for the logical link.</td>
</tr>
<tr>
<td>PORT</td>
<td>Port</td>
<td>PORT</td>
<td>The port of the associated remote IMS Connect. The remote IMS Connect is defined in the RMTIMSCON parameter of the MSC statement in the IMS Connect configuration member.</td>
</tr>
<tr>
<td>RCL</td>
<td>RecvClnt</td>
<td>RECVCLNT</td>
<td>The receive client name, which is the name of the client ID of the remote IMS Connect that this IMS Connect receives messages from for this logical link.</td>
</tr>
<tr>
<td>RIC</td>
<td>RmtImsCon</td>
<td>RMTIMSCON</td>
<td>The name of the remote IMS Connect connection as defined in the RMTIMSCON parameter of the MSC statement in the IMS Connect configuration member.</td>
</tr>
</tbody>
</table>
Table 61. Output fields for the QUERY IMSCON TYPE(LINK) command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIMS</td>
<td>RmtIMS</td>
<td>RMTIMS</td>
<td>The name of the remote IMS as defined in the RMTIMS parameter of the MSC statement in the IMS Connect configuration member.</td>
</tr>
<tr>
<td>RPLK</td>
<td>RmtPlkID</td>
<td>RMTPLKID</td>
<td>The name of the remote MSC physical link ID as defined in the RMTPLKID parameter of the MSC statement in the IMS Connect configuration member.</td>
</tr>
<tr>
<td>SCL</td>
<td>SendClnt</td>
<td>SENDCLNT</td>
<td>The send client name, which is the name of the client ID that IMS Connect uses to send messages to the remote IMS Connect for this logical link.</td>
</tr>
<tr>
<td>STT</td>
<td>Status</td>
<td>STATUS</td>
<td>Status of the logical link. The status can be: (<em>ACTIVE</em>) The logical link is active.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The return and reason codes that can be returned as a result of the QUERY IMSCON TYPE(LINK) command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 62. Return and reason codes for the QUERY IMSCON TYPE(LINK) command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The QUERY IMSCON TYPE(LINK) command completed successfully. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003000'</td>
<td>The command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003004'</td>
<td>The command was not successful for any resource. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

Table 63. Completion codes for the QUERY IMSCON TYPE(LINK) command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The QUERY IMSCON TYPE(LINK) command completed successfully for the resources.</td>
</tr>
</tbody>
</table>
Table 63. Completion codes for the QUER Y IMSCON TYPE(LINK) command

(continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>The resource name is unknown to the client that is processing the request. The resource name might have been typed in error or the resource might not be active at this time. If a wildcard was specified in the command, there were no matches for the name. Confirm that the correct spelling of the resource name is specified on the command.</td>
</tr>
</tbody>
</table>

Examples

Example 1 for QUER Y IMSCON TYPE(LINK) command

TSO SPOC input:
QUERY IMSCON TYPE(LINK) NAME(LINK12*) SHOW(ALL)

TSO SPOC output:

(Screen 1)
Link MbrName Partner SendClnt RecvClnt Status
LINK12A HWS1 AA MSC11111 MSC33333 ACTIVE
LINK12B HWS1 BB MSC22222 MSC44444 ACTIVE
LINK12C HWS1 CC MSC55555 MSC77777 ACTIVE

(Screen 2)
Link MbrName MscName MscStatus RmtPlkId LclIMS LclIMS2 RmtIMS
LINK12A HWS1 MSC12 ACTIVE MSC21 IMS1 IMS3 IMS2
LINK12B HWS1 MSC12 ACTIVE MSC21 IMS1 IMS3 IMS2
LINK12C HWS1 MSC12 ACTIVE MSC21 IMS1 IMS3 IMS2

(Screen 3)
Link MbrName GenIMSID Affinity IpMember IMSplex RmtImsCon
LINK12A HWS1 IMS IMS1 ICON1 PLEX1 CONNECT2
LINK12B HWS1 IMS IMS1 ICON1 PLEX1 CONNECT2
LINK12C HWS1 IMS IMS1 ICON1 PLEX1 CONNECT2

(Screen 4)
Link MbrName IpAddress HostName Port
LINK12A HWS1 010.100.200.002 ICON.IBM.COM 5555
LINK12B HWS1 010.100.200.002 ICON.IBM.COM 5555
LINK12C HWS1 010.100.200.002 ICON.IBM.COM 5555

OM API input:
CMD ( QUERY IMSCON TYPE(LINK) NAME(LINK12*) SHOW(ALL) )

OM API output:

<imsout>
<ctl>
<omname>OM1OM </omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20 </xmlvsn>
<statime>2010.297 23:33:43.374620</statime>
<stotime>2010.297 23:33:43.375723</stotime>
<staseq>C6C7597265C3F7</staseq>
<stoseq>C6C759726595BFB7</stoseq>
<rqsttkn1>USRRT001 10163343</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>

190 Commands, Volume 2: IMS Commands N - V
<cmd>
<master>HWS1</master>
<userid>USRT001</userid>
<verb>QRY</verb>
<kwd>IMSCON</kwd>
<input>QRY IMSCON TYPE(LINK) SHOW(ALL)</input>
</cmd>
<cmdrshdr>
<hdr slbl="LINK" llbl="Link" scope="LCL" sort="a" key="2" scroll="no"
len="8" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" key="1" scroll="no"
len="8" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0" scroll="yes"
len="4" dtype="INT" align="right" skipb="no" />
<hdr slbl="CCTX" llbl="CCText" scope="LCL" sort="n" key="0"
scroll="yes" len="32" dtype="CHAR" align="left" skipb="yes" />
<hdr slbl="PID" llbl="Partner" scope="LCL" sort="n" key="0"
scroll="yes" len="8" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="SCL" llbl="SendClnt" scope="LCL" sort="n" key="0"
scroll="yes" len="8" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="RCL" llbl="RecvClnt" scope="LCL" sort="n" key="0"
scroll="yes" len="8" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="STT" llbl="Status" scope="LCL" sort="n" key="0"
scroll="yes" len="9" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="MSC" llbl="MscName" scope="LCL" sort="a" key="3"
scroll="yes" len="8" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="MSSTT" llbl="MsccStatus" scope="LCL" sort="n" key="0"
scroll="yes" len="9" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="RPPLK" llbl="RmtPlkID" scope="LCL" sort="n" key="0"
scroll="yes" len="8" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="LIMS" llbl="LcIms" scope="LCL" sort="n" key="0"
scroll="yes" len="8" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="RIMS" llbl="RmIms" scope="LCL" sort="n" key="0"
scroll="yes" len="8" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="GIMS" llbl="GenIMSID" scope="LCL" sort="n" key="0"
scroll="yes" len="8" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="AFFIN" llbl="Affin" scope="LCL" sort="n" key="0"
scroll="yes" len="8" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="IMEM" llbl="IpMember" scope="LCL" sort="n" key="0"
scroll="yes" len="8" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="IMSPLEX" llbl="IMSplex" scope="LCL" sort="n" key="0"
scroll="yes" len="8" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="RIC" llbl="RmtImsp" scope="LCL" sort="n" key="0"
scroll="yes" len="8" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="IP" llbl="IpAddress" scope="LCL" sort="n" key="0"
scroll="yes" len="*" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="HOST" llbl="HostName" scope="LCL" sort="n" key="0"
scroll="yes" len="*" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="PORT" llbl="Port" scope="LCL" sort="n" key="0"
scroll="yes" len="8" dtype="INT" align="right" skipb="no" />
</cmdrshdr>
<rsp>
<LINK(LINK12A) MBR(HWS1) CC( 0) PID(AA)
SCL(MSC1111) RCL(MSC3333) STT(ACTIVE) MSC(MSC12) MSTT(ACTIVE)
RPLK(MSC21) LIMS(IMS1) RIMS(IMS2) GIMS(IMS) AFFIN(IMS1)
IMEM(ICON1) IMSPLEX(PLEX1) RIC(CONNECT2)
IP(010.100.200.002) HOST(ICON.IBM.COM) PORT(5555)</rsp>
<rsp>
<LINK(LINK12B) MBR(HWS1) CC( 0) PID(BB)
SCL(MSC22222) RCL(MSC44444) STT(ACTIVE) MSC(MSC12) MSTT(ACTIVE)
RPLK(MSC21) LIMS(IMS1) RIMS(IMS2) GIMS(IMS) AFFIN(IMS1)
IMEM(ICON1) IMSPLEX(PLEX1) RIC(CONNECT2)
IP(010.100.200.002) HOST(ICON.IBM.COM) PORT(5555)</rsp>
<rsp>
<LINK(LINK12C) MBR(HWS1) CC( 0) PID(CC)
SCL(MSC55555) RCL(MSC77777) STT(ACTIVE) MSC(MSC12) MSTT(ACTIVE)
RPLK(MSC21) LIMS(IMS1) RIMS(IMS2) GIMS(IMS) AFFIN(IMS1)
</rsp>
</cmdrshdr>

Chapter 5. QUERY commands 191
Explanation: MSC12 is a valid MSC physical link definition. It is currently active, with three associated logical links. Two of the logical links are currently active.

Related concepts:
- How to interpret CSL request return and reason codes (System Programming APIs)

Related reference:
- MSC statement (System Definition)

**QUERY IMSCON TYPE(MSC) command**

Use the QUERY IMSCON TYPE(MSC) command to display the status of one or more MSC physical links defined to IMS Connect.

Subsections:
- “Environment”
- “Syntax”
- “Keywords” on page 193
- “Usage notes” on page 195
- “Equivalent WTOR and z/OS commands” on page 195
- “Output fields” on page 196
- “Return, reason, and completion codes” on page 198
- “Examples” on page 199

**Environment**

The QUERY IMSCON command is applicable only to IMS Connect. To issue this command, the following conditions must be satisfied:

- IMS Connect must be active and configured to communicate with the Common Service Layer (CSL) Structured Call Interface (SCI).
- A type-2 command environment with Structured Call Interface (SCI) and Operations Manager (OM) must be active.

**Syntax**

```
QUERY IMSCON TYPE(MSC)
```

NAME(*)

- `NAME(msc_id)`
- `LINK(link_name)`

LSTATUS(ACTIVE)
Keywords

The following keywords are valid for the QUERY IMSCON TYPE(MSC) command.

**LINK**
Selects MSC physical link resources for display that have one of the specified logical links defined. You can specify a single logical link name or a list of logical link names separated by commas. Wildcards can be used in the names.

Only those MSC physical link resources that have a specified logical link are displayed. MSC physical link resources that match the NAME() parameter, but do not have the specified logical link, are not displayed.

When the LINK filter is specified, logical link information is displayed even if SHOW(LINK) is not specified. Logical links that match the names specified by the LINK filter are displayed. Logical links that are associated with the MSC physical link, but which do not match the filter, are not displayed.

**LSTATUS**
Selects MSC physical link resources for display that have at least one logical link that is in the following state:

**ACTIVE**
This logical link is active.

MSC physical links that match the NAME() parameter, but do not have such a logical link, are not displayed.

When the LSTATUS filter is specified, logical link information is displayed even if SHOW(LINK) is not specified. Logical links that are in this state are displayed.

**NAME**
Specifies one or more MSC physical links to be displayed. You can specify a single MSC physical link name or a list of MSC physical link names separated by commas. Wildcards can be used in the name.

You can specify NAME(*) to display all MSC physical link definitions. NAME(*) is the default.

**SHOW**
Specifies the optional output fields to be displayed. Output fields that are
always displayed, regardless of whether SHOW is specified, include the MSC physical link name, the name of the IMS Connect that processes the command, and the completion code.

The filters that are supported with the SHOW keyword, which can be specified in any order, are:

**ALL**
Displays all output fields.

**GENIMSID**
Displays the name of the generic IMS as defined in the GENIMSID parameter of the MSC statement in the IMS Connect configuration member. If there is any active MSC logical link, specifying this keyword also displays the IMS ID that the MSC logical link has affinity with.

**HOSTNAME**
Displays the host name of the remote IMS Connect. The remote IMS Connect is defined in the RMTIMSCON parameter of the MSC statement in the IMS Connect configuration member.

**IMSPLEX**
Displays the name of the IMSplex, as defined in the TMEMBER subparameter of the IMSPLEX parameter of the MSC statement in the IMS Connect configuration member.

**IPADDR**
Displays the IP address of the remote IMS Connect. The remote IMS Connect is defined in the RMTIMSCON parameter of the MSC statement in the IMS Connect configuration member.

**IPMEMBER**
Displays the IMSplex member name, as defined in the MEMBER subparameter of the IMSPLEX parameter of the MSC statement in the IMS Connect configuration member. This is the IMS Connect member name registered to the IMSplex.

**LCLIMS**
Displays the name of the local IMS as defined in the LCLIMS parameter of the MSC statement in the IMS Connect configuration member.

**LINK**
Displays information and status for logical links associated with the specified MSC physical link. If the MSC physical link has one or more associated logical links, the command output includes information about each logical link. A separate output line is displayed for each logical link. This output line is in addition to any output lines that display general MSC physical link information. If there are no logical links, no additional output line is displayed.

Information displayed for the logical link includes:

- The name of the logical link.
- The name of the partner ID.
- The receive client name, which is the name of the client ID of the remote IMS Connect that this IMS Connect receives messages from for this logical link.
- The send client name, which is the name of the client ID that IMS Connect uses to send messages to the remote IMS Connect for this logical link.
- Status or state of the logical link, which is the following:
**ACTIVE**

This logical link connection is active.

**PORT**

Displays the port of the associated remote IMS Connect. The remote IMS Connect is defined in the RMTIMSMCON parameter of the MSC statement in the IMS Connect configuration member.

**RMTIMS**

Displays the name of the remote IMS as defined in the RMTIMS parameter of the MSC statement in the IMS Connect configuration member.

**RMTIMSCON**

Displays the name of the remote IMS Connect connection as defined in the RMTIMSCON parameter of the MSC statement in the IMS Connect configuration member.

**RMTPLKID**

Displays the name of the remote MSC physical link ID as defined in the RMTPLKID parameter of the MSC statement in the IMS Connect configuration member.

**STATUS**

Displays the status of the MSC physical link. For a description of the possible state returned, see the STATUS keyword in Table 65 on page 196.

**STATUS**

Selects MSC physical links for display that possess at least one of the specified statuses. When the STATUS filter is specified, status information is displayed even if SHOW(STATUS) is not specified. The filters supported with the STATUS keyword, which can be specified in any order, are:

**ACTIVE**

Selects MSC physical links that have a status of ACTIVE.

**NOTACTIVE**

Selects MSC physical links that have a status of NOTACTIVE.

**Usage notes**

You can issue the QUERY IMSCON TYPE(MSC) command only through the Operations Manager (OM) API.

IMS Connect can process IMS Connect type-2 commands only if the IMSp lex from which the commands were issued has a status of ACTIVE.

Typically, this command results in one output display line for each MSC physical link definition being displayed. However, if the SHOW(LINK) keyword is specified, an additional line is displayed for each logical link associated with the specified MSC definition.

**Equivalent WTOR and z/OS commands**

The following table lists WTOR (Write to Operator with Reply) and IMS Connect z/OS commands that perform similar functions as the QUERY IMSCON TYPE(MSC) command.

**Notes:**

- IMS Connect WTOR commands are replies to the outstanding IMS Connect reply message.
• IMS Connect z/OS commands are issued through the z/OS (MVS) interface by using the IMS Connect jobname.

Table 64. WTOR and IMS Connect z/OS equivalents for the QUERY IMSCON TYPE(MSC) command

<table>
<thead>
<tr>
<th>QUERY IMSCON TYPE(MSC) command</th>
<th>Equivalent IMS Connect WTOR command</th>
<th>Equivalent IMS Connect z/OS command</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY IMSCON TYPE(MSC) NAME(*) SHOW(ALL</td>
<td>VIEWMSC ALL</td>
<td>QUERY MSC NAME(*)</td>
</tr>
<tr>
<td>show_parm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QUERY IMSCON TYPE(MSC) NAME(msc_id) SHOW(ALL</td>
<td>VIEWMSC msc_id</td>
<td>QUERY MSC Name(msc_id)</td>
</tr>
<tr>
<td>show_parm)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Output fields

Short label
Contains the short label that is generated in the XML output.

Long label
Contains the column heading displayed on the TSO SPOC screen.

Keyword
Identifies the keyword on the command that caused the field to be generated. N/A (not applicable) appears for output fields that are always returned. error appears for output fields that are returned only in the case of an error.

Meaning
Provides a brief description of the output field.

Table 65. Output fields for the QUERY IMSCON TYPE(MSC) command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFFIN</td>
<td>Affinity</td>
<td>GENIMSID</td>
<td>The name of the IMS that the MSC logical link has affinity with.</td>
</tr>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code that indicates whether IMS Connect was able to process the command for the specified resource. The completion code is always returned. See Table 67 on page 198</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the nonzero completion code. This field is returned only for an error completion code.</td>
</tr>
<tr>
<td>GIMS</td>
<td>GenIMSID</td>
<td>GENIMSID</td>
<td>The name of the generic IMS as defined in the GENIMSID parameter of the MSC statement in the IMS Connect configuration member.</td>
</tr>
<tr>
<td>HOST</td>
<td>HostName</td>
<td>HOSTNAME</td>
<td>The host name of the remote IMS Connect. The remote IMS Connect is defined in the RMTIMSCON parameter of the MSC statement in the IMS Connect configuration member.</td>
</tr>
<tr>
<td>IMEM</td>
<td>IpMember</td>
<td>IPMEMBER</td>
<td>The IMSplex member name, as defined in the MEMBER subparameter of the IMSPLEX parameter of the MSC statement in the IMS Connect configuration member. This name is the IMS Connect member name registered to the IMSplex.</td>
</tr>
</tbody>
</table>
Table 65. Output fields for the QUERY IMSCON TYPE(MSC) command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP</td>
<td>IpAddr</td>
<td>IPADDR</td>
<td>The IP address of the remote IMS Connect. The remote IMS Connect is defined in the RMTIMSCON parameter of the MSC statement in the IMS Connect configuration member.</td>
</tr>
<tr>
<td>IMSPLX</td>
<td>IMSplex</td>
<td>IMSPLEX</td>
<td>The name of the IMSplex, as defined in the TMEMBER subparameter of the IMSPLEX parameter of the MSC statement in the IMS Connect configuration member.</td>
</tr>
<tr>
<td>LIMS</td>
<td>LcIms</td>
<td>LCLIMS</td>
<td>The name of the local IMS as defined in the LCLIMS parameter of the MSC statement in the IMS Connect configuration member.</td>
</tr>
<tr>
<td>LIMS2</td>
<td>LcIms2</td>
<td>LCLIMS</td>
<td>The name of the second local IMS in an XRF pair, as defined in the LCLIMS parameter of the MSC statement in the IMS Connect configuration member.</td>
</tr>
<tr>
<td>LINK</td>
<td>Link</td>
<td>LINK</td>
<td>The name of the logical link associated with the MSC physical link.</td>
</tr>
</tbody>
</table>
| LSTT        | LinkStatus   | LINK      | For a logical link associated with the physical link, this is the status or state of the logical link, which is the following:\
\[ACTIVE\] The logical link is active.                                                                 |
| MBR         | MbrName      | N/A       | Identifier of the IMS Connect that built the output line. The identifier is always returned.                                                                                                             |
| MSC         | MscName      | N/A       | Name of the MSC physical link as defined in the LCLPLKID parameter of the MSC configuration statement in the IMS Connect configuration member. The name of the MSC physical link is always returned. |
| PID         | Partner      | LINK      | The name of the partner ID for a logical link associated with the MSC physical link.                                                                                                                      |
| PORT        | Port         | PORT      | The port of the associated remote IMS Connect. The remote IMS Connect is defined in the RMTIMSCON parameter of the MSC statement in the IMS Connect configuration member.                                |
| RCL         | RecvClnt     | LINK      | For a logical link associated with the physical link, this field shows the receive client name, which is the name of the client ID of the remote IMS Connect that this IMS Connect receives messages from for this logical link. |
| RIC         | RmtImsCon    | RMTIMSCON | The name of the remote IMS Connect connection as defined in the RMTIMSCON parameter of the MSC statement in the IMS Connect configuration member.                                                              |
| RIMS        | RmtIMS       | RMTIMS    | The name of the remote IMS as defined in the RMTIMS parameter of the MSC statement in the IMS Connect configuration member.                                                                                  |
| RPLK        | RmtPlkID     | RMTPLKID  | The name of the remote MSC physical link ID as defined in the RMTPLKID parameter of the MSC statement in the IMS Connect configuration member.                                                               |
Table 65. Output fields for the QUERY IMS CON TYPE(MSC) command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCL</td>
<td>SendClnt</td>
<td>LINK</td>
<td>For a logical link associated with the physical link, this field shows the send client name, which is the name of the client ID that IMS Connect uses to send messages to the remote IMS Connect for this logical link.</td>
</tr>
<tr>
<td>STT</td>
<td>Status</td>
<td>STATUS</td>
<td>Status of the MSC physical link. The status can be one of the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ACTIVE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The physical link is active.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NOTACTIVE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The physical link is not active.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The return and reason codes that can be returned as a result of the QUERY IMS CON TYPE(MSC) command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 66. Return and reason codes for the QUERY IMS CON TYPE(MSC) command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The QUERY IMS CON TYPE(MSC) command completed successfully. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C0000C'</td>
<td>X'00003000'</td>
<td>The command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C0000C'</td>
<td>X'00003004'</td>
<td>The command was not successful for any resource. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

Table 67. Completion codes for the QUERY IMS CON TYPE(MSC) command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>The QUERY IMS CON TYPE(MSC) command completed successfully for the resources.</td>
</tr>
</tbody>
</table>
Table 67. Completion codes for the QUERY IMS CON TYPE(MSC) command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>The resource name is unknown to the client that is processing the request. The resource name might have been typed in error or the resource might not be active at this time. If a wildcard was specified in the command, there were no matches for the name. Confirm that the correct spelling of the resource name is specified on the command.</td>
</tr>
</tbody>
</table>

Examples

Example 1 for QUERY IMS CON TYPE(MSC) command

TSO SPOC input:
QUERY IMS CON TYPE(MSC) NAME(MSC12) SHOW(ALL)

TSO SPOC output:
(Screen 1)
<table>
<thead>
<tr>
<th>MscName</th>
<th>MbrName</th>
<th>CC</th>
<th>RmtPlkId</th>
<th>LclIMS</th>
<th>LclIMS2</th>
<th>RmtIMS</th>
<th>GenIMSID</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSC12</td>
<td>HWS1</td>
<td>0</td>
<td>MSC21</td>
<td>IMS1</td>
<td>IMS3</td>
<td>IMS2</td>
<td>IMS</td>
</tr>
<tr>
<td>MSC12</td>
<td>HWS1</td>
<td>0</td>
<td>MSC21</td>
<td>IMS1</td>
<td>IMS3</td>
<td>IMS2</td>
<td>IMS</td>
</tr>
<tr>
<td>MSC12</td>
<td>HWS1</td>
<td>0</td>
<td>MSC21</td>
<td>IMS1</td>
<td>IMS3</td>
<td>IMS2</td>
<td>IMS</td>
</tr>
</tbody>
</table>

(Screen 2)
<table>
<thead>
<tr>
<th>MscName</th>
<th>MbrName</th>
<th>Affinity</th>
<th>IpMember</th>
<th>IMSplex</th>
<th>RmtImsCon</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSC12</td>
<td>HWS1</td>
<td>IMS1</td>
<td>ICON1</td>
<td>PLEX1</td>
<td>CONNECT2</td>
</tr>
<tr>
<td>MSC12</td>
<td>HWS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSC12</td>
<td>HWS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSC12</td>
<td>HWS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Screen 3)
<table>
<thead>
<tr>
<th>MscName</th>
<th>MbrName</th>
<th>IpAddress</th>
<th>HostName</th>
<th>Port</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSC12</td>
<td>HWS1</td>
<td>010.100.200.002</td>
<td>ICONZ.IBM.COM</td>
<td>5555</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>MSC12</td>
<td>HWS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSC12</td>
<td>HWS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSC12</td>
<td>HWS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Screen 4)
<table>
<thead>
<tr>
<th>MscName</th>
<th>MbrName</th>
<th>Link</th>
<th>Partner</th>
<th>SendInt</th>
<th>RecvClnt</th>
<th>LinkStatus</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSC12</td>
<td>HWS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSC12</td>
<td>HWS1</td>
<td>LINK12A AA</td>
<td>MSC1111</td>
<td>MSC33333</td>
<td>ACTIVE</td>
<td></td>
</tr>
<tr>
<td>MSC12</td>
<td>HWS1</td>
<td>LINK12B BB</td>
<td>MSC22222</td>
<td>MSC44444</td>
<td>ACTIVE</td>
<td></td>
</tr>
<tr>
<td>MSC12</td>
<td>HWS1</td>
<td>LINK12C CC</td>
<td>MSC55555</td>
<td>MSC77777</td>
<td>ACTIVE</td>
<td></td>
</tr>
</tbody>
</table>

OM API input:
CMD ( QUERY IMS CON TYPE(MSC) NAME(MSC12) SHOW(ALL) )}

OM API output:

```xml
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20</xmlvsn>
<staseq>C6C75CD1B3A0FC8A</staseq>
<stoseq>C6C75CD1B3E51F4A</stoseq>
```
<rsp>MSC(MSC12) MBR(HWS1) CC(0) LINK(LINK12A) PID(AA)
SCL(MSC1111) RCL(MSC3333) LSTT(ACTIVE) </rsp>

<rsp>MSC(MSC12) MBR(HWS1) CC(0) LINK(LINK12B) PID(BB)
SCL(MSC2222) RCL(MSC4444) LSTT(ACTIVE) </rsp>

<rsp>MSC(MSC12) MBR(HWS1) CC(0) LINK(LINK12C) PID(CC)
SCL(MSC5555) RCL(MSC7777) LSTT(ACTIVE) </rsp>

<rsp>MSC(MSC12) MBR(HWS1) CC(0) RPLK(MSC21)
LIMS(IMS1) RIMS(IMS2) GIMS(IMS) AFFIN(IMS1)
Explanation: MSC12 is a valid MSC physical link definition. It is currently active, with three associated logical links. Two of the logical links are currently active.

Related concepts:

- How to interpret CSL request return and reason codes (System Programming APIs)

Related reference:

- MSC statement (System Definition)

QUERY IMSCON TYPE(ODBM) command

Use the QUERY IMSCON TYPE(ODBM) command to display the status, alias, and activity of one or more ODBMs defined to IMS Connect.

Subsections:
- “Environment”
- “Syntax”
- “Keywords” on page 202
- “Usage notes” on page 203
- “Equivalent WTO and z/OS commands” on page 204
- “Output fields” on page 204
- “Return, reason, and completion codes” on page 205
- “Examples” on page 206

Environment

The QUERY IMSCON command is applicable only to IMS Connect. To issue this command, the following conditions must be satisfied:

- IMS Connect must be active and configured to communicate with the Common Service Layer (CSL) Structured Call Interface (SCI).
- A type-2 command environment with Structured Call Interface (SCI) and Operations Manager (OM) must be active.

Syntax
Keywords

The following keywords are valid for the QUERY IMS CON TYPE(ODBM) command.

ALIAS

Selects ODBM resources for display that have one of the specified aliases defined on the port. You can specify a single alias name, or a list of alias names separated by commas. Wildcards can be used in the names.

Only those ODBM resources that have a specified alias are displayed. ODBMs that match the NAME() parameter, but do not have the specified alias, are not displayed.

When the ALIAS filter is specified, alias information is displayed even if SHOW(ALIAS) is not specified. Aliases that match the names specified by the ALIAS filter are displayed. Aliases that are associated with ODM, but which do not match the filter, are not displayed.

ASTATUS

Selects ODBM resources for display that have at least one alias that is in one of the specified states. You can specify a single alias status, or a list of alias statuses separated by commas.

The filters supported with the ASTATUS keyword, which can be specified in any order, are:

ACTIVE

The alias is active.

NOTACTIVE

The alias is not active in IMS Connect, ODBM, or both.

Only those ODBM resources that have an alias that is in one of the specified states are displayed. ODBMs that match the NAME() parameter, but do not have such an alias, are not displayed.

When the ASTATUS filter is specified, alias information is displayed even if SHOW(ALIAS) is not specified. Aliases that are in one of the specified states are displayed.

NAME

Specifies one or more ODBM resources to be displayed. You can specify a single ODBM name or a list of ODBM names separated by commas. Wildcards can be used in the name.

You can specify NAME(*) to display all ODBMs. NAME(*) is the default.

SHOW

Specifies the optional output fields to be displayed. Output fields that are always displayed, regardless of whether SHOW is specified, include the ODBM name, the name of the IMS Connect that processes the command, and the completion code.
The filters that are supported with the SHOW keyword, which can be specified in any order, are:

**ALL**
Displays all output fields.

**ALIAS**
Displays the alias name of an IMS data store defined to the instance of ODBM. If an ODBM has one or more aliases, the command output includes information about each alias. A separate output line is displayed for each alias. This output line is in addition to any output lines that display general ODBM information. If the ODBM resource has no aliases, no additional output line is displayed.

Information displayed for the alias includes:
- Name of the alias
- Status of the alias

For a description of the possible alias status returned, see the ALIAS keyword in Table 68 on page 204.

**RRS**
Displays whether ODBM is using the z/OS Resource Recovery Services (RRS). When IMS Connect registers with ODBM, the ODBM provides IMS Connect with its RRS setting.

**STATUS**
Displays the status of the ODBM. For a description of the possible status returned, see the STATUS keyword in Table 68 on page 204.

**STATUS**
Selects ODBMs for display that possess at least one of the specified statuses. When the STATUS filter is specified, status information is displayed even if SHOW(STATUS) is not specified.

The filters supported with the STATUS keyword, which can be specified in any order, are:

**REGISTERED**
Selects ODBMs that have a status of REGISTERED, which means that this instance of IMS Connect is registered with the ODBM.

**NOTACTIVE**
Selects ODBMs that have a status of NOTACTIVE, which means that the ODBM is not active.

**Usage notes**

You can issue the QUERY IMSCON TYPE(ODBM) command only through the Operations Manager (OM) API.

IMS Connect can process IMS Connect type-2 commands only if the IMSplex from which the commands were issued has a status of **ACTIVE**.

Typically, this command results in one output display line for each ODBM displayed. However, if the SHOW(ALIAS) keyword is specified, an additional line is displayed for each alias associated with the specified ODBM.
Equivalent WTOR and z/OS commands

There are no equivalent WTOR and IMS Connect z/OS commands that perform similar functions as the QUERY IMSCON TYPE(ODBM) command.

Output fields

**Short label**
Contains the short label that is generated in the XML output.

**Long label**
Contains the column heading displayed on the TSO SPOC screen.

**Keyword**
Identifies the keyword on the command that caused the field to be generated. N/A (not applicable) appears for output fields that are always returned. error appears for output fields that are returned only in the case of an error.

**Meaning**
Provides a brief description of the output field.

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALIAS</td>
<td>AliasName</td>
<td>ALIAS</td>
<td>The alias name of an IMS data store defined to the instance of ODBM.</td>
</tr>
<tr>
<td>ASTT</td>
<td>AStatus</td>
<td>ALIAS</td>
<td>Status or state of the alias, which is one of the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>ACTIVE</strong> The alias is active.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>NOTACTIVE(IMSCON)</strong> The alias has been deactivated in IMS Connect by using the STOPIA or an equivalent command.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>NOTACTIVE(ODBM)</strong> The alias has been deactivated in ODBM by using the ODBM type-2 UPDATE ODBM STOP(CONNECTION) ALIAS command.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>NOTACTIVE(IMSCON,ODBM)</strong> The alias has been deactivated both in IMS Connect (by using the STOPIA or an equivalent command) and in ODBM (by using the ODBM type-2 UPDATE ODBM STOP(CONNECTION) ALIAS command).</td>
</tr>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code that indicates whether IMS Connect was able to process the command for the specified resource. The completion code is always returned. See Table 70 on page 205.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the nonzero completion code. This field is returned only for an error completion code.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>Identifier of the IMS Connect that built the output line. The identifier is always returned.</td>
</tr>
<tr>
<td>ODBM</td>
<td>ODBMName</td>
<td>N/A</td>
<td>Name of the ODBM. The ODBM name is always returned.</td>
</tr>
</tbody>
</table>
Table 68. Output fields for the QUERY IMSCON TYPE(ODBM) command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>RRS</td>
<td>RRS</td>
<td>RRS</td>
<td>Indicates the RRS specification in an ODBM. When IMS Connect registers with ODBM, the ODBM provides IMS Connect with its RRS setting. The specification can be one of the following: Y ODBM is using RRS. N ODBM is not using RRS.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STT</th>
<th>Status</th>
<th>STATUS</th>
<th>Status of the ODBM. The status can be one of the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>REGISTERED This instance of IMS Connect is registered with the ODBM.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NOTACTIVE ODBM is not active.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The return and reason codes that can be returned as a result of the QUERY IMSCON TYPE(ODBM) command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 69. Return and reason codes for the QUERY IMSCON TYPE(ODBM) command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The QUERY IMSCON TYPE(ODBM) command completed successfully. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003000'</td>
<td>The command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003004'</td>
<td>The command was not successful for any resource. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

Table 70. Completion codes for the QUERY IMSCON TYPE(ODBM) command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The QUERY IMSCON TYPE(ODBM) command completed successfully for the resources.</td>
</tr>
</tbody>
</table>
Table 70. Completion codes for the QUERY IMSCON TYPE(ODBM) command (continued)

<table>
<thead>
<tr>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 NO RESOURCES FOUND</td>
<td>The resource name is unknown to the client that is processing the request. The resource name might have been typed in error or the resource might not be active at this time. If a wildcard was specified in the command, there were no matches for the name. Confirm that the correct spelling of the resource name is specified on the command.</td>
</tr>
</tbody>
</table>

Examples

**Example 1 for QUERY IMSCON TYPE(ODBM) command**

TSO SPOC input:

```
QUERY IMSCON TYPE(ODBM) NAME(*) SHOW(ALL)
```

TSO SPOC output:

```
(Screen 1)
ODBName MbrName CC Status RRS AliasName AStatus
ODBMA HWS1 0 REGISTERED N
ODBMA HWS1 0 IMS1 ACTIVE
ODBMA HWS1 0 IMS2 NOTACTIVE(IMSCON)
ODBMB HWS1 0 REGISTERED N
ODBMB HWS1 0 IMS1 ACTIVE
ODBMB HWS1 0 IMS2 ACTIVE
ODBMC HWS1 0 NOTACTIVE N
ODBMD HWS1 0 REGISTERED N
```

OM API input:

```
CMD (QUERY IMSCON TYPE(ODBM) NAME(*) SHOW(ALL))
```

OM API output:

```
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2010.298 15:47:30.101469</statime>
<stotime>2010.298 15:47:30.102568</stotime>
<staseq>C6CB31IA774DD430</staseq>
<stoseq>C6CB31IA77928530</stoseq>
<rqsttkn1>USR001 10084729</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
</cmd>
```

```
<master>HWS1</master>
<brd>\n<brd>/userid=USRT001 <userid><brd>QRY <verb>
<kwd>IMSCON</kwd>
<brd>\n<brd>input=QRY IMSCON TYPE(ODBM) NAME(*) SHOW(ALL) </input>
</cmd>
```

```
<hdr slbl="ODBMName" l lbl="ODBMName" scope="LCL" sort="a" key="1" scroll="yes" len="8" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="MbrName" l lbl="MbrName" scope="LCL" sort="a" key="2" scroll="no" len="8" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="CC" l lbl="CC" scope="LCL" sort="n" key="0" scroll="yes"
```

Commands, Volume 2: IMS Commands N - V
Explanation: There are four ODBM resources defined to IMS Connect. ODBMA and ODBMB have two aliases defined. ODBMC and ODBMD have no aliases. For each ODBM, the first line of output displays information and status related to the ODBM resource, while the output that follows displays information and status specific to each alias defined to the ODBM.

Related concepts:

How to interpret CSL request return and reason codes (System Programming APIs)

**QUERY IMSCON TYPE(PORT) command**

Use the QUERY IMSCON TYPE(PORT) command to display the status and activity of one or more ports defined to IMS Connect. The clients that are active on the specified ports can also be displayed.

Subsections:
- “Environment” on page 208
- “Syntax” on page 208
- “Keywords” on page 209
- “Usage notes” on page 212
- “Equivalent WTOR and z/OS commands” on page 212
- “Output fields” on page 213
- “Return, reason, and completion codes” on page 215
- “Examples” on page 216
Environment

The QUERY IMSCON command is applicable only to IMS Connect. To issue this command, the following conditions must be satisfied:

- IMS Connect must be active and configured to communicate with the Common Service Layer (CSL) Structured Call Interface (SCI).
- A type-2 command environment with Structured Call Interface (SCI) and Operations Manager (OM) must be active.

Syntax
Keywords

The following keywords are valid for the QUERY IMS IN TYPE(PORT) command.

CLIENT
Selects ports for display that have one of the specified clients active on the port. You can specify a single client name or a list of client names separated by commas. Wildcards can be used in the names.

Only those ports that have a specified client active are displayed. Ports that match the NAME() parameter, but do not have the specified client active, are not displayed.

When the CLIENT filter is specified, client information is displayed even if SHOW(CLIENT) is not specified.

Only those clients that match the names specified by the CLIENT filter are displayed. Clients that are active on the port, but which do not match the filter, are not displayed.

CSTATUS
Selects ports for display that have at least one active client that is in one of the specified states. You can specify a single client status, or a list of client statuses separated by commas.

The filters supported with the CSTATUS keyword, which can be specified in any order, are:

CONN
Waiting for output from IMS.

CONV
In a conversational state.

READ
Reading an input message from the client.

RECV
Waiting for input from the client (in other words, in a receive state).

WFCM
Waiting for confirmation (ACK, NAK, or DEALLOCATE) from the client.

XMIT
Sending data to the client.

Only those ports that have an active client that is in one of the specified states are displayed. Ports that match the NAME() parameter, but do not have such an active client, are not displayed.

When the CSTATUS filter is specified, client information is displayed even if SHOW(CLIENT) is not specified. Only those clients that are in one of the specified states are displayed.

DATASTORE
Selects ports for display that have at least one active client with a transaction submitted to the specified data store. You can specify a single data store name or a list of data store names separated by commas. Wildcards can be used in the names.

Only those ports that have an active client with a transaction submitted to the specified data store are displayed. Ports that match the NAME() parameter, but do not have such an active client, are not displayed.
When the DATASTORE filter is specified, client information is displayed even if SHOW(CLIENT) is not specified. Only those clients that have submitted a transaction to the specified data store are displayed.

**NAME**

Specifies one or more ports to be displayed. You can specify a single port number or a list of port numbers separated by commas. Wildcards can be used in the port numbers.

To display the local port used by the IMS TM Resource Adapter, specify NAME(LOCAL).

An SSL port is displayed with the character “S” appended to the end of the port number. To display the SSL port, specify the port number either with or without the character “S” appended to the end of the port number.

A port defined for ODBM use is displayed with the character “D” appended to the end of the port number.

A port defined for an ISC link to a CICS subsystem is displayed with the character “C” appended to the end of the port number.

You can specify NAME(*) to display all ports. NAME(*) is the default.

**SHOW**

Specifies the optional output fields to be displayed. Output fields that are always displayed, regardless of whether SHOW is specified, include the port number, the name of the IMS Connect that processes the command, and the completion code.

The filters that are supported with the SHOW keyword, which can be specified in any order, are:

**ALL**

Displays all output fields.

**CLIENT**

Displays the active client socket connections that are associated with the port. If a port has one or more active clients, the command output includes information about each client socket connection. A separate output line is displayed for each active client. This output line is in addition to any output lines that display general port information. If a port has no active clients, no additional output line is displayed.

To view client summary information, including the total number of clients active and in various states, specify the SUMMARY filter in addition to the CLIENT filter.

Information displayed for the client includes:

- Name of the client.
  - IMS Connect uses the client name to identify the client socket connection. The name of an IMS Connect client can be provided by the client or, if the client does not provide it, IMS Connect randomly generates the name.
- User ID passed to IMS Connect.
- If the connection is used for MSC messages, the local MSC physical link ID.
If a connection is used for ISC messages, the ISC link ID.
Transaction code submitted by the client.
Data store to which the transaction was submitted.
Number of seconds that the client has been in the specified status.
The client port number, which is a random number that TCP/IP generates to represent a connection from a client.
The IP address being used by the connection of the client to IMS Connect.
The APSB token for ODBM.
Status or state of the thread of the client. For a description of the possible client status returned, see the CLIENT keyword in Table 72 on page 213.

**EDITRTN**
Displays the name of the Port Input/Output Edit Exit routine, as defined by the EDIT= parameter of the port definition in the IMS Connect configuration file.

**KEEPAV**
Displays the amount of time a connection remains idle before the z/OS TCP/IP layer sends a packet to maintain the connection. The value displayed is specified by the KEEPAV= keyword in either the TCPIP or the ODAACCESS statement in the IMS Connect configuration file.

**NUMSOC**
Displays the number of active sockets that are used on a port. The number includes the active client sockets plus one listening socket.

**STATUS**
Displays the status of the port. For a description of the possible status returned, see the STATUS keyword in Table 72 on page 213.

**SUMMARY**
Displays summary information related to the clients active on the port. To view specific client information, specify the CLIENT filter in addition to the SUMMARY filter.

Information displayed includes:
- Total number of clients active on the port
- Total number of clients in RECV state
- Total number of clients in READ state
- Total number of clients in CONN state
- Total number of clients in XMIT state
- Total number of clients not in any of these states

**TIMEOUT**
Displays the amount of time IMS Connect waits before terminating a client connection if no messages are received from the client.

**STATUS**
Selects ports for display that possess at least one of the specified statuses. When the STATUS keyword is specified, status information is displayed even if SHOW(STATUS) is not specified.
The filters supported with the STATUS keyword, which can be specified in any order, are:
**ACTIVE**
Selects ports that are active.

**NOTACTIVE**
Selects ports that are not active.

**TRAN**
Selects ports for display that have at least one active client with a specified transaction submitted to a data store. You can specify a single transaction name or a list of transaction names separated by commas. Wildcards can be used in the names.

Only those ports that have an active client with a specified transaction are displayed. Ports that match the NAME() parameter, but do not have such an active client, are not displayed.

When the TRAN filter is specified, client information is displayed even if SHOW(CLIENT) is not specified. Only those clients that have submitted a specified transaction are displayed.

**USERID**
Selects ports for display that have one of the specified user IDs active on the port. You can specify a single userid name or a list of userid names separated by commas. Wildcards can be used in the user IDs.

Only those ports that have a specified user ID active are displayed. Ports that match the NAME() parameter, but do not have the specified user ID active, are not displayed.

When the USERID filter is specified, client information is displayed even if SHOW(CLIENT) is not specified. Only those clients that have a user ID specified by the CLIENT filter are displayed. Clients that are active on the port, but which do not have a user ID that matches the filter, are not displayed.

**Usage notes**

You can issue the QUERY IMSCON TYPE(PORT) command only through the Operations Manager (OM) API.

IMS Connect can process IMS Connect type-2 commands only if the IMSplex from which the commands were issued has a status ofACTIVE.

Typically, this command results in one output display line for each port displayed. However, if the SHOW(CLIENT) keyword is specified, an additional line is displayed for each client associated with the specified port.

**Equivalent WTOR and z/OS commands**

The following table lists WTOR (Write to Operator with Reply) and IMS Connect z/OS commands that perform similar functions as the QUERY IMSCON TYPE(PORT) command.

**Notes:**
- IMS Connect WTOR commands are replies to the outstanding IMS Connect reply message.
- IMS Connect z/OS commands are issued through the z/OS (MVS) interface by using the IMS Connect jobname.
Table 71. WTOR and IMS Connect z/OS equivalents for the QUERY IMSCON TYPE(PORT) command

<table>
<thead>
<tr>
<th>QUERY IMSCON TYPE(PORT)</th>
<th>Equivalent IMS Connect WTOR command</th>
<th>Equivalent IMS Connect z/OS command</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY IMSCON TYPE(PORT)</td>
<td>VIEWPORT ALL</td>
<td>QUERY PORT NAME(*) SHOW(ALL)</td>
</tr>
<tr>
<td>NAME(*) SHOW(ALL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIEWPORT port_id</td>
<td>QUERY PORT NAME(port_id) SHOW(ALL)</td>
<td></td>
</tr>
<tr>
<td>NAME(portid) SHOW(ALL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIEWPORT LOCAL</td>
<td>QUERY PORT NAME(LOCAL) SHOW(ALL)</td>
<td></td>
</tr>
<tr>
<td>NAME(LOCAL) SHOW(ALL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Output fields

Short label
Contains the short label that is generated in the XML output.

Long label
Contains the column heading displayed on the TSO SPOC screen.

Keyword
Identifies the keyword on the command that caused the field to be generated. N/A (not applicable) appears for output fields that are always returned. error appears for output fields that are returned only in the case of an error.

Meaning
Provides a brief description of the output field.

Table 72. Output fields for the QUERY IMSCON TYPE(PORT) command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>APTK</td>
<td>ApsbToken</td>
<td>CLIENT</td>
<td>The APSB token for ODBM.</td>
</tr>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code that indicates whether IMS Connect was able to process the command for the specified resource. The completion code is always returned. See <a href="#">Table 74 on page 216</a>.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the nonzero completion code. This field is returned only for an error completion code.</td>
</tr>
<tr>
<td>CLID</td>
<td>ClientID</td>
<td>CLIENT</td>
<td>Name of the client.</td>
</tr>
<tr>
<td>CPORT</td>
<td>ClntPort</td>
<td>CLIENT</td>
<td>The port from which the client is sending messages to IMS Connect. Typically, the port is randomly assigned to the client by the TCP/IP stack at the client site.</td>
</tr>
</tbody>
</table>
Table 72. Output fields for the QUERY IMSCON TYPE(PORT) command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSTT</td>
<td>CStatus</td>
<td>CLIENT</td>
<td>Status of the client thread. The status can be one of the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>CONN</strong> Waiting for output from IMS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>CONV</strong> In a conversational state.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>READ</strong> Reading an input message from the client.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>RECV</strong> Waiting for input from the client (in other words, in a receive state).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>WFCM</strong> Waiting for confirmation (ACK, NAK, or DEALLOCATE) from the client.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>XMIT</strong> Sending data to the client.</td>
</tr>
<tr>
<td>DS</td>
<td>DataStore</td>
<td>CLIENT</td>
<td>Data store to which the transaction was submitted by the client.</td>
</tr>
<tr>
<td>EDTR</td>
<td>EditRtn</td>
<td>EDITRPN</td>
<td>The name of the port input/output edit exit, as defined by the EDIT= parameter of the port definition in the IMS Connect configuration file.</td>
</tr>
<tr>
<td>IP</td>
<td>IpAddress</td>
<td>CLIENT</td>
<td>The IP address of the client that is connected to IMS Connect.</td>
</tr>
<tr>
<td>ISC</td>
<td>ISCNName</td>
<td>CLIENT</td>
<td>The ID of the ISC configuration statement that defines the ISC link that the client is using.</td>
</tr>
<tr>
<td>KAV</td>
<td>KeepAv</td>
<td>KEEPAV</td>
<td>The amount of time a connection remains idle before the z/OS TCP/IP layer sends a packet to maintain the connection. The time is specified by the KEEPAV= keyword in either the TCPIP or the ODACCESS statement in the IMS Connect configuration file.</td>
</tr>
<tr>
<td>LPLK</td>
<td>LclPlkID</td>
<td>CLIENT</td>
<td>The local MSC physical link ID that is using this connection. The value is specified on the LCLPLKID parameter of the MSC statement in the IMS Connect configuration member. This field is valid for MSC messages only.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>Identifier of the IMS Connect that built the output line. The identifier is always returned.</td>
</tr>
<tr>
<td>NSOC</td>
<td>NumSoc</td>
<td>NUMSOC</td>
<td>The number of sockets used on each port.</td>
</tr>
<tr>
<td>PORT</td>
<td>Port</td>
<td>N/A</td>
<td>The port number. The port number is always returned. If one of the following characters is appended to the end of the port number, it indicates that the port is dedicated to a particular purpose:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>C</strong> Identifies a CICS port.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>D</strong> Identifies an ODBM port.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>S</strong> Identifies an SSL port.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If “LOCAL” is displayed instead of a port number, the port is a local port that is used by the IMS TM Resource Adapter.</td>
</tr>
<tr>
<td>SEC</td>
<td>Second</td>
<td>CLIENT</td>
<td>Number of seconds that the client has been in its current state or status.</td>
</tr>
</tbody>
</table>
Table 72. Output fields for the QUERY IMSCON TYPE(PORT) command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>STT</td>
<td>Status</td>
<td>STATUS</td>
<td>Status of the port. The status can be one of the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>ACTIVE</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The port is active.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>NOTACTIVE</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The port is not active.</td>
</tr>
<tr>
<td>TCL</td>
<td>TotClnts</td>
<td>SUMMARY</td>
<td>Total number of clients that are active on the port.</td>
</tr>
<tr>
<td>TCON</td>
<td>TotConn</td>
<td>SUMMARY</td>
<td>Total number of clients that have a status of “CONN” on the port.</td>
</tr>
<tr>
<td>TIMO</td>
<td>TimeOut</td>
<td>TIMEOUT</td>
<td>The amount of time that IMS Connect waits before terminating a client connection if no messages are received from the client.</td>
</tr>
<tr>
<td>TOTH</td>
<td>TotOther</td>
<td>SUMMARY</td>
<td>Total number of clients that have a status other than “CONN”, “RECV” or “XMIT” on the port.</td>
</tr>
<tr>
<td>TRAN</td>
<td>Trancode</td>
<td>CLIENT</td>
<td>Transaction code submitted by the client.</td>
</tr>
<tr>
<td>TRCV</td>
<td>TotRecv</td>
<td>SUMMARY</td>
<td>Total number of clients that have a status of “RECV” on the port.</td>
</tr>
<tr>
<td>TREAD</td>
<td>TotRead</td>
<td>SUMMARY</td>
<td>Total number of clients that have a status of “READ” on the port.</td>
</tr>
<tr>
<td>TXMT</td>
<td>TotXmit</td>
<td>SUMMARY</td>
<td>Total number of clients that have a status of “XMIT” on the port.</td>
</tr>
<tr>
<td>UID</td>
<td>UserID</td>
<td>CLIENT</td>
<td>User ID for the client that is passed to IMS Connect.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The return and reason codes that can be returned as a result of the QUERY IMSCON TYPE(PORT) command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 73. Return and reason codes for the QUERY IMSCON TYPE(PORT) command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The QUERY IMSCON TYPE(PORT) command completed successfully. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C000008'</td>
<td>X'00002004'</td>
<td>An invalid keyword or keyword parameter was specified.</td>
</tr>
<tr>
<td>X'0C000008'</td>
<td>X'00002014'</td>
<td>An invalid character was specified in the NAME() parameter.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003000'</td>
<td>The command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
</tbody>
</table>
Table 73. Return and reason codes for the QUER IMSCON TYPE(PORT) command (continued)

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X’0C00000C’</td>
<td>X’00003004’</td>
<td>The command was not successful for any resource. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X’0C000014’</td>
<td>X’00005008’</td>
<td>The command processor failed to obtain storage via BPEGETM.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

Table 74. Completion codes for the QUER IMSCON TYPE(PORT) command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The QUER IMSCON TYPE(PORT) command completed successfully for the resources.</td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>The resource name is unknown to the client that is processing the request. The resource name might have been typed in error or the resource might not be active at this time. If a wildcard was specified in the command, there were no matches for the name. Confirm that the correct spelling of the resource name is specified on the command.</td>
</tr>
</tbody>
</table>

Examples

Example 1 for QUER IMSCON TYPE(PORT) command

In the following example, port 9999 has four active clients. In the output, the first line shows information and status related to the port. The final four lines of the output display information and status specific to each of the four clients active on the port.

TSO SPOC input:

QUERY IMSCON TYPE(PORT) NAME(9999) SHOW(ALL)

TSO SPOC output:

(Screen 1)

Port MbrName CC  KeepAv NumSoc EditRtn  TimeOut Status
9999  HWS1  0  0  5  0  ACTIVE
9999  HWS1  0  0
9999  HWS1  0
9999  HWS1  0
9999  HWS1  0

(Screen 2)

Port MbrName TotClnts TotRecv TotRead TotConn TotXmit TotOther
9999  HWS1  4  2  0  2  0  0
9999  HWS1
9999  HWS1
9999  HWS1
9999  HWS1

(Screen 3)

Port MbrName ClientID UserID Lc1PlkID Trancode DataStore CStatus Second
9999  HWS1
9999  HWS1  CLIENT01 USRT003  ITOC04  IMS1  RECV  2468
Chapter 5. QUERY commands 217
Example 2 for QUERY IMSCON TYPE(PORT) command

In the following example, port 9999 has four active clients, but because only summary information is requested, only one line of output is displayed.

TSO SPOC output:

```
 QUERY IMSCON TYPE(PORT) NAME(9999) SHOW(SUMMARY)
```

OM API output:

```
 CMD (QUERY IMSCON TYPE(PORT) NAME(9999) SHOW(SUMMARY))
```

OM API output:

```
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2010.298 00:30:21.422815</statime>
```
<sotime>2010.298 00:30:21.424144</sotime>
<staseq>C6C7661B074DF4F8</staseq>
<stoseq>C6C7661B07A10C38</staseq>
<rqtsttknl>USRST001 10173021</rqtsttknl>
<rc>000000000</rc>
<rso>000000000</rso>
</ct1>
</cmd>
</master>
</userid>
</verb>
<kwd>IMSCON</kwd>
<input>QUERY IMSCON TYPE(PORT) NAME(9999) SHOW(SUMMARY) </input>
</cmd>
</cmdrsphdr>
<hdr sbl="PORT" lbl="Port" scope="LCL" sort="a" key="1" scroll="no"
len="8" dtype="CHAR" align="left" skipb="no" />
<hdr sbl="MBR" lbl="MbrName" scope="LCL" sort="a" key="2" scroll="no"
len="8" dtype="CHAR" align="left" skipb="no" />
<hdr sbl="CC" lbl="CC" scope="LCL" sort="n" key="0" scroll="yes"
len="4" dtype="INT" align="right" skipb="no" />
<hdr sbl="CCTXT" lbl="CCText" scope="LCL" sort="n" key="0"
len="32" dtype="CHAR" align="left" skipb="yes" />
<hdr sbl="KAV" lbl="KeepAv" scope="LCL" sort="n" key="0" scroll="yes"
len="7" dtype="INT" align="right" skipb="yes" />
<hdr sbl="NSOC" lbl="NumAv" scope="LCL" sort="n" key="0"
scroll="yes" len="10" dtype="INT" align="right" skipb="yes" />
<hdr sbl="EDTR" lbl="EditRead" scope="LCL" sort="n" key="0" scroll="yes"
len="8" dtype="CHAR" align="left" skipb="yes" />
<hdr sbl="TIMO" lbl="TimeOut" scope="LCL" sort="n" key="0"
scroll="yes" len="10" dtype="INT" align="right" skipb="yes" />
<hdr sbl="STT" lbl="Status" scope="LCL" sort="n" key="0" scroll="yes"
len="9" dtype="CHAR" align="left" skipb="yes" />
<hdr sbl="TC" lbl="TotClnts" scope="LCL" sort="d" key="3"
scroll="yes" len="5" dtype="INT" align="right" skipb="yes" />
<hdr sbl="TrC" lbl="TotRecv" scope="LCL" sort="n" key="0"
scroll="yes" len="5" dtype="INT" align="right" skipb="yes" />
<hdr sbl="TREAD" lbl="TotRead" scope="LCL" sort="n" key="0" scroll="yes"
len="5" dtype="INT" align="right" skipb="yes" />
<hdr sbl="TCON" lbl="TotConn" scope="LCL" sort="n" key="0"
scroll="yes" len="5" dtype="INT" align="right" skipb="yes" />
<hdr sbl="TXMT" lbl="TotXmit" scope="LCL" sort="n" key="0"
scroll="yes" len="5" dtype="INT" align="right" skipb="yes" />
<hdr sbl="TOTH" lbl="TotOther" scope="LCL" sort="n" key="0"
scroll="yes" len="5" dtype="INT" align="right" skipb="yes" />
<hdr sbl="CLID" lbl="ClientID" scope="LCL" sort="a" key="4"
scroll="no" len="8" dtype="CHAR" align="left" skipb="yes" />
<hdr sbl="UID" lbl="UserID" scope="LCL" sort="n" key="0" scroll="yes"
len="8" dtype="CHAR" align="left" skipb="yes" />
<hdr sbl="LPLK" lbl="LcPlkID" scope="LCL" sort="n" key="0"
scroll="yes" len="8" dtype="CHAR" align="left" skipb="yes" />
<hdr sbl="DS" lbl="DataStore" scope="LCL" sort="n" key="0"
scroll="yes" len="8" dtype="CHAR" align="left" skipb="yes" />
<hdr sbl="STT" lbl="Status" scope="LCL" sort="n" key="0"
scroll="yes" len="9" dtype="CHAR" align="left" skipb="yes" />
<hdr sbl="SEC" lbl="Second" scope="LCL" sort="n" key="0" scroll="yes"
len="10" dtype="INT" align="right" skipb="yes" />
<hdr sbl="CPORT" lbl="ClntPort" scope="LCL" sort="n" key="0"
scroll="yes" len="5" dtype="CHAR" align="left" skipb="yes" />
<hdr sbl="IP" lbl="IpAddress" scope="LCL" sort="n" key="0"
scroll="yes" len="39" dtype="CHAR" align="left" skipb="yes" />
<hdr sbl="APTX" lbl="ApbToken" scope="LCL" sort="n" key="0"
scroll="yes" len="32" dtype="CHAR" align="left" skipb="yes" />
</cmdrsphdr>
</cmdrspdata>
Example 3 for QUERY IMSCON TYPE(PORT) command

In the following example, the command requests any port that has a client active with a client ID that begins with CLIENT1. Port 9999 has one such client active: CLIENT12. Other clients might be active on the port, but they are not displayed because their client IDs do not match the CLIENT keyword filter. Likewise, other ports might be in use, but because no clients match the CLIENT keyword filter, the port information is not displayed for those ports.

Although the SHOW keyword was not specified, SHOW(CLIENT) is assumed because the CLIENT keyword was specified.

In the output, the first line displays information and status related to the port. In this case, the first line only displays that it exists because no other SHOW keyword parameter was specified. The remaining line of output displays information and status for CLIENT12.

TSO SPOC input:
QUERY IMSCON TYPE(PORT) CLIENT(CLIENT1*)

TSO SPOC output:
(Screen 1)
Port MbrName CC ClientID UserID Trancode DataStore Second CStatus
9999 HWS1 0
9999 HWS1 0 CLIENT12 USRT002 FESTX2 IMS1 15 RECV
(Screen 2)
Port MbrName ClntPort IpAddress ApsbToken
9999 HWS1
9999 HWS1 2323 0:0:0:0:FFFF:930:6E53

OM API input:
CMD ( QUERY IMSCON TYPE(PORT) CLIENT(CLIENT1*) )

OM API output:
<imsout>
<ctl>
<omname>OM1OM </omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20 </xmlvsn>
<statime>2010.298 00:37:11.954827</statime>
<brstatime>2010.298 00:37:11.955822</brstatime>
<staseq>C6C767A28AD37BD37</staseq>
<brstaseq>C6C767A28B16EB37</brstaseq>
<rqsttkn>USRT001 10173711</rqsttkn>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>HWS1 </master>
<userid>USRT001 </userid>
<verb>QRY </verb>
<kwd>IMSCON </kwd>
<input>QUERY IMSCON TYPE(PORT) CLIENT(CLIENT1*) </input>
</cmd>
<cmdrsphdr>
<hdr slbl="PORT" llbl="Port" scope="LCL" sort="a" key="1" scroll="no"
Clients might be active on the port, but they are not displayed because their user ID of USRT002. The command `PORT(9999)` has one such client active: `CLIENT12`. Other clients might be active on the port, but they are not displayed because their user ID.

### Example 4 for QUERY IMSCON TYPE(PORT) command

In the following example, the command requests any port that has a client active with a user ID of USRT002. Port 9999 has one such client active: `CLIENT12`. Other clients might be active on the port, but they are not displayed because their user ID.
IDs do not match the USERID keyword filter. Likewise, other ports might be in use, but because no clients match the USERID keyword filter, the port information is not displayed for those ports.

In the output, the first line of output displays information and status related to the port. In this case, the first line only displays that it exists because no other SHOW keyword parameter was specified. The remaining line of output displays information and status for CLIENT12.

Although the SHOW keyword was not specified, SHOW(CLIENT) is assumed because the USERID keyword filter was specified.

TSO SPOC input:
QUERY IMSCON TYPE(PORT) USERID(USRT002)

TSO SPOC output:
(Screen 1)
<table>
<thead>
<tr>
<th>Port</th>
<th>MbrName</th>
<th>ClientID</th>
<th>UserID</th>
<th>Trancode</th>
<th>DataStore</th>
<th>Second CStatus</th>
</tr>
</thead>
<tbody>
<tr>
<td>9999</td>
<td>HWS1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9999</td>
<td>HWS1</td>
<td>0 CLIENT12 USRT002</td>
<td>FESTX2</td>
<td>IMS1</td>
<td>15</td>
<td>RECV</td>
</tr>
</tbody>
</table>
(Screen 2)
<table>
<thead>
<tr>
<th>Port</th>
<th>MbrName</th>
<th>ClntPort</th>
<th>IpAddress</th>
<th>ApsbToken</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9999</td>
<td>HWS1</td>
<td>2323</td>
<td>0:0:0:0:0:FFFF:930:6E53</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OM API input:
CMD ( QUERY IMSCON TYPE(PORT) USERID(USRT002) )

OM API output:
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2010.298 00:42:47.545738</statime>
<stotime>2010.298 00:42:47.567715</stotime>
<staseq>C6C768E29083BACEA</staseq>
<stoseq>C6C768E29083BACEA</stoseq>
 rqsttkn1=USRT001 10174247</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>HWS1</master>
<userid>USRT001</userid>
<verb>QRY</verb>
<kwd>IMSCON</kwd>
<input>QUERY IMSCON TYPE(PORT) USERID(USRT002)</input>
</cmd>
<cmdrsphdr>
<hdr slbl="PORT" llbl="Port" scope="LCL" sort="a" key="1" scroll="no"
len="8" dtype="CHAR" align="left" skipb="no"/>
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" key="2" scroll="no"
len="8" dtype="CHAR" align="left" skipb="no"/>
<hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0" scroll="yes"
len="4" dtype="INT" align="right" skipb="no"/>
<hdr slbl="CCTXT" llbl="CCText" scope="LCL" sort="n" key="0"
scroll="yes" len="32" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="KAV" llbl="KeepAv" scope="LCL" sort="n" key="0" scroll="yes"
len="7" dtype="INT" align="right" skipb="yes"/>
<hdr slbl="NSOC" llbl="NumSoc" scope="LCL" sort="n" key="0"
scroll="yes" len="10" dtype="INT" align="right" skipb="yes"/>
Example 5 for QUERY IMSCON TYPE(PORT) command

In the following example, the command requests information about port 9876. Because the port is defined by the CICSPORT parameter of the TCPIP and ISC statements, a C is appended to the port number.

Two client connections are active on port 9876. The client IDs start with the characters ISC, which also indicate that these clients are using ISC connections. Both clients are using an ISC connection that is defined to IMS Connect by the ISC configuration statement, IMS1CIC4.

TSO SPOC input:
QUERY IMSCON TYPE(PORT) NAME(9876) SHOW(ALL)

TSO SPOC output:
<table>
<thead>
<tr>
<th>Port</th>
<th>MbrName</th>
<th>CC</th>
<th>KeepAv</th>
<th>NumSoc</th>
<th>EditRtn</th>
<th>TimeOut</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>9876C</td>
<td>HWS1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
<td>0</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>9876C</td>
<td>HWS1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9876C</td>
<td>HWS1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Port</th>
<th>MbrName</th>
<th>TotClnts</th>
<th>TotRecv</th>
<th>TotRead</th>
<th>TotConn</th>
<th>TotXmit</th>
<th>TotOther</th>
</tr>
</thead>
<tbody>
<tr>
<td>9876C</td>
<td>HWS1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9876C</td>
<td>HWS1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Port</th>
<th>MbrName</th>
<th>ClientID</th>
<th>ISCName</th>
<th>CStatus</th>
<th>Second</th>
<th>ClntPort</th>
</tr>
</thead>
<tbody>
<tr>
<td>9876C</td>
<td>HWS1</td>
<td>ISCC279A</td>
<td>IMS1CIC4</td>
<td>RECV</td>
<td>1384</td>
<td>1057</td>
</tr>
<tr>
<td>9876C</td>
<td>HWS1</td>
<td>ISCC279A</td>
<td>IMS1CIC4</td>
<td>RECV</td>
<td>1388</td>
<td>1055</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Port</th>
<th>MbrName</th>
<th>ClientID</th>
<th>IpAddress</th>
</tr>
</thead>
<tbody>
<tr>
<td>9876C</td>
<td>HWS1</td>
<td>ISCC279A</td>
<td>0:0:0:0:0:FFFF:91E:72F3</td>
</tr>
<tr>
<td>9876C</td>
<td>HWS1</td>
<td>ISCC279A</td>
<td>0:0:0:0:0:FFFF:91E:72F3</td>
</tr>
</tbody>
</table>

**OM API input:**

CMD ( QUERY IMSCON TYPE(PORT) NAME(9876) SHOW(ALL) )

**OM API output:**

```xml
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.6.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2012.221 18:31:09.431501</statime>
<stotime>2012.221 18:31:09.433764</stotime>
<staseq>C9FD9994E6ACD414</staseq>
<stoseq>C9FD9994E73A4194</staseq>
<rqsttkn1>USRT00110113109</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>HWS1</master>
<userid>USRT001</userid>
<verb>QRY</verb>
<kwd>IMSCON</kwd>
<input>QUERY IMSCON TYPE(PORT) NAME(9876) SHOW(ALL)</input>
</cmd>
</imsout>
```
<hdr slbl="TRCV" llbl="TotRecv" scope="LCL" sort="n" key="0" scroll="yes" len="5" dtype="INT" align="right" skipb="yes"/>
<hdr slbl="TREAD" llbl="TotRead" scope="LCL" sort="n" key="0" scroll="yes" len="5" dtype="INT" align="right" skipb="yes"/>
<hdr slbl="TCON" llbl="TotConn" scope="LCL" sort="n" key="0" scroll="yes" len="5" dtype="INT" align="right" skipb="yes"/>
<hdr slbl="TXMT" llbl="TotXmit" scope="LCL" sort="n" key="0" scroll="yes" len="5" dtype="INT" align="right" skipb="yes"/>
<hdr slbl="TOTH" llbl="TotOther" scope="LCL" sort="n" key="0" scroll="yes" len="5" dtype="INT" align="right" skipb="yes"/>
<hdr slbl="CLID" llbl="ClientID" scope="LCL" sort="a" key="4" scroll="no" len="8" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="UID" llbl="UserID" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="LPLK" llbl="LclPlkID" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="ISC" llbl="ISCName" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="TRAN" llbl="Trancode" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="DS" llbl="DataStore" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="CSTT" llbl="CStatus" scope="LCL" sort="n" key="0" scroll="yes" len="9" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="SEC" llbl="Second" scope="LCL" sort="n" key="0" scroll="yes" len="10" dtype="INT" align="right" skipb="yes"/>
<hdr slbl="CPORT" llbl="ClntPort" scope="LCL" sort="n" key="0" scroll="yes" len="5" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="IP" llbl="IpAddress" scope="LCL" sort="n" key="0" scroll="yes" len="39" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="APTK" llbl="ApsbToken" scope="LCL" sort="n" key="0" scroll="yes" len="32" dtype="CHAR" align="left" skipb="yes"/>
</cmdrsphdr>
</cmdrspdata>
</imsout>

Related concepts:
- How to interpret CSL request return and reason codes (System Programming APIs)

Related reference:
- VIEWPORT command (Commands)
- IMS Connect QUERY PORT command (Commands)

**QUERY IMSCON TYPE(RMTCICS) command**

Use the QUERY IMSCON TYPE(RMTCICS) command to display the attributes and status of one or more ISC links to a remote CICS subsystem that is defined to IMS Connect.

Subsections:
- "Environment” on page 226
- “Syntax” on page 226
Environment

The QUERY IMSCON command is applicable only to IMS Connect. To issue this command, the following conditions must be satisfied:

- IMS Connect must be active and configured to communicate with the Common Service Layer (CSL) Structured Call Interface (SCI).
- A type-2 command environment with Structured Call Interface (SCI) and Operations Manager (OM) must be active.

Syntax

```plaintext
QUERY IMSCON TYPE(RMTCICS) NAME(*), NAME(RMTCICS_name*),
SCSTATUS(CONN), SENDCLNT(sendclient_name*),
SHOW(ALL), STATUS(ACTIVE, NOTACTIVE, STOPPED)
```

Usage notes

You can issue the QUERY IMSCON TYPE(RMTCICS) command only through the Operations Manager (OM) API.

IMS Connect can process IMS Connect type-2 commands only if the IMSplex from which the commands were issued has a status of ACTIVE.

Typically, this command results in one output display line for each remote CICS definition being displayed. However, if the SHOW(SENDCLNT) keyword is
specified, an additional line is displayed for each send client associated with the specified remote CICS definition.

**Equivalent WTOR and z/OS commands**

The QUERY IMSCON TYPE(RMTCICS) command does not have an equivalent WTOR or z/OS MODIFY command. However, the WTOR VIEWHWS command and the z/OS MODIFY QUERY MEMBER TYPE(IMSCON) command also display some of the same attribute and status fields as the QUERY IMSCON TYPE(RMTCICS).

**Notes:**

- IMS Connect WTOR commands are replies to the outstanding IMS Connect reply message.
- IMS Connect z/OS commands are issued through the z/OS (MVS) interface by using the IMS Connect jobname.

**Table 75. WTOR and IMS Connect z/OS equivalents for the QUERY IMSCON TYPE(RMTCICS) command**

<table>
<thead>
<tr>
<th>QUERY IMSCON TYPE(RMTCICS) command</th>
<th>Equivalent IMS Connect WTOR command</th>
<th>Equivalent IMS Connect z/OS command</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME(*) SHOW(ALL</td>
<td>show_parm)</td>
<td>None</td>
</tr>
<tr>
<td>NAME(RMTCICS_name) SHOW(ALL</td>
<td>show_parm)</td>
<td>None</td>
</tr>
</tbody>
</table>

**Keywords**

The following keywords are valid for the QUERY IMSCON TYPE(RMTCICS) command.

**NAME**

Specify the ID values from one or more RMTCICS configuration statements to display the status and attributes of the corresponding remote CICS connections. You can specify a single RMTCICS ID or a list of RMTCICS IDs separated by commas. You can use wildcards.

You can specify NAME(*) to display all RMTCICS resources. NAME(*) is the default.

**SCSTATUS**

A filter that selects remote CICS resources for display that have at least one send client that is in one of the specified states. You can specify a single send client status, or a list of send client statuses separated by commas.

The filters supported with the SCSTATUS keyword, which can be specified in any order, are:

**CONN**

This connection is in connect state. It can send messages to the remote CICS.

**RECV**

This connection is in receive state. It is waiting to receive a response from the remote CICS.
Only those remote CICS resources that have a send client that is in one of the specified states are displayed. Remote CICS resources that match the \texttt{NAME()} parameter, but do not have such a send client, are not displayed.

When the \texttt{SCSTATUS} filter is specified, send client information is displayed even if \texttt{SHOW(SENDCLNT)} is not specified.

\textbf{SENDCLNT}

Selects remote CICS resources for display that have one of the specified send clients defined. You can specify a single send client name or a list of send client names separated by commas. Wildcards can be used in the names.

Only those remote CICS resources that have a specified send client are displayed. Remote CICS resources that match the \texttt{NAME()} parameter, but do not have the specified send client, are not displayed.

When the \texttt{SENDCLNT} filter is specified, send client information is displayed even if \texttt{SHOW(SENDCLNT)} is not specified. Only those clients that match the names specified by the \texttt{SENDCLNT} filter are displayed. Send clients that are associated with the remote CICS, but which do not match the filter, are not displayed.

\textbf{SHOW}

Specifies the optional output fields to be displayed. Output fields that are always displayed, regardless of whether \texttt{SHOW} is specified, include the remote CICS name, the name of the IMS Connect that processes the command, and the completion code.

The filters that are supported with the \texttt{SHOW} keyword, which can be specified in any order, are:

\textbf{ALL}

Displays all output fields.

\textbf{HOSTNAME}

Displays the host name of the remote CICS subsystem. The host name of a remote CICS is defined in the \texttt{RMTCICS} parameter of the ISC statement in the IMS Connect configuration member.

\textbf{IPADDR}

Displays the IP address of the remote CICS subsystem.

\textbf{NUMSOC}

Displays the current number of sockets that are being used for this remote CICS connection.

\textbf{PORT}

Displays the port on which the remote CICS subsystem receives transactions and data replies from IMS Connect on this ISC link. This port is defined in CICS on the \texttt{PORT} keyword of the \texttt{TCPIPSERVICE} resource definition. This port is specified in IMS Connect on the \texttt{PORT} keyword of the \texttt{RMTCICS} statement that defines the connection to the remote CICS subsystem.

\textbf{SENDCLNT}

Displays information and status for the send sockets of the active parallel sessions (ISCUSERS) that are using the connection to the remote CICS subsystem. If one or more parallel sessions are active with a remote CICS, a separate output line is displayed for each parallel session. If there are no active parallel sessions, no additional output lines are displayed.

Information displayed for the send socket includes:
• The send client ID that IMS Connect randomly generates and assigns to the send socket.
• Status or state of the send socket connection, which is one of the following types:
  
  **CONN**  
  The send socket connection is in connect state. It can send messages to the remote CICS.
  
  **RECV**  
  The send socket connection is in receive state. It is waiting to receive a response from the remote CICS.

• Number of seconds that this socket connection is in the specified state.
• The local port to which the send socket belongs.

**STATUS**
Displays the state of the remote CICS connection. For a description of the status returned, see the STATUS keyword in Table 76 on page 230.

**SUMMARY**
Displays summary information related to the send clients that are active on the remote CICS connection. To see specific send client information, specify the SENDCLNT parameter in addition to the SUMMARY parameter.

Information displayed includes:
• Total number of send clients that are active on the remote CICS connection
• Total number of send clients in RECV state
• Total number of send clients in CONN state
• Total number of send clients in XMIT state
• Total number of send clients that are not in any of these states

**STATUS**
Selects remote CICS resources for display that possess at least one of the specified statuses. When the STATUS filter is specified, status information is displayed even if SHOW(STATUS) is not specified.

The filters supported with the STATUS keyword, which can be specified in any order, are:

**ACTIVE**
Selects remote CICS resources that have a status of ACTIVE, meaning that the connection to the remote CICS subsystem is active.

**NOTACTIVE**
Selects remote CICS resources that have a status of NOTACTIVE, meaning that the connection to the remote CICS is not active.

**STOPPED**
Selects remote CICS resources for which a command stopped communications between IMS Connect and the remote CICS subsystem that is identified on the NAME keyword. Any messages to be sent to the CICS subsystem that is specified on the NAME keyword are rejected and an error message is sent back to the requester.

**Output fields**

**Short label**
Contains the short label that is generated in the XML output.
Long label
Contains the column heading displayed on the TSO SPOC screen.

Keyword
Identifies the keyword on the command that caused the field to be generated. N/A (not applicable) appears for output fields that are always returned. error appears for output fields that are returned only in the case of an error.

Meaning
Provides a brief description of the output field.

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code that indicates whether IMS Connect was able to process the command for the specified resource. The completion code is always returned. See Table 78 on page 232.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the non-zero completion code. This field is returned only for an error completion code.</td>
</tr>
<tr>
<td>HOST</td>
<td>HostName</td>
<td>HOSTNAME</td>
<td>The host name of the remote CICS subsystem. Remote CICS subsystems are defined in the RMTCICS parameter of the ISC statement in the IMS Connect configuration member.</td>
</tr>
<tr>
<td>IP</td>
<td>IpAddress</td>
<td>IPADDR</td>
<td>The IP address of the remote CICS. The remote CICS is defined in the RMTCICS of the ISC statement in the IMS Connect configuration member.</td>
</tr>
<tr>
<td>ISC</td>
<td>ISCNamem</td>
<td>SENDCLNT</td>
<td>The ID of the ISC configuration statement in the IMS Connect configuration member.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>Identifier of the IMS Connect that built the output line. The identifier is always returned.</td>
</tr>
<tr>
<td>NSOC</td>
<td>NumSoc</td>
<td>NUMSOC</td>
<td>The current number of sockets that are being used for this CICS connection.</td>
</tr>
<tr>
<td>PORT</td>
<td>Port</td>
<td>PORT</td>
<td>The port of the associated remote CICS subsystem. The remote CICS is defined on the RMTCICS parameter of the ISC statement.</td>
</tr>
<tr>
<td>RCICS</td>
<td>RmtCICS</td>
<td>N/A</td>
<td>Remote CICS name. The CICS name is always returned.</td>
</tr>
<tr>
<td>SCL</td>
<td>SendClnt</td>
<td>SENDCLNT</td>
<td>The client name that IMS Connect assigns to the socket that is used to send the transactions and data replies to a remote CICS subsystem (RMTCICS) for the ISC parallel session that is identified in the corresponding IUSER output field.</td>
</tr>
<tr>
<td>SCSTT</td>
<td>SendStatus</td>
<td>SENDCLNT</td>
<td>Status of the send client connection. The status can be one of the following types:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>CONN</strong> This connection is in connect state. It can send messages to the remote CICS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>RECV</strong> This connection is in receive state. It is waiting to receive a response from the remote CICS.</td>
</tr>
</tbody>
</table>
Table 76. Output fields for the QUERY IMSCON TYPE(RMTCICS) command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEC</td>
<td>Second</td>
<td>SENDCLNT</td>
<td>Number of seconds that this connection is in the specified state.</td>
</tr>
<tr>
<td>SPORT</td>
<td>SendPort</td>
<td>SENDCLNT</td>
<td>The port that this instance of IMS Connect used to connect to the remote CICS.</td>
</tr>
<tr>
<td>STT</td>
<td>Status</td>
<td>STATUS</td>
<td>Status of the remote CICS connection. The status can be one of the following types:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>ACTIVE</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The connection to the remote CICS is active. A connection with this status has at least one socket connection to the CICS identified in the RMTCICS field.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>NOTACTIVE</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The connection to the remote CICS is not active. A connection with this status does not have any socket connections to the CICS that is identified in the RMTCICS field.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>STOPPED</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A command stopped communications between this IMS Connect and the CICS that is identified in the RMTCICS field. Any messages that are sent to the CICS that is shown in RMTCICS field are rejected and an error message is sent back to the sender.</td>
</tr>
<tr>
<td>TSCL</td>
<td>TotSClnts</td>
<td>SUMMARY</td>
<td>Total number of send clients that are active on the remote CICS connection.</td>
</tr>
<tr>
<td>TCON</td>
<td>TotConn</td>
<td>SUMMARY</td>
<td>Total number of send clients that have a status of CONN on the remote CICS connection.</td>
</tr>
<tr>
<td>TOTH</td>
<td>TotOther</td>
<td>SUMMARY</td>
<td>Total number of send clients that have a status other than CONN, RECV, or XMIT on the remote CICS connection.</td>
</tr>
<tr>
<td>TRCV</td>
<td>TotRecv</td>
<td>SUMMARY</td>
<td>Total number of send clients that have a status of RECV on the remote CICS connection.</td>
</tr>
<tr>
<td>TXMT</td>
<td>TotXmit</td>
<td>SUMMARY</td>
<td>Total number of send clients that have a status of XMIT on the remote CICS connection.</td>
</tr>
</tbody>
</table>

**Return, reason, and completion codes**

The return and reason codes that can be returned as a result of the QUERY IMSCON TYPE(RMTCICS) command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.
### Table 77. Return and reason codes for the QUERY IMSCON TYPE(RMTCICS) command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The QUERY IMSCON TYPE(RMTCICS) command completed successfully. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C000004'</td>
<td>X'00001010'</td>
<td>No RMTCICS resource was found that matched the NAME or the filters specified, if any.</td>
</tr>
<tr>
<td>X'0C000008'</td>
<td>X'00002004'</td>
<td>Invalid keyword or keyword combination for the command.</td>
</tr>
<tr>
<td>X'0C000008'</td>
<td>X'00002014'</td>
<td>Invalid character specified in the resource name.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003000'</td>
<td>The command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003004'</td>
<td>The command was not successful for any resource. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C000014'</td>
<td>X'00005004'</td>
<td>The command processor failed to obtain storage for the output buffer.</td>
</tr>
<tr>
<td>X'0C000014'</td>
<td>X'00005008'</td>
<td>The command processor failed to obtain storage via BPEGETM.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

### Table 78. Completion codes for the QUERY IMSCON TYPE(RMTCICS) command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The QUERY IMSCON TYPE(RMTCICS) command was completed successfully for the resources.</td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>The resource name is unknown to the client that is processing the request. The resource name might have been typed in error or the resource might not be active at this time. If a wildcard was specified in the command, there were no matches for the name. Confirm that the correct spelling of the resource name is specified on the command.</td>
</tr>
</tbody>
</table>

### Examples

In the following example, the output shows the current status of the RMTCICS resource “ICONNT1”. The status of ICONNT1 is ACTIVE, so it can be used for ISC communication between IMS and CICS. Two send clients are shown that are associated with ICONNT1: “ISC1111” and “ISC2222”. Both send clients were created for the ISC resource “LU6TCP1” and are both in CONN state.

**TSO SPOC input:**

```
QUERY IMSCON TYPE(RMTCICS) NAME(ICONNT1) SHOW(ALL)
```

**TSO SPOC output:**
OM API input:

CMD ( QUERY IMSCON TYPE(RMTCICS) NAME(ICONNT1) SHOW(ALL) )

OM API output:

<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.6.0</omvsn>
+xmlvsn>20</xmlvsn>
<statime>2012.097 22:05:09.441459</statime>
+<stotime>2012.097 22:05:09.443581</stotime>
+<staseq>C961A224EEBB3C9E</staseq>
+<stoseq>C961A224EF3FD01E</stoseq>
+<rqsttkn1>USRT00110150509</rqsttkn1>
+<rc>00000000</rc>
+<rsn>00000000</rsn>
</ctl>
<cmd>
+<master>HWS1</master>
+<userid>USRTOOI</userid>
+<verb>QRY</verb>
+<kwds>IMSCON</kwds>
<input>QUERY IMSCON TYPE(RMTCICS) NAME(CICS2) SHOW(ALL) </input>
</cmd>
<cmdrsphdr>
+<hdr slbl="RCICS" llbl="RmtCICS" scope="LCL" sort="a" key="2"
scroll="no" len="8" dtype="CHAR" align="left" skipb="no" />
+<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" key="1"
scroll="no" len="8" dtype="CHAR" align="left" skipb="no" />
+<hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0"
scroll="yes" len="4" dtype="INT" align="right" skipb="no" />
+<hdr slbl="CCTXT" llbl="CCText" scope="LCL" sort="n" key="0"
scroll="yes" len="32" dtype="CHAR" align="left" skipb="yes" />
+<hdr slbl="IP" llbl="IpAddress" scope="LCL" sort="n" key="0"
scroll="yes" len="15" dtype="CHAR" align="left" skipb="yes" />
+<hdr slbl="HOST" llbl="HostName" scope="LCL" sort="n" key="0"
QUERY IMSCON TYPE(RMTIMSCON) command

Use the QUERY IMSCON TYPE(RMTIMSCON) command to display the status of one or more remote IMS Connects that are defined to IMS Connect.

Subsections:
- “Environment” on page 235
- “Syntax” on page 235
- “Keywords” on page 235
- “Usage notes” on page 238
- “Equivalent WTO and z/OS commands” on page 239
- “Output fields” on page 240
- “Return, reason, and completion codes” on page 242
- “Examples” on page 243
Environment

The QUERY IMSCON command is applicable only to IMS Connect. To issue this command, the following conditions must be satisfied:

- IMS Connect must be active and configured to communicate with the Common Service Layer (CSL) Structured Call Interface (SCI).
- A type-2 command environment with Structured Call Interface (SCI) and Operations Manager (OM) must be active.

Syntax

```
►► QUERY QRY IMSCON TYPE(RMTIMSCON)
 ▼ NAME(*)
 NAME(rmtimscon_name)
 NAME(rmtimscon_name*)

 ▼ SCSTATUS(CONN_RECV)
 ▼ SENDCLNT(sendclient_name)
 sendclient_name*

 ▼ SHOW(ALL)
 APPL
 AUTOCONN
 HOSTNAME
 IDLETO
 IPADDR
 NUMSOC
 PERSISTENT
 PORT
 RESVSOC
 SENDCLNT
 STATUS
 SUMMARY
 USERID

 ▼ STATUS(ACTIVE NOTACTIVE RETRYCONN STOPPED)
```

Keywords

The following keywords are valid for the QUERY IMSCON TYPE(RMTIMSCON) command.

**NAME**

Specifies one or more remote IMS Connect resources to be displayed. You can specify a single remote IMS Connect name or a list of remote IMS Connect names separated by commas. Wildcards can be used in the names.

You can specify NAME(*) to display all remote IMS Connect resources. NAME(*) is the default.
**SCSTATUS**

Selects remote IMS Connect resources for display that have at least one send client that is in one of the specified states. You can specify a single send client status, or a list of send client statuses separated by commas.

The filters supported with the SCSTATUS keyword, which can be specified in any order, are:

**CONN**

This connection is in connect state. It can send messages to the remote IMS Connect.

**RECV**

This connection is in receive state. It is waiting to receive a response from the remote IMS Connect.

Only those remote IMS Connect resources that have a send client that is in one of the specified states are displayed. Remote IMS Connect resources that match the NAME() parameter, but do not have such a send client, are not displayed.

When the SCSTATUS filter is specified, send client information is displayed even if SHOW(SENDCLNT) is not specified. Only those send clients that are in one of the specified states are displayed.

**SENDCLNT**

Selects remote IMS Connect resources for display that have one of the specified send clients defined. You can specify a single send client name or a list of send client names separated by commas. Wildcards can be used in the names.

Only those remote IMS Connect resources that have a specified send client are displayed. Remote IMS Connect resources that match the NAME() parameter, but do not have the specified send client, are not displayed.

When the SENDCLNT filter is specified, send client information is displayed even if SHOW(SENDCLNT) is not specified. Only those clients that match the names specified by the SENDCLNT filter are displayed. Send clients that are associated with the remote IMS Connect, but which do not match the filter, are not displayed.

**SHOW**

Specifies the optional output fields to be displayed. Output fields that are always displayed, regardless of whether SHOW is specified, include the remote IMS Connect name, the name of the IMS Connect that processes the command, and the completion code.

The filters that are supported with the SHOW keyword, which can be specified in any order, are:

**ALL**

Displays all output fields.

**APPL**

Displays the APPL name that is used to generate the RACF PassTicket. The PassTicket is then sent to the remote IMS Connect and used to authenticate the user ID.

**AUTOCONN**

Displays whether this instance of IMS Connect automatically connects to the remote IMS Connect when this instance of IMS Connect starts.

**RESVSOC**

Displays the number of send sockets available for this remote IMS Connect
connection. This value is defined in the RESVSOC parameter of the RMTIMSCON statement in the IMS Connect configuration member.

HOSTNAME
Displays the host name of the remote IMS Connect.

IDLETO
Displays the idle timeout interval to keep this socket connection before closing it due to inactivity.

IPADDR
Displays the IP address of the remote IMS Connect.

NUMSOC
Displays the current number of sockets being used for this remote IMS Connect connection.

PERSISTENT
Displays whether the connections to the remote IMS Connect are persistent.

PORT
Displays the port number of the remote IMS Connect that this IMS Connect instance communicates on.

SENDCLNT
Displays information and status for active connections (send clients) to this remote IMS Connect. If this instance of IMS Connect has one or more active connections to this remote IMS Connect, the command output includes information about each connection. A separate output line is displayed for each connection. This output line is in addition to any output lines that display general remote IMS Connect information. If there are no active connections, no additional output line is displayed.

Information displayed for the send client includes:

• The client ID that this instance of IMS Connect used to connect to the remote IMS Connect.
• The user ID specified by the local IMS to be sent to the remote IMS for transaction authorization. This information is valid for OTMA messages only.
• The local MSC physical link ID that is using this connection.
• Status or state of the remote IMS Connect connection, which is one of the following:

  CONN
  This connection is in connect state. It can send messages to the remote IMS Connect.

  RECV
  This connection is in receive state. It is waiting to receive a response from the remote IMS Connect.

• Number of seconds that this connection is in the specified state.
• The port that this instance of IMS Connect used to connect to the remote IMS Connect.

STATUS
Displays the state of the remote IMS Connect. For a description of the status returned, see the STATUS keyword in Table 80 on page 239.

SUMMARY
Displays summary information related to the send clients that are active on
the remote IMS Connect. To see specific send client information, specify the SENDCLNT parameter in addition to the SUMMARY parameter.

Information displayed includes:
- Total number of send clients that are active on the remote IMS Connect
- Total number of send clients in RECV state
- Total number of send clients in CONN state
- Total number of send clients in XMIT state
- Total number of send clients that are not in any of these states

**USERID**
Displays the user ID to use for generating the RACF PassTicket, which is sent to the remote IMS Connect and used to authenticate the user ID.

**STATUS**
Selects remote IMS Connect resources for display that possess at least one of the specified statuses. When the STATUS filter is specified, status information is displayed even if SHOW(STATUS) is not specified.

The filters supported with the STATUS keyword, which can be specified in any order, are:

**ACTIVE**
Selects remote IMS Connect resources that have a status of ACTIVE, meaning that the connection to the remote IMS Connect is active. IMS Connect with this status has at least one socket connection to the remote IMS Connect identified in the RMTIMSCON field.

**NOTACTIVE**
Selects remote IMS Connect resources that have a status of NOTACTIVE, meaning that the connection to the remote IMS Connect is not active. IMS Connect with this status does not have any socket connections to the remote IMS Connect identified in the RMTIMSCON field.

**RETRYCONN**
Selects remote IMS Connect resources that have a status of RETRYCONN, meaning that IMS Connect had failed to make a connection to the remote IMS Connect and is retrying to make a connection every two minutes.

**STOPPED**
Selects remote IMS Connect resources that have a status of STOPPED. A STOPRMT command has stopped communications between this IMS Connect and the remote IMS Connect identified in the RMTIMSCON field. Any messages to be sent to the IMS Connect that is shown in the RMTIMSCON field is rejected, and an error is sent back to the requester. The STOPRMT command is equivalent to the UPD IMSCON TYPE(RMTIMSCON) NAME(...) STOP(COMM) command.

**Usage notes**

You can issue the QUERY IMSCON TYPE(RMTIMSCON) command only through the Operations Manager (OM) API.

IMS Connect can process IMS Connect type-2 commands only if the IMSplex from which the commands were issued has a status of ACTIVE.

Typically, this command results in one output display line for each remote IMS Connect definition being displayed. However, if the SHOW(SENDCLNT) keyword
is specified, an additional line is displayed for each send client associated with the specified remote IMS Connect definition.

**Equivalent WTOR and z/OS commands**

The following table lists WTOR (Write to Operator with Reply) and IMS Connect z/OS commands that perform similar functions as the QUERY IMSCON TYPE(RMTIMSCON) command.

**Notes:**
- IMS Connect WTOR commands are replies to the outstanding IMS Connect reply message.
- IMS Connect z/OS commands are issued through the z/OS (MVS) interface by using the IMS Connect jobname.

**Table 79. WTOR and IMS Connect z/OS equivalents for the QUERY IMSCON TYPE(RMTIMSCON) command**

<table>
<thead>
<tr>
<th>QUERY IMSCON TYPE(RMTIMSCON) command</th>
<th>Equivalent IMS Connect WTOR command</th>
<th>Equivalent IMS Connect z/OS command</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY IMSCON TYPE(RMTIMSCON) NAME(*) SHOW(ALL</td>
<td>VIEWRMT ALL</td>
<td>QUERY RMTIMSCON NAME(*)</td>
</tr>
<tr>
<td>SHOW(ALL</td>
<td>show_parm)</td>
<td></td>
</tr>
<tr>
<td>QUERY IMSCON TYPE(RMTIMSCON) NAME(rmtimscon_name) SHOW(ALL</td>
<td>VIEWRMT</td>
<td>QUERY RMTIMSCON NAME(rmtimscon_name)</td>
</tr>
<tr>
<td>show_parm)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Output fields**

**Short label**
Contains the short label that is generated in the XML output.

**Long label**
Contains the column heading displayed on the TSO SPOC screen.

**Keyword**
Identifies the keyword on the command that caused the field to be generated. N/A (not applicable) appears for output fields that are always returned. error appears for output fields that are returned only in the case of an error.

**Meaning**
Provides a brief description of the output field.

**Table 80. Output fields for the QUERY IMSCON TYPE(RMTIMSCON) command**

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPL</td>
<td>Appl</td>
<td>APPL</td>
<td>The APPL name to use for generating the RACF PassTicket, which is sent to the remote IMS Connect and be used for authenticating the user ID.</td>
</tr>
<tr>
<td>AUTC</td>
<td>AutoConn</td>
<td>AUTOCONN</td>
<td>Indicates whether this instance of IMS Connect automatically connects to the remote IMS Connect when this instance of IMS Connect starts. The value can be one of the following: Y Connection is automatic. N Connection is not automatic.</td>
</tr>
</tbody>
</table>
Table 80. Output fields for the QUERY IMSCON TYPE(RMTIMSCON) command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code that indicates whether IMS Connect was able to process the command for the specified resource. The completion code is always returned. See Table 82 on page 242.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the nonzero completion code. This field is returned only for an error completion code.</td>
</tr>
<tr>
<td>HOST</td>
<td>HostName</td>
<td>HOSTNAME</td>
<td>The host name of the remote IMS Connect.</td>
</tr>
<tr>
<td>IP</td>
<td>IpAddress</td>
<td>IPADDR</td>
<td>The IP address of the remote IMS Connect.</td>
</tr>
<tr>
<td>ITO</td>
<td>IdleTO</td>
<td>IDLETO</td>
<td>The idle timeout interval to keep this socket connection before closing it due to inactivity.</td>
</tr>
<tr>
<td>LPLK</td>
<td>LclPlkID</td>
<td>SENDCLNT</td>
<td>The local MSC physical link ID that is using this connection, as specified on the LCLPLKID parameter of the MSC statement in the IMS Connect configuration member.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>Identifier of the IMS Connect that built the output line. The identifier is always returned.</td>
</tr>
<tr>
<td>NSOC</td>
<td>NumSoc</td>
<td>NUMSOC</td>
<td>The current number of sockets being used for this remote IMS Connect connection.</td>
</tr>
</tbody>
</table>
| PERS        | Persist    | PERSISTENT| Indicates whether the connections to the remote IMS Connect are persistent. The value can be one of the following:  
Y Connection is persistent.  
N Connection is not persistent. |
| PORT        | Port       | PORT    | The port number of the remote IMS Connect that this IMS Connect instance communicates on. |
| RIC         | RmtImcCon  | N/A     | Remote IMS Connect name. The remote IMS Connect name is always returned. |
| RSOCE       | ResvSoc    | RESVSOC | The number of send sockets available for this remote IMS Connect connection. The value is defined in the RESVSOC parameter of the RMTIMSCON statement in the IMS Connect configuration. |
| SCL         | SendClnt   | SENDCLNT| The client ID that this instance of IMS Connect used to connect to the remote IMS Connect. |
| SCSTT       | SendStatus | SENDCLNT| Status of the send client connection. The status can be one of the following:  
CONN This connection is in connect state. It can send messages to the remote IMS Connect.  
RECV This connection is in receive state. It is waiting to receive a response from the remote IMS Connect. |
<p>| SEC         | Second     | SENDCLNT| Number of seconds that this connection is in the specified state. |
| SPORT       | SendPort   | SENDCLNT| The port that this instance of IMS Connect used to connect to the remote IMS Connect. |</p>
<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>STT</td>
<td>Status</td>
<td>STATUS</td>
<td>Status of the remote IMS Connect connection. The status can be one of the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>ACTIVE</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The connection to the remote IMS Connect is active. IMS Connect with this status has at least one socket connection to the remote IMS Connect identified in the RMTIMSCON field.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>NOTACTIVE</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The connection to the remote IMS Connect is not active. IMS Connect with this status does not have any socket connections to the remote IMS Connect identified in the RMTIMSCON field.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>RETRYCONN</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IMS Connect had failed to make a connection to the remote IMS Connect. The failure was due to the local TCP/IP, remote TCP/IP, or remote IMS Connect not being available. IMS Connect will wait 2 minutes and retry connecting again.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>When the connection to the remote IMS Connect is established, IMS Connect will notify OTMA to start sending remote IMS messages that uses this specific remote IMS Connect RMTIMSCON.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>STOPPED</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A STOPRMT command has stopped communications between this IMS Connect and the remote IMS Connect identified in the RMTIMSCON field. Any messages to be sent to the IMS Connect that is shown in RMTIMSCON field is rejected, and an error is sent back to the requester. The STOPRMT command is equivalent to the UPD IMSCON TYPE(RMTIMSCON) NAME(...) STOP(COMM) command.</td>
</tr>
<tr>
<td>SUID</td>
<td>SendUID</td>
<td>SENDCLNT</td>
<td>The user ID specified by the local IMS to be sent to the remote IMS for transaction authorization. This field is valid for OTMA messages only.</td>
</tr>
<tr>
<td>TSCL</td>
<td>TotSClns</td>
<td>SUMMARY</td>
<td>Total number of send clients that are active on the remote IMS Connect.</td>
</tr>
<tr>
<td>TCON</td>
<td>TotConn</td>
<td>SUMMARY</td>
<td>Total number of send clients that have a status of CONN on the remote IMS Connect.</td>
</tr>
<tr>
<td>TOTH</td>
<td>TotOther</td>
<td>SUMMARY</td>
<td>Total number of send clients that have a status other than CONN, RECV, or XMIT on the remote IMS Connect.</td>
</tr>
<tr>
<td>TRCV</td>
<td>TotRecv</td>
<td>SUMMARY</td>
<td>Total number of send clients that have a status of RECV on the remote IMS Connect.</td>
</tr>
</tbody>
</table>
Table 80. Output fields for the QUERY IMSCON TYPE(RMTIMSCON) command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>TXMT</td>
<td>TotXmit</td>
<td>SUMMARY</td>
<td>Total number of send clients that have a status of XMIT on the remote IMS Connect.</td>
</tr>
<tr>
<td>UID</td>
<td>UserID</td>
<td>USERID</td>
<td>The user ID to use for generating the RACF PassTicket, which is sent to the remote IMS Connect and be used for authenticating the user ID.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The return and reason codes that can be returned as a result of the QUERY IMSCON TYPE(RMTIMSCON) command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 81. Return and reason codes for the QUERY IMSCON TYPE(RMTIMSCON) command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The QUERY IMSCON TYPE(RMTIMSCON) command was completed successfully. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C0000C0'</td>
<td>X'00003000'</td>
<td>The command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C0000C0'</td>
<td>X'00003004'</td>
<td>The command was not successful for any resource. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C000014'</td>
<td>X'00005008'</td>
<td>The command processor failed to obtain storage via BPEGETM.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

Table 82. Completion codes for the QUERY IMSCON TYPE(RMTIMSCON) command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The QUERY IMSCON TYPE(RMTIMSCON) command was completed successfully for the resources.</td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>The resource name is unknown to the client that is processing the request. The resource name might have been typed in error or the resource might not be active at this time. If a wildcard was specified in the command, there were no matches for the name. Confirm that the correct spelling of the resource name is specified on the command.</td>
</tr>
</tbody>
</table>
Examples

Example 1 for QUERY IMSCON TYPE(RMTIMSCON) command

TSO SPOC input:
QUERY IMSCON TYPE(RMTIMSCON) NAME(*) SHOW(ALL)

TSO SPOC output:

(Screen 1)
RmtImcCon MbrName CC IpAddress HostName Port AutoConn
CONNECT2 HWS1 0 010.100.200.002 ICON2.IBM.COM 5555 N
CONNECT2 HWS1 0
CONNECT2 HWS1 0
CONNECT3 HWS1 0 010.100.200.003 ICON3.IBM.COM 9999 Y
CONNECT3 HWS1 0
CONNECT3 HWS1 0
CONNECT3 HWS1 0
CONNECT3 HWS1 0

(Screen 2)
RmtImcCon MbrName Persist IdleTO ResvSoc NumSoc Appl UserID Status
CONNECT2 HWS1 Y 6000 10 2 APPL02 USER01 ACTIVE
CONNECT2 HWS1
CONNECT2 HWS1
CONNECT3 HWS1 Y 6000 4 4 APPL03 USER01 ACTIVE
CONNECT3 HWS1
CONNECT3 HWS1
CONNECT3 HWS1
CONNECT3 HWS1

(Screen 3)
RmtImcCon MbrName TotSClnts TotRecv TotConn TotXmit TotOther
CONNECT2 HWS1 2 0 2 0 0
CONNECT2 HWS1
CONNECT2 HWS1
CONNECT3 HWS1 4 1 3 0 0
CONNECT3 HWS1
CONNECT3 HWS1
CONNECT3 HWS1
CONNECT3 HWS1

(Screen 4)
RmtImcCon MbrName SendClnt SendUID LclPlkID Second SendPort SendStatus
CONNECT2 HWS1
CONNECT2 HWS1 MSC11111 MSC12 100 1234 CONN
CONNECT2 HWS1 MSC22222 MSC12 89 5678 CONN
CONNECT2 HWS1
CONNECT3 HWS1 OTM11111 USER01 100 1111 CONN
CONNECT3 HWS1 OTM22222 USER01 89 2222 CONN
CONNECT3 HWS1 OTM33333 USER02 81 3333 CONN
CONNECT3 HWS1 OTM44444 USER03 23 4444 RECV

OM API input:
CMD ( QUERY IMSCON TYPE(RMTIMSCON) NAME(*) SHOW(ALL) )

OM API output:

<iimsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2010.298 01:13:52.694135</statime>
<stotime>2010.298 01:13:52.695758</stotime>
<staseq>C6C76FD554B77EFA</staseq>
<stoseq>C6C76FD5551CEE7A</stoseq>
<rqsttkn1>USRT001 10181352</rqsttkn1>
```xml
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>

<main>IMS</main>

</cmd>

<master>HWS1 </master>

<userid>USRT001 </userid>

<verb>QRY </verb>

<kwd>IMSCON</kwd>

<input>QUERY IMSCON TYPE(RMTIMSCON) NAME(*) SHOW(ALL) </input>

</cmd>

<cmdrsphdr>

<table>
 <thead>
 <tr>
 <th>LPLK</th>
 <th>MBR</th>
 <th>SEC</th>
 <th>STT</th>
 <th>APPL</th>
 <th>CC</th>
 <th>MBR</th>
 <th>SPORT</th>
 <th>SCSTT</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>HWS1</td>
 <td>MSC12</td>
 <td>MSC11111</td>
 <td>MSC12</td>
 <td>MSC11111</td>
 <td>MSC11111</td>
 <td>MSC11111</td>
 <td>MSC11111</td>
 </tr>
 </tbody>
</table>
</cmdrspdata>
```

The response provided is a representation of the command execution result in the context of the IMS commands. It includes headers, data, and a command response header, indicating the status and details of the command execution. This is a typical format for IMS command responses, showing the system status, user ID, and other relevant details.
**Explanation:** There are two RMTIMSCON definitions in IMS Connect: CONNECT2 and CONNECT3. Each remote connection is active. CONNECT2 is used for MSC purposes and has two MSC links active. CONNECT3 is used for OTMA purposes and has four connections active.

**Related concepts:**

- [How to interpret CSL request return and reason codes (System Programming APIs)]

**QUERY IMSCON TYPE(SENDCLNT) command**

Use the QUERY IMSCON TYPE(SENDCLNT) command to display the status and activity of one or more active send client socket connections with another instance of IMS Connect or with a CICS subsystem.

IMS Connect uses a separate receive socket on a different port to receive transactions and reply data from another IMS Connect instance or from a CICS subsystem. The QUERY IMSCON TYPE(SENDCLNT) command does not display receive client socket connections. To display information about receive client socket connections, use the QUERY IMSCON TYPE(CLIENT) command.

**Subsections:**

- "Environment"
- "Syntax" on page 246
- "Keywords" on page 246
- "Usage notes" on page 248
- "Equivalent WTOR and z/OS commands" on page 248
- "Output fields" on page 248
- "Return, reason, and completion codes" on page 250
- "IMS to IMS connections example" on page 251

**Environment**

The QUERY IMSCON command is applicable only to IMS Connect. To issue this command, the following conditions must be satisfied:

- IMS Connect must be active and configured to communicate with the Common Service Layer (CSL) Structured Call Interface (SCI).
• A type-2 command environment with Structured Call Interface (SCI) and Operations Manager (OM) must be active.

Syntax

```
QUERY IMSCON TYPE(SENDCLNT) NAME(*)
►►
NAME(sendclient_name*)
►►
RMTCICS(rmtcics_name*)
►►
RMTIMSCON(rmtimscon_name*)
►►
SHOW(ALL)
↓
ISC
MSC
RMTCICS
RMTIMSCON
SECOND
SENDPORT
STATUS
USERID
►►
STATUS(CONN)
►►
RECV
```

Keywords

The following keywords are valid for the QUERY IMSCON TYPE(SENDCLNT) command.

**NAME**

Specifies one or more send client resources to be displayed. You can specify a single send client name or a list of send client names separated by commas. Wildcards can be used in the names.

You can specify NAME(*) to display all send client resources. NAME(*) is the default.

IMS Connect always generates the client name for connections with another IMS Connect instance or a CICS subsystem. In these cases, the first characters of the client name identify the IMS communication type. For example:

**ISC**  ISC communication with a CICS subsystem

**MSC**  MSC communication between IMS systems
**OTM**  OTMA communication between IMS systems

To display the active socket connections for one of the preceding types of IMS communication, you can specify the character identifier followed by a wildcard character. For example, `NAME(MSC*)`, returns all IMS-to-IMS send socket connections for MSC communications.

**RMTCICS**

Selects send client resources for display that are associated with the specified remote CICS name, as defined on the ID keyword of the RMTCICS statement in the IMS Connect configuration member.

You can specify a single remote CICS name or a list of remote CICS names separated by commas. Wildcard characters are supported.

Only the send client resources that are associated with the specified remote CICS name are displayed. Send clients that match the NAME() parameter, but that are not associated with the specified remote CICS name, are not displayed.

When the RMTCICS filter is specified, remote CICS resource information is displayed even if SHOW(RMTCICS) is not specified.

**RMTIMSCON**

Selects send client resources for display that are associated with the specified remote IMS Connect definition. You can specify a single remote IMS Connect name or a list of remote IMS Connect names separated by commas. Wildcards can be used in the names.

Only those send client resources that are associated with the specified remote IMS Connect resource are displayed. Send clients that match the NAME() parameter, but are not associated with the specified remote IMS Connect name, are not displayed.

When the RMTIMSCON filter is specified, remote IMS Connect resource information is displayed even if SHOW(RMTIMSCON) is not specified.

**SHOW**

Specifies the optional output fields to be displayed. Output fields that are always displayed, regardless of whether SHOW is specified, include the send client name, the name of the IMS Connect that processes the command, and the completion code.

The filters that are supported with the SHOW keyword, which can be specified in any order, are:

**ALL**

Displays all output fields.

**ISC**

Displays the name of the Intersystem Communication (ISC) resource that this send client is associated with. This value is specified on the ID parameter of the ISC statement in the IMS Connect configuration member.

**MSC**

Displays the name of the Multiple Systems Coupling (MSC) physical link that this send client is associated with. This value is specified on the LCLPLKID parameter of the MSC statement in the IMS Connect configuration member.

**RMTCICS**

Displays the name of the remote CICS resource that this send client is associated with.
RMTIMSCON
Displays the name of the remote IMS Connect resource that this send client is associated with.

SECOND
Displays the number of seconds that this connection is in the specified state.

SENDPORT
Displays the local port of the send client socket connection.

STATUS
Displays the state of the send client connection. For a description of the status returned, see the STATUS keyword in Table 83 on page 249.

USERID
Displays the user ID specified by the local IMS to be sent to the remote IMS for transaction authorization. This field is valid for OTMA messages only.

STATUS
Selects send clients for display that possess at least one of the specified statuses. When the STATUS filter is specified, status information is displayed even if SHOW(STATUS) is not specified.

The filters supported with the STATUS keyword, which can be specified in any order, are:

CONN
Selects send client connections that have a status of CONN, meaning that the connection is in connect state.

RECV
Selects send client connections that have a status of RECV, meaning that the connection is in receive state.

Usage notes
The port number for each port displayed is repeated on each line of information that applies to that port. The first line of information for a port shows the status and statistics for the port. Each subsequent line for the port shows information about an active client socket on the port.

You can issue the QUERY IMSCON TYPE(SENDCLNT) command only through the Operations Manager (OM) API.

IMS Connect can process IMS Connect type-2 commands only if the IMSplex from which the commands were issued has a status of ACTIVE.

Equivalent WTO and z/OS commands
There are no equivalent WTO and IMS Connect z/OS commands that perform similar functions as the QUERY IMSCON TYPE(SENDCLNT) command.

Output fields
Short label
Contains the short label that is generated in the XML output.

Long label
Contains the column heading displayed on the TSO SPOC screen.
Keyword
Identifies the keyword on the command that caused the field to be generated. N/A (not applicable) appears for output fields that are always returned. error appears for output fields that are returned only in the case of an error.

Meaning
Provides a brief description of the output field.

Table 83. Output fields for the QUERY IMSCON TYPE(SENDCLNT) command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code that indicates whether IMS Connect was able to process the command for the specified resource. The completion code is always returned. See Table 85 on page 250.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the nonzero completion code. This field is returned only for an error completion code.</td>
</tr>
<tr>
<td>ISC</td>
<td>ISCName</td>
<td>ISC</td>
<td>Displays the name of the Intersystem Communication (ISC) resource that this send client is associated with. This value is specified on the ID parameter of the ISC statement in the IMS Connect configuration member.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>Identifier of the IMS Connect that built the output line. The identifier is always returned.</td>
</tr>
<tr>
<td>MSC</td>
<td>MscName</td>
<td>MSC</td>
<td>Displays the name of the Multiple Systems Coupling (MSC) physical link that this send client is associated with. This value is specified on the LCLPLKID parameter of the MSC statement in the IMS Connect configuration member.</td>
</tr>
<tr>
<td>RCICS</td>
<td>RmtCICS</td>
<td>RMTCICS</td>
<td>Name of the remote CICS resource associated with the send client.</td>
</tr>
<tr>
<td>RIC</td>
<td>RmtImsCon</td>
<td>RMTIMSCON</td>
<td>Name of the remote IMS Connect resource associated with the send client.</td>
</tr>
<tr>
<td>SCL</td>
<td>SendClnt</td>
<td>N/A</td>
<td>Name of the send client; that is, the client ID that this instance of IMS Connect used to connect to the remote IMS Connect. The send client name is always returned.</td>
</tr>
<tr>
<td>SEC</td>
<td>Second</td>
<td>SECOND</td>
<td>Number of seconds that this connection is in the specified state.</td>
</tr>
<tr>
<td>STT</td>
<td>Status</td>
<td>STATUS</td>
<td>Status of the send client connection, which is one of the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CONN This connection is in connect state. It can send messages to the remote IMS Connect.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RECV This connection is in receive state. It is waiting for a response from the remote IMS Connect.</td>
</tr>
<tr>
<td>SPORT</td>
<td>SendPort</td>
<td>SENDPORT</td>
<td>The port that this instance of IMS Connect used to connect to the remote IMS Connect.</td>
</tr>
</tbody>
</table>

Chapter 5. QUERY commands 249
Table 83. Output fields for the QUERY IMSCON TYPE(SENDCLNT) command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>UID</td>
<td>UserID</td>
<td>USERID</td>
<td>The user ID specified by the local IMS to be sent to the remote IMS for transaction authorization. This field is valid for OTMA messages only.</td>
</tr>
</tbody>
</table>

**Return, reason, and completion codes**

The return and reason codes that can be returned as a result of the QUERY IMSCON TYPE(SENDCLNT) command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 84. Return and reason codes for the QUERY IMSCON TYPE(SENDCLNT) command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The QUERY IMSCON TYPE(SENDCLNT) command completed successfully. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C000008'</td>
<td>X'00002004'</td>
<td>An invalid keyword or keyword parameter was specified.</td>
</tr>
<tr>
<td>X'0C000008'</td>
<td>X'00002014'</td>
<td>An invalid character was specified in the NAME() parameter.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003000'</td>
<td>The command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003004'</td>
<td>The command was not successful for any resource. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C000014'</td>
<td>X'00005008'</td>
<td>The command processor failed to obtain storage via BPEGETM.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

Table 85. Completion codes for the QUERY IMSCON TYPE(SENDCLNT) command

<table>
<thead>
<tr>
<th>Completion code text</th>
<th>Completion code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>The QUERY IMSCON TYPE(SENDCLNT) command completed successfully for the resources.</td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>The resource name is unknown to the client that is processing the request. The resource name might have been typed in error or the resource might not be active at this time. If a wildcard was specified in the command, there were no matches for the name. Confirm that the correct spelling of the resource name is specified on the command.</td>
</tr>
</tbody>
</table>
IMS to IMS connections example

In the following example, there are two RMTIMSCON definitions in IMS Connect: CONNECT2 and CONNECT3. Each remote connection is active. CONNECT2 is used for MSC purposes and has two MSC links active. CONNECT3 is used for OTMA purposes and has four connections active.

TSO SPOC input:
QUERY IMSCON TYPE(SENDCLNT) NAME(*) SHOW(ALL)

TSO SPOC output:
(Screen 1)
SendClnt MbrName CC UserID MscName Second SendPort RmtImsCon Status
MSC11111 HWS1 0 MSC12 100 1234 CONNECT2 CONN
MSC22222 HWS1 0 MSC12 89 5678 CONNECT2 CONN
OTM11111 HWS1 0 USER01 100 1111 CONNECT3 CONN
OTM22222 HWS1 0 USER01 89 2222 CONNECT3 CONN
OTM33333 HWS1 0 USER02 81 3333 CONNECT3 CONN
OTM44444 HWS1 0 USER03 23 4444 CONNECT3 CONN

OM API input:
CMD ( QUERY IMSCON TYPE(SENDCLNT) NAME(*) SHOW(ALL) )

OM API output:
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2010.298 01:50:08.581654</statime>
<stotime>2010.298 01:50:08.582765</stotime>
<staseq>C6C777F068A1662C</staseq>
<stoseq>C6C777F068B8601EC</stoseq>
<rqsttkn1>USRT001 101B5008</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>HWS1</master>
<userid>USRT001</userid>
<verb>QRY</verb>
<kwd>IMSCON</kwd>
<input>QUERY IMSCON TYPE(SENDCLNT) NAME(*) SHOW(ALL) </input>
</cmd>
</cmdrsphdr>
**ISC TCP/IP connections example**

In the following example, two send clients are identified by names that begin with ISC. Both send clients are associated with the remote CICS resource CICS2 and the ISC resource IMS1CIC1.

**TSO SPOC input:**
```
QUERY IMSCON TYPE(SENDCLNT) NAME(ISC*) SHOW(ALL)
```

**TSO SPOC output:**
```
<table>
<thead>
<tr>
<th>SendClnt</th>
<th>MbrName</th>
<th>CC</th>
<th>ISCName</th>
<th>Second</th>
<th>SendPort</th>
<th>RmtCICS</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCL(C99C9990)</td>
<td>HWS1</td>
<td>0</td>
<td>IMS1CIC1</td>
<td>41</td>
<td>1396</td>
<td>CICS2</td>
<td>CONN</td>
</tr>
<tr>
<td>SCL(C66F93)</td>
<td>HWS1</td>
<td>0</td>
<td>IMS1CIC1</td>
<td>19</td>
<td>1397</td>
<td>CICS2</td>
<td>CONN</td>
</tr>
</tbody>
</table>
```

**OM API input:**
```
CMD (QUERY IMSCON TYPE(SENDCLNT) NAME(ISC*) SHOW(ALL))
```

**OM API output:**
```
<imsout>
<ctl>
<omname>OM1OM </omname>
<omvsn>1.6.0 </omvsn>
<xmlvsn>20 </xmlvsn>
<staseq>C967E78294E0BE1B </staseq>
<stoseq>C967E7829554D91B </stoseq>
<rqsttkn1>USRT001 10144726 </rqsttkn1>
<rc>00000000 </rc>
<rsn>00000000 </rsn>
</ctl>
<cmd>
<master>HWS1 </master>
<userid>USRT001 </userid>
<verb>QRY </verb>
<kwd>IMSCON </kwd>
<input>QUERY IMSCON TYPE(SENDCLNT) NAME(ISC*) SHOW(ALL) </input>
</cmd>
</cmdrsphdr>
```
<table>
<thead>
<tr>
<th>slbl</th>
<th>llbl</th>
<th>scope</th>
<th>sort</th>
<th>key</th>
<th>scroll</th>
<th>len</th>
<th>dtype</th>
<th>align</th>
<th>skipb</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL</td>
<td>SLC</td>
<td>LCL</td>
<td>n</td>
<td>0</td>
<td>yes</td>
<td>32</td>
<td>INT</td>
<td>right</td>
<td>no</td>
</tr>
<tr>
<td>SL</td>
<td>MBR</td>
<td>LCL</td>
<td>n</td>
<td>0</td>
<td>yes</td>
<td>32</td>
<td>CHAR</td>
<td>left</td>
<td>yes</td>
</tr>
<tr>
<td>SL</td>
<td>CC</td>
<td>LCL</td>
<td>n</td>
<td>0</td>
<td>yes</td>
<td>8</td>
<td>CHAR</td>
<td>left</td>
<td>yes</td>
</tr>
<tr>
<td>SL</td>
<td>ISC</td>
<td>LCL</td>
<td>n</td>
<td>0</td>
<td>yes</td>
<td>8</td>
<td>CHAR</td>
<td>left</td>
<td>yes</td>
</tr>
<tr>
<td>SL</td>
<td>SEC</td>
<td>LCL</td>
<td>n</td>
<td>0</td>
<td>yes</td>
<td>10</td>
<td>INT</td>
<td>right</td>
<td>yes</td>
</tr>
<tr>
<td>SL</td>
<td>SPORT</td>
<td>LCL</td>
<td>n</td>
<td>0</td>
<td>yes</td>
<td>8</td>
<td>INT</td>
<td>right</td>
<td>yes</td>
</tr>
<tr>
<td>SL</td>
<td>RIC</td>
<td>LCL</td>
<td>n</td>
<td>0</td>
<td>yes</td>
<td>8</td>
<td>CHAR</td>
<td>left</td>
<td>yes</td>
</tr>
<tr>
<td>SL</td>
<td>RCICS</td>
<td>LCL</td>
<td>n</td>
<td>0</td>
<td>yes</td>
<td>8</td>
<td>CHAR</td>
<td>left</td>
<td>yes</td>
</tr>
<tr>
<td>SL</td>
<td>STT</td>
<td>LCL</td>
<td>n</td>
<td>0</td>
<td>yes</td>
<td>9</td>
<td>CHAR</td>
<td>left</td>
<td>yes</td>
</tr>
</tbody>
</table>

**Related concepts:**

- How to interpret CSL request return and reason codes (System Programming APIs)

**QUERY IMSCON TYPE(UOR) command**

Use the QUERY IMSCON TYPE(UOR) command to display the status and activity of one or more unit of recovery (UOR) identifiers in IMS Connect.

Subsections:
- "Environment"
- "Syntax" on page 254
- "Keywords" on page 254
- "Usage notes" on page 256
- "Equivalent WTO and z/OS commands" on page 256
- "Output fields" on page 256
- "Return, reason, and completion codes" on page 258
- "Examples" on page 259

**Environment**

The QUERY IMSCON command is applicable only to IMS Connect. To issue this command, the following conditions must be satisfied:

- IMS Connect must be active and configured to communicate with the Common Service Layer (CSL) Structured Call Interface (SCI).
- A type-2 command environment with Structured Call Interface (SCI) and Operations Manager (OM) must be active.
Syntax

```
QUERY IMSCON TYPE(UOR)
 NAME(*)
 NAME(uor_name)

SHOW(ALL)
 STATE(FORGOTTEN)
 SUMMARY
 XID

STATE(INBACKOUT)
 INCOMMIT
 INCOMPLETION
 INDOUBT
 INEND
 INFLIGHT
 INFORGET
 INONLYAGENT
 INPREPARE
 INRESET
 INSTATECHECK
```

Keywords

The following keywords are valid for the QUERY IMSCON TYPE(UOR) command.

**NAME**

Specifies one or more UOR identifiers to be displayed. You can specify a single UOR ID or a list of UOR identifiers separated by commas. Wildcards can be used in the identifiers.

You can specify NAME(*) to display all UOR identifiers. NAME(*) is the default.

**SHOW**

Specifies the optional output fields to be displayed. Output fields that are always displayed, regardless of whether SHOW is specified, include the UOR identifier, the name of the IMS Connect that processes the command, and the completion code.

The filters that are supported with the SHOW keyword, which can be specified in any order, are:

**ALL**

Displays all output fields.

**STATE**

Displays the state of the UOR. For a description of the states returned, see the STATE keyword in Table 87 on page 257.

**SUMMARY**

Displays summary information related to all UORs specified by the NAME keyword. This information is displayed on its own output line. Specific UORs are displayed on separate output lines.

Information displayed includes:
• Total number of UORs in any state.
• Total number of UORs in IN_DOUBT state.
• Total number of UORs in IN_BACKOUT state.
• Total number of UORs in IN_COMMIT state.
• Total number of UORs not in one of these states.

**XID**
Displays the X/Open identifier, which identifies the distributed transaction used by the X/Open architecture. The XID consists of four parts:

**FMID** 4-byte fixed-format ID

**GTRID**
4-byte fixed GTRID length

**BQUAL**
4-byte fixed BQUAL length

**XID** 128-byte character XID

**STATE**
Selects UORs for display that are in at least one of the specified states.

The filters supported with the STATE keyword, which can be specified in any order, are:

**FORGOTTEN**
Selects UORs for display that have a status of FORGOTTEN.

**INBACKOUT**
Selects UORs for display that have a status of IN_BACKOUT.

**INCOMMIT**
Selects UORs for display that have a status of IN_COMMIT.

**INCOMPLETION**
Selects UORs for display that have a status of IN_COMPLETION.

**INDOUBT**
Selects UORs for display that have a status of IN_DOUBT.

**INEND**
Selects UORs for display that have a status of IN_END.

**INFLIGHT**
Selects UORs for display that have a status of IN_FLIGHT.

**INFORGET**
Selects UORs for display that have a status of IN_FORGET.

**INONLYAGENT**
Selects UORs for display that have a status of IN_ONLY_AGENT.

**INPREPARE**
Selects UORs for display that have a status of IN_PREPARE.

**INRESET**
Selects UORs for display that have a status of IN_RESET.

**INSTATECHECK**
Selects UORs for display that have a status of IN_STATE_CHECK.
Usage notes

You can issue the QUERY IMSCON TYPE(UOR) command only through the Operations Manager (OM) API.

IMS Connect can process IMS Connect type-2 commands only if the IMSplex from which the commands were issued has a status of ACTIVE.

Typically, this command results in one output display line for each UOR displayed. However, if the SHOW(SUMMARY) keyword is specified, one additional line is displayed for each specific or generic name specified by the NAME() keyword. In this line, summary totals for UORs are displayed in various states. For example, if NAME(*) is specified, IMS Connect builds one output line with a UOR name of "*" to display the totals, and one additional output line for each UOR found in IMS Connect.

Equivalent WTOR and z/OS commands

The following table lists WTOR (Write to Operator with Reply) and IMS Connect z/OS commands that perform similar functions as the QUERY IMSCON TYPE(UOR) command.

Notes:
• IMS Connect WTOR commands are replies to the outstanding IMS Connect reply message.
• IMS Connect z/OS commands are issued through the z/OS (MVS) interface by using the IMS Connect jobname.

Table 86. WTOR and IMS Connect z/OS equivalents for the QUERY IMSCON TYPE(UOR) command

<table>
<thead>
<tr>
<th>QUERY IMSCON TYPE(UOR) command</th>
<th>Equivalent IMS Connect WTOR command</th>
<th>Equivalent IMS Connect z/OS command</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY IMSCON TYPE(UOR) NAME(*) SHOW(ALL</td>
<td>show_parm)</td>
<td>VIEWUOR ALL</td>
</tr>
<tr>
<td>QUERY IMSCON TYPE(UOR) NAME(uor_id) SHOW(ALL</td>
<td>show_parm)</td>
<td>VIEWUOR uor_id</td>
</tr>
<tr>
<td>QUERY IMSCON TYPE(UOR) STATE(state)</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Output fields

Short label
Contains the short label that is generated in the XML output.

Long label
Contains the column heading displayed on the TSO SPOC screen.

Keyword
Identifies the keyword on the command that caused the field to be generated. N/A (not applicable) appears for output fields that are always returned. error appears for output fields that are returned only in the case of an error.

Meaning
Provides a brief description of the output field.
### Table 87. Output fields for the QUERIMSCON TYPE(UOR) command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>BQUAL</td>
<td>BqualLen</td>
<td>XID</td>
<td>4-byte fixed BQUAL length, which is part of the XID.</td>
</tr>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code that indicates whether IMS Connect was able to process the command for the specified resource. The completion code is always returned. See <a href="#">Table 90 on page 259</a>.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the nonzero completion code. This field is returned only for an error completion code.</td>
</tr>
<tr>
<td>FMID</td>
<td>Fmid</td>
<td>XID</td>
<td>4-byte fixed-format ID, which is part of the XID.</td>
</tr>
<tr>
<td>GTRID</td>
<td>GtridLen</td>
<td>XID</td>
<td>4-byte fixed GTRID length, which is part of the XID.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>Identifier of the IMS Connect that built the output line. The identifier is always returned.</td>
</tr>
<tr>
<td>STATE</td>
<td>State</td>
<td>STATE</td>
<td>State of the UOR. For a description of the possible states that are returned, see <a href="#">Table 88</a>.</td>
</tr>
<tr>
<td>TIBO</td>
<td>TotInBackout</td>
<td>SUMMARY</td>
<td>Total number of UORs that have a status of IN_BACKOUT.</td>
</tr>
<tr>
<td>TIC</td>
<td>TotInCommit</td>
<td>SUMMARY</td>
<td>Total number of UORs that have a status of IN_COMMIT.</td>
</tr>
<tr>
<td>TID</td>
<td>TotInDoubt</td>
<td>SUMMARY</td>
<td>Total number of UORs that have a status of IN_DOUBT.</td>
</tr>
<tr>
<td>TOTH</td>
<td>TotOther</td>
<td>SUMMARY</td>
<td>Total number of UORs that have a status other than IN_DOUBT, IN_BACKOUT, or IN_COMMIT.</td>
</tr>
<tr>
<td>TUOR</td>
<td>TotalUor</td>
<td>SUMMARY</td>
<td>Total number of UORs displayed for the NAME specified.</td>
</tr>
<tr>
<td>URID</td>
<td>Urid</td>
<td>N/A</td>
<td>The 16-byte character string that identifies a specific unit of recovery. The UOR identifier is always returned.</td>
</tr>
<tr>
<td>XID</td>
<td>Xid</td>
<td>XID</td>
<td>128-byte character XID.</td>
</tr>
</tbody>
</table>

### Table 88. States of the UOR for the QUERIMSCON TYPE(UOR) command

<table>
<thead>
<tr>
<th>State</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORGOTTEN</td>
<td>The UOR has completed, and z/OS Resource Recovery Services (RRS) has deleted its log records.</td>
</tr>
<tr>
<td>IN_BACKOUT</td>
<td>One of the following actions occurred:</td>
</tr>
<tr>
<td></td>
<td>• One or more PREPARE exit routines replied NO.</td>
</tr>
<tr>
<td></td>
<td>• The application issued a backout.</td>
</tr>
<tr>
<td></td>
<td>• The DSRM or SDSRM told RRS to back out an IN_DOUBT UOR.</td>
</tr>
<tr>
<td></td>
<td>• The installation used the RRS panels to back out an IN_DOUBT UOR.</td>
</tr>
<tr>
<td></td>
<td>• Before phase 2 of the two-phase-commit protocol, the system, application, RRS, or a resource manager failed.</td>
</tr>
</tbody>
</table>
Table 88. States of the UOR for the QUERY IMSCON TYPE(UOR) command (continued)

<table>
<thead>
<tr>
<th>State</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN_COMMIT</td>
<td>One of the following actions occurred:</td>
</tr>
<tr>
<td></td>
<td>• The PREPARE exit routines replied YES.</td>
</tr>
<tr>
<td></td>
<td>• The DSRM or SDSRM told RRS to commit an IN_DOUBT UOR.</td>
</tr>
<tr>
<td></td>
<td>• The installation used the RRS panels to commit an IN_DOUBT UOR.</td>
</tr>
<tr>
<td>IN_COMPLETION</td>
<td>The resources have been updated, and RRS has completed processing the UOR.</td>
</tr>
<tr>
<td>IN_DOUBT</td>
<td>RRS is waiting for the resource manager to tell it whether to resolve the UOR by a commit or by a backout.</td>
</tr>
<tr>
<td>IN_END</td>
<td>The resources have been updated.</td>
</tr>
<tr>
<td>IN_FLIGHT</td>
<td>The UOR can access resources and has the potential to change resources, but the changes are not committed.</td>
</tr>
<tr>
<td>IN_FORGET</td>
<td>During distributed processing, the UOR has completed, but RRS is waiting for the SDSRM to indicate how long it takes to process the log records for the UOR.</td>
</tr>
<tr>
<td>IN_ONLY_AGENT</td>
<td>Only one resource manager expressed interest in the UOR.</td>
</tr>
<tr>
<td>IN_PREPARE</td>
<td>The UOR in the proper state issues a commit, and RRS invokes the PREPARE exit routine.</td>
</tr>
<tr>
<td>IN_RESET</td>
<td>The UOR is starting and has not yet changed any resources.</td>
</tr>
<tr>
<td>IN_STATE_CHECK</td>
<td>The UOR issues a commit and waits for the STATE_CHECK exit routine of the resource manager to check if the resources are in the correct state.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The return and reason codes that can be returned as a result of the QUERY IMSCON TYPE(UOR) command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 89. Return and reason codes for the QUERY IMSCON TYPE(UOR) command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The QUERY IMSCON TYPE(UOR) command completed successfully. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003000'</td>
<td>The command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003004'</td>
<td>The command was not successful for any resource. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.
Table 90. Completion codes for the QUERY IMSCON TYPE(UOR) command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The QUERY IMSCON TYPE(UOR) command completed successfully for the resources.</td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>The resource name is unknown to the client that is processing the request. The resource name might have been typed in error or the resource might not be active at this time. If a wildcard was specified in the command, there were no matches for the name. Confirm that the correct spelling of the resource name is specified on the command.</td>
</tr>
</tbody>
</table>

Examples

Example 1 for QUERY IMSCON TYPE(UOR) command

TSO SPOC input:
QUERY IMSCON TYPE(UOR) SHOW(STATE)

TSO SPOC output:

Urld MbrName CC State
C3A3DE82DE5500000000000601010000 HWS1 0 IN_FLIGHT

OM API input:

CMD ( QUERY IMSCON TYPE(UOR) SHOW(STATE) )

OM API output:

<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2010.29816:17:22.927883</statime>
<stotime>2010.29816:17:22.928933</stotime>
<staseq>C6C839C830108AAC</staseq>
<stoseq>C6C839C8305252AC</stoseq>
<rqsttkn1>USRT00110091722</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>HWS1</master>
</cmd>
</imsout>

Chapter 5. QUERY commands 259
Explanation: There is one UOR active in IMS Connect. There is only one display line because the SHOW(SUMMARY) keyword was not specified. The NAME keyword is omitted, so IMS Connect displays all data stores (the default is NAME(*)).

Example 2 for QUERY IMSCON TYPE(UOR) command

TSO SPOC input:
QUERY IMSCON TYPE(UOR) SHOW(ALL)

TSO SPOC output:

(screen 1)
<table>
<thead>
<tr>
<th>Urid</th>
<th>MbrName</th>
<th>CC</th>
<th>TotalUor</th>
<th>TotInDoubt</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>HWS1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>C3A3DE827DE5500000000000601010000</td>
<td>HWS1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(screen 2)
<table>
<thead>
<tr>
<th>Urid</th>
<th>MbrName</th>
<th>TotInBackout</th>
<th>TotInCommit</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>HWS1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C3A3DE827DE5500000000000601010000</td>
<td>HWS1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(screen 3)
<table>
<thead>
<tr>
<th>Urid</th>
<th>MbrName</th>
<th>TotOther</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>HWS1</td>
<td>1</td>
<td>IN_FLIGHT</td>
</tr>
<tr>
<td>C3A3DE827DE5500000000000601010000</td>
<td>HWS1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(screen 4)
<table>
<thead>
<tr>
<th>Urid</th>
<th>MbrName</th>
<th>Fmid</th>
<th>GtridLen</th>
<th>BqualLen</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>HWS1</td>
<td>57415344</td>
<td>26</td>
<td>25</td>
</tr>
<tr>
<td>C3A3DE827DE5500000000000601010000</td>
<td>HWS1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(screen 5)
<table>
<thead>
<tr>
<th>Urid</th>
<th>MbrName</th>
<th>Xid</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>HWS1</td>
<td>000000180114B9767775F58D0A517C90</td>
</tr>
<tr>
<td>C3A3DE827DE5500000000000601010000</td>
<td>HWS1</td>
<td></td>
</tr>
</tbody>
</table>

(screen 6)
<table>
<thead>
<tr>
<th>Urid</th>
<th>MbrName</th>
<th>Xid</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>HWS1</td>
<td>000000180114B9767775F58D0A517C90</td>
</tr>
</tbody>
</table>
Chapter 5. QUERY commands

OM API input:

```
CMD (QUERY IMSCON TYPE(UOR) SHOW(ALL))
```

OM API output:

```
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2010.300 04:59:35.813592</statime>
<stotime>2010.300 04:59:35.814615</stotime>
<staseq>C6CA2603FA5D84EA</staseq>
<stoseq>C6CA2603FA9D79AA</stoseq>
<rqsttkn>USRT001 10215935</rqsttkn>
<rc>00000000</rc>
<rsn>00000000</rsn></ctl>
<cmd>
<master>HWS1</master>
<userid>USRT001</userid>
<verb>QRY</verb>
<kwd>IMSCON</kwd>
<input>QRY IMSCON TYPE(UOR) SHOW(ALL) </input></cmd>
```

<table>
<thead>
<tr>
<th>Urid</th>
<th>MbrName</th>
<th>Xid</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>HWS1</td>
<td></td>
</tr>
</tbody>
</table>

```
C3A3DE827DE550000000000601010000 HWS1 3AD5C4901BAB55D42C0701B9767775F5
```

(screen 7)

```
Urid MbrName Xid
* HWS1
```

```
C3A3DE827DE550000000000601010000 HWS1 8D0A517C903AD5C4901BAB55D42C075B
```

(screen 8)

```
Urid MbrName Xid
* HWS1
```

```
C3A3DE827DE550000000000601010000 HWS1 AA8D1200000000000000000000000000
```

(screen 9)

```
Urid MbrName Xid
* HWS1
```

```
C3A3DE827DE550000000000601010000 HWS1 00000000000000000000000000000000
```

(screen 10)

```
Urid MbrName Xid
* HWS1
```

```
C3A3DE827DE550000000000601010000 HWS1 00000000000000000000000000000000
```

(screen 11)

```
Urid MbrName Xid
* HWS1
```

```
C3A3DE827DE550000000000601010000 HWS1 00000000000000000000000000000000
```

(screen 12)

```
Urid MbrName Xid
* HWS1
```

```
C3A3DE827DE550000000000601010000 HWS1 00000000000000000000000000000000
```
scroll="yes" len="7" dtype="INT" align="right" skipb="yes" />
<hdr slbl="TID" llbl="TotInDoubt" scope="LCL" sort="n" key="0"
scroll="yes" len="5" dtype="INT" align="right" skipb="yes" />
<hdr slbl="TIBO" llbl="TotInBackout" scope="LCL" sort="n" key="0"
scroll="yes" len="5" dtype="INT" align="right" skipb="yes" />
<hdr slbl="TIC" llbl="TotInCommit" scope="LCL" sort="n" key="0"
scroll="yes" len="5" dtype="INT" align="right" skipb="yes" />
<hdr slbl="TOTH" llbl="TotOther" scope="LCL" sort="n" key="0"
scroll="yes" len="5" dtype="INT" align="right" skipb="yes" />
<hdr slbl="STATE" llbl="State" scope="LCL" sort="n" key="0"
scroll="yes" len="14" dtype="CHAR" align="left" skipb="yes" />
<hdr slbl="FMID" llbl="Fmid" scope="LCL" sort="n" key="0" scroll="yes"
len="8" dtype="CHAR" align="LEFT" skipb="yes" />
<hdr slbl="GTRID" llbl="GtridLen" scope="LCL" sort="n" key="0"
scroll="yes" len="8" dtype="INT" align="right" skipb="yes" />
<hdr slbl="BQUAL" llbl="BqualLen" scope="LCL" sort="n" key="0"
scroll="yes" len="8" dtype="INT" align="right" skipb="yes" />
<hdr slbl="XID" llbl="Xid" scope="LCL" sort="n" key="0" scroll="yes"
len="256" dtype="CHAR" align="left" skipb="yes" />
</cmdrsphdr>
</cmdrspdata>
</cmdrspdata>
</imsout>

**Explanation:** There is one UOR active in IMS Connect. The first display line includes the summary total information for all UORs that follow. The second display line represents the UOR, which includes its state and XID information. The NAME keyword is omitted, so IMS Connect displays all data stores (the default is NAME(*)).

**Related concepts:**
- How to interpret CSL request return and reason codes (System Programming APIs)

**Related reference:**
- VIEWUOR command (Commands)
- IMS Connect QUERY UOR command (Commands)

---

**QUERY IMSPLEX command**

Use the QUERY IMSPLEX command, which is a type-2 command, to display information about one or more IMSplex members.

**Subsections:**
- “Environment” on page 263
- “Syntax” on page 263
- “Keywords” on page 263
- “Usage notes” on page 265
- “Output fields” on page 267
- “Return, reason, and completion codes” on page 267
- “Examples” on page 269
Environment

The QUERY IMSPLEX command does not run in the address space of any IMS control or dependent region. QUERY IMSPLEX is processed in an OM command processing environment.

Syntax

```
QUERY IMSPLEX
 NAME(*)
 NAME(imsplexname*)
 TYPE(AOP,BATCH,CQS,IMS,IMSCON,ODBM,OM,OTHER,REPO,RM,SCI)
 STATUS(ABENDED,ACTIVE,NOTREACHABLE,OLD,READY)
 SHOW(ALL,JOB,OS,STATUS,TYPE,VERSION)
```

Keywords

The following keywords are valid for the QUERY IMSPLEX command:

**NAME()**

Specifies the name of the IMSplexes for which member information is to be returned. The IMSplex name can be a generic parameter, to allow easy specification of a group of IMSplexes whose names match a generic parameter mask. For example, QUERY IMSPLEX NAME(*PLEX*).

You must include the prefix, CSL, to the name of the IMSplex for which you want member information. Add CSL in front of the IMSplex name that you specified in the IMSPLEX= parameter in the DFSCGxxx PROCLIB member. For example, if you specified IMSPLEX=PLEX1 in your DFSCGxxx member, you must specify QUERY IMSPLEX NAME(CSLPLEX1).

**SHOW()**

Specifies the output fields to be returned. If SHOW is not specified, only the IMSplex names, IMSplex member names, IMSplex member that builds the output line, and completion codes are returned. This provides a method for a
system management application to obtain a list of all IMSplex member names that are currently known in the IMSplexes.

**ALL**
- Returns all output fields.

**JOB**
- Job name of the IMSplex member.

**OS**
- Name of the OS image on which the IMSplex member is executing.

**STATUS**
- IMSplex member status.

**SUBTYPE**
- IMSplex member subtype.

**TYPE**
- IMSplex member type.

**VERSION**
- IMSplex member version.

**STATUS()**
- Displays IMSplex members that have at least one of the specified statuses.

**ABENDED**
- IMSplex member has ended abnormally.

**ACTIVE**
- IMSplex member is active.

**NOTREACHABLE**
- The local SCI responsible for the member is not currently active. The status displayed is the current status for the member.

  **Note:** The status output is NOT-REACHABLE (with a hyphen).

**OLD**
- The SCI responsible for the member is not currently active. The status displayed is the last known status for the member. The actual status might be different.

**READY**
- IMSplex member is ready to receive messages and requests that are routed to it by any method, including by TYPE.

**TYPE()**
- Displays IMSplex members that possess at least one of the specified member types.

**AOP**
- Automated Operator Program. Examples of AOPs are a SPOC application that an operator uses to interact with an IMSplex or a program that is monitoring an IMSplex.

**BATCH**
- IMS batch job.

**CQS**
- Common Queue Server address space.

**DBRC**
- DBRC address space.
**IMS**
IMS region.

**IMSCON**
An address space that serves as an interface between IMS and a protocol that is not directly supported by IMS (for example, TCP/IP).

**ODBM**
Open Database Manager address space.

**OM**
Operations Manager address space.

**OTHER**
Other non-IMS address space or job.

**REPO**
Repository Server (RS) address space. The Repository Server information is returned if the Repository Server is registered to the Structured Call Interface (SCI) address space.

**RM**
Resource Manager address space.

**SCI**
Structured Call Interface address space.

**Usage notes**
This command can be issued only through the OM API.

**QUERY IMSPLEX status**
The following table shows the possible IMSplex member status. The table contains information about status such as the STATUS keyword to specify to select members with the specified status, the status that is returned, and the meaning of the status.

*Table 91. QUERY IMSPLEX status table*

<table>
<thead>
<tr>
<th>Status keyword</th>
<th>Status</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABENDED</td>
<td>ABENDED</td>
<td>IMSplex member has abended.</td>
</tr>
<tr>
<td>ACTIVE</td>
<td>ACTIVE</td>
<td>IMSplex member is active.</td>
</tr>
<tr>
<td>NOTREACHABLE</td>
<td>NOT-REACHABLE</td>
<td>The local SCI responsible for the member is currently not active. The status displayed is the current status for the member.</td>
</tr>
<tr>
<td>OLD</td>
<td>OLD</td>
<td>The SCI responsible for the member is not currently active. The status displayed is the last known status for the member. The actual status might be different.</td>
</tr>
<tr>
<td>READY</td>
<td>READY</td>
<td>IMSplex member is ready to receive messages and requests that are routed to it by any method, including by TYPE.</td>
</tr>
</tbody>
</table>

**QUERY IMSPLEX types**
The following table shows the possible IMSplex member types. The table contains information about member types such as the TYPE keyword to specify to select members with the specified type, the type that is returned, and the meaning of the member type.
**Table 92. QUERY IMSPLEX member types**

<table>
<thead>
<tr>
<th>Type keyword</th>
<th>Member type</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOP</td>
<td>aop</td>
<td>Automated Operator Program. An example of an AOP is a SPOC (Single Point of Control) that an operator uses to interact with the IMSplex. Another example of an AOP is a program that is monitoring the IMSplex.</td>
</tr>
<tr>
<td>BATCH</td>
<td>batch</td>
<td>IMS batch job.</td>
</tr>
<tr>
<td>CQS</td>
<td>cqs</td>
<td>Common Queue Server address space. CQS manages shared queues and may also manage resources on a resource structure.</td>
</tr>
<tr>
<td>DBRC</td>
<td>dbrc</td>
<td>DBRC address space.</td>
</tr>
<tr>
<td>IMS</td>
<td>ims</td>
<td>IMS region.</td>
</tr>
<tr>
<td>IMSCON</td>
<td>imscon</td>
<td>IMS connect. An address space that serves as an interface between IMS and a protocol that is not directly supported by IMS.</td>
</tr>
<tr>
<td>ODBM</td>
<td>odbm</td>
<td>Open Database Manager address space. ODBM provides distributed access to IMS database resources.</td>
</tr>
<tr>
<td>OM</td>
<td>om</td>
<td>Operations Manager address space. Operations Manager supports IMS operations in an IMSplex.</td>
</tr>
<tr>
<td>OTHER</td>
<td>other</td>
<td>Other non-IMS address space or job.</td>
</tr>
<tr>
<td>REPO</td>
<td>repo</td>
<td>Repository Server (RS) address space.</td>
</tr>
<tr>
<td>RM</td>
<td>rm</td>
<td>Resource Manager address space. Resource manager supports global resources in an IMSplex.</td>
</tr>
<tr>
<td>SCI</td>
<td>sci</td>
<td>Structured Call Interface address space.</td>
</tr>
</tbody>
</table>

**QUERY IMSPLEX subtypes**

The following table shows the possible IMSplex member subtypes. The table contains information about member types, the member subtypes associated with them, and the meaning of the member subtype. These are the only subtypes that are defined and used by members supplied by IMS.

**Table 93. QUERY IMSPLEX member subtypes**

<table>
<thead>
<tr>
<th>Member type</th>
<th>Member subtype</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBRC</td>
<td>DBRC group_id</td>
<td>DBRC instances that share the same RECON in an IMSplex environment.</td>
</tr>
<tr>
<td>IMS</td>
<td>DBDC</td>
<td>IMS DB/DC address space.</td>
</tr>
<tr>
<td>IMS</td>
<td>DBCTL</td>
<td>IMS DBCTL address space. DBCTL supports database functions.</td>
</tr>
<tr>
<td>IMS</td>
<td>DCCTL</td>
<td>IMS DCCTL address space. DCCTL supports data communications functions.</td>
</tr>
<tr>
<td>IMS</td>
<td>FDBR</td>
<td>IMS Fast Database Recovery. An IMS control region that recovers database resources when an IMS database manager fails.</td>
</tr>
<tr>
<td>RM</td>
<td>SNGLRM</td>
<td>RM is defined without a resource structure, so only a single RM is allowed in the IMSplex.</td>
</tr>
</tbody>
</table>
Table 93. QUERY IMSPLEX member subtypes (continued)

<table>
<thead>
<tr>
<th>Member type</th>
<th>Member subtype</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM</td>
<td>MULTRM</td>
<td>RM is defined with a resource structure, so multiple RMs are allowed in the IMSplex.</td>
</tr>
</tbody>
</table>

Output fields

The following table shows the output fields for the QUERY IMSPLEX command. The columns in the table are as follows:

**Short label**
Contains the short label generated in the XML output.

**Long label**
Contains the long label generated in the XML output.

**Keyword**
Identifies the keyword on the command that caused the field to be generated. N/A appears for output fields that are always returned.

**Meaning**
Provides a brief description of the output field.

Table 94. Output fields for QUERY IMSPLEX command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSMBR</td>
<td>Member</td>
<td>N/A</td>
<td>IMSplex member name. The IMSplex member name is always returned.</td>
</tr>
<tr>
<td>IMSPLX</td>
<td>IMSplex</td>
<td>N/A</td>
<td>IMSplex name. The IMSplex name is always returned.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>IMSplex member that built the output line. The OM identifier of the OM that built the output line.</td>
</tr>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code for the line of output. The completion code is always returned.</td>
</tr>
<tr>
<td>STT</td>
<td>Status</td>
<td>STATUS</td>
<td>IMSplex member status. For more information, see Table 91 on page 265</td>
</tr>
<tr>
<td>JOB</td>
<td>JobName</td>
<td>JOB</td>
<td>Job name of IMSplex member.</td>
</tr>
<tr>
<td>OS</td>
<td>OSName</td>
<td>OS</td>
<td>Name of OS image on which the IMSplex member is executing.</td>
</tr>
<tr>
<td>STYP</td>
<td>Subtype</td>
<td>SUBTYPE</td>
<td>Subtype of IMSplex member. See Table 93 on page 266 for an explanation of the possible subtypes.</td>
</tr>
<tr>
<td>TYP</td>
<td>Type</td>
<td>TYPE</td>
<td>IMSplex member type.</td>
</tr>
<tr>
<td>VER</td>
<td>Version</td>
<td>VERSION</td>
<td>IMSplex member version.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The return and reason codes that can be returned as a result of the QUERY IMSPLEX command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.
Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

The following table contains completion codes can be returned on a QUERY IMSPLEX command.

### Table 96. Completion codes for the QUERY IMSPLEX command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The QUERY IMSPLEX command completed successfully for the resource.</td>
</tr>
<tr>
<td>4</td>
<td>The IMSplex name is unknown to the client that is processing the request. The IMSplex name might have been typed in error or the IMSplex might not be active at this time. If this is a wildcard request there were no matches for the name. Confirm that the correct spelling of the resource name is specified on the command.</td>
</tr>
</tbody>
</table>
Examples

The following are examples of the QUERY IMSPLEX command:

Example 1 for QUERY IMSPLEX command

TSO SPOC input:

```
QRY IMSPLEX NAME(CSLPLEX1) SHOW(JOB,subtype,STATUS,TYPE)
```

TSO SPOC output:

```
Response for: QUERY IMSPLEX NAME(CSLPLEX1) SHOW(JOB,subtype,STATUS)
IMSplex MbrName CC Member JobName Type Subtype Status
CSLPLEX1 OM1OM 0 CQS1CQS CQS REI CQS ACTI
CSLPLEX1 OM1OM 0 PRAQJOB4 PRAQJOB4 DBRC 001 READY,ACTIVE
CSLPLEX1 OM1OM 0 DBRACSAH DBRACSAH DBRC 001 READY,ACTIVE
CSLPLEX1 OM1OM 0 SYS3 IMS1 IMS DBDC READY,ACTIVE
CSLPLEX1 OM1OM 0 OM1OM OM1 OM READY,ACTIVE
CSLPLEX1 OM1OM 0 PRAQJOB2 PRAQJOB2 DBRC 001 READY,ACTIVE
CSLPLEX1 OM1OM 0 USRT011 USRT011 AOP ACTIVE
CSLPLEX1 OM1OM 0 RM1RM RM1 RM MULTRM READY,ACTIVE
CSLPLEX1 OM1OM 0 SCI1SC SCI1 SCI READY,ACTIVE
CSLPLEX1 OM1OM 0 ODBM100 ODBM1 ODBM READY,ACTIVE
```

OM API input:

```
CMD(QRY IMSPLEX NAME(CSLPLEX1) SHOW(JOB,subtype,STATUS,TYPE))
```

OM API output:

```
<?xml version="1.0"?><imsout><ctl><omname>OM1OM</omname><omvsn>1.1.0</omvsn><statime>2002.163 15:05:18.899217</statime><stotime>2002.163 15:05:18.860443</stotime><staseq>87C4A41E663D11C3</staseq><stostime>87C4A41E6689B9C3</stostime><rqsttkn1>USRT011 100B051B</rqsttkn1><rc>00000000</rc><rsn>00000000</rsn></ctl><cmd><userid>USRT011</userid><verb>QRY</verb><kwd>IMSPLEX</kwd><input>QUERY IMSPLEX NAME(CSLPLEX1) SHOW(JOB,subtype,STATUS,TYPE)</input></cmd><cmdrshdr><hdr slbl="IMSPLX" llbl="IMSplex" scope="LCL" sort="A" key="1" scroll="NO" len="8" dtype="CHAR" align="left"/>
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="N" key="0" scroll="YES" len="8" dtype="CHAR" align="left"/>
<hdr slbl="CC" llbl="CC" scope="LCL" sort="N" key="0" scroll="YES" len="4" dtype="INT" align="right"/>
<hdr slbl="IMSMBR" llbl="Member" scope="LCL" sort="N" key="0" scroll="NO" len="8" dtype="CHAR" align="left"/>
<hdr slbl="JOB" llbl="JobName" scope="LCL" sort="N" key="0" scroll="YES" len="8" dtype="CHAR" align="left"/>
<hdr slbl="TYP" llbl="Type" scope="LCL" sort="N" key="0" scroll="YES" len="5" dtype="CHAR" align="left"/>
<hdr slbl="STYP" llbl="Subtype" scope="LCL" sort="N" key="0" scroll="YES" len="8" dtype="CHAR" align="left"/>
<hdr slbl="STT" llbl="Status" scope="GBL" sort="N" key="0" scroll="YES" len="*" dtype="CHAR" align="left"/>
```

Chapter 5. QUERY commands 269
Explanation: The QUERY IMSPLEX command displays the IMSplex members that compose IMSplex CSLPLEX1. This IMSplex contains three IMS systems (IMS1, IMS2, and IMS3), a TSO SPOC (USRT011), a CQS (CQSRE1), RM (RM1), and OM (OM1). OM1 is the command master that built the output.

Example 2 for QUERY IMSPLEX command

TSO SPOC input:
QRY IMSPLEX NAME(CSLPLEX1) SHOW(JOB, SUBTYPE, STATUS, TYPE)

TSO SPOC output:

Response for: QUERY IMSPLEX NAME(CSLPLEX1) SHOW(JOB, SUBTYPE, STATUS, TYPE)
IMSplex MbrName CC Member JobName Type Subtype Status
CSLPLEX1 OM1OM 0 IMS2 IMS DBDC READY,ACTIVE
CSLPLEX1 OM1OM 0 CMS1CQS CQSRE1 CQS READY,ACTIVE
CSLPLEX1 OM1OM 0 SYS3 IMS1 IMS DBDC READY,ACTIVE
CSLPLEX1 OM1OM 0 OM1OM OM1 OM READY,ACTIVE
CSLPLEX1 OM1OM 0 IMS3 IMS3 IMS DBDC READY,ACTIVE
CSLPLEX1 OM1OM 0 USRT011 USRT011 AOP READY,ACTIVE
CSLPLEX1 OM1OM 0 RM1RM RM1 RM MULTRM READY,ACTIVE
CSLPLEX1 OM1OM 0 SCI1SC SCI1 SCI READY,ACTIVE
CSLPLEX1 OM1OM 0 ODBM1OD ODBM1 ODBM READY,ACTIVE

OM API input:
CMD (QRY IMSPLEX NAME(CSLPLEX1) SHOW(JOB, SUBTYPE, STATUS, TYPE))

OM API output:
<imsout>
<ctl>
<omname>OM1OM</omname><omvsn>1.1.0</omvsn>
<xmlvsn>1</xmlvsn>
<statime>2002.163 15:05:18.859217</statime>
<stotime>2002.163 15:05:18.860443</stotime>
<staseq>B7C4A41E663D11C3</staseq>
<stoseq>B7C4A41E6689B9C3</stoseq>
</cmdrspdata>
</imsout>
Explanation: The QUERY IMSPLEX command displays the IMSplex members that compose IMSplex CSLPLEX1. This IMSplex contains three IMS systems (IMS1, IMS2, and IMS3), a TSO SPOC (USRT011), a CQS (CQSRE1), RM (RM1), and OM (OM1). OM1 is the command master that built the output.

Example 3 for QUERY IMSPLEX command

TSO SPOC input:
QUERY IMSPLEX TYPE(REPO) SHOW(ALL)

TSO SPOC output:
Explanation: The QUERY IMSPLEX TYPE(REPO) SHOW(ALL) command returns information about the Repository Server address spaces registered to SCI. The REPO1RP member is the master server and the REPO2RP server is the subordinate server because REPO2RP has not yet issued the SCI Ready request.
QUERY LE command

Use the QUERY LE command to display Language Environment® (LE) runtime parameter overrides defined by a previous UPDATE LE command. The query can use filters on transaction code, LTERM, user ID, or program name.

Subsections:
- “Environment”
- “Syntax”
- “Keywords” on page 274
- “Usage notes” on page 275
- “Output fields” on page 275
- “Return, reason, and completion codes” on page 275
- “Examples” on page 276

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) from which the QUERY LE command and keywords can be issued.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY LE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LTERM</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PGM</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SHOW</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TRAN</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>USERID</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax
Keywords

The following keywords are valid for the QUERY LE command:

The parameters support a generic or wildcard parameter. A generic parameter is a 1-8 character name that includes an asterisk or a percent sign. An asterisk can be replaced by a zero or more characters to create a valid resource name. A percent sign can be replaced by exactly one character to create a valid resource name.

LTERM() Specifies the 1-8 character name of the LTERM or LTERMs matching the generic or wildcard parameter.

PGM() Specifies the 1-8 character name of the program or programs matching the generic or wildcard parameter.

SHOW() Specifies the output fields to be returned. At least one SHOW field is required on the command.

ALL Returns all the output fields. This is the same as if the following was specified: SHOW(TRAN,LTERM,USERID,PGM,LERUNOPTS).

LERUNOPTS Returns all of the LE override parameters associated with the transaction, LTERM, user ID, or program name.

LTERM Returns the logical terminal name field.

PGM Returns the program name field.

TRAN Returns the transaction name field.

USERID Returns the user identifier field.

TRAN() Specifies the 1-8 character name of the transaction or transactions matching the generic or wildcard parameter. If the TRAN, LTERM, USERID, or PGM resource filters are not specified, all parameter overrides are returned.

USERID() Specifies the 1-8 character name of the userid or userids matching the generic or wildcard parameter. If the TRAN, LTERM, USERID, or PGM resource filters are not specified, all parameter overrides are returned.
Usage notes

Any combination of parameters can be used to qualify the application instance. All entries found that match the criteria are returned. Specify on the command which output fields should be returned in the command response. You can ask for all information that includes transaction code, LTERM name, user ID, program name, and runtime parameters.

This command can be specified only through the Operations Manager API.

The command syntax for this command is defined in XML and is available to automation programs that communicate with OM.

Output fields

The following table shows the QUERY LE output fields. The columns in the table are as follows:

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code for the line of output. Completion code is always returned.</td>
</tr>
<tr>
<td>LTRM</td>
<td>Lterm</td>
<td>LTERM</td>
<td>LTERM Name requested by the QUERY.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>IMSplex member (IMS identifier) that built the output line. Member name is always returned.</td>
</tr>
<tr>
<td>PGM</td>
<td>Program</td>
<td>PGM</td>
<td>Program Name requested by the QUERY.</td>
</tr>
<tr>
<td>PRM</td>
<td>LERunOpts</td>
<td>LERUNOPTS</td>
<td>The LE override parameters for the specified resource filters.</td>
</tr>
<tr>
<td>TRAN</td>
<td>Trancode</td>
<td>TRAN</td>
<td>Transaction Name requested by the QUERY.</td>
</tr>
<tr>
<td>UID</td>
<td>Userid</td>
<td>USERID</td>
<td>Userid requested by the QUERY.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

An IMS return and reason code is returned to OM by the QUERY LE command. The OM return and reason codes that may be returned as a result of the QUERY LE command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.
Table 99. Return and reason codes for the QUERY LE command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The QUERY LE command completed successfully.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000200C'</td>
<td>No resources found to return. Either the entry was previously deleted or a keyword filter was typed incorrectly.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002014'</td>
<td>An invalid character was specified in the filter name.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004040'</td>
<td>The parameter override header has not been initialized. Retry the command after restart is complete.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005000'</td>
<td>Unable to get storage from IMODULE GETSTOR.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005010'</td>
<td>Unable to obtain latch.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005FFF'</td>
<td>Internal IMS Error - Should not occur.</td>
</tr>
</tbody>
</table>

The following table includes an explanation of the completion code.

Table 100. Completion code for the QUERY LE command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The QUERY LE command completed successfully for the specified resource.</td>
</tr>
</tbody>
</table>

Examples

The following are examples of the QUERY LE command:

Example 1 for QUERY LE command

Assume the following filters are specified on QRY LE commands:

1. TRAN(PART) SHOW(ALL) Returns entries #1, 2, 3, 5, 6, 8.
2. TRAN(PART) LTERM(TERM1) SHOW(ALL) Returns entries #3, 5, 6.
3. LTERM(TERM2) USERID(BETTY) SHOW(ALL) Returns entry #7.
4. TRAN(PART) LTERM(TERM1) USERID(BETTY) SHOW(ALL) Does not return any entries.
5. TRAN(PART) LTERM(TERM*) SHOW(ALL) Returns entries #3, 5, 6, 8.
6. USERID(B*) SHOW(ALL) Returns entries #2, 5, 6, 7.

Rules for matching an entry which results in it being returned on QUERY command:

- If a filter is specified on the command for a particular resource it must match the resource filter defined in the entry. The resource in the QUERY LE command may be specified with wildcards as defined previously.
- A resource filter that is not specified on a QUERY LE command will match on any filter for the specific resource defined in the entry. A non-specified filter is treated as a wildcard. For instance if the LTERM filter is not specified on a QRY LE command it will match on any LTERM resource defined in an entry, as if LTERM(*) was specified on the command.

The following table is a logical representation of the parameter override table entries prior to any of the above query commands being processed.
<table>
<thead>
<tr>
<th>Entry#</th>
<th>TRAN</th>
<th>LTERM</th>
<th>USERID</th>
<th>PROGRAM</th>
<th>LERUNOPTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PART</td>
<td>DFSSAM02</td>
<td>aaaa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>PART</td>
<td>BETTY</td>
<td>bbbb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>PART</td>
<td>TERM1</td>
<td>cccc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>DFSSAM02</td>
<td>dddd</td>
</tr>
<tr>
<td>5</td>
<td>PART</td>
<td>TERM1</td>
<td>BARBARA</td>
<td>eeee</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>PART</td>
<td>TERM1</td>
<td>BOB</td>
<td>ffffffff</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>TERM2</td>
<td></td>
<td>BETTY</td>
<td>gggg</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PART</td>
<td>TERM2</td>
<td>iiii</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Example 2 for QUERY LE command**

**TSO SPOC input:**

```
QRY LE SHOW(ALL)
```

**TSO SPOC output:**

```
SYS3 0 IAPMDI29 CCC
SYS3 0 IAPMDI26 USRT001 RPTOPTS=((ON),NOOVR),RPTSTG=((OFF),NOOVR)
SYS3 0 IAPMDI27 IMS1 USRT001 IAPMDI27 AAA
```

**OM API input:**

```
CMD(QRY LE SHOW(ALL))
```

**OM API output:**

```xml
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.1.0</omvsn>
<xmlvsn>1</xmlvsn>
<statime>2002.163 17:34:01.196902</statime>
<stotime>2002.163 17:34:01.197368</stotime>
<staseq>87C4C55B67566505</staseq>
<stoseq>87C4C55B67738365</stoseq>
<rqsttkn1>USRT002 10103401</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>SYS3</master>
<userid>USRT002</userid>
<verb>QRY</verb>
<kwd>LE</kwd>
<input>QRY LE SHOW(ALL)</input>
</cmd>
</cmdrsphdr>
```

**Table 101. Parameter override table entries for example 1**

<table>
<thead>
<tr>
<th>Entry#</th>
<th>TRAN</th>
<th>LTERM</th>
<th>USERID</th>
<th>PROGRAM</th>
<th>LERUNOPTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PART</td>
<td>DFSSAM02</td>
<td>aaaa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>PART</td>
<td>BETTY</td>
<td>bbbb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>PART</td>
<td>TERM1</td>
<td>cccc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>DFSSAM02</td>
<td>dddd</td>
</tr>
<tr>
<td>5</td>
<td>PART</td>
<td>TERM1</td>
<td>BARBARA</td>
<td>eeee</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>PART</td>
<td>TERM1</td>
<td>BOB</td>
<td>ffffffff</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>TERM2</td>
<td></td>
<td>BETTY</td>
<td>gggg</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PART</td>
<td>TERM2</td>
<td>iiii</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Chapter 5. QUERY commands 277**
Explaination: The SHOW(ALL) parameter is specified, so all four filters and the runtime option string are shown for each table entry. Furthermore, no filters are specified in the command, so all table entries are shown. In this example, there are three table entries. The first specifies one filter (program) and the parameter string for this entry is CCCC. The second entry specifies two filters, trancode and user ID, and its parameter string is RPTOPTS=((ON),NOOVR),RPTSTG=((OFF),NOOVR). The last entry specifies all four filters and a parameter string of AAAA.

Example 3 for QUERY LE command

TSO SPOC input:
QRY LE SHOW(LTERM,USERID)

TSO SPOC output:

<table>
<thead>
<tr>
<th>MbrName</th>
<th>CC</th>
<th>Lterm</th>
<th>Userid</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYS3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYS3</td>
<td>0</td>
<td>USRT001</td>
<td></td>
</tr>
<tr>
<td>SYS3</td>
<td>0</td>
<td>IMS1</td>
<td>USRT001</td>
</tr>
</tbody>
</table>

OM API input:

CMD(QRY LE SHOW(LTERM,USERID))

OM API output:

<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.1.0</omvsn>
<xmlvsn>1</xmlvsn>
<statime>2002.163 17:36:27.588393</statime>
<stotime>2002.163 17:36:27.589261</stotime>
<staseq>B7C4C5E703729D6F</staseq>
<stoseq>B7C4C5E703A8D467</stoseq>
<rqsttkn1>USRT002 10103627</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>SYS3</master>
<userid>USRT002</userid>
<verb>QRY</verb>
<kwd>LE</kwd>
<input>QRY LE SHOW(LTERM,USERID)</input>
</cmd>
</cmdrsphdr>
</cmdrspdata>
</imsout>
Explanation: This command uses the SHOW parameter to limit the amount of data that is shown for each entry in the table. All three table entries are shown, but only the LTERM and TRAN filters are shown for each one. The first entry has neither an LTERM filter nor a USERID filter defined, so it is blank except for the MbrName and CC.

**Example 4 for QUERY LE command**

TSO SPOC input:

QRY LE USERID(USRT*) SHOW(LTERM,USERID)

TSO SPOC output:

<table>
<thead>
<tr>
<th>MbrName</th>
<th>CC</th>
<th>Lterm</th>
<th>Userid</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYS3</td>
<td>0</td>
<td>USRT001</td>
<td></td>
</tr>
<tr>
<td>SYS3</td>
<td>0</td>
<td>IMS1</td>
<td>USRT001</td>
</tr>
</tbody>
</table>

OM API input:

CMD(QRY LE USERID(USRT*) SHOW(LTERM,USERID))

OM API output:

```xml
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.1.0</omvsn>
<xmlvsn>1</xmlvsn>
<statime>2002.163 17:50:24.925819</statime>
<stotime>2002.163 17:50:24.926381</stotime>
<staseq>87C4C905BF87B484</staseq>
<stoseq>87C4C905BF8A0324</stoseq>
<rqssttkn>USRT002 10105024</rqssttkn>
<rc>00000000</rc>
</ctl>
<cmd>
<master>SYS3</master>
<userid>USRT002</userid>
<verb>QRY</verb>
<kwd>LE</kwd>
<input>QRY LE USERID(USRT*) SHOW(LTERM,USERID)</input>
</cmd>
</imsout>
```
Explanation: This command uses both the USERID filter and the SHOW parameter to limit the amount of data shown in the output. The USERID(USR*T*) parameter limits the output to only those table entries that define a USERID filter that fits the specified pattern (USR*T*). The SHOW parameter limits how much information is returned about each table entry. In this case, only the LTERM and USERID are shown.

Related concepts:
- How to interpret CSL request return and reason codes (System Programming APIs)

Related reference:
- Command keywords and their synonyms (Commands)
- “UPDATE LE command” on page 1061

QUERY LTERM command

Use the QUERY LTERM command to display information about logical terminals (LTERMs). This command can be specified only through the OM API and is valid on an XRF alternate.

Subsections:
- “Environment”
- “Syntax” on page 281
- “Keywords” on page 282
- “Usage notes” on page 287
- “Equivalent IMS type-1 commands” on page 288
- “Output fields” on page 288
- “QUERY LTERM status” on page 291
- “Return, reason, and completion codes” on page 292
- “Examples” on page 294

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY LTERM</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MSGAGE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>QCNT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OPTION</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SHOW</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Table 102. Valid environments for the QUER Y LTERM command and keywords (continued)

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATUS</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

**Syntax**

```
 QUERY LTERM
 NAME(*)
 ,
 NAME(ltermname)

 MSGAGE(number)
 QCNT(LE,LT,number)
 GT
 GE
 EQ
 NE

 OPTION(MSGQ)
 OPTION(EMHQ)

 SHOW(GLOBAL,LOCAL)
 SHOW(GLOBAL,LOCAL,A)
 SHOW(GLOBAL,LOCAL)

 STATUS(
 LOCK
 MTO
 QERR
 QLOCK
 QROCKET
 RM
 RMACTIVE
 RMOWNED
 SMT0
 STATIC
 STOQ
 STOSEND
```

Chapter 5. QUERY commands  281
The following keywords are valid for the QUERY LTERM command:

**MSGAGE()**

Selects only those logical terminals that have at least one message whose message age is greater than the message age value specified. This applies only to messages in the shared message queues. The value specified is the number of days. Valid values are 0-365.

The information displayed includes the total count of messages on the queue, the count of messages with a message age greater than or equal to the message age specified, the time stamp of the oldest message, and the time stamp of the newest message.

When the MSGAGE filter is specified, the output returned includes the queue count of the LTERM even if SHOW(QCNT) is not specified, and the message age information even if SHOW(MSGAGE) is not specified.

MSGAGE() applies only to a shared-queues environment, and is processed only by the command master IMS. It is valid only when SHOW(GLOBAL) is specified.

The OPTION keyword tells IMS whether the message queue structure (OPTION(MSGQ)) or the EMH queue structure (OPTION(EMHQ)) is to be read. OPTION(MSGQ) is the default. OPTION(EMHQ) is valid only if shared EMH is used.

The performance implication is that in order to obtain message age information, all of the shared-queues LTERM messages on the Coupling Facility must be read.

If MSGAGE() is specified with the QCNT() or STATUS() filters, then IMS selects those LTERMs that match any of the specified filters (they do not need to match all specified filters).

**NAME()**

Specifies the names of one or more logical terminals that are to be displayed. Valid names are 1-8 characters, and wildcards can be specified. To display all logical terminals, specify NAME(*). NAME(*) is the default.

There are some special considerations when specifying certain specific LTERM names.
The primary and secondary MTO LTERM names may have generic names associated with them, as specified by the PMTOG and SMTOG keywords in the DFSICxxx PROCLIB member. To display the primary or secondary MTO LTERMs on all systems, the operator should specify the generic LTERM name. When this is done, the output displayed will show the real LTERM names on each system, not the generic name.

The system console LTERM has a generic name of 'WTOR'. When shared queues are not enabled, 'WTOR' is also the real name of the system console LTERM. When shared queues are enabled in a non-XRF system, the real name is the IMS system ID (IMSID). When shared queues are enabled in an XRF system, the real name is the Recoverable Service Element (RSENAME). To display the system console LTERMs on all systems, the operator should specify the generic LTERM name 'WTOR'. When this is done, the output displayed will show the real LTERM names on each system, not the generic name.

Logical terminals associated with VTAM nodes might exist either locally, in the resource structure, or both. Logical terminals associated with the system console, SPOOL or SYSOUT devices will exist only in local systems.

**OPTION()**

Specifies additional information to process the command. This keyword is valid only with the MSGAGE() or QCNT() filter.

**MSGQ**

Specifies that queue count information should be retrieved from the shared message queue structure, or the local message queues if shared queues are not enabled (for QCNT filter only).

**EMHQ**

Specifies that queue count information should be retrieved from the expedited message handler queue structure. EMHQ is valid only when EMH queues are used.

**QCNT()**

Selects only those logical terminals that have a queue count less than (LT), less than or equal to (LE), greater than (GT), greater than or equal to (GE), equal to (EQ), or not equal to (NE) the specified number. The specified number cannot be a 1 when LT is specified, and cannot be a 0 when EQ, GE, LE, or LT is specified. Regardless of the condition specified, only LTERMs with a queue count greater than 0 are returned when the QCNT filter is specified. LTERMs with a queue count of 0 are not returned.

The QCNT filter is valid in both a shared-queues environment and in a non-shared-queues environment.

In a shared-queues environment, the global queue count values are used to determine the LTERMs to be displayed. Therefore, SHOW(LOCAL) is invalid with the QCNT filter. In this environment, only the command master processes the command. All other IMS systems ignore the command. The OPTION keyword tells IMS whether the message queue structure (OPTION(MSGQ)) or the EMH queue structure (OPTION(EMHQ)) is to be read. OPTION(MSGQ) is the default. OPTION(EMHQ) is only valid if shared EMH is used. If QCNT is specified with a wildcard LTERM name, the performance implication is that all of the shared-queues LTERM messages on the Coupling Facility must be read.

In a non-shared-queues environment, the local queue count values are used to determine the LTERMs to be displayed. In this environment, the command is processed by each IMS that the command is routed to because the queues are local. Each IMS returns all of the LTERMs that it finds locally that match the
queue count filter specified. Because there is no local EMH queue count, 
OPTION(EMHQ) is invalid in this environment, and if specified, the command 
will be rejected.

When the QCNT filter is specified, the output returned includes the queue 
count of the LTERM, even if SHOW(QCNT) is not specified.

If QCNT() is specified with the MSGAGE() or STATUS() filters, then IMS 
selects those LTERMs that match any of the specified filters (they do not need 
to match all specified filters).

SHOW()

This specifies the LTERM output fields to be returned. If SHOW is not 
specified, and if none of the three keywords MSGAGE, QCNT, or STATUS is 
specified, then only the LTERM names are returned. This provides a method 
for a system management application to obtain a list of all LTERM names that 
are currently known in the IMSplex.

Two parameters, GLOBAL and LOCAL, are used to specify the location (global 
resources or local resources) where IMS should obtain the information that is 
to be displayed. The default is both GLOBAL and LOCAL.

The rest of the parameters are used to specify what information is displayed.

The parameters supported with the SHOW keyword, which can be specified in 
any order, are:

ALL
Returns all of the output fields.

COMPONENT
Displays the input and output component for the LTERM. The component 
numbers are defined in the NAME macro, user descriptor, signon user exit 
(DFSSGNX0), or the /ASSIGN LTERM command, and represent the 
component of a terminal that is used for input or output.

EMHQ
Displays the LTERM message queue count in the Expedited Message 
Handler (EMH) queues.

EMHQ is valid only when the GLOBAL parameter is specified on the 
SHOW keyword. If GLOBAL is not specified, then the EMHQ parameter is 
ignored.

EMHQ is processed only by the command master. It is ignored by all other 
IMS systems.

EMHQ is valid only if shared EMH is used in a shared queues 
environment. Otherwise, this parameter is ignored.

GLOBAL
The command master displays global information, depending on the other 
SHOW parameters specified. This includes information from shared queues 
and the resource structure.

The GLOBAL parameter is processed by the command master only. All 
other IMS systems ignore this parameter. If LOCAL is not also specified, 
then all IMS systems other than the command master ignore the command.

GLOBAL is applicable only when the command master is using shared 
queues or sysplex terminal management (or both).
GLOBAL is not applicable when the command master is not using shared queues or sysplex terminal management. In this environment, if LOCAL is also specified, then GLOBAL is ignored. Otherwise, the command master rejects the command.

If shared queues are enabled, and global queue counts are requested, then the command master will make requests to CQS to determine the appropriate queue counts. This includes both MSGQ and EMHQ.

If sysplex terminal management is enabled, then the command master will make requests to RM to determine the appropriate global status.

If both GLOBAL and LOCAL are specified (which is the default), then the command master builds global and local information separately. Global information is displayed as one output line (or set of output lines), and local information is displayed as another output line (or set of output lines).

LOCAL
All IMS systems including the command master display local information, depending on the other SHOW parameters specified. This includes information local to the IMS processing the command.

The LOCAL parameter is processed by all IMS systems, including the command master.

LOCAL is applicable in any environment, regardless of whether shared queues or sysplex terminal management are used.

If both GLOBAL and LOCAL are specified (which is the default), then the command master builds global and local information separately. Global information is displayed as one output line (or set of output lines), and local information is displayed as another output line (or set of output lines).

MSGAGE
Displays the count of messages whose ages are greater than the value specified by the MSGAGE() filter. If the MSGAGE() filter is not specified, then the value is assumed to be 0, and the count displayed is the total message queue count for the LTERM. The timestamp of the oldest and newest message on the LTERM queue is also displayed.

SHOW(QCNT) and SHOW(EMHQ) determine whether IMS reads the shared message queues, or the EMH queues. If neither is specified, then SHOW(QCNT) is assumed.

The performance implication is that in order to obtain message age information, all of the shared-queues LTERM messages on the Coupling Facility must be read.

The MSGAGE parameter is valid only in a shared-queues environment, and is ignored in all other environments. It is processed by the command master only. All other IMS systems ignore this parameter.

MSNAME
Displays the MSC logical link path name (msname) associated with the remote LTERM, and the remote and local system identifiers (SYSIDs). This applies only to LTERMs that are defined as MSC remote LTERMs.

NODE
Displays the node, if any, associated with the LTERM. For VTAM terminals, this is the terminal name. For LTERMs associated with
non-VTAM devices (system console, SPOOL, SYSOUT, and TCO), IMS displays a node name of DFSLNxxx, where xxx is the line number, and the line and PTERM number of the non-VTAM device.

**OWNER**
Displays the owner of the associated user or node resource in the resource structure. This applies only when sysplex terminal management is enabled, and is only processed by the command master. All other IMS systems ignore this parameter.

The owner is the IMSID (or RSENNAME for XRF systems) of the IMS system that owns the associated user or node. An IMS system owns a user or node resource if the resource is active (the user is signed on, or the node is logged on), or an IMS system is maintaining significant status for that resource.

**QCNTR**
Displays the LTERM message queue count.

The local queue counts value returned on this command represents the messages being processed by the IMS system where this command is issued. In a shared-queues environment, do not use the local queue counts for queue evaluation purposes. The global queue counts, which are returned on this command, represent the current message queue counts on the shared queues structure.

If the LOCAL parameter is also specified on the SHOW keyword, then all IMS systems that process the command, including the command master, display the local queue count. This is valid whether or not shared message queues are enabled.

If the GLOBAL parameter is also specified on the SHOW keyword, and shared message queues are enabled, then the command master displays the global queue count on the shared message queues (MSGQ).

The local and global queue counts are displayed as separate output fields.

**STATUS**
Returns local and global status of the LTERM. See "QUERY LTERM status" on page 291 for a list and meaning of possible status that can be returned.

**USER**
Displays the dynamic or ISC user, if any, associated with the LTERM.

**VERSION**
Displays the RM version number of the LTERM resource. This is the version number assigned to the LTERM, which is assigned by MVS, and maintained by RM, when the resource is created or updated in the resource structure. VERSION applies only when sysplex terminal management is enabled. VERSION is ignored when sysplex terminal management is not enabled.

**STATUS()**
Selects LTERMs for display that possess at least one of the specified LTERM statuses. The status might exist locally or globally if sysplex terminal management (STM) is enabled.

The STATUS filter is valid in both a sysplex terminal management environment and in a non sysplex terminal management environment.
In a sysplex terminal management environment, the status selected might exist locally, globally, or both. If sysplex terminal management is not enabled, then the status only exists locally.

If SHOW(LOCAL) is specified, then IMS will select only those LTERMs with the appropriate status in the local system. The command is processed by all IMS systems, including the command master.

If SHOW(GLOBAL) is specified, and sysplex terminal management is enabled, then IMS will select only those LTERMs with the appropriate status in the resource structure. The command is processed only by the command master.

If SHOW(GLOBAL) is specified, but sysplex terminal management is not enabled, then the command is rejected.

If SHOW(GLOBAL,LOCAL) is specified, which is the default, then IMS will select those LTERMs with the appropriate status either locally or in the resource structure (if sysplex terminal management is enabled). The command is processed by all IMS systems. The command master processes both global and local information.

The output returned when the status filter is specified includes the status of the LTERM, even if SHOW(STATUS) is not specified.

If STATUS() is specified with the MSGAGE() or QCNT() filters, then IMS selects those LTERMs that match any of the specified filters (they do not need to match all specified filters).

See “QUERY LTERM status” on page 291 to determine which filters can be used to select nodes with corresponding status.

**Usage notes**

The QUERY LTERM command can be specified only through the OM API.

QUERY LTERM can be issued on an XRF alternate system, but SHOW(GLOBAL) is not supported. Only local information can be displayed.

The processing of the QUERY LTERM command is different depending on whether IMS sysplex terminal management is enabled.

- If IMS sysplex terminal management is not enabled, processing is local for each system. The results of type-1 and type-2 commands are similar.
- If IMS sysplex terminal management is enabled, type-1 and type-2 command processing is similar when displaying local information. However, they differ in how global information is displayed.
- For type-1 /DISPLAY commands with IMS sysplex terminal management enabled, the command master displays information from either the resource structure or the local system, but not both. If the resource being displayed is not owned by any system or is owned by the command master, the command master displays the global resource. However, if the resource is owned by a system other than the command master, the command master displays only the local resource, and the owning system is responsible for displaying the global resource.
- For type-2 QUERY commands with IMS sysplex terminal management enabled, the command master is the only system that displays global resource information, regardless of whether the resource is owned. In addition, the command master displays local resource information. All other IMS systems that
process the command display local resource information only. This approach allows more flexibility in displaying all information in an IMSplex.

The SHOW keyword determines which IMS systems process the command, and what information is displayed.

- If SHOW(GLOBAL) is specified, then the command master displays global information, which can include the global queue count if shared queues are enabled, and status from the resource structure if sysplex terminal management is enabled (STM=YES defined in DFSDCxxx PROCLIB member). This is true whether or not the LTERM is active on any particular IMS system. All other IMS systems ignore the GLOBAL parameter with return code X'00000004' and reason code X'00001000'.

- If SHOW(LOCAL) is specified, then each IMS system to which OM routes the command (including the command master) processes the command, and displays information that is local to each system.

- If both GLOBAL and LOCAL are specified, which is the default, then both global and local information are displayed. Each IMS system to which OM routes the command, including the command master, processes the command, and displays local information. In addition to local information, the command master displays global information.

**Equivalent IMS type-1 commands**

The following table shows variations of the QUERY LTERM command and the type-1 IMS commands that perform similar functions.

*Table 103. Type-1 equivalents for the QUERY LTERM command*

<table>
<thead>
<tr>
<th>QUERY LTERM command</th>
<th>Similar IMS type-1 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY LTERM SHOW(COMPONENT)</td>
<td>/DISPLAY ASMT LTERM ltermname</td>
</tr>
<tr>
<td>QUERY LTERM SHOW(EMHQ)</td>
<td>/DISPLAY LTERM ltermname QCNT EMHQ</td>
</tr>
<tr>
<td>QUERY LTERM SHOW(MSNAME)</td>
<td>/DISPLAY LTERM ltermname</td>
</tr>
<tr>
<td>QUERY LTERM SHOW(NODE)</td>
<td>/DISPLAY ASMT LTERM ltermname</td>
</tr>
<tr>
<td>QUERY LTERM SHOW(QCNT)</td>
<td>/DISPLAY LTERM ltermname QCNT</td>
</tr>
<tr>
<td>QUERY LTERM SHOW(STATUS)</td>
<td>/DISPLAY LTERM ltermname QCNT</td>
</tr>
<tr>
<td>QUERY LTERM SHOW(USER)</td>
<td>/DISPLAY ASMT LTERM ltermname</td>
</tr>
<tr>
<td>QUERY LTERM STATUS(MTO,SMTO)</td>
<td>/DISPLAY MASTER /RDISPLAY MASTER</td>
</tr>
<tr>
<td>QUERY LTERM MSGAGE(x)</td>
<td>/DISPLAY QCNT LTERM MSGAGE x</td>
</tr>
<tr>
<td>QUERY LTERM STATUS(status)</td>
<td>/DISPLAY STATUS LTERM</td>
</tr>
</tbody>
</table>

**Output fields**

The following table shows the QUERY LTERM output fields. The columns in the table are:

**Short label**

Contains the short label generated in the XML output.
Long label
Contains the column heading for the output field in the formatted output.

SHOW parameter
Identifies the parameter on the SHOW keyword that caused the field to be generated. Error appears for output fields that are returned for a non-zero completion code. N/A (not applicable) appears for output fields that are always returned.

Scope
Identifies the scope of the output field. GBL indicates that the field can be generated only by the command master when displaying global information for SHOW(GLOBAL). LCL indicates that the field can be generated by any IMS displaying local information for SHOW(LOCAL). N/A (not applicable) appears for output fields that are always returned.

Meaning
Provides a brief description of the output field.

Table 104. Output fields for the QUERY LTERM command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>SHOW parameter</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>N/A</td>
<td>Completion code. The completion code indicates whether IMS was able to process the command for the specified resource. See &quot;Return, reason, and completion codes&quot; on page 292 for more information. The completion code is always returned.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>Error</td>
<td>N/A</td>
<td>Completion code text that briefly explains the meaning of the non-zero completion code. This field is returned only for an error completion code.</td>
</tr>
<tr>
<td>EAGE</td>
<td>EmhqAged</td>
<td>MSGAGE</td>
<td>GBL</td>
<td>Count of EMHQ messages with a message age greater than or equal to the message age specified by the MSGAGE() filter. If no filter is specified, the count is the total number of messages queued.</td>
</tr>
<tr>
<td>EMHQ</td>
<td>EMHQCnt</td>
<td>EMHQ</td>
<td>GBL</td>
<td>Global LTERM queue count in the EMH (Expedited Message Handler) queues. EMHQ is displayed only if shared EMH is used.</td>
</tr>
<tr>
<td>ETNEW</td>
<td>EmhqTStmpNew</td>
<td>MSGAGE</td>
<td>GBL</td>
<td>The time stamp of the newest EMHQ message for the LTERM on the shared queues.</td>
</tr>
<tr>
<td>ETOLD</td>
<td>EmhqTStmpOld</td>
<td>MSGAGE</td>
<td>GBL</td>
<td>The time stamp of the oldest EMHQ message for the LTERM on the shared queues.</td>
</tr>
<tr>
<td>GBL</td>
<td>Gbl</td>
<td>GLOBAL</td>
<td>GBL</td>
<td>If ‘Y’, then the output reflects the status found globally in shared queues or RM. If blank, then the output reflects the status found locally.</td>
</tr>
<tr>
<td>ICMP</td>
<td>InCmp</td>
<td>COMPONENT</td>
<td>GBL</td>
<td>The input component that the LTERM is assigned to in the resource structure.</td>
</tr>
<tr>
<td>LICMP</td>
<td>LInCmp</td>
<td>COMPONENT</td>
<td>LCL</td>
<td>The input component that the LTERM is assigned to in the local system.</td>
</tr>
<tr>
<td>LINE</td>
<td>Line</td>
<td>NODE</td>
<td>LCL</td>
<td>Identifies the line number for system console, SPOOL, SYSOUT, or TCO device.</td>
</tr>
<tr>
<td>LMSN</td>
<td>LMSName</td>
<td>MSNAME</td>
<td>LCL</td>
<td>The associated logical link path name when the LTERM is an MSC remote LTERM.</td>
</tr>
</tbody>
</table>
Table 104. Output fields for the QUERY LTERM command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>SHOW parameter</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNODE</td>
<td>LNode</td>
<td>NODE</td>
<td>LCL</td>
<td>Identifies the dynamic or static node associated with the LTERM on the local system.</td>
</tr>
<tr>
<td>LOCMP</td>
<td>LOutCmp</td>
<td>COMPONENT</td>
<td>LCL</td>
<td>The output component that the LTERM is assigned to in the local system.</td>
</tr>
<tr>
<td>LQ</td>
<td>LQCnt</td>
<td>QCNT</td>
<td>LCL</td>
<td>Local queue count.</td>
</tr>
<tr>
<td>LSIDL</td>
<td>LSIDL</td>
<td>MSNAME</td>
<td>LCL</td>
<td>Local system identification of the associated logical link path name when the LTERM is an MSC remote LTERM.</td>
</tr>
<tr>
<td>LSIDR</td>
<td>LSIDR</td>
<td>MSNAME</td>
<td>LCL</td>
<td>Remote system identification of the associated logical link path name when the LTERM is an MSC remote LTERM.</td>
</tr>
<tr>
<td>LSTT</td>
<td>LclStat</td>
<td>STATUS</td>
<td>LCL</td>
<td>Local logical terminal status. See Table 105 on page 291 for information about the logical terminal status that can be returned.</td>
</tr>
<tr>
<td>LTERM</td>
<td>Lterm</td>
<td>N/A</td>
<td>N/A</td>
<td>Logical terminal name. The logical terminal name is always returned.</td>
</tr>
<tr>
<td>LUSER</td>
<td>LUser</td>
<td>USER</td>
<td>LCL</td>
<td>Identifies the dynamic or ISC user associated with the LTERM on the local system.</td>
</tr>
<tr>
<td>LVER</td>
<td>LVersion#</td>
<td>VERSION</td>
<td>LCL</td>
<td>Version number for the LTERM resource being maintained in the local system. This field applies only when STM is enabled.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>N/A</td>
<td>IMSplex member that built the output line. The IMS identifier is always returned.</td>
</tr>
<tr>
<td>NODE</td>
<td>Node</td>
<td>NODE</td>
<td>GBL</td>
<td>Identifies the dynamic or static node associated with the LTERM in the resource structure.</td>
</tr>
<tr>
<td>OCMP</td>
<td>OutCmp</td>
<td>COMPONENT</td>
<td>GBL</td>
<td>The output component that the LTERM is assigned to in the resource structure.</td>
</tr>
<tr>
<td>OWNER</td>
<td>Owner</td>
<td>OWNER</td>
<td>GBL</td>
<td>The IMSID (or RSENAME for XRF systems) of the IMS system that “owns” the associated node or user resource. This field is returned only by the command master, and applies only when sysplex terminal management is enabled.</td>
</tr>
<tr>
<td>PTERM</td>
<td>PTerm</td>
<td>NODE</td>
<td>LCL</td>
<td>Identifies the PTERM number for system console, SPOOL, SYSOUT or TCO device.</td>
</tr>
<tr>
<td>QAGE</td>
<td>QCntAged</td>
<td>MSGAGE</td>
<td>GBL</td>
<td>Count of MSGQ messages with a message age greater than or equal to the message age specified by the MSGAGE() filter. If no filter is specified, the count is the total number of messages queued.</td>
</tr>
<tr>
<td>QCNT</td>
<td>QCnt</td>
<td>QCNT</td>
<td>GBL</td>
<td>Global queue count on the shared queues. Global queue count can be displayed only if shared queues are used.</td>
</tr>
<tr>
<td>QTNEW</td>
<td>TStmpNew</td>
<td>MSGAGE</td>
<td>GBL</td>
<td>The time stamp of the newest MSGQ message for the LTERM on the shared queues.</td>
</tr>
<tr>
<td>QTOLD</td>
<td>TStmpOld</td>
<td>MSGAGE</td>
<td>GBL</td>
<td>The time stamp of the oldest MSGQ message for the LTERM on the shared queues.</td>
</tr>
</tbody>
</table>
Table 104. Output fields for the QUER Y LTERM command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>SHOW parameter</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>STT</td>
<td>Status</td>
<td>STATUS</td>
<td>GBL</td>
<td>Global logical terminal status from the resource structure. See Table 105 for information about the logical terminal status that can be returned.</td>
</tr>
<tr>
<td>USER</td>
<td>User</td>
<td>USER</td>
<td>GBL</td>
<td>Identifies the dynamic or ISC user associated with the LTERM in the resource structure.</td>
</tr>
<tr>
<td>VER</td>
<td>Version#</td>
<td>VERSION</td>
<td>GBL</td>
<td>Version number for the LTERM resource being maintained in the resource structure. This field applies only when STM is enabled.</td>
</tr>
</tbody>
</table>

**QUERY LTERM status**

The following table shows the possible LTERM status that can be displayed. The columns in the table are:

- **Status**: The LTERM status that is displayed.
- **STATUS parameter**: The STATUS() filter that will select LTERMs with the specified status.
- **Scope**: The scope of the status. GBL indicates that the status can be global (it exists in the resource structure when STM is enabled), and is returned with the STT short label. LCL indicates that the status can be local, and is returned with the LSTT short label.
- **Meaning**: Provides a brief description of the status.

**Table 105. QUERY LTERM status**

<table>
<thead>
<tr>
<th>Status</th>
<th>STATUS parameter</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCK</td>
<td>LOCK</td>
<td>LCL</td>
<td>Logical terminal was locked by a /LOCK LTERM command.</td>
</tr>
<tr>
<td>MTO</td>
<td>MTO</td>
<td>LCL</td>
<td>Logical terminal is the master terminal for the local IMS.</td>
</tr>
<tr>
<td>QERR</td>
<td>QERR</td>
<td>LCL</td>
<td>I/O error has occurred on the queue for this logical terminal.</td>
</tr>
<tr>
<td>QLOCK</td>
<td>QLOCK</td>
<td>LCL</td>
<td>Logical terminal is locked from sending any further output or from receiving input that could create additional output for the same logical terminal until the state is reset by a specific request received on the session.</td>
</tr>
<tr>
<td>REMOTE</td>
<td>REMOTE</td>
<td>LCL</td>
<td>Logical terminal is defined remotely to this IMSplex, accessible via MSC.</td>
</tr>
<tr>
<td>RM</td>
<td>RM</td>
<td>GBL</td>
<td>The LTERM exists in the resource structure managed by RM.</td>
</tr>
<tr>
<td>RMACTIVE</td>
<td>RMACTIVE</td>
<td>GBL</td>
<td>The associated user or node is active (signed-on or logged-on) in the IMSplex, as indicated in the RM structure (RM active).</td>
</tr>
<tr>
<td>RMOWNED</td>
<td>RMOWNED</td>
<td>GBL</td>
<td>The associated user or node is owned by an IMS system in the IMSplex, as indicated in the RM structure (RM owned).</td>
</tr>
</tbody>
</table>

Chapter 5. QUERY commands 291
### Table 105. QUERY LTERM status (continued)

<table>
<thead>
<tr>
<th>Status</th>
<th>STATUS parameter</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMT</td>
<td>SMT</td>
<td>LCL</td>
<td>The logical terminal is the secondary master terminal for the local IMS.</td>
</tr>
<tr>
<td>STATIC</td>
<td>STATIC</td>
<td>LCL and GBL</td>
<td>Logical terminal was defined during system definition.</td>
</tr>
<tr>
<td>STOQ</td>
<td>STOQ</td>
<td>LCL and GBL</td>
<td>Input is stopped for the logical terminal.</td>
</tr>
<tr>
<td>STOSEND</td>
<td>STOSEND</td>
<td>LCL and GBL</td>
<td>Output is stopped for the logical terminal.</td>
</tr>
</tbody>
</table>

### Return, reason, and completion codes

An IMS return and reason code is returned to OM by the QUERY LTERM command. The OM return and reason codes that may be returned as a result of the QUERY LTERM command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

### Table 106. Return and reason codes for the QUERY LTERM command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The command completed successfully.</td>
</tr>
<tr>
<td>X'00000004'</td>
<td>X'00001000'</td>
<td>The command was not processed on the IMS system as the IMS system is not the command master. No resource information is returned.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002014'</td>
<td>An invalid character was specified in the resource name.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002040'</td>
<td>An invalid parameter value was specified. An invalid SHOW or STATUS value might have been specified. A value of 0 might have been specified for QCNT with LE, GE or, EQ. Or a value of 1 might have been specified for QCNT with LT.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003000'</td>
<td>The command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code. See Table 107 on page 293 for details.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>The command was not successful for any resource. The command output contains a line for each resource, accompanied by its completion code. See Table 107 on page 293 for details.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004004'</td>
<td>Command processing terminated because CQS was not active.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004005'</td>
<td>Command processing terminated because CQS was not connected to the queue structure.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000400C'</td>
<td>Command is not valid on the XRF alternate.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>Command is not valid on the RSR tracker.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004018'</td>
<td>Command processing terminated because the resource structure is not available.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000401C'</td>
<td>Command is not valid on the FDBR region.</td>
</tr>
<tr>
<td>Return code</td>
<td>Reason code</td>
<td>Meaning</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>------------------------------------------------------------------------</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004104'</td>
<td>Command processing terminated because RM is not available.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004108'</td>
<td>Command processing terminated because SCI is not available.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005004'</td>
<td>A DFSOCMD response buffer could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005008'</td>
<td>DFSPOOL storage could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005100'</td>
<td>Command processing terminated because of an RM error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005104'</td>
<td>Command processing terminated because of a CQS error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005108'</td>
<td>Command processing terminated because of an SCI error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005FFF'</td>
<td>Command processing terminated because of an internal IMS error.</td>
</tr>
</tbody>
</table>

The following table includes an explanation of the completion codes. Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The QUERY LTERM command completed successfully for the resource.</td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>The resource name is unknown to the client that is processing the request. The resource name might have been typed in error or the resource might not be active at this time. If this is a wildcard request there were no matches for the name. Confirm that the correct spelling of the resource name is specified on the command.</td>
</tr>
<tr>
<td>98</td>
<td>CQS REQUEST ERROR</td>
<td>Global queue counts could not be obtained because of a CQS error.</td>
</tr>
<tr>
<td>1A0</td>
<td>LTERM resource is in error</td>
<td>The LTERM resource was found in the resource structure. An associated resource was needed, but it was either not found or appeared to be in error. This is normally an error condition, but it could be a temporary condition caused by terminal or command activity. Retry the command.</td>
</tr>
</tbody>
</table>
Examples

The following are examples of the QUERY LTERM command:

Example 1 for QUERY LTERM command

TSO SPOC input:
QRY LTERM NAME(LTERM0*,XYZ) SHOW(LOCAL)

TSO SPOC output:

<table>
<thead>
<tr>
<th>Lterm</th>
<th>MbrName</th>
<th>CC</th>
<th>CCText</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTERM01</td>
<td>IMS1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>LTERM02</td>
<td>IMS1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>LTERM02</td>
<td>IMS2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>LTERM03</td>
<td>IMS2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>LTERM04</td>
<td>IMS1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>LTERM04</td>
<td>IMS2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>LTERM05</td>
<td>IMS1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>XYZ</td>
<td>IMS1</td>
<td>10</td>
<td>NO RESOURCES FOUND</td>
</tr>
<tr>
<td>XYZ</td>
<td>IMS2</td>
<td>10</td>
<td>NO RESOURCES FOUND</td>
</tr>
</tbody>
</table>

Explanation: There are two IMS systems in the IMSplex: IMS1 and IMS2. STM is irrelevant because only LOCAL information is requested. Shared queues are irrelevant because only LOCAL information is requested. IMS1, the command master, displays only local information because no global information is requested. IMS2 displays local information only.

- LTERM01 exists on IMS1 only.
- LTERM02 exists on IMS1 and IMS2.
- LTERM03 exists on IMS2 only.
- LTERM04 exists on IMS1 and IMS2.
- LTERM05 exists on IMS1 only.
- XYZ does not exist on any system.

Example 2 for QUERY LTERM command

TSO SPOC input:
QRY LTERM NAME(LTERM0*)

TSO SPOC output:

<table>
<thead>
<tr>
<th>Lterm</th>
<th>MbrName</th>
<th>CC</th>
<th>Gbl</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTERM01</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
</tr>
<tr>
<td>LTERM02</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
</tr>
<tr>
<td>LTERM02</td>
<td>IMS2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>LTERM03</td>
<td>IMS2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>LTERM04</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
</tr>
<tr>
<td>LTERM04</td>
<td>IMS1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>LTERM04</td>
<td>IMS2</td>
<td>0</td>
<td>Y</td>
</tr>
<tr>
<td>LTERM05</td>
<td>IMS1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>LTERM05</td>
<td>IMS1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Explanation: There are two IMS systems in the IMSplex: IMS1 and IMS2. RM is maintaining status (STM=YES). Shared queues are irrelevant because queue counts are not requested. IMS1, the command master, displays global and local information. IMS2 displays local information only.

- LTERM01 exists on IMS1 only.
- LTERM02 exists on IMS1 and IMS2, and in the resource structure.
- LTERM03 exists on IMS2 only.
• LTERM04 exists on IMS1, IMS2, and in the resource structure.
• LTERM05 exists on IMS1 and in the resource structure.

**Example 3 for QUERY LTERM command**

TSO SPOC input:
```
QRY LTERM NAME(LTERM0*) SHOW(GLOBAL,STATUS,QCNT,OWNER)
```

TSO SPOC output:
```
<table>
<thead>
<tr>
<th>Lterm</th>
<th>MbrName</th>
<th>CC</th>
<th>Gbl</th>
<th>Qcnt</th>
<th>Owner</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTERM02</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td>0</td>
<td>IMS2</td>
<td>STATIC,RM,RMACTIVE,RMOWNED</td>
</tr>
<tr>
<td>LTERM03</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td>1</td>
<td>IMS2</td>
<td>WALLPARKED</td>
</tr>
<tr>
<td>LTERM04</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td>3</td>
<td>IMS2</td>
<td>STATIC,RM,RMOWNED</td>
</tr>
<tr>
<td>LTERM05</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td>0</td>
<td>IMS2</td>
<td>STOQ,STOSEND,RM</td>
</tr>
<tr>
<td>LTERM06</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td>2</td>
<td>IMS2</td>
<td></td>
</tr>
</tbody>
</table>
```

**Explanation:** There are two IMS systems in the IMSplex: IMS1 and IMS2. RM is maintaining status (STM=YES). Shared queues are enabled. IMS1, the command master, displays global information. IMS2 ignores the command (RC=4, RSN=x1000) because SHOW(GLOBAL) is specified.
• LTERM02 exists in the resource structure, is currently active on IMS2, and has no messages in the shared queues.
• LTERM03 does not exist in the resource structure, but has one message in the shared queues.
• LTERM04 exists in the resource structure, is not currently active, but is owned by IMS2 which indicates status exists on IMS2, and has three messages in the shared queues.
• LTERM05 exists in the resource structure, is stopped, is not currently active or owned, and has no messages in the shared queues.
• LTERM06 does not exist in the resource structure, but has two messages in the shared queues.

**Example 4 for QUERY LTERM command**

TSO SPOC input:
```
QRY LTERM NAME(LTERM01,LTERM02,LTERM04) SHOW(QCNT,EMHQ)
```

TSO SPOC output:
```
<table>
<thead>
<tr>
<th>Lterm</th>
<th>MbrName</th>
<th>CC</th>
<th>CCText</th>
<th>Gbl</th>
<th>Qcnt</th>
<th>EMHQCnt</th>
<th>LQCnt</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTERM01</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td>Y</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LTERM01</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LTERM01</td>
<td>IMS2</td>
<td>0</td>
<td></td>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTERM02</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td>Y</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>LTERM02</td>
<td>IMS2</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LTERM04</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td>Y</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LTERM04</td>
<td>IMS2</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```

**Explanation:** There are two IMS systems in the IMSplex: IMS1 and IMS2. RM is maintaining status (STM=YES). Shared queues are enabled. IMS1, the command master, displays global and local information. IMS2 displays local information only.
• LTERM01 exists on IMS1 only, and has no messages in shared queues.
• LTERM02 exists on IMS1 and IMS2, and has one message in shared EMH.
• LTERM04 exists on IMS1 and IMS2, and has three messages in shared queues.
Explanation: There are two IMS systems in the IMSplex: IMS1 and IMS2. RM is irrelevant because global status other than queue counts is not requested. Shared queues are enabled. IMS1, the command master, displays global information. IMS2 ignores the command (RC=4, RSN=x1000) because QCNT() in a shared-queues environment is processed by the command master only.

- **LTERM04** has three messages queued, which satisfies the QCNT filter, and all messages are less than 7 days old.
- **LTERM06** has two messages queued that are older than 7 days, which satisfies the MSGAGE filter.

**Example 6 for QUERY LTERM command**

Explanation: There are two IMS systems in the IMSplex: IMS1 and IMS2. STM is irrelevant because only queue information is requested. Shared queues are enabled. IMS1, the command master, displays global information. IMS2 ignores the command (RC=4, RSN=x1000) because QCNT() in a shared-queues environment is processed by the command master only. The QCnt output is displayed even if SHOW(QCNT) was not specified.

- **LTERM04** has three messages in the shared queues.
- **LTERM06** has two messages in the shared queues.

**Example 7 for QUERY LTERM command**

Explanation: There are two IMS systems in the IMSplex: IMS04 and IMS05. LTERM04 and LTERM05 are each in a static state, while LTERM05 and LTERM06 are in a not found state.
LTERM05 IMS2
LTERM11 IMS1
LTERM11 IMS2 LINK2111 21 11 0 STATIC,REMOTE

**Explanation:** There are two IMS systems in the IMSplex: IMS1 and IMS2. STM is enabled. Shared queues are irrelevant because global queue counts are not requested. IMS1, the command master, displays local information only because only LOCAL is specified. IMS2 displays local information only.

- LTERM04 exists on IMS1 and IMS2. The LTERM is statically allocated to NODE04 on all systems.
- LTERM05 exists on IMS1 only. The LTERM is dynamic, allocated to USER05, and is stopped. There is no node because the user is not signed on.
- LTERM11 exists on IMS2 only. It is defined as a remote LTERM. The associated logical link name is LINK2111, and the remote and local SIDs are 21 and 11.

**Example 8 for QUERY LTERM command**

**TSO SPOC input:**
QRY LTERM NAME(LTERM04,LTERM05,LTERM11) SHOW(ALL)

**TSO SPOC output:**

<table>
<thead>
<tr>
<th>Lterm</th>
<th>MbrName</th>
<th>CC</th>
<th>CCText</th>
<th>Gbl</th>
<th>QCnt</th>
<th>EMHQCnt</th>
<th>Owner</th>
<th>Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTERM04</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td>0</td>
<td>0</td>
<td>IMS2</td>
<td>NODE04</td>
<td></td>
</tr>
<tr>
<td>LTERM04</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTERM04</td>
<td>IMS2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTERM05</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTERM05</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTERM05</td>
<td>IMS2</td>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTERM11</td>
<td>IMS1</td>
<td>10</td>
<td>NO RESOURCES FOUND Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTERM11</td>
<td>IMS1</td>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTERM11</td>
<td>IMS2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Example Output (screen 1):**

<table>
<thead>
<tr>
<th>Lterm</th>
<th>MbrName</th>
<th>CC</th>
<th>CCText</th>
<th>Gbl</th>
<th>QCnt</th>
<th>EMHQCnt</th>
<th>Owner</th>
<th>Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTERM04</td>
<td>IMS1</td>
<td>Y</td>
<td>1</td>
<td>1</td>
<td>USER05</td>
<td>7</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>LTERM04</td>
<td>IMS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTERM04</td>
<td>IMS2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTERM05</td>
<td>IMS1</td>
<td>Y</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTERM05</td>
<td>IMS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTERM05</td>
<td>IMS2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTERM11</td>
<td>IMS1</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTERM11</td>
<td>IMS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTERM11</td>
<td>IMS2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Example Output (screen 2):**

<table>
<thead>
<tr>
<th>Lterm</th>
<th>MbrName</th>
<th>CC</th>
<th>CCText</th>
<th>Gbl</th>
<th>QCnt</th>
<th>EMHQCnt</th>
<th>Owner</th>
<th>Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTERM04</td>
<td>IMS1</td>
<td>Y</td>
<td>07128/140758</td>
<td>07128/141005</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTERM04</td>
<td>IMS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTERM04</td>
<td>IMS2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTERM05</td>
<td>IMS1</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTERM05</td>
<td>IMS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTERM05</td>
<td>IMS2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTERM11</td>
<td>IMS1</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTERM11</td>
<td>IMS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTERM11</td>
<td>IMS2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Example Output (screen 3):**

<table>
<thead>
<tr>
<th>Lterm</th>
<th>MbrName</th>
<th>CC</th>
<th>CCText</th>
<th>Gbl</th>
<th>QCnt</th>
<th>EMHQCnt</th>
<th>Owner</th>
<th>Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTERM04</td>
<td>IMS1</td>
<td>Y</td>
<td>STATIC, RM, RMOWNED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTERM04</td>
<td>IMS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTERM04</td>
<td>IMS2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTERM05</td>
<td>IMS1</td>
<td>Y</td>
<td>STOQ, STOSEND, RM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chapter 5. QUERY commands 297
LTERM05 IMS1
LTERM05 IMS2
LTERM11 IMS1 Y
LTERM11 IMS1
LTERM11 IMS2

(scrolled right to screen 5)

<table>
<thead>
<tr>
<th>Lterm</th>
<th>MbrName</th>
<th>Gbl</th>
<th>LQCnt</th>
<th>LNode</th>
<th>LinCmp</th>
<th>LOutCmp</th>
<th>LUser</th>
<th>LMSName</th>
</tr>
</thead>
</table>
| LTERM04 IMS1 Y | LTERM04 IMS1 | 0 | NOD04 | 1 | 1
| LTERM04 IMS2 | 0 | NOD04 | 1 | 1
| LTERM05 IMS1 Y | LTERM05 IMS1 | 0 | 1 | 1 USER05
| LTERM05 IMS2 | LTERM11 IMS1 Y | LTERM11 IMS2 | 0 | LINK2111

(scrolled right to screen 6)

<table>
<thead>
<tr>
<th>Lterm</th>
<th>MbrName</th>
<th>Gbl</th>
<th>LSIDR</th>
<th>LSIDL</th>
<th>LVersion#</th>
<th>LcIStat</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTERM04 IMS1 Y</td>
<td>LTERM04 IMS1</td>
<td>0</td>
<td>STATIC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTERM04 IMS2</td>
<td>0</td>
<td>STATIC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTERM05 IMS1 Y</td>
<td>LTERM05 IMS1</td>
<td>2</td>
<td>STOQ,STOSEND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTERM05 IMS2</td>
<td>LTERM11 IMS1 Y</td>
<td>LTERM11 IMS2</td>
<td>21</td>
<td>11</td>
<td>0 STATIC,REMOTE</td>
<td></td>
</tr>
</tbody>
</table>

**Explanation:** There are two IMS systems in the IMSplex: IMS1 and IMS2. STM and shared queues are enabled. IMS1, the command master, displays global and local information. IMS2 displays local information only.

- **LTERM04** exists on IMS1, IMS2, and in the resource structure. Global status indicates it is not currently active, but is owned by IMS2 which indicates significant status exists for the node on IMS2. The LTERM is statically allocated to NOD04 on all systems.

- **LTERM05** exists on IMS1 and in the resource structure. LTERM05 is dynamic. Global status indicates it is stopped, but is not active or owned on any system. The local status on IMS1 indicates it is stopped. The LTERM is allocated to user USER05 in both IMS1 and RM. There is no node because the user is not signed on. LTERM11 exists on IMS2 only, so there is no global status. It is defined as a remote LTERM. The associated logical link name is LINK2111, and the remote and local SIDs are 21 and 11.

**Related concepts:**

- How to interpret CSL request return and reason codes (System Programming APIs)

**Related reference:**

- /DISPLAY ASMT command (Commands)
- /DISPLAY LTERM command (Commands)
- /DISPLAY MASTER command (Commands)
- /DISPLAY QCNT command (Commands)
- /DISPLAY STATUS command (Commands)
- Command keywords and their synonyms (Commands)

Chapter 10, “/RDISPLAY command,” on page 651
QUERY MEMBER command

Use the QUERY MEMBER command to display status or attribute information about one or more members of the IMSplex.

Subsections:
- “Environment”
- “Syntax”
- “Keywords”
- “Usage notes” on page 300
- “Output fields” on page 304
- “Return, reason, and completion codes” on page 305
- “Examples” on page 305

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) from which the QUERY MEMBER command and keywords can be issued.

Table 108. Valid environments for the QUERY MEMBER command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY MEMBER</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ALL</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ATTRIB</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SHOW</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>STATUS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TYPE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```plaintext
QUERY MEMBER TYPE(IMS) SHOW(ALL, ATTRIB, MODID, STATUS, TYPE)
```

Keywords

The following keywords are valid for the QUERY MEMBER command:

SHOW()

Specifies the output fields to be returned.

ALL

Returns all the output fields.

ATTRIB

Displays the IMSplex member attributes. These are static definitions.
**LOCAL**
Displays the local status information about one or more members of the IMSplex.

**GLOBAL**
Displays the global status information about one or more members of the IMSplex.

**MODID**
Displays the online change modify id. The modify id is incremented by each successful online change. During a global online change, an IMS's local modify id indicates whether the IMS has reached the online change commit phase 2 and is synchronized with the OLCSTAT data set. If the modify id is initialized to zero by the Global Online Change utility, the modify id represents the number of global online changes that have successfully completed.

The local modify id on an XRF alternate system indicates whether the XRF alternate has gotten the X'70' log record, performed online change, and is synchronized with the OLCSTAT data set. If the XRF alternate's modid matches the OLCSTAT data set modid as displayed by the QUERY OLC LIBRARY (OLCSTAT) command, the XRF alternate is synchronized with the OLCSTAT data set.

**STATUS**
Displays the IMSplex member status. IMSplex member status can change dynamically.

**TYPE**
Shows the IMSplex member type. The IMSplex member type can be IMS, for the IMS address space.

**TYPE()**
Specifies the IMSplex member type for which information will be displayed. IMS is the only type available.

**Usage notes**

The QUERY MEMBER command can be specified only through the OM API.

The QUERY MEMBER command indicates whether dynamic resource definition for MODBLKS is enabled (DFSDFxxx or DFSCGxxx defined with MODBLKS=DYN). When QUERY MEMBER SHOW(ALL) or SHOW(ATTRIB) is specified and DRD is enabled (MODBLKS=DYN), QUERY MEMBER command output displays DYNMODBLKS as the attribute under the LclAttr column.

There are two commands named QUERY MEMBER. QUERY MEMBER TYPE(IMS) is a type-2 command that gets information about IMS members from TSO SPOC or the OM API. QUERY MEMBER TYPE(IMSCON) is a z/OS modify command that gets information about IMS Connect members. See [IMS Connect QUERY MEMBER command (Commands)] for more information.

**QUERY MEMBER attributes**

The following table shows the possible IMS attributes. The table contains information about attributes such as the attribute that is returned, the scope of the attribute, and the meaning of the attribute. Global attributes are returned with the ATTR short label. Local attributes are returned with the LATTR short label.
TABLE 109. ATTRIBUTES FOR QUERY MEMBER COMMAND

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>DYNMODBLKS</td>
<td>LCL</td>
<td>Dynamic resource definition is enabled for MODBLKS resources.</td>
</tr>
<tr>
<td>GBLOLC</td>
<td>LCL</td>
<td>Global online change is enabled.</td>
</tr>
<tr>
<td>NO-STM</td>
<td>LCL</td>
<td>IMS is not sharing terminal resources because STM=NO was specified in DFSDCxxx PROCLIB member or IMS is registered to an RM that is not using a resource structure.</td>
</tr>
<tr>
<td>RMENVNO</td>
<td>LCL</td>
<td>No RM environment is running.</td>
</tr>
<tr>
<td>RSRTRK</td>
<td>LCL</td>
<td>Remote Site Recovery tracker.</td>
</tr>
<tr>
<td>SHAREDQ</td>
<td>LCL</td>
<td>Shared queues are enabled.</td>
</tr>
</tbody>
</table>

QUERY MEMBER STATUS

The following table shows the possible member status. The table contains information about status such as the status that is returned, the scope of the status, and the meaning of the status. Global status is returned with the STT short label. Local status is returned with the LSTT short label. A scope of LCL means that the status is local to the IMS specified and is returned with the LSTT short label. A scope of GBL means that the status is global to all the IMS systems and is returned with the STT short label.

TABLE 110. STATUS FOR QUERY MEMBER COMMAND

<table>
<thead>
<tr>
<th>Status</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEOPT</td>
<td>LCL</td>
<td>Language Environment options are enabled for this IMS.</td>
</tr>
<tr>
<td>OLCABRTC</td>
<td>LCL</td>
<td>Online change abort completed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A TERMINATE OLC command or /MODIFY ABORT command is entered. Online change abort phase completed locally for this IMS. The IMS is taken out of the online change state.</td>
</tr>
<tr>
<td>OLCABRTI</td>
<td>LCL</td>
<td>Online change abort in progress.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A TERMINATE OLC command or /MODIFY ABORT command is entered. Online change abort phase is in progress locally for this IMS.</td>
</tr>
<tr>
<td>OLCCMTCI</td>
<td>LCL or GBL</td>
<td>Online change commit phase 1 completed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>An INITIATE OLC PHASE(COMMIT) command or /MODIFY COMMIT command is entered. Online change commit phase 1 completed either locally for the IMS, or globally for all of the IMS systems in the IMSplex. After all of the IMS systems have attempted commit phase 1, the online change master updates the OLCSTAT data set and the online change is considered to be complete.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Type-1 commands from the system console, an IMS terminal, or the MTO are queued while the IMS is in this state. Queued commands are processed after the online change is committed or aborted. If the type-1 command is entered from the system console, theWTOR does not appear until this IMS is out of the online change state.</td>
</tr>
</tbody>
</table>
### Table 110. Status for QUERY MEMBER command (continued)

<table>
<thead>
<tr>
<th>Status</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLCCMT1I</td>
<td>LCL or GBL</td>
<td>Online change commit phase 1 in progress.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>An INITIATE OLC PHASE(COMMIT) command or /MODIFY COMMIT command is entered. Online change commit phase 1 is in progress either locally for this IMS or globally for all the IMS systems in the IMSplex.</td>
</tr>
<tr>
<td>OLCCMT2C</td>
<td>LCL or GBL</td>
<td>Online change commit phase 2 completed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>An INITIATE OLC PHASE(COMMIT) command or a /MODIFY COMMIT command is entered. Online change commit phase completed either locally for this IMS or globally for all the IMS systems in the IMSplex. Type-1 commands from the system console, an IMS terminal, or the MTO are queued while the IMS is in this state. Queued commands are processed after the online change is committed or aborted. If the type-1 command is entered from the system console, the WTOR does not appear until this IMS is out of the online change state.</td>
</tr>
<tr>
<td>OLCCMT2F</td>
<td>LCL</td>
<td>Online change commit phase 2 failed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>An INITIATE OLC PHASE(COMMIT) command or a /MODIFY COMMIT command is entered. Online change commit phase 2 failed locally for this IMS. This IMS may be stuck in an online change state, where the TERMINATE OLC command or /MODIFY ABORT command does not work. If that is the case, cancel the IMS and warm start IMS. This IMS can warm start, since it successfully participated in the online change except for commit phase 2.</td>
</tr>
<tr>
<td>OLCCMT2I</td>
<td>LCL or GBL</td>
<td>Online change commit phase 2 in progress.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>An INITIATE OLC PHASE(COMMIT) command or a /MODIFY COMMIT command is entered. Online change commit phase 2 is in progress either locally for this IMS or globally for all the IMS systems in the IMSplex.</td>
</tr>
<tr>
<td>OLCCMT3C</td>
<td>GBL</td>
<td>Online change commit phase 3 completed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>An INITIATE OLC PHASE(COMMIT) command is entered. Online change commit phase 3 is completed globally on the other IMS systems except for the master. The COMMIT master still needs to perform commit phase 3 locally. The online change is committed, but commit phase 3 is still needed to clean up the online change information on all the IMS systems.</td>
</tr>
<tr>
<td>OLCCMT3F</td>
<td>GBL</td>
<td>Online change commit phase 3 failed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>An INITIATE OLC PHASE(COMMIT) command is entered. Online change commit phase 3 failed globally on the other IMS systems. The master skips attempting to perform commit phase 3 locally and exits with an error, leaving itself in a global online change state. The other IMS systems may or may not have actually completed commit phase 3. Issue another COMMIT command to the previous COMMIT command master to complete the online change.</td>
</tr>
<tr>
<td>Status</td>
<td>Scope</td>
<td>Meaning</td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>-------------------------------------------------------------------------</td>
</tr>
<tr>
<td>OLCCMT3I</td>
<td>LCL or GBL</td>
<td>Online change commit phase 3 is in progress. An INITIATE OLC PHASE(COMMIT) command is entered. Online change commit phase 3 is in progress either locally for this IMS or globally for all the IMS systems in the IMSplex. The online change is committed, but commit phase 3 is needed to clean up online change information on all the IMS systems.</td>
</tr>
<tr>
<td>OLCMACB</td>
<td>GBL</td>
<td>Member online change for ACBLIB in progress.</td>
</tr>
<tr>
<td>OLCMSTR</td>
<td>GBL</td>
<td>Online change phase master.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>An INITIATE OLC PHASE(PREPARE), an INITIATE OLC PHASE(COMMIT), or a TERMINATE OLC command is entered. This IMS is the master of the online change phase currently in progress, either prepare, commit, or terminate. A different IMS may be master of each phase of online change.</td>
</tr>
<tr>
<td>OLCPREPC</td>
<td>LCL or GBL</td>
<td>Online change prepare phase completed. An INITIATE OLC PHASE(PREPARE) command or a /MODIFY PREPARE command is entered. Online change prepare phase completed locally for this IMS or globally for all the IMS systems in the IMSplex.</td>
</tr>
<tr>
<td>OLCPREPF</td>
<td>LCL</td>
<td>Online change prepare phase failed. An INITIATE OLC PHASE(PREPARE) command is entered. Online change prepare phase failed locally for this IMS. A TERMINATE OLC is required to delete the MWA created for the online change and also to delete the online change process that was initiated with RM.</td>
</tr>
<tr>
<td>OLCPREPI</td>
<td>LCL or GBL</td>
<td>Online change prepare phase in progress. An INITIATE OLC PHASE(PREPARE) command or a /MODIFY PREPARE command is entered. Online change prepare phase is in progress locally for this IMS or globally for all the IMS systems in the IMSplex.</td>
</tr>
<tr>
<td>OLCTERMC</td>
<td>GBL</td>
<td>Online change terminate completed. A TERMINATE OLC command was entered. Online change termination is completed for the IMS systems in the IMSplex.</td>
</tr>
<tr>
<td>OLCTERMF</td>
<td>LCL</td>
<td>TERMINATE FAILED: A TERMINATE OLC command is directed to the IMS that is not in an online change state. An MWA is created to coordinate the TERMINATE OLC command. The TERMINATE OLC command fails because of an RM, SCI, or CQS error and the MWA is set to a 'Terminate Failed' state. A subsequent TERMINATE OLC command is required to delete the MWA in this state.</td>
</tr>
</tbody>
</table>
Table 110. Status for QUERY MEMBER command (continued)

<table>
<thead>
<tr>
<th>Status</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLCTERM</td>
<td>GBL</td>
<td>Online change terminate in progress. A TERMINATE OLC command is entered. Online change termination is in progress for the IMS systems in the IMSplex. Online change termination aborts the online change. If all of the IMS systems are in an online change prepare state, TERMINATE OLC aborts the online change and removes all of the IMS systems from the online change state. If an error occurs before the OLCSTAT data set is updated, then TERMINATE OLC aborts the online change. The online change abort phase is performed on the IMS systems where abort is needed. All of the IMS systems are removed from the online change state.</td>
</tr>
<tr>
<td>SECCMD</td>
<td>LCL</td>
<td>Eligible IMS commands issued from the master terminal, and their command responses, are sent to the secondary master when the command /SMC MASTER ON is issued.</td>
</tr>
<tr>
<td>SECCMDT</td>
<td>LCL</td>
<td>Eligible IMS commands that are issued from terminals other than the master terminal, and their command responses, are sent to the secondary master when the command /SMC TERMINAL ON is issued.</td>
</tr>
<tr>
<td>SECMSG</td>
<td>LCL</td>
<td>IMS system messages are sent to the secondary master when the command /SMC MESSAGE ON is issued.</td>
</tr>
<tr>
<td>XRFALT</td>
<td>LCL</td>
<td>XRF alternate system.</td>
</tr>
</tbody>
</table>

Output fields

The following table shows information about the QUERY MEMBER TYPE(IMS) output fields. The columns in the table are as follows:

**Short label**
Contains the short label generated in the XML output.

**Long label**
Contains the long label generated in the XML output.

**Keyword**
Identifies keyword on the command that caused the field to be generated. error appears for output fields that can appear for a nonzero completion code. N/A (not applicable) appears for output fields that are always returned.

**Scope**
Identifies the scope of the output field.

**Meaning**
Provides a brief description of the output field.

Table 111. Output fields for QUERY MEMBER command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>N/A</td>
<td>Completion code for the line of output. The completion code is always returned.</td>
</tr>
</tbody>
</table>
Table 11. Output fields for QUER Y MEMBER command  (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>N/A</td>
<td>IMSplex member that built the output line. IMS identifier of IMS that built the output. The IMS identifier is always returned.</td>
</tr>
<tr>
<td>LATTR</td>
<td>LclAttr</td>
<td>ATTRIB</td>
<td>LCL</td>
<td>Local IMS attributes. See Table 109 on page 301 for more information.</td>
</tr>
<tr>
<td>MODI</td>
<td>ModId</td>
<td>MODID</td>
<td>LCL</td>
<td>Online change modify ID, which is increased by 1 for each online change.</td>
</tr>
<tr>
<td>LSTT</td>
<td>LclStat</td>
<td>STATUS</td>
<td>LCL</td>
<td>Local IMS status. See Table 110 on page 301 for more information.</td>
</tr>
<tr>
<td>STT</td>
<td>Status</td>
<td>STATUS</td>
<td>GBL</td>
<td>Global IMS status. See Table 110 on page 301 for more information.</td>
</tr>
<tr>
<td>TYP</td>
<td>Type</td>
<td>TYPE</td>
<td>LCL</td>
<td>IMSplex member type. The IMSplex member type can be IMS, for the IMS address space.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The return and reason codes that can be returned as a result of the QUERY MEMBER command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 112. Return and reason codes for QUER Y MEMBER command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The QUERY MEMBER TYPE(IMS) command completed successfully.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005004'</td>
<td>The QUERY MEMBER command failed because a DFSOCMD response buffer could not be obtained.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual member.

The following table contains the completion code that can be returned on a QUERY MEMBER command.

Table 113. Completion codes for QUER Y MEMBER

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The QUERY MEMBER TYPE(IMS) command completed successfully for this IMS.</td>
</tr>
</tbody>
</table>

Examples

The following are examples of the QUERY MEMBER command:

Example 1 for QUER Y MEMBER TYPE (IMS) command
**Example 2 for QUER Y MEMBER TYPE(IMS) command**

TSO SPOC input:
QRY MEMBER TYPE(IMS) SHOW(ALL)

TSO SPOC output:

<table>
<thead>
<tr>
<th>MbrName</th>
<th>CC</th>
<th>Type</th>
<th>Status</th>
<th>LclAttr</th>
<th>LclStat</th>
<th>ModId</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYS3</td>
<td>0</td>
<td>IMS</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

OM API input:

CMD(QRY MEMBER TYPE(IMS) SHOW(ALL))

OM API output:

```xml
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.1.0</omvsn>
<xmlvsn>1</xmlvsn>
<statime>2002.163 16:32:12.998765</statime>
<stotime>2002.163 16:32:12.999775</stotime>
<staseq>B7C4B78AFDC5FA80</staseq>
<rqsttkn1>USRT002 10093212</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>SYS3</master>
<userid>USRT002</userid>
<verb>QRY</verb>
<kwd>MEMBER</kwd>
<input>QRY MEMBER TYPE(IMS) SHOW(ALL)</input>
</cmd>
<cmdrsphdr>
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" key="1" scroll="no" len="8"
dtype="CHAR" align="left" />
<hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0" scroll="yes" len="4"
dtype="INT" align="right" />
<hdr slbl="TYP" llbl="Type" scope="LCL" sort="n" key="0" scroll="yes" len="5"
dtype="CHAR" align="left" />
<hdr slbl="STT" llbl="Status" scope="GBL" sort="n" key="0" scroll="yes" len="**"
dtype="CHAR" align="left" />
<hdr slbl="LATTR" llbl="LclAttr" scope="LCL" sort="n" key="0" scroll="yes" len="**"
dtype="CHAR" align="left" />
<hdr slbl="LSTT" llbl="LclStat" scope="LCL" sort="n" key="0" scroll="yes" len="**"
dtype="CHAR" align="left" />
<hdr slbl="MODI" llbl="ModId" scope="LCL" sort="n" key="0" scroll="yes" len="8"
dtype="CHAR" align="right" />
</cmdrsphdr>
<cmdrspdata>
<rsp>MBR(SYS3) CC (0) TYP(IMS) MODI (1) </rsp>
</cmdrspdata>
</imsout>
```

Explanation: IMS member SYS3 is active in the IMSplex.
OM API input:

CMD(QRY MEMBER TYPE(IMS) SHOW(ALL))

OM API output:

<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.1.0</omvsn>
<xmlvsn>1</xmlvsn>
<stotime>2002.163 16:42:10.557503</stotime>
<staseq>B7C4B9C4DDCBF28D</staseq>
<stoseq>B7C4B9C4DDE3F02D</stoseq>
<rqsttkn1>USRT002 10094210</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>SYS3</master>
<userid>USRT002</userid>
<verb>QRY</verb>
<kwd>MEMBER</kwd>
<input>QRY MEMBER TYPE(IMS) SHOW(ALL)</input>
</cmd>
<cmdrsphdr>
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" key="1" scroll="no" len="8"
dtype="CHAR" align="left"/>
<hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0" scroll="yes" len="4"
dtype="INT" align="right"/>
<hdr slbl="TYP" llbl="Type" scope="LCL" sort="n" key="0" scroll="yes" len="5"
dtype="CHAR" align="left"/>
<hdr slbl="STT" llbl="Status" scope="GBL" sort="n" key="0" scroll="yes" len="*"
dtype="CHAR" align="left"/>
<hdr slbl="LATTR" llbl="LclAttr" scope="LCL" sort="n" key="0" scroll="yes" len="*"
dtype="CHAR" align="left"/>
<hdr slbl="LSTT" llbl="LclStat" scope="LCL" sort="n" key="0" scroll="yes" len="*"
dtype="CHAR" align="left"/>
<hdr slbl="MODI" llbl="ModId" scope="LCL" sort="n" key="0" scroll="yes" len="8"
dtype="CHAR" align="right"/>
</cmdrsphdr>
<cmdrspdata>
<rsp>MBR(SYS3 ) CC( 0) TYP(IMS) LSTT(LEOPT) MODI( 1)</rsp>
</cmdrspdata>
</imsout>

Explanation: IMS member SYS3 is active in the IMSplex. The local status shows that LE runtime option overrides are enabled.

Example 3 for QUERY MEMBER TYPE(IMS) command

TSO SPOC input:

QRY MEMBER TYPE(IMS) SHOW(ALL)

TSO SPOC output:

Response for: QUERY MEMBER TYPE(IMS) SHOW(ALL)

<table>
<thead>
<tr>
<th>MbrName</th>
<th>CC</th>
<th>Type</th>
<th>Status</th>
<th>LclAttr</th>
<th>LclStat</th>
<th>ModId</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMS2</td>
<td>0</td>
<td>IMS</td>
<td></td>
<td>SHAREDQ,GBLOLC</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>IMS3</td>
<td>0</td>
<td>IMS</td>
<td></td>
<td>SHAREDQ,GBLOLC</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>SYS3</td>
<td>0</td>
<td>IMS</td>
<td></td>
<td>SHAREDQ,GBLOLC</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

OM API input:

CMD (QRY MEMBER TYPE(IMS) SHOW(ALL))
Explanation: IMS members SYS3, IMS2, and IMS3 are active in the IMSplex. All three IMS systems have shared queues enabled and global online change enabled.

Example 4 for QUERY MEMBER TYPE(IMS) SHOW(STATUS) command

TSO SPOC input:
QUERY MEMBER TYPE(IMS) SHOW(STATUS)

TSO SPOC output:

<table>
<thead>
<tr>
<th>MbrName</th>
<th>CC</th>
<th>Status</th>
<th>LclStat</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMS1</td>
<td>0</td>
<td></td>
<td>OLCMT1,OLCCMTI2I</td>
</tr>
<tr>
<td>IMS2</td>
<td>0</td>
<td></td>
<td>OLCMT1,OLCCMTI2I</td>
</tr>
<tr>
<td>IMS2</td>
<td>0</td>
<td>OLCMSTR,OLCMACB,OLCCMT1C,OLCCMT2I</td>
<td>OLCMT1,OLCCMTI2I</td>
</tr>
<tr>
<td>IMS3</td>
<td>0</td>
<td></td>
<td>OLCMT1,OLCCMTI2I</td>
</tr>
</tbody>
</table>

OM API input:

CMD (QUERY MEMBER TYPE(IMS) SHOW(STATUS))

OM API output:
Explanation: IMS2 is the command master for the ACB member online change process. All IMS systems finished online change commit phase 1. The member OLC is currently in commit phase 2. The online change process cannot be terminated using a TERM OLC command. All updated members will be committed to the active ACBLIB.

Related concepts:
- How to interpret CSL request return and reason codes (System Programming APIs)

Related reference:
- Command keywords and their synonyms (Commands)

QUERY MSLINK command

Use the QUERY MSLINK command to query information about the definition and status of specified logical links.

Subsections:
- "Environment" on page 310
- "Syntax" on page 310
- "Keywords" on page 311
Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) from which the QUERY MSLINK command and keywords can be issued.

Table 114. Valid environments for the QUERY MSLINK command and keywords

<table>
<thead>
<tr>
<th>Command / keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY MSLINK</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>BANDWIDTH</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SHOW</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>STATUS</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax
The following keywords are valid for the QUERY MSLINK command:

**BANDWIDTH()**

This filter selects logical links that are either using, or not using, bandwidth mode.

When you specify the BANDWIDTH keyword, the output returned includes the bandwidth mode, even if you do not specify SHOW(BANDWIDTH).

- **ON** Selects only logical links that are using bandwidth mode.
- **OFF** Selects only logical links that are not using bandwidth mode.

**NAME()**

Specifies the 1- to 8-character names of the logical links displayed. NAME(*) indicates that the command is to be applied to ALL the links in the system. Wildcards (*) can be specified in the name. The default is NAME(*) which returns all MSLINK resources. The logical link number, assigned during system generation, cannot be specified. Instead, the logical link name must be specified. The logical link number is returned as command output.

**SHOW()**

Specifies the MSLINK output fields to be returned. If you do not specify the SHOW() parameter, only the logical link names and associated logical link numbers are returned.

The MSLINK logical link name is always returned along with the name of the IMS that created the output for the link and the completion code. The filters supported with the SHOW parameter are:

**AFFIN**

In an IMS system that uses either TCP/IP or VTAM generic resources, AFFIN identifies the specific IMS system in the generic resources group with which the specified logical link has an affinity. For TCP/IP generic...
resources AFFIN displays the IMS ID of the IMS system. For VTAM generic resources, AFFIN displays the APPLID name of the IMS system.

ALL
Includes all of the information in the other SHOW parameters, except for MSNAME.

BANDWIDTH
Displays whether the link is using bandwidth mode.

BUFSIZE
Displays the current input and output buffer size for the logical links.

CID
Displays the VTAM Communication Identifications (CIDs) for the logical links.

COUNT
Displays the number of messages sent to and received from the specified logical links.

MODETBL
Displays the mode table names that are associated with the specified links. The output includes DEF MODETBL and ACT MODETBL. DEF MODETBL is the default mode table name that is set by system definition or by issuing an UPDATE command. The name can be overridden with the UPDATE command or, for non-IMS session initiations, the LOGON exit. ACT MODETBL is the mode table name used to initiate the session. This name is displayed only while the session is active. The field is blank at normal session termination.

MSNAME
Displays the MSNAMEs assigned to the specified logical link, and their remote and local SYSIDs. When SHOW(MSNAME) is specified, STATUS() is invalid. MSNAME is mutually exclusive of all other SHOW filters.

MSPLINK
Displays the physical link to which this logical link is assigned.

PARTNER
Displays the current partner ID for this logical link.

STATISTICS
Displays the statistics for the logical link.

MSC link statistics are displayed by type-2 command QUERY MSLINK NAME(linkname) SHOW(STATISTICS). The SHOW(STATISTICS) keyword also displays the statistics reset mode, RESET,CHKPT or NORESET,CHKPT. Link statistics are not displayed with the SHOW(ALL) keyword.

I/O statistics are recorded only in bandwidth mode.

Additional I/O statistics are recorded for TCP/IP links, including the high, low, and total send I/O times for both the local and remote SCI, IMS Connect, and TCP/IP components.

Important: To be accurate, the I/O statistics for CTC, TCP/IP, and VTAM links require synchronized clocks on the local and remote IMS installations.
If the clocks are not synchronized, elapsed I/O times can be calculated as negative values on one of the send I/O paths. The QUERY MSLINK command does not display negative values for elapsed I/O times.

IMS cannot determine if clocks are synchronized. Unless both partner IMS systems are on the same processor or are within the same sysplex, clocks are typically synchronized using an external method, such as an External Time Reference (ETR) hardware device.

MTM link partners are always on the same processor, so the timers are always synchronized. Partner IMS systems within the same SYSPLEX also have synchronized timers.

**STATUS**
Displays the logical link status.

**STATUS()**
Displays logical links that possess at least one of the specified status. When you specify the STATUS keyword, the output returned includes the logical link status even if you do not specify SHOW(STATUS). The STATUS keyword cannot be specified with SHOW(MSNAME).

**ACTIVE**
Indicates, for the logical link, that link startup processing is complete and the line is available for message transfer.

**ASR**
Indicates the current automatic session restart designation as part of the Session Outage Notification.

**COLDSESS**
Indicates that for the logical link, startup processing is not complete.

**ERE**
Indicates that for the logical link, startup processing is not complete. However, when started, emergency restart synchronization is performed, because the previous link shutdown was either not normal or an IMS emergency restart was performed.

**FORCSESS**
Indicates that message resynchronization is attempted when the logical link is started. Even if resynchronization fails, the link is still started.

**IDLE**
Indicates that no activity is in progress for the logical link.

**INOP**
Indicates an inoperable link.

**LOST**
Indicates that the VTAM LOSTERM EXIT has been scheduled for this link.

**NOTIDLE**
Indicates that the link is waiting for the completion of a synchronous event. The status can be NOTIDLE-A, NOTIDLE-B, or NOTIDLE-Cxx, where xx represents the value of the access method operation code.

**NOTIDLE-A**
Indicates a status of NOTIDLE-POST, which means that an event has completed but the link has not been dispatched to process it.
NOTIDLE-B
Indicates a status of NOTIDLE-IWAIT, which means the link is waiting for completion of internal I/O.

NOTIDLE-Cxx
Indicates a status of NOTIDLE-TP WAIT, which means the link is waiting for completion of a TP access method request. The two characters xx indicate the value of the access method operation code. Blanks appear if the link is VTAM.

NOTOPEN
Indicates that the link is not in open status.

NRE
Indicates that startup processing is not complete for the logical link. Normal restart synchronization is performed when the logical link starts, because the previous link shutdown or IMS restart was normal.

PRI
Indicates that the link is the primary partner of the MSC VTAM session.

RESYNC
Indicates that the positive acknowledgment for an IMS recoverable output message was not received when the MSC session was terminated.

SEC
Indicates that the link is the primary partner of the MSC VTAM session.

STOCOMM
Indicates that the link was stopped for communications.

SYNCSESS
Indicates that message resynchronization is attempted when the logical link is started, and that the link is started only if resynchronization is successful.

TKOTRA
Indicates that the logical link in an XRF session is traced only during takeover, to help diagnose XRF link switch problems.

TRACE
Indicates that the logical link is traced.

Usage notes
You can issue this command only through the Operations Manager (OM) API. This command applies to DB/DC and DCCTL systems.

The syntax for this command is defined in XML and is available to automation programs that communicate with OM.

Equivalent IMS type-1 commands
The following table shows variations of the QUERY MSLINK command and the type-1 IMS commands that perform similar functions.

<table>
<thead>
<tr>
<th>QUERY MSLINK command</th>
<th>Similar IMS type-1 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY MSLINK NAME(linkname</td>
<td>/DIS LINK link#</td>
</tr>
<tr>
<td>linkname') SHOW(ALL)</td>
<td></td>
</tr>
</tbody>
</table>
Table 115. Type-1 equivalents for the QUERY MSLINK command (continued)

<table>
<thead>
<tr>
<th>QUERY MSLINK command</th>
<th>Similar IMS type-1 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUER Y MSLINK NAME(linkname</td>
<td>linkname*) SHOW(MODETBL)</td>
</tr>
<tr>
<td>QUER Y MSLINK NAME(linkname</td>
<td>linkname*) SHOW(MSPLINK</td>
</tr>
<tr>
<td>QUER Y MSLINK NAME(linkname</td>
<td>linkname*) SHOW(AFFIN)</td>
</tr>
<tr>
<td></td>
<td>/DIS AFFIN NODE nodename</td>
</tr>
</tbody>
</table>

Output fields

The query output will display a series of headers and values, including the MSLINK name and number, IMSID that processed the command, and the command condition code (CC) of the command.

Short label
Contains the short label that is generated in the XML output.

Long label
Contains the column heading displayed on the TSO SPOC screen.

Keyword
Identifies the keyword on the command that caused the field to be generated. error appears for output fields that can appear for a nonzero completion code. N/A (not applicable) appears for output fields that are always returned.

Meaning
Provides a brief description of the output field.

Following are the statistics headers on the QUERY MSLINK command, and their meanings. All count fields with times and rates are in seconds. For example, 1.3 is equal to 1.3 seconds. .000003 is equal to 3 microseconds. The other fields such as byte or message counts are in decimal numbers. Rates are in units per second (for example, CHKW_RATE means check write calls per second).

Table 116. Output fields for the QUERY MSLINK command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFFIN</td>
<td>Affin</td>
<td>AFFIN</td>
<td>In an IMS system that uses either TCP/IP or VTAM generic resources, this field identifies the IMS system in the generic resource group with which the link has affinity, if any. For TCP/IP generic resources AFFIN displays the IMS ID of the IMS system. For VTAM generic resources, AFFIN displays the APPLID name of the IMS system.</td>
</tr>
<tr>
<td>AMRS</td>
<td>Avg_Msg_Rec_SZ</td>
<td>STATISTICS</td>
<td>Average message size received (type 01/03 message record).</td>
</tr>
<tr>
<td>AMSS</td>
<td>Avg_Msg_Send_SZ</td>
<td>STATISTICS</td>
<td>Average message size sent (type 01/03 message record).</td>
</tr>
</tbody>
</table>
Table 116. Output fields for the QUERY MSLINK command  (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMTB</td>
<td>ActMdtbl</td>
<td>MODETBL</td>
<td>Active VTAM logon mode table entry for the logical link.</td>
</tr>
<tr>
<td>APT</td>
<td>Avg_Proc_Time</td>
<td>STATISTICS</td>
<td>Average link processing time per dispatch calculated by dividing TPT by TDN.</td>
</tr>
<tr>
<td>AQGT</td>
<td>Avg_Qget_Time</td>
<td>STATISTICS</td>
<td>The average time for QMGR calls (GU or DEQ) to process a send message.</td>
</tr>
<tr>
<td>AQPT</td>
<td>Avg_Qput_Time</td>
<td>STATISTICS</td>
<td>The average QMGR call (ISRT or ENQ) to process a received message.</td>
</tr>
<tr>
<td>BANDW</td>
<td>Bandwidth</td>
<td>BANDW</td>
<td>The current usage of bandwidth mode.</td>
</tr>
<tr>
<td>BSR</td>
<td>Send_MsgByte_Rate</td>
<td>STATISTICS</td>
<td>Message bytes sent per second from MSC link. The send time per each message sent is the time from Get Unique (GU) to get the message to send, to dequeue the message when the response is received. The link idle time in between sending messages is ignored.</td>
</tr>
<tr>
<td>BUFSZ</td>
<td>BufSize</td>
<td>BUFSIZE</td>
<td>Input and output buffer size for the logical link.</td>
</tr>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the nonzero completion code.</td>
</tr>
<tr>
<td>CID</td>
<td>CID</td>
<td>CID</td>
<td>VTAM Communication Identification.</td>
</tr>
<tr>
<td>CNTR</td>
<td>RecdCnt</td>
<td>COUNT</td>
<td>Number of messages received from the specified link.</td>
</tr>
<tr>
<td>CNTS</td>
<td>SentCnt</td>
<td>COUNT</td>
<td>Number of messages sent on the specified link.</td>
</tr>
<tr>
<td>CWION</td>
<td>ChkwIO_CT</td>
<td>STATISTICS</td>
<td>Number of the logger check writes that resulted in a write (I/O) of the get unique (GU) or insert (ISRT) call to the logger write ahead data set (WADS).</td>
</tr>
<tr>
<td>CWN</td>
<td>Chkw_CT</td>
<td>STATISTICS</td>
<td>Number of logger check writes. Check writes are requests to the logger to insure the message is logged (for example, Message get uniques are logged on the send side and inserts are logged on the receive side).</td>
</tr>
<tr>
<td>CWR</td>
<td>Chkw_Rate</td>
<td>STATISTICS</td>
<td>Logger check write rate calculated by dividing the CWR by the statistics recording time.</td>
</tr>
</tbody>
</table>
Table 116. Output fields for the QUERY MSLINK command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMTB</td>
<td>DefMdtbl</td>
<td>MODETBL</td>
<td>Default VTAM logon mode table entry (set by system definition or modified by the UPDATE command).</td>
</tr>
<tr>
<td>HLISIOT</td>
<td>HiLocIconSendIOTime</td>
<td>STATISTICS</td>
<td>The longest interval of time that the local IMS Connect instance required to process a message from SCI and send it to TCP/IP.</td>
</tr>
<tr>
<td>HLSSIOT</td>
<td>HiLocSciSendIOTime</td>
<td>STATISTICS</td>
<td>The longest interval of time that the local SCI instance required to process a message from IMS and send it to the local IMS Connect.</td>
</tr>
<tr>
<td>HMRS</td>
<td>Hi_Msg_Rec_SZ</td>
<td>STATISTICS</td>
<td>Largest message size received (type 01/03 message record).</td>
</tr>
<tr>
<td>HMSS</td>
<td>Hi_Msg_Send_SZ</td>
<td>STATISTICS</td>
<td>Largest message size sent (type 01/03 message record).</td>
</tr>
<tr>
<td>HPT</td>
<td>Hi_Proc_Time</td>
<td>STATISTICS</td>
<td>The highest (longest) time the link was dispatched to process.</td>
</tr>
<tr>
<td>HQGT</td>
<td>Hi_Qget_Time</td>
<td>STATISTICS</td>
<td>The highest (longest) QMGR call (GU or DEQ) to process a send message.</td>
</tr>
<tr>
<td>HQPT</td>
<td>Hi_Qput_Time</td>
<td>STATISTICS</td>
<td>The highest (longest) QMGR call (ISRT or ENQ) to process a received message.</td>
</tr>
<tr>
<td>HRIOT</td>
<td>Hi_RecIO_Time</td>
<td>STATISTICS</td>
<td>The highest (longest) I/O time to receive a message.</td>
</tr>
<tr>
<td>HRISIOT</td>
<td>HiRmtIconSendIOTime</td>
<td>STATISTICS</td>
<td>The longest interval of time that the remote IMS Connect instance required to process a message from TCP/IP and send it to the remote SCI.</td>
</tr>
<tr>
<td>HRSSIOT</td>
<td>HiRmtSciSendIOTime</td>
<td>STATISTICS</td>
<td>The longest interval of time that the remote SCI instance required to process a message from the remote IMS Connect instance and send it to the remote IMS system.</td>
</tr>
<tr>
<td>HSIOT</td>
<td>Hi_SentIO_Time</td>
<td>STATISTICS</td>
<td>The highest (longest) I/O time to send a message.</td>
</tr>
<tr>
<td>HTCSIOT</td>
<td>HiTcpipSendIOTime</td>
<td>STATISTICS</td>
<td>The longest interval of time that a message required to travel from the local IMS Connect instance to the remote IMS Connect instance on the TCP/IP network.</td>
</tr>
<tr>
<td>LINKN</td>
<td>MSLink#</td>
<td>N/A</td>
<td>Logical link number.</td>
</tr>
<tr>
<td>LLISIOT</td>
<td>LowLocIconSendIOTime</td>
<td>STATISTICS</td>
<td>The shortest interval of time that the local IMS Connect instance required to process a message from SCI and send it to TCP/IP.</td>
</tr>
</tbody>
</table>
Table 116. Output fields for the QUERY MSLINK command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLSSIOT</td>
<td>LowLocSciSendIOTime</td>
<td>STATISTICS</td>
<td>The shortest interval of time that the local SCI instance required to process a message from IMS and send it to the local IMS Connect.</td>
</tr>
<tr>
<td>LMRS</td>
<td>Low_Msg_Rec_SZ</td>
<td>STATISTICS</td>
<td>Smallest message size received (type 01/03 message record).</td>
</tr>
<tr>
<td>LMSS</td>
<td>Low_Msg_Send_SZ</td>
<td>STATISTICS</td>
<td>Smallest message size sent (type 01/03 message record).</td>
</tr>
<tr>
<td>LPT</td>
<td>Low_Proc_Time</td>
<td>STATISTICS</td>
<td>Lowest (shortest) time the link was dispatched to process.</td>
</tr>
<tr>
<td>LQGT</td>
<td>Low_Qget_Time</td>
<td>STATISTICS</td>
<td>The lowest (shortest) QMGR call (GU or DEQ) to process a send message.</td>
</tr>
<tr>
<td>LQPT</td>
<td>Low_Qput_Time</td>
<td>STATISTICS</td>
<td>The lowest (shortest) QMGR call (ISR or ENQ) to process a received message.</td>
</tr>
<tr>
<td>LRIOT</td>
<td>Low_RecIO_Time</td>
<td>STATISTICS</td>
<td>The lowest (shortest) I/O time to receive a message.</td>
</tr>
<tr>
<td>LRISIOT</td>
<td>LowRmtIconSendIOTime</td>
<td>STATISTICS</td>
<td>The shortest interval of time that the remote IMS Connect instance required to process a message from TCP/IP and send it to the remote SCI.</td>
</tr>
<tr>
<td>LRSSIOT</td>
<td>LowRmtSciSendIOTime</td>
<td>STATISTICS</td>
<td>The shortest interval of time that the remote SCI instance required to process a message from the remote IMS Connect instance and send it to the remote IMS system.</td>
</tr>
<tr>
<td>LSIOT</td>
<td>Low_SendIO_Time</td>
<td>STATISTICS</td>
<td>The lowest (shortest) I/O time to send a message.</td>
</tr>
<tr>
<td>LSTT</td>
<td>LdStat</td>
<td>STATUS</td>
<td>The current status of the logical link. For the possible status values returned, see the description of the STATUS keyword.</td>
</tr>
<tr>
<td>LTCSIOT</td>
<td>LowTcpipSendIOTime</td>
<td>STATISTICS</td>
<td>The shortest interval of time that a message required to travel from the local IMS Connect instance to the remote IMS Connect instance on the TCP/IP network.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>IMSplex member that built the output line.</td>
</tr>
<tr>
<td>MSL</td>
<td>MSLink</td>
<td>N/A</td>
<td>Logical link name.</td>
</tr>
<tr>
<td>MSN</td>
<td>MSName</td>
<td>MSNAME</td>
<td>MSNAMEs associated with the logical link.</td>
</tr>
<tr>
<td>MSP</td>
<td>MSPLink</td>
<td>MSPLINK</td>
<td>Physical link to which the logical link is assigned.</td>
</tr>
</tbody>
</table>
Table 116. Output fields for the QUERY MSLINK command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSR</td>
<td>Send_MsgCT_Rate</td>
<td>STATISTICS</td>
<td>Messages sent per second by MSC link. The send time per each message sent is the time from Get Unique (GU) to get the message to send, to dequeue the message when the response is received. The link idle time in between sending messages is ignored.</td>
</tr>
<tr>
<td>PID</td>
<td>PID</td>
<td>PARTNER</td>
<td>Partner ID for the link.</td>
</tr>
<tr>
<td>RBR</td>
<td>RecIO_Byte_Rate</td>
<td>STATISTICS</td>
<td>Rate in bytes per second being received. This is calculated by dividing the total bytes received (TBRC) by the total send time (TRIOT).</td>
</tr>
<tr>
<td>RIOR</td>
<td>RecIO_Req_Rate</td>
<td>STATISTICS</td>
<td>The receive I/O requests per second. This is calculated by dividing the total receives (TRN) by the total send I/O time (TRIOT).</td>
</tr>
<tr>
<td>RMT</td>
<td>Rec_Msg_Time</td>
<td>STATISTICS</td>
<td>Interval of time between the first and last message received. Used for benchmark testing of a block of messages.</td>
</tr>
<tr>
<td>SBR</td>
<td>SendIO_Byte_Rate</td>
<td>STATISTICS</td>
<td>Rate in bytes per second being sent. This is calculated by dividing the total bytes sent (TBSC) by the total send time (TSIOT).</td>
</tr>
<tr>
<td>SIDL</td>
<td>SIDL</td>
<td>MSNAME</td>
<td>Local system identification of the associated MSNAME.</td>
</tr>
<tr>
<td>SIDR</td>
<td>SIDR</td>
<td>MSNAME</td>
<td>Remote system identification of the associated MSNAME.</td>
</tr>
<tr>
<td>SIOR</td>
<td>SendIO_Req_Rate</td>
<td>STATISTICS</td>
<td>The send I/O requests per second. This is calculated by dividing the total sends (TSN) by the total send I/O time (TSIOT).</td>
</tr>
<tr>
<td>SMT</td>
<td>Send_Msg_Time</td>
<td>STATISTICS</td>
<td>Interval of time between the first and last message sent. Used for benchmark testing of a block of messages.</td>
</tr>
<tr>
<td>SOPT</td>
<td>Option</td>
<td>STATISTICS</td>
<td>Statistics reset option = RESET,CHKPT = statistics are reset at each IMS checkpoint or NORESET,CHKPT = statistics are not reset at IMS checkpoints.</td>
</tr>
<tr>
<td>Short label</td>
<td>Long label</td>
<td>Keyword</td>
<td>Meaning</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------</td>
<td>------------</td>
<td>--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>STIM</td>
<td>Start_Time</td>
<td>STATISTICS</td>
<td>The start date and local time for the statistics. For option RESET,CHKPT, this will be the last IMS checkpoint time. For option NORESET,CHKPT, this will be when the last UPDATE MSLINK START STATISTICS OPTION (RESET) command was issued. The format is yyyy.ddd hh.mm.ss.tt, where: yyyy Four digit year ddd Julian day of the year hh hour of the day, 00 - 23 mm minute of the hour, 00 - 59 ss second of the minute, 00 - 59 tt tenths of the second, 0 - 9 hh hundredths of the second, 0 - 9</td>
</tr>
<tr>
<td>TBRC</td>
<td>Tot_Byte_Rec_CT</td>
<td>STATISTICS</td>
<td>Total bytes of data received including message data, response data, and internal message control blocks used for bandwidth mode.</td>
</tr>
<tr>
<td>TBSC</td>
<td>Tot_Byte_Send_CT</td>
<td>STATISTICS</td>
<td>Total bytes of data sent including message data, response data, and internal message control blocks used for bandwidth mode.</td>
</tr>
<tr>
<td>TDN</td>
<td>Tot_Disp_CT</td>
<td>STATISTICS</td>
<td>Number of times the logical link ITASK was dispatched. A typical send or receive message operation will require two dispatches, one to send and one to process the acknowledgment, or one to receive and one to send the acknowledgment.</td>
</tr>
<tr>
<td>TLISIOT</td>
<td>TotLocIconSendIOTtime</td>
<td>STATISTICS</td>
<td>The total amount of time that the local IMS Connect instance required to process all messages from SCI and send them to TCP/IP.</td>
</tr>
<tr>
<td>TLSSIOT</td>
<td>TotLocSciSendIOTtime</td>
<td>STATISTICS</td>
<td>The total amount of time that the local SCI instance required to process all messages from IMS and send them to the local IMS Connect.</td>
</tr>
<tr>
<td>Short label</td>
<td>Long label</td>
<td>Keyword</td>
<td>Meaning</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>----------</td>
<td>------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>TMBRC</td>
<td>Tot_MsgByte_Rec_CT</td>
<td>STATISTICS</td>
<td>Total count of message bytes of data received. This includes the message prefixes and user data segments (for example, all the data in the type 01/03 log record).</td>
</tr>
<tr>
<td>TMBSC</td>
<td>Tot_MsgByte_Send_CT</td>
<td>STATISTICS</td>
<td>Total count of message bytes of data sent. This includes the message prefixes and user data segments (for example, all the data in the type 01/03 log record).</td>
</tr>
<tr>
<td>TMRN</td>
<td>Tot_Msg_Rec_CT</td>
<td>STATISTICS</td>
<td>Total number of messages received.</td>
</tr>
<tr>
<td>TMSN</td>
<td>Tot_Msg_Send_CT</td>
<td>STATISTICS</td>
<td>Total count of messages sent.</td>
</tr>
<tr>
<td>TPT</td>
<td>Tot_Proc_Time</td>
<td>STATISTICS</td>
<td>Total amount of time the logical link ITASK was dispatched to be processed. This includes wait time while the ITASK was dispatched. This time is in seconds with a resolution to micro seconds.</td>
</tr>
<tr>
<td>TQGN</td>
<td>Tot_Qget_CT</td>
<td>STATISTICS</td>
<td>Total count of QMGR calls issued to get messages off the queue (local or shared queues) for processing. This includes get unique (GU) and dequeue (DEQ) calls.</td>
</tr>
<tr>
<td>TQGT</td>
<td>Tot_Qget_Time</td>
<td>STATISTICS</td>
<td>Total processing time for QMGR calls issued to get messages off the queue (local or shared queues) for processing. This includes get unique (GU) and dequeue (DEQ) calls. Times are calculated from the time the call was issued by the MSC ITASK, to the time the call returned from QMGR.</td>
</tr>
<tr>
<td>TQPN</td>
<td>Tot_Qput_CT</td>
<td>STATISTICS</td>
<td>Total count of QMGR calls issued to put messages to the queue (local or shared queues) for processing. This includes insert (ISRT) and enqueue (ENQ) calls.</td>
</tr>
<tr>
<td>TQPT</td>
<td>Tot_Qput_Time</td>
<td>STATISTICS</td>
<td>Total processing time for QMGR calls issued to put messages to the queue (local or shared queues) for processing. This includes insert (ISRT) and enqueue (ENQ) calls. Times are calculated from the time the call was issued by the MSC ITASK, to the time the call returned from QMGR.</td>
</tr>
</tbody>
</table>
Table 116. Output fields for the QUERYSLINK command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIOT</td>
<td>Tot_RecIO_Time</td>
<td>STATISTICS</td>
<td>Total amount of I/O time to receive messages. This is time from which the access method was called to process the receive, to the time the partner IMS access method was called to send the message. This is the time between the access method calls on each side, for the data to cross the media (for example, CTC link, memory, or network).</td>
</tr>
<tr>
<td>TRISIOT</td>
<td>TotRmtConSendIOTime</td>
<td>STATISTICS</td>
<td>The total amount of time that the remote IMS Connect instance required to process all messages from TCP/IP and send them to the remote SCI.</td>
</tr>
<tr>
<td>TRN</td>
<td>Tot_Req_CT</td>
<td>STATISTICS</td>
<td>Total count of receive I/O requests received from the access method.</td>
</tr>
<tr>
<td>TRSSIOT</td>
<td>TotRmtSciSendIOTime</td>
<td>STATISTICS</td>
<td>The total amount of time that the remote SCI instance required to process all messages from the remote IMS Connect instance and send them to the remote IMS system.</td>
</tr>
<tr>
<td>TSIOT</td>
<td>Tot_SendIO_Time</td>
<td>STATISTICS</td>
<td>Total amount of I/O time to send messages. This is the time from which the access method was called to process the send, to the time the partner IMS ITASK was dispatched upon receipt of the message. This is the time between the access method calls on each side, for the data to cross the media (for example, CTC link, memory, or network).</td>
</tr>
<tr>
<td>TSN</td>
<td>Tot_Send_CT</td>
<td>STATISTICS</td>
<td>Total count of send I/O requests issued to the access method.</td>
</tr>
<tr>
<td>TTCSIOT</td>
<td>TotTcpipSendIOTime</td>
<td>STATISTICS</td>
<td>The sum total of the amount of time that all messages required to travel from the local IMS Connect instance to the remote IMS Connect instance on the TCP/IP network.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The return and reason codes that can be returned as a result of the QUERYSLINK command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.
Table 117. Return and reason codes for the QUERY MSLINK command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The QUERY MSLINK command completed successfully.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002040'</td>
<td>More than one filter value is specified on the QUERY MSLINK command.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003000'</td>
<td>Command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code. For details on completion codes, see Table 118.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>Command was not successful for any of the resources. The command output contains a line for each resource, accompanied by its completion code. For details on completion codes, see Table 118.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000400C'</td>
<td>Command is not valid on the XRF alternate.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>Command is not valid on the RSR tracker.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000401C'</td>
<td>Command is not valid on the FDBR region.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005004'</td>
<td>The QUERY MSLINK command processing terminated as a DFSOCMD response buffer could not be obtained.</td>
</tr>
</tbody>
</table>

Errors that are unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

Table 118. Completion codes for the QUERY MSLINK command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The QUERY MSLINK command completed successfully for the resource.</td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>MSLINK name is invalid, or the specified wildcard parameter does not match any resource names.</td>
</tr>
</tbody>
</table>
Example 1 for QUERY MSLINK command

TSO SPOC input:

QRY MSLINK NAME(STAR*) SHOW(ALL)

TSO SPOC output:

(screen 1)

<table>
<thead>
<tr>
<th>MSLink</th>
<th>MSLink#</th>
<th>MbrName</th>
<th>CC</th>
<th>MSPLink</th>
<th>CID</th>
<th>PID</th>
<th>RecdCnt</th>
<th>SentCnt</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAR1L</td>
<td>1</td>
<td>IMSA</td>
<td>0</td>
<td>STAR1</td>
<td>20003BAA1L</td>
<td>0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>STAR3L1</td>
<td>4</td>
<td>IMSA</td>
<td>0</td>
<td>STAR3B1</td>
<td>20003BAB3L</td>
<td>15</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>STAR3L2</td>
<td>5</td>
<td>IMSA</td>
<td>0</td>
<td>STAR3B1</td>
<td>20003BAC3L</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>STAR3L3</td>
<td>6</td>
<td>IMSA</td>
<td>0</td>
<td>STAR3B1</td>
<td>20003BAD3L</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>STARZZZ</td>
<td>11</td>
<td>IMSA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(scrolled to the right, screen 2)

<table>
<thead>
<tr>
<th>MSLink</th>
<th>MSLink#</th>
<th>MbrName</th>
<th>DefMdtbl</th>
<th>ActMdtbl</th>
<th>BufSize</th>
<th>Bandwidth</th>
<th>Affin</th>
<th>LclStat</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAR1L</td>
<td>1</td>
<td>IMSA</td>
<td>LOGON13B</td>
<td>Y</td>
<td>65536</td>
<td>4096</td>
<td>IMSA</td>
<td>ACTIVE, ASR</td>
</tr>
<tr>
<td>STAR3L1</td>
<td>4</td>
<td>IMSA</td>
<td>LOGON13B</td>
<td>Y</td>
<td>318</td>
<td>438</td>
<td>IMSA</td>
<td>IDLE</td>
</tr>
<tr>
<td>STAR3L2</td>
<td>5</td>
<td>IMSA</td>
<td>LOGON13B</td>
<td>Y</td>
<td>1024</td>
<td>51</td>
<td>IMSA</td>
<td>LOST</td>
</tr>
<tr>
<td>STAR3L3</td>
<td>6</td>
<td>IMSA</td>
<td>LOGON13B</td>
<td>Y</td>
<td>1024</td>
<td>51</td>
<td>IMSA</td>
<td>IDLE</td>
</tr>
<tr>
<td>STARZZZ</td>
<td>11</td>
<td>IMSA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IMSA</td>
<td>IDLE</td>
</tr>
</tbody>
</table>

Explanation: All logical links matching STAR* are returned with all output fields. The MSNAME information is not returned with SHOW(ALL).

Example 2: SHOW(MSNAME)

TSO SPOC input:

QUERY MSLINK NAME(STAR*) SHOW(MSNAME)

TSO SPOC output:

<table>
<thead>
<tr>
<th>MSLink</th>
<th>MSLink#</th>
<th>MbrName</th>
<th>CC</th>
<th>MSName</th>
<th>SIDR</th>
<th>SIDL</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAR1L</td>
<td>1</td>
<td>IMSA</td>
<td>0</td>
<td>STARN1</td>
<td>15</td>
<td>35</td>
</tr>
<tr>
<td>STAR3L1</td>
<td>4</td>
<td>IMSA</td>
<td>0</td>
<td>STARN11</td>
<td>14</td>
<td>34</td>
</tr>
<tr>
<td>STAR3L2</td>
<td>5</td>
<td>IMSA</td>
<td>0</td>
<td>STARN11</td>
<td>41</td>
<td>51</td>
</tr>
<tr>
<td>STAR3L3</td>
<td>6</td>
<td>IMSA</td>
<td>0</td>
<td>STARN13</td>
<td>318</td>
<td>438</td>
</tr>
<tr>
<td>STARZZZ</td>
<td>11</td>
<td>IMSA</td>
<td></td>
<td></td>
<td>3</td>
<td>13</td>
</tr>
</tbody>
</table>

Explanation: The QUERY MSLINK SHOW(MSNAME) command returns the MSNAMEs and the SYSID information for all the MSNAMEs that are associated with the logical link.

Example 3: Querying statistics for a TCP/IP link

In this example, the QUERY MSLINK command is issued twice against the TCP/IP link LNK12T01: first with SHOW(ALL) specified to view the buffer size and second to view the statistics.

For this example, the Batch SPOC utility (CSLUSPOC) was used and configured to print the output in a column format by specifying F=BYCOL in the JCL.

TSO SPOC input to display the buffer size for the link:

QUERY MSLINK NAME(LNK12T01) SHOW(ALL)
Example 4: Querying statistics for VTAM links

Explanation: In this example, the QUERY MSLINK command is issued twice: once in the IMS systems at each end of the VTAM link. The commands were issued after each side sent 10 remote transactions that processed and sent a response message back (10 transactions + 10 responses = 20 messages sent each direction).

TSO SPOC input:
QUERY MSLINK NAME(LNK12V02) SHOW(STATISTICS)

TSO SPOC output:

(screen 1)

(screen 2)
<table>
<thead>
<tr>
<th>MSLink</th>
<th>MSLink#</th>
<th>MbrName</th>
<th>Tot_Disp_CT</th>
<th>Tot_Proc_Time</th>
<th>Hi_Proc_Time</th>
<th>Low_Proc_Time</th>
<th>Avg_Proc_Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNK12V02</td>
<td>10</td>
<td>IMS1</td>
<td>98</td>
<td>0.176661</td>
<td>0.059530</td>
<td>0.000003</td>
<td>0.000853</td>
</tr>
</tbody>
</table>

**TSO SPOC input:**

```sql
QUERY MSLINK NAME(LNK21V02) SHOW(STATISTICS)
```

**TSO SPOC output:**

```sql
MSLink | MSLink# | MbrName | CC | Option | Start_Time |
-------|---------|---------|----|--------|------------|
LNK21V02 | 13 | IMS2 | 0 | NORESET,CHKPT | 2006.261 19:03:08.42 |
```

---

**Trend for Event Information**

### Event Information

- **Event Code**: LNK12V02
- **Event Description**: Event Code LNK12V02 is a trend for event information.

**Event Data**

- **Event Time**: 2006.261 19:03:08.42
- **Event Options**: NORESET, CHKPT

**Event Details**

- **Event Code**: LNK21V02
- **Event Description**: Event Code LNK21V02 is a trend for event information.

**Event Data**

- **Event Time**: 2006.261 19:03:08.42
- **Event Options**: NORESET, CHKPT

---

**Trend Analysis**

- **Event Analysis**: Comprehensive analysis of event trends for LNK12V02.

---

**TSO SPOC input:**

```sql
QUERY MSLINK NAME(LNK21V02) SHOW(STATISTICS)
```

**TSO SPOC output:**

```sql
MSLink | MSLink# | MbrName | CC | Option | Start_Time |
-------|---------|---------|----|--------|------------|
LNK21V02 | 13 | IMS2 | 0 | NORESET,CHKPT | 2006.261 19:03:08.42 |
```

---

**Trend for Event Information**

### Event Information

- **Event Code**: LNK12V02
- **Event Description**: Event Code LNK12V02 is a trend for event information.

**Event Data**

- **Event Time**: 2006.261 19:03:08.42
- **Event Options**: NORESET, CHKPT

**Event Details**

- **Event Code**: LNK21V02
- **Event Description**: Event Code LNK21V02 is a trend for event information.

**Event Data**

- **Event Time**: 2006.261 19:03:08.42
- **Event Options**: NORESET, CHKPT

---

**Trend Analysis**

- **Event Analysis**: Comprehensive analysis of event trends for LNK12V02.

---

**TSO SPOC input:**

```sql
QUERY MSLINK NAME(LNK21V02) SHOW(STATISTICS)
```

**TSO SPOC output:**

```sql
MSLink | MSLink# | MbrName | CC | Option | Start_Time |
-------|---------|---------|----|--------|------------|
LNK21V02 | 13 | IMS2 | 0 | NORESET,CHKPT | 2006.261 19:03:08.42 |
```

---

**Trend for Event Information**

### Event Information

- **Event Code**: LNK12V02
- **Event Description**: Event Code LNK12V02 is a trend for event information.

**Event Data**

- **Event Time**: 2006.261 19:03:08.42
- **Event Options**: NORESET, CHKPT

**Event Details**

- **Event Code**: LNK21V02
- **Event Description**: Event Code LNK21V02 is a trend for event information.

**Event Data**

- **Event Time**: 2006.261 19:03:08.42
- **Event Options**: NORESET, CHKPT

---

**Trend Analysis**

- **Event Analysis**: Comprehensive analysis of event trends for LNK12V02.

---

**TSO SPOC input:**

```sql
QUERY MSLINK NAME(LNK21V02) SHOW(STATISTICS)
```

**TSO SPOC output:**

```sql
MSLink | MSLink# | MbrName | CC | Option | Start_Time |
-------|---------|---------|----|--------|------------|
LNK21V02 | 13 | IMS2 | 0 | NORESET,CHKPT | 2006.261 19:03:08.42 |
```
<table>
<thead>
<tr>
<th>MSLink</th>
<th>MSLink#</th>
<th>MbrName</th>
<th>Avg_Msg_Send_SZ</th>
<th>Send_Msg_Time</th>
<th>Tot_Qget_CT</th>
<th>Tot_Qget_Time</th>
<th>Hi_Qget_Time</th>
<th>0.003884</th>
<th>0.001169</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNK21V02</td>
<td>13</td>
<td>IMS2</td>
<td>525</td>
<td>2.395508</td>
<td>51</td>
<td>0.003884</td>
<td>0.001169</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**(scrolled to the right, screen 6)**

<table>
<thead>
<tr>
<th>MSLink</th>
<th>MSLink#</th>
<th>MbrName</th>
<th>Low_Qget_Time</th>
<th>Avg_Qget_Time</th>
<th>Tot_SendIO_Time</th>
<th>Hi_SendIO_Time</th>
<th>0.000004</th>
<th>0.080076</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNK21V02</td>
<td>13</td>
<td>IMS2</td>
<td>0.000004</td>
<td>0.080076</td>
<td>1.304330</td>
<td>0.217838</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**(scrolled to the right, screen 7)**

<table>
<thead>
<tr>
<th>MSLink</th>
<th>MSLink#</th>
<th>MbrName</th>
<th>Tot_SendIO_Time</th>
<th>Hi_SendIO_Time</th>
<th>Low_SendIO_Time</th>
<th>SendIO_Req_Rate</th>
<th>SendIO_Byte_Rate</th>
<th>Tot_Rec_CT</th>
<th>1.304330</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNK21V02</td>
<td>13</td>
<td>IMS2</td>
<td>0.000007</td>
<td>0.217838</td>
<td>0.000007</td>
<td>19.933605</td>
<td>17,208</td>
<td>26</td>
<td></td>
</tr>
</tbody>
</table>

**(scrolled to the right, screen 8)**

<table>
<thead>
<tr>
<th>MSLink</th>
<th>MSLink#</th>
<th>MbrName</th>
<th>Tot_Msg_Rec_CT</th>
<th>Tot_MsgByte_Rec_CT</th>
<th>Tot_Byte_Rec_CT</th>
<th>Hi_Msg_Rec_SZ</th>
<th>0.000821</th>
<th>19.933605</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNK21V02</td>
<td>13</td>
<td>IMS2</td>
<td>20</td>
<td>10,461</td>
<td>22,408</td>
<td>578</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**(scrolled to the right, screen 9)**

<table>
<thead>
<tr>
<th>MSLink</th>
<th>MSLink#</th>
<th>MbrName</th>
<th>Hi_Qput_Time</th>
<th>Low_Qput_Time</th>
<th>Avg_Qput_Time</th>
<th>Tot_RecIO_Time</th>
<th>Hi_RecIO_Time</th>
<th>0.054777</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNK21V02</td>
<td>13</td>
<td>IMS2</td>
<td>0.000155</td>
<td>0.000007</td>
<td>0.001369</td>
<td>0.210252</td>
<td>0.036846</td>
<td></td>
</tr>
</tbody>
</table>

**(scrolled to the right, screen 10)**

<table>
<thead>
<tr>
<th>MSLink</th>
<th>MSLink#</th>
<th>MbrName</th>
<th>RecIO_Req_Rate</th>
<th>RecIO_Byte_Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNK21V02</td>
<td>13</td>
<td>IMS2</td>
<td>123.661130</td>
<td>106,553</td>
</tr>
</tbody>
</table>

**Related concepts:**
- [How to interpret CSL request return and reason codes (System Programming APIs)](Related_concepts)

**Related reference:**
- [Command keywords and their synonyms (Commands)](Related_reference)
- [List of commands with similar functions for multiple resources (Operations and Automation)](Related_reference)

**QUERY MSNAME command**

Use the QUERY MSNAME command to query definition and status information about the specified logical link path.

**Subsections:**
- “Environment”
- “Syntax” on page 328
- “Keywords” on page 328
- “Usage notes” on page 330
- “Equivalent IMS type-1 commands” on page 330
- “Output fields” on page 331
- “Return, reason, and completion codes” on page 331
- “Example” on page 333

**Environment**

The following table lists the environments (DB/DC, DBCTL, and DCCTL) from which the QUERY MSNAME command and keywords can be issued.
Table 119. Valid environments for the QUERY MSNAME command and keywords

<table>
<thead>
<tr>
<th>Command / keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY MSNAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>QCNT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>STATUS</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SHOW</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
QUERY MSNAME NAME(*), NAME(msname*), QCNT(LT, number), SHOW(QCNT), SHOW(ALL), STATUS(DYN), STATUS(QERR), SYSID, STATUS(DYN), QERR, STOQ, STOSEND
```

Keywords

**NAME()**

Specifies the 1- to 8-character names of the MSC logical link paths that are to be displayed or indicates that the command is to be applied to all the links in the system. Wildcards (*) can be specified in the name. The default is NAME(*), which returns all MSNAME resources.

**QCNT()**

Selects logical link paths that have a queue count less than (LT), less than or equal to (LE), greater than (GT), greater than or equal to (GE), equal to (EQ),
or not equal to (NE) the specified numbers. The specified number cannot be a 1 when LT is specified. This allows additional filtering by QCNT value.

Logical link paths with a queue count of 0 are not returned when you specify the QCNT parameter. When you specify the QCNT(LT,n) parameter, msnames with a queue count greater than 0 or less than ‘n’ are returned. If you do not specify the STATUS or QCNT parameters, all of the logical link paths that match the MSNAME names are returned.

The QCNT filter is valid in both a shared-queues environment and a non-shared-queues environment.

In a shared-queues environment, if QCNT is specified, the shared queues are slower than local queues. In this environment, the QRY MSNAME command is processed only by the master IMS because the queues are global. The command master returns all the logical link paths on the shared queues that match the specified queue count parameter. If QCNT is specified with a wildcard logical link path name, all of the shared queues logical link path messages on the coupling facility must be read.

In a non-shared-queues environment, the local queue count values are used to determine the msnames to be displayed. In this environment, the QRY MSNAME QCNT command is processed by each IMS that the command is routed to because the queues are local. Each IMS returns all the msnames found locally that match the specified queue count parameter.

When you specify the QCNT parameter, the output returned includes the queue count, even if the SHOW(QCNT) option is not specified.

The QCNT filter is mutually exclusive with the STATUS filter. The QCNT filter is mutually exclusive with SHOW(), except for SHOW(QCNT).

**SHOW()**

Specifies the MSNAME output fields to be returned. If SHOW() is not specified, only the logical link path names and associated remote system identification and local system identification are returned. The MSNAME name is always returned, along with the name of the IMS that created the output for the link path and the completion code. Only SHOW(QCNT) is allowed with the QCNT() parameter. All other SHOW filters are mutually exclusive with the QCNT() parameter. The parameters supported with the SHOW keyword are:

**ALL**

Includes all of the information in the other SHOW parameters.

**MSLINK**

Displays the logical link assigned to the specified logical link path.

**MSPLINK**

Displays the physical link that is assigned to the specified logical link path.

**QCNT**

Specifies that queue count information is returned. Both local and global queue counts are returned.

The local queue counts value returned on this command represents the messages being processed by the IMS system where this command is issued. In a shared-queues environment, do not use the local queue counts for queue evaluation purposes. The global queue counts, which are returned on this command, represent the current message queue counts on the shared queues structure.
In a shared-queues environment, the command master returns both the global and its local queue count information for all the MSNAMEs specified. The MSNAME does not have to be defined at the command master IMS. All other IMS systems return their local queue count information.

In a non-shared-queues environment, all IMS systems return their local queue count information.

**STATUS**
Displays the logical link path status.

**SYSID**
Displays the remote system identification and the local system identification for this logical link path.

**STATUS()**
Displays logical link paths that display at least one of the specified status. The STATUS filter is mutually exclusive with the QCNT filter. When you specify the STATUS keyword, the output returned includes the logical link path status, even if you do not specify SHOW(STATUS).

**DYN**
Displays MSNAMEs that have been dynamically created in a shared queue environment.

**QERR**
Displays MSNAMEs with the queue error status.

**STOQ**
Displays MSNAMEs with the stopped queuing status.

**STOSEND**
Displays MSNAMEs with the stopped sending status.

**Usage notes**

You can issue this command only through the Operations Manager (OM) API. This command applies to DB/DC and DCCTL systems.

The syntax for this command is defined in XML and is available to automation programs that communicate with OM.

**Equivalent IMS type-1 commands**

The following table shows variations of the QUERY MSNAME and the type-1 IMS commands that perform similar functions.

<table>
<thead>
<tr>
<th>QUERY MSNAME command</th>
<th>Similar IMS type-1 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY MSNAME NAME(msname</td>
<td>/DIS MSNAME msname</td>
</tr>
<tr>
<td>mname*) SHOW(ALL)</td>
<td></td>
</tr>
<tr>
<td>QUERY MSNAME NAME(msname</td>
<td>/DIS MSNAME msname QCNT</td>
</tr>
<tr>
<td>mname*) SHOW(QCNT)</td>
<td></td>
</tr>
<tr>
<td>QUERY MSNAME NAME(*) SHOW(ALL)</td>
<td>/DIS MSNAME ALL</td>
</tr>
<tr>
<td>QUERY MSNAME NAME(msname</td>
<td>/DIS ASSIGNMENT MSNAME msname</td>
</tr>
<tr>
<td>SHOW(MSPLINK</td>
<td>mname*</td>
</tr>
<tr>
<td>MSLINK)</td>
<td></td>
</tr>
</tbody>
</table>
Output fields

Short label
Contains the short label generated in the XML output.

Long label
Contains the long label generated in the XML output.

Keyword
Identifies keyword on the command that caused the field to be generated.
error appears for output fields that can appear for a nonzero completion code. N/A (not applicable) appears for output fields that are always returned.

Meaning
Provides a brief description of the output field.

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCTxt</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the nonzero completion code.</td>
</tr>
<tr>
<td>LINKN</td>
<td>MSLink#</td>
<td>MSLINK</td>
<td>Link number of logical link associated with the link path.</td>
</tr>
<tr>
<td>LQ</td>
<td>LCnt</td>
<td>QCNT</td>
<td>Local queue count.</td>
</tr>
<tr>
<td>LSTT</td>
<td>LclStat</td>
<td>STATUS</td>
<td>The current status of the logical link path.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>IMSplex member that built the output line.</td>
</tr>
<tr>
<td>MSL</td>
<td>MSLink</td>
<td>MSLINK</td>
<td>Logical link associated with the logical link path.</td>
</tr>
<tr>
<td>MSN</td>
<td>MSName</td>
<td>N/A</td>
<td>Logical link path name.</td>
</tr>
<tr>
<td>MSP</td>
<td>MSPLink</td>
<td>MSLINK</td>
<td>Physical link associated with the logical link path.</td>
</tr>
<tr>
<td>QCNT</td>
<td>QCnt</td>
<td>QCNT</td>
<td>Global queue count.</td>
</tr>
<tr>
<td>SIDL</td>
<td>SIDL</td>
<td>SYSID</td>
<td>Local system identification for the logical link path.</td>
</tr>
<tr>
<td>SIDR</td>
<td>S IDR</td>
<td>SYSID</td>
<td>Remote system identification for the logical link path.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The return and reason codes that can be returned as a result of the QUERY MSNAME command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.
<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The QUERY MSNAME command completed successfully.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002040'</td>
<td>More than one filter value is specified on the QUERY MSNAME command.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003000'</td>
<td>Command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code. See the following table for details on completion codes.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>Command was not successful for any of the resources. The command output contains a line for each resource, accompanied by its completion code. See the following table for details on completion codes.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004004'</td>
<td>IMS attempted to obtain the message queue count from CQS, but CQS was not active.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004005'</td>
<td>IMS attempted to obtain the message queue count from CQS, but CQS was not connected to the queue structure.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000400C'</td>
<td>Command is not valid on the XRF alternate.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>Command is not valid on the RSR tracker.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000401C'</td>
<td>Command is not valid on the FDBR region.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005004'</td>
<td>The QUERY MSNAME command processing terminated because a DFSOCMD response buffer could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005008'</td>
<td>DFSPOOL storage could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005104'</td>
<td>IMS attempted to obtain the message queue count from CQS, but CQS returned with an unexpected return code.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005FFF'</td>
<td>IMS attempted to obtain the message queue count from CQS, but failed because of an internal IMS error.</td>
</tr>
</tbody>
</table>
Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

**Table 123. Completion codes for the QUERY MSNAME command**

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The QUERY MSNAME command completed successfully for the resource.</td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>MSNAME name is invalid, or the specified wildcard parameter does not match any resource names.</td>
</tr>
<tr>
<td>98</td>
<td>CQS REQUEST ERROR</td>
<td>IMS was unable to obtain the message queue count from CQS.</td>
</tr>
</tbody>
</table>

**Example**

In this example, the specified logical link path is returned with all output fields.

TSO SPOC input:

QRY MSNAME NAME(STAR1N1,STAR1N2) SHOW(ALL)

TSO SPOC output:

(Screen 1)

<table>
<thead>
<tr>
<th>MSName</th>
<th>MBRname</th>
<th>CC</th>
<th>Qcnt</th>
<th>MSPLink</th>
<th>MSLink</th>
<th>MSLink#</th>
<th>SIDR</th>
<th>SIDL</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAR1N1</td>
<td>IMSA</td>
<td>0</td>
<td>765</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAR1N1</td>
<td>IMSA</td>
<td>0</td>
<td></td>
<td>STAR1</td>
<td>STAR1</td>
<td>1</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>STAR1N2</td>
<td>IMSA</td>
<td>0</td>
<td></td>
<td>STAR1</td>
<td>STAR1L</td>
<td>2</td>
<td>11</td>
<td>21</td>
</tr>
</tbody>
</table>

(Screen 2)

<table>
<thead>
<tr>
<th>MSName</th>
<th>MBRname</th>
<th>LQCnt</th>
<th>LclStat</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAR1N1</td>
<td>IMSA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAR1N1</td>
<td>IMSA</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>STAR1N2</td>
<td>IMSA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAR1N2</td>
<td>IMSA</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

**Related concepts:**

- How to interpret CSL request return and reason codes (System Programming APIs)

**Related reference:**

- Command keywords and their synonyms (Commands)
- List of commands with similar functions for multiple resources (Operations and Automation)
QUERY MSPLINK command

Use the QUERY MSPLINK command to query definition and status information about the specified physical links.

Subsections:
- “Environment”
- “Syntax”
- “Keywords” on page 335
- “Usage notes” on page 337
- “Equivalent IMS type-1 commands” on page 337
- “Output fields” on page 337
- “Return, reason, and completion codes” on page 339
- Examples

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) from which the QUERY MSPLINK command and keywords can be issued.

Table 124. Valid environments for the QUERY MSPLINK command and keywords

<table>
<thead>
<tr>
<th>Command / keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY MSPLINK</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SHOW</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>STATUS</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TYPE</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Syntax
Keywords

The following keywords are valid for the QUERY MSPLINK command:

**NAME()**

Specifies the 1- to 8-character names of the physical links for which physical link information is to be returned. Wildcards (*) can be specified in the name. The default is NAME(*), which returns all MSPLINK resources.

**SHOW()**

Specifies the MSPLINK output fields to be returned. If SHOW() is not specified, only the physical names and associated link types are returned. The MSPLINK name is always returned along with the name of the IMS that created the output for the link and the completion code. The parameters supported with the SHOW keyword are:

**ALL**

Includes all of the information in the other SHOW parameters (except MSLINK and MSNAME).

**ADDR**

Displays the address of the channel-to-channel adapter for CTC physical links.

**ICONPLKID**

For TCP/IP physical links, displays the IMS Connect physical link ID as defined by the LCLPLKID keyword on the MSPLINK macro. The IMS Connect physical link ID is defined to IMS Connect on the LCLPLKID in the IMS Connect MSC configuration statement.

**IMSCON**

For TCP/IP physical links, displays the IMSplex name of the local IMS Connect instance that manages the TCP/IP connections for the physical link. The IMS Connect IMSplex name is specified on the LCLICON keyword of the MSPLINK macro.
MSLINK
Displays the logical links that are associated with the specified physical link. When the physical link is VTAM, the maximum number of allowed logical sessions for the physical link is also displayed. When SHOW(MSLINK) is specified, STATUS() is invalid. SHOW(MSNAME) and SHOW(MSLINK) are mutually exclusive with all other SHOW parameters.

MSNAME
Displays the logical link paths that are associated with the specified physical link. The MSNAME names, and the remote and local system identifications are displayed. When SHOW(MSNAME) is specified, STATUS() is invalid. SHOW(MSNAME) and SHOW(MSLINK) are mutually exclusive with all other SHOW parameters.

NODE
Displays the VTAM node name (APPLID) of the remote systems at the other end of the physical links for VTAM physical links.

RMTIMS
For TCP/IP physical links, displays the IMS ID of the remote IMS system, as defined on the NAME keyword of the MSPLINK macro in the remote IMS system.

STATUS
Displays the status of the physical link.

TYPE
Displays the type of physical link.

STATUS()
Displays physical links that display at least one of the specified statuses. You cannot specify the STATUS() parameter with the SHOW(MSLINK) parameter or the SHOW(MSNAME) parameter. When you specify the STATUS keyword, the output returned includes the physical link status, even if you do not specify SHOW(STATUS).

NOTOPEN
VTAM ACB has not been opened.

STOGENLGN
Displays all TCP/IP-type physical links with a local status of STOGENLGN. Only physical links that are used in a TCP/IP generic resource group can have a status of STOGENLGN.

STOGENLGN indicates that this physical link is stopped in this IMS system. While the physical link is stopped, no logical links can be started on the physical link in this IMS system and the IMS system cannot accept logical link requests for the TCP/IP generic resource group from a partner IMS system.

The STOGENLGN status of the physical link in this IMS system does not prevent other IMS systems in the TCP/IP generic resource group from starting or accepting logical links on the physical link.

To restart the physical link on this IMS system, route an UPDATE MSPLINK NAME(linkname) START(GENLOGON) command to the IMS system.

STOLGN
Displays TCP/IP and VTAM physical links that have a status of STOLGN. Physical links that are used in a TCP/IP generic resource group cannot have a status of STOLGN.
STOLGN indicates that this physical link is stopped in this IMS system. While the physical link is stopped, no logical links can be started on the physical link in this IMS system and the IMS system cannot accept logical link requests on the physical link from a partner IMS system.

**TYPE()**

Displays physical links that possess at least one of the specified types of physical links. When you specify the TYPE keyword, the output returned includes the type of physical link, even if you do not specify SHOW(TYPE).

**CTC**

Channel-to-Channel adapter.

**MTM**

Memory-to-Memory.

**TCP/IP**

TCP/IP.

**VTAM**

Virtual Telecommunication Access Method.

**Usage notes**

You can specify this command only through the Operations Manager (OM) API. This command applies to DB/DC and DCCTL systems.

The syntax for this command is defined in XML and is available to automation programs that communicate with OM.

**Equivalent IMS type-1 commands**

The following table shows variations of the QUERY MSPLINK command and the type-1 IMS commands that perform similar functions.

<table>
<thead>
<tr>
<th>QUERY MSPLINK command</th>
<th>Similar IMS type-1 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY MSPLINK NAME(msplinkname</td>
<td>*) SHOW(ALL)</td>
</tr>
<tr>
<td>QUERY MSPLINK NAME(msplinkname</td>
<td>*) /DIS ASSIGNMENT MSPLINK msplinkname SHOW(MSLINK</td>
</tr>
</tbody>
</table>

**Output fields**

**Short label**
Contains the short label that is generated in the XML output.

**Long label**
Contains the long label that is generated in the XML output.

**Keyword**
Identifies keyword on the command that caused the field to be generated. error appears for output fields that can appear for a nonzero completion code. N/A (not applicable) appears for output fields that are always returned.

**Meaning**
Provides a brief description of the output field.
Table 126. Output field descriptions for the QUERY MSPLINK command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDR</td>
<td>CTCaddr</td>
<td>ADDR</td>
<td>Address of the communication line or CTC adapter.</td>
</tr>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the non-zero completion code.</td>
</tr>
<tr>
<td>LIC</td>
<td>LclImssCon</td>
<td>IMSCON</td>
<td>Displayed for TCP/IP links only. Identifies the local IMS Connect instance within the IMSplex that the physical link connects to by way of SCI. The value shown is defined by the LCLICON keyword on the MSPLINK macro. The LCLICON value matches the value specified on the MEMBER parameter of the IMS Connect MSC configuration statement.</td>
</tr>
<tr>
<td>LINKN</td>
<td>MSLink#</td>
<td>MSLINK</td>
<td>Link number of logical link associated with the physical link.</td>
</tr>
<tr>
<td>LPLK</td>
<td>LclPlkID</td>
<td>ICONPLKID</td>
<td>Displayed for TCP/IP links only. Identifies the ID of the physical link statement within the local IMS Connect instance, as defined by the LCLPLKID keyword on the MSPLINK macro. The LCLPLKID value is also specified on the LCLPLKID keyword in the IMS Connect MSC configuration statement.</td>
</tr>
<tr>
<td>LSTT</td>
<td>LclStat</td>
<td>STATUS</td>
<td>Status of the physical link. The status of a physical link can be: STOLGN, STOGENLGN, and NOTOPEN.</td>
</tr>
<tr>
<td>MAXS</td>
<td>MaxSess</td>
<td>MSLINK</td>
<td>Maximum number of sessions allowed.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>IMSplex member that built the output line.</td>
</tr>
<tr>
<td>MSL</td>
<td>MSLink</td>
<td>MSLINK</td>
<td>Logical links associated with the physical link.</td>
</tr>
<tr>
<td>MSN</td>
<td>MSName</td>
<td>MSNAME</td>
<td>MSNAMEs associated with the physical link.</td>
</tr>
<tr>
<td>MSP</td>
<td>MSPLink</td>
<td>N/A</td>
<td>Physical link name.</td>
</tr>
<tr>
<td>NODE</td>
<td>NodeName</td>
<td>NODE</td>
<td>VTAM node name of the remote system at the other end of the physical link.</td>
</tr>
<tr>
<td>RIMS</td>
<td>RmtIms</td>
<td>RMTIMS</td>
<td>Displayed for TCP/IP links only. Identifies the IMS ID of the remote IMS system that the physical link connects to, as defined by the NAME keyword on the MSPLINK macro.</td>
</tr>
<tr>
<td>SIDL</td>
<td>SIDL</td>
<td>MSNAME</td>
<td>Local system identification of the associated MSNAME.</td>
</tr>
<tr>
<td>SIDR</td>
<td>SIDR</td>
<td>MSNAME</td>
<td>Remote system identification of the associated MSNAME.</td>
</tr>
<tr>
<td>TYPE</td>
<td>Type</td>
<td>TYPE</td>
<td>Type of the physical link: CTC, MTM, TCP/IP, or VTAM.</td>
</tr>
</tbody>
</table>
Return, reason, and completion codes

The return and reason codes that can be returned as a result of the QUERY MSPLINK command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 127. Return and reason codes for the QUERY MSPLINK command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The QUERY MSPLINK command completed successfully.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002040'</td>
<td>More than 1 filter value is specified on the QUERY MSPLINK command.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003000'</td>
<td>Command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code. See the following table for details on completion codes.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>Command was not successful for any of the resources. The command output contains a line for each resource, accompanied by its completion code. See the following table for details on completion codes.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000400C'</td>
<td>Command is not valid on the XRF alternate.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>Command is not valid on the RSR tracker.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000401C'</td>
<td>Command is not valid on the FDBR region.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005004'</td>
<td>The QUERY MSPLINK command processing terminated because a DFSOCMD response buffer could not be obtained.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

Table 128. Completion codes for the QUERY MSPLINK command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The QUERY MSPLINK command completed successfully for the resource.</td>
</tr>
</tbody>
</table>
Table 128. Completion codes for the QUER Y MSPLINK command  (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>MSPLINK name is invalid, or the specified wildcard parameter does not match any resource names.</td>
</tr>
</tbody>
</table>

**Example 1 for QUERY MSPLINK command**

In this example, the specified physical links with names that begin with STAR1 are returned with all output fields.

TSO SPOC input:

```
QRY MSPLINK NAME(STAR1*) SHOW(ALL)
```

TSO SPOC output:

```
MSPLink MbrName CC Type NodeName CTCaddr LclStat
STAR1 IMSA 0 VTAM APPL12B
STAR1B11 IMSA 0 VTAM APPL11B
STAR1B12 IMSA 0 VTAM APPL14B
STAR1B13 IMSA 0 VTAM APPL13B
```

**Example 2 for QUERY MSPLINK command**

In this example, the specified physical links with names that begin with STAR1 are returned with MSLink and MSName output fields. Each physical link is VTAM, so each one displays an output line containing the maximum allowable sessions.

TSO SPOC input:

```
QRY MSPLINK NAME(STAR1*) SHOW(MSLink,MSNAME)
```

TSO SPOC output:

```
MSPLink MbrName CC MSLink MSLink# MaxSess MSName SIDR SIDL
STAR1 IMSA 0 2
STAR1 IMSA 0 STAR1L 1 STARN1 15 35
STAR1 IMSA 0 STAR1L 1 STARN11 14 34
STAR1B11 IMSA 0 2
STAR1B11 IMSA 0
STAR1B12 IMSA 0 3
STAR1B12 IMSA 0
STAR1B13 IMSA 0 3
STAR1B13 IMSA 0 STAR3L1 4 STARN31 41 51
STAR1B13 IMSA 0 STAR3L2 5 STARN32 318 438
STAR1B13 IMSA 0 STAR3L3 6 STARN33 3 13
```

**Example 3 for QUERY MSPLINK command**

In this example, all physical links that are defined with TYPE=TCPIP are displayed.

TSO SPOC input:

```
QUERY MSPLINK TYPE(TCPIP) SHOW(ALL)
```

TSO SPOC output:
### Example 4 for QUERY MSPLINK command

In this example, all physical links that are defined with TYPE=TCPIP are displayed.

TSO SPOC input:

```
QUERY MSPLINK SHOW(ALL) STATUS(STOGENLGN)
```

TSO SPOC output:

```
MSPLink MbrName CC Type RmtIms LclImsCon LclPlkID LclStat
PLNK31TA SYS3 0 TCPIP IMS1 ICON3 MSC31
PLNK32TA SYS3 0 TCPIP IMS2 ICON3 MSC32
```

**Related concepts:**
- [How to interpret CSL request return and reason codes (System Programming APIs)](#)

**Related reference:**
- [Command keywords and their synonyms (Commands)](#)
- [List of commands with similar functions for multiple resources (Operations and Automation)](#)

---

### QUERY NODE command

Use the QUERY NODE command to display information about ISC TCP/IP or VTAM nodes (terminals) and non-VTAM devices (SPOOL and SYSOUT devices) in an IMSplex.

For ISC TCP/IP nodes, the command also displays the IMS Connect instance that provides the TCP/IP support.

This command can be specified only through the OM API and is valid on an XRF alternate.

**Subsections:**
- “Environment”
- “Syntax” on page 342
- “Keywords” on page 344
- “Usage notes” on page 350
- “Equivalent IMS type-1 commands” on page 350
- “Output fields” on page 351
- “QUERY NODE status” on page 356
- “Return, reason, and completion codes” on page 359
- “Examples” on page 361

**Environment**

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

---

<table>
<thead>
<tr>
<th>Environment</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 129. Valid environments for the QUERY NODE command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY NODE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>USER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SHOW</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>STATUS</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
QUERY NODE [NAME(*), NAME(nodename*), NAME(nodename), USER(username*), USER(username)]
```
Keywords

The following keywords are valid for the QUERY NODE command:

**NAME()**

Specifies the names of one or more VTAM nodes (terminals) or non-VTAM devices that are to be displayed. Valid names are 1-8 characters, and wildcards can be specified. To display all nodes and devices, specify NAME(*). NAME(*) is the default.

Any static or dynamic VTAM terminal name can be specified. Supported terminal types are LU0, LU1, LU2, and LU6.1 (ISC only).

Any non-VTAM device can be specified. Non-VTAM devices are assigned a LINE and PTERM number during the system definition process. Supported device types are CONSOLE, SYSOUT (DISK, PUNCH, PRINTER, READER, TAPE), SPOOL, and TCO:

**CONSOLE**

This is the system console. IMS automatically assigns LINE 1 PTERM 1 to this device.

**DISK**  Defined by the LINEGRP macro, UNITYPE=DISK.

**PUNCH**  Defined by the LINEGRP macro, UNITYPE=PUNCH.

**PRINTER**  Defined by the LINEGRP macro, UNITYPE=PRINTER.

**READER**  Defined by the LINEGRP macro, UNITYPE=READER.

**SPOOL**  Defined by the LINEGRP macro, UNITYPE=SPOOL.

**TAPE**  Defined by the LINEGRP macro, UNITYPE=TAPE.
TCO  This is the device assigned as the Time Control Option. The system
definition process automatically assigns the last LINE number to this
device.

To specify a non-VTAM device, specify a name of DFSLNxxx, where xxx is the
LINE number of the device. For example, to display the system console (LINE
1), specify NAME(DFSLN001).

SHOW()
Specifies the node output fields to be returned.

The node name is always returned along with the name of the IMS that
created the output and the completion code. If SHOW is not specified, only the
node names are returned, provided that the STATUS filter is not specified. This
provides a method for a system management application to obtain a list of all
node names that are currently known in the IMSpex.

Two parameters, GLOBAL and LOCAL, are used to specify the location (global
resources or local resources) where IMS should obtain the information that is
to be displayed. The default is both GLOBAL and LOCAL.

The rest of the parameters are used to specify what information is displayed.

The parameters supported with the SHOW keyword, which can be specified in
any order, are:

ALL
Returns all of the output fields, except for those fields displayed when the
LTERM and CONV parameters are specified. To display LTERM and
conversation information with all other output, specify
SHOW(ALL,LTERM,CONV).

AFFIN
IMS APPLID to which the node has VTAM generic resource affinity, if
applicable. VTAM generic resource affinity is valid only when the
GLOBAL parameter is specified on the SHOW keyword. If GLOBAL is not
specified, then the AFFIN parameter is ignored.

CICSAAPPL
For ISC TCP/IP nodes, displays the APPLID of the remote CICS
subsystem.

CICSNETID
For ISC TCP/IP nodes, displays the NETWORK ID of the remote CICS.

CID
VTAM connection identifier.

CONV
The conversation ID, transaction, and conversation status associated with
the node. Each conversation is returned on a separate command response
display line. Conversation status is not included when SHOW(ALL) is
specified. To display conversation information with all other output,
specify SHOW(ALL,CONV).

COUNT
Displays the number of messages sent to and received from the specified
node.

EMHQ
Displays the node message queue count in the Expedited Message Handler
(EMH) queues. The queue count is the sum of the queue counts for each
logical terminal associated with the specified node.
EMHQ is valid only when the GLOBAL parameter is specified on the SHOW keyword. If GLOBAL is not specified, then the EMHQ parameter is ignored.

EMHQ is processed by the command master only. It is ignored by all other IMS systems.

EMHQ is valid only if shared EMH is used in a shared queues environment. Otherwise, this parameter is ignored.

If the node resource exists in the resource structure, then the logical terminals associated with the global node resource are used to obtain the queue counts from the EMH queues. Otherwise, the logical terminals associated with the local node resource are used, but if the node does not exist locally on the command master, then the queue count is 0.

GLOBAL

If GLOBAL is specified, the command master displays global information, depending on the other SHOW parameters specified. This includes information from the resource structure.

The GLOBAL parameter is processed by the command master only. All other IMS systems ignore this parameter. If LOCAL is not also specified, then all IMS systems other than the command master ignore the command.

GLOBAL is applicable only when the command master is using shared queues, VTAM generic resources, sysplex terminal management, or any combination of these. GLOBAL is not applicable when the command master is not using shared queues, VTAM generic resources, or sysplex terminal management. In this environment, if LOCAL is also specified, then GLOBAL is ignored. Otherwise, the command master rejects the command.

If shared queues are enabled, and global queue counts are requested, then the command master will make requests to CQS to determine the appropriate queue counts. This includes both MSGQ and EMHQ.

If VTAM generic resources (VGR) is enabled, and VGR affinity information is requested, then the command master will make requests to VTAM to determine any VGR affinity.

If sysplex terminal management is enabled, then the command master will make requests to RM to determine the appropriate global status.

If both GLOBAL and LOCAL are specified (which is the default), then the command master builds global and local information separately. Global information is displayed as one output line (or set of output lines), and local information is displayed as another output line (or set of output lines).

ID Displays the other half-session qualifier name of the ISC node.

IMSCON

For ISC TCP/IP nodes, shows the IMSplex member name of the IMS Connect instance that provides TCP/IP support for the node.

LOCAL

If LOCAL is specified, then all IMS systems including the command master display local information, depending on the other SHOW parameters specified. This includes information local to the IMS processing the command.
The LOCAL parameter is processed by all IMS systems, including the command master. LOCAL is applicable in any environment, regardless of whether shared queues or sysplex terminal management are used.

If both GLOBAL and LOCAL are specified (which is the default), then the command master builds global and local information separately. Global information is displayed as one output line (or set of output lines), and local information is displayed as another output line (or set of output lines).

**LOGOND**
For ISC TCP/IP nodes, displays the name of the ETO logon descriptor that was used to establish the session in use by the node.

**LTERM**
Displays the logical terminal (LTERM) names, if any, associated with the node. A node may have zero or more logical terminals associated with it.

Each logical terminal associated with the node is returned on a separate command response line.

The LTERM status is not included when SHOW(ALL) is specified. To display logical terminal information with all other output, specify SHOW(ALL,LTERM).

**MODETBL**
Displays the mode table names that are associated with the specified nodes. The output includes both the default mode table name and the actual mode table name. The default mode table name is the default name that is set by system definition. This name can be modified by the UPDATE NODE command, or by the LOGON exit. The actual mode table name is the actual name used to initiate the session. This name is displayed only while the session is active, and is blank at all other times.

**OWNER**
Displays the owner of the node resource in the resource structure. This applies only when sysplex terminal management is enabled, and is only processed by the command master. All other IMS systems ignore this parameter.

The owner is the IMSID (or RSENAME for XRF systems) of the IMS system that owns the node. An IMS system owns a node resource if the resource is active (the node is logged on), or an IMS system is maintaining significant status for that resource.

**PRESET**
Displays the preset destination name for a node. A node is in preset destination mode set by the /SET command. The preset destination name is either a transaction name, or a logical terminal (LTERM) name. All messages entered from this node are sent to the preset destination transaction or LTERM.

**QCNT**
Displays the node message queue count. The queue count is the sum of the queue counts for each logical terminal associated with the specified node.

The local queue counts value returned on this command represents the messages being processed by the IMS system where this command is issued. In a shared-queues environment, do not use the local queue counts.
for queue evaluation purposes. The global queue counts, which are returned on this command, represent the current message queue counts on the shared queues structure.

If the LOCAL parameter is also specified on the SHOW keyword, then all IMS systems that process the command, including the command master, display the local queue count. This is valid whether or not shared message queues are enabled.

If the GLOBAL parameter is also specified on the SHOW keyword, and shared message queues are enabled, then the command master displays the global queue count on the shared message queues (MSGQ). If the node resource exists in the resource structure, then the logical terminals associated with the global node resource are used to obtain the queue counts from shared queues. Otherwise, the logical terminals associated with the local node resource are used, but if the node does not exist locally on the command master, then the queue count is 0.

The local and global queue counts are displayed as separate output fields.

**RECOVERY**
Displays the status recovery mode (SRM) and level of recovery for the node. End-user significant status can be conversation, Fast Path, full-function response mode, or STSN (set-and-test-sequence-number) status.

SRM determines where end-user significant status, if any exists, is recovered following a session or IMS termination. The output displays the SRM for the node as either GLOBAL (sysplex terminal management recovers it in the resource structure), LOCAL (IMS recovers it locally, which indicates an affinity to a particular IMS), or NONE (status is discarded).

Level of recovery determines what end-user significant status, if any exists, is recovered (if SRM is GLOBAL or LOCAL). The output displays whether conversation status is recovered (RCVYCONV), Fast Path status is recovered (RCVYFP), full-function response mode is recovered (RCVYRESP), and STSN status is recovered (RCVYSTSN).

**STATUS**
Returns local or global status of the node. See "QUERY NODE status" on page 356 for a list and meaning of possible status that might be returned.

**TYPE**
VTAM node type. The possible node types are AVM, FIN, LUT6, NTO, SLUP, SLU1, SLU2, 3277, 3286, 3790, CONSOLE, RDR/PTR (for SYSOUT and SPOOL), and TCO.

**USER**
Displays the dynamic or ISC user associated with the node. For ISC parallel-session nodes, this is the user structure representing the half-session qualifier. For static ISC, this is defined with the SUBPOOL macro. For non-ISC dynamic nodes, this is the user structure allocated to the node during signon of a user ID to the node. The user name might or might not be the same as the user ID, depending on installation-specific user exits or descriptors used. Static non-ISC nodes (and single-session ISC nodes) do not have users (even if a user ID is signed on).
USERID
Displays the user ID (for security, usually RACF), signed on to the node. This is applicable to any device type, static or dynamic, and is distinct from the user name.

VERSION
Displays the version number assigned to RM resources, which is assigned by MVS, and maintained by RM, when the resources are created or updated in the resource structure.

Static single-session nodes (not parallel-session ISC) are represented in RM by two resources: the node resource, and the static-node-user resource. The VERSION parameter displays the version number for each of these resources. Static parallel-session ISC nodes and all dynamic nodes are represented in RM by one resource: the node resource. The VERSION parameter displays the version number of the node resource.

VERSION applies only when sysplex terminal management is enabled. VERSION is ignored when sysplex terminal management is not enabled.

STATUS()
Selects nodes for display that possess at least one of the specified node statuses. The status might exist locally or globally if sysplex terminal management (STM) is enabled.

The STATUS filter is valid in both a sysplex terminal management environment and in a non-sysplex terminal management environment. In a sysplex terminal management environment, the status selected might exist locally, globally, or both. If sysplex terminal management is not enabled, then the status only exists locally.

If SHOW(LOCAL) is specified, then IMS will select only those nodes with the appropriate status in the local system. The command is processed by all IMS systems, including the command master.

If SHOW(GLOBAL) is specified, and sysplex terminal management is enabled, then IMS will select only those nodes with the appropriate status in the resource structure. The command is processed only by the command master.

If SHOW(GLOBAL) is specified, but sysplex terminal management is not enabled, then the command is rejected.

If SHOW(GLOBAL,LOCAL) is specified (the default), then IMS will select those nodes with the appropriate status either locally or in the resource structure (if sysplex terminal management is enabled). The command is processed by all IMS systems. The command master processes both global and local information.

The output returned when the status filter is specified includes the status of the node, even if SHOW(STATUS) is not specified.

See “QUERY NODE status” on page 356 to determine which filters can be used to select nodes with corresponding status.

USER()
For a specific ISC node, specifies the names of one or more ISC user names allocated to the node. Valid names are 1-8 characters, and wildcards can be specified. To display all users allocated to the node, specify USER(*), or omit the USER keyword.

The output returned includes the user name even if SHOW(USER) is not specified.
Usage notes

QUERY NODE can be specified only through the OM API.

QUERY NODE can be issued on an XRF alternate system, but SHOW(GLOBAL) is not supported. Only local information can be displayed.

The processing of the QUERY NODE command is different depending on whether IMS sysplex terminal management is enabled.

- If IMS sysplex terminal management is not enabled, processing is local for each system. The results of type-1 and type-2 commands are similar.
- If IMS sysplex terminal management is enabled, type-1 and type-2 command processing is similar when displaying local information. However, they differ in how global information is displayed.
- For type-1 /DISPLAY commands with IMS sysplex terminal management enabled, the command master displays information from either the resource structure or the local system, but not both. If the resource being displayed is not owned by any system or is owned by the command master, the command master displays the global resource. However, if the resource is owned by a system other than the command master, the command master displays only the local resource, and the owning system is responsible for displaying the global resource.
- For type-2 QUERY commands with IMS sysplex terminal management enabled, the command master is the only system that displays global resource information, regardless of whether the resource is owned. In addition, the command master displays local resource information. All other IMS systems that process the command display local resource information only. This approach allows more flexibility in displaying all information in an IMSplex.

The SHOW keyword determines which IMS systems process the command and what information is displayed.

- If SHOW(GLOBAL) is specified, then the command master displays global information, which includes the global queue count if shared queues are enabled, generic resource affinity information if VTAM generic resource (VGR) is enabled, and status from the resource structure if sysplex terminal management is enabled (STM=YES defined in DFSDCxxx PROCLIB member). This is true whether or not the node is active on any particular IMS system. All other IMS systems to which OM routes the command ignore the GLOBAL parameter with return code 'X'00000004' and reason code 'X'00001000'.
- If SHOW(LOCAL) is specified, then each IMS system to which OM routes the command (including the command master) processes the command, and displays information that is local to each system.
- If both GLOBAL and LOCAL are specified (which is the default), then the command master displays both global and local information, and all other IMS systems to which OM routes the command displays local information.

Equivalent IMS type-1 commands

The following table shows variations of the QUERY NODE command and the type-1 IMS commands that perform similar functions.

<table>
<thead>
<tr>
<th>QUERY NODE command</th>
<th>Similar IMS type-1 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY NODE SHOW(AFFIN)</td>
<td>/DISPLAY AFFIN NODE node</td>
</tr>
</tbody>
</table>
### Table 130. Type-1 equivalents for the QUERY NODE command (continued)

<table>
<thead>
<tr>
<th>QUERY NODE command</th>
<th>Similar IMS type-1 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY NODE SHOW(CID)</td>
<td>/DISPLAY NODE node</td>
</tr>
<tr>
<td>QUERY NODE SHOW(CONV)</td>
<td>/DISPLAY CONV NODE node</td>
</tr>
<tr>
<td>QUERY NODE SHOW(COUNT)</td>
<td>/DISPLAY NODE node</td>
</tr>
<tr>
<td>QUERY NODE SHOW(EMHQ)</td>
<td>/DISPLAY NODE node QCNT EMHQ</td>
</tr>
<tr>
<td>QUERY NODE SHOW(LTERM)</td>
<td>/DISPLAY ASMT NODE node</td>
</tr>
<tr>
<td>QUERY NODE SHOW(MODETBL)</td>
<td>/DISPLAY NODE node MODE</td>
</tr>
<tr>
<td>QUERY NODE SHOW(OWNER)</td>
<td>/DISPLAY NODE node RECOVERY</td>
</tr>
<tr>
<td>QUERY NODE SHOW(PRESET)</td>
<td>/DISPLAY NODE node</td>
</tr>
<tr>
<td>QUERY NODE SHOW(QCNT)</td>
<td>/DISPLAY NODE node QCNT</td>
</tr>
<tr>
<td>QUERY NODE SHOW(RECOVERY)</td>
<td>/DISPLAY NODE node RECOVERY</td>
</tr>
<tr>
<td>QUERY NODE SHOW(STATUS)</td>
<td>/DISPLAY NODE node</td>
</tr>
<tr>
<td>QUERY NODE SHOW(TYPE)</td>
<td>/DISPLAY NODE node</td>
</tr>
<tr>
<td>QUERY NODE SHOW(USERID)</td>
<td>/DISPLAY NODE node</td>
</tr>
<tr>
<td>QUERY NODE SHOW(USER)</td>
<td>/DISPLAY ASMT NODE node</td>
</tr>
<tr>
<td>QUERY NODE STATUS(CONV)</td>
<td>/DISPLAY CONV</td>
</tr>
<tr>
<td>QUERY NODE STATUS(TRACE)</td>
<td>/DISPLAY TRACE NODE</td>
</tr>
<tr>
<td>QUERY NODE STATUS(status)</td>
<td>/DISPLAY STATUS NODE</td>
</tr>
</tbody>
</table>

### Output fields

The following table shows the QUERY NODE output fields. The columns in the table are:

- **Short label**
  Contains the short label generated in the XML output.

- **Long label**
  Contains the column heading for the output field in the formatted output.

- **SHOW parameter**
  Identifies the parameter on the SHOW keyword that caused the field to be generated. Error appears for output fields that are returned for a non-zero completion code. N/A (not applicable) appears for output fields that are always returned.

- **Scope**
  Identifies the scope of the output field. GBL indicates that the field can be generated only by the command master when displaying global information for SHOW(GLOBAL). LCL indicates that the field can be generated by any IMS displaying local information for SHOW(LOCAL). N/A (not applicable) appears for output fields that are always returned.

- **Meaning**
  Provides a brief description of the output field.
### Table 131. Output fields for the QUERY NODE command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>SHOW parameter</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFFIN</td>
<td>Affin</td>
<td>AFFIN</td>
<td>GBL</td>
<td>IMS APPLID to which the node has VTAM generic resource affinity, if applicable.</td>
</tr>
<tr>
<td>AMTB</td>
<td>ActMdtbl</td>
<td>MODETBL</td>
<td>LCL</td>
<td>Active mode table. This name is only displayed when the session is active.</td>
</tr>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>N/A</td>
<td>Completion code. The completion code indicates whether or not IMS was able to process the command for the specified resource. See &quot;Return, reason, and completion codes&quot; on page 359 for more information. The completion code is always returned.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>Error</td>
<td>N/A</td>
<td>Completion code text that briefly explains the meaning of the non-zero completion code. This field is returned only for an error completion code.</td>
</tr>
<tr>
<td>CICAP</td>
<td>CICSApplid</td>
<td>CICSAPPL</td>
<td>LCL</td>
<td>The APPLID of the remote CICS subsystem.</td>
</tr>
<tr>
<td>CICNT</td>
<td>CICSNetid</td>
<td>CICSNETID</td>
<td>LCL</td>
<td>The NETWORK ID of the remote CICS.</td>
</tr>
<tr>
<td>CID</td>
<td>CID</td>
<td>CID</td>
<td>LCL</td>
<td>VTAM connection identifier.</td>
</tr>
<tr>
<td>CNTR</td>
<td>RecdCnt</td>
<td>COUNT</td>
<td>LCL</td>
<td>Number of messages received from the specified node.</td>
</tr>
<tr>
<td>CNTS</td>
<td>SentCnt</td>
<td>COUNT</td>
<td>LCL</td>
<td>Number of messages sent to the specified node.</td>
</tr>
<tr>
<td>CONVID</td>
<td>ConvID</td>
<td>CONV</td>
<td>GBL</td>
<td>The conversation ID for a conversation associated with the node, as it exists in the resource structure. A node might have zero, one, or more conversations. Each conversation will have its own line of output.</td>
</tr>
</tbody>
</table>
| CONVSTT     | ConvStat   | CONV           | GBL   | The status of a conversation associated with the node, as it exists in the resource structure. A node might have zero, one, or more conversations. The status can be:  
* CONVHELD - conversation is held  
* CONVACTV - conversation is active  
* CONVSCHD - conversation is scheduled  

CONVTRN	ConvTran	CONV	GBL	The transaction for a conversation associated with the node, as it exists in the resource structure. A node might have zero, one, or more conversations.
DMTB	DefMdtbl	MODETBL	LCL	Default mode table.
EMHQ	EMHQCnt	EMHQ	GBL	Global logical terminal queue count in the EMH (Expedited Message Handler) queues. EMHQ is displayed only if shared EMH is used.
GBL	Gbl	GLOBAL	GBL	If 'Y', then the output reflects the status found globally in RM. If blank, then the output reflects the status found locally.
ID	ID	ID	GBL	For ISC parallel-session terminals, displays the global half-session qualifier of the other system.
Table 131. Output fields for the QUERY NODE command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>SHOW parameter</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISCUSER</td>
<td>ISCUser</td>
<td>N/A</td>
<td>N/A</td>
<td>When the node is parallel-session ISC, the user subpool name is returned to differentiate parallel sessions for the same node. This field will appear when an ISC node has been selected for display. When the user name is also displayed, both the ISCUSER and USER fields will contain the same user name. For LOCAL scope, N/A is displayed for a parallel session that is not yet allocated. For GLOBAL scope, N/A is displayed once for each node, which represents global status for the node.</td>
</tr>
<tr>
<td>LCONVID</td>
<td>LConvID</td>
<td>CONV</td>
<td>LCL</td>
<td>The conversation ID for a conversation associated with the node, as it exists in the local system. A node might have zero, one, or more conversations. Each conversation will have its own line of output.</td>
</tr>
<tr>
<td>LCONVSTT</td>
<td>LConvStat</td>
<td>CONV</td>
<td>LCL</td>
<td>The status of a conversation associated with the node, as it exists in the local system. A node might have zero, one, or more conversations. The status can be: • CONVHELD: Conversation is held • CONVACTV: Conversation is active • CONVSCHD: Conversation is scheduled</td>
</tr>
<tr>
<td>LCONVTRN</td>
<td>LConvTran</td>
<td>CONV</td>
<td>LCL</td>
<td>The transaction for a conversation associated with the node, as it exists in the local system. A node might have zero, one, or more conversations.</td>
</tr>
<tr>
<td>LGND</td>
<td>LclLogonD</td>
<td>LOGOND</td>
<td>LCL</td>
<td>The dynamic logon descriptor name that was used to establish the current session for the ISC TCP/IP terminal.</td>
</tr>
<tr>
<td>LIC</td>
<td>LclImsCon</td>
<td>IMSCON</td>
<td>LCL</td>
<td>For ISC TCP/IP nodes, the IMSplex member name of the local IMS Connect that provides TCP/IP support for the specified node, as defined by the LCLICON= keyword on the logon descriptor or, for statically defined terminals, on the ISCTCPIP keyword in the DFSDCxxx PROCLIB member.</td>
</tr>
<tr>
<td>LID</td>
<td>LID</td>
<td>ID</td>
<td>LCL</td>
<td>For ISC VTAM parallel-session terminals, displays the local half-session qualifier of the other system. For ISC TCP/IP parallel-session terminals, displays the dynamic or ISC user that is allocated to the node.</td>
</tr>
<tr>
<td>LINE</td>
<td>Line</td>
<td>N/A</td>
<td>LCL</td>
<td>Identifies the line number for system console, SPOOL, SYSOUT, or TCO device. This is only displayed if the node is non-VTAM.</td>
</tr>
<tr>
<td>LTERM</td>
<td>LLterm</td>
<td>LTERM</td>
<td>LCL</td>
<td>Local logical terminal names. The logical terminal names associated with the node.</td>
</tr>
</tbody>
</table>
Table 131. Output fields for the QUERY NODE command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>SHOW parameter</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPRST</td>
<td>LPreset</td>
<td>PRESET</td>
<td>LCL</td>
<td>Identifies the preset destination transaction or LTERM name when the node is in preset destination mode, which is established by the /SET command. All messages entered at this terminal are sent to the preset destination trancode or LTERM.</td>
</tr>
<tr>
<td>LQ</td>
<td>LQCnt</td>
<td>QCNT</td>
<td>LCL</td>
<td>Local queue count.</td>
</tr>
<tr>
<td>LRCVY</td>
<td>LRcvy</td>
<td>RECOVERY</td>
<td>LCL</td>
<td>The level of recovery for end-user significant status in the local system, which indicates what type of status is recoverable. Any value presented here implies that the corresponding status is recoverable. If SRM is LOCAL, the status will be recovered locally. If SRM is GLOBAL, the status will be recovered globally. These values are not applicable if SRM is NONE or there is no SRM. The status values that can be returned (more than one are possible) are: • CONV: IMS conversations are recoverable (RCVYCONV=YES). • FP: Fast Path status is recoverable (RCVYFP=YES). • RESP: Full-function response mode status is recoverable (RCVYRESP=YES). • STSN: STSN status is recoverable (RCVYSTSN=YES).</td>
</tr>
<tr>
<td>LSRM</td>
<td>LSRM</td>
<td>RECOVERY</td>
<td>LCL</td>
<td>The status recovery mode in the local system, which determines where the end-user significant status is maintained and recovered from. The output will be one of the following: • GBL: Status is saved globally in the IMS resource structure. • LCL: Status is saved in local control blocks and log records. • NONE: Status is not saved in the IMS resource structure or log records. • Blank: SRM is not yet established, the node is not logged on and there is no end-user significant status, or there is no user signed on.</td>
</tr>
<tr>
<td>LSTT</td>
<td>LclStat</td>
<td>STATUS</td>
<td>LCL</td>
<td>Local node status. See “QUERY NODE status” on page 356 for a list and explanation of the possible node status.</td>
</tr>
<tr>
<td>LTERM</td>
<td>Lterm</td>
<td>LTERM</td>
<td>GBL</td>
<td>Global logical terminal names. The logical terminal names associated with the node.</td>
</tr>
<tr>
<td>LTYPE</td>
<td>LType</td>
<td>TYPE</td>
<td>LCL</td>
<td>VTAM node type. The possible node types are: AVM, FIN, LUT6, NTO, SLUP, SLU1, SLU2, 3277, 3286, 3790, CONSOLE, RDR/PTR (for SYSOUT and SPOOL), and TCO.</td>
</tr>
<tr>
<td>LUID</td>
<td>LUserId</td>
<td>USERID</td>
<td>LCL</td>
<td>Identifies the local user ID signed on to the node.</td>
</tr>
<tr>
<td>Short label</td>
<td>Long label</td>
<td>SHOW parameter</td>
<td>Scope</td>
<td>Meaning</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>----------------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>LUSER</td>
<td>LUUser</td>
<td>USER</td>
<td>LCL</td>
<td>Identifies the local dynamic or ISC user allocated to the node.</td>
</tr>
<tr>
<td>LVER</td>
<td>LVersion#</td>
<td>VERSION</td>
<td>LCL</td>
<td>Version number for the node resource being maintained in the local system. This field applies only when STM is enabled.</td>
</tr>
<tr>
<td>LVERSNU</td>
<td>LVersion#SNU</td>
<td>VERSION</td>
<td>LCL</td>
<td>Version number for the static-node-user resource being maintained in the local system. This field applies only to static single-session nodes when STM is enabled.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>N/A</td>
<td>IMSplex member (modular unit) that built the output line. IMS identifier of the IMS that built the output. The IMS identifier is always returned.</td>
</tr>
<tr>
<td>NODE</td>
<td>Node</td>
<td>N/A</td>
<td>N/A</td>
<td>The node name. The node name is always returned.</td>
</tr>
<tr>
<td>OWNER</td>
<td>Owner</td>
<td>OWNER</td>
<td>GBL</td>
<td>Resource owner. IMS identifier or RSENAME of IMS where the node is active. If no owning IMS system exists and RM contains an entry for the resource, the owner field will be blank.</td>
</tr>
<tr>
<td>QCNT</td>
<td>QCnt</td>
<td>QCNT</td>
<td>GBL</td>
<td>Global queue count on the shared queues. Global queue count can be displayed only if shared queues are used.</td>
</tr>
<tr>
<td>PTERM</td>
<td>PTerm</td>
<td>N/A</td>
<td>LCL</td>
<td>Identifies the PTERM number for system console, SPOOL, SYSOUT, or TCO device. This is only displayed if the node is non-VTAM.</td>
</tr>
<tr>
<td>RCVY</td>
<td>Rcvy</td>
<td>RECOVERY</td>
<td>GBL</td>
<td>The level of recovery for end-user significant status in the resource structure, which indicates what type of status is recoverable. Any value presented here implies that the corresponding status is recoverable. If SRM is LOCAL, the status will be recovered locally. If SRM is GLOBAL, the status will be recovered globally. These values are not applicable if SRM is NONE or there is no SRM. The status values that can be returned (more than one are possible) are: • CONV: IMS conversations are recoverable (RCVYCONV=YES). • STSN: STSN status is recoverable (RCVYSTSN=YES). • FP: Fast Path status is recoverable (RCVYFP=YES).</td>
</tr>
</tbody>
</table>

Chapter 5. QUER Y commands
Table 131. Output fields for the QUERY NODE command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>SHOW parameter</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRM</td>
<td>SRM</td>
<td>RECOVERY</td>
<td>GBL</td>
<td>The status recovery mode in the resource structure, which determines where the end-user significant status is maintained and recovered from. The output will be one of the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• GBL: Status is saved globally in the IMS resource structure.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• LCL: Status is saved in local control blocks and log records.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• NONE: Status is not saved in the IMS resource structure or log records.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Blank: SRM is not yet established, the node is not logged on and there is no end-user significant status, or there is no user signed on.</td>
</tr>
<tr>
<td>STT</td>
<td>Status</td>
<td>STATUS</td>
<td>GBL</td>
<td>Global node status. See &quot;QUERY NODE status&quot; for a list and explanation of the possible node status.</td>
</tr>
<tr>
<td>TYPE</td>
<td>Type</td>
<td>TYPE</td>
<td>GBL</td>
<td>VTAM node type. The possible node types are AVM, FIN, LUT6, NTO, SLUP, SLU1, SLU2, 3277, 3286, 3790.</td>
</tr>
<tr>
<td>UID</td>
<td>Userid</td>
<td>USERID</td>
<td>GBL</td>
<td>Identifies the RACF user ID signed on to the node.</td>
</tr>
<tr>
<td>USER</td>
<td>User</td>
<td>USER</td>
<td>GBL</td>
<td>Identifies the dynamic or ISC user signed on to or associated with the node.</td>
</tr>
<tr>
<td>VER</td>
<td>Version#</td>
<td>VERSION</td>
<td>GBL</td>
<td>Version number for the node resource being maintained in the resource structure. This field applies only when STM is enabled.</td>
</tr>
<tr>
<td>VERSNU</td>
<td>Version#SNU</td>
<td>VERSION</td>
<td>GBL</td>
<td>Version number for the static-node-user resource being maintained in the resource structure. This field applies only to static single-session nodes when STM is enabled.</td>
</tr>
</tbody>
</table>

**QUERY NODE status**

The following table shows the possible node status that can be displayed. The columns in the table are:

- **Status**  The node status that is displayed.
- **STATUS parameter**  The STATUS() filter that will select nodes with the specified status.
- **Scope**  The scope of the status. GBL indicates that the status can be global (it exists in the resource structure when STM is enabled), and is returned with the STT short label. LCL indicates that the status can be local, and is returned with the LSTT short label.
- **Meaning**  Provides a brief description of the status.
Table 132. QUERY NODE status

<table>
<thead>
<tr>
<th>Status</th>
<th>STATUS parameter</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTIVE</td>
<td>ACTIVE</td>
<td>LCL</td>
<td>Node is in an XRF session on the active system.</td>
</tr>
<tr>
<td>ASR</td>
<td>ASR</td>
<td>LCL</td>
<td>Node has session initiation option ASR.</td>
</tr>
<tr>
<td>BACKUP</td>
<td>BACKUP</td>
<td>LCL</td>
<td>Node is in an XRF session on the alternate system.</td>
</tr>
<tr>
<td>CLSDST</td>
<td>CLSDST</td>
<td>LCL</td>
<td>Session is being disconnected.</td>
</tr>
<tr>
<td>COLD</td>
<td>COLD</td>
<td>GBL and LCL</td>
<td>For a SLUP or FINANCE terminal, indicates that the next session initiation is cold (message sequence numbers are initialized to 0).</td>
</tr>
<tr>
<td>CON</td>
<td>CON</td>
<td>LCL</td>
<td>Node is connected or in session with IMS.</td>
</tr>
<tr>
<td>CONVACT</td>
<td>CONV</td>
<td>GBL and LCL</td>
<td>An active conversation exists.</td>
</tr>
<tr>
<td>CONVHELD</td>
<td>CONV</td>
<td>GBL and LCL</td>
<td>One or more held conversations exist.</td>
</tr>
<tr>
<td>C1INOP</td>
<td>CINOP</td>
<td>LCL</td>
<td>Indicates the inoperable node or terminal component, where C1, C2, C3 and C4 refer to the component as defined by system definition. (See the /COMPT command and the /RCOMPT command for details on how to ready inoperable components).</td>
</tr>
<tr>
<td>DEACT</td>
<td>DEACT</td>
<td>LCL</td>
<td>Node has been permanently deactivated. Restart of node requires /STOP DC and /START DC commands. Alternatively, node can be activated with UPDATE NODE STOP(DEACT). Message DFS2473 in the system console log might contain information regarding the reason this status was set. DFS2473 can occur more than once in the system console log.</td>
</tr>
<tr>
<td>EXCL</td>
<td>EXCL</td>
<td>GBL and LCL</td>
<td>The node is in exclusive mode set by the /EXCLUSIVE command. Exclusive mode restricts the output received by the terminal affected.</td>
</tr>
<tr>
<td>FORCSESS</td>
<td>FORCSESS</td>
<td>LCL</td>
<td>Node has session initiation option of FORCE.</td>
</tr>
<tr>
<td>IDLE</td>
<td>IDLE</td>
<td>LCL</td>
<td>No activity of any kind is in progress for the node.</td>
</tr>
<tr>
<td>INOP</td>
<td>INOP</td>
<td>LCL</td>
<td>NODE is inoperable.</td>
</tr>
<tr>
<td>LOCK</td>
<td>LOCK</td>
<td>LCL</td>
<td>Node is locked, set by the /LOCK command. The sending and receiving of messages for the VTAM node is stopped.</td>
</tr>
</tbody>
</table>
Table 132. QUERY NODE status (continued)

<table>
<thead>
<tr>
<th>Status</th>
<th>STATUS parameter</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOST</td>
<td>LOST</td>
<td>LCL</td>
<td>The VTAM LOSTERM EXIT has been scheduled for this node but has not yet been recognized by IMS. At the next interrupt for this node, IMS interrogates the LOSTERM value. All values, with one exception, result in an immediate CLSDST, or disconnection from IMS. For the LOSTERM exception, IMS must wait for VTAM to notify IMS (via another LOSTERM) of completion of recovery operation. This indicates an IMS logger’s connection to the Transport Manager Subsystem is gone because of TMS or VTAM failure.</td>
</tr>
<tr>
<td>MFST</td>
<td>MFST</td>
<td>GBL and LCL</td>
<td>Node is in MFSTEST mode, set by UPDATE NODE START(MFST) command or /TEST MFS command. Terminals supported by Message Format Service use format blocks from a special test library if the requested format block is in the test library; otherwise the blocks are obtained from the production library.</td>
</tr>
<tr>
<td>OPNDST</td>
<td>OPNDST</td>
<td>LCL</td>
<td>OPNDST is in progress for this node.</td>
</tr>
<tr>
<td>PAGE</td>
<td>PAGE</td>
<td>LCL</td>
<td>Indicates an MFS paged message.</td>
</tr>
<tr>
<td>PRI</td>
<td>PRI</td>
<td>GBL and LCL</td>
<td>This node is the primary partner of an ISC session.</td>
</tr>
<tr>
<td>PRST</td>
<td>PRST</td>
<td>LCL</td>
<td>The node is in preset destination mode. PRST mode is established by the /SET command. All messages entered at this terminal are sent to the preset destination transaction code or logical terminal.</td>
</tr>
<tr>
<td>QUI</td>
<td>QUI</td>
<td>LCL</td>
<td>A VTAM node has sent a VTAM Quiesce-End-of-Chain indicator to suspend IMS output.</td>
</tr>
<tr>
<td>RELREQ</td>
<td>RELREQ</td>
<td>LCL</td>
<td>VTAM RELREQ exit routine has been driven but IMS is waiting for an operation in progress to complete before releasing the node.</td>
</tr>
<tr>
<td>RESP</td>
<td>RESP</td>
<td>GBL and LCL</td>
<td>The node is in response mode and the response reply message is available for output or in the process of being sent.</td>
</tr>
<tr>
<td>RESPINP</td>
<td>RESPINP</td>
<td>GBL and LCL</td>
<td>The node is in response mode and the response mode input is still in-doubt; for example, the response reply message is not available for output.</td>
</tr>
<tr>
<td>RESPINFPF</td>
<td>RESPINFPF</td>
<td>GBL and LCL</td>
<td>The node is in Fast Path response mode and the response mode input is still in-doubt; for example, the response reply message is not available for output.</td>
</tr>
</tbody>
</table>
Table 132. QUERY NODE status (continued)

<table>
<thead>
<tr>
<th>Status</th>
<th>Status parameter</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESYNC</td>
<td>RESYNC</td>
<td>LCL</td>
<td>The positive acknowledgment of an IMS recoverable output message was not received when the connection with the VTAM node was terminated. This message is subject to resynchronization when the next connection for this node is attempted.</td>
</tr>
<tr>
<td>RM</td>
<td>RM</td>
<td>GBL</td>
<td>The node exists in the resource structure managed by RM.</td>
</tr>
<tr>
<td>RMACTIVE</td>
<td>RMACTIVE</td>
<td>GBL</td>
<td>The node is active (logged-on) in the IMSplex, as indicated in the RM structure (RM active).</td>
</tr>
<tr>
<td>RMOWNED</td>
<td>RMOWNED</td>
<td>GBL</td>
<td>The node is owned by an IMS system in the IMSplex, as indicated in the RM structure (RM owned).</td>
</tr>
<tr>
<td>SEC</td>
<td>SEC</td>
<td>GBL and LCL</td>
<td>This node is the secondary partner of an ISC session.</td>
</tr>
<tr>
<td>SHUT</td>
<td>SHUT</td>
<td>LCL</td>
<td>Normal processing has completed for the node and a VTAM shutdown-complete indicator was returned to IMS. The node can receive IMS output but cannot enter data while in this state.</td>
</tr>
<tr>
<td>SIGN</td>
<td>SIGN</td>
<td>GBL and LCL</td>
<td>The user is signed on to a node under enhanced security.</td>
</tr>
<tr>
<td>SIMLOGON</td>
<td>SIMLOGON</td>
<td>LCL</td>
<td>A logon to IMS has been simulated.</td>
</tr>
<tr>
<td>STATIC</td>
<td>STATIC</td>
<td>GBL and LCL</td>
<td>The node was defined during system definition.</td>
</tr>
<tr>
<td>STOLGN</td>
<td>STOLGN</td>
<td>GBL and LCL</td>
<td>Node was stopped from logging on by the UPDATE NODE STOP(LOGON) command.</td>
</tr>
<tr>
<td>TEST</td>
<td>TEST</td>
<td>LCL</td>
<td>The node is in test mode.</td>
</tr>
<tr>
<td>TKOTRA</td>
<td>TKOTRA</td>
<td>LCL</td>
<td>Node in an XRF session is to be traced only during takeover, to help diagnose XRF terminal switch problems.</td>
</tr>
<tr>
<td>TRACE</td>
<td>TRACE</td>
<td>GBL and LCL</td>
<td>Node is being traced.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

An IMS return and reason code is returned to OM by the QUERY NODE command. The OM return and reason codes that may be returned as a result of the QUERY NODE command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 133. Return and reason codes for the QUERY NODE command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The command completed successfully.</td>
</tr>
</tbody>
</table>
Table 133. Return and reason codes for the QUERY NODE command (continued)

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000004'</td>
<td>X'00001000'</td>
<td>The command was not processed on the IMS system as the IMS system is not the command master. No resource information is returned.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002014'</td>
<td>An invalid character was specified in the resource name.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002040'</td>
<td>An invalid parameter value was specified. An invalid SHOW or STATUS value might have been specified.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002133'</td>
<td>The NAME() keyword specified is either a generic name or multiple specific names, but the USER() keyword was also specified. When USER() is specified, only one NAME parameter is allowed.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003000'</td>
<td>The command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code. See Table 134 on page 361 for details.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>The command was not successful for any resource. The command output contains a line for each resource, accompanied by its completion code. See Table 134 on page 361 for details.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004004'</td>
<td>Command processing terminated because CQS was not active.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004005'</td>
<td>Command processing terminated because CQS was not connected to the queue structure.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000400C'</td>
<td>Command is not valid on the XRF alternate.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>Command is not valid on the RSR tracker.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004018'</td>
<td>Command processing terminated because the resource structure is not available.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000401C'</td>
<td>Command is not valid on the FDBR region.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004028'</td>
<td>Global queue counts were requested, but shared message queues are not enabled.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000403C'</td>
<td>VTAM generic resource affinity information was requested, but VGR is not enabled.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004104'</td>
<td>Command processing terminated because RM is not available.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004108'</td>
<td>Command processing terminated because SCI is not available.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005004'</td>
<td>A DFSOCMD response buffer could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005008'</td>
<td>DFSPOOL storage could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005100'</td>
<td>Command processing terminated because of an RM error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005104'</td>
<td>Command processing terminated because of a CQS error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005108'</td>
<td>Command processing terminated because of an SCI error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005FFF'</td>
<td>Command processing terminated because of an internal IMS error.</td>
</tr>
</tbody>
</table>
The following table includes an explanation of the completion codes. Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

**Table 134. Completion codes for the QUERY NODE command**

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The QUERY NODE command completed successfully for the resource.</td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>The resource name is unknown to the client that is processing the request. The resource name might have been typed in error or the resource might not be active at this time. If this is a wildcard request there were no matches for the name. Confirm that the correct spelling of the resource name is specified on the command.</td>
</tr>
<tr>
<td>98</td>
<td>CQS REQUEST ERROR</td>
<td>Global queue counts could not be obtained because of a CQS error.</td>
</tr>
<tr>
<td>1A1</td>
<td>Node resource is in error</td>
<td>The node resource was found in the resource structure and an associated resource was needed, but it was either not found or appeared to be in error. This is normally an error condition. However, it could be a temporary condition caused by terminal or command activity. The command should be retried.</td>
</tr>
</tbody>
</table>

**Examples**

The following are examples of the QUERY NODE command:

**Example 1 for QUERY NODE command**

TSO SPOC input:

```
QRY NODE NAME(NODE2*,XYZ) SHOW(LOCAL)
```

TSO SPOC output:

```
<table>
<thead>
<tr>
<th>Node</th>
<th>ISCUser</th>
<th>MbrName</th>
<th>CC</th>
<th>CCText</th>
</tr>
</thead>
<tbody>
<tr>
<td>NODE21</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE22</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE22</td>
<td>IMS2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE23</td>
<td>IMS2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE24</td>
<td>USER24A</td>
<td>IMS2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>NODE24</td>
<td>USER24B</td>
<td>IMS2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>NODE24</td>
<td>N/A</td>
<td>IMS2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>XYZ</td>
<td>IMS1</td>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td></td>
</tr>
<tr>
<td>XYZ</td>
<td>IMS2</td>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td></td>
</tr>
</tbody>
</table>
```

**Explanation:** There are two IMS systems in the IMSplex: IMS1 and IMS2. STM and shared queues are irrelevant because only local information is requested. IMS1, the command master, displays only local information because no global information is requested. IMS2 displays local information only.

- NODE21 exists on IMS1 only.
• NODE22 exists on IMS1 and IMS2.
• NODE23 exists on IMS2 only.
• NODE24 is an ISC node with 3 parallel sessions available on IMS2, two of which are allocated.
• XYZ does not exist on any system.

Example 2 for QUERY NODE command

TSO SPOC input:
QRY NODE NAME(NODE2*)

TSO SPOC output:

<table>
<thead>
<tr>
<th>Node</th>
<th>ISCUser</th>
<th>MbrName</th>
<th>CC</th>
<th>Gbl</th>
</tr>
</thead>
<tbody>
<tr>
<td>NODE21</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>NODE21</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE22</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE22</td>
<td>IMS2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE23</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>NODE23</td>
<td>IMS2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE24</td>
<td>USER24A</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
</tr>
<tr>
<td>NODE24</td>
<td>USER24B</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
</tr>
<tr>
<td>NODE24</td>
<td>N/A</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
</tr>
<tr>
<td>NODE24</td>
<td>USER24A</td>
<td>IMS2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>NODE24</td>
<td>USER24B</td>
<td>IMS2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>NODE24</td>
<td>N/A</td>
<td>IMS2</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Explanation: There are two IMS systems in the IMSplex: IMS1 and IMS2. RM is maintaining status (STM=YES). Shared queues are irrelevant because queue counts are not requested. IMS1, the command master, displays global and local information. IMS2 displays local information only.
• NODE21 exists on IMS1 and in the resource structure.
• NODE22 exists on IMS1 and IMS2 only.
• NODE23 exists on IMS2 and in the resource structure.
• NODE24 is an ISC node with 3 parallel sessions available on IMS2, two of which are allocated on IMS2 and in the resource structure. IMS1 also displays an output line for NODE24 with N/A as the ISC user, which represents any global status that the node might have (that is not tied to any particular parallel session).

Example 3 for QUERY NODE command

TSO SPOC input:
QRY NODE NAME(NODE2*) STATUS(STATIC) SHOW(LOCAL)

TSO SPOC output:

<table>
<thead>
<tr>
<th>Node</th>
<th>ISCUser</th>
<th>MbrName</th>
<th>CC</th>
<th>LclStat</th>
</tr>
</thead>
<tbody>
<tr>
<td>NODE21</td>
<td>IMS1</td>
<td>0</td>
<td>IDLE,CONVACT,CON,STATIC</td>
<td></td>
</tr>
<tr>
<td>NODE22</td>
<td>IMS1</td>
<td>0</td>
<td>IDLE,STATIC</td>
<td></td>
</tr>
<tr>
<td>NODE22</td>
<td>IMS2</td>
<td>0</td>
<td>IDLE,STATIC</td>
<td></td>
</tr>
<tr>
<td>NODE24</td>
<td>USER24A</td>
<td>IMS2</td>
<td>0</td>
<td>IDLE,CON,PRI,STATIC</td>
</tr>
<tr>
<td>NODE24</td>
<td>USER24B</td>
<td>IMS2</td>
<td>0</td>
<td>IDLE,CON,PRI,STATIC</td>
</tr>
<tr>
<td>NODE24</td>
<td>N/A</td>
<td>IMS2</td>
<td>0</td>
<td>IDLE,STATIC</td>
</tr>
</tbody>
</table>

Explanation: There are two IMS systems in the IMSplex: IMS1 and IMS2. RM is maintaining status (STM=YES). Shared queues are irrelevant because queue counts are not requested. IMS1, the command master, displays local information only.
because SHOW(LOCAL) is specified. IMS2 displays local information only. All static nodes are displayed, and status is displayed, because the STATUS filter was specified.

- **NODE21** exists on IMS1, is logged on, and has an active conversation.
- **NODE22** exists on IMS1 and IMS2.
- **NODE24** is an ISC node with 3 parallel sessions available on IMS2, two of which are allocated and are the primary partners.

**Example 4 for QUERY NODE command**

TSO SPOC input:

```plaintext
QRY NODE NAME(NODE21) SHOW(GLOBAL,CONV,LTERM,STATUS)
```

TSO SPOC output:

```
(screen 1)
Node MbrName CC Gbl Lterm ConvID ConvTran ConvStat
NODE21 IMS1 0 Y
NODE21 IMS1 0 Y LTERM21A
NODE21 IMS1 0 Y LTERM21B
NODE21 IMS1 0 Y
NODE21 IMS1 0 Y
NODE21 IMS1 0 Y

(scrolled right to screen 2)
Node MbrName Gbl Status
NODE21 IMS1 Y CONVACT,STATIC,RM,RMACTIVE,RMOWNED
NODE21 IMS1 Y
NODE21 IMS1 Y
NODE21 IMS1 Y
NODE21 IMS1 Y
```

**Explanation:** There are two IMS systems in the IMSplex: IMS1 and IMS2. RM is maintaining status (STM=YES). Shared queues are irrelevant because queue counts are not requested. IMS1, the command master, displays global information only. IMS2 ignores the command (RC=4, RSN=x1000) because only global information is requested.

**NODE21** exists in the resource structure. IMS1 displays a global line which shows that the node is active in the IMSplex, and has a conversation active. There are two logical terminals assigned to the node, and are displayed on separate output lines. There are three conversations associated with the node, and are displayed on separate output lines.

**Example 5 for QUERY NODE command**

**TSO SPOC input:**

```plaintext
QRY NODE NAME(NODE23) SHOW(CONV,STATUS,OWNER,RECOVERY)
```

**TSO SPOC output:**

```
(screen 1)
Node MbrName CC CCText Gbl Owner SRM Rcvy
NODE23 IMS1 0 Y IMS2 LCL CONV,FP
NODE23 IMS1 10 NO RESOURCES FOUND
NODE23 IMS2 0
NODE23 IMS2 0
NODE23 IMS2 0

(scrolled right to screen 2)
```
<table>
<thead>
<tr>
<th>Node</th>
<th>MbrName</th>
<th>Gbl</th>
<th>ConvID</th>
<th>ConvTran</th>
<th>ConvStat</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>NODE23</td>
<td>IMS1</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td>RM,RMACTIVE,RMOWNED</td>
</tr>
<tr>
<td>NODE23</td>
<td>IMS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE23</td>
<td>IMS2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE23</td>
<td>IMS2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*(scrolled right to screen 3)*

<table>
<thead>
<tr>
<th>Node</th>
<th>MbrName</th>
<th>Gbl</th>
<th>LSRM</th>
<th>LRcvy</th>
<th>LConvID</th>
<th>LConvTran</th>
<th>LConvStat</th>
</tr>
</thead>
<tbody>
<tr>
<td>NODE23</td>
<td>IMS1</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE23</td>
<td>IMS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE23</td>
<td>IMS2</td>
<td></td>
<td>LCL</td>
<td>CONV,FP</td>
<td>1 TRAN1A</td>
<td>CONVHELD</td>
<td></td>
</tr>
<tr>
<td>NODE23</td>
<td>IMS2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*(scrolled right to screen 4)*

<table>
<thead>
<tr>
<th>Node</th>
<th>MbrName</th>
<th>Gbl</th>
<th>LclStat</th>
</tr>
</thead>
<tbody>
<tr>
<td>NODE23</td>
<td>IMS1</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>NODE23</td>
<td>IMS1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE23</td>
<td>IMS2</td>
<td></td>
<td>IDLE,CONVACT,CON</td>
</tr>
<tr>
<td>NODE23</td>
<td>IMS2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE23</td>
<td>IMS2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Explanation:** There are two IMS systems in the IMSplex: IMS1 and IMS2. RM is maintaining status (STM=YES). Shared queues are irrelevant because queue counts are not requested. IMS1, the command master, displays global and local information. IMS2 displays local information.

NODE23 exists in IMS2 and in the resource structure. IMS1 displays a global line which shows the node is active and owned on IMS2, and its status recovery mode is LOCAL, which means conversation information is not known globally. IMS1 also displays a local line showing that NODE23 does not exist locally. IMS2 displays the local information, which includes one status line, and an additional output line for each conversation active or held locally.

**Example 6 for QUERY NODE command**

**TSO SPOC input:**

QRY NODE NAME(NODE23) SHOW(ALL)

**TSO SPOC output:**

*(screen 1)*

<table>
<thead>
<tr>
<th>Node</th>
<th>MbrName</th>
<th>CC</th>
<th>CCText</th>
<th>Gbl</th>
<th>QCnt</th>
<th>EMH QCnt</th>
<th>Type</th>
<th>Owner</th>
<th>SRM</th>
<th>Lc1</th>
<th>SNU</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>NODE23</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td>Y</td>
<td>0</td>
<td>0</td>
<td>SLU2</td>
<td>IMS2</td>
<td>LCL</td>
<td>CONV,FP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE23</td>
<td>IMS1</td>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE23</td>
<td>IMS2</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

*(scrolled right to screen 2)*

<table>
<thead>
<tr>
<th>Node</th>
<th>MbrName</th>
<th>Gbl</th>
<th>User</th>
<th>Userid</th>
<th>Affin</th>
<th>Version#</th>
<th>Version#</th>
<th>SNU</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>NODE23</td>
<td>IMS1</td>
<td>Y</td>
<td>USER23</td>
<td>UID23</td>
<td>IMS2</td>
<td>5</td>
<td>0</td>
<td>RM,RMACTIVE,RMOWNED</td>
<td></td>
</tr>
<tr>
<td>NODE23</td>
<td>IMS1</td>
<td></td>
<td></td>
<td></td>
<td>IMS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE23</td>
<td>IMS2</td>
<td></td>
<td></td>
<td></td>
<td>IMS2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE23</td>
<td>IMS2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*(scrolled right to screen 3)*

<table>
<thead>
<tr>
<th>Node</th>
<th>MbrName</th>
<th>Gbl</th>
<th>LQCnt</th>
<th>LType</th>
<th>CID</th>
<th>RecdCnt</th>
<th>SentCnt</th>
<th>Def Mdtbl</th>
<th>Act Mdtbl</th>
</tr>
</thead>
<tbody>
<tr>
<td>NODE23</td>
<td>IMS1</td>
<td>Y</td>
<td>0</td>
<td>SLU2</td>
<td>02000003</td>
<td>9</td>
<td>13 SLU2 MOD2</td>
<td>SLU2 MOD2</td>
<td></td>
</tr>
<tr>
<td>NODE23</td>
<td>IMS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE23</td>
<td>IMS2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE23</td>
<td>IMS2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*(scrolled right to screen 4)*

<table>
<thead>
<tr>
<th>Node</th>
<th>MbrName</th>
<th>Gbl</th>
<th>LSRM</th>
<th>LRcvy</th>
<th>LUser</th>
<th>LUserid</th>
<th>LVersion#</th>
<th>LVersion#</th>
<th>SNU</th>
<th>LclStat</th>
</tr>
</thead>
</table>

364 Commands, Volume 2: IMS Commands N - V
Explaination: There are two IMS systems in the IMSplex: IMS1 and IMS2. RM is maintaining status (STM=YES). Shared queues are active. IMS1, the command master, displays global and local information. IMS2 displays local information.

NODE23 exists in IMS2 and in the resource structure. IMS1 displays a global line which shows global queue counts and global status from the resource structure. Global status indicates that the node is active on IMS2, has a VGR affinity with IMS2, and its status recovery mode is LOCAL, which means conversation information is not known globally. IMS1 also displays a local line showing that NODE23 does not exist locally. IMS2 displays the local information, which shows that conversation status exists locally.

Example 7 for QUERY NODE command

TSO SPOC input:
QRY NODE NAME(DFSLN001,DFSLN002) SHOW(LOCAL,TYPE)

TSO SPOC output:

Node   Line  Pterm  MbrName  CC  LQCnt  LType  LclImsCon  CICSApplid
DFSLN001  1  1  IMS1  0  CONSOLE
DFSLN001  1  1  IMS2  0  CONSOLE
DFSLN002  2  1  IMS1  0  RDR/PTR
DFSLN002  2  1  IMS2  0  RDR/PTR

Explaination: There are two IMS systems in the IMSplex: IMS1 and IMS2. STM and shared queues are irrelevant because only local information is requested. IMS1, the command master, displays only local information because no global information is requested. IMS2 displays local information only.

DFSLN001 represents the system console, LINE 1 PTERM 1, on each system.
DFSLN002 represents a SYSOUT or SPOOL device, LINE 2 PTERM 1, on each system.

Example 8 for QUERY NODE command: ISC TCP/IP parallel session

Explaination: In the following example, TCP is shown in the LType column to indicate that node CICS is an ISC TCP/IP terminal. In the LclLogonD column, the ETO logon descriptor that was used to establish the current session is LU6TCP1. The local IMS Connect instance that is providing TCP/IP support is identified as HWS1 in the LCLimsCon column. Under the CICSApplid column, CICS1 is the APPLID of the remote CICS subsystem with which the ISC TCP/IP terminal is connected. The network ID, IMSNET, of the CICS subsystem that the ISC TCP/IP terminal is connected to is displayed under the CICSNetid column.

TSO SPOC input:
QUERY NODE NAME(CICS) SHOW(ALL)

TSO SPOC output:

(Screen 1)
Node   ISCUser  MbrName  CC  LQCnt  LType  LclImsCon  CICSApplid
CICS  IMSUS01  IMS1  0  0  TCP  HWS1  CICS1

(Screen 2)
Node   ISCUser  MbrName  CICSNetid  LclLogonD  RecdCnt  SentCnt  LSRM
CICS   IMSUS01   IMS1   IMSNET   LU6TCP1   0   0   LCL
(Screen 3)
Node ISCUser MbrName LRcvy LUser LID Lc1Stat
CICS   IMSUS01   IMS1   STSN   IMSUS01   IMSUS01   SIGN,IDLE,CON

Related concepts:
- How to interpret CSL request return and reason codes (System Programming APIs)

Related reference:
- /DISPLAY ASMT command (Commands)
- /DISPLAY CONV command (Commands)
- /DISPLAY NODE command (Commands)
- /DISPLAY STATUS command (Commands)
- /DISPLAY TRACE command (Commands)
- Command keywords and their synonyms (Commands)

QUERY ODBM commands

Use the QUERY ODBM commands to query information about Open Database Manager (ODBM), a component of the Common Service Layer (CSL).

Subsections:
- “QUERY ODBM TYPE(ALIAS) command”
- “QUERY ODBM TYPE(CONFIG) command” on page 369
- “QUERY ODBM TYPE(DATASTORE) command” on page 373
- “QUERY ODBM TYPE(SCIMEMBER) command” on page 378
- “QUERY ODBM TYPE(THREAD) command” on page 381
- “QUERY ODBM TYPE(TRACE) command” on page 388

QUERY ODBM TYPE(ALIAS) command

Use the QUERY ODBM TYPE(ALIAS) command to query information about Open Database Manager (ODBM) configuration.

Subsections:
- “Environment”
- “Syntax” on page 367
- “Keywords” on page 367
- “Usage notes” on page 367
- “Output fields” on page 367
- “Return, reason, and completion codes” on page 368
- “Examples” on page 369

Environment

The QUERY ODBM command is applicable only to the CSL Open Database Manager (ODBM). To issue this command, a CSL type-2 command environment must be enabled and an ODBM instance must be active.
Syntax

```
QUERY ODBM TYPE(ALIAS)
 NAME(*)
 NAME(alias_name)
SHOW(ALL)
```

Keywords

The following keywords are valid for the `QUERY ODBM TYPE(ALIAS)` command.

**NAME()**

Specifies the alias name of the IMS data store to be queried, as defined in the ALIAS substatement of the ODBM configuration statement in the CSLDCxxx configuration member. Wildcards (*) and %) can be specified for `alias_name`. The `alias_name` is a repeatable parameter. The default is NAME(*), which returns information about all aliases that are known to ODBM.

**SHOW()**

Specifies the ODBM TYPE(ALIAS) output fields to be returned. The parameters that are supported with the SHOW keyword are:

- **ALL**
  
  Returns all information about ODBM data store alias and its status.

Usage notes

You can issue this command only through the Operations Manager (OM) API.

The syntax for this command is defined in XML and is available to automation programs that communicate with OM.

Output fields

**Short label**

Contains the short label that is generated in the XML output.

**Long label**

Contains the long label generated in the XML output.

**Keyword**

Identifies keyword on the command that caused the field to be generated. `error` appears for output fields that can appear for a nonzero completion code. N/A (not applicable) appears for output fields that are always returned.

**Meaning**

Provides a brief description of the output field.

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALCSTT</td>
<td>AliasStatus</td>
<td>N/A</td>
<td>Alias connection status. Status can be either STARTED or STOPPED.</td>
</tr>
</tbody>
</table>

---

Chapter 5. QUERY commands 367
Table 135. Output field descriptions for the QUERY ODBM TYPE(ALIAS) command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALIAS</td>
<td>AliasName</td>
<td>N/A</td>
<td>Alias name.</td>
</tr>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the nonzero completion code.</td>
</tr>
<tr>
<td>DSCSTT</td>
<td>DatastoreStatus</td>
<td>N/A</td>
<td>Connection status of the data store associated with the alias.</td>
</tr>
<tr>
<td>DSTR</td>
<td>DatastoreName</td>
<td>N/A</td>
<td>Data store name for the alias.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>Name of the ODBM member that processed the command.</td>
</tr>
<tr>
<td>THDCT</td>
<td>ThreadCount</td>
<td>N/A</td>
<td>Count of threads that are associated with the alias.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The return and reason codes that can be returned as a result of the QUERY ODBM TYPE(ALIAS) command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 136. Return and reason codes for the QUERY ODBM TYPE(ALIAS) command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The QUERY ODBM TYPE(ALIAS) command completed successfully.</td>
</tr>
<tr>
<td>X'40000008'</td>
<td>X'00002004'</td>
<td>Invalid command keyword or invalid command keyword combination.</td>
</tr>
<tr>
<td>X'40000008'</td>
<td>X'00002008'</td>
<td>Insufficient number of keywords.</td>
</tr>
<tr>
<td>X'40000008'</td>
<td>X'00002014'</td>
<td>Invalid character in resource name.</td>
</tr>
<tr>
<td>X'40000008'</td>
<td>X'0000203C'</td>
<td>Invalid parameter specified.</td>
</tr>
<tr>
<td>X'4000000C'</td>
<td>X'00003000'</td>
<td>At least one request was successful.</td>
</tr>
<tr>
<td>X'4000000C'</td>
<td>X'00003004'</td>
<td>No requests were successful.</td>
</tr>
<tr>
<td>X'40000014'</td>
<td>X'00005034'</td>
<td>An OM response buffer request failed.</td>
</tr>
<tr>
<td>X'40000014'</td>
<td>X'00005038'</td>
<td>A CSLDCMD0 GETBUF request failed to get a command buffer.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

Table 137. Completion codes for the QUERY ODBM TYPE(ALIAS) command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The QUERY ODBM TYPE(ALIAS) command completed successfully.</td>
</tr>
</tbody>
</table>
Table 137. Completion codes for the QUERY ODBM TYPE(ALIAS) command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INVALID CHARACTER, RESOURCE NAME</td>
<td>The resource name in the command input has invalid characters.</td>
</tr>
<tr>
<td>2</td>
<td>PARAMETER SPECIFIED TOO LONG</td>
<td>The NAME() parameter specified is longer than the valid alias name length of 4 characters.</td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>No resources were found.</td>
</tr>
</tbody>
</table>

Examples

Example 1 for QUERY ODBM TYPE(ALIAS) command

TSO SPOC input:  
QRY ODBM TYPE(ALIAS) NAME(*) SHOW(ALL)

TSO SPOC output:

Mbrname	AliasName	CC	AliasStatus	ThreadCount	DatastoreName	DatastoreStatus	
---------	-----------	----	-------------	-------------	---------------	----------------	
ODBM010D	IO1A	0	STARTED	5	IMS1	STARTED	
ODBM010D	IO1B	0	STOPPED	0	IMS1	STARTED	
ODBM010D	IO2A	0	STARTED	10	IMS2	STARTED	
ODBM010D	IO2B	0	STARTED	0	IMS2	STARTED	
ODBM020D	IO3A	0	STOPPED	0	IMS3	STOPPED	
ODBM020D	IO3B	0	STARTED	0	IMS3	STOPPED	

Explanation: The QUERY command displays alias information for all aliases that are known to ODBM.

QUERY ODBM TYPE(CONFIG) command

Use the QUERY ODBM TYPE(CONFIG) command to query information about Open Database Manager (ODBM) configuration.

Subsections:

- “Environment”
- “Syntax” on page 370
- “Keywords” on page 370
- “Usage notes” on page 371
- “Output fields” on page 371
- “Return, reason, and completion codes” on page 372
- “Examples” on page 372

Environment

The QUERY ODBM command is applicable only to the CSL Open Database Manager (ODBM). To issue this command, a CSL type-2 command environment must be enabled and an ODBM instance must be active.
**Syntax**

```
```

**Keywords**

The following keywords are valid for the QUERY ODBM TYPE(CONFIG) command.

**SHOW()**

Specifies the ODBM TYPE(CONFIG) output fields to be returned. The parameters supported with the SHOW keyword are:

- **ALL**
  Returns all information about the CSLDCxxx configuration member in PROCLIB.

- **ALIAS**
  Returns alias names for the data store, which are used by Open Database applications to access IMS data stores.

- **TIMER**
  Returns the amount of time (in seconds) between attempts by ODBM to establish a connection to an IMS data store. The value can be a number between 1–99.

- **IDRETRY**
  Returns the number of times ODBM will attempt to connect (identify) to an IMS data store after the initial attempt is unsuccessful. The value can be a number between 0–255.

- **FPBUF**
  Returns the number of Fast Path DEDB buffers to be allocated and fixed per thread. The value can be a number between 00–999.

- **FPBOF**
  Returns the number of Fast Path DEDB overflow buffers to be allocated per thread. The value can be a number between 00–999.

- **CNBA**
  Returns the total number of Fast Path NBA buffers for ODBM use. The value can be a number between 0–9999.

- **MAXTHRDS**
  Returns the maximum number of concurrent active threads to an individual IMS data store. The value can be a number between 1–999.

- **SOD**
  Returns the SYSOUT class of the SNAP dumps produced by the ODBM address space. The value returned is a single alphanumeric character.
Usage notes

You can issue this command only through the Operations Manager (OM) API.

The syntax for this command is defined in XML and is available to automation programs that communicate with OM.

Output fields

Short label
Contains the short label that is generated in the XML output.

Long label
Contains the long label generated in the XML output.

Keyword
Identifies keyword on the command that caused the field to be generated. error appears for output fields that can appear for a nonzero completion code. N/A (not applicable) appears for output fields that are always returned.

Meaning
Provides a brief description of the output field.

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the non-zero completion code.</td>
</tr>
<tr>
<td>CNBA</td>
<td>CNBA</td>
<td>CNBA</td>
<td>CNBA value for a data store connection.</td>
</tr>
<tr>
<td>CNFG</td>
<td>ConfigName</td>
<td>N/A</td>
<td>CSLDCxxx PROCLIB member name.</td>
</tr>
<tr>
<td>DSTR</td>
<td>DatastoreName</td>
<td>N/A</td>
<td>Data store name.</td>
</tr>
<tr>
<td>FPBOF</td>
<td>FPBOF</td>
<td>FPBOF</td>
<td>FPBOF value for a data store connection.</td>
</tr>
<tr>
<td>FPBUF</td>
<td>FPBUF</td>
<td>FPBUF</td>
<td>FPBUF value for a data store connection.</td>
</tr>
<tr>
<td>GBL</td>
<td>Global</td>
<td>N/A</td>
<td>Y or N value will be presented.</td>
</tr>
</tbody>
</table>

Y indicates information is from the Global section in the CSLDCxxx configuration member.

N indicates information is from the Local section in the CSLDCxxx configuration member.

IRTRY	IdRetry	IDRETRY	IDRETRY value of a data store connection.
MALIAS	Aliases	ALIAS	The alias names associated with an IMS data store connection.
MBR	MbrName	N/A	Name of the ODBM member that processed the command.
MXTHD	MaxThrs	MAXTHRDS	MAXTHRD parameter value.
SOD	SOD	SOD	SYSOUT class of ODBM snap dumps.
TIMER	Timer	TIMER	TIMER parameter value for a data store connection.
Return, reason, and completion codes

The return and reason codes that can be returned as a result of the QUERY ODBM TYPE(CONFIG) command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 139. Return and reason codes for the QUERY ODBM TYPE(CONFIG) command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The QUERY ODBM TYPE(CONFIG) command completed successfully.</td>
</tr>
<tr>
<td>X'04000008'</td>
<td>X'00002004'</td>
<td>Invalid command keyword or invalid command keyword combination.</td>
</tr>
<tr>
<td>X'04000008'</td>
<td>X'00002008'</td>
<td>Insufficient number of keywords.</td>
</tr>
<tr>
<td>X'04000008'</td>
<td>X'00002014'</td>
<td>Invalid character in resource name.</td>
</tr>
<tr>
<td>X'04000008'</td>
<td>X'0000203C'</td>
<td>Invalid parameter specified.</td>
</tr>
<tr>
<td>X'0400000C'</td>
<td>X'00003000'</td>
<td>At least one request was successful.</td>
</tr>
<tr>
<td>X'0400000C'</td>
<td>X'00003004'</td>
<td>No requests were successful.</td>
</tr>
<tr>
<td>X'04000014'</td>
<td>X'00005034'</td>
<td>An OM response buffer request failed.</td>
</tr>
<tr>
<td>X'04000014'</td>
<td>X'00005038'</td>
<td>A CSLDCMD0 GETBUF request failed to get a command buffer.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

Table 140. Completion codes for the QUERY ODBM TYPE(CONFIG) command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The QUERY ODBM TYPE(CONFIG) command completed successfully.</td>
</tr>
<tr>
<td>1</td>
<td>INVALID CHARACTER, RESOURCE NAME</td>
<td>The resource name in the command input has invalid characters.</td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES</td>
<td>No resources were found.</td>
</tr>
</tbody>
</table>

Examples

Example 1 for QUERY ODBM TYPE(CONFIG) command

TSO SPOC input:
QRY ODBM TYPE(CONFIG) SHOW(ALL)

TSO SPOC output:

<table>
<thead>
<tr>
<th>MbrName</th>
<th>ConfigName</th>
<th>Global</th>
<th>DatastoreName</th>
<th>CC</th>
<th>FPBUF</th>
<th>FPBOF</th>
<th>CNBA</th>
<th>MaxThrds</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODBM0100</td>
<td>CSLDC000</td>
<td>Y</td>
<td></td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>ODBM0100</td>
<td>CSLDC000</td>
<td>N</td>
<td>IMS1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>ODBM0100</td>
<td>CSLDC000</td>
<td>N</td>
<td>IMS2</td>
<td>0</td>
<td>50</td>
<td>50</td>
<td>500</td>
<td>5</td>
</tr>
</tbody>
</table>
Explanation: The QUERY command will display all SHOW parameter values for the CSLDCxxx configuration members.

Example 2 for QUERY ODBM TYPE(CONFIG) command

TSO SPOC input:
QRY ODBM TYPE(CONFIG) SHOW(ALIAS,CNBA)

TSO SPOC output:

<table>
<thead>
<tr>
<th>MbrName</th>
<th>ConfigName</th>
<th>Global DatastoreName</th>
<th>CC</th>
<th>CNBA</th>
<th>Aliases</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODBM01OD</td>
<td>CSLDC000</td>
<td>Y</td>
<td>0</td>
<td>0</td>
<td>I01A, I01B</td>
</tr>
<tr>
<td>ODBM01OD</td>
<td>CSLDC000</td>
<td>N</td>
<td>IMS1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ODBM01OD</td>
<td>CSLDC000</td>
<td>N</td>
<td>IMS1</td>
<td>0</td>
<td>500</td>
</tr>
<tr>
<td>ODBM02OD</td>
<td>CSLDC000</td>
<td>Y</td>
<td>0</td>
<td>100</td>
<td>I03A, I03B</td>
</tr>
<tr>
<td>ODBM02OD</td>
<td>CSLDC000</td>
<td>N</td>
<td>IMS3</td>
<td>0</td>
<td>200</td>
</tr>
</tbody>
</table>

Explanation: The QUERY command will display information about alias names for the data store and the total number of Fast Path NBA buffers for ODBM use.

Example 3 for QUERY ODBM TYPE(CONFIG) command

TSO SPOC input:
QRY ODBM TYPE(CONFIG)

TSO SPOC output:

<table>
<thead>
<tr>
<th>MbrName</th>
<th>ConfigName</th>
<th>Global DatastoreName</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODBM01OD</td>
<td>CSLDC000</td>
<td>Y</td>
<td>0</td>
</tr>
<tr>
<td>ODBM01OD</td>
<td>CSLDC000</td>
<td>N</td>
<td>IMS1</td>
</tr>
<tr>
<td>ODBM01OD</td>
<td>CSLDC000</td>
<td>N</td>
<td>IMS1</td>
</tr>
<tr>
<td>ODBM01OD</td>
<td>CSLDC000</td>
<td>N</td>
<td>IMS1</td>
</tr>
<tr>
<td>ODBM02OD</td>
<td>CSLDC000</td>
<td>Y</td>
<td>0</td>
</tr>
<tr>
<td>ODBM02OD</td>
<td>CSLDC000</td>
<td>N</td>
<td>IMS3</td>
</tr>
</tbody>
</table>

Explanation: The QUERY command will display information about Open Database Manager (ODBM) configuration.

QUERY ODBM TYPE(DATASTORE) command

Use the QUERY ODBM TYPE(DATASTORE) command to query information about an IMS data store and its associated resources.

Subsections:
- "Environment” on page 374
- "Syntax” on page 374
- "Keywords” on page 374
- "Usage notes” on page 375
Environment

The QUERY ODBM command is applicable only to the CSL Open Database Manager (ODBM). To issue this command, a CSL type-2 command environment must be enabled and an ODBM instance must be active.

Syntax

```
QUERY ODBM TYPE(DATASTORE) NAME(*)
```

```
SHOW(ALL, ALIAS, TIMER, IDRETRY, FPBUF, FPBOF, CNBA, MAXTHRDS)
```

Keywords

The following keywords are valid for the QUERY ODBM TYPE(DATASTORE) command.

**NAME()**

Specifies the name of the data store to be displayed. Wildcards (*) and %) can be specified for *datastore_name*. The *datastore_name* is a repeatable parameter. The default is NAME(*), which returns information about all data stores that are known to ODBM.

**SHOW()**

Specifies the ODBM TYPE(DATASTORE) output fields to be returned. One or more parameters can be specified. The parameters supported with the SHOW keyword are:

- **ALL**
  
  Returns all information about the specified IMS data store.

- **ALIAS**

  Returns alias names for the IMS data store. Client application programs identify the IMS data store that they are accessing by the alias name.

- **TIMER**

  Returns the amount of time (in seconds) between attempts by ODBM to establish a connection to an IMS data store. The value can be a number between 1–99.
**IDRETRY**
Returns the number of times ODBM will attempt to connect (identify) to an IMS data store after the initial attempt is unsuccessful. The value can be a number between 0–255.

**FPBUF**
Returns the number of Fast Path DEDB buffers to be allocated and fixed per thread. The value can be a number between 00–999.

**FPBOF**
Returns the number of Fast Path DEDB overflow buffers to be allocated per thread. The value can be a number between 00–999.

**CNBA**
Returns the total number of Fast Path NBA buffers for ODBM use. CNBA pertains to each ODBM-to-IMS connection. The value can be a number between 0–9999.

**MAXTHRDS**
Returns the maximum number of concurrent active threads to an individual IMS data store. The value can be a number between 1–999.

**Usage notes**

You can issue this command only through the Operations Manager (OM) API.

The syntax for this command is defined in XML and is available to automation programs that communicate with OM.

**Output fields**

**Short label**
Contains the short label that is generated in the XML output.

**Long label**
Contains the long label generated in the XML output.

**Keyword**
Identifies keyword on the command that caused the field to be generated. `error` appears for output fields that can appear for a nonzero completion code. N/A (not applicable) appears for output fields that are always returned.

**Meaning**
Provides a brief description of the output field.

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the nonzero completion code.</td>
</tr>
<tr>
<td>CNBA</td>
<td>CNBA</td>
<td>CNBA</td>
<td>CNBA value in use for the data store connection.</td>
</tr>
<tr>
<td>DSCSTT</td>
<td>ConnectionStatus</td>
<td>N/A</td>
<td>Data store connection status.</td>
</tr>
<tr>
<td>DSTR</td>
<td>DatastoreName</td>
<td>N/A</td>
<td>Data store name.</td>
</tr>
<tr>
<td>FPBOF</td>
<td>FPBOF</td>
<td>FPBOF</td>
<td>FPBOF value for the data store connection.</td>
</tr>
</tbody>
</table>
Table 141. Output field descriptions for the QUERY ODBM TYPE(DATASTORE) command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPBUF</td>
<td>FPBUF</td>
<td>FPBUF</td>
<td>FPBUF value for the data store connection.</td>
</tr>
<tr>
<td>IRTRY</td>
<td>IdRetry</td>
<td>IDRETRY</td>
<td>IDRETRY value of the data store connection.</td>
</tr>
<tr>
<td>MALIAS</td>
<td>Aliases</td>
<td>ALIAS</td>
<td>The alias names associated with the IMS data store connection.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>Name of the ODBM member that processed the command.</td>
</tr>
<tr>
<td>MXTHD</td>
<td>MaxThrds</td>
<td>MAXTHRDS</td>
<td>MAXTHRD parameter value.</td>
</tr>
<tr>
<td>THDCT</td>
<td>ThreadCount</td>
<td>N/A</td>
<td>Count of threads associated to the data store connection.</td>
</tr>
<tr>
<td>TIMER</td>
<td>Timer</td>
<td>TIMER</td>
<td>TIMER parameter value for the data store connection.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The return and reason codes that can be returned as a result of the QUERY ODBM TYPE(DATASTORE) command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 142. Return and reason codes for the QUERY ODBM TYPE(DATASTORE) command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X’00000000’</td>
<td>X’00000000’</td>
<td>The QUERY ODBM TYPE(DATASTORE) command completed successfully.</td>
</tr>
<tr>
<td>X’04000008’</td>
<td>X’00002004’</td>
<td>Invalid command keyword or invalid command keyword combination.</td>
</tr>
<tr>
<td>X’04000008’</td>
<td>X’00002008’</td>
<td>Insufficient number of keywords.</td>
</tr>
<tr>
<td>X’04000008’</td>
<td>X’00002014’</td>
<td>Invalid character in resource name.</td>
</tr>
<tr>
<td>X’04000008’</td>
<td>X’0000203C’</td>
<td>Invalid parameter specified.</td>
</tr>
<tr>
<td>X’0400000C’</td>
<td>X’00003000’</td>
<td>At least one request was successful.</td>
</tr>
<tr>
<td>X’0400000C’</td>
<td>X’00003004’</td>
<td>No requests were successful.</td>
</tr>
<tr>
<td>X’04000014’</td>
<td>X’00005034’</td>
<td>An OM response buffer request failed.</td>
</tr>
<tr>
<td>X’04000014’</td>
<td>X’00005038’</td>
<td>A CSLDCMD0 GETBUF request failed to get a command buffer.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.
Table 143. Completion codes for the QUERY ODBM TYPE(DATASTORE) command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The QUERY ODBM TYPE(DATASTORE) command completed successfully.</td>
</tr>
<tr>
<td>1</td>
<td>INVALID CHARACTER, RESOURCE NAME</td>
<td>The resource name in the command input has invalid characters.</td>
</tr>
<tr>
<td>2</td>
<td>PARAMETER SPECIFIED TOO LONG</td>
<td>The NAME() parameter specified is longer than the valid data store name length of 8 characters.</td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>No resources were found.</td>
</tr>
</tbody>
</table>

Examples

Example 1 for QUERY ODBM TYPE(DATASTORE) command

TSO SPOC input:
QRY ODBM TYPE(DATASTORE) NAME(IMS*) SHOW(ALL)

TSO SPOC output:

<table>
<thead>
<tr>
<th>MbrName</th>
<th>DatastoreName</th>
<th>CC</th>
<th>ConnectionStatus</th>
<th>ThreadCount</th>
<th>FPBUF</th>
<th>FPBOF</th>
<th>CNBA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODBM010D</td>
<td>IMS1</td>
<td>0</td>
<td>STARTED</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODBM010D</td>
<td>IMS2</td>
<td>0</td>
<td>STOPPED</td>
<td>0</td>
<td>50</td>
<td>50</td>
<td>500</td>
</tr>
<tr>
<td>ODBM020D</td>
<td>IMS3</td>
<td>0</td>
<td>STARTED</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>200</td>
</tr>
</tbody>
</table>

(continued)

<table>
<thead>
<tr>
<th>MaxThrds</th>
<th>IORETRY</th>
<th>TIMER</th>
<th>Aliases</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>5</td>
<td>30</td>
<td>101A,101B</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>30</td>
<td>102A,102B</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>30</td>
<td>103A,103B</td>
</tr>
</tbody>
</table>

Explanation: The QUERY command will display all information about the data stores whose name begin with IMS.

Example 2 for QUERY ODBM TYPE(DATASTORE) command

TSO SPOC input:
QRY ODBM TYPE(DATASTORE) NAME(IMS*) SHOW(ALIAS,MAXTHRDS)

TSO SPOC output:

<table>
<thead>
<tr>
<th>MbrName</th>
<th>DatastoreName</th>
<th>CC</th>
<th>ConnectionStatus</th>
<th>ThreadCount</th>
<th>MaxThrds</th>
<th>Aliases</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODBM010D</td>
<td>IMS1</td>
<td>0</td>
<td>STARTED</td>
<td>5</td>
<td>10</td>
<td>101A,101B</td>
</tr>
<tr>
<td>ODBM010D</td>
<td>IMS2</td>
<td>0</td>
<td>STOPPED</td>
<td>0</td>
<td>5</td>
<td>102A,102B</td>
</tr>
<tr>
<td>ODBM020D</td>
<td>IMS3</td>
<td>0</td>
<td>STARTED</td>
<td>10</td>
<td>10</td>
<td>103A,103B</td>
</tr>
</tbody>
</table>

Explanation: The QUERY command will display information about alias names for the data store and the maximum number of concurrent active threads to an individual IMS data store.

Example 3 for QUERY ODBM TYPE(DATASTORE) command
TSO SPOC input:

QRY ODBM TYPE(DATASTORE) NAME(IMS*)

TSO SPOC output:

<table>
<thead>
<tr>
<th>MbrName</th>
<th>DatastoreName</th>
<th>CC</th>
<th>ConnectionStatus</th>
<th>ThreadCount</th>
<th>Aliases</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODBM01OD</td>
<td>IMS1</td>
<td>0</td>
<td>STARTED</td>
<td>5</td>
<td>I01A,I01B</td>
</tr>
<tr>
<td>ODBM01OD</td>
<td>IMS2</td>
<td>0</td>
<td>STOPPED</td>
<td>0</td>
<td>I02A,I02B</td>
</tr>
<tr>
<td>ODBM02OD</td>
<td>IMS3</td>
<td>0</td>
<td>STARTED</td>
<td>10</td>
<td>I03A,I03B</td>
</tr>
</tbody>
</table>

Explanation: The QUERY command will display information about data store connection status, thread count, and alias names for the data store.

**QUERY ODBM TYPE(SCIMEMBER) command**

Use the QUERY ODBM TYPE(SCIMEMBER) command to query information about an Open Database Manager (ODBM) client.

Subsections:
- “Environment”
- “Syntax”
- “Keywords”
- “Usage notes” on page 379
- “Output fields” on page 379
- “Return, reason, and completion codes” on page 379
- “Examples” on page 380

**Environment**

The QUERY ODBM command is applicable only to the CSL Open Database Manager (ODBM). To issue this command, a CSL type-2 command environment must be enabled and an ODBM instance must be active.

**Syntax**

```
QUERY ODBM TYPE(SCIMEMBER) NAME(*) SHOW(ALL)
```

**Keywords**

The following keywords are valid for the QUERY ODBM TYPE(SCIMEMBER) command.

- **NAME()**
  Specifies the name of the ODBM client to be displayed. Wildcards (*) and (%) can be specified for scimember_name. The scimember_name is a repeatable parameter. The default is NAME(*), which returns information about all SCI member names that are known to ODBM.
SHOW()

Specifies the ODBM TYPE(SCIMEMBER) output fields to be returned. One or more parameters can be specified. The parameters supported with the SHOW keyword are:

ALL

Returns all information about the ODBM clients that have the specified SCI member names.

Usage notes

You can issue this command only through the Operations Manager (OM) API.

The syntax for this command is defined in XML and is available to automation programs that communicate with OM.

Output fields

Short label

Contains the short label that is generated in the XML output.

Long label

Contains the long label generated in the XML output.

Keyword

Identifies keyword on the command that caused the field to be generated. error appears for output fields that can appear for a nonzero completion code. N/A (not applicable) appears for output fields that are always returned.

Meaning

Provides a brief description of the output field.

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the nonzero completion code.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>Name of the ODBM member that processed the command.</td>
</tr>
<tr>
<td>SCMBR</td>
<td>SCIMbrName</td>
<td>N/A</td>
<td>The SCI member name of the client that is connected to ODBM.</td>
</tr>
<tr>
<td>THDCT</td>
<td>ThreadCount</td>
<td>N/A</td>
<td>Count of threads that are associated with the SCI member.</td>
</tr>
<tr>
<td>TYPE</td>
<td>Type</td>
<td>N/A</td>
<td>SCI member type of the client that is connected to ODBM.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The return and reason codes that can be returned as a result of the QUERY ODBM TYPE(SCIMEMBER) command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.
Table 145. Return and reason codes for the QUERY ODBM TYPE(SCIMEMBER) command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The QUERY ODBM TYPE(SCIMEMBER) command completed successfully.</td>
</tr>
<tr>
<td>X'04000008'</td>
<td>X'00002004'</td>
<td>Invalid command keyword or invalid command keyword combination.</td>
</tr>
<tr>
<td>X'04000008'</td>
<td>X'00002008'</td>
<td>Insufficient number of keywords.</td>
</tr>
<tr>
<td>X'04000008'</td>
<td>X'00002014'</td>
<td>Invalid character in resource name.</td>
</tr>
<tr>
<td>X'04000008'</td>
<td>X'0000203C'</td>
<td>Invalid parameter specified.</td>
</tr>
<tr>
<td>X'0400000C'</td>
<td>X'00003000'</td>
<td>At least one request was successful.</td>
</tr>
<tr>
<td>X'0400000C'</td>
<td>X'00003004'</td>
<td>No requests were successful.</td>
</tr>
<tr>
<td>X'04000014'</td>
<td>X'00005034'</td>
<td>An OM response buffer request failed.</td>
</tr>
<tr>
<td>X'04000014'</td>
<td>X'00005038'</td>
<td>A CSLDCMD0 GETBUF request failed to get a command buffer.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

Table 146. Completion codes for the QUERY ODBM TYPE(SCIMEMBER) command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The QUERY ODBM TYPE(SCIMEMBER) command completed successfully.</td>
</tr>
<tr>
<td>1</td>
<td>INVALID CHARACTER, RESOURCE NAME</td>
<td>The resource name in the command input has invalid characters.</td>
</tr>
<tr>
<td>2</td>
<td>PARAMETER SPECIFIED TOO LONG</td>
<td>The NAME() parameter specified is longer than the valid ODBM client name length of 8 characters.</td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>No resources were found.</td>
</tr>
</tbody>
</table>

Examples

Example 1 for QUERY ODBM TYPE(SCIMEMBER) command

TSO SPOC input:
QRY ODBM TYPE(SCIMEMBER) NAME(HWS*) SHOW(ALL)

TSO SPOC output:

<table>
<thead>
<tr>
<th>MbrName</th>
<th>SCIMbrName</th>
<th>CC</th>
<th>Type</th>
<th>ThreadCount</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODBM010D</td>
<td>HWS1</td>
<td>0</td>
<td>IMSCON</td>
<td>21</td>
</tr>
<tr>
<td>ODBM010D</td>
<td>HWS2</td>
<td>0</td>
<td>IMSCON</td>
<td>5</td>
</tr>
</tbody>
</table>

Explanation: The QUERY command will display ODBM client information about SCI members whose names begin with HWS.
QUERY ODBM TYPE(THREAD) command

Use the QUERY ODBM TYPE(THREAD) command to query information about an Open Database Manager (ODBM) thread and its associated resources.

Subsections:
- “Environment”
- “Syntax”
- “Keywords” on page 382
- “Usage notes” on page 384
- “Output fields” on page 384
- “Return, reason, and completion codes” on page 385
- “Examples” on page 386

Environment

The QUERY ODBM command is applicable only to the CSL Open Database Manager (ODBM). To issue this command, a CSL type-2 command environment must be enabled and an ODBM instance must be active.

Syntax
Keywords

The following keywords are valid for the QUERY ODBM TYPE(THREAD) command.

**ALIAS(alias_name)**

Specifies the 1–4 character alias name of the data store to be used as a filter. Thread information is returned if the *thread_id* is associated with the specified alias_name.

Wildcards (* and %) can be specified for the alias_name. The alias_name is a reusable parameter. The default is ALIAS(*), which returns thread information for the specified thread_id regardless of alias affiliation.

**DATASTORE(datastore_name)**

Specifies the 1–8 character name of the data store to be used as a filter. Thread information is returned if the specified *thread_id* is associated with the datastore_name specified.

Wildcards can be specified for the datastore_name. The datastore_name is a reusable parameter. The default is DATASTORE(*), which returns thread information for the specified thread_id regardless of data store affiliation.

**NAME(thread_id)**

Specifies the thread ID of the ODBM thread you want to be displayed. Wildcards (* and %) can be specified for the thread_id. The thread_id is a reusable parameter. The default is NAME(*), which returns information about all threads that are known to ODBM. The length of each thread ID can be up to 32 characters.

**PSB(psb_name)**

Specifies the 1–8 character name of the PSB to be used as a filter. Thread information is returned if the specified *thread_id* is associated with the psb_name specified.

Wildcards (* and %) can be specified for the psb_name. The psb_name is a reusable parameter. The default is PSB(*), which returns thread information for the specified thread_id regardless of PSB affiliation.

**SCIMEMBER(scimember_name)**

Specifies the 1–8 character name of the client connected to ODBM to be used as a filter. Thread information is returned if the *thread_id* is associated with the scimember_name specified.

Wildcards (* and %) can be specified for the scimember_name. The scimember_name is a reusable parameter. The default is SCIMEMBER(*), which returns thread information for the specified thread_id regardless of ODBM client affiliation.

**Note:** If the SCIMEMBER keyword is specified for the QRY ODBM TYPE(THREAD) command, ODBM client names will be included in the command output even if SHOW(SCIMEMBER) is not specified.

**STATUS()**

Allows for filtering on the QUERY ODBM TYPE(THREAD) command by the status of the thread. The following parameters can be specified:
**ALL**
Displays information about threads of any of the following status. STATUS(ALL) is the default.
- ACTIVE - The thread is active and is not in any of the following states.
- INPREPARE
- INCOMMIT
- INBACKOUT
- INDOUBT
- INTERM
- INABTERM

**INDOUBT**
Displays only threads with an INDOUBT status.

**SHOW()**
Specifies the ODBM TYPE(THREAD) output fields to be returned. One or more parameters can be specified. The parameters supported with the SHOW keyword are:

**ALL**
Returns all information about the ODBM thread.

**ACTIVETIME**
ACTIVETIME is defined as the time spent in a data store. Specifying SHOW(ACTIVETIME) returns the elapsed time from the time the data store is entered to the time that the QUERY command is issued. This value is not cumulative; if processing is not in a data store when the command is issued, a zero value will be returned in the ACTIVETIME column.

The format of ACTIVETIME is:
HH:MM:SS.th

If ACTIVETIME exceeds 24 hours, the ACTIVETIME column will display:
24+ HOURS

**APPLCLIENTID**
Returns the ID of the application client that originated the IMS data store connection request.

**IDLETIME**
IDLETIME is defined as the time not in a data store. Specifying SHOW(IDLETIME) returns the elapsed time between returning from data store processing and the time that the QUERY command was issued. This value is not cumulative; if processing is in a data store when the command is issued, a zero value will be returned in the IDLETIME column.

The format of IDLETIME is:
HH:MM:SS.th

If IDLETIME exceeds 24 hours, the IDLETIME column will display:
24+ HOURS

**PSB**
Returns the name of the PSB being used by the thread.

**SCIMEMBER**
Returns the name of the ODBM client that is associated with the thread.

**STARTTIME**
Returns the time that the thread started. STARTTIME is UTC and is formatted as follows:
DDD-YYYY HH:MM:SS.thmiju
TIME

Returns the three time values: STARTTIME, IDLETIME, and ACTIVETIME.

URID

Returns the UR identifier that is associated with the thread.

USERID

Returns the user ID associated with the thread.

**Usage notes**

You can issue this command only through the Operations Manager (OM) API.

The syntax for this command is defined in XML and is available to automation programs that communicate with OM.

**Output fields**

**Short label**
Contains the short label that is generated in the XML output.

**Long label**
Contains the long label generated in the XML output.

**Keyword**
Identifies keyword on the command that caused the field to be generated. *error* appears for output fields that can appear for a nonzero completion code. N/A (not applicable) appears for output fields that are always returned.

**Meaning**
Provides a brief description of the output field.

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACID</td>
<td>ApplClientID</td>
<td>APPLCLIENTID</td>
<td>The ID of the application client that originated the IMS data store connection request.</td>
</tr>
<tr>
<td>ATIME</td>
<td>ActiveTime</td>
<td>ACTIVETIME or TIME</td>
<td>Elapsed time that the thread has been processing in a data store.</td>
</tr>
<tr>
<td>ALIAS</td>
<td>AliasName</td>
<td>N/A</td>
<td>The alias name associated with the thread.</td>
</tr>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the nonzero completion code.</td>
</tr>
<tr>
<td>DSTR</td>
<td>DatastoreName</td>
<td>N/A</td>
<td>Data store name associated with the thread.</td>
</tr>
<tr>
<td>ITIME</td>
<td>IdleTime</td>
<td>IDLETIME or TIME</td>
<td>Elapsed time that the thread has been idle (Not processing in a data store).</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>Name of the ODBM member that processed the command.</td>
</tr>
<tr>
<td>PSB</td>
<td>PSB</td>
<td>PSB</td>
<td>Name of the PSB scheduled by the thread.</td>
</tr>
<tr>
<td>SCMBR</td>
<td>SCIMbrName</td>
<td>SCIMEMBER</td>
<td>The SCI member name of the client that is connected to ODBM for the thread.</td>
</tr>
<tr>
<td>STIME</td>
<td>StartTime</td>
<td>STARTTIME or TIME</td>
<td>Start time of the thread.</td>
</tr>
</tbody>
</table>
Table 147. Output field descriptions for the QUERY ODBM TYPE(THREAD) command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>STT</td>
<td>Status</td>
<td>N/A</td>
<td>Status of the thread.</td>
</tr>
<tr>
<td>THID</td>
<td>ThreadID</td>
<td>N/A</td>
<td>Thread identifier.</td>
</tr>
<tr>
<td>URID</td>
<td>URID</td>
<td>URID</td>
<td>Unit of recovery identifier for the thread.</td>
</tr>
<tr>
<td>UID</td>
<td>Userid</td>
<td>USERID</td>
<td>User name associated with the thread.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The return and reason codes that can be returned as a result of the QUERY ODBM TYPE(THREAD) command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 148. Return and reason codes for the QUERY ODBM TYPE(THREAD) command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The QUERY ODBM TYPE(THREAD) command completed successfully.</td>
</tr>
<tr>
<td>X'04000008'</td>
<td>X'00002004'</td>
<td>Invalid command keyword or invalid command keyword combination.</td>
</tr>
<tr>
<td>X'04000008'</td>
<td>X'00002008'</td>
<td>Insufficient number of keywords.</td>
</tr>
<tr>
<td>X'04000008'</td>
<td>X'00002014'</td>
<td>Invalid character in resource name.</td>
</tr>
<tr>
<td>X'04000008'</td>
<td>X'0000203C'</td>
<td>Invalid parameter specified.</td>
</tr>
<tr>
<td>X'0400000C'</td>
<td>X'00003000'</td>
<td>At least one request was successful.</td>
</tr>
<tr>
<td>X'0400000C'</td>
<td>X'00003004'</td>
<td>No requests were successful.</td>
</tr>
<tr>
<td>X'04000014'</td>
<td>X'0000501C'</td>
<td>APSB hash table SCAN failed.</td>
</tr>
<tr>
<td>X'04000014'</td>
<td>X'00005034'</td>
<td>An OM response buffer request failed.</td>
</tr>
<tr>
<td>X'04000014'</td>
<td>X'00005038'</td>
<td>A CSLDCMD0 GETBUF request failed to get a command buffer.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

Table 149. Completion codes for the QUERY ODBM TYPE(THREAD) command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The QUERY ODBM TYPE(THREAD) command completed successfully.</td>
</tr>
<tr>
<td>1</td>
<td>INVALID CHARACTER, RESOURCE NAME</td>
<td>The resource name in the command input has invalid characters.</td>
</tr>
<tr>
<td>2</td>
<td>PARAMETER SPECIFIED TOO LONG</td>
<td>The NAME() parameter specified is longer than the valid thread name length of 32 characters.</td>
</tr>
</tbody>
</table>
Table 149. Completion codes for the QUERY ODBM TYPE(THREAD) command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>NO MATCHES FOUND FOR FILTER</td>
<td>The resource was found, but one or more of the specified filters did not match.</td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>No resources were found.</td>
</tr>
</tbody>
</table>

Examples

Example 1 for QUERY ODBM TYPE(THREAD) command

TSO SPOC input:
QRY ODBM TYPE(THREAD) NAME(*) SHOW(ALL)

TSO SPOC output:

MbrName   ThreadID   CC  Status   DatastoreName
-------------  ---------  ----  --------  --------------
ODBM01OD  00000001233344129802334877222344  0  INBACKOUT  IMS1
ODBM01OD  00055001233344129802334877222981  0  INDOUBT  IMS2
ODBM01OD  0123444933344129802334877222344  0  INPREPARE  IMS3
ODBM02OD  92833457233344129802334877222344  0  INDOUBT  IMS4
ODBM03OD  63200001233344129802334877222344  0  INABTERM  IMS5

AliasName   SCIMbName   Userid   PSB   URID
---------   --------   -------   -----   ----- 
I01A       HWS1      User01   PSB1   0000000000000001
I02B       HWS1      User02   PSB2   0000000000000005
I03A       HWS2      User03   PSB3   0000000000000009
I04A       HWS2      User03   PSB4   0000000000000087
I05B       HWS1      User05   PSB5   0000000000000022

StartTime  IdleTime  ActiveTime  ApplClientId
-------  ---------  ----------  -------
182-2008  15:31:15.123456  00:00:00.01  CLIENT1
182-2008  15:31:29.237888  00:00:00.00  CLIENT2
182-2008  15:31:45.573900  00:00:00.02  CLIENT3
182-2008  15:31:18.000001  00:00:00.02  CLIENT3
182-2008  15:31:53.111242  00:00:00.01  CLIENT5

Explanation: The QUERY command will display ODBM thread information about all threads that are known to ODBM.

Example 2 for QUERY ODBM TYPE(THREAD) command

TSO SPOC input:
QRY ODBM TYPE(THREAD) NAME(*)

TSO SPOC output:

MbrName   ThreadID   CC  Status   DatastoreName
-------------  ---------  ----  --------  --------------
ODBM01OD  00000001233344129802334877222344  0  INBACKOUT  IMS1
ODBM01OD  00055001233344129802334877222981  0  INDOUBT  IMS2
ODBM01OD  0123444933344129802334877222344  0  INPREPARE  IMS3
ODBM02OD  92833457233344129802334877222344  0  INDOUBT  IMS4
ODBM03OD  63200001233344129802334877222344  0  INABTERM  IMS5
Explanation: The QUERY command will display information about all threads that are known to ODBM.

Example 3 for QUERY ODBM TYPE(THREAD) command

TSO SPOC input:
QRY ODBM TYPE(THREAD) NAME(*) DATASTORE(IMS1)

TSO SPOC output:

<table>
<thead>
<tr>
<th>MbrName</th>
<th>ThreadID</th>
<th>CC</th>
<th>Status</th>
<th>DatastoreName</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODBM01OD</td>
<td>0000001233344129802334877222344</td>
<td>0</td>
<td>INBACKOUT</td>
<td>IMS1</td>
</tr>
</tbody>
</table>

(continued)

Explanation: The QUERY command will display information about the threads that are associated with data store IMS1.

Example 4 for QUERY ODBM TYPE(THREAD) command

TSO SPOC input:
QRY ODBM TYPE(THREAD) NAME(*) SCIMEMBER(HWS2) SHOW(APPLCLIENTID,USERID)

TSO SPOC output:

<table>
<thead>
<tr>
<th>MbrName</th>
<th>ThreadID</th>
<th>CC</th>
<th>Status</th>
<th>DatastoreName</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODBM01OD</td>
<td>01234444933344129802334877222344</td>
<td>0</td>
<td>INPREPARE</td>
<td>IMS3</td>
</tr>
<tr>
<td>ODBM02OD</td>
<td>92833457233344129802334877222344</td>
<td>0</td>
<td>INDOUBT</td>
<td>IMS4</td>
</tr>
</tbody>
</table>

(continued)

Explanation: The QUERY command will display the application client identifier and the user ID of the threads that are associated with SCI member name HWS2.

Example 5 for QUERY ODBM TYPE(THREAD) command

TSO SPOC input:
QRY ODBM TYPE(THREAD) NAME(*) ALIAS(IO2*) SHOW(PSB,SCIMEMBER)

TSO SPOC output:

<table>
<thead>
<tr>
<th>MbrName</th>
<th>ThreadID</th>
<th>CC</th>
<th>Status</th>
<th>DatastoreName</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODBM01OD</td>
<td>00055001233344129802334877222981</td>
<td>0</td>
<td>INDOUBT</td>
<td>IMS2</td>
</tr>
</tbody>
</table>
AliasName  SCImbrName  PSB
1O2B        HWS1       PSB2

Explanation: The QUERY command will display the PSB name and the ODBM client name for the thread whose alias begins with "IO2B".

Example 6 for QUERY ODBM TYPE(THREAD) command

TSO SPOC input:
QRY ODBM TYPE(THREAD) NAME(000+) PSB(P+) SHOW(USERID)

TSO SPOC output:

<table>
<thead>
<tr>
<th>MbrName</th>
<th>ThreadID</th>
<th>CC</th>
<th>DatastoreName</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODBM010D</td>
<td>00000001233344129802334877222344</td>
<td>0</td>
<td>IMS1</td>
<td>INBACKOUT</td>
</tr>
<tr>
<td>ODBM010D</td>
<td>00055001233344129802334877222981</td>
<td>0</td>
<td>IMS2</td>
<td>INDOUBT</td>
</tr>
</tbody>
</table>

AliasName  UserId  PSB
1O1A        User01  PSB1
1O2B        User02  PSB2

Explanation: The QUERY command will display the user ID of the threads whose names begin with 000 and whose associated PSBs' names begin with "P".

Example 7 for QUERY ODBM TYPE(THREAD) command

TSO SPOC input:
QRY ODBM TYPE(THREAD) NAME(*) SHOW(TIME)

TSO SPOC output:

<table>
<thead>
<tr>
<th>MbrName</th>
<th>ThreadID</th>
<th>CC</th>
<th>Status</th>
<th>DatastoreName</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODBM010D</td>
<td>00000001233344129802334877222344</td>
<td>0</td>
<td>INBACKOUT</td>
<td>IMS1</td>
</tr>
<tr>
<td>ODBM010D</td>
<td>00055001233344129802334877222981</td>
<td>0</td>
<td>INDOUBT</td>
<td>IMS2</td>
</tr>
<tr>
<td>ODBM010D</td>
<td>0123444933344129802334877222344</td>
<td>0</td>
<td>INPREPARE</td>
<td>IMS3</td>
</tr>
<tr>
<td>ODBM020D</td>
<td>92833457233344129802334877222344</td>
<td>0</td>
<td>INDOUBT</td>
<td>IMS4</td>
</tr>
<tr>
<td>ODBM030D</td>
<td>63200001233344129802334877222344</td>
<td>0</td>
<td>INABTERM</td>
<td>IMS5</td>
</tr>
</tbody>
</table>

AliasName  StartTime  IdleTime  ActiveTime
1O1A        182-2008  15:31:15.123456 00:00:00.01 00:00:00.90
1O2B        182-2008  15:31:29.237888 00:00:00.00 00:00:00.00
1O3A        182-2008  15:31:45.573900 00:00:00.00 00:00:00.00
1O4A        182-2008  15:31:18.000001 00:00:00.02 00:00:00.90
1O5B        182-2008  15:31:53.112424 00:00:00.01 00:00:00.00

Explanation: The QUERY command will display the starting time values of the threads that are associated with ODBM.

QUERY ODBM TYPE(TRACE) command

Use the QUERY ODBM TYPE(TRACE) command to query information about the Open Database Manager (ODBM) trace.

Subsections:
Environment

The QUERY ODBM command is applicable only to the CSL Open Database Manager (ODBM). To issue this command, a CSL type-2 command environment must be enabled and an ODBM instance must be active.

Syntax

```
QUERY ODBM TYPE(TRACE) SHOW(ALL)
```

Keywords

The following keywords are valid for the QUERY ODBM TYPE(TRACE) command.

- **SHOW()**: Specifies the ODBM TYPE(TRACE) output fields to be returned. The parameters supported with the SHOW keyword are:
  - **ALL**: Returns all information about the ODBM trace.

Usage notes

You can issue this command only through the Operations Manager (OM) API.

The syntax for this command is defined in XML and is available to automation programs that communicate with OM.

Output fields

- **Short label**: Contains the short label that is generated in the XML output.
- **Long label**: Contains the long label generated in the XML output.
- **Keyword**: Identifies keyword on the command that caused the field to be generated. An error appears for output fields that can appear for a nonzero completion code. N/A (not applicable) appears for output fields that are always returned.
- **Meaning**: Provides a brief description of the output field.
Table 150. Output field descriptions for the QUERY ODBM TYPE(TRACE) command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the nonzero completion code.</td>
</tr>
<tr>
<td>DSTR</td>
<td>DatastoreName</td>
<td>N/A</td>
<td>Data store name.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>Name of the ODBM member that processed the command.</td>
</tr>
<tr>
<td>TRACE</td>
<td>Trace</td>
<td>N/A</td>
<td>Trace information.</td>
</tr>
<tr>
<td>TRCSTT</td>
<td>TraceStatus</td>
<td>N/A</td>
<td>Trace status: Active or inactive.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The return and reason codes that can be returned as a result of the QUERY ODBM TYPE(TRACE) command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 151. Return and reason codes for the QUERY ODBM TYPE(TRACE) command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The QUERY ODBM TYPE(TRACE) command completed successfully.</td>
</tr>
<tr>
<td>X'04000008'</td>
<td>X'00002004'</td>
<td>Invalid command keyword or invalid command keyword combination.</td>
</tr>
<tr>
<td>X'04000008'</td>
<td>X'00002008'</td>
<td>Insufficient number of keywords.</td>
</tr>
<tr>
<td>X'04000008'</td>
<td>X'0000203C'</td>
<td>Invalid parameter specified.</td>
</tr>
<tr>
<td>X'0400000C'</td>
<td>X'00003000'</td>
<td>At least one request was successful.</td>
</tr>
<tr>
<td>X'0400000C'</td>
<td>X'00003004'</td>
<td>No requests were successful.</td>
</tr>
<tr>
<td>X'04000014'</td>
<td>X'00005034'</td>
<td>An OM response buffer request failed.</td>
</tr>
<tr>
<td>X'04000014'</td>
<td>X'00005038'</td>
<td>A CSLDCMD0 GETBUF request failed to get a command buffer.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

Table 152. Completion codes for the QUERY ODBM TYPE(TRACE) command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>INVALID CHARACTER, RESOURCE NAME</td>
<td>The resource name in the command input has invalid characters.</td>
</tr>
<tr>
<td>1</td>
<td>NO RESOURCES</td>
<td>No resources were found.</td>
</tr>
</tbody>
</table>
Examples

Example 1 for QUERY ODBM TYPE(TRACE) command

TSO SPOC input:

QRY ODBM TYPE(TRACE) SHOW(ALL)

TSO SPOC output:

<table>
<thead>
<tr>
<th>MbrName</th>
<th>Trace</th>
<th>DatastoreName</th>
<th>CC</th>
<th>TraceStatus</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODBM010D</td>
<td>System IMS1</td>
<td>0</td>
<td>Active</td>
<td></td>
</tr>
<tr>
<td>ODBM020D</td>
<td>System IMS3</td>
<td>0</td>
<td>Inactive</td>
<td></td>
</tr>
</tbody>
</table>

Explanation: The QUERY command will display all ODBM trace data.

QUERY OLC command

For an IMS running with RM (RMENV=Y), the QUERY OLC command returns information about the OLCSTAT DS that is shared by all of the IMS systems participating in global online change.

Subsections:
- “Environment”
- “Syntax”
- “Keywords” on page 392
- “Usage notes” on page 392
- “Output fields” on page 393
- “Return, reason, and completion codes” on page 395
- “Examples” on page 396

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) from which the QUERY OLC command and keywords can be issued.

Table 153. Valid environments for the QUERY OLC command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY OLC</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LIBRARY</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SHOW</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax
Keywords

The following keywords are valid for the QUERY OLC command:

**LIBRARY**
Online change library. The library can be the following:

**OLCSTAT**
OLCSTAT data set contents.

**SHOW()**
Specifies the library information returned.

**ALL**
Returns all the output fields except the RSCLIST information.

**ACTVLIB**
Displays the suffixed online change library names that are currently active. This includes ACBLIBA or ACBLIBB, FMTLIBA or FMTLIBB, and MODBLKSA or MODBLKSB. These are the online change libraries the IMS online system must use at IMS initialization time.

**DSN**
OLCSTAT data set name.

**LASTOLC**
Displays the last online change that was successfully performed. If an IMS was down during the last online change and its restart type does not conflict with the last online change that was performed, it will be permitted to warm start. The last online change type is blank, if no online changes have been done. The last online change type is one or more of the following, if at least one online change has been done:
- ACBLIB
- FMTLIB
- MODBLKS

**MBRLIST**
Displays the list of IMS systems that are current with the online change libraries. These are the IMS systems that will be permitted to warm start. The IMS systems either participated in the last online change, or cold started since the last online change.

**MODID**
Modify ID. The modify ID - 1 represents the number of global online changes that have been performed.

**RSCLIST**
Returns the ACBLIB members that are copied from the staging ACBLIB to the active ACBLIB. SHOW(RSCLIST) is valid only when TYPE(ACBMBR) OLC is in progress.

Usage notes

The command response is the same for all of the IMS systems. QUERY OLC is valid for an IMS enabled for global online change, but it is not valid for an IMS enabled for local online change. QUERY OLC is not supported on an XRF alternate, an RSR tracker, or an FDBR region. It can only be specified through the OM API.
The QUERY OLC LIBRARY command displays information about global online change, such as the current online change libraries and the IMS systems that are current with the online change libraries. QUERY OLC LIBRARY(OLCSTAT) displays the contents of the global online change status data set, OLCSTAT. Specifying the SHOW keyword may optionally show the current active online change libraries, the list of IMS systems that are current with the online change libraries, the modify ID, and the last online change that was done.

For an IMS running without RM services (RMENV=N), the QUERY OLC command returns information about the local OLCSTAT DS of an IMS system. The command response is different for each IMS because each IMS is required to have a unique OLCSTAT DC. In a no RM environment, if more than one IMS is specified in the route list for the QUERY OLC, only the OLCSTAT DS information for the command IMS master is returned. To obtain OLCSTAT DS information from each IMS that is running without RM, the QUERY OLC command must be issued separately to each IMS. To determine which IMS systems are defined with RMENVNO, issue a QUERY MEMBER SHOW(ATTRIB) command.

The command syntax for this command is defined in XML and is available to automation programs which communicate with OM.

Output fields

The following table shows the QUERY OLC output fields. The columns in the table are as follows:

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACBL</td>
<td>ACBLIB</td>
<td>ACTVLIB</td>
<td>GBL</td>
<td>The current ACBLIB library. A means that the current ACBLIB library is ACBLIBA. B means that the current ACBLIB library is ACBLIBB.</td>
</tr>
<tr>
<td>ADD</td>
<td>ADD</td>
<td>RSCLIST</td>
<td>LCL</td>
<td>Indicates that the resources is being added.</td>
</tr>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>N/A</td>
<td>Completion code for the line of output. The completion code indicates whether IMS was able to process the command for the specified library. Refer to Table 156 on page 396 for more information. The completion code is always returned.</td>
</tr>
</tbody>
</table>
### Table 154. Output fields for the QUERY OLC command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHG</td>
<td>CHNG</td>
<td>RSCLIST</td>
<td>LCL</td>
<td>Indicates that the resource is being changed.</td>
</tr>
<tr>
<td>CPY</td>
<td>COPY</td>
<td>RSCLIST</td>
<td>LCL</td>
<td>Indicates that the resource is being copied.</td>
</tr>
<tr>
<td>DBD</td>
<td>DBDName</td>
<td>RSCLIST</td>
<td>LCL</td>
<td>The database or DBD name.</td>
</tr>
<tr>
<td>DSN</td>
<td>DSName</td>
<td>DSN</td>
<td>GBL</td>
<td>OLCST data set name.</td>
</tr>
<tr>
<td>FMTL</td>
<td>FMTLIB</td>
<td>ACTVLIB</td>
<td>GBL</td>
<td>The current FMTLIB library. A means that the current FMTLIB library is FMTLIBA. B means that the current FMTLIB library is FMTLIBB.</td>
</tr>
</tbody>
</table>
| LAST        | LastOLC    | LASTOLC | GBL    | The last successful online change that was successfully performed. If an IMS was down during the last online change and its restart type does not conflict with the last online change that was performed, it will be permitted to warm start. The online change type may include one or more of the following: 
  * ACBLIB
  * FMTLIB
  * MODBLKS |
| LIB         | Library    | N/A     | GBL    | Library name. Can be OLCSTAT. |
| MBR         | MbrName    | N/A     | N/A    | IMSplex member that built output line. IMS identifier of the IMS that build the output. IMS identifier is always returned. |
| MBRL        | MbrList    | MBRLIST | GBL    | List of IMSplex members that are current with the online change libraries. These are the IMS systems that will be permitted to warm start. The IMS systems either participated in the last online change, or cold started since the last online change. |
| MODB        | MODBLKS    | ACTVLIB | GBL    | The current MODBLKS and MATRIX libraries. A means that the current libraries are MODBLKSA and MATRIXA. B means that the current libraries are MODBLKSB and MATRIXB. |
| MODI        | Modid      | MODID   | GBL    | The current modify ID. The modify ID - 1 is the number of successful global online changes that have been performed. |
| PSB         | PSBName    | RSCLIST | LCL    | The program or PSB name. |
| RFS         | RFSH       | RSCLIST | LCL    | Indicates the resource is being refreshed. |
| RSC         | RSCName    | RSCLIST | LCL    | The resource name specified on the command. |
Return, reason, and completion codes

The return and reason codes that can be returned as a result of the QUER Y OLC command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 155. Return and reason codes for the QUER Y OLC command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The QUER Y OLC command completed successfully.</td>
</tr>
<tr>
<td>X'00000004'</td>
<td>X'00001000'</td>
<td>The QUER Y OLC command was not processed on the IMS system as the IMS system is not the command master. No information is returned.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000400C'</td>
<td>The QUER Y OLC command failed because it is invalid for an XRF alternate.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>The QUER Y OLC command failed because it is invalid for an RSR tracker.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000401C'</td>
<td>The QUER Y OLC command failed because it is invalid for an FDBR region.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000410C'</td>
<td>The QUER Y OLC command is rejected, because global online change is not enabled. Local online change is enabled. Use the /DISPLAY MODIFY command for local online change. If your IMSplex is made up of some IMS systems that support global online change and some that support local online change, route the QUER Y OLC command to an IMS that is enabled for global online change. Issue the QUER Y MEMBER TYPE(IMS) SHOW(ATTRIB) command to choose an IMS that has global online change enabled.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004114'</td>
<td>The QUER Y OLC LIBRARY(OLCSTAT) command failed because of an error accessing the OLCSTAT data set. A DFS2843 message is sent to the OM output exit as unsolicited output.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004118'</td>
<td>The QUER Y OLC LIBRARY(OLCSTAT) command failed because of an error allocating the OLCSTAT data set. A DFS2848 message is sent to the OM output exit as unsolicited output.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000411C'</td>
<td>The QUER Y OLC LIBRARY(OLCSTAT) command failed because of an error in the OLCSTAT data set contents. One or more of the values is invalid. A DFS2844 message is sent to the OM output exit as unsolicited output.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005004'</td>
<td>The QUER Y OLC command processing failed because a DFSOCMD response buffer could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005FFF'</td>
<td>The QUER Y OLC command failed because of an internal IMS error.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual library.
The following table contains the completion codes that can be returned on a QUERY OLC command.

**Table 156. Completion codes for the QUERY OLC command**

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The QUERY OLC command completed successfully for the library.</td>
</tr>
</tbody>
</table>

**Examples**

The following are examples of the QUERY OLC command:

**Example 1 for QUERY OLC command**

TSO SPOC input:
QRY OLC LIBRARY(OLCSTAT) SHOW(ACTVLIB,MODID,MBRLIST)

TSO SPOC output:
Response for: QUERY OLC LIBRARY(OLCSTAT) SHOW(ACTVLIB,MODID,MBRLIST)

<table>
<thead>
<tr>
<th>MbrName</th>
<th>CC</th>
<th>Library</th>
<th>ACBLIB</th>
<th>FMTLIB</th>
<th>MODBLKS</th>
<th>Modid</th>
<th>MbrList</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS3</td>
<td>0</td>
<td>OLCSTAT</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>1</td>
<td>IMS3,IMS2,SYS3</td>
</tr>
</tbody>
</table>

OM API input:
CMD (QRY OLC LIBRARY(OLCSTAT) SHOW(ACTVLIB,MODID,MBRLIST))

OM API output:

```xml
<imsout>
 <ctl>
 <omname>OM1OM</omname>
 <omvsn>1.1.0</omvsn>
 <xmlvsn>1</xmlvsn>
 <stotime>2002.163 15:22:45.400709</stotime>
 <staseq>B7C4A8029D062884</staseq>
 <stoseq>B7C4A80475885248</stoseq>
 <rqsttkn1>USRT011 10082243</rqsttkn1>
 <rc>0200000C</rc>
 <rsn>00003000</rsn>
 </ctl>
 <cmderr>
 <mbr name="IMS2">
 <typ>IMS</typ>
 <styp>DBDC</styp>
 <rc>00000004</rc>
 <rsn>00001000</rsn>
 <rsntext>IMS not master, cmd ignored</rsntext>
 </mbr>
 <mbr name="SYS3">
 <typ>IMS</typ>
 <styp>DBDC</styp>
 <rc>00000004</rc>
 <rsn>00001000</rsn>
 <rsntext>IMS not master, cmd ignored</rsntext>
 </mbr>
 </cmderr>
 <cmd>
 <master>IMS3</master>
 <userid>USRT011</userid>
 <verb>QRY</verb>
 <kwd>OLC</kwd>
 <input>QUERY OLC LIBRARY(OLCSTAT) SHOW(ACTVLIB,MODID,MBRLIST)</input>
 </cmd>
</imsout>
```
Explanation: QUERY OLC LIBRARY(OLCSTAT) displays the contents of the OLCSTAT data set, which contains global online change status. This command displays the active online change libraries, the modify id, and the list of IMS members that are current with the online change libraries and may therefore warm list. The output shows that the ACBLIB data set is active, the FMTLIBB data set is active, the MODBLKSB data set is active, and the modify id is 2. SYS3 was the command master that built the output.

Example 2 for QUERY OLC command

TSO SPOC input:

QRY OLC LIBRARY(OLCSTAT) SHOW(DSN)

TSO SPOC output:

MbrName  CC  Library  DSName
IM3      0   OLCSTAT   IMSTESTL.IMS02.OLCSTAT

OM API input:

CMD (OLC LIBRARY(OLCSTAT) SHOW(DSN))

OM API output:

<imsout>
<ctl>
<omname>OM1OM </omname>
<omvsn>1.1.0 </omvsn>
<xmlvsn>1 </xmlvsn>
<statime>2002.163 15:28:36.353742 </statime>
<stotime>2002.16315:28:36.426823 </stotime>
<staseq>87C4A953276CE286 </staseq>
<stoseq>87C4A95339447348 </stoseq>
<rqsttkn1>USR7011 10082836 </rqsttkn1>
<rc>0200000C </rc>
<rsn>00003000 </rsn>
</ctl>
<cmderr>
<mbr name="IMS2">
<typ>IMS </typ>
<styp>DBDC </styp>
</mbr>
</cmderr>
</imsout>
Explanation: This QUERY OLC command displays the OLCSTAT data set name. IMS3 was the command master that built the output.

**Example 3 for QUERY OLC command**

**TSO SPOC input:**

```
QUERY OLC SHOW(RSCLIST)
```

**TSO SPOC output:**

```
MbrName CC DBDName PSBName ADD
IMS1 0 OLCDB105 Y
IMS2 0 OLCDB105 Y
IMS1 0 OLCDB111 Y
IMS2 0 OLCDB111 Y
IMS1 0 OLCDB111 Y
IMS2 0 OLCDB111 Y
IMS1 0 OLCDB111 Y
IMS2 0 OLCDB111 Y
IMS1 0 OLCDB105 Y
IMS2 0 OLCDB105 Y
IMS1 0 OLCDB111 Y
IMS2 0 OLCDB111 Y
IMS1 0 OLCDB111 Y
IMS2 0 OLCDB111 Y
```
Explanation: This example shows the output from a QRY OLC SHOW(RSCLIST) command after an INIT OLC PHASE(PREPARE) TYPE(ACBMBR) command has been issued.

Related concepts:
- How to interpret CSL request return and reason codes (System Programming APIs)
QUERY OLREORG command

Use the QUERY OLREORG command to query information about an online reorganization or alteration of a HALDB partition.

Information that is returned by the QUERY OLREORG command includes the status, rate, and number of bytes that have been moved.

Reorganizing a database means modifying the structure of a database or changing how the data in the database is organized in order to improve performance.

Subsections:
- “Environment”
- “Syntax”
- “Keywords” on page 401
- “Usage notes” on page 403
- “Output fields” on page 403
- “Return, reason, and completion codes” on page 404
- “Example” on page 405

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) from which the QUERY OLREORG command and keywords can be issued.

Table 157. Valid environments for the QUERY OLREORG command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY OLREORG</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>STATUS</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SHOW</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Syntax
Keywords

The following keywords are valid for the QUERY OLREORG command:

**NAME()**

The names of the PHDAM or PHIDAM partitions that are being reorganized or altered.

NAME() is optional. A parameter with the wildcard character (*) is not allowed, except as NAME(*) for all defined HALDB partitions. NAME(*) is the default.

**SHOW()**

Specifies the output fields to return. The default is SHOWSTATUS).

- **ALL**
  Returns all of the following output fields on each response line.

- **BYTES**
  Returns the total number of bytes that have been moved to the output data set.

- **OPTION**
  Returns the current option, which can be one of the following:
  - DEL - The output data sets will be deleted at the end of OLR
  - NODEL - The output data sets will not be deleted at the end of OLR
  - NOREL - Ownership of the OLR will not be released if IMS terminates before completing the reorganization
  - REL - Ownership of the OLR will be released if IMS terminates before completing the reorganization

- **RATE**
  Returns the rate at which the HALDB OLR is running, from 1 to 100.

- **ROOTS**
  Returns the total number of roots that have been moved to the output data set.

- **SEGMENTS**
  Returns the total number of segments that have been moved to the output data set.

- **STARTTIME**
  Returns the local time when OLR was started.
STATUS
   Returns online reorganization status.

STATUS()
   Displays online reorganizations that possess at least one of the specified statuses. If the STATUS keyword is not specified, any online reorganization with a status of RUNNING, OWNED, NOTOWNED, WAITRATE, or WAITLOCK is returned.

ALTDONE
   Displays all partitions for which alter processing is complete.

ALTER
   Displays the status of alter processing for all partitions in a HALDB database that is being altered online. The possible statuses that can be returned are:

   ALTINPRG
      Alter processing is not complete for the partition.

   ALTDONE
      Alter processing is complete for the specified partition.

      Alter processing is not complete for a HALDB database until all partitions show a status of ALTDONE. After all partitions have a status of ALTDONE, you can enable the altered database for new application programs by performing Online Change (OLC) to switch the ACB library from staging to active.

   ALTINQUE
      The displayed partition is waiting to be altered.

   ALTINPRG
      Displays all partitions that are currently being altered.

NOTOWNED
   Specifies that the output is for the HALDB OLRs that have been temporarily stopped by the TERMINATE OLREORG command and, therefore, are not owned by any IMS.

   To inquire on OLRs that have been terminated using the TERMINATE OLREORG command, use the commands QUERY OLREORG STATUS(NOTOWNED) with ROUTE(*) on the command request and /RMLIST DBRC='DB DBD(partname)'. If all systems on the PLEX show status, then OLR has been terminated.

OWNED
   Specifies that the output is for HALDB OLRs that are owned by any IMS. The OLRs that are running on the IMS where the command is being processed displays a STATUS of RUNNING. OLRs running on other IMS subsystems displays a STATUS of OWNED.

RESUMED
   OLR is resumed after being stopped for some reason such as a TERM OLREORG command or a user abend.

RUNNING
   Specifies the output is for the HALDB OLRs that are owned by each IMS for the specified partname or partnames. You can use this keyword to determine which IMS has an online reorganization running for a given partname.
UNKNOWN
Specifies that the output is for those part names on each IMS for which the status of the HALDB OLR cannot be determined. This inability to determine the status can be caused by situations such as the HALDB master or partition being taken offline by a /DBR DB command, the IMS not being authorized to the named partname because of an IRLM failure, or the partition has not been accessed.

WAITLOCK
OLR is waiting for a lock.

WAITRATE
OLR is waiting because of an intentional delay. This intentional delay was caused because a value of less than 100 was specified on the RATE parameter.

Usage notes
You can issue the QUERY OLREORG command only from the OM API. Responses from each IMS to which the command was routed are consolidated by OM. If you specify names on the NAME parameter, response lines are returned for each specified part name. For the default parameter, NAME(*), response lines are returned only for the HALDB partitions that have online reorganizations in progress at each IMS.

A nonzero return code and a nonzero reason code are returned when the command is routed to an XRF alternate system and when the command is routed to an RSR tracking system.

The output for this command is defined in XML and is available to automation programs that communicate with OM.

The QRY OLREORG command can be issued to obtain OLR statistics for an OLR that has been stopped for some reason such as a TERM OLREORG command or a user abend. The data associated with the terminated OLR will be maintained and provided under any of the following conditions:

- The TERMINATE OLR command is issued.
- Abnormal OLR termination occurs (for example, DFS2971W message is issued)
- IMS is normally shut down

Note: If the partition or HALDB master has been taken offline with a /DBR command, or if IMS has been restarted to resume the OLR and the OLR ownership is requested before IMS restart, the status will not be available through the QUERY OLREORG command until the OLR is resumed. The status, however, can be obtained through the LIST.DB or LIST.RECON command.

Output fields
The following table shows the QUERY OLREORG output fields. The columns in the table are as follows:

| Short label | Contains the short label that is generated in the XML output. |
| Long label | Contains the long label generated in the XML output. |
Show keyword

Identifies the keyword on the command that caused the field to be generated. N/A appears for output fields that are always returned.

Meaning

Provides a brief description of the output field.

Table 158. Output fields of QUERY OLREORG

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Show keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>BYTES</td>
<td>Bytes-Moved</td>
<td>BYTES, ALL</td>
<td>Total number of bytes moved.</td>
</tr>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code.</td>
</tr>
<tr>
<td>LSTT</td>
<td>LclStat</td>
<td>N/A</td>
<td>Status of HALDB OLR.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>The IMS from which the command was issued.</td>
</tr>
<tr>
<td>OPT</td>
<td>Option</td>
<td>OPTION, ALL</td>
<td>Ownership release option specified on the INITIATE OLREORG or UPDATE OLREORG command.</td>
</tr>
<tr>
<td>PART</td>
<td>Partition</td>
<td>N/A</td>
<td>Partition name.</td>
</tr>
<tr>
<td>RATE</td>
<td>Rate</td>
<td>RATE, ALL</td>
<td>The speed at which HALDB OLR runs. A value of 1 to 100 percent.</td>
</tr>
<tr>
<td>RESM</td>
<td>Resumed</td>
<td>N/A</td>
<td>RESUMED status if HALDB OLR is resumed.</td>
</tr>
<tr>
<td>ROOTS</td>
<td>Roots-Moved</td>
<td>ROOTS, ALL</td>
<td>Total number of roots moved.</td>
</tr>
<tr>
<td>SEGS</td>
<td>Segs-Moved</td>
<td>SEGMENTS, ALL</td>
<td>Total number of segments moved.</td>
</tr>
<tr>
<td>STRTT</td>
<td>StartTime</td>
<td>STARTTIME, ALL</td>
<td>The time OLR started as recorded in the RECON data set.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The OM return and reason codes that might be returned as a result of the QUERY OLREORG command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 159. Return and reason codes for the QUERY OLREORG command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The QUERY OLREORG command completed successfully.</td>
</tr>
<tr>
<td>X'00000004'</td>
<td>X'00001010'</td>
<td>No matches found for filter.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002004'</td>
<td>Invalid command keyword.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003000'</td>
<td>At least one request was successful.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>None of the requests was successful.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004030'</td>
<td>Command is invalid for LSO=Y.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>Command was issued on an RSR tracker.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000400C'</td>
<td>Command was issued on an XRF alternate.</td>
</tr>
</tbody>
</table>
Table 159. Return and reason codes for the QUERY OLREORG command (continued)

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000010'</td>
<td>X'00004200'</td>
<td>The QUERY OLREORG command is not processed because IMS shutdown is in progress.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005000'</td>
<td>A GETMAIN error occurred.</td>
</tr>
</tbody>
</table>

The following table includes an explanation of the completion codes. Errors unique to the processing of QUERY OLREORG command are returned as completion codes. A completion code is returned for each action against a HALDB partition.

Table 160. Completion codes for the QUERY OLREORG command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The QUERY OLREORG command completed successfully for the partition.</td>
</tr>
<tr>
<td>10</td>
<td>Resource name is invalid.</td>
</tr>
<tr>
<td>14</td>
<td>Resource is not a partition name.</td>
</tr>
<tr>
<td>1C</td>
<td>Resource is a partitioned secondary index.</td>
</tr>
<tr>
<td>24</td>
<td>No HALDB OLR is in progress.</td>
</tr>
<tr>
<td>28</td>
<td>No DMB is loaded.</td>
</tr>
<tr>
<td>CB</td>
<td>Partition is not in specified status.</td>
</tr>
</tbody>
</table>

Example

In this example, the QUERY OLREORG command is routed to IMSA. The command is issued to obtain the information about all of the OLRs that are in progress at IMSA. The output that is returned contains the following information:

- The partition name
- The IMSID
- The status of OLRs in progress
- The rate of OLR
- The number of bytes moved

TSO SPOC input:

QRY OLREORG NAME(*) SHOW(ALL)

TSO SPOC output:

<table>
<thead>
<tr>
<th>Partition</th>
<th>MbrName</th>
<th>CC</th>
<th>LclStat</th>
<th>Rate</th>
<th>Bytes-Moved</th>
<th>Segs-Moved</th>
<th>...</th>
<th>Roots-Moved</th>
<th>Option</th>
<th>Resumed</th>
<th>StartTime</th>
</tr>
</thead>
<tbody>
<tr>
<td>POHIDKA</td>
<td>IMS1</td>
<td>0</td>
<td>RUNNING</td>
<td>100</td>
<td>15678</td>
<td>97...</td>
<td>...</td>
<td>NODEL, NOREL</td>
<td>Y</td>
<td>2007.296</td>
<td>10:20:21.61</td>
</tr>
<tr>
<td>PDHDOJA</td>
<td>IMS1</td>
<td>0</td>
<td>RUNNING</td>
<td>100</td>
<td>4630</td>
<td>29...</td>
<td>...</td>
<td>DEL, REL</td>
<td>Y</td>
<td>2007.296</td>
<td>10:20:21.84</td>
</tr>
</tbody>
</table>

OM API input:

CMD (QRY OLREORG NAME(*) SHOW(ALL))

OM API output:
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.2.0</omvsn>
<xmlvsn>1</xmlvsn>
<statime>2007.296 17:43:42.714976</statime>
<stotime>2007.296 17:43:42.715488</stotime>
<staseq>C163CD37F5860D82</staseq>
<stoseq>C163CD37F5A60342</stoseq>
<rqsttkn1>USRT011 10104342</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>IMS1</master>
<userid>USRT011</userid>
<verb>QRY</verb>
<kwd>OLREORG</kwd>
<input>QRY OLREORG NAME(*) SHOW(ALL)</input>
</cmd>
<cmdrsphdr>
<hdr slbl="PART" llbl="Partition" scope="lcl" sort="a" key="1" scroll="no" len="7" dtype="char" align="left" />
<hdr slbl="MBR" llbl="MbrName" scope="lcl" sort="n" key="0" scroll="no" len="8" dtype="char" align="left" />
<hdr slbl="CC" llbl="CC" scope="lcl" sort="n" key="0" scroll="yes" len="4" dtype="int" align="right" />
<hdr slbl="LSTT" llbl="LclStat" scope="lcl" sort="n" key="0" scroll="yes" len="*" dtype="char" align="left" />
<hdr slbl="RATE" llbl="Rate" scope="lcl" sort="n" key="0" scroll="yes" len="3" dtype="int" align="right" skipb="yes" />
<hdr slbl="BYTES" llbl="Bytes-Moved" scope="lcl" sort="n" key="0" scroll="yes" len="12" dtype="int" align="right" skipb="yes" />
<hdr slbl="SEGS" llbl="Segs-Moved" scope="lcl" sort="n" key="0" scroll="yes" len="10" dtype="int" align="right" skipb="yes" />
<hdr slbl="ROOTS" llbl="Roots-Moved" scope="lcl" sort="n" key="0" scroll="yes" len="10" dtype="int" align="right" skipb="yes" />
<hdr slbl="OPT" llbl="Option" scope="lcl" sort="n" key="0" scroll="yes" len="8" dtype="char" align="left" skipb="yes" />
<hdr slbl="RESM" llbl="Resumed" scope="lcl" sort="n" key="0" scroll="yes" len="1" dtype="char" align="left" skipb="yes" />
<hdr slbl="STRTT" llbl="StartTime" scope="lcl" sort="n" key="0" scroll="yes" len="20" dtype="char" align="left" skipb="yes" />
</cmdrsphdr>
<cmdrspdata>
<rsp> PART(POHIDKA ) MBR(IMS1 ) CC( 0) LSTT(RUNNING ) RATE(100 )
BYTES( 15678) SEGS( 97) ROOTS( 11 ) OPT(NODEL )
<rsp> PART(PVHDJ5A ) MBR(IMS1 ) CC( 0) LSTT(RUNNING ) RATE(100 )
BYTES( 4630) SEGS( 29) ROOTS( 5 ) OPT(DEL,REL )
</cmdrspdata>
</imsout>

Related concepts:

How to interpret CSL request return and reason codes (System Programming APIs)
Related reference:

![Command keywords and their synonyms (Commands)]

**QUERY OTMADESC command**

Use the QUERY OTMADESC command to query information about an existing IMS Open Transaction Manager Access (OTMA) destination descriptor.

Subsections:
- “Environment”
- “Syntax”
- “Keywords” on page 409
- “Usage notes” on page 414
- “Output fields” on page 415
- “Return, reason, and completion codes” on page 415
- Examples

**Environment**

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and its keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY OTMADESC</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

**Syntax**

```plaintext
QUERY OTMADESC
 NAME(destname*)
 TYPE(IMSCON)
 IMSTRAN
 MQSERIES
 NONOTMA
 TMEMBER(tmem)
 TPIPE(tpipename)
 MQCOPYMD(Y)
 SYNCTP(N)
```
Keywords

The following keywords are valid for the QUERY OTMADESC command:

**ADAPTER(name)**
A 1- to 8-character name that identifies the IMS Connect adapter. This keyword is an optional parameter for TYPE(IMSCON). When an adapter name is specified, information is displayed from only the descriptors that specify that adapter name. This keyword is ignored if TYPE(NONOTMA) is specified.

**CONVRTR(name)**
A 1- to 8-character converter name associated with the adapter specified on the ADAPTER keyword. When a converter name is specified, information is displayed from only the descriptors that specify that converter name.
EXIT (Y | N)
An optional parameter that filters descriptors based on whether they allow the appropriate exit routine to override the descriptor routing information.

LTERMOVRR(terminename)
An optional parameter that filters descriptors based on the logical terminal override name.

MQAPPLID(mqmddapplidentitydata)
Filters for descriptors with the specified value or values for the MQAPPLID parameter. MQAPPLID specifies the content of the MQMD_APPLIDENTITYDATA field, a 1- to 32-character user data field in the MQMD data structure for IBM MQ messages.

MQCOPYMDO(Y | N)
Filters for descriptors based on whether they specify to copy the MQMD data from the input message to the output message.

MQCORREL(mqmddcorrel)
Filters for descriptors with the specified value or values for the MQCORREL parameter. MQCORREL specifies the content of the MQMD_CORRELID field of the MQMD data structure for IBM MQ messages.

MQFORMAT(mqmddformatname)
Filters for descriptors with the specified value or values for the MQFORMAT parameter. MQFORMAT specifies the content of the MQMD_FORMAT field of the MQMD data structure for IBM MQ messages. The following values are supported by IMS:

- MQIMSVS
- MQIMS
- NONE

MQMSGID(mqmddmsgid)
Filters for descriptors with the specified value or values for the MQMSGID parameter. MQMSGID specifies the content of the MQMD_MSGID field of the MQMD data structure for IBM MQ messages.

MQPERST(N | Y)
Filters TYPE=MQSERIES descriptors based on whether they use message persistance.

MQREPORT(mqmddreportname)
Filters for descriptors with the specified value or values for the MQREPORT parameter. MQREPORT specifies the content of the MQMD_REPORT field of the MQMD data structure for IBM MQ messages. The following values are supported:

Parameter value
Equivalent MQMD structure value

NEWMSGID
MQRO_NEW_MSG_ID

PASSMSGI
MQRO_PASS_MSG_ID

COPYMTOC
MQRO_COPY_MSG_ID_TO_CORREL_ID

PASSCORR
MQRO_PASS_CORREL_ID
PASSMSCO
MQRO_PASS_MSG_ID and MQRO_PASS_CORREL_ID
NONE
MQRO_NONE

MQRTF(mqmdreplytoformatname)
Filters for descriptors with the specified value or values for the MQRTF parameter. MQRTF specifies the content of the MQMD_REPLYTOFORMAT field of the MQMD data structure for IBM MQ messages.

MQRTQ(mqmdreplytoqname)
Filters for descriptors with the specified value or values for the MQRTQ parameter. MQRTQ specifies the content of the MQMD_REPLYTOQ field of the MQMD data structure for IBM MQ messages.

MQRTQ(mqmdreplytoqmgrname)
Filters for descriptors with the specified value or values for the MQRTQMGR parameter. MQRTQMGR specifies the content of the MQMD_REPLYTOQGMGR field of the MQMD data structure for IBM MQ messages.

NAME(destname*)
A 1- to 8-character destination name that identifies the OTMA destination descriptors to display. This keyword is required. If OPTION(WILDCARD) is also specified, an asterisk can be used as a wildcard character.

OPTION(NOWILDCARD | WILDCARD)
Determines whether an asterisk in the NAME keyword is treated as a wildcard character. When NOWILDCARD is specified, an asterisk is processed as a normal character and a descriptor is displayed only if the destination name coded in the descriptor in the DFSYDTx PROCLIB member includes a matching asterisk character. When WILDCARD is specified, an asterisk in the NAME keyword is treated as wildcard character and any descriptors that have a destination name that matches the characters not masked by the asterisk are displayed.

REPLYCHK(Y | N)
An optional parameter that filters descriptors based on whether they have OTMA DFS2082 message support enabled.

RMTIMS(imsname)
The name of a remote IMS system that is the destination for OTMA ALTPCB output. When a remote IMS name is specified, information is displayed from only the descriptors that specify that remote IMS name. The RMTIMS parameter is optional and accepts a 1- to 8-character name.

RMTIMSCON(imsconnectname)
The name of a connection to a remote IMS Connect instance that manages the TCP/IP communications for a remote IMS system that is the destination for OTMA ALTPCB output. When a remote IMS Connect connection name is specified, information is displayed from only the descriptors that specify that remote IMS Connect connection name. The RMTIMSCON parameter is optional and accepts a 1- to 8-character name of the connection.

RMTTRAN(trancode)
An optional parameter that displays the transaction code that is scheduled to process OTMA messages in a destination remote IMS system. When a remote transaction code is specified, information is displayed from only the descriptors that specify that remote transaction code. The RMTTRAN value is a 1- to 8-character name of a transaction.
SHOW()

Specifies which information to display in the output fields.

ADAPTER
Displays the name that identifies the IMS Connect adapter.

ALL
Displays all available information.

CONVRTR
Displays the converter name used by the adapter.

EXIT
For descriptors with TYPE=IMSTRAN, this field displays whether the DFSCMUX0 exit routine can override the descriptor routing information for late response messages.

For other types of descriptors, this field displays whether the DFSYPRX0 and DFSYDRU0 exit routines can override the descriptor routing information for the ALT IOPCB message switch destination.

LTERMOVGR
Displays the lterm name specified in the destination descriptor.

MQAPPLID
Displays the IBM MQ user application data that is inserted into the MQMD_APPLIDENTITYDATA field for messages that are routed with this descriptor.

MQCOPYMD
Displays whether the original input values for the IBM MQ data structure (MQMD) are copied to the output message.

MQFORMAT
Displays the value of the MQMD_FORMAT field for messages that are routed to IBM MQ with this descriptor.

MQPERST
Displays whether messages that are routed to IBM MQ with this descriptor are persistent on a synchronous pipe.

MQREPORT
Displays the value of the MQMD_REPORT field for messages that are routed to IBM MQ with this descriptor.

MQRTF
Displays the value of the MQMD_REPLYTOFORMAT field for messages that are routed to IBM MQ with this descriptor.

MQRTQ
Displays the value of the MQMD_REPLYTOQ field for messages that are routed to IBM MQ with this descriptor.

MQRTQMGR
Displays the value of the MQMD_REPLYTOQMGR field for messages that are routed to IBM MQ with this descriptor.

REPLYCHK
Displays whether DFS2082 message support is enabled for the descriptor.

RMTIMS
Displays the name of the destination remote IMS systems.
**RMTIMSCON**
Displays the name of remote IMS Connect systems that are managing TCP/IP connections for a destination remote IMS system.

**RMTTRAN**
The transaction code to be scheduled in the destination remote IMS system.

**SMEM**
Displays the super member indicator.

**SYNCTP**
Displays whether messages that are routed to IBM MQ with this descriptor require a synchronous tpipe.

**SYNTIMER**
Displays the timeout value for synchronous callout processing.

**TMEMBER**
Displays the name of TMEMBER or the Super Member if SMEM indicates as such.

**TPIPE**
Displays the TPIPE name under a TMEMBER.

**TYPE**
Displays the type of descriptor.

**NONOTMA**
Only displays fields relevant for NONOTMA descriptors.

**IMSCON**
Only displays fields relevant for IMSCON descriptors.

**IMSTRAN**
Only displays fields relevant for IMSTRAN descriptors.

**MQSERIES**
Only displays fields relevant for MQSERIES descriptors.

**USERID**
Displays the user ID used for transaction authorization in a destination remote IMS system.

**SMEM(Y | N)**
An optional parameter that specifies whether the TMEMBER name is a super member. When SMEM is specified, information is displayed from only the descriptors that specify the matching Y or N value for SMEM. SMEM and TYPE(NONOTMA) are mutually exclusive.

**SYNCTP(N | Y)**
Filters TYPE=MQSERIES descriptors based on whether they require a synchronous tpipe.

**TMEMBER(tmem)**
An optional parameter that is used to filter by a 1- to 16-character TMEMBER name. When a tmember name is specified, information is displayed from only the descriptors that specify that tmember name. TMEMBER and TYPE(NONOTMA) are mutually exclusive.

**TPIPE(tpipename)**
An optional parameter that is used to filter by a 1- to 8-character TPIPE name.
When a tpipe name is specified, information is displayed from only the descriptors that specify that tpipe name. TPIPE and TYPE(NONOTMA) are mutually exclusive.

**TYPE(IMSCON | IMSTRAN | MQSERIES | NONOTMA)**

An optional keyword that can be IMSCON, IMSTRAN, MQSERIES, or NONOTMA. All output types are displayed if the keyword is not specified. To filter the display, specify IMSCON, IMSTRAN, MQSERIES, or NONOTMA. To include the other keywords, such as TMEMBER, TPIPE, SMEM, ADAPTER, or CONVRTR, use the SHOW keyword. If TYPE(NONOTMA) is specified, the rest of the display parameters will show blanks even if the SHOW keyword is specified.

**USERID(userid)**

An optional parameter that displays the user ID used for transaction authorization in a destination remote IMS system. When a user ID is specified, information is displayed from only the descriptors that specify that user ID. The USERID value is a 1- to 8-character RACF user ID.

**Usage notes**

The QUERY OTMADESC command is used to display the values specified in the destination routing descriptors that are identified in the NAME() keyword. The results returned by the QUERY OTMADESC command can be filtered by secondary keywords, such as TPIPE(). For example, when QUERY OTMADESC NAME(abc*) TPIPE(xyz) OPTION(WILDCARD) is specified, information is returned for only descriptors that have a destination name that starts with abc and a tpipe name of xyz.

Use the SHOW() keyword to control what information is displayed from the OTMA destination descriptors found by the command. For example, if you include SHOW(TMEMBER) in the command, the TMEMBER values are returned.

The QUERY OTMADESC command does not process asterisks as wildcard characters. However, you can use an asterisk as a wildcard character in the NAME() keyword if you specify OPTION(WILDCARD) when you issue the command.

No log records are written when the command is issued.

The QUERY OTMADESC command can be issued on an Extended Recovery Facility (XRF) alternate or a remote site recovery (RSR) tracking environment. The information retrieved might differ from the active system because of timing issues. For example, take the scenario where the UPDATE OTMADESC command is issued on the active system, the log record is written, and the QUERY OTMADESC command is issued on both the active and alternate system. The information about the active system reflects the current information whereas the alternate system reflects the old information. This is caused by the log record being read and updated in the alternate system.

You can issue a valid QUERY OTMADESC command that does not return any results because one of the filter keywords excluded the entire result set. For example, querying descriptors with both the ADAPTER keyword and the MQFORMAT keyword will never return any results because those keywords are never used together in a valid descriptor. If your query does not return any results, ensure that no mutually exclusive filtering keywords were specified.
Output fields

The following table shows the QUERY OTMADESC output fields. The columns in the table are:

**Short label**
Contains the short label generated in the XML output.

**Long label**
Contains the column heading for the output field in the formatted output.

**Keyword**
Identifies the keyword on the command that caused the field to be generated. N/A appears for output fields that are always returned. error appears for output fields that are returned only in case of an error.

**Meaning**
Provides a brief description of the output field.

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADAP</td>
<td>Adapter</td>
<td>ADAPTER</td>
<td>Adapter name.</td>
</tr>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code for the line of output. The completion code indicates whether IMS was able to process the command for the specified resource. The completion code is always returned.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>N/A</td>
<td>Completion code text that briefly explains the meaning of the nonzero completion code. This field is returned only for an error completion code.</td>
</tr>
<tr>
<td>CVRTR</td>
<td>Converter</td>
<td>CONVRTR</td>
<td>Converter name.</td>
</tr>
<tr>
<td>DEST</td>
<td>DestName</td>
<td>NAME</td>
<td>Destination name.</td>
</tr>
<tr>
<td>IMSRPY</td>
<td>IMSReply</td>
<td>IMSREPLY</td>
<td>Indicator that shows whether a DFS2082 message can be received as a response for a synchronous program switch request.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>Member name.</td>
</tr>
<tr>
<td>RMTIMS</td>
<td>RmtIMs</td>
<td>RMTIMS</td>
<td>Name of a remote IMS system.</td>
</tr>
<tr>
<td>RMTIMSCON</td>
<td>RmtIMSCon</td>
<td>RMTIMSCON</td>
<td>Connection to a remote IMS Connect instance.</td>
</tr>
<tr>
<td>RMTTRAN</td>
<td>RmtTran</td>
<td>RMTTRAN</td>
<td>Transaction sent to the remote IMS system.</td>
</tr>
<tr>
<td>SMEM</td>
<td>SMem</td>
<td>SMEM</td>
<td>Indicator that shows whether the destination is a super member.</td>
</tr>
<tr>
<td>SYNTO</td>
<td>Syntimer</td>
<td>SYNTIMER</td>
<td>Timeout value for synchronous callout processing.</td>
</tr>
<tr>
<td>TMEM</td>
<td>TMember</td>
<td>TMEMBER</td>
<td>OTMA TMember name.</td>
</tr>
<tr>
<td>TPIPE</td>
<td>TPipe</td>
<td>TPIPE</td>
<td>TPIPE name.</td>
</tr>
<tr>
<td>TYPE</td>
<td>Type</td>
<td>TYPE</td>
<td>Output type.</td>
</tr>
<tr>
<td>UID</td>
<td>Userid</td>
<td>USERID</td>
<td>User ID.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

An IMS return and reason code is returned to OM by the QUERY OTMADESC command. The OM return and reason codes that might be returned as a result of the QUERY OTMADESC command are standard for all commands entered through the OM API.
The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 163. Return and reason codes for the QUERY OTMADESC command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>Command completed successfully. The command output contains a line for each resource, accompanied by its completion code. See Table 164 for details.</td>
</tr>
<tr>
<td>X'02000008'</td>
<td>X'00002000'</td>
<td>The command contains an invalid verb or no client is registered for the verb.</td>
</tr>
<tr>
<td>X'02000008'</td>
<td>X'00002004'</td>
<td>The command contains an invalid primary keyword or no client is registered for the keyword.</td>
</tr>
<tr>
<td>X'02000008'</td>
<td>X'00002028'</td>
<td>The command contains an invalid keyword.</td>
</tr>
<tr>
<td>X'02000008'</td>
<td>X'0000202C'</td>
<td>The command contains an unknown positional parameter.</td>
</tr>
<tr>
<td>X'02000008'</td>
<td>X'00002034'</td>
<td>The command contains an incomplete keyword parameter.</td>
</tr>
<tr>
<td>X'02000008'</td>
<td>X'00002038'</td>
<td>The command is missing a required parameter.</td>
</tr>
<tr>
<td>X'02000008'</td>
<td>X'0000203C'</td>
<td>The command contains an invalid keyword parameter value.</td>
</tr>
</tbody>
</table>

The following table includes an explanation of the completion codes. Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

Table 164. Completion codes for the QUERY OTMADESC command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command completed successfully</td>
<td>The QUERY OTMADESC command completed successfully for the resource.</td>
</tr>
<tr>
<td>165</td>
<td>No Desc found meet any criteria</td>
<td>No descriptors were found based on the filters specified.</td>
</tr>
<tr>
<td>166</td>
<td>No entries found</td>
<td>Command failed for QUERY OTMADESC, because no entries were found in the table of destination routing descriptors.</td>
</tr>
</tbody>
</table>

Example 1 for QUERY OTMADESC command

The following are examples of the QUERY OTMADESC command:

Example 1 for QUERY OTMADESC command

TSO SPOC input:

```
QUERY OTMADESC NAME(OTMACL*) SHOW(TYPE,TMEMBER,SMEM)
```

TSO SPOC output:

```
DestName MbrName CC Type TMember SMem
OTMACL* IMSA 0 IMSCON HWS2 N
```
Explanation: An asterisk is specified in the name specified in the NAME() keyword, but because the default value for the OPTION keyword is NOWILDCARD and OPTION(WILDCARD) is not specified, the QUERY command displays only OTMACL* and not OTMACL99. It treats OTMACL* as a stand-alone entry in the table of destination routing descriptors.

Example 2 for QUERY OTMADESC command

TSO SPOC input:
QUERY OTMADESC NAME(OTMACL*) SHOW(ALL) OPTION(WILDCARD)

TSO SPOC output:

<table>
<thead>
<tr>
<th>DestName</th>
<th>MbrName</th>
<th>CC</th>
<th>Type</th>
<th>TMember</th>
<th>TPipe</th>
<th>SMem</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTMACL99</td>
<td>IMSA</td>
<td>0</td>
<td>IMSCON</td>
<td>HWS1</td>
<td>HWS1TP01</td>
<td>N</td>
</tr>
<tr>
<td>OTMACL*</td>
<td>IMSA</td>
<td>0</td>
<td>IMSCON</td>
<td>HWS2</td>
<td></td>
<td>N</td>
</tr>
</tbody>
</table>

Explanation: The QUERY command will display both OTMACL99 and OTMACL*, because the OPTION(WILDCARD) keyword is specified. It treats OTMACL* as a mask for a group of names including OTMACL99 and, the stand-alone entry OTMACL* in the table of destination routing descriptors.

Example 3 for QUERY OTMADESC command

TSO SPOC input:
QUERY OTMADESC NAME(OTMD*) TYPE(IMSCON) SHOW(TMEMBER,SMEM,SYNTIMER) OPTION(WILDCARD)

TSO SPOC output:

<table>
<thead>
<tr>
<th>DestName</th>
<th>MbrName</th>
<th>CC</th>
<th>Type</th>
<th>TMember</th>
<th>SMem</th>
<th>Syntimer</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTMD*</td>
<td>IMS1</td>
<td>0</td>
<td>IMSCON</td>
<td>HWS1</td>
<td>N</td>
<td>1000</td>
</tr>
<tr>
<td>OTMDSC01</td>
<td>IMS1</td>
<td>0</td>
<td>IMSCON</td>
<td>HWS1</td>
<td>N</td>
<td>3500</td>
</tr>
<tr>
<td>OTMDSC02</td>
<td>IMS1</td>
<td>0</td>
<td>IMSCON</td>
<td>HWS1</td>
<td>N</td>
<td>999999</td>
</tr>
<tr>
<td>OTMDSC03</td>
<td>IMS1</td>
<td>0</td>
<td>IMSCON</td>
<td>HWS1</td>
<td>N</td>
<td>1000</td>
</tr>
<tr>
<td>OTMDSC04</td>
<td>IMS1</td>
<td>0</td>
<td>SM01</td>
<td></td>
<td>Y</td>
<td>4000</td>
</tr>
<tr>
<td>OTMDSC08</td>
<td>IMS1</td>
<td>0</td>
<td>IMSCON</td>
<td>HWS1</td>
<td>N</td>
<td></td>
</tr>
</tbody>
</table>

Explanation: The last descriptor, OTMDSC08, does not show any Syntimer value because this descriptor is normally not used for synchronous callout. Syntimer is only for synchronous callout processing.

Example 4 for QUERY OTMADESC command: RMTIMSCON

The following example shows all OTMA destination descriptors that are used to route ALTPCB output to the remote IMS Connect connection ICON2B.

TSO SPOC input:
QRY OTMADESC NAME(*) RMTIMSCON(ICON2B) SHOW(ALL) OPTION(WILDCARD)

TSO SPOC output, first screen:

PLEX1 IMS Single Point of Control
Command ==>>

------------------------- Plex .. PLEX1 Route .. IMS1 Wait .. 5:00

Response for: QRY OTMADESC NAME(*) RMTIMSCON(ICON2B) SHOW(ALL)... More:  >

<table>
<thead>
<tr>
<th>DestName</th>
<th>MbrName</th>
<th>CC</th>
<th>Type</th>
<th>TMember</th>
<th>TPipe</th>
<th>SMem</th>
<th>Adapter</th>
<th>Converte</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESC0001</td>
<td>IMS1</td>
<td>0</td>
<td>IMSCON</td>
<td>HWS1</td>
<td>TP1PE01</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DESC0002</td>
<td>IMS1</td>
<td>0</td>
<td>IMSCON</td>
<td>HWS1</td>
<td>TP1PE02</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DESC0003</td>
<td>IMS1</td>
<td>0</td>
<td>IMSCON</td>
<td>HWS1</td>
<td>TP1PE03</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DESC0004</td>
<td>IMS1</td>
<td>0</td>
<td>IMSCON</td>
<td>HWS1</td>
<td>TP1PE03</td>
<td>N</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
**Explanation:** The QUERY OTMADESC command is issued to IMS1. Because NAME(\*) and OPTION(WILDCARD) are specified, command processing searches all OTMA destination descriptors. However, because RMTIMSCON=ICON2B is also specified, only descriptors that include RMTIMSCON=ICON2B are displayed. Because SHOW(ALL) is specified, all output fields are shown, even if the parameter is not specified in the descriptor. The RmtIMS, RmtTran, and Userid output fields are also related to the IMS-to-IMS TCP/IP connection.

**Example 5 for QUERY OTMADESC command: RMTTRAN**

The following example shows all OTMA destination descriptors that set a transaction code, APOL12, in ALTPCB messages that are routed to a remote IMS system for processing.

**TSO SPOC input:**

```plaintext
QRY OTMADESC NAME(*) RMTTRAN(APOL12) SHOW(ALL) OPTION(WILDCARD)
```

**TSO SPOC output, first screen:**

<table>
<thead>
<tr>
<th>DestName</th>
<th>MbrName</th>
<th>CC</th>
<th>Type</th>
<th>TMember</th>
<th>TPipe</th>
<th>SMem</th>
<th>Converter</th>
<th>Syntimer</th>
<th>RmtIMSCon</th>
<th>RmtIMS</th>
<th>RmtTran</th>
<th>Userid</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESC0001</td>
<td>IMS1</td>
<td>ICON2B</td>
<td>IMS2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DESC0002</td>
<td>IMS1</td>
<td>ICON2B</td>
<td>IMS2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DESC0003</td>
<td>IMS1</td>
<td>ICON2B</td>
<td>IMS2</td>
<td>APOL12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DESC0004</td>
<td>IMS1</td>
<td>ICON2B</td>
<td>IMS2</td>
<td>APOL12</td>
<td>BILL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM01000B</td>
<td>IMS1</td>
<td>ICON2B</td>
<td>IMS2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T01R2B12</td>
<td>IMS1</td>
<td>ICON2B</td>
<td>IMS2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T02R2B12</td>
<td>IMS1</td>
<td>ICON2B</td>
<td>IMS2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**TSO SPOC output, second screen scrolling right:**

<table>
<thead>
<tr>
<th>DestName</th>
<th>MbrName</th>
<th>CC</th>
<th>Type</th>
<th>TMember</th>
<th>TPipe</th>
<th>SMem</th>
<th>Converter</th>
<th>Syntimer</th>
<th>RmtIMSCon</th>
<th>RmtIMS</th>
<th>RmtTran</th>
<th>Userid</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESC0003</td>
<td>IMS1</td>
<td>ICON2B</td>
<td>IMS2</td>
<td>APOL12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DESC0004</td>
<td>IMS1</td>
<td>ICON2B</td>
<td>IMS2</td>
<td>APOL12</td>
<td>BILL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Explanation:** The QUERY OTMADESC command is issued to IMS1. Because NAME(\*) and OPTION(WILDCARD) are specified, command processing searches all OTMA destination descriptors. However, because RMTTRAN(APOL12) is also specified, only descriptors that include RMTTRAN=APOL12 are displayed.
Because SHOW(ALL) is specified, all output fields are shown, even if the parameter is not specified in the descriptor. The RmtIMSCon, RmtIMS, and Userid output fields are also related to the processing of ALTPCB messages on remote IMS systems.

**Example 6 for QUERY OTMADESC command: TPIPE for connections to a remote IMS system**

The following example shows all OTMA destination descriptors that specify the same tpipe, TPSM01, which is used to route ALTPCB messages to a remote IMS system for processing.

**TSO SPOC input:**
QRY OTMADESC NAME(*) TPIPE(TPSM01) SHOW(ALL) OPTION(WILDCARD)

**TSO SPOC output, first screen:**

<table>
<thead>
<tr>
<th>DestName</th>
<th>MbrName</th>
<th>CC</th>
<th>Type</th>
<th>TMember</th>
<th>TPipe</th>
<th>SMem</th>
<th>Adapter</th>
<th>Converte</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM01000A</td>
<td>IMS1</td>
<td>0</td>
<td>IMSCON</td>
<td>SM01</td>
<td>TPSM01</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM01000B</td>
<td>IMS1</td>
<td>0</td>
<td>IMSCON</td>
<td>SM01</td>
<td>TPSM01</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM01000C</td>
<td>IMS1</td>
<td>0</td>
<td>IMSCON</td>
<td>SM01</td>
<td>TPSM01</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM01000D</td>
<td>IMS1</td>
<td>0</td>
<td>IMSCON</td>
<td>SM01</td>
<td>TPSM01</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM01000E</td>
<td>IMS1</td>
<td>0</td>
<td>IMSCON</td>
<td>SM01</td>
<td>TPSM01</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM01000F</td>
<td>IMS1</td>
<td>0</td>
<td>IMSCON</td>
<td>SM01</td>
<td>TPSM01</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM01000G</td>
<td>IMS1</td>
<td>0</td>
<td>IMSCON</td>
<td>SM01</td>
<td>TPSM01</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM01000H</td>
<td>IMS1</td>
<td>0</td>
<td>IMSCON</td>
<td>SM01</td>
<td>TPSM01</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**TSO SPOC output, second screen scrolling right:**

<table>
<thead>
<tr>
<th>DestName</th>
<th>MbrName</th>
<th>Converter</th>
<th>Syntimer</th>
<th>RmtIMSCon</th>
<th>RmtIMS</th>
<th>RmtTran</th>
<th>Userid</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM01000A</td>
<td>IMS1</td>
<td>ICON2A</td>
<td>IMS2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM01000B</td>
<td>IMS1</td>
<td>ICON2B</td>
<td>IMS2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM01000C</td>
<td>IMS1</td>
<td>ICON2C</td>
<td>IMS2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM01000D</td>
<td>IMS1</td>
<td>ICON2D</td>
<td>IMS2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM01000E</td>
<td>IMS1</td>
<td>ICON2E</td>
<td>IMS2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM01000F</td>
<td>IMS1</td>
<td>ICON2F</td>
<td>IMS2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM01000G</td>
<td>IMS1</td>
<td>ICON2G</td>
<td>IMS2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM01000H</td>
<td>IMS1</td>
<td>ICON2H</td>
<td>IMS2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Explanation:** The QUERY OTMADESC command is issued to IMS1. Because NAME(*) and OPTION(WILDCARD) are specified, command processing searches all OTMA destination descriptors. However, because TPIPE(TPSM01) is also specified, only descriptors that include TPIPE=TPSM01 are displayed. Because SHOW(ALL) is specified, all output fields are shown, even if the parameter is not specified in the descriptor. The messages queued to tpipe TPSM01 are retrieved by a local instance of IMS Connect and sent on the connection identified under RmtIMSCon to the remote IMS system identified under RmtIMS for processing.

**Related concepts:**

- How to interpret CSL request return and reason codes (System Programming APIs)

**Related reference:**

Chapter 5. QUERY commands
QUERY OTMATI command

Use the QUERY OTMATI command to display information about IMS OTMA message workload.

Subsections:
- “Environment”
- “Syntax”
- “Keywords” on page 421
- “Usage notes” on page 423
- “Output fields” on page 424
- “Return, reason, and completion codes” on page 425
- “Examples” on page 426

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 165. Valid environments for the QUERY OTMATI command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY OTMATI</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CMTMODE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>GRPNAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LTERM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MODNAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MSGAGE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SHOW</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SYNCLVL</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TMEMBER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TPIPE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TRANCODE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>USERID</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax
Keywords

The following keywords are valid for the QUERY OTMATI command:

**CMTMODE**

Specifies the commit mode of the workload to be displayed. Specify 0 to display all workloads that are in commit-then-send (CM0) mode, which is supported on both persistent and transaction sockets and supports only synch level CONFIRM. Specify 1 to display all workloads that are in send-then-commit (CM1) mode, which is supported on both persistent and transaction sockets and supports synch level NONE, CONFIRM, and SYNCH.
GRPNAMEx
Specifies a 1- to 8-character RACF Group ID that is included in the security
prefix of the message. Any group name that exceeds 8 characters is flagged as
an error.

LTERM
Specifies a 1- to 8-character override LTERM name that is included in the
OTMA message state prefix. Any LTERM name that exceeds 8 characters is
flagged as an error.

MODNAME
Specifies a 1- to 8-character message output descriptor name that is included in
the OTMA message state prefix. This descriptor is associated with the
transaction or the program to be scheduled.

MSGAGE
Specifies the minimum amount of clock time since the message (YTIB) became
active. The MSGAGE value has a range of 1 through 86400. This value
represents the number of seconds within a 24-hour period. Any values outside
of this range is an error.

TMEMBER
Specifies a 1- to 16-character OTMA target member name. The member is a
client of OTMA, such as IMS Connect.

TPIPE
Specifies a 1- to 8-character OTMA transaction pipe name.

TRANCODE
Specifies a 1- to 8-character transaction code associated with the program that
is scheduled.

SYNCLVL
Specifies the synch level. Specify 0 for a synch level of NONE, which requires
no acknowledgment from the client. Specify 1 for a synch level of CONFIRM,
which requires the client to acknowledge delivery of output messages. Specify
2 for a synch level of SYNCH, for two-phase commit processing that involves
multiple participants in sync point processing managed through z/OS
Resource Recovery Services (RRS).

USERID
Specifies a 1- to 8-character RACF user ID that is included in the security
prefix of the message.

SHOW
Specifies the output fields to be returned. The filters supported with the
SHOW keyword are:

AGINGVAL
Displays the aging value (how often the cached user ID accessor
environment element (ACEE) should be refreshed). The aging value is
either the message aging value or the client aging value and comes from
the message control prefix or from the message state prefix, respectively.

ALL
Displays all information about the OTMA message workload.

CMTMODE
Displays the commit mode. 0 represents “Commit-then-send” mode, and
1 represents “Send-then-commit” mode.
CTTKN
Displays the context token when a transaction is in a two-phase commit that involves multiple participants in sync point processing managed through RRS.

GRPNAME
Displays the RACF group ID.

LTERM
Displays the override LTERM name.

MODNAME
Displays the override MODNAME.

MSGAGE
Displays the minimum age in seconds since the message (TIB) became active.

MSGCNT
Displays the total number of active TIBs associated with messages, depending on the various parameter values requested.

MSGTKN
Displays the correlator token.

TIMEOUTVAL
Displays the timeout value for CM1 that is missing ACK.

TRANCODE
Displays the transaction code that is associated with the message.

TYPE
Displays the message type, such as SMB transaction, CPIC transaction, IMS command, message switch, message recoverable, conversational transaction, or response.

SMB  SMB transaction
CPC  CPIC transaction
CMD  IMS command
APC  Message switch
RCV  Recoverable transaction
CON  Conversational transaction
EMH  Fast Path transaction
RSP  Transaction response

USERID
Displays the user ID that is included in the security data prefix of the message.

SYNCLVL
Displays the synch level of NONE, CONFIRM, or SYNCH.

Usage notes
The QUERY OTMATI command can be issued both in the active and the alternate system, whether it be on an XRF alternate or RSR tracker system.

The QUERY OTMATI command can be specified through the OM API, including the TSO SPOC and IBM Management Console for IMS and DB2 for z/OS (Management Console) user interface. The output of this command is displayed also in the TSO SPOC or in Management Console.
If the QUERY OTMATI command is issued without the SHOW keyword, the display will show the workloads on each of the IMS instances in the sysplex together with the TMEMBER name, TPIPE name, and the total number of active messages. If any keywords other than SHOW are specified, those keywords will be used as a filter to display the total number of messages in the queue as a subset of the total workload. If the SHOW keyword is specified, the total number of active messages will not be displayed; instead, each individual active message will be displayed together, filtered by the other specified keywords. No log records are written.

**Output fields**

The following table shows the QUERY OTMATI output fields. The columns in the table are:

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGINGVAL</td>
<td>AgingVal</td>
<td>AGINGVAL</td>
<td>RACF ACEE aging value. The value can be:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• a number between 0 and 99999 (seconds)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• &quot;&gt;99999&quot; (the default)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• a blank, which indicates that the TIB was processed in the back-end system</td>
</tr>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code for the line of output. The completion code indicates whether IMS was able to process the command for the specified resource. See &quot;Return, reason, and completion codes&quot; on page 425 for more information. The completion code is always returned.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>N/A</td>
<td>Completion code text that briefly explains the meaning of the non-zero completion code. This field is returned only for an error completion code.</td>
</tr>
</tbody>
</table>
### Table 166. Output fields for the `QUERY OTMATI` command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMTMODE</td>
<td>CmtMode</td>
<td>CMTMODE</td>
<td>Commit mode. The value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1*</td>
</tr>
<tr>
<td>CTTKN</td>
<td>CtTkn</td>
<td>CTTKN</td>
<td>Context token.</td>
</tr>
<tr>
<td>GRPNAME</td>
<td>GrpName</td>
<td>GRPNAME</td>
<td>RACF group name.</td>
</tr>
<tr>
<td>LTERM</td>
<td>Lterm</td>
<td>LTERM</td>
<td>Override LTERM name.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>IMSplex member that built the output line. The IMS identifier is always returned.</td>
</tr>
<tr>
<td>MODNAME</td>
<td>MODname</td>
<td>MODNAME</td>
<td>Override MODNAME.</td>
</tr>
<tr>
<td>MSGAGE</td>
<td>MsgAge</td>
<td>MSGAGE</td>
<td>Age of the message in the system. The value can be a number between 0 and 86400. For TIBs that are in the system for more than 86400 seconds, or one day, “&gt;86400” is displayed.</td>
</tr>
<tr>
<td>MSGCNT</td>
<td>MsgCnt</td>
<td>MSGCNT</td>
<td>Number of entries that fall in the same filtering criteria. The value can be a number between 0 and 99999, or “&gt;99999”, which indicates that the number of TIBs exceeds five digits.</td>
</tr>
<tr>
<td>MSGTKN</td>
<td>MsgTkn</td>
<td>MSGTKN</td>
<td>Client token.</td>
</tr>
<tr>
<td>MSGTYP</td>
<td>MsgType</td>
<td>TYPE</td>
<td>Message type.</td>
</tr>
<tr>
<td>SYNCLVL</td>
<td>SyncLv1</td>
<td>SYNCLVL</td>
<td>Synch level.</td>
</tr>
<tr>
<td>TMEM</td>
<td>TMember</td>
<td>TMEM</td>
<td>TMEMBER name.</td>
</tr>
<tr>
<td>TMOVAL</td>
<td>TimeoutVal</td>
<td>TIMEOUTVAL</td>
<td>Timeout value for CM1 that is missing ACK. The value can be a number between 0 and 255, or a blank, which indicates that the TIB was processed in the back-end system.</td>
</tr>
<tr>
<td>TPIPE</td>
<td>TPipe</td>
<td>TPIPE</td>
<td>Tpipe name.</td>
</tr>
<tr>
<td>TRAN</td>
<td>Trancode</td>
<td>TRAN</td>
<td>Transaction name.</td>
</tr>
<tr>
<td>UID</td>
<td>Userid</td>
<td>USERID</td>
<td>User ID.</td>
</tr>
</tbody>
</table>

### Return, reason, and completion codes

An IMS return and reason code is returned to OM by the `QUERY OTMATI` command. The OM return and reason codes that may be returned as a result of the `QUERY OTMATI` command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.
Table 167. Return and reason codes for the QUERY OTMATHI command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>Command completed successfully. The command output contains a line for each resource, accompanied by its completion code. See Table 168 for details.</td>
</tr>
<tr>
<td>X'02000008'</td>
<td>X'00002000'</td>
<td>The command contains an invalid verb or no client is registered for the verb.</td>
</tr>
<tr>
<td>X'02000008'</td>
<td>X'00002004'</td>
<td>The command contains an invalid primary keyword or no client registered for the keyword.</td>
</tr>
<tr>
<td>X'02000008'</td>
<td>X'00002028'</td>
<td>The command contains an invalid keyword.</td>
</tr>
<tr>
<td>X'02000008'</td>
<td>X'0000202C'</td>
<td>The command contains an unknown positional parameter.</td>
</tr>
<tr>
<td>X'02000008'</td>
<td>X'00002034'</td>
<td>The command contains an incomplete keyword parameter.</td>
</tr>
<tr>
<td>X'02000008'</td>
<td>X'00002038'</td>
<td>The command is missing a required parameter.</td>
</tr>
<tr>
<td>X'02000008'</td>
<td>X'0000203C'</td>
<td>The command contains an invalid keyword parameter value.</td>
</tr>
</tbody>
</table>

The following table includes an explanation of the completion codes. Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

Table 168. Completion codes for the QUERY OTMATHI command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command completed successfully</td>
<td>The QUERY OTMATHI command completed successfully for the resource.</td>
</tr>
<tr>
<td>4</td>
<td>Command completed unsuccessfully</td>
<td>The QUERY OTMATHI command failed.</td>
</tr>
<tr>
<td>166</td>
<td>Command completed successfully</td>
<td>The queried TMEMBER currently has no transaction instance blocks (YTIBs).</td>
</tr>
</tbody>
</table>

Examples

The following are examples of the QUERY OTMATHI command:

Example: QUERY OTMATHI

TSO SPOC input:
QUERY OTMATHI

TSO SPOC output:

<table>
<thead>
<tr>
<th>TMember</th>
<th>TPipe</th>
<th>MbrName</th>
<th>CC</th>
<th>MsgCnt</th>
</tr>
</thead>
<tbody>
<tr>
<td>MQ</td>
<td>APPLA</td>
<td>IMSA</td>
<td>0</td>
<td>102</td>
</tr>
<tr>
<td>MQ</td>
<td>APPLB</td>
<td>IMSB</td>
<td>0</td>
<td>201</td>
</tr>
<tr>
<td>IMSB</td>
<td>WAS</td>
<td>APPLC</td>
<td>0</td>
<td>301</td>
</tr>
</tbody>
</table>

Explanation: With the QUERY OTMATHI command with no parameters, the display shows the active OTMA send-then-commit messages represented by transaction
instance blocks (YTIBs) that are currently running, waiting for a response, or both. TI stands for transaction instance for OTMA.

**Example: QUERY OTMATI MSGAGE(8)**

TSO SPOC input:
QUERY OTMATI MSGAGE(8)

TSO SPOC output:

<table>
<thead>
<tr>
<th>TMember</th>
<th>TPipe</th>
<th>MbrName</th>
<th>CC</th>
<th>MsgCnt</th>
<th>MsgAge</th>
</tr>
</thead>
<tbody>
<tr>
<td>HW$1</td>
<td>TPIPE1</td>
<td>IMSA</td>
<td>0</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>HW$2</td>
<td>TPIPE2</td>
<td>IMSA</td>
<td>0</td>
<td>3</td>
<td>9</td>
</tr>
</tbody>
</table>

**Explanation:** If the QUERY OTMATI command is issued with the MSGAGE keyword, the display will show a subset of the display of Example #1 that has messages with an age of 8 seconds or more. The MsgAge column shows the minimum age found for messages in that subset. For example, the output shows that a subset of the two messages for TPIPE(TPIPE1) contains messages that have an age of 8 seconds or more. The three messages for TPIPE (TPIPE2) contain messages that also have an age of 8 seconds or more and the least age found for its messages was 9 seconds. The display can further be filtered using any keywords, such as TRANCOD and USERID.

**Example: QUERY OTMATI MSGAGE(8) SHOW(MODNAME)**

TSO SPOC input:
QUERY OTMATI MSGAGE(8) SHOW(MODNAME)

TSO SPOC output:

<table>
<thead>
<tr>
<th>TMember</th>
<th>TPipe</th>
<th>MbrName</th>
<th>CC</th>
<th>MsgAge</th>
<th>Userid</th>
</tr>
</thead>
<tbody>
<tr>
<td>HW$1</td>
<td>TPIPE1</td>
<td>IMSA</td>
<td>0</td>
<td>10</td>
<td>SVL01</td>
</tr>
<tr>
<td>HW$1</td>
<td>TPIPE1</td>
<td>IMSA</td>
<td>0</td>
<td>8</td>
<td>SVL08</td>
</tr>
<tr>
<td>HW$2</td>
<td>TPIPE2</td>
<td>IMSA</td>
<td>0</td>
<td>9</td>
<td>IMS02</td>
</tr>
<tr>
<td>HW$2</td>
<td>TPIPE2</td>
<td>IMSA</td>
<td>0</td>
<td>16</td>
<td>IMS07</td>
</tr>
<tr>
<td>HW$2</td>
<td>TPIPE2</td>
<td>IMSA</td>
<td>0</td>
<td>11</td>
<td>IMS08</td>
</tr>
</tbody>
</table>

**Explanation:** If the QUERY OTMATI command is issued with a MSGAGE keyword and a SHOW keyword specifying MODNAME, the display will expand the display of Example #2 but without the MsgCnt column. Instead of grouping the messages as in Example #2, each message is displayed separately.

**Related concepts:**

- How to interpret CSL request return and reason codes (System Programming APIs)
- Command keywords and their synonyms (Commands)

**QUERY PGM command**

Use the QUERY PGM command to query information about program resources.

A program resource defines the application program requirements for application programs that run under the control of the DB/TM environment, as well as for application programs that access databases through DBCTL.

Subsections:
Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 169. Valid environments for the QUERY PGM command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY PGM</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SHOW</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>STATUS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

![Syntax Diagram]

- QUERY PGM
- NAME(*)
- SHOW(
  - ALL
  - BMPTYPE
  - DEFN
  - DEFNTYPE
  - DOPT
  - FP
  - GLOBAL
  - IMSID
  - GPSB
  - LANG
  - LOCAL
  - MODEL
  - RESIDENT
  - SCNDTYPE
  - STATUS
  - TIMESTAMP
  - TRANSTAT
  - RTC
  - TRAN
  - WORK

Examples
The following keywords are valid for the QUERY PGM command:

**NAME**
Specifies the 1-8 character name of the program. Wildcards can be specified in the name. The name is a repeatable parameter. The default is NAME(*) which returns all program resources.

**SHOW**
Specifies the program output fields to be returned. The program name is always returned, along with the name of the IMS that created the output, the region type, and the completion code. The filters supported with the SHOW keyword are:

- **ALL**
  Returns all information about the program itself. Other SHOW keywords can be specified to return information about resources related to the program.

- **BMPTYPE**
  BMP type option. Specifies whether the program executes in a BMP type region or not. A BMP type region might be a BMP region or a JBP region.

  PSBs scheduled by DB2 stored procedures, by programs running under WebSphere® Application Server, and by other users of the ODBA interface may be defined with BMPTYPE Y or N.

- **DB**
  The databases referenced by the PSB associated with this program. If the PSB intent list is not resident, the ACBLIB is searched to obtain the database information.

  The QRY PGM SHOW(DB) command will not show the database names for which the dynamic (DOPT) PSB has intent.

  **Note:** You cannot specify this filter with other SHOW filters; you must specify SHOW(DB) individually.

- **DEFN**
  Specifies that the resource definitions are to be returned.

  The program attributes that can be returned are: BMPTYPE, DOPT, FP, GPSB, LANG, RESIDENT SCHDTYPE, TRANSTAT, the repository create and update time stamps, and the IMS runtime create, update, import, and access time stamps.

  If SHOW(DEFN) is specified without any other SHOW filters or with the IMSID filter, all the definitional attributes, including those defined globally in the repository and those defined locally in the IMS system, are returned. The runtime resource definitions from the IMS system are returned by each
IMS that receives the command. The stored resource definitions in the IMSRSC repository are returned by the command master IMS if the command master IMS is enabled to use the repository.

The command master IMS returns a response line for each generic stored resource definition obtained from the repository. This response line displays the attributes of the generic resource definition. When SHOW(DEFN) is specified without the IMSID filter and all the IMS systems have the same attribute values defined, only the response line for the generic definition is returned. The IMS IDs of the IMS systems that have the stored resource definition defined are not returned. If an IMS system has a stored resource definition with one or more attribute values that differ from the generic stored resource definition, an additional response line is returned for each IMS that has different attribute values.

If SHOW(DEFN,LOCAL) is specified, the runtime resource definitions from the IMS system are returned by each IMS that received the command.

If SHOW(DEFN,GLOBAL) is specified, the stored resource definitions from the repository are returned by the command master IMS. SHOW(DEFN,GLOBAL) is valid only when the command master IMS is enabled to use the repository.

If SHOW(DEFN) is specified with other parameters, only the requested definitional attributes are returned. For example, if SHOW(DEFN,TIMESTAMP) is specified, only the time stamps are returned.

Restrictions:
- SHOW(DEFN) cannot be specified with DEFNTYPE, MODEL, STATUS, WORK, DB, RTC, or TRAN.
- The LclStat, LModelName, LModelType, and LDefnType columns, which are returned on the QRY PGM SHOW(ALL) command, are not returned with SHOW(DEFN).
- The Repo and IMSid columns, which are returned with SHOW(DEFN), are not returned with SHOW(ALL).
- When querying program information from the repository, the SHOW(DEFN) filter is not supported when used with the STATUS filter. The runtime filter of STATUS is not valid with SHOW(DEFN), SHOW(DEFN,GLOBAL), SHOW(DEFN,LOCAL), SHOW(DEFN,IMSID), SHOW(DEFN,IMSID,GLOBAL) or SHOW(DEFN,IMSID,LOCAL).

If SHOW(DEFN,IMSID) is specified, a response line is returned for the generic stored resource definition and an additional response line is returned for each IMS that has the resource defined in the repository, regardless of whether their stored resource definitions are the same as the generic resource definition.

**DEFNTYPE**
Definition type that the descriptor or resource was defined with.

**DOPT**
Dynamic option.

**FP** Fast Path option.

**GLOBAL**
Specifies that the stored resource definitions from the repository are to be returned. If SHOW(GLOBAL,DEFN) is specified, the global resource

---

430 Commands, Volume 2: IMS Commands N - V
definitions from the repository are returned by the command master IMS. SHOW(GLOBAL,DEFN) is valid only when the command master IMS is enabled to use the repository.

**GPSB**
Generated PSB option.

**IMSID**
Specifies that the IMS IDs of the IMS systems whose resource lists contain the specified resource name are to be returned. SHOW(IMSID) is processed only by the command master IMS and is valid only when command master IMS is enabled to use the repository.

When SHOW(IMSID) is specified with the DEFN filter, a separate line is returned for each IMS that has the resource defined, along with the stored resource definitions.

When SHOW(IMSID) is specified without the DEFN filter, a separate line is returned for each IMS that has the resource defined, along with the resource name. No resource definitions are returned.

SHOW(IMSID) cannot be specified with any other SHOW filters other than DEFN and GLOBAL. If SHOW(IMSID,GLOBAL) is specified, GLOBAL is ignored; that is, SHOW(IMSID,GLOBAL) is treated as SHOW(IMSID). SHOW(DEFN,IMSID,LOCAL) is treated as SHOW(DEFN,LOCAL).

**LANG**
Language interface of the application program. The language interface is displayed only for programs defined as GPSB(Y) and programs defined as DOPT(Y) LANG(JAVA).

**LOCAL**
Specifies that the runtime resource definitions from the IMS system are to be returned.

SHOW(DEFN,LOCAL) returns only the local definititional attributes from the IMS system that processes the command.

**MODEL**
Model name and model type used to create this resource. If the descriptor or resource is created with one or more of the attributes defined and no model specified, the model name and model type is the default descriptor. The model name and model type are blank for IMS-defined resources and descriptors and queue-only transactions created by the DFSINSX0 exit. The CREATE command specified without the LIKE keyword creates a descriptor or resource using the default descriptor as a model. The default descriptor is either the IMS descriptor DFSDSPG1 or user-defined. The CREATE command specified with the LIKE keyword creates a descriptor or resource using a model. The descriptor or resource is created with all the same attributes as the model. Attributes set explicitly by the CREATE command override the model attributes. The model type can either be a descriptor (DESC) or a resource (RSC). The model name and model type are for reference only. The descriptor or resource attributes might not match the model, if attributes are overridden by CREATE or UPDATE command values, or the model is updated later. The model name and model type can be used to identify resources that were created with the same model. The model name and model type of a resource are exported and imported. The IMPORT command does not use the model name and model type when creating a resource.
RESIDENT
Resident option, which indicates whether the PSB is accessed in local storage. The local runtime value for the resident option is shown. The resident option definition is also shown, if it is different from the runtime value.

The RESIDENT(Y) option takes effect at the next IMS restart, unless an error is encountered such as no PSB in the ACBLIB for the program, or if the program was created or updated as RESIDENT(Y) after the checkpoint from which this IMS is performing emergency restart.

RTC
Routing code descriptors associated with this program.

Note: You cannot specify this filter with other SHOW filters; you must specify SHOW(RTC) individually.

SCHEDTYPE
Scheduling type, which indicates whether this application program can be scheduled into more than one message region or batch message region simultaneously.

STATUS
Program status. For a description of the possible program status returned, see the STATUS keyword under the Output fields table.

TIMESTAMP
The creation time (TIMECREATE), last update time (TIMEUPDATE), last access time (TIMEACCESS), and last import time (TIMEIMPORT) time stamps are returned. The time is returned in local time in the format YYYY:JJJ HH:MM:SS.TH, where:
- YYYY is the year.
- JJJ is the Julian day (001 - 365).
- HH is the hour (01 - 24).
- MM is the minute (00 - 59).
- SS is the seconds (00 - 59).
- TH is the tenths and hundredths of a second (00 - 99).

TRAN
Transactions associated with this program.

Note: You cannot specify this filter with other SHOW filters; you must specify SHOW(TRAN) individually.

TRANSTAT
Transaction level statistics option.

WORK
Work in progress for the program specified on NAME parameter and its associated resources. The QRY PGM SHOW(WORK) command can be issued before a DELETE, IMPORT or UPDATE command to check for any work in progress for the specified program and any of its associated resources. Any work in progress might cause the subsequent DELETE, IMPORT or UPDATE commands to fail. The QRY PGM SHOW(WORK) command returns the work status for the program specified. If no work is in progress for the specified resource, a response line is returned with a work status of blanks.
Notes:
1. SHOW(WORK) specified with NAME(*) might have a performance impact on the processing of the command.
2. You cannot specify this filter with other SHOW filters; you must specify SHOW(WORK) individually.
3. The QRY PGM SHOW(WORK) command is not valid on an XRF alternate.

STATUS()

Selects programs for display that possess at least one of the specified program status. This selection allows for additional filtering by program status. The program status is returned as output, even if the SHOW(STATUS) was not specified.

DB-NOTAVL
A database used by this program is not available, either because it is not defined, or because it is not authorized.

IOPREV
A BMP, IFP, or JBP program cannot complete scheduling, because I/O prevention has not completed. Further I/O requests to data sets are inhibited.

LOCK
Sets the STATUS() filter to return information about programs that are locked.

NOTINIT
Sets the STATUS() filter to return information about programs that are not initialized and therefore cannot be used.

STOSCHD
Sets the STATUS() filter to return information about programs for which program scheduling is stopped.

TRACE
Sets the STATUS() filter to return information about programs that are being traced.

Usage notes

Program resources combined with transactions define the scheduling and resource requirements for an application program. The program resource describes an application program that operates in a message processing region, Fast Path message-driven program region, batch processing region, batch message processing region, or CCTL threads.

This command can be issued only through the Operations Manager API. This command applies to DB/DC, DBCTL and DCCTL systems. This command is allowed on XRF alternate and RSR tracker systems.

If you want to display information about resource definitions, specify SHOW(DEFN). If you want to know which IMS systems have the resource defined and also know the attributes or resource definitions at each IMS system, specify SHOW(DEFN,IMSID). If you want to know which IMS systems have the resource defined, specify SHOW(IMSID).
Equivalent IMS type-1 commands

The following table shows variations of the QUERY PGM command and the type-1 IMS commands that perform similar functions.

Table 170. Type-1 equivalents for the QUERY PGM command

<table>
<thead>
<tr>
<th>QUERY PGM command</th>
<th>Similar IMS type-1 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY PGM SHOW(ALL)</td>
<td>/DISPLAY PROGRAM, /DISPLAY STATUS PROGRAM</td>
</tr>
<tr>
<td>QUERY PGM SHOW(DB)</td>
<td>/DISPLAY PSB</td>
</tr>
<tr>
<td>QUERY PGM SHOW(RTC)</td>
<td>/DISPLAY PSB</td>
</tr>
<tr>
<td>QUERY PGM SHOW(TRAN)</td>
<td>/DISPLAY PROGRAM</td>
</tr>
<tr>
<td>QUERY PGM SHOW(WORK)</td>
<td>/DISPLAY MODIFY ALL</td>
</tr>
</tbody>
</table>

Output fields

The following table shows the QUERY PGM output fields. The columns in the table are:

Short label
Contains the short label generated in the XML output.

Long label
Contains the long label generated in the XML output.

Keyword
Identifies keyword on the command that caused the field to be generated. N/A appears for output fields that are always returned. error appears for output fields that are returned only in case of an error.

Scope
Identifies the scope of the output field.

Meaning
Provides a brief description of the output field.

Table 171. Output fields for the QUERY PGM command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMPT</td>
<td>LBmpType</td>
<td>BMPTYPE,</td>
<td>LCL</td>
<td>BMP type. The output is returned from the local IMS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DEFN</td>
<td></td>
<td>N  The program does not execute in a BMP type region. It might execute in an IMS TM MPP, JMP or IFP region, or it might use the ODBA interface or the DRA interface. Use this specification for programs that run in IMS TM MPP, JMP, and IFP regions, or PSBs that are scheduled by CICS programs using DBCTL and other users of the DRA interface. This is the default.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y  The program executes in a BMP type region. It might execute in an IMS BMP region or a JBP region. Any associated transactions are assigned normal and limit priority values of zero.</td>
</tr>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>LCL</td>
<td>Completion code.</td>
</tr>
<tr>
<td>Short label</td>
<td>Long label</td>
<td>Keyword</td>
<td>Scope</td>
<td>Meaning</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>---------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CText</td>
<td>error</td>
<td>LCL</td>
<td>Completion code text that briefly explains the meaning of the non-zero completion code.</td>
</tr>
<tr>
<td>DB</td>
<td>DBName</td>
<td>DB</td>
<td>LCL</td>
<td>Database referenced by the program.</td>
</tr>
<tr>
<td>DFNT</td>
<td>LDefnType</td>
<td>DEFNTYPE</td>
<td>LCL</td>
<td>Definition type, which can be one of the following:</td>
</tr>
<tr>
<td>CREATE</td>
<td>Defined by a CREATE command.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFSINSX0</td>
<td>Defined by user exit DFSINSX0. The program can only be exported if the export option was set.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMPORT</td>
<td>Defined by an IMPORT command.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMS</td>
<td>Defined by IMS. DBF#FPU0 is a program created by IMS for the Fast Path Utility.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MODBLKS</td>
<td>Defined by system definition in the MODBLKS data set. The definition type changes from MODBLKS to UPDATE if an UPDATE PGM command is issued to change the attributes of a MODBLKS-defined program.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UPDATE</td>
<td>Defined by system definition in the MODBLKS data set, but changed into a dynamic resource by an UPDATE command.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOPT</td>
<td>LDOPT</td>
<td>DOPT, DEFN</td>
<td>LCL</td>
<td>Dynamic option (Y) or not (N). The output is returned from the local IMS.</td>
</tr>
<tr>
<td>N</td>
<td>The PSB associated with this application program is not located dynamically. The PSB must exist in ACBLIB, otherwise the program is set to a NOTINIT-xx-reason status and cannot be scheduled.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>The PSB associated with this program is located dynamically. Each time the program associated with this PSB is scheduled, the latest copy of the PSB is loaded from ACBLIB. The PSB does not need to be in any data set defined for ACBLIB until it is required to process a transaction. A new version of the PSB can be defined in ACBLIB and is picked up the next time the PSB is scheduled. DOPT PSBs referencing DBDs that are missing from ACBLIB cannot be scheduled. When the program terminates, the PSB is deleted from the PSB pool.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP</td>
<td>LFP</td>
<td>FP, DEFN</td>
<td>LCL</td>
<td>Fast Path exclusive program (E) or not (N). The output is returned from the local IMS.</td>
</tr>
<tr>
<td>E</td>
<td>The program is a Fast Path-exclusive application program.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>The program is not a Fast Path application program.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 171. Output fields for the QUERY PGM command  (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPSB</td>
<td>LGPSB</td>
<td>GPSB, DEFN</td>
<td>LCL</td>
<td>Generated PSB generated by IMS (Y) or not (N). The output is returned from the local IMS.</td>
</tr>
<tr>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td>The PSB associated with the program is not generated by IMS. The PSB must exist in ACBLIB, otherwise the program is set to a NOTINIT-xx-reason status and cannot be scheduled.</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td>The PSB associated with the program resource is generated by IMS. It is not loaded from ACBLIB. The scheduling process of all environments generates a PSB containing an I/O PCB and an alternate modifiable PCB. You do not need to perform the PSBGEN and ACBGEN, thus eliminating I/O to the ACBLIB. The generated PSB contains an I/O PCB named IOPCBbbb and a modifiable, alternate PCB named TPPCB1bb. With an alternate modifiable PCB, an application can use the CHNG call to change the output destination and send output to a destination other than the input destination.</td>
</tr>
<tr>
<td>IMSID</td>
<td>IMSid</td>
<td>IMSID</td>
<td>GBL</td>
<td>Returns from the repository the IMSIDs that have the resource defined.</td>
</tr>
<tr>
<td>LANG</td>
<td>LPgmLang</td>
<td>LANG, DEFN</td>
<td>LCL</td>
<td>Language interface. The output is returned from the local IMS. Assembler or COBOL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>JAVA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Java™ (can only run in a Java dependent region)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PASCAL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PASCAL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PLI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ALL, RESIDENT</td>
<td>LCL</td>
<td>Local runtime value of the resident option. Indicates whether the program PSB resides in local storage.</td>
</tr>
<tr>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td>The PSB associated with the named program resource is not made resident in storage. If a program is defined as resident but encounters an error during IMS restart, N is set. The PSB is loaded at scheduling time.</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td>The PSB associated with the named program resource is made resident in storage at the next IMS restart. At the next IMS restart, IMS loads the PSB and initializes it. A resident program is accessed from local storage, which eliminates I/O to the ACBLIB.</td>
</tr>
</tbody>
</table>
Table 171. Output fields for the QUERY PGM command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSTT</td>
<td>LcLStat</td>
<td>STATUS</td>
<td>LCL</td>
<td>Local application program status.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>DB-NOTAVL</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A database used by this program is not available, either because it is not defined, or because it is not authorized.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>IOPREV</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A BMP program containing GSAM cannot complete scheduling because I/O prevention has not completed. Further I/O requests to data sets are inhibited.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>LOCK</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Program is locked.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>NOTINIT-xx-reason</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Programs that are not initialized and therefore cannot be used. NOTINIT is displayed in the format NOTINIT-xx-reason. xx is the code that identifies the unique location in one module where this reason code is set, which is used by IBM for diagnostic purposes. If the suggested action is to call IBM, the xx value helps IBM identify exactly where this resource was marked bad. DFSPDIR MACRO defines each reason code that might be set in the program bad reason code (field PDIRBADR) and identifies the module that sets it. NOTINIT-00 indicates that the reason is unknown. Action: 1. reason explains the reason code xx in abbreviated text format up to 13 characters.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>STOSCHD</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Program scheduling is stopped.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>TRACE</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Program is being traced.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>LCL</td>
<td>IMSplex member that build the output line.</td>
</tr>
<tr>
<td>MDLN</td>
<td>LModelName</td>
<td>MODEL</td>
<td>LCL</td>
<td>Model name. Name of the resource used as a model to create this resource. DFSDSPG1 is the IMS descriptor name for programs.</td>
</tr>
<tr>
<td>MDLT</td>
<td>LModelType</td>
<td>MODEL</td>
<td>LCL</td>
<td>Model type, either RSC or DESC. RSC means that the resource was created using another resource as a model. DESC means that the resource was created using a descriptor as a model.</td>
</tr>
<tr>
<td>PGM</td>
<td>PgmName</td>
<td>PGM</td>
<td>LCL</td>
<td>Program name that references the database.</td>
</tr>
<tr>
<td>RBMPT</td>
<td>BmpType</td>
<td>BMPTYPE, DEFN</td>
<td>GBL</td>
<td>BMP type. The output is returned from the repository.</td>
</tr>
<tr>
<td>RDOPT</td>
<td>DOPT</td>
<td>DOPT, DEFN</td>
<td>GBL</td>
<td>Dynamic option (Y) or not (N). The output is returned from the repository.</td>
</tr>
<tr>
<td>REPO</td>
<td>Repo</td>
<td>DEFN</td>
<td>GBL</td>
<td>Indicates whether the line shows the stored resource definitions. Y Indicates repository definitions. (blank) Indicates local definitions.</td>
</tr>
<tr>
<td>RFP</td>
<td>FP</td>
<td>FP, DEFN</td>
<td>GBL</td>
<td>Fast Path exclusive program (E) or not (N). The output is returned from the repository.</td>
</tr>
<tr>
<td>Short label</td>
<td>Long label</td>
<td>Keyword</td>
<td>Scope</td>
<td>Meaning</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>---------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>RGNT</td>
<td>LRgnType</td>
<td>N/A</td>
<td>LCL</td>
<td>Region type in which program can run. Some programs can run in additional region types. For example, a program defined with a program type of MSG can run in a BMP under certain conditions. The output is returned from the local IMS. BMP indicates a batch message processing region. FPU indicates a Fast Path utility region. IFP indicates a Fast Path message processing region. JBP indicates a Java batch message processing region. JMP indicates a Java message processing region. MPP indicates an MPP processing region.</td>
</tr>
<tr>
<td>RGPSB</td>
<td>GPSB</td>
<td>GPSB, DEFN</td>
<td>GBL</td>
<td>Generated PSB generated by IMS (Y) or not (N). The output is returned from the repository.</td>
</tr>
<tr>
<td>RLANG</td>
<td>PgmLang</td>
<td>LANG, DEFN</td>
<td>GBL</td>
<td>Language interface. The output is returned from the repository.</td>
</tr>
<tr>
<td>RRSN</td>
<td>Rsnt</td>
<td>DEFN, RESIDENT</td>
<td>GBL</td>
<td>Resident value from the repository.</td>
</tr>
<tr>
<td>RRGNT</td>
<td>RgnType</td>
<td>N/A</td>
<td>GBL</td>
<td>Region type in which program can run. The output is returned from the repository.</td>
</tr>
<tr>
<td>RSCHD</td>
<td>SchdType</td>
<td>SCHDTYPE, DEFN</td>
<td>GBL</td>
<td>Schedule type. The output is returned from the repository.</td>
</tr>
<tr>
<td>RSDN</td>
<td>LDRsdnt</td>
<td>ALL, RESIDENT</td>
<td>LCL</td>
<td>Local deferred resident value that takes effect at the next IMS restart. A value of Y is shown if a program was defined as resident but could not be made resident at IMS restart time because no PSB existed for it in ACBLIB. This program can become resident during the next IMS restart only if there is a PSB for it in the ACBLIB.</td>
</tr>
<tr>
<td>RTC</td>
<td>Rtc</td>
<td>RTC</td>
<td>LCL</td>
<td>Routing code associated with the program.</td>
</tr>
<tr>
<td>RTLS</td>
<td>TranStat</td>
<td>TRANSTAT, DEFN</td>
<td>GBL</td>
<td>Transaction level statistics logged (Y) or not (N). The output is returned from the repository.</td>
</tr>
<tr>
<td>RTMCN</td>
<td>TimeCreate</td>
<td>DEFN</td>
<td>GBL</td>
<td>Create time from the repository. This is the time the resource was first created in the repository.</td>
</tr>
<tr>
<td>RTMPN</td>
<td>TimeUpdate</td>
<td>DEFN</td>
<td>GBL</td>
<td>Update time from the repository. This is the time the resource was last updated in the repository.</td>
</tr>
<tr>
<td>SCHD</td>
<td>LSchdType</td>
<td>SCHDTYPE, DEFN</td>
<td>LCL</td>
<td>Schedule type. The output is returned from the local IMS. PARALLEL The application program can be scheduled into more than one message region or batch message region simultaneously. SERIAL The application program can only be scheduled in one region at a time.</td>
</tr>
<tr>
<td>TLS</td>
<td>LTranst</td>
<td>TRANSTAT, DEFN</td>
<td>LCL</td>
<td>Transaction level statistics logged (Y) or not (N). The output is returned from the local IMS.</td>
</tr>
</tbody>
</table>

- **N**: Transaction level statistics logging is not active.
- **Y**: Transaction level statistics logging is active.
Table 171. Output fields for the QUERY PGM command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
</table>
| TMAC        | LTimeAccess| TIMESTAMP | LCL   | The time that the resource was last accessed. The last access time is retained across warm start, emergency restart, EXPORT and IMPORT. The updating of the last access time is not logged. After a restart, the last access time reflects the time recorded in the restart checkpoint log records. The output is returned from the local IMS. For a program resource, the following actions update the last access time:  
  - Program is scheduled.  
  - CREATE command or DFSINSX0 exit references the resource as a model. |
| TMCR        | LTimeCreate| TIMESTAMP | LCL   | The time that the resource was created with a CREATE PGM command, an IMPORT command that creates the program, or IMS initialization. The create time is retained across warm start, emergency restart, EXPORT and IMPORT. The output is returned from the local IMS. |
| TMIM        | LTimeImport| TIMESTAMP | LCL   | The time that the resource was last imported, if applicable. The import time is retained across warm start and emergency restart. The output is returned from the local IMS. |
| TMUP        | LTimeUpdate| TIMESTAMP | LCL   | The last time the attributes of the runtime resource definition were updated as a result of the UPDATE PGM command or the IMPORT command. The update time is retained across warm start and emergency restart. The output value is obtained from the local IMS. |
| TRAN        | Tran       | TRAN      | LCL   | Transaction associated with the program. |
| WRK         | Work       | WORK      | LCL   | Work is in progress for the program or one of its associated resources. The work in progress can be one of the following:  
  - ANOTHER CMD IN PROGRESS Another command (such as DELETE or UPDATE) to delete or update the program is already in progress, or a command to delete or update a transaction referencing the program to be updated is in progress.  
  - SCHEDULED Program is scheduled. |

Table 172. Reason information for NOTINIT-xx-reason status

<table>
<thead>
<tr>
<th>Reason</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACBLIBREAD</td>
<td>I/O error reading ACBLIB.</td>
</tr>
<tr>
<td>ALIAS</td>
<td>Alias name error.</td>
</tr>
<tr>
<td>BLDL</td>
<td>BLDL miscellaneous error trying to build ACBLIB directory.</td>
</tr>
<tr>
<td>DBFINITP0</td>
<td>Module DBFINITP0 returns nonzero return code.</td>
</tr>
<tr>
<td>DBNOTINIT</td>
<td>Program references a database that is not initialized and has a NOTINIT status. Action: 2.</td>
</tr>
<tr>
<td>DMBINCOMPTBL</td>
<td>DMB incompatibility.</td>
</tr>
<tr>
<td>DMBNUM</td>
<td>No DDIR control block for database with this DMB number exists. Action: 1.</td>
</tr>
<tr>
<td>DMBPOOL</td>
<td>DMB pool shortage.</td>
</tr>
</tbody>
</table>
Table 172. Reason information for NOTINIT-xx-reason status (continued)

<table>
<thead>
<tr>
<th>Reason</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>EOD</td>
<td>EOD marker found before DMB.</td>
</tr>
<tr>
<td>FPDB</td>
<td>The database is a Fast MSDB or DEDB that is defined in a non-Fast Path (FP=N) system. The database cannot be used.</td>
</tr>
<tr>
<td>FPMISMATCH</td>
<td>The Fast Path database DDIR control block does not match with the non-Fast Path PCB.</td>
</tr>
<tr>
<td>INTLISTDB</td>
<td>Intent list contains unknown database. Action: 5.</td>
</tr>
<tr>
<td>INTLISTLEN</td>
<td>Intent list read length is invalid.</td>
</tr>
<tr>
<td>INTLISTLEN0</td>
<td>Intent list read length is zero.</td>
</tr>
<tr>
<td>INTLISTREAD</td>
<td>Intent list read error.</td>
</tr>
<tr>
<td>KSDSESDDS</td>
<td>Missing KSDS/ESDS.</td>
</tr>
<tr>
<td>NAMEMISMATCH</td>
<td>PSB/PDIR names do not match.</td>
</tr>
<tr>
<td>NOACB</td>
<td>No block found in ACBLIB.</td>
</tr>
<tr>
<td>NOAMP</td>
<td>DMB not pointing to access method prefix block (AMP).</td>
</tr>
<tr>
<td>NOAMPOFLWDCB</td>
<td>Access method prefix block (AMP) missing overflow DCB.</td>
</tr>
</tbody>
</table>
| NODB           | A database this program references is not defined. No database DDIR control block exists. Action: 5.  
|                | See message DFS563I for the name of the database that is not defined.   |
| NODMB          | No DMB exists in ACBLIB for the database. Action: 2, 5, or both.        |
| NOPSB          | No PSB exists in ACBLIB for the program. Action: 3.                     |
| NOTDMB         | Not a DMB.                                                             |
| NOTPSB         | Not a PSB. A DMB by the same name as the program is defined in ACBLIB, instead of a PSB. If this resource should be a database, create the database with a CREATE DB command. If this resource should be a program, perform a DBDGEN, PSBGEN, ACBGEN and ACBLIB online change to define this resource as a PSB instead of a DMB. Action: 4. |
| PROCOPTL       | PCB specifies PROCOPT=L for online.                                     |
| PSBLEN         | Bad PSB length.                                                        |
| PSBLEVEL       | The IMS release level at which this PSB is generated using ACBGEN does not match the IMS release level of this IMS. Perform a PSBGEN, ACBGEN, and ACBLIB online change as needed to generate this PSB at the correct IMS release level. Action: 4. |
| PSBLOGICAL     | PSB is missing a logical relationship database. Action: 4.              |
| PSBPOOL        | PSB pool shortage.                                                     |
| REPOCGLIST     | The program name exists in the change list in the IMSRSC repository for this IMS, and the change list is being processed or the change list processing failed because of an error. This program cannot be used, scheduled, updated, exported, or referenced as a model until it is successfully imported so that the runtime program definition and the stored definition in the repository are synchronized. Action: 6. |
| SIZEMISMATCH   | Size mismatch.                                                         |
| WRONGPSB       | Wrong PSB.                                                             |
Table 172. Reason information for NOTINIT-xx-reason status (continued)

<table>
<thead>
<tr>
<th>Reason</th>
<th>Meaning</th>
</tr>
</thead>
</table>

**Note:** Actions that can be taken to initialize the program are:
1. Call IBM.
2. Perform an ACBLIB online change to add the DMB to ACBLIB.
3. Perform an ACBLIB online change to add the PSB to ACBLIB.
4. Perform an ACBLIB online change to correct PSBs, DMBs, or both.
5. Perform a MODBLKS online change or issue a CREATE DB command to create the database; then issue an UPDATE PGM START(SCHD) command to reset the NOTINIT status.
6. If IMS change list processing failed and message DFS4411E was issued, correct the problem and take one of the following actions:
   - Shut down IMS and restart it in order to try processing the change list again.
   - Issue the IMPORT DEFN SOURCE(REPO) NAME(pgmname) TYPE(PGM) command to import the program, where pgmname is the program name.

Return, reason, and completion codes

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 173. Return and reason codes for the QUERY PGM command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>Command completed successfully. The command output contains a line for each resource, accompanied by its completion code. See the completion code table for details.</td>
</tr>
<tr>
<td>X'00000004'</td>
<td>X'00001010'</td>
<td>No resources were found to be returned. The resource names specified might be invalid, or there were no resources that match the filter specified, or there were no resources that had work to display for the SHOW(WORK) specified.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002004'</td>
<td>Invalid command keyword or invalid command keyword combination.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002040'</td>
<td>Invalid filter or filter combination. An invalid filter might be an invalid parameter specified with the SHOW keyword or STATUS keyword. An invalid filter combination might be more than one filter specified (SHOW, STATUS), or more than one SHOW filter specified that includes DB, RTC, TRAN, or WORK.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003000'</td>
<td>Command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code. See the completion code table for details.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>Command was successful for none of the resources. The command output contains a line for each resource, accompanied by its completion code. See the completion code table for details.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004004'</td>
<td>No CQS address space.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>Command is not valid on the RSR tracker.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004016'</td>
<td>The command failed because it is not valid in a DCCTL environment.</td>
</tr>
</tbody>
</table>
### Table 173. Return and reason codes for the QUERY PGM command (continued)

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000010'</td>
<td>X'00004018'</td>
<td>No resource structure, or resource structure is not available.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004024'</td>
<td>No Fast Path defined. SHOW(RTC) is not permitted.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004100'</td>
<td>Resource structure is full.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004104'</td>
<td>No RM address space.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004108'</td>
<td>No SCI address space.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004300'</td>
<td>Command is not allowed because online change for MODBLKS is enabled (DFSDFxxx or DFSCGxxx defined with MODBLKS=OLC, or MODBLKS not defined).</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004500'</td>
<td>IMS is not enabled to use the repository.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004501'</td>
<td>RM is not enabled with the repository.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004502'</td>
<td>Repository is not available.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004503'</td>
<td>Repository is stopped.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004504'</td>
<td>Repository spare recovery is in progress.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004505'</td>
<td>No IMS resource list exists, or no resources for the resource type exist in the IMS resource list.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004507'</td>
<td>Repository access is denied.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004508'</td>
<td>Repository maximum put length exceeded.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004509'</td>
<td>RM data version is lower than the IMS data version.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000450A'</td>
<td>Repository Server is being shut down.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000450B'</td>
<td>Repository Server is not available.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000450C'</td>
<td>Repository Server is busy.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000450D'</td>
<td>RM failed to define some of the internal fields related to the IMSRSC repository.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005004'</td>
<td>DFSOCMD response buffer could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'0000501C'</td>
<td>IMODULE GETMAIN error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005100'</td>
<td>RM request error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005104'</td>
<td>CQS error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005108'</td>
<td>SCI request error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005110'</td>
<td>Repository error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'0000551C'</td>
<td>A request to view the data in the repository was rejected because a corrupted resource list was detected. The QUERY PGM command is rejected because the resource list is unusable. Contact IBM Software Support. Send in the output from the command in error, and a dump of the local RM address space where the command executed or the dump of all RM address spaces in the IMSplex. Also send a copy of the IMSRSC repository RID and RMD data sets.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. The following table includes an explanation of the completion codes.
Table 174. Completion codes for the QUERY PGM command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command completed successfully for program.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>Program name is invalid, or the wildcard parameter specified does not match any resource names.</td>
</tr>
<tr>
<td>28</td>
<td>NO DMB LOADED</td>
<td>The DMB that is associated with the program does not exist in ACBLIB.</td>
</tr>
</tbody>
</table>

Examples

The following are examples of the QUERY PGM command:

**Example 1 for QUERY PGM command**

TSO SPOC input:

```
QUERY PGM NAME(PGM0000%,APOL1,BMP255,DBF=0,DFSIVP67,AUTPSB7,JAVPSB1,
JAVTESTJ,DCSQL7A,DCSQL6C,JVMJBP1) SHOW(ALL)
```

TSO SPOC output:

**Example 1, continued**

![Screen 1]

<table>
<thead>
<tr>
<th>PgmName</th>
<th>MbrName</th>
<th>CC</th>
<th>LRgnType</th>
<th>LBMTYPE</th>
<th>LFP</th>
<th>LDOPT</th>
<th>LGPSB</th>
<th>Lsdnt</th>
<th>LTranStat</th>
<th>LPgmLang</th>
</tr>
</thead>
<tbody>
<tr>
<td>APOL1</td>
<td>IMS1</td>
<td>0</td>
<td>MPP</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>AUTPSB7</td>
<td>IMS1</td>
<td>0</td>
<td>JBP</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>BMP255</td>
<td>IMS1</td>
<td>0</td>
<td>BMP</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>DBF#PPU0</td>
<td>IMS1</td>
<td>0</td>
<td>FPU</td>
<td>N</td>
<td>E</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>DCSQL6C</td>
<td>IMS1</td>
<td>0</td>
<td>MPP</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>DCSQL7A</td>
<td>IMS1</td>
<td>0</td>
<td>MPP</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>DFSIVP67</td>
<td>IMS1</td>
<td>0</td>
<td>JBP</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>JAVPSB1</td>
<td>IMS1</td>
<td>0</td>
<td>IFP</td>
<td>N</td>
<td>E</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>JAVTESTJ</td>
<td>IMS1</td>
<td>0</td>
<td>JMP</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>JVMJBP1</td>
<td>IMS1</td>
<td>0</td>
<td>JBP</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>PGM00001</td>
<td>IMS1</td>
<td>0</td>
<td>BMP</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>PGM00002</td>
<td>IMS1</td>
<td>0</td>
<td>IFP</td>
<td>N</td>
<td>E</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>PGM00003</td>
<td>IMS1</td>
<td>0</td>
<td>MPP</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>PGM00004</td>
<td>IMS1</td>
<td>0</td>
<td>BMP</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

**(scrolled right to screen 2)**

<table>
<thead>
<tr>
<th>PgmName</th>
<th>MbrName</th>
<th>LRgnType</th>
<th>LSchdType</th>
<th>LcIStat</th>
<th>LModelName</th>
<th>LModelType</th>
</tr>
</thead>
<tbody>
<tr>
<td>APOL1</td>
<td>IMS1</td>
<td>MPP</td>
<td>SERIAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUTPSB7</td>
<td>IMS1</td>
<td>JBP</td>
<td>SERIAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMP255</td>
<td>IMS1</td>
<td>BMP</td>
<td>PARALLEL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBF#PPU0</td>
<td>IMS1</td>
<td>FPU</td>
<td>PARALLEL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCSQL6C</td>
<td>IMS1</td>
<td>MPP</td>
<td>SERIAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCSQL7A</td>
<td>IMS1</td>
<td>MPP</td>
<td>SERIAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFSIVP67</td>
<td>IMS1</td>
<td>JBP</td>
<td>SERIAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JAVPSB1</td>
<td>IMS1</td>
<td>IFP</td>
<td>SERIAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JAVTESTJ</td>
<td>IMS1</td>
<td>JMP</td>
<td>PARALLEL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JVMJBP1</td>
<td>IMS1</td>
<td>JBP</td>
<td>SERIAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PGM00001</td>
<td>IMS1</td>
<td>BMP</td>
<td>PARALLEL</td>
<td>NOTINIT-26-NOPS NB</td>
<td>DFSDS PG1</td>
<td>DESC</td>
</tr>
<tr>
<td>PGM00002</td>
<td>IMS1</td>
<td>IFP</td>
<td>SERIAL</td>
<td>FPEDESC</td>
<td>DFSDS PG1</td>
<td>DESC</td>
</tr>
<tr>
<td>PGM00003</td>
<td>IMS1</td>
<td>MPP</td>
<td>PARALLEL</td>
<td>DFSDS PG1</td>
<td>DESC</td>
<td></td>
</tr>
<tr>
<td>PGM00004</td>
<td>IMS1</td>
<td>BMP</td>
<td>SERIAL</td>
<td>BMP011</td>
<td>RSC</td>
<td></td>
</tr>
</tbody>
</table>

**(scrolled right to screen 3)**

<table>
<thead>
<tr>
<th>PgmName</th>
<th>MbrName</th>
<th>LRgnType</th>
<th>LTimeCreate</th>
<th>LTimeUpdate</th>
<th>LTimeAccess</th>
</tr>
</thead>
<tbody>
<tr>
<td>PgmName</td>
<td>MbrName</td>
<td>LRgnType</td>
<td>LTimeAccess</td>
<td>LTimeImport</td>
<td>LDefnType</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>----------</td>
<td>-------------</td>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td>APOL1</td>
<td>IMS1</td>
<td>MPP</td>
<td>2011.181 15:22:52.55</td>
<td></td>
<td>MODBLKS</td>
</tr>
<tr>
<td>AUTPSB7</td>
<td>IMS1</td>
<td>JBP</td>
<td>2011.181 15:22:52.55</td>
<td></td>
<td>MODBLKS</td>
</tr>
<tr>
<td>BMP255</td>
<td>IMS1</td>
<td>BMP</td>
<td>2011.181 15:22:52.55</td>
<td></td>
<td>MODBLKS</td>
</tr>
<tr>
<td>DBF#FPU0</td>
<td>IMS1</td>
<td>FPU</td>
<td>2011.181 15:22:52.55</td>
<td></td>
<td>IMS</td>
</tr>
<tr>
<td>DCSQL6C</td>
<td>IMS1</td>
<td>MPP</td>
<td>2011.181 15:22:52.55</td>
<td></td>
<td>MODBLKS</td>
</tr>
<tr>
<td>DCSQL7A</td>
<td>IMS1</td>
<td>MPP</td>
<td>2011.181 15:22:52.55</td>
<td></td>
<td>MODBLKS</td>
</tr>
<tr>
<td>DFSVP67</td>
<td>IMS1</td>
<td>JBP</td>
<td>2011.181 15:22:52.55</td>
<td></td>
<td>MODBLKS</td>
</tr>
<tr>
<td>JAVPSB1</td>
<td>IMS1</td>
<td>IFP</td>
<td>2011.181 15:22:52.55</td>
<td></td>
<td>MODBLKS</td>
</tr>
<tr>
<td>JAVTESTJ</td>
<td>IMS1</td>
<td>JMP</td>
<td>2011.181 15:22:52.55</td>
<td></td>
<td>MODBLKS</td>
</tr>
<tr>
<td>JVMJBPI</td>
<td>IMS1</td>
<td>JBP</td>
<td>2011.181 15:22:52.55</td>
<td></td>
<td>CREATE</td>
</tr>
<tr>
<td>PGM00001</td>
<td>IMS1</td>
<td>BMP</td>
<td>2011.181 15:22:52.55</td>
<td></td>
<td>CREATE</td>
</tr>
<tr>
<td>PGM00002</td>
<td>IMS1</td>
<td>IFP</td>
<td>2011.181 15:22:52.55</td>
<td></td>
<td>CREATE</td>
</tr>
<tr>
<td>PGM00003</td>
<td>IMS1</td>
<td>BMP</td>
<td>2011.181 15:22:52.55</td>
<td></td>
<td>CREATE</td>
</tr>
<tr>
<td>PGM00004</td>
<td>IMS1</td>
<td>BMP</td>
<td>2011.181 15:22:52.55</td>
<td></td>
<td>CREATE</td>
</tr>
</tbody>
</table>

OM API input:

```plaintext
CMD(QUERY PGM NAME(PGM0000%,APOL1,BMP255,DBF*0,DFSIVP67,AUTPSB7,JAVPSB1,JAVTESTJ,DCSQL7A,DCSQL6C,JVMJBPI) SHOW(ALL))
```

OM API output:

```plaintext
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2011.182 00:57:35.598184</statime>
<stotime>2011.182 00:57:35.599380</stotime>
<staseq>CB007C9945E68682</staseq>
<stoseq>CB007C9946314F42</stoseq>
<rqsttkn1>USRT005 10175735</rqsttkn1>
<rc>00000000</rc>
<rsh>00000000</rsh>
</ctl>
</cmd>
<master>IMS1</master>
<userid>USRT005</userid>
<verb>QRY</verb>
<kwd>PGM</kwd>
<input>QUERY PGM
NAME(PGM0000%,APOL1,BMP255,DBF*0,DFSIVP67,AUTPSB7,JAVPSB1,JAVTESTJ,DCSQL7A,DCSQL6C,JVMJBPI) SHOW(ALL)</input>
</cmdrsphdr>
<hdr slbl="PGM" llbl="PgmName" sort="a" key="1" scroll="no" len="8"
dtype="CHAR" align="left" scope="LCL"/>
<hdr slbl="MbrName" llbl="MbrName" sort="a" key="4" scroll="no" len="8"
dtype="CHAR" align="left" scope="LCL"/>
<hdr slbl="CC" llbl="CC" sort="n" key="0" scroll="yes" len="4"
dtype="INT" align="right" skipb="no" scope="LCL"/>
<hdr slbl="CCTXT" llbl="CCText" sort="n" key="0" scroll="yes" len="*"
dtype="CHAR" align="left" skipb="yes" scope="LCL"/>
<hdr slbl="RGNT" llbl="LRgnType" sort="n" key="0" scroll="no" len="7"
dtype="CHAR" align="left" scope="LCL"/>
<hdr slbl="BMPT" llbl="LBMPType" sort="n" key="0" scroll="yes" len="7"```
Explanations:

Lots of different types of programs are displayed. SHOW(ALL) is specified to show all of the possible output fields. All of the program output fields do not fit on one screen, so the user must scroll to the right for additional output fields. The program name, member name that built the line of output, and region type in which the program can run are displayed on every screen. Program names starting with PGM0000 were dynamically created with CREATE PGM commands.

DBF#FPU0 is the Fast Path Utility. JAVTESTJ is a Java message processing program. PGM00001 has no PSB in ACBLIB, so it shows a local status of NOTINIT-26-NOPSB and cannot be scheduled. PGM00003 is a generated PSB GPSB(Y), so it does not need a PSB in ACBLIB. PGM00002 and PGM00004 are dynamic option DOPT(Y) programs, so IMS will not detect that there is no PSB for them in ACBLIB and mark their status as NOTINIT until the first time they are scheduled. A few GPSBs are displayed with different language definitions. The language attribute applies to GPSBs and DOPT PSBs defined as Java programs.

Example 2 for QUERY PGM command

TSO SPOC input:
QUERY PGM NAME(APOL1) SHOW(DEFN,DOPT,GPSB,FP)

TSO SPOC output:

<table>
<thead>
<tr>
<th>PgmName</th>
<th>MbrName</th>
<th>CC</th>
<th>Repo</th>
<th>IMSId</th>
<th>LRgnType</th>
<th>FP</th>
<th>LFP</th>
<th>DOPT</th>
<th>LDOPT</th>
<th>GPSB</th>
<th>LGPSB</th>
</tr>
</thead>
<tbody>
<tr>
<td>APOL1</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td>IMS1</td>
<td>MPP</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>APOL1</td>
<td>IMS2</td>
<td>0</td>
<td>Y</td>
<td>IMS2</td>
<td>MPP</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>APOL1</td>
<td>IMS3</td>
<td>0</td>
<td>Y</td>
<td>IMS3</td>
<td>MPP</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

OM API input:

CMD(QUERY PGM NAME(APOL1) SHOW(DEFN,DOPT,GPSB,FP))

OM API output:

<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2011.18022:01:10.263785</statime>
<stotime>2011.18022:01:10.344614</stotime>
<staseq>C7FF134CED7A691C</staseq>
<stoseq>C7FF134CED7A691C</stoseq>
<rqsttkn1>USRT00510150110</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>IMS1</master>
Explanation: The stored resource definitions and the runtime resource definitions for the specified resources are returned. Only the FP, DOPT, and GPSB definitions are returned according to the SHOW filters specified.

Example 3 for QUERY PGM command

TSO SPOC input:
QUERY PGM NAME(APOL*) SHOW(DEFN)

TSO SPOC output:

<table>
<thead>
<tr>
<th>PgmName</th>
<th>MbrName</th>
<th>CC</th>
<th>Repo</th>
<th>IMSid</th>
<th>LrgnType</th>
<th>BMPTyp</th>
<th>LBMPTyp</th>
<th>FP</th>
<th>LFP</th>
<th>DOPT</th>
<th>LDOPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>APOL1</td>
<td>IMS1</td>
<td>Y</td>
<td>N</td>
<td>IMS1</td>
<td>MPP</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>APOL1</td>
<td>IMS2</td>
<td>0</td>
<td>N</td>
<td>IMS2</td>
<td>MPP</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>APOL1</td>
<td>IMS3</td>
<td>0</td>
<td>N</td>
<td>IMS3</td>
<td>MPP</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

(scrolled to the right screen 2)

<table>
<thead>
<tr>
<th>PgmName</th>
<th>MbrName</th>
<th>Repo</th>
<th>LrgnType</th>
<th>GPSB</th>
<th>LGPSB</th>
<th>Rsdnt</th>
<th>LRsdnt</th>
<th>TranStat</th>
<th>LTranStat</th>
</tr>
</thead>
<tbody>
<tr>
<td>APOL1</td>
<td>IMS1</td>
<td>Y</td>
<td>MPP</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>APOL1</td>
<td>IMS1</td>
<td>MPP</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>
APOL1 IMS2 MPP N N N
APOL1 IMS3 MPP N N N

(scrolled to the right screen 3)

<table>
<thead>
<tr>
<th>PgmName</th>
<th>MbrName</th>
<th>Repo</th>
<th>LRgnType</th>
<th>PgmLang</th>
<th>LPgmLang</th>
<th>SchdType</th>
<th>LSchdType</th>
<th>TimeCreate</th>
</tr>
</thead>
<tbody>
<tr>
<td>APOL1</td>
<td>IMS1</td>
<td>MPP</td>
<td>SERIAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2011.180 12:37</td>
</tr>
</tbody>
</table>

APOL1 IMS1 MPP SERIAL
APOL1 IMS2 MPP SERIAL
APOL1 IMS3 MPP SERIAL

(scrolled to the right screen 4)

<table>
<thead>
<tr>
<th>PgmName</th>
<th>MbrName</th>
<th>Repo</th>
<th>LRgnType</th>
<th>Create</th>
<th>LTimeCreate</th>
</tr>
</thead>
<tbody>
<tr>
<td>APOL1</td>
<td>IMS1</td>
<td>MPP</td>
<td>SERIAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IMS2</td>
<td>MPP</td>
<td>SERIAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IMS3</td>
<td>MPP</td>
<td>SERIAL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(scrolled to the right screen 5)

<table>
<thead>
<tr>
<th>PgmName</th>
<th>MbrName</th>
<th>Repo</th>
<th>LRgnType</th>
<th>LTimeUpdate</th>
<th>LTimeAccess</th>
<th>LTimeImport</th>
</tr>
</thead>
<tbody>
<tr>
<td>APOL1</td>
<td>IMS1</td>
<td>MPP</td>
<td>SERIAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IMS2</td>
<td>MPP</td>
<td>SERIAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IMS3</td>
<td>MPP</td>
<td>SERIAL</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OM API input:

`CMD(QUERY PGM NAME(APOL1) SHOW(DEFN))`

OM API output:

```
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2011.180 22:03:33.539960</statime>
<stotime>2011.180 22:03:33.666998</stotime>
<staseq>C7FF13057B080002</staseq>
<stoseq>C7FF13058A080002</stoseq>
<rqsttkn1>USR7005 10150333</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
</cmd>
<master>IMS1</master>
<userid>USR7005</userid>
<verb>QRY</verb>
<kwd>PGM</kwd>
<input>QUERY PGM NAME(APOL1) SHOW(DEFN)</input>
</cmd>
<cmdrsphdr>
<hdr slbl="PGM" llbl="PgmName" sort="a" key="1" scroll="no" len="8"
dtype="CHAR" align="left" scope="LCL"/>
<hdr slbl="MBR" llbl="MbrName" sort="a" key="4" scroll="no" len="8"
dtype="CHAR" align="left" scope="LCL"/>
<hdr slbl="CC" llbl="CC" sort="n" key="0" scroll="yes" len="4"
dtype="INT" align="right" skipb="no" scope="LCL"/>
<hdr slbl="CCTXT" llbl="CCText" sort="n" key="0" scroll="yes" len="*"
dtype="CHAR" align="left" skipb="yes" scope="LCL"/>
<hdr slbl="REPO" llbl="Repo" sort="d" key="2" scroll="no" len="1"
dtype="CHAR" align="left" skipb="yes" scope="LCL"/>
<hdr slbl="IMSID" llbl="IMSid" sort="n" key="0" scroll="yes" len="4"
dtype="CHAR" align="left" skipb="yes" scope="LCL"/>
<hdr slbl="RGNT" llbl="LRgnType" sort="n" key="0" scroll="no" len="7"
dtype="CHAR" align="left" scope="LCL"/>
<hdr slbl="BMPT" llbl="BMPType" sort="n" key="0" scroll="yes" len="7"
dtype="CHAR" align="left" scope="GBL"/>
<hdr slbl="FP" llbl="FP" sort="n" key="0" scroll="yes" len="1"
dtype="CHAR" align="left" scope="GBL"/>
```

448 Commands, Volume 2: IMS Commands N - V
<hdr slbl="FP" l1bl="LFP" scope="LCL" sort="n" key="0" scroll="yes" len="1" dtype="CHAR" align="left"/>
<hdr slbl="RDOPT" l1bl="DOPT" scope="GBL" sort="n" key="0" scroll="yes" len="1" dtype="CHAR" align="left"/>
<hdr slbl="DOPT" l1bl="DOPT" scope="GBL" sort="n" key="0" scroll="yes" len="1" dtype="CHAR" align="left"/>
<hdr slbl="DGPSB" l1bl="GPSB" scope="GBL" sort="n" key="0" scroll="yes" len="1" dtype="CHAR" align="left"/>
<hdr slbl="GPSB" l1bl="GPSB" scope="GBL" sort="n" key="0" scroll="yes" len="1" dtype="CHAR" align="left"/>
<hdr slbl="RGRSNT" l1bl="Rsnt" scope="GBL" sort="n" key="0" scroll="yes" len="1" dtype="CHAR" align="left"/>
<hdr slbl="LGRSNT" l1bl="Lrsnt" scope="GBL" sort="n" key="0" scroll="yes" len="1" dtype="CHAR" align="left"/>
<hdr slbl="RRTLS" l1bl="Transt" scope="GBL" sort="n" key="0" scroll="yes" len="1" dtype="CHAR" align="left"/>
<hdr slbl="LRTLS" l1bl="LTranst" scope="GBL" sort="n" key="0" scroll="yes" len="1" dtype="CHAR" align="left"/>
<hdr slbl="RTMCN" l1bl="TimeCreate" scope="GBL" sort="n" key="0" scroll="yes" len="20" dtype="CHAR" align="left"/>
<hdr slbl="LTMCR" l1bl="LTtimeCreate" scope="LCL" sort="n" key="0" scroll="yes" len="20" dtype="CHAR" align="left"/>
<hdr slbl="RTMUP" l1bl="TimeUpdate" scope="GBL" sort="n" key="0" scroll="yes" len="20" dtype="CHAR" align="left"/>
<hdr slbl="RTMUP" l1bl="LTtimeUpdate" scope="LCL" sort="n" key="0" scroll="yes" len="20" dtype="CHAR" align="left"/>
<hdr slbl="RTMUP" l1bl="LTtimeUpdate" scope="GBL" sort="n" key="0" scroll="yes" len="20" dtype="CHAR" align="left"/>
<hdr slbl="SMDR" l1bl="SchdType" scope="GBL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left"/>
<hdr slbl="LSchdType" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left"/>
<hdr slbl="RTPC" scope="GBL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left"/>
</cmdrsphdr>

<cmdrspdata>
<PGM(APOL1) MBR(IMS3) CC(0) RGNT(MPP) IMSID(IMS3) BMFT(FP) DOPT(N) GPSB(N) LRSNT(N) TLS(N) SCHD(SERIAL)

<cmdrspdata>
<PGM(APOL1) MBR(IMS1) CC(0) RGNT(MPP) IMSID(IMS1) BMFT(FP) DOPT(N) GPSB(N) LRSNT(N) TLS(N) SCHD(SERIAL)
TMCR(2011.180 12:37:35.41) </cmdrspdata>

<cmdrspdata>
<PGM(APOL1) MBR(IMS1) CC(0) REPO(Y) RBMFT(N) RFP(N) RDOPT(R) GPSB(N) LRSNT(N) TLS(N) SCHD(SERIAL) RTMCR(2011.180 12:37:31.44)
</cmdrspdata>

<cmdrspdata>
<PGM(APOL1) MBR(IMS2) CC(0) RGNT(MPP) IMSID(IMS2) BMFT(FP) DOPT(N) GPSB(N) LRSNT(N) TLS(N) SCHD(SERIAL)
TMCR(2011.180 12:37:35.53) </cmdrspdata>
</cmdrspdata>

<imsout>

Explanation: A line is returned for each resource that matches the wildcard name. The resource definitions from each IMS that has the resource defined and the global repository definition are returned. The repository information is returned by the command master IMS. There are no IMS specific sections in the repository for each resource name that matches the wildcard name.

Related concepts:
How to interpret CSL request return and reason codes (System Programming APIs)

Related reference:
- /DISPLAY MODIFY command (Commands)
- /DISPLAY PGM command (Commands)
- /DISPLAY PSB command (Commands)
- /DISPLAY STATUS command (Commands)
- Command keywords and their synonyms (Commands)

QUERY PGMDESC command

Use the QUERY PGMDESC command to query information about program descriptors. A descriptor is a model that can be used to create descriptors or resources.

Subsections:
- “Environment”
- “Syntax”
- “Keywords” on page 451
- “Usage notes” on page 454
- “Output fields” on page 454
- “Return, reason, and completion codes” on page 459
- “Examples” on page 461

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY PGMDESC</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SHOW</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>STATUS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DEFAULT</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax
Keywords

The following keywords are valid for the QUERY PGMDESC command:

NAME
- Specifies the 1-8 character name of the program descriptor. Wildcards can be specified in the name. The name is a repeatable parameter. The default is NAME(*) which returns all program descriptors.

DEFAULT()
- Specifies which descriptor or descriptors to display.
 - **N** Displays all the program descriptors that are not the default.
 - **Y** Displays the default program descriptor.

SHOW
- Specifies the program descriptor output fields to be returned. The program descriptor name is always returned, along with the name of the IMS that created the output, the region type, and the completion code. The filters that are supported with the SHOW keyword are:
 - **ALL** Returns all information about the program descriptor itself.
 - **BMPTYPE** BMP type option. Specifies whether the program runs in a BMP type region or not. A BMP type region might be a BMP region or a JBP region.
 - **PSBs** scheduled by DB2 stored procedures, by programs running under WebSphere Application Server, and by other users of the ODBA interface can be defined with BMPTYPE Y or N.
 - **DEFAULT** Default descriptor option.
 - **DEFN** Specifies that the resource definitions are to be returned.
The program descriptor attributes that can be returned are: BMPTYPE, DOPT, FP, GPB, LANG, RESIDENT, SCHDTYPE, TRANSTAT, DEFAULT, the repository create and update time stamps, and the IMS runtime create, update, import, and access time stamps.

If SHOW(DEFN) is specified without any other SHOW filters or with the IMSID filter, all the definitional attributes, including those defined globally in the repository and those defined locally in the IMS system, are returned. The runtime resource definitions from the IMS system are returned by each IMS that receives the command. The stored resource definitions in the IMSRSC repository are returned by the command master IMS if the command master IMS is enabled to use the repository.

The command master IMS returns a response line for each generic stored resource definition obtained from the repository. This response line displays the attributes of the generic resource definition. When SHOW(DEFN) is specified without the IMSID filter and all the IMS systems have the same attribute values defined, only the response line for the generic definition is returned. The IMS IDs of the IMS systems that have the stored resource definition defined are not returned. If an IMS system has a stored resource definition with one or more attribute values that differ from the generic stored resource definition, an additional response line is returned for each IMS that has different attribute values.

If SHOW(DEFN,LOCAL) is specified, the runtime resource definitions from the IMS system are returned by each IMS that received the command.

If SHOW(DEFN,GLOBAL) is specified, the stored resource definitions from the repository are returned by the command master IMS. SHOW(DEFN,GLOBAL) is valid only when the command master IMS is enabled to use the repository.

If SHOW(DEFN) is specified with other parameters, only the requested definitional attributes are returned. For example, if SHOW(DEFN,TIMESTAMP) is specified, only the time stamps are returned.

Restrictions:
- SHOW(DEFN) cannot be specified with DEFNTYPE or MODEL.
- The LModelName, LModelType, and LDefnType columns, which are returned on the QRY PGMDESC SHOW(ALL) command, are not returned with SHOW(DEFN).
- The Repo and IMSid columns, which are returned with SHOW(DEFN), are not returned with SHOW(ALL).

When querying program descriptor information from the repository, resource definitions stored in the repository are used to determine the response lines with the repository information, and the runtime resource definitions are used to determine the response lines with the IMS runtime resource information. The response lines are returned for each stored resource or runtime resource definition that matches the specified filter. If SHOW(DEFN,GLOBAL) is specified, only the stored resource definitions that match the specified filter are returned. If SHOW(DEFN,LOCAL) is specified, only the runtime resource definitions that match the specified filter are returned.

If SHOW(DEFN,IMSID) is specified, a response line is returned for the generic stored resource definition, and an additional response line is
returned for each IMS that has the resource defined in the repository, regardless of whether their stored resource definitions are the same as the generic resource definition.

DEFNTYPE
Definition type. This is how the descriptor was defined.

DOPT
Dynamic option.

FP
Fast Path option.

GLOBAL
Specifies that the stored resource definitions from the repository are to be returned. If SHOW(GLOBAL,DEFN) is specified, the global resource definitions from the repository are returned by the command master IMS. SHOW(GLOBAL,DEFN) is valid only when the command master IMS is enabled to use the repository.

GPSB
Generated PSB option.

IMSID
Specifies that the IMS IDs of the IMS systems whose resource lists contain the specified resource name are to be returned. SHOW(IMSID) is processed only by the command master IMS and is valid only if the command master IMS is enabled to use the repository.

When SHOW(IMSID) is specified with the DEFN filter, a separate line is returned for each IMS that has the resource defined, along with the stored resource definitions.

When SHOW(IMSID) is specified without the DEFN filter, a separate line is returned for each IMS that has the resource defined, along with the resource name. No resource definitions are returned.

SHOW(IMSID) cannot be specified with any other SHOW filters other than DEFN and GLOBAL. If SHOW(IMSID,GLOBAL) is specified, GLOBAL is ignored; that is, SHOW(IMSID,GLOBAL) is treated as SHOW(IMSID). SHOW(DEFN,IMSID,LOCAL) is treated as SHOW(DEFN,LOCAL).

LANG
Language interface of the application program for a GPSB.

LOCAL
Specifies that the runtime resource definitions from the IMS system are to be returned.

SHOW(DEFN,LOCAL) returns only the local definitional attributes from the IMS system that processes the command.

MODEL
Model name and model type used to create this descriptor. If the descriptor is created with one or more attributes defined and no model specified, the model name and model type is the default descriptor. The model name and model type are blank for IMS-defined descriptors. The CREATE command specified without the LIKE keyword creates a descriptor using the default descriptor as a model. The default descriptor is either the IMS descriptor DFSDSPG1 or user-defined. The CREATE command specified with the LIKE keyword creates a descriptor using a model. The descriptor is created with all the same attributes as the model. Attributes set explicitly by the CREATE command override the model
attributes. The model type can either be a descriptor (DESC) or a resource (RSC). The model name and model type are for reference only. The descriptor attributes might not match the model, if attributes are overridden by CREATE or UPDATE command values, or the model is updated later. The model name and model type can be used to identify descriptors that were created with the same model. The model name and model type of a descriptor are exported and imported. The IMPORT command does not use the model name and model type when creating a descriptor.

RESIDENT
Resident option.

SCHDTYPE
Scheduling type, which indicates whether this application program can be scheduled into more than one message region or batch message region simultaneously.

TIMESTAMP
The creation time (TIMECREATE), last update time (TIMEUPDATE), last access time (TIMEACCESS), and last import time (TIMEIMPORT) time stamps are returned. The time is returned in local time in the format YYYY.JJJ HH:MM:SS.TH, where:
- YYYYY is the year.
- JJJ is the Julian day (001 - 365).
- HH is the hour (01 - 24).
- MM is the minute (00 - 59).
- SS is the seconds (00 - 59).
- TH is the tenths and hundredths of a second (00 - 99).

TRANSTAT
Transaction level statistics option.

Usage notes
This command can be issued only through the Operations Manager API. This command applies to DB/DC, DBCTL and DCCTL systems. This command is allowed on XRF alternate and RSR tracker systems. The QUERY PGMDESC command is not valid if online change for MODBLKS is enabled (DFSDFxxx or DFSCGxxx defined with MODBLKS=OLC, or MODBLKS not defined).

Many of the attributes defined with the program descriptor become meaningful only for programs that are created using the program descriptor. Program descriptors are never scheduled; only programs created using a program descriptor are scheduled.

If you want to display information about resource definitions, specify SHOW(DEFN). If you want to know which IMS systems have the resource defined and also know the attributes or resource definitions at each IMS system, specify SHOW(DEFN,IMSID). If you want to know which IMS systems have the resource defined, specify SHOW(IMSID).

Output fields
The following table shows the QUERY PGMDESC output fields. The columns in the table are as follows:
Short label
Contains the short label generated in the XML output.

Long label
Contains the long label generated in the XML output.

Keyword
Identifies keyword on the command that caused the field to be generated. N/A appears for output fields that are always returned. error appears for output fields that are returned only in case of an error.

Scope
Identifies the scope of the output field.

Meaning
Provides a brief description of the output field.

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMPT</td>
<td>LBMPType</td>
<td>BMPTYPE, DEFN</td>
<td>LCL</td>
<td>BMP type. This value is obtained from IMS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N The program does not execute in a BMP type region. It might execute in an IMS TM MPP, JMP, or IFP region, or it might use the ODBA interface or the DRA interface. Use this specification for programs that run in IMS TM MPP, JMP, and IFP regions, or PSBs scheduled by CICS programs using DBCTL and other users of the DRA interface. This is the default.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y The program executes in a BMP type region. It might execute in an IMS BMP region or a JBP region. Any associated transactions are assigned normal and limit priority values of zero.</td>
</tr>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>LCL</td>
<td>Completion code.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCTxt</td>
<td>error</td>
<td>LCL</td>
<td>Completion code text that briefly explains the meaning of the non-zero completion code.</td>
</tr>
<tr>
<td>DESC</td>
<td>DESCName</td>
<td>PGMDESC</td>
<td>LCL</td>
<td>Program descriptor name.</td>
</tr>
<tr>
<td>DFLT</td>
<td>LDflt</td>
<td>DEFAULT</td>
<td>LCL</td>
<td>Default descriptor (Y) or not (N).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N The descriptor is not the default.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y The descriptor is the default. When a descriptor or resource is created without the LIKE keyword, any attribute not specified on the CREATE command takes the value defined in the default descriptor. Only one descriptor can be defined as the default for a resource type. IMS defines a program descriptor called DFSDSPG1, where all attributes are defined with the default value. Defining a user-defined descriptor to be the default overrides the current default descriptor.</td>
</tr>
</tbody>
</table>

Table 176. Output fields for the QUERY PGMDESC command
Table 176. Output fields for the QUERY PGMDESC command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFNT</td>
<td>LDefnType</td>
<td>DEFNTYPE</td>
<td>LCL</td>
<td>Definition type, which can be one of the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CREATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Defined by a CREATE command. The DEFNTYPE is not changed if the descriptor is updated with an UPDATE command.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IMPORT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Defined by an IMPORT command. The DEFNTYPE is not changed if the descriptor is updated with an UPDATE command.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IMS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Defined by IMS. DFSDSPG1 is an IMS-defined program descriptor containing the default program values.</td>
</tr>
<tr>
<td>DOPT</td>
<td>LDOPT</td>
<td>DOPT, DEFN</td>
<td>LCL</td>
<td>Dynamic option (Y) or not (N). This value is obtained from IMS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N The PSB associated with this application program is not located dynamically.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y The PSB associated with this program is located dynamically. Each time the program associated with this PSB is scheduled, the latest copy of the PSB is loaded from ACBLIB. The PSB does not need to be in any data set defined for ACBLIB until it is actually required to process a transaction. A new version of the PSB can be defined in ACBLIB and is picked up the next time the PSB is scheduled. DOPT PSBs referencing DBDs that are missing from ACBLIB cannot be scheduled. When the program terminates, the PSB is deleted from the PSB pool.</td>
</tr>
<tr>
<td>FP</td>
<td>LFP</td>
<td>FP, DEFN</td>
<td>LCL</td>
<td>Fast Path exclusive program (E) or not (N). This value is obtained from IMS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E The program is a Fast Path-exclusive application program.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N The program is not a Fast Path application program.</td>
</tr>
</tbody>
</table>
Table 176. Output fields for the QUERYPGMDESC command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPSB</td>
<td>LGPSB</td>
<td>GPSB, DEFN</td>
<td>LCL</td>
<td>Generated PSB generated by IMS (Y) or not (N). This value is obtained from IMS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N The PSB associated with the program is not generated by IMS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y The PSB associated with the program descriptor is generated by IMS. It is not loaded from ACBLIB. The scheduling process of all environments generates a PSB containing an I/O PCB and an alternate modifiable PCB. You do not need to perform the PSBGEN and ACBGEN, thus eliminating I/O to the ACBLIB. The generated PSB contains an I/O PCB named IOPCBbbb and a modifiable, alternate PCB named TPPCB1bb. With an alternate modifiable PCB, an application can use the CHNG call to change the output destination and send output to a destination other than the input destination.</td>
</tr>
<tr>
<td>IMSID</td>
<td>IMSid</td>
<td>IMSID</td>
<td>GBL</td>
<td>IMSIDs that have the resource defined from the repository.</td>
</tr>
<tr>
<td>LANG</td>
<td>LPgmLang</td>
<td>LANG, DEFN</td>
<td>LCL</td>
<td>Language interface. This value is obtained from IMS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ASM/CBL Assembler or COBOL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>JAVA Java (can run only in a Java dependent region).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PASCAL PASCAL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PLI PL/I</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>LCL</td>
<td>IMSplex member that built the output line.</td>
</tr>
<tr>
<td>MDLN</td>
<td>LModelName</td>
<td>MODEL</td>
<td>LCL</td>
<td>Model name. Name of the descriptor used as a model to create this resource. DFSDSPI is the IMS descriptor name for programs.</td>
</tr>
<tr>
<td>MDLT</td>
<td>LModelType</td>
<td>MODEL</td>
<td>LCL</td>
<td>Model type, either RSC or DESC. RSC means that the descriptor was created using another resource as a model. DESC means that the resource was created using a descriptor as a model.</td>
</tr>
<tr>
<td>RBMPT</td>
<td>BmpType</td>
<td>BMPTYPE, DEFN</td>
<td>GBL</td>
<td>BMP type. This value is obtained from the repository.</td>
</tr>
<tr>
<td>RDOPT</td>
<td>DOPT</td>
<td>DOPT, DEFN</td>
<td>GBL</td>
<td>Dynamic option (Y) or not (N). This value is obtained from the repository.</td>
</tr>
<tr>
<td>RDFLT</td>
<td>Dflt</td>
<td>DEFN</td>
<td>GBL</td>
<td>Default descriptor (Y) or not (N). This value is obtained from the repository.</td>
</tr>
<tr>
<td>REPO</td>
<td>Repo</td>
<td>DEFN</td>
<td>GBL</td>
<td>Indicates whether the output line contains stored resource definitions from the repository.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y Indicates repository definitions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(blank) Indicates local definitions.</td>
</tr>
<tr>
<td>Short label</td>
<td>Long label</td>
<td>Keyword</td>
<td>Scope</td>
<td>Meaning</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>---------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>RFP</td>
<td>FP</td>
<td>FP, DEFN</td>
<td>GBL</td>
<td>Fast Path exclusive program (E) or not (N). This value is obtained from the repository.</td>
</tr>
<tr>
<td>RGNT</td>
<td>LRgnType</td>
<td>N/A</td>
<td>LCL</td>
<td>Region type in which program can run. This value is obtained from IMS. Some programs can run in additional region types. For example, a program defined with a program type of MSG can run in a BMP under certain conditions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BMP indicates a batch message processing region.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FPU indicates a Fast Path utility region. IFP indicates a Fast Path message processing region.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>JBP indicates a Java batch message processing region.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>JMP indicates a Java message processing region.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MPP indicates an MPP processing region.</td>
</tr>
<tr>
<td>RGPSB</td>
<td>GPSB</td>
<td>GPSB, DEFN</td>
<td>GBL</td>
<td>Generated PSB generated by IMS (Y) or not (N). This value is obtained from the repository.</td>
</tr>
<tr>
<td>RLANG</td>
<td>PgmLang</td>
<td>LANG, DEFN</td>
<td>GBL</td>
<td>Language interface. This value is obtained from the repository.</td>
</tr>
<tr>
<td>RRGNT</td>
<td>RgnType</td>
<td>N/A</td>
<td>GBL</td>
<td>Region type in which the program can run. This value is obtained from the repository.</td>
</tr>
<tr>
<td>RSCHD</td>
<td>SchdType</td>
<td>SCHDTYPE, DEFN</td>
<td>GBL</td>
<td>Schedule type. This value is obtained from the repository.</td>
</tr>
<tr>
<td>RSDNT</td>
<td>LDRsdnt</td>
<td>RESIDENT</td>
<td>LCL</td>
<td>Resident option value. For a program created from the descriptor, it indicates if the PSB is to reside in local storage at the next IMS restart.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N The PSB for a program created from the named program descriptor resource is not made resident in storage. The PSB is loaded at scheduling time.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y The PSB for a program created from the named program descriptor resource is made resident in storage at the next IMS restart. At the next IMS restart, IMS loads the PSB and initializes it. A resident program is accessed from local storage, which eliminates I/O to the ACBLIB.</td>
</tr>
<tr>
<td>RTLS</td>
<td>TranStat</td>
<td>TRANSTAT, DEFN</td>
<td>GBL</td>
<td>Transaction level statistics logged (Y) or not (N). This value is obtained from the repository.</td>
</tr>
<tr>
<td>RTMCR</td>
<td>TimeCreate</td>
<td>DEFN</td>
<td>GBL</td>
<td>Create time from the repository. This is the time the resource was first created in the repository.</td>
</tr>
<tr>
<td>RTMUP</td>
<td>TimeUpdate</td>
<td>DEFN</td>
<td>GBL</td>
<td>Update time from the repository. This is the time the resource was last updated in the repository.</td>
</tr>
</tbody>
</table>
Table 176. Output fields for the QUERY PGMDESC command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCHD</td>
<td>LSchdType</td>
<td>SCHDTYPE, DEFN</td>
<td>LCL</td>
<td>Schedule type. This value is obtained from IMS blocks.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PARALLEL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The application program can be scheduled into more than one message region or batch message region simultaneously.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SERIAL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The application program can be scheduled in only one region at a time.</td>
</tr>
<tr>
<td>TLS</td>
<td>LTranStat</td>
<td>TRANSTAT, DEFN</td>
<td>LCL</td>
<td>Transaction level statistics logged (Y) or not (N). This value is obtained from IMS blocks.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N Transaction level statistics logging is not active.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y Transaction level statistics logging is active.</td>
</tr>
<tr>
<td>TMAC</td>
<td>LTimeAccess</td>
<td>TIMESTAMP</td>
<td>LCL</td>
<td>The time that the descriptor was last accessed. This value is obtained from the local IMS. The last access time is retained across warm start, emergency restart, EXPORT and IMPORT. The updating of the last access time is not logged. After a restart, the last access time reflects the time recorded in the restart checkpoint log records.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>For a program descriptor, when the CREATE command or DFSINSX0 exit references the descriptor as a model, the last access time is updated.</td>
</tr>
<tr>
<td>TMCR</td>
<td>LTimeCreate</td>
<td>TIMESTAMP</td>
<td>LCL</td>
<td>The time that the descriptor was created. This value is obtained from the local IMS. This is the result of a CREATE PGMDESC command, an IMPORT command that creates the descriptor, or IMS initialization. The create time is retained across warm start, emergency restart, EXPORT and IMPORT.</td>
</tr>
<tr>
<td>TMIM</td>
<td>LTimeImport</td>
<td>TIMESTAMP</td>
<td>LCL</td>
<td>The time that the descriptor was last imported, if applicable. The import time is retained across warm start and emergency restart. This value is obtained from the local IMS.</td>
</tr>
<tr>
<td>TMUP</td>
<td>LTimeUpdate</td>
<td>TIMESTAMP</td>
<td>LCL</td>
<td>The last time the attributes of the runtime resource definition were updated as a result of the UPDATE PGMDESC command or the IMPORT command. The update time is retained across warm start and emergency restart. The output value is obtained from the local IMS.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.
Table 177. Return and reason codes for the QUERY PGMDESC command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'000000000'</td>
<td>X'00000000'</td>
<td>Command completed successfully. The command output contains a line for each descriptor, accompanied by its completion code. See the completion code table for details.</td>
</tr>
<tr>
<td>X'000000008'</td>
<td>X'00002004'</td>
<td>Invalid command keyword or invalid command keyword combination.</td>
</tr>
<tr>
<td>X'000000008'</td>
<td>X'00002040'</td>
<td>Invalid filter or filter combination. An invalid filter might be an invalid parameter specified with the DEFAULT keyword.</td>
</tr>
<tr>
<td>X'00000000C'</td>
<td>X'00003000'</td>
<td>Command was successful for some descriptors but failed for others. The command output contains a line for each descriptor, accompanied by its completion code. See the completion code table for details.</td>
</tr>
<tr>
<td>X'00000000C'</td>
<td>X'00003004'</td>
<td>Command was successful for none of the descriptors. The command output contains a line for each descriptor, accompanied by its completion code. See the completion code table for details.</td>
</tr>
<tr>
<td>X'000000010'</td>
<td>X'00004004'</td>
<td>No CQS address space.</td>
</tr>
<tr>
<td>X'000000010'</td>
<td>X'00004014'</td>
<td>Command is not valid on the RSR tracker.</td>
</tr>
<tr>
<td>X'000000010'</td>
<td>X'00004018'</td>
<td>No resource structure exists, or resource structure is not available.</td>
</tr>
<tr>
<td>X'000000010'</td>
<td>X'00004100'</td>
<td>Resource structure is full.</td>
</tr>
<tr>
<td>X'000000010'</td>
<td>X'00004104'</td>
<td>No RM address space.</td>
</tr>
<tr>
<td>X'000000010'</td>
<td>X'00004108'</td>
<td>No SCI address space.</td>
</tr>
<tr>
<td>X'000000010'</td>
<td>X'00004300'</td>
<td>Command is not allowed because online change for MODBLKS is enabled (DFSDFxxx or DFSCGxxx defined with MODBLKS=OLC, or MODBLKS not defined).</td>
</tr>
<tr>
<td>X'000000010'</td>
<td>X'00004500'</td>
<td>IMS is not enabled to use the repository.</td>
</tr>
<tr>
<td>X'000000010'</td>
<td>X'00004501'</td>
<td>RM is not enabled with the repository.</td>
</tr>
<tr>
<td>X'000000010'</td>
<td>X'00004502'</td>
<td>Repository is not available.</td>
</tr>
<tr>
<td>X'000000010'</td>
<td>X'00004503'</td>
<td>Repository is stopped.</td>
</tr>
<tr>
<td>X'000000010'</td>
<td>X'00004504'</td>
<td>Repository spare recovery is in progress.</td>
</tr>
<tr>
<td>X'000000010'</td>
<td>X'00004505'</td>
<td>No IMS resource list exists, or no resources for the resource type exist in the IMS resource list.</td>
</tr>
<tr>
<td>X'000000010'</td>
<td>X'00004507'</td>
<td>Repository access is denied.</td>
</tr>
<tr>
<td>X'000000010'</td>
<td>X'00004508'</td>
<td>Repository maximum put length exceeded.</td>
</tr>
<tr>
<td>X'000000010'</td>
<td>X'00004509'</td>
<td>RM data version is lower than the IMS data version.</td>
</tr>
<tr>
<td>X'000000010'</td>
<td>X'0000450A'</td>
<td>Repository Server is being shut down.</td>
</tr>
<tr>
<td>X'000000010'</td>
<td>X'0000450B'</td>
<td>Repository Server is not available.</td>
</tr>
<tr>
<td>X'000000010'</td>
<td>X'0000450C'</td>
<td>Repository Server is busy.</td>
</tr>
<tr>
<td>X'000000010'</td>
<td>X'0000450D'</td>
<td>RM failed to define some of the internal fields related to the IMSRSC repository.</td>
</tr>
<tr>
<td>X'000000014'</td>
<td>X'00005004'</td>
<td>DFSOCMD response buffer could not be obtained.</td>
</tr>
<tr>
<td>X'000000014'</td>
<td>X'0000501C'</td>
<td>IMODULE GETMAIN error.</td>
</tr>
</tbody>
</table>
Table 177. Return and reason codes for the QUERY PGMDESC command (continued)

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000014'</td>
<td>X'00005100'</td>
<td>RM request error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005104'</td>
<td>CQS error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005108'</td>
<td>SCI request error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005110'</td>
<td>Repository error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'0000551C'</td>
<td>A request to view the data in the repository was rejected because a corrupted resource list was detected. The QUERY PGMDESC command is rejected because the resource list is unusable. Contact IBM Software Support. Send in the output from the command in error, and a dump of the local RM address space where the command executed or the dump of all RM address spaces in the IMSplex. Also send a copy of the IMSRSC repository RID and RMD data sets.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. The following table includes an explanation of the completion codes.

Table 178. Completion codes for the QUERY PGMDESC command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>Command completed successfully for program descriptor.</td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>Program descriptor name is invalid, or the wildcard parameter specified does not match any descriptor names.</td>
</tr>
</tbody>
</table>

Examples

The following are examples of the QUERY PGMDESC command:

Example 1 for QUERY PGMDESC command

TSO SPOC input:
QRY PGMDESC SHOW(ALL)

TSO SPOC output:

(screent 1)

<table>
<thead>
<tr>
<th>DescName</th>
<th>MbrName</th>
<th>CC</th>
<th>LRgnType</th>
<th>LBMPType</th>
<th>LFP</th>
<th>LDOPT</th>
<th>LGPSB</th>
<th>LDRsdnt</th>
<th>LTranStat</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFSOSP1</td>
<td>IMS1</td>
<td>0</td>
<td>MPP</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>DOPTDESC</td>
<td>IMS1</td>
<td>0</td>
<td>BMP</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>FPEDESC</td>
<td>IMS1</td>
<td>0</td>
<td>IFP</td>
<td>N</td>
<td>E</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>GPSBDSC</td>
<td>IMS1</td>
<td>0</td>
<td>BMP</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>JAVADESC</td>
<td>IMS1</td>
<td>0</td>
<td>JMP</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

(scrrolled to the right screen 2)

<table>
<thead>
<tr>
<th>DescName</th>
<th>MbrName</th>
<th>LRgnType</th>
<th>LPgmLang</th>
<th>LSchdType</th>
<th>LModelName</th>
<th>LModelType</th>
<th>LDflt</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFSOSP1</td>
<td>IMS1</td>
<td>MPP</td>
<td>PARALLEL</td>
<td>Y</td>
<td>DFSOSP1</td>
<td>DESC</td>
<td></td>
</tr>
<tr>
<td>DOPTDESC</td>
<td>IMS1</td>
<td>BMP</td>
<td>SERIAL</td>
<td>DFSOSP1</td>
<td>DESC</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>FPEDESC</td>
<td>IMS1</td>
<td>IFP</td>
<td>SERIAL</td>
<td>DFSOSP1</td>
<td>DESC</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>GPSBDSC</td>
<td>IMS1</td>
<td>BMP</td>
<td>ASM/CBL</td>
<td>DFSOSP1</td>
<td>DESC</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>JAVADESC</td>
<td>IMS1</td>
<td>JMP</td>
<td>JAVA</td>
<td>SERIAL</td>
<td>DFSOSP1</td>
<td>DESC</td>
<td>N</td>
</tr>
</tbody>
</table>
(scrolled to the right screen 3)

<table>
<thead>
<tr>
<th>DescName</th>
<th>MbrName</th>
<th>LRgnType</th>
<th>LTimeCreate</th>
<th>LTimeUpdate</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFSDSPG1</td>
<td>IMS1</td>
<td>MPP</td>
<td>2011.181 15:22:52.55</td>
<td></td>
</tr>
<tr>
<td>DOPTDESC</td>
<td>IMS1</td>
<td>BMP</td>
<td>2011.181 16:53:04.61</td>
<td></td>
</tr>
<tr>
<td>FPEDESC</td>
<td>IMS1</td>
<td>IFP</td>
<td>2011.181 16:53:05.23</td>
<td></td>
</tr>
<tr>
<td>GPSBDESC</td>
<td>IMS1</td>
<td>BMP</td>
<td>2011.181 16:53:06.09</td>
<td></td>
</tr>
<tr>
<td>JAVADESC</td>
<td>IMS1</td>
<td>JMP</td>
<td>2011.181 16:53:06.75</td>
<td></td>
</tr>
</tbody>
</table>

(scrolled to the right screen 4)

<table>
<thead>
<tr>
<th>DescName</th>
<th>MbrName</th>
<th>LRgnType</th>
<th>LTimeAccess</th>
<th>LTimeImport</th>
<th>LDefnType</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFSDSPG1</td>
<td>IMS1</td>
<td>MPP</td>
<td>2011.181 16:53:08.86</td>
<td>IMS</td>
<td></td>
</tr>
<tr>
<td>DOPTDESC</td>
<td>IMS1</td>
<td>BMP</td>
<td>CREATE</td>
<td>CREATE</td>
<td></td>
</tr>
<tr>
<td>FPEDESC</td>
<td>IMS1</td>
<td>IFP</td>
<td>CREATE</td>
<td>CREATE</td>
<td></td>
</tr>
<tr>
<td>GPSBDESC</td>
<td>IMS1</td>
<td>BMP</td>
<td>CREATE</td>
<td>CREATE</td>
<td></td>
</tr>
<tr>
<td>JAVADESC</td>
<td>IMS1</td>
<td>JMP</td>
<td>CREATE</td>
<td>CREATE</td>
<td></td>
</tr>
</tbody>
</table>

OM API input:

CMD(QUERY PGMDESC SHOW(ALL))

OM API output:

```xml
<imsout>
<ctl>
  <omname>OM1OM</omname>
  <omvsn>1.5.0</omvsn>
  <xmlvsn>20</xmlvsn>
  <statime>2011.182 00:32:39.456322</statime>
  <stotime>2011.182 00:32:39.457450</stotime>
  <staseq>C800770670E4215E</staseq>
  <stoseq>C8007706712AA69E</stoseq>
  <rqsttkn1>USRT005 10173239</rqsttkn1>
  <rc>00000000</rc>
  <rsn>00000000</rsn>
</ctl>
<cmd>
  <master>IMS1</master>
  <userid>USRT005</userid>
  <verb>QRY</verb>
  <kwid>PGMDESC</kwid>
  <input>QRY PGMDESC SHOW(ALL)</input>
</cmd>
</imsout>
```

462 Commands, Volume 2: IMS Commands N - V
Example 2 for QUERY PGMDESC command

TSC SPOC input:

```
QUERY PGMDESC NAME(*) SHOW(DEFN,DOPT,GNPBF,FN)
```

TSC SPOC output:

<table>
<thead>
<tr>
<th>DescName</th>
<th>MbrName</th>
<th>CC</th>
<th>Repo</th>
<th>IMSid</th>
<th>LRgnType</th>
<th>FP</th>
<th>LFP</th>
<th>DOPT</th>
<th>LDOPT</th>
<th>GPSB</th>
<th>LGPSB</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFSDSPGI</td>
<td>IMS1</td>
<td>0</td>
<td>IMS1</td>
<td>MPP</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFSDSPGI</td>
<td>IMS2</td>
<td>0</td>
<td>IMS2</td>
<td>MPP</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFSDSPGI</td>
<td>IMS3</td>
<td>0</td>
<td>IMS3</td>
<td>MPP</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOPTDESC</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOPTDESC</td>
<td>IMS1</td>
<td>0</td>
<td>IMS1</td>
<td>BMP</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOPTDESC</td>
<td>IMS2</td>
<td>0</td>
<td>IMS2</td>
<td>BMP</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOPTDESC</td>
<td>IMS3</td>
<td>0</td>
<td>IMS3</td>
<td>BMP</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPDESC</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td>E</td>
<td>Y</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPDESC</td>
<td>IMS1</td>
<td>0</td>
<td>IMS1</td>
<td>IFP</td>
<td>E</td>
<td>Y</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPDESC</td>
<td>IMS2</td>
<td>0</td>
<td>IMS2</td>
<td>IFP</td>
<td>E</td>
<td>Y</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPDESC</td>
<td>IMS3</td>
<td>0</td>
<td>IMS3</td>
<td>IFP</td>
<td>E</td>
<td>Y</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Explanation: All program descriptors are returned with all output fields. All of the program descriptor output fields do not fit on one screen, so the user must scroll to the right for additional output fields. The program descriptor name, the member name that built the line of output, and the region type in which the program can run are displayed on every screen. The fields that are blank are not applicable to the specified program descriptor.
OM API input:
CMD(QUERY PGMDESC NAME(*) SHOW(DEFN,DOPT,GPSB,FP))

OM API output:
<imsout>
<ctl>
<omname>OM1OM </omname>
<omvsn>1.5.0 </omvsn>
<xmlvsn>20 </xmlvsn>
<statime>2011.182 00:43:45.113457</statime>
<stotime>2011.182 00:43:45.201311</stotime>
<staseq>C800798142D7121A</staseq>
<stoseq>C80079815849F99C</stoseq>
<rqsttkn1>USRT005 10174345</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>IMS1 </master>
<userid>USRT005 </userid>
<verb>QRY </verb>
<kwd>PGMDESC </kwrd>
<input>QUERY PGMDESC NAME(*) SHOW(DEFN,DOPT,GPSB,FP) </input>
</cmd>
<cmdrsphdr>
<hdr slbl="DESC" llbl="DescName" sort="a" key="1" scroll="no" len="8" dtype="CHAR" align="left" scope="LCL" />
<hdr slbl="MBR" llbl="MbrName" sort="a" key="4" scroll="no" len="8" dtype="CHAR" align="left" scope="LCL" />
<hdr slbl="CC" llbl="CC" sort="n" key="0" scroll="yes" len="4" dtype="INT" align="right" skipb="no" scope="LCL" />
<hdr slbl="CCTXT" llbl="CCText" sort="n" key="0" scroll="yes" len="*" dtype="CHAR" align="left" skipb="yes" scope="LCL" />
<hdr slbl="REPO" llbl="Repo" sort="d" key="2" scroll="no" len="1" dtype="CHAR" align="left" skipb="yes" scope="LCL" />
<hdr slbl="IMSID" llbl="IMSid" sort="n" key="0" scroll="yes" len="4" dtype="CHAR" align="left" skipb="yes" scope="LCL" />
<hdr slbl="RGNT" llbl="LRgnType" sort="n" key="0" scroll="no" len="7" dtype="CHAR" align="left" scope="LCL" />
<hdr slbl="FP" llbl="FPF" sort="n" key="0" scroll="yes" len="1" dtype="CHAR" align="left" scope="GBL" />
<hdr slbl="DOPT" llbl="DOPT" sort="n" key="0" scroll="yes" len="1" dtype="CHAR" align="left" scope="GBL" />
<hdr slbl="LDOPT" llbl="LDOPT" sort="n" key="0" scroll="yes" len="1" dtype="CHAR" align="left" scope="LCL" />
<hdr slbl="GPSB" llbl="GPSB" sort="n" key="0" scroll="yes" len="1" dtype="CHAR" align="left" scope="GBL" />
<hdr slbl="LPGPSB" llbl="LPGPSB" sort="n" key="0" scroll="yes" len="1" dtype="CHAR" align="left" scope="LCL" />
</cmdrsphdr>
<cmdrspdata>
<rspDESC(DOPTDESC) MBR(IMS1) FP(N) DOPT(Y) GPSB(N)) CC(0) RGNT(BMP) IMSID(IMS1)
<rspDESC(DOPTDESC) MBR(IMS1) FP(N) DOPT(Y) GPSB(N)) CC(0) RGNT(MPP) IMSID(IMS1)
<rspDESC(DOPTDESC) MBR(IMS1) FP(N) DOPT(Y) GPSB(N)) CC(0) RGNT(JMP) IMSID(IMS1)
<rspDESC(DOPTDESC) MBR(IMS1) FP(E) DOPT(Y) GPSB(N)) CC(0) RGNT(IFP) IMSID(IMS1)
<rsp>DESC(GPSBDESC) MBR(IMS1) DOPT(Y) GISB(Y)) CC(0) RGNT(BMP) IMSID(IMS1)

<rsp>DESC(DOPTDESC) MBR(IMS1) DOPT(Y) GISB(N)) CC(0) REPO(Y) RFP(N) RDOPT(Y)

<rsp>DESC(FPDESDC) MBR(IMS1) DOPT(Y) GISB(N)) CC(0) REPO(Y) RFP(E) RDOPT(Y)

<rsp>DESC(GPSBDESC) MBR(IMS1) DOPT(N) GISB(Y)) CC(0) REPO(Y) RFP(N) RDOPT(N)

<rsp>DESC(JAVADESC) MBR(IMS1) DOPT(Y) GISB(N)) CC(0) RGNT(JMP) IMSID(IMS1)

<rsp>DESC(DOPTDESC) MBR(IMS3) DOPT(Y) GISB(N)) CC(0) REPO(Y) RFP(N) RDOPT(Y)

<rsp>DESC(DFSDSPG1) MBR(IMS3) DOPT(N) GISB(N)) CC(0) RGNT(IFP) IMSID(IMS3)

<rsp>DESC(JAVADESC) MBR(IMS3) DOPT(Y) GISB(N)) CC(0) RGNT(JMP) IMSID(IMS3)

<rsp>DESC(FPDESDC) MBR(IMS3) DOPT(N) GISB(N)) CC(0) REPO(Y) RFP(N) RDOPT(Y)

<rsp>DESC(GPSBDESC) MBR(IMS3) DOPT(N) GISB(N)) CC(0) RGNT(BMP) IMSID(IMS3)

<rsp>DESC(DOPTDESC) MBR(IMS2) DOPT(Y) GISB(N)) CC(0) REPO(Y) RFP(N) RDOPT(Y)

<rsp>DESC(DFSDSPG1) MBR(IMS2) DOPT(N) GISB(N)) CC(0) RGNT(IFP) IMSID(IMS2)

<rsp>DESC(JAVADESC) MBR(IMS2) DOPT(Y) GISB(N)) CC(0) RGNT(JMP) IMSID(IMS2)

<rsp>DESC(FPDESDC) MBR(IMS2) DOPT(N) GISB(N)) CC(0) REPO(Y) RFP(N) RDOPT(Y)

<rsp>DESC(GPSBDESC) MBR(IMS2) DOPT(N) GISB(N)) CC(0) RGNT(BMP) IMSID(IMS2)</cmdrspdata><imsout>

Explanation: The stored resource definitions and the runtime resource definitions for the specified resources are returned. Only the FP, DOPT, and GPSB definitions are returned because the SHOW options are specified. The Dflt (default) column, which identifies the default descriptor, is returned because the local IMS runtime definitions are returned. DFSDSPG1 is the default descriptor and is only at each IMS system. The IMS generated system descriptor definitions are not in the repository.

Related concepts:

- How to interpret CSL request return and reason codes (System Programming APIs)

Related reference:

- Command keywords and their synonyms (Commands)

QUERY POOL command

Use the QUERY POOL command to display information about the current usage of the buffers that are managed by the Fast Path 64-bit buffer manager, processor storage utilization statistics for the pool type specified, and full-function database (OSAM or VSAM) buffer pools.

If you modify buffer pool definitions in the DFSDFxxx member and run the UPDATE POOL TYPE(DBAS) command, and an emergency restart occurs, you can issue a QUERY POOL TYPE(DBAS) command to determine whether the updates were successful.

Subsections:
Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 179. Valid environments for the QUERY POOL command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY POOL</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TYPE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SHOW</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>POOLID</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SIZE</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SUBTYPE</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Restriction: The dynamic database buffer pools function is not supported in a DBCTL warm standby environment.

Syntax
Keywords

The following keywords are valid for the QUERY POOL command:

TYPE()
Required keyword that specifies the type of pool that you want the information to display for. The pool types are mutually exclusive. The command is rejected with a syntax error if multiple types are specified.

- **FPBP64**
 Returns information about the Fast Path 64-bit buffer pool.

- **ACBIN64**
 Returns information about the 64-bit cache pools. The 64-bit ACB storage pool is ACBIN64.

- **GURIN64**
 Returns information about the 64-bit cache pools. The 64-bit cache for XML documents created as responses to GUR calls is GURIN64.

- **DBAS**
 Returns information about full-function database (OSAM or VSAM) buffer pools.

POOLID()
Specifies the user-defined identifier assigned to a specific OSAM subpool or VSAM shared resource pool. The identifier is a 1- to 4-character alphanumeric field that filters which subpools are displayed in the QUERY command output. This keyword is optional.

SIZE()
Specifies the size of the buffers in the subpool to be filtered on. The size value acts filters which subpools are displayed in the QUERY command output. The size value can be from 512 to 32768 bytes. The command rounds up the size value to 512, 1024, 2048, and thereafter to multiples of 2048 bytes. You can code specifications of 1024 and greater as 1KB, 2KB, 4KB, and thereafter round up values to multiples of 2KB to a maximum of 32KB.

SUBTYPE()
Specifies the subpool types that are returned to the issuer of the command. The following subpool types can be specified with this keyword.

- **OSAM**
 Specifies that OSAM subpool information is displayed.

- **VSAM**
 Specifies that VSAM subpool information is displayed.
OSAM, VSAM

Specifies that OSAM subpool information and VSAM subpool information is displayed.

SHOW()

Specifies the pool output fields to be returned. There is no default.

- **ALL**
 Returns all information for the pool type that you specified.

- **FREE**
 Returns the percentage of the pool that was not reserved for buffers or control data. The SHOW(FREE) keyword is valid only with the TYPE(ACBIN64) keyword.

- **INUSE**
 Returns the percentage of the pool that is used. The SHOW(INUSE) keyword is valid only with the TYPE(ACBIN64) keyword.

- **OVERFLOW**
 Returns the total number of overflow buffers in use in the pool. Overflow buffers are used to store the members that are too large to store in standard 64-bit cache buffers. The SHOW(OVERFLOW) keyword is valid only with the TYPE(ACBIN64) keyword.

- **SIZE**
 Returns the size of the 64-bit storage pool as specified by the user. The SHOW(SIZE) keyword is valid only with the TYPE(ACBIN64) keyword.

MEMBER

Lists the subpools and shows the active members of the IMS PROCLIB data set where full-function database buffer pool definitions are obtained.

STATISTICS

Returns specific point-in-time statistics information for the specified pool type.

If TYPE(DBAS) is specified, this option is equivalent to the information that is displayed when the /DIS POOL DBAS type-1 command is issued.

Usage notes

The QUERY POOL command can be specified only through the OM API.

Output fields

The following table shows the QUERY POOL output fields. The columns in the table are:

- **Short label**
 Contains the short label generated in the XML output.

- **Long label**
 Contains the column heading for the output field in the formatted output.

- **Keyword**
 Identifies the keyword on the command that caused the field to be generated. N/A appears for output fields that are always returned. error appears for output fields that are returned only in case of an error.

- **Meaning**
 Provides a brief description of the output field.
<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTBUF</td>
<td>ACTBUF</td>
<td>TYPE(ACBIN64) TYPE(GURIN64)</td>
<td>The total number of active buffers in the 64-bit storage pool, that is, buffers that contain valid ACBLIB data in binary format or whole catalog DBD or PSB records in XML format.</td>
</tr>
<tr>
<td>ADDS</td>
<td>Isrt</td>
<td>TYPE(ACBIN64) TYPE(GURIN64)</td>
<td>For TYPE(ACBIN64), the number of times IMS inserted an ACB member into the 64-bit storage pool. For TYPE(GURIN64), the number of times IMS inserted a catalog record into the 64-bit storage pool. This count is initialized at IMS startup.</td>
</tr>
<tr>
<td>ALTREQ</td>
<td>AltReq</td>
<td>TYPE(DBAS) SHOW(STATISTICS) BfAlt</td>
<td>For OSAM subpools, it is the number of buffer alter calls for this subpool. This count includes NEW BLOCK and BYTALT calls. For VSAM subpools, it is the number of logical records altered.</td>
</tr>
<tr>
<td>B64BT</td>
<td>64b_Buf</td>
<td>TYPE(FPBP64) SHOW(ALL)</td>
<td>The 64 bit storage used for the buffers for each subpool and extent.</td>
</tr>
<tr>
<td>B64BTOT</td>
<td>64b_Tot</td>
<td>TYPE(FPBP64)</td>
<td>The total amount of 64-bit storage used for each subpool and extents, and the overall 64-bit storage total.</td>
</tr>
<tr>
<td>BFSRCH</td>
<td>BfSrch</td>
<td>TYPE(DBAS) SHOW(STATISTICS) VRds</td>
<td>For OSAM subpools, it is the number of buffers searched by all LOCATE-type calls for this subpool. For VSAM subpools, it is the number of VSAM control interval reads.</td>
</tr>
<tr>
<td>BFSTLW</td>
<td>BfStIw</td>
<td>TYPE(DBAS) SHOW(STATISTICS) VWts</td>
<td>For OSAM subpools, it is the number of single block writes initiated by buffer steal routine for this subpool. For VSAM subpools, it is the number of VSAM control interval writes.</td>
</tr>
<tr>
<td>BUFSIZE</td>
<td>Buf_Size</td>
<td>TYPE(FPBP64) SHOW(STATISTICS)</td>
<td>The buffer size being displayed.</td>
</tr>
<tr>
<td>BUAVAL</td>
<td>Buf_Avl</td>
<td>TYPE(FPBP64)</td>
<td>The number of buffers available for use from this subpool or extents, or the total for the entire buffer pool or the entire system. The system total is found in row DBF_TOTB.</td>
</tr>
<tr>
<td>BUFS</td>
<td>BufSize</td>
<td>TYPE(DBAS)</td>
<td>The buffer size.</td>
</tr>
<tr>
<td>BUFUSE</td>
<td>Buf_Use</td>
<td>TYPE(FPBP64)</td>
<td>The number of buffers being used by a process (IMS, dependent region, or external thread (such as ODBM)) from this subpool or extents, or the grand total for the entire buffer pool or the entire system. The system total is found in row DBF_TOTB.</td>
</tr>
<tr>
<td>BUFA</td>
<td>Buf_A</td>
<td>TYPE(FPBP64) SHOW(ALL)</td>
<td>The number of available buffers in the subpool base section or extent. This column does not contain the total number of available buffers for the entire subpool.</td>
</tr>
<tr>
<td>BUFQ</td>
<td>Buf_Q</td>
<td>TYPE(FPBP64) SHOW(ALL)</td>
<td>The number of quiesced buffers in the subpool base section or extent. This column does not contain the total number of quiesced buffers for the entire subpool.</td>
</tr>
</tbody>
</table>
Table 180. Output fields for the QUER POOL command (continued).

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUFT</td>
<td>Buf_T</td>
<td>TYPE(FPBP64) SHOW(ALL)</td>
<td>The total number of buffers in the subpool base section or extent. This column does not contain the total number of buffers for the entire subpool.</td>
</tr>
<tr>
<td>BUFU</td>
<td>Buf_U</td>
<td>TYPE(FPBP64) SHOW(ALL)</td>
<td>The number of used buffers in the subpool base section or extent. This column does not contain the total number of used buffers for the entire subpool.</td>
</tr>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code. The completion code indicates whether IMS was able to process the command for the specified resource. The completion code is always returned.</td>
</tr>
<tr>
<td>DATECR</td>
<td>TimeCreate</td>
<td>TYPE(FPBP64) SHOW(ALL)</td>
<td>The date this subpool or extent was created.</td>
</tr>
<tr>
<td>DELETES</td>
<td>Del</td>
<td>TYPE(ACBIN64) TYPE(GURIN64)</td>
<td>For TYPE(ACBIN64), the number of times IMS deleted an ACB member from the 64-bit storage pool. For TYPE(GURIN64), the number of times IMS deleted a catalog record from the 64-bit storage pool. This count is initialized at IMS startup.</td>
</tr>
<tr>
<td>ECSA</td>
<td>ECSA_Buf</td>
<td>TYPE(FPBP64) SHOW(ALL)</td>
<td>The ECSA used for the buffers for each subpool and for each extent.</td>
</tr>
<tr>
<td>ECSAT</td>
<td>ECSA_Tot</td>
<td>TYPE(FPBP64)</td>
<td>The total amount of ECSA used for each subpool and extents, and the overall ECSA total.</td>
</tr>
<tr>
<td>ECSAB</td>
<td>ECSA_B</td>
<td>TYPE(FPBP64) SHOW(ALL)</td>
<td>The amount of ECSA used for buffers by each subpool base section or extent. This column does not contain the total amount of ECSA for the entire subpool.</td>
</tr>
<tr>
<td>ECSAO</td>
<td>ECSA_O</td>
<td>TYPE(FPBP64) SHOW(ALL)</td>
<td>The amount of ECSA used for control blocks by each subpool base section or extent. This column does not contain the total amount of ESCA for the entire subpool.</td>
</tr>
<tr>
<td>EPVTT</td>
<td>EPVT_T</td>
<td>TYPE(FPBP64) SHOW(ALL)</td>
<td>The amount of EPVT used by subpool base section or extent. This column does not contain the total amount of EPVT for the entire subpool.</td>
</tr>
<tr>
<td>EPVTOT</td>
<td>EPVT_Tot</td>
<td>TYPE(FPBP64)</td>
<td>The total amount of EPVT used for each pool, subpool, and extents. EPVT is used only for control blocks, except for FDBR, which can use EPVT for Fast Path database buffers and control blocks.</td>
</tr>
<tr>
<td>ERRORS</td>
<td>NumErrors</td>
<td>TYPE(DBAS) SHOW(STATISTICS)</td>
<td>For OSAM, it is the total number of I/O errors for this subpool, or number of buffers locked in the pool due to write errors for this subpool. For VSAM, it is the number of permanent write errors now in the subpool, or the largest number of errors in this execution.</td>
</tr>
<tr>
<td>EXTPER</td>
<td>%Ext</td>
<td>TYPE(FPBP64) SHOW(ALL)</td>
<td>Percentage of the base section to be used before an extent is taken. This value might change over time based on buffer usage.</td>
</tr>
</tbody>
</table>
Table 180. Output fields for the QUERY POOL command (continued).

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>FINDS</td>
<td>Gets</td>
<td>TYPE(ACBIN64)</td>
<td>For TYPE(ACBIN64), the number of times IMS attempted to retrieve a member from the 64-bit storage pool. For TYPE(GURIN64), the number of times IMS attempted to retrieve a catalog record from the 64-bit storage pool. This count is initialized at IMS startup.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TYPE(GURIN64)</td>
<td></td>
</tr>
<tr>
<td>FIXOPT</td>
<td>FixOpt</td>
<td>TYPE(DBAS) SHOW(STATISTICS)</td>
<td>Buffer and pool fix options. For OSAM, Y/N indicates whether the DATA BUFFER PREFIX / DATA BUFFERS are fixed. For VSAM, Y/N indicates whether the INDEX BUFFERS / DATA BUFFER PREFIX / DATA BUFFERS are fixed.</td>
</tr>
<tr>
<td>FREE</td>
<td>Free</td>
<td>TYPE(ACBIN64)</td>
<td>The percentage of the pool that has not been reserved for buffers or control data.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TYPE(GURIN64)</td>
<td></td>
</tr>
<tr>
<td>FNDIPL</td>
<td>FndIpl</td>
<td>TYPE(DBAS) SHOW(STATISTICS)</td>
<td>For OSAM subpools, it is the number of LOCATE-type calls for this subpool where data is already in the OSAM pool. For VSAM subpools, it is the number of system checkpoint (synchronization point) requests.</td>
</tr>
<tr>
<td></td>
<td>SyncPt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HITS</td>
<td>Hits</td>
<td>TYPE(ACBIN64)</td>
<td>The number of times a GET request from the 64-bit pool was successful. That number is displayed as a percentage.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TYPE(GURIN64)</td>
<td></td>
</tr>
<tr>
<td>HWM</td>
<td>HWM</td>
<td>TYPE(FPBP64) SHOW(STATISTICS)</td>
<td>The High Water Mark of buffers used.</td>
</tr>
<tr>
<td>ID</td>
<td>PoolId</td>
<td>N/A</td>
<td>The OSAM subpool or VSAM shared pool ID.</td>
</tr>
<tr>
<td>INUSE</td>
<td>Used</td>
<td>TYPE(ACBIN64)</td>
<td>The percentage of the pool that is used.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TYPE(GURIN64)</td>
<td></td>
</tr>
<tr>
<td>LCTREQ</td>
<td>LctReq</td>
<td>TYPE(DBAS) SHOW(STATISTICS)</td>
<td>For OSAM subpools, it is the number of LOCATE-type calls for this subpool. For VSAM subpools, it is the number of retrieval requests by RBA.</td>
</tr>
<tr>
<td></td>
<td>RRba</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LGBFNFM</td>
<td>Lmbr</td>
<td>TYPE(ACBIN64)</td>
<td>The name of the largest member in the 64-bit storage pool.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TYPE(GURIN64)</td>
<td></td>
</tr>
<tr>
<td>LGBFTP</td>
<td>Ltype</td>
<td>TYPE(ACBIN64)</td>
<td>The resource type of the largest member in the 64-bit storage pool.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TYPE(GURIN64)</td>
<td></td>
</tr>
<tr>
<td>LGBFSZ</td>
<td>Lsize</td>
<td>TYPE(ACBIN64)</td>
<td>The size in kilobytes (KB) of the largest member specified.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TYPE(GURIN64)</td>
<td></td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>The IMS identifier of the IMS for which the database information is displayed. The IMS identifier is always returned.</td>
</tr>
<tr>
<td>MBRS</td>
<td>Mbrs</td>
<td>TYPE(ACBIN64)</td>
<td>The total number of members in the 64-bit storage pool.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TYPE(GURIN64)</td>
<td></td>
</tr>
<tr>
<td>MISSSES</td>
<td>Miss</td>
<td></td>
<td>The number of times a GET request from the 64-bit pool was unsuccessful. That number is displayed as a percentage.</td>
</tr>
<tr>
<td>NBUF</td>
<td>NBuf</td>
<td>TYPE(DBAS)</td>
<td>The number of buffers.</td>
</tr>
<tr>
<td>NEWBLK</td>
<td>NewBlk</td>
<td>TYPE(DBAS) SHOW(STATISTICS)</td>
<td>For OSAM subpools, it is the number of blocks created in the pool. For VSAM subpools, it is the number of retrieval requests by KEY.</td>
</tr>
<tr>
<td></td>
<td>RKey</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short label</td>
<td>Long label</td>
<td>Keyword</td>
<td>Meaning</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>OVERFLOW</td>
<td>Overflow</td>
<td>TYPE(ACBIN64)</td>
<td>The total number of overflow buffers in use in the pool. Overflow buffers are used to store the members that are too large to store in standard 64-bit cache buffers.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TYPE(GURIN64)</td>
<td></td>
</tr>
<tr>
<td>PMBR</td>
<td>ProcMbr</td>
<td>SHOW(MEMBER)</td>
<td>The name of the member of the IMS PROCLIB data set.</td>
</tr>
<tr>
<td>POOL</td>
<td>Subpool</td>
<td>TYPE(FPBP64) SHOW(ALL)</td>
<td>The IMS-generated subpool name, where xxxx is a numeric value: DBFCxxxx A common subpool used for DEDB data. The buffers reside in 64-bit addressable storage. This subpool name is only valid for TYPE(FPBP64).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TYPE(ACBIN64)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TYPE(GURIN64)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TYPE(DBAS)</td>
<td>The subpool type.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OSAM</td>
<td>An OSAM subpool.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VSAM-D</td>
<td>A VSAM data subpool.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VSAM-I</td>
<td>A VSAM index subpool.</td>
</tr>
<tr>
<td>PURGRQ</td>
<td>PurgRq</td>
<td>TYPE(DBAS) SHOW(STATISTICS)</td>
<td>For OSAM subpools, it is the number of PURGE calls for this subpool. For VSAM subpools, it is the number of new VSAM logical records created.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NRec</td>
<td></td>
</tr>
<tr>
<td>PURGWR</td>
<td>PurgWr</td>
<td>TYPE(DBAS) SHOW(STATISTICS)</td>
<td>For OSAM subpools, it is the number of buffers written by purge. For VSAM subpools, it is the number of successful VSAM reads from Hiperspace™ buffers.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HSR-S</td>
<td></td>
</tr>
<tr>
<td>QUIBUF</td>
<td>Qui_Buf</td>
<td>TYPE(FPBP64) SHOW(ALL)</td>
<td>The total number of buffers being quiesced for the subpool, or the total number of quiesced buffers in the system. The system total is found in row DBF_TOTB.</td>
</tr>
<tr>
<td>RDREQ</td>
<td>RdReq</td>
<td>TYPE(DBAS) SHOW(STATISTICS)</td>
<td>For OSAM subpools, it is the number of READ I/O requests for this subpool. For VSAM subpools, it is the number of control intervals that VSAM found in the subpool through lookaside.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Found</td>
<td></td>
</tr>
<tr>
<td>SECT</td>
<td>Section</td>
<td>TYPE(DBAS) SHOW(MEMBER)</td>
<td>Section of the DFSDFxxx or DFSVSMxx member processed.</td>
</tr>
<tr>
<td>SIZE</td>
<td>Size</td>
<td>TYPE(FPBP64) SHOW(ALL)</td>
<td>The size of the 64-bit buffer or 64-bit storage pool as specified by the user.</td>
</tr>
<tr>
<td>Short label</td>
<td>Long label</td>
<td>Keyword</td>
<td>Meaning</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>SMBFN M</td>
<td>Smbr</td>
<td>TYPE(ACBIN64)</td>
<td>The name of the smallest member in the 64-bit storage pool.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TYPE(GURIN64)</td>
<td></td>
</tr>
<tr>
<td>SMBFTP</td>
<td>Stype</td>
<td></td>
<td>The resource type of the smallest member in the 64-bit storage pool.</td>
</tr>
<tr>
<td>SMBFSZ</td>
<td>Ssize</td>
<td></td>
<td>The size in kilobytes (K) of the smallest member specified.</td>
</tr>
<tr>
<td>SPT</td>
<td>SPT</td>
<td>TYPE(FPBP64) SHOW(STATISTICS)</td>
<td>This field is returned only for SHOW(STATISTICS). For SHOW(ALL), see the TYPE field. Pool type, which can be one of the following: C Common (64-bit) buffers. S System (ESCA) buffers</td>
</tr>
<tr>
<td>STATUS</td>
<td>Status</td>
<td>TYPE(FPBP64) SHOW(ALL)</td>
<td>The status of the subpool or extent. If the subpool or extent is in use, this field is blank. If all subpools and extents are in use, this column is not displayed. The possible status descriptions are: Comp This subpool is being compressed. This status indicates that one or more extents of the subpool is no longer needed and is being retired from service. Dlet This subpool or extent is being deleted. The associated buffers are not counted in the buffers totals, but the associated storage is counted in the storage totals. Qsc This subpool extent is being quiesced as part of a subpool compression or deletion. QscW This subpool or extent is waiting for a buffer to be returned before completing a quiesce operation.</td>
</tr>
<tr>
<td>TOTBUF</td>
<td>Tot_Buf</td>
<td>TYPE(FPBP64)</td>
<td>The total number of buffers in this subpool, including the base section and the extents, or the total number of buffers in the entire system. The system total is in row DBF_TOTB.</td>
</tr>
<tr>
<td>TOTBUF</td>
<td>TOTBUF</td>
<td>TYPE(ACBIN64)</td>
<td>The total number of buffers in the 64-bit storage pool, including those that do not currently contain ACB member or catalog member data.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TYPE(GURIN64)</td>
<td></td>
</tr>
<tr>
<td>TYPE</td>
<td>Type</td>
<td>TYPE(FPBP64) SHOW(ALL)</td>
<td>This field is returned only for SHOW(ALL). For SHOW(STATISTICS), see the SPT field. Pool type, which can be one of the following: G This row contains overall totals for the entire buffer pool. Tot The total values for the subpool and extents, with the name of the subpool in the SUBPOOL column. Base This is the base section of the subpool, and does not include the extent values. Ext This is an extent for the subpool, and does not include the base section of the subpool.</td>
</tr>
<tr>
<td>Short label</td>
<td>Long label</td>
<td>Keyword</td>
<td>Meaning</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>TYPEID</td>
<td>T_id</td>
<td>TYPE(FPBP64) SHOW(ALL)</td>
<td>A combined numeric identifier that gives both the type of subpool being described in the row and its status:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>65</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>USE</td>
<td>%Use</td>
<td>TYPE(FPBP64)</td>
<td>Percentage of the buffers that are currently in use by a process for a subpool or extents.</td>
</tr>
<tr>
<td>WBSYID</td>
<td>WBsyId</td>
<td>TYPE(DBAS) SHOW(STATISTICS)</td>
<td>For OSAM subpools, it is the number of LOCATE calls for this subpool that waited due to a busy ID. For VSAM subpools, it is the number of successful VSAM writes to Hiperspace buffers.</td>
</tr>
<tr>
<td></td>
<td>HSW-S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WBSYRD</td>
<td>WBsyRd</td>
<td>TYPE(DBAS) SHOW(STATISTICS)</td>
<td>For OSAM subpools, it is the number of LOCATE-type calls for this subpool that waited due to a busy buffer reading. For VSAM subpools, it is the number of failed VSAM reads from Hiperspace buffers. This indicates the number of times a VSAM READ request from Hiperspace resulted in DASD I/O.</td>
</tr>
<tr>
<td></td>
<td>HS-R-F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WBSYWR</td>
<td>WBsyWr</td>
<td>TYPE(DBAS) SHOW(STATISTICS)</td>
<td>For OSAM subpools, it is the number of LOCATE-type calls for this subpool that waited due to a busy writing. For VSAM subpools, it is the number of Hiperspace buffers defined for this subpool.</td>
</tr>
<tr>
<td></td>
<td>HSNBf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WNOBFR</td>
<td>WNoBfr</td>
<td>TYPE(DBAS) SHOW(STATISTICS)</td>
<td>Number of buffer steal requests for this subpool that waited because no buffers were available to be stolen. This field is only applicable to OSAM subpools.</td>
</tr>
</tbody>
</table>
Table 180. Output fields for the QUER POOL command (continued).

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>WRLSEO</td>
<td>WRLseO</td>
<td>TYPE(DBAS) SHOW(STATISTICS)</td>
<td>For OSAM subpools, it is the number of buffer steal or purge requests for this subpool that waited for ownership to be released. For VSAM subpools, it is the number of failed VSAM writes to Hiperspace buffers. This indicates the number of times a VSAM WRITE request to Hiperspace resulted in DASD I/O.</td>
</tr>
<tr>
<td>HS-W-F</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

An IMS return and reason code is returned to OM by the QUER POOL command. The OM return and reason codes that might be returned as a result of the QUER POOL command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 181. Return and reason codes for the QUER POOL command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The command completed successfully. The command output contains a line for each resource, accompanied by its completion code. See Table 182 on page 476 for details.</td>
</tr>
<tr>
<td>X'00000004'</td>
<td>X'00001010'</td>
<td>The command found that no resources exist that match the specified filter.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002141'</td>
<td>There was a TYPE() parameter conflict.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003000'</td>
<td>Command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code. See the completion code table for details.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>Command was not successful for any of the resources. The command output contains a line for each resource, accompanied by its completion code. See the completion code table for details.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>The command failed because it is not valid on the RSR tracker.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004016'</td>
<td>The command failed because it is not valid in a DCCTL environment.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004024'</td>
<td>Fast Path is not enabled for this IMS system, so there is no data to display.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004404'</td>
<td>The Fast Path 64-bit buffer manager is not enabled, so there is no data to display.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005000'</td>
<td>IMODULE GETSTOR error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005004'</td>
<td>DFSOCMD response buffer could not be obtained.</td>
</tr>
</tbody>
</table>

The following table includes an explanation of the completion codes. Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.
Table 182. Completion codes for the QUERY POOL command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X'00000000'</td>
<td>The QUERY POOL command completed successfully.</td>
</tr>
</tbody>
</table>

Completion codes are not issued as part of this QUERY POOL command. The expected output will show available pool or subpool information.

Examples

The following are examples of the QUERY POOL command:

*Example 1 for QUERY POOL command:

TSO SPOC input:

```sql
QUERY POOL TYPE(FPBP64) SHOW(ALL)
```

TSO SPOC output:

```
Response for: QUERY POOL TYPE(FPBP64) SHOW(ALL) More: =>
Subpool MbrName CC Size Type Status T_id Ton Buf TBuf Use Buf_U Buf_A %Use Ext Qu/Buf Buf_Q
DBF_TABB SYS3 DBFC0001 512 Tot 10 60B 7 0 608 0
...DBFC0006 SYS3 DBFC0003 2048 Tot 10 16 0 16 0 16 100 0
DBFC0005 SYS3 4096 Tot 10 64 0 64 0
...DBFC0006 SYS3 1024 Tot 10 16 0 16 0 16 0
DBFC0007 SYS3 512 Tot 10 16 0 16 0 16 0
...DBFC0007 SYS3 0 Base Qsc 55 0 0 0 N/A 50 32
DBFC0007 SYS3 2048 Tot 10 8 0 8 0 8 100 0
DBFC0008 SYS3 0 Base 15 8 0 8 0 8 100 0
...DBFC0008 SYS3 1024 Tot 10 8 0 8 0 8 0
DBFC0008 SYS3 0 Base 15 8 0 8 0 8 100 0
DBFC0008 SYS3 512 Tot 10 16 7 9 0 32 0
...DBFC0008 SYS3 0 Base 15 16 7 9 43 100 0
```

(Scrolled right to screen 2)

```
Subpool Size Type EPVT_Tot EPVT_T ECSA_Tot ECSA_Buf ECSA_B ECSA_Oth ECSA_O 64b_Tot 64b_Buf TimeCreate
DBF_TABB 2048M
DBFC0001 G 4K 510K 108K 397K 804K
DBFC0001 512 Tot 2K 266K 304K
DBFC0001 Base 1K 18K 16K 2010.148 15:05:04.95
DBFC0001 Ext 156 42K 48K 2010.148 15:25:02.51
DBFC0001 Ext 156 42K 48K 2010.148 15:25:02.41
DBFC0001 Ext 156 28K 32K 2010.148 15:25:02.26
DBFC0001 Ext 156 28K 32K 2010.148 15:24:55.49
DBFC0001 Ext 156 28K 32K 2010.148 15:17:10.70
DBFC0001 Ext 156 14K 16K 2010.148 15:17:10.29
```

```sql
476 Commands, Volume 2: IMS Commands N - V
```
OM API input:
CMD (QUERY POOL TYPE(FPBP64) SHOW(ALL))

OM API output:

```xml
<cmdrspdata>
  <rsp><POOL(DBF_MAXB) MBR(SYS3) B64BT( 100M)</rsp>
  <rsp><POOL(DBF_TOTB) MBR(SYS3) TYPE(G) TOTBUF( 219) USE(0) ABUF( 219) ECSAT(62680) ECSA( 92K) ECSAO( 4K) B64B( 280K) B64BT( 280K)</rsp>
  <rsp><POOL(DBFS0004) MBR(SYS3) SIZE( 4096) TYPE(A) TOTBUF( 8) USE( ) ABUF( 8) ECSAT( 32K)</rsp>
</cmdrsphdr>
```

Chapter 5. QUERY commands 477
Explanation: In this example, information about the Fast Path 64-bit DEDB buffer pool is displayed. Each subpool is shown on a different output line.

Example 2 for QUERY POOL command

TSO SPOC input:
QRY POOL TYPE(ACBIN64)

TSO SPOC output:

OM API input:
CMD (QRY POOL TYPE(ACBIN64))

OM API output:

<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2010.090 17:04:30.525184</statime>
<stotime>2010.090 17:04:30.525588</stotime>
</cmdrspdata>
Explanation: In this example, information about the 64-bit cache pools is displayed.

Example 3 for QUERY POOL command

TSO SPOC input:
```plaintext
QRY POOL TYPE(ACBIN64) SHOW(ALL)
```

TSO SPOC output:
```
PoolName  Type  CC  Size  Mbrs  Used  Free  Overflow  Gets  Hit  Miss
ACBIN64   Cache64  0  2   3700  25   75   5   10000  9603  397
```

OM API input:
```plaintext
CMD (QRY POOL TYPE(ACBIN64) SHOW(ALL))
```

OM API output:
```plaintext
```

Chapter 5. QUERY commands 479
Explanation: In this example, detailed information about the 64-bit cache pools is displayed.

Example 4 for QUERY POOL command

TSO SPOC input:

```
QUERY POOL TYPE(FPBP64) SHOW(STATISTICS)
```
TSO SPOC output:

<table>
<thead>
<tr>
<th>Response for: QUERY</th>
<th>POOL TYPE(FPBP64)</th>
<th>SHOW(STATISTICS)</th>
<th>More:</th>
<th>></th>
</tr>
</thead>
<tbody>
<tr>
<td>Buf_Size MbrName</td>
<td>CC</td>
<td>SPT</td>
<td>Tot_Buf</td>
<td>Buf_Use</td>
</tr>
<tr>
<td>Total</td>
<td>SYS3</td>
<td>0 C</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>512</td>
<td>SYS3</td>
<td>0 C</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>1024</td>
<td>SYS3</td>
<td>0 C</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>2048</td>
<td>SYS3</td>
<td>0 C</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>8192</td>
<td>SYS3</td>
<td>0 C</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>512</td>
<td>SYS3</td>
<td>0 S</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>1024</td>
<td>SYS3</td>
<td>0 S</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>2048</td>
<td>SYS3</td>
<td>0 S</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>4096</td>
<td>SYS3</td>
<td>0 S</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>8192</td>
<td>SYS3</td>
<td>0 S</td>
<td>8</td>
<td>0</td>
</tr>
</tbody>
</table>

OM API input:

```
CMD (QUERY POOL TYPE(FPBP64) SHOW(STATISTICS))
```

OM API output:

```
<TOTPBUF 11b1='Tot_Buf' sort="n" len='5' type='CHAR' align='right' scope='LCL' />
<USE 11b1='Buf_Use' sort="n" len='5' type='CHAR' align='right' scope='LCL' />
<ABUF 11b1='Buf_Avl' sort="n" len='5' type='CHAR' align='right' scope='LCL' />
<HWM 11b1='HWM' sort="n" len='5' type='CHAR' align='right' scope='LCL' />
<EPVTTOT 11b1='EPVT_Tot' sort="n" len='5' type='CHAR' align='right' scope='LCL' />
<ECSA 11b1='ECSA_Tot' sort="n" len='5' type='CHAR' align='right' scope='LCL' />
</cmdrsphdr>

<rsp>
MBR(SYS3 )  BSIZE(Total)  TOTBUF( 224)  USE( 0)  HWM( 0)  ABUF( 224)  PUSE( 0)  ECSAT( 269K)  EPVTTOT( 2K)  B64BTOT( 344K)/rsp>
<rsp>
MBR(SYS3 )  CC( 0)  SPT(S)  BSIZE( 512)  TOTBUF( 32)  USE( 0)  ABUF( 32)  PUSE( 0)  HWM( 0)  ECSAT( 31K)  EPVTTOT( 157)  B64BTOT( 0)/rsp>
<rsp>
MBR(SYS3 )  CC( 0)  SPT(S)  BSIZE( 1024)  TOTBUF( 32)  USE( 0)  ABUF( 32)  PUSE( 0)  HWM( 0)  ECSAT( 47K)  EPVTTOT( 157)  B64BTOT( 0)/rsp>
<rsp>
MBR(SYS3 )  CC( 0)  SPT(S)  BSIZE( 2048)  TOTBUF( 8)  USE( 0)  ABUF( 8)  PUSE( 0)  HWM( 0)  ECSAT( 20K)  EPVTTOT( 156)  B64BTOT( 0)/rsp>
<rsp>
MBR(SYS3 )  CC( 0)  SPT(S)  BSIZE( 4096)  TOTBUF( 8)  USE( 0)  ABUF( 8)  PUSE( 0)  HWM( 0)  ECSAT( 36K)  EPVTTOT( 156)  B64BTOT( 0)/rsp>
<rsp>
MBR(SYS3 )  CC( 0)  SPT(S)  BSIZE( 8192)  TOTBUF( 8)  USE( 0)  ABUF( 8)  PUSE( 0)  HWM( 0)  ECSAT( 68K)  EPVTTOT( 156)  B64BTOT( 0)/rsp>
```
Example 5 for QUERY POOL command

TSO SPOC input:
QUERY POOL TYPE(DBAS) SUBTYPE(OSAM) SHOW(STATISTICS)

TSO SPOC output:

<table>
<thead>
<tr>
<th>Subpool</th>
<th>MbrName</th>
<th>BufSize</th>
<th>PoolId</th>
<th>NBuf</th>
<th>FixOpt</th>
<th>LctReq/RRba</th>
<th>NewBlk/RKey</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSAM</td>
<td>IMS1</td>
<td>512</td>
<td>100</td>
<td>N/N</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OSAM</td>
<td>IMS1</td>
<td>1024</td>
<td>OSM1</td>
<td>1000</td>
<td>N/N</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OSAM</td>
<td>IMS1</td>
<td>2048</td>
<td>OSM2</td>
<td>7832</td>
<td>Y/N</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OSAM</td>
<td>IMS1</td>
<td>4096</td>
<td>OSM3</td>
<td>32767</td>
<td>N/Y</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OSAM</td>
<td>IMS1</td>
<td>6144</td>
<td>ABC1</td>
<td>8000</td>
<td>N/N</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OSAM</td>
<td>IMS1</td>
<td>8192</td>
<td>ABC2</td>
<td>8000</td>
<td>N/N</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OSAM</td>
<td>IMS1</td>
<td>10240</td>
<td>ABC3</td>
<td>8000</td>
<td>N/N</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OSAM</td>
<td>IMS1</td>
<td>12288</td>
<td>ABC4</td>
<td>8000</td>
<td>N/N</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OSAM</td>
<td>IMS1</td>
<td>14336</td>
<td>ABC5</td>
<td>8000</td>
<td>N/N</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OSAM</td>
<td>IMS1</td>
<td>16384</td>
<td>ABC6</td>
<td>8000</td>
<td>N/N</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OSAM</td>
<td>IMS1</td>
<td>32768</td>
<td>OSM9</td>
<td>4</td>
<td>N/N</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

AltReq/BfAlt PurgRq/NRec FndIpl/SyncPt BfSrch/VRds RdReq/Found BfStlW/VWts

<table>
<thead>
<tr>
<th>OSAM</th>
<th>IMS1</th>
<th>IMS2</th>
<th>IMS3</th>
<th>IMS4</th>
<th>IMS5</th>
<th>IMS6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

PurgWr/HSR-S WBsyIId/HSN-S WBsyWr/HSNBuf WBsyRd/HS-R-F WRlseO/HS-W-F WNoBfr

<table>
<thead>
<tr>
<th>OSAM</th>
<th>IMS1</th>
<th>IMS2</th>
<th>IMS3</th>
<th>IMS4</th>
<th>IMS5</th>
<th>IMS6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Explanation: In this example, there is a successful invocation of the QUERY POOL command for statistical information about OSAM subpools.

Example 6 for QUERY POOL command

TSO SPOC input:
QUERY POOL TYPE(DBAS) SUBTYPE(VSAM) SHOW(STATISTICS)

TSO SPOC output:

```
<table>
<thead>
<tr>
<th>Subpool</th>
<th>MbrName</th>
<th>CC</th>
<th>BufSize</th>
<th>PoolId</th>
<th>NBuf</th>
<th>FixOpt</th>
<th>LctReq/RRba</th>
<th>NewBlk/RKey</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSAM-D</td>
<td>IMS1</td>
<td>0</td>
<td>512</td>
<td>VSM1</td>
<td>10</td>
<td>N/N/N</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>VSAM-D</td>
<td>IMS1</td>
<td>0</td>
<td>1024</td>
<td>VSM1</td>
<td>1000</td>
<td>N/N/N</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>VSAM-I</td>
<td>IMS1</td>
<td>0</td>
<td>1024</td>
<td>VSM1</td>
<td>1000</td>
<td>N/N/N</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>VSAM-D</td>
<td>IMS1</td>
<td>0</td>
<td>4096</td>
<td>VSM1</td>
<td>5000</td>
<td>N/N/N</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>VSAM-I</td>
<td>IMS1</td>
<td>0</td>
<td>8192</td>
<td>XYZ1</td>
<td>5000</td>
<td>N/N/N</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>VSAM-D</td>
<td>IMS1</td>
<td>0</td>
<td>12288</td>
<td>XYZ3</td>
<td>5000</td>
<td>N/N/N</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>VSAM-D</td>
<td>IMS1</td>
<td>0</td>
<td>32768</td>
<td>VSM1</td>
<td>32767</td>
<td>N/N/N</td>
<td>0/0</td>
<td>0/0</td>
</tr>
</tbody>
</table>

AltReq/BfAlt PurgRq/NRec Fndipl/SyncPt BfSrch/VRds RdReq/Found BfStlW/VWts
```

```
<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
</tbody>
</table>

PurgrWr/HSR-S WBsyId/HSW-S WBsyWr/HSNBuf WBsyRd/HS-R-F WRLseQ/HS-W-F WNoBfr
```

```
<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
</tbody>
</table>
```

Chapter 5. QUERY commands 483
Explanation: In this example, there is a successful invocation of the QUERY POOL command for statistical information about VSAM subpools.

Example 7 for QUERY POOL command

TSO SPOC input:

```plaintext
QUERY POOL TYPE(DBAS) SUBTYPE(OSAM,VSAM) SHOW(STATISTICS) SIZE(1024)
```

TSO SPOC output:

<table>
<thead>
<tr>
<th>Subpool</th>
<th>MbrName</th>
<th>CC</th>
<th>BufSize</th>
<th>PoolId</th>
<th>NBuf</th>
<th>FixOpt</th>
<th>LctReq/RRba</th>
<th>NewBlk/RKey</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSAM</td>
<td>IMS1</td>
<td>0</td>
<td>1024</td>
<td>OSM1</td>
<td>1000</td>
<td>N/N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSAM-D</td>
<td>IMS1</td>
<td>0</td>
<td>1024</td>
<td>VSM2</td>
<td>1000</td>
<td>N/N/N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSAM-I</td>
<td>IMS1</td>
<td>0</td>
<td>1024</td>
<td>VSM2</td>
<td>1000</td>
<td>N/N/N</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(rolled right to screen 2)

<table>
<thead>
<tr>
<th>AltReq/BfAlt</th>
<th>PurgRq/NRec</th>
<th>FndIpl/SyncPt</th>
<th>BfSrch/VRds</th>
<th>RdReq/Found</th>
<th>BfStlW/VWts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(rolled right to screen 3)

<table>
<thead>
<tr>
<th>PurgeWr/HSR-S</th>
<th>WBsyId/HSN</th>
<th>WBsyWr/HSNBuf</th>
<th>WBsyRd/HS-R-F</th>
<th>WRlserO/HS-W-F</th>
<th>WNoBfr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(rolled right to screen 4)

<table>
<thead>
<tr>
<th>NumErrors</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

Explanation: In this example, there is a successful invocation of the QUERY POOL command for statistical information about OSAM and VSAM subpools filtered by buffer sizes of 1KB.

Example 8 for QUERY POOL command

TSO SPOC input:

```plaintext
QUERY POOL TYPE(DBAS) SUBTYPE(OSAM,VSAM) SHOW(STATISTICS) POOLID(OSM2)
```

TSO SPOC output:

<table>
<thead>
<tr>
<th>Subpool</th>
<th>MbrName</th>
<th>CC</th>
<th>BufSize</th>
<th>PoolId</th>
<th>NBuf</th>
<th>FixOpt</th>
<th>LctReq/RRba</th>
<th>NewBlk/RKey</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSAM</td>
<td>IMS1</td>
<td>0</td>
<td>2048</td>
<td>OSM2</td>
<td>7832</td>
<td>Y/N</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(rolled right to screen 2)

<table>
<thead>
<tr>
<th>AltReq/BfAlt</th>
<th>PurgRq/NRec</th>
<th>FndIpl/SyncPt</th>
<th>BfSrch/VRds</th>
<th>RdReq/Found</th>
<th>BfStlW/VWts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

484 Commands, Volume 2: IMS Commands N - V
Example 9 for QUERY POOL command

TSO SPOC input:

```
QUERY POOL TYPE(DBAS) SUBTYPE(OSAM,VSAM) SHOW(MEMBER)
```

TSO SPOC output:

```
<table>
<thead>
<tr>
<th>Subpool</th>
<th>MbrName</th>
<th>CC</th>
<th>BufSize</th>
<th>PoolId</th>
<th>NBuf</th>
<th>ProcMbr</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSAM</td>
<td>IMS1</td>
<td>0</td>
<td>512</td>
<td></td>
<td>100</td>
<td>DFSDFXYZ</td>
<td>OSAM003</td>
</tr>
<tr>
<td>OSAM</td>
<td>IMS1</td>
<td>0</td>
<td>1024</td>
<td>OSM1</td>
<td>2000</td>
<td>DFSDFXYZ</td>
<td>OSAM003</td>
</tr>
<tr>
<td>OSAM</td>
<td>IMS1</td>
<td>0</td>
<td>2048</td>
<td>OSM2</td>
<td>7832</td>
<td>DFSDFXYZ</td>
<td>OSAM003</td>
</tr>
<tr>
<td>OSAM</td>
<td>IMS1</td>
<td>0</td>
<td>4096</td>
<td>OSM3</td>
<td>32787</td>
<td>DFSDFXYZ</td>
<td>OSAM003</td>
</tr>
<tr>
<td>OSAM</td>
<td>IMS1</td>
<td>0</td>
<td>6144</td>
<td>ABC1</td>
<td>8000</td>
<td>DFSVS000</td>
<td></td>
</tr>
<tr>
<td>OSAM</td>
<td>IMS1</td>
<td>0</td>
<td>8192</td>
<td>ABC2</td>
<td>8000</td>
<td>DFSVS000</td>
<td></td>
</tr>
<tr>
<td>OSAM</td>
<td>IMS1</td>
<td>0</td>
<td>10240</td>
<td>ABC3</td>
<td>8000</td>
<td>DFSVS000</td>
<td></td>
</tr>
<tr>
<td>OSAM</td>
<td>IMS1</td>
<td>0</td>
<td>14336</td>
<td>ABC5</td>
<td>8000</td>
<td>DFSVS000</td>
<td></td>
</tr>
<tr>
<td>OSAM</td>
<td>IMS1</td>
<td>0</td>
<td>16384</td>
<td>ABC6</td>
<td>8000</td>
<td>DFSVS000</td>
<td></td>
</tr>
<tr>
<td>OSAM</td>
<td>IMS1</td>
<td>0</td>
<td>32768</td>
<td>OSM9</td>
<td>4</td>
<td>DFSDFXYZ</td>
<td>OSAM003</td>
</tr>
<tr>
<td>VSAM-D</td>
<td>IMS1</td>
<td>0</td>
<td>512</td>
<td>VSM1</td>
<td>10</td>
<td>DFSDFXYZ</td>
<td>VSAM001</td>
</tr>
<tr>
<td>VSAM-D</td>
<td>IMS1</td>
<td>0</td>
<td>1024</td>
<td>VSM2</td>
<td>1000</td>
<td>DFSDFXYZ</td>
<td>VSAM001</td>
</tr>
<tr>
<td>VSAM-I</td>
<td>IMS1</td>
<td>0</td>
<td>1024</td>
<td>VSM2</td>
<td>1000</td>
<td>DFSDFXYZ</td>
<td>VSAM001</td>
</tr>
<tr>
<td>VSAM-D</td>
<td>IMS1</td>
<td>0</td>
<td>4096</td>
<td>VSM4</td>
<td>5000</td>
<td>DFSDFXYZ</td>
<td>VSAM001</td>
</tr>
<tr>
<td>VSAM-I</td>
<td>IMS1</td>
<td>0</td>
<td>8192</td>
<td>XYZ1</td>
<td>5000</td>
<td>DFSVS000</td>
<td></td>
</tr>
<tr>
<td>VSAM-D</td>
<td>IMS1</td>
<td>0</td>
<td>12288</td>
<td>XYZ3</td>
<td>5000</td>
<td>DFSVS000</td>
<td></td>
</tr>
<tr>
<td>VSAM-I</td>
<td>IMS1</td>
<td>0</td>
<td>12288</td>
<td>XYZ3</td>
<td>5000</td>
<td>DFSVS000</td>
<td></td>
</tr>
<tr>
<td>VSAM-D</td>
<td>IMS1</td>
<td>0</td>
<td>32768</td>
<td>VSM9</td>
<td>32767</td>
<td>DFSDFXYZ</td>
<td>VSAM001</td>
</tr>
</tbody>
</table>
```

Explanation: In this example, there is a successful invocation of the QUERY POOL command for member information about OSAM and VSAM subpools.

Example 10 for QUERY POOL command

TSO SPOC input:

```
QUERY POOL TYPE(DBAS) SUBTYPE(OSAM,VSAM) SHOW(ALL)
```

TSO SPOC output:

```
<table>
<thead>
<tr>
<th>Subpool</th>
<th>MbrName</th>
<th>CC</th>
<th>BufSize</th>
<th>PoolId</th>
<th>NBuf</th>
<th>ProcMbr</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSAM</td>
<td>IMS1</td>
<td>0</td>
<td>512</td>
<td></td>
<td>100</td>
<td>DFSDFXYZ</td>
<td>OSAM003</td>
</tr>
<tr>
<td>OSAM</td>
<td>IMS1</td>
<td>0</td>
<td>1024</td>
<td>OSM1</td>
<td>2000</td>
<td>DFSDFXYZ</td>
<td>OSAM003</td>
</tr>
<tr>
<td>OSAM</td>
<td>IMS1</td>
<td>0</td>
<td>2048</td>
<td>OSM2</td>
<td>7832</td>
<td>DFSDFXYZ</td>
<td>OSAM003</td>
</tr>
<tr>
<td>OSAM</td>
<td>IMS1</td>
<td>0</td>
<td>4096</td>
<td>OSM3</td>
<td>32787</td>
<td>DFSDFXYZ</td>
<td>OSAM003</td>
</tr>
<tr>
<td>VSAM-D</td>
<td>IMS1</td>
<td>0</td>
<td>512</td>
<td>VSM1</td>
<td>10</td>
<td>DFSDFXYZ</td>
<td>VSAM001</td>
</tr>
<tr>
<td>VSAM-D</td>
<td>IMS1</td>
<td>0</td>
<td>1024</td>
<td>VSM2</td>
<td>1000</td>
<td>DFSDFXYZ</td>
<td>VSAM001</td>
</tr>
<tr>
<td>VSAM-I</td>
<td>IMS1</td>
<td>0</td>
<td>1024</td>
<td>VSM2</td>
<td>1000</td>
<td>DFSDFXYZ</td>
<td>VSAM001</td>
</tr>
<tr>
<td>VSAM-D</td>
<td>IMS1</td>
<td>0</td>
<td>4096</td>
<td>VSM4</td>
<td>5000</td>
<td>DFSDFXYZ</td>
<td>VSAM001</td>
</tr>
<tr>
<td>VSAM-I</td>
<td>IMS1</td>
<td>0</td>
<td>8192</td>
<td>XYZ1</td>
<td>5000</td>
<td>DFSVS000</td>
<td></td>
</tr>
<tr>
<td>VSAM-D</td>
<td>IMS1</td>
<td>0</td>
<td>12288</td>
<td>XYZ3</td>
<td>5000</td>
<td>DFSVS000</td>
<td></td>
</tr>
<tr>
<td>VSAM-I</td>
<td>IMS1</td>
<td>0</td>
<td>12288</td>
<td>XYZ3</td>
<td>5000</td>
<td>DFSVS000</td>
<td></td>
</tr>
<tr>
<td>VSAM-D</td>
<td>IMS1</td>
<td>0</td>
<td>32768</td>
<td>VSM9</td>
<td>32767</td>
<td>DFSDFXYZ</td>
<td>VSAM001</td>
</tr>
</tbody>
</table>
```

Explanation: In this example, there is a successful invocation of the QUERY POOL command for member information about OSAM and VSAM subpools.
Explanation: In this example, there is a successful invocation of the \textit{QUERY POOL} command for both OSAM and VSAM pool information when \texttt{TYPE(DBAS)} and \texttt{SHOW(ALL)} are specified.

Related concepts:
- How to interpret CSL request return and reason codes (System Programming APIs)
- Adjusting OSAM and VSAM database buffers (Database Administration)
- Monitoring VSAM buffers (Database Administration)

Related tasks:
- OSAM buffers (Database Administration)

Related reference:
- /DISPLAY POOL command (Commands)
- Command keywords and their synonyms (Commands)

QUERY RM command

Use the \textit{QUERY RM} command to view status and attributes information about a Resource Manager (RM) address space. This command returns information about IMSRSC repositories managed by RM.
Environment

The QUERY RM command is processed by the Common Service Layer (CSL) Resource Manager (RM) address space.

Syntax

```
QUERY RM TYPE(REPO) SHOW(ALL) ATTRIB STATUS
```

Keywords

The following keywords are valid for the QUERY RM command:

- **TYPE**
 - Specifies the type of data or information to be processed.

- **REPO**
 - Specifies that information about all IMSRSC repositories defined to RM is to be returned.

- **SHOW**
 - Specifies the information to be returned on the QUERY command.

- **ALL**
 - Specifies that all the status and attribute information is to be returned.

- **ATTRIB**
 - Specifies that the repository attributes in RM is to be returned. The attributes that are returned are AUDITACCESS settings in RM.

- **STATUS**
 - Specifies that the status information in RM is to be returned. For possible status values that can be returned, see Table 183 on page 488.

Usage notes

This command can be specified only through the Operations Manager (OM) API.

The QUERY RM command is defined to OM as ROUTE=ALL. The command is processed by each RM that receives the command.

The command syntax for this command is defined in XML and is available to automation programs that communicate with OM.

Output fields

The following table shows the QUERY RM output fields. The columns in the table are as follows:

- **Short label**
 - Contains the short label generated in the XML output.
Long label
Contains the long label generated in the XML output.

Keyword
Identifies the keyword on the command that caused the field to be generated. N/A appears for output fields that are always returned.

Meaning
Provides a brief description of the output field.

Table 183. Output fields for QUERY RM command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUDACC</td>
<td>AuditAccess</td>
<td>ATTRIB, ALL</td>
<td>AUDITACCESS attribute in RM.</td>
</tr>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code for the line of output. Completion code is always returned.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>N/A</td>
<td>Completion code text that briefly explains the meaning of the nonzero completion code.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>Name of the RM that processes the command.</td>
</tr>
<tr>
<td>REPOGRP</td>
<td>RepositoryGroup</td>
<td>N/A</td>
<td>z/OS cross-system coupling facility (XCF) group that is associated to the Repository Server.</td>
</tr>
<tr>
<td>REPONM</td>
<td>RepositoryName</td>
<td>N/A</td>
<td>Name of the repository that RM is connected to.</td>
</tr>
<tr>
<td>REPOTYP</td>
<td>RepositoryType</td>
<td>N/A</td>
<td>Type of the repository that RM is connected to.</td>
</tr>
<tr>
<td>Short label</td>
<td>Long label</td>
<td>Keyword</td>
<td>Meaning</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>STT</td>
<td>Status</td>
<td>STATUS, ALL</td>
<td>Status. Valid status values that can be returned are:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CONNECTED</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Indicates that RM is connected to the IMSRSC repository and that the repository is available for use.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CONNECT-INCOMPLETE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Indicates that RM successfully connected to the repository, but RM failed to correctly update the repository global entry in the resource structure. In addition, other RM systems in the IMSplex might not have been notified with the directive to connect to the repository.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The operator must issue the UPDATE RM TYPE(REPO) SET(REPO(Y)) command to complete the connect processing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DISCONNECT-INCOMPLETE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Indicates that RM successfully disconnected from the repository, but RM failed to correctly update the repository global entry in the resource structure. In addition, other RM systems in the IMSplex might not have been notified to disconnect from the repository.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The operator must issue the UPDATE RM TYPE(REPO) SET(REPO(N)) command to complete the disconnect processing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NOTAVAIL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Indicates that the repository is not available. RM reconnects to the repository when the Repository Server indicates to RM that the repository is available.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RS-NOTAVAIL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Indicates that there is no master Repository Server that is available. This status is displayed only when RM has successfully registered with the Repository Server, but the master Repository Server is down and there are no subordinate Repository Servers available to take over. The repository is not available for use until a Repository Server is available.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SPARERECOV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Indicates that the repository spare recovery process is in progress. The repository is not available during this process.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SPARERCVERR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Indicates that the repository spare recovery process resulted in an error and that the repository is not available for use. See the FRP messages issued by the Repository Server during the spare recovery process, and fix the error. The repository must be started after the error is fixed to make it available for use.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UPDATE-AUDACC-INCOMPLETE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Indicates that RM successfully updated the audit access setting in the repository, but RM failed to correctly update the repository global entry in the resource structure. In addition, other RM systems in the IMSplex might not have been notified to update the audit access value from the repository global entry.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The operator must issue the UPDATE RM TYPE(REPO) SET(REPO(AUDITACCESS)) command to complete the update of the audit access setting.</td>
</tr>
</tbody>
</table>
Return, reason, and completion codes

An IMS return and reason code is returned to OM by the QUERY RM command. The OM return and reason codes that might be returned as a result of the QUERY RM command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 184. Return and reason codes for the QUERY RM command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The QUERY RM command completed successfully. The command output contains a line for each resource, accompanied by its completion code. See the completion code table for details.</td>
</tr>
<tr>
<td>X'03000008'</td>
<td>X'0000203C'</td>
<td>Invalid keyword parameter value.</td>
</tr>
<tr>
<td>X'0300000C'</td>
<td>X'00003000'</td>
<td>At least one request was successful.</td>
</tr>
<tr>
<td>X'0300000C'</td>
<td>X'00003004'</td>
<td>No requests were successful.</td>
</tr>
<tr>
<td>X'03000010'</td>
<td>X'00004504'</td>
<td>RM is not registered to the repository.</td>
</tr>
<tr>
<td>X'03000014'</td>
<td>X'00005030'</td>
<td>Command output response allocation failed.</td>
</tr>
</tbody>
</table>

The following table includes an explanation of the completion code.

Table 185. Completion code for the QUERY RM command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The QUERY RM command completed successfully.</td>
</tr>
</tbody>
</table>

Examples

The following are examples of the QUERY RM command:

Example 1 for QUERY RM command

TSO SPOC input:
QUERY RM TYPE(REPO) SHOW(ALL)

TSO SPOC output:

(Screen 1)
RepositoryType MbrName CC Status AuditAccess
IMSRSC RM1RM 0 CONNECTED DEFAULT
IMSRSC RM2RM 0 CONNECTED DEFAULT
IMSRSC RM3RM 0 CONNECTED DEFAULT

(scrolled right to screen 2)
RepositoryType MbrName RepositoryName
IMSRSC RM1RM IMSRSC_REPOSITORY
IMSRSC RM2RM IMSRSC_REPOSITORY
IMSRSC RM3RM IMSRSC_REPOSITORY

(scrolled right to screen 3)
RepositoryType MbrName RepositoryGroup
IMSRSC RM3RM FRPGRUP1
IMSRSC RM2RM FRPGRUP1
IMSRSC RM1RM FRPGRUP1

OM API input:
CMD(QUERY RM TYPE(REPO) SHOW(ALL))

OM API output:

<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2011.186 22:43:56.527517</statime>
<stotime>2011.186 22:43:56.540575</stotime>
<staseq>C806A80CFEF9D40C</staseq>
<stoseq>C806A80D0229FDC8</stoseq>
<rqsttkn1>USRT005 10154356</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>RM3RM</master>
<userid>USRT005</userid>
<verb>QRY</verb>
<kwd>RM</kwd>
<input>QUERY RM TYPE(REPO) SHOW(ALL)</input>
</cmd>
<cmdrsphdr>
<hdr slbl="REPOTYP" llbl="RepositoryType" scope="LCL" sort="a" key="1"
scroll="no" len="8" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" key="2"
scroll="no" len="8" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0"
scroll="yes" len="4" dtype="INT" align="right" skipb="no" />
<hdr slbl="CCTXT" llbl="CCText" scope="LCL" sort="n"
key="0" scroll="yes" len="8" dtype="CHAR" align="left" skipb="yes" />
<hdr slbl="STT" llbl="Status" scope="LCL" sort="n"
key="0" scroll="yes" len="*" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="AUDACC" llbl="AuditAccess" scope="LCL"
sort="n" key="0" scroll="yes" len="*" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="REPONM" llbl="RepositoryName" scope="LCL"
sort="n" key="0" scroll="yes" len="44" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="REPOGRP" llbl="RepositoryGroup" scope="LCL"
sort="n" key="0"
scroll="yes" len="8" dtype="CHAR" align="left" skipb="no" />
</cmdrsphdr>
<cmdrspdata>
<rsp>REPOTYP(IMSRSC) MBR(RM3RM) CC(0) REPONM(IMSRSC_REPOSITORY)
REPOGRP(FRPGRUP1) STT(CONNECTED)
AUDACC(DEFAULT) </rsp>
<rsp>REPOTYP(IMSRSC) MBR(RM2RM) CC(0) REPONM(IMSRSC_REPOSITORY)
REPOGRP(FRPGRUP1) STT(CONNECTED)
AUDACC(DEFAULT) </rsp>
<rsp>REPOTYP(IMSRSC) MBR(RM1RM) CC(0) REPONM(IMSRSC_REPOSITORY)
REPOGRP(FRPGRUP1) STT(CONNECTED)
AUDACC(DEFAULT) </rsp>
</cmdrspdata>
</imsout>

Explanation: The repository names, the attributes, and status information for all the repositories enabled at RM are returned by the QUERY RM TYPE(REPO) SHOW(ALL) command. In the example, the repository is enabled at all RMs in the IMSplex.
Example 2 for QUER Y RM command

TSO SPOC input:
QUERY RM TYPE(REPO) SHOW(ATTRIB)

TSO SPOC output:

(Screen 1)
RepositoryType MbrName CC AuditAccess RepositoryName>
IMSRSC RM1RM 0 UPDATE IMSRSC_REPOSITORY
IMSRSC RM2RM 0 UPDATE IMSRSC_REPOSITORY
IMSRSC RM3RM 0 UPDATE IMSRSC_REPOSITORY

(Screen 2)
RepositoryType MbrName ryName RepositoryGroup
IMSRSC RM1RM FRPGRUP1
IMSRSC RM2RM FRPGRUP1
IMSRSC RM3RM FRPGRUP1

OM API input:
CMD(QUERY RM TYPE(REPO) SHOW(ATTRIB))

OM API output:

<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2011.187 17:07:32.104787</statime>
<stotime>2011.187 17:07:32.118744</stotime>
<rqtsttn1>USRT005 10110732</rqtsttn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>RM3RM</master>
</cmd>
</cmdrsphdr>

<Rsp>REPOTYP(IMSRSC) MBR(RM3RM) CC(0) REPONM(IMSRSC_REPOSITORY
) REPOGRP(FRPGRUP1) AUDACC(UPDATE)</Rsp>

492 Commands, Volume 2: IMS Commands N - V
Explanation: The QUERY RM SHOW(ATTRIB) information returns the attribute information in RM. This command was issued after the audit access value was changed to UPDATE.

Example 3 for QUERY RM command

TSO SPOC input:
QUERY RM TYPE(REPO) SHOW(ALL)

TSO SPOC output:
Log for . . . : QRY RM TYPE(REPO) SHOW(ALL)

IMSpex : PLEX1
Routing :
Return code : 0200000C
Reason code : 00003004
Reason text : No requests were successful.
Command master . . : RM3RM

OM API input:
CMD(QUERY RM TYPE(REPO) SHOW(ALL))

OM API output:
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2011.187 17:28:53.214617</statime>
<staseq>C807A37DA599405</staseq>
<stoseq>C807A37EDD1D651E</stoseq>
<rqsttkn1>USRT005 10102853</rqsttkn1>
<rc>0200000C</rc>
<rsn>00003004</rsn>
<rsnmsg>CSLN024I</rsnmsg>
<rsntxt>No requests were successful.</rsntxt>
</ctl>
</cmderr>

Chapter 5. QUERY commands 493
Explanation: This example shows the QUERY RM SHOW(ALL) command output when RM is not enabled to use the repository.

Related concepts:
- How to interpret CSL request return and reason codes (System Programming APIs)
- CSL RM management of the IMSRSC repository (System Administration)

Related reference:
- Command keywords and their synonyms (Commands)

QUERY RTC command

Use the QUERY RTC command to query Fast Path routing codes. A routing code can be used by the Fast Path Input Edit/Routing Exit Routine (DBFHAGU0) to route a transaction to a different application program within the same load balancing group.

Subsections:
- "Environment"
- "Syntax" on page 495
- "Keywords" on page 495
- "Usage notes" on page 499
- "Output fields" on page 499
- "Return, reason, and completion codes" on page 503
- "Examples" on page 505

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY RTC</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Table 186. Valid environments for the QUERY RTC command and keywords (continued)

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SHOW</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>STATUS</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
QUERY RTC

NAME(*)
NAME(name)
NAME(name*)
SHOW(ALL)
SHOW(DEFN)
SHOW(DEFNTYPE)
SHOW(GLOBAL)
SHOW(IMSID)
SHOW(INQ)
SHOW(LOCAL)
SHOW(MODEL)
SHOW(PGM)
SHOW(STATUS)
SHOW(TIMESTAMP)
SHOW(REGION)
SHOW(WORK)

STATUS("

ACTIVE")

NOTINIT

NOTSCHD

STOQ
```

Keywords

The following keywords are valid for the QUERY RTC command:

NAME

Specifies the 1-8 character name of the routing code. Wildcards can be specified in the name. The name is a repeatable parameter. The default is NAME(*), which returns all routing code resources.

SHOW

Specifies the routing code output fields to be returned. The routing code is always returned, along with the name of the IMS that created the output and the completion code. The filters that are supported with the SHOW keyword are:

ALL

Returns all information about the routing code itself. Other SHOW keywords can be specified to return information about resources that are related to the routing code.

DEFN

Specifies that the resource definitions are to be returned.
The routing code attributes that can be returned are: INQ, PGM, the repository create and update time stamps, and the IMS runtime create, update, import, and access time stamps.

If SHOW(DEFN) is specified without any other SHOW filters or with the IMSID filter, all the definitional attributes are returned. The runtime resource definitions from the IMS system are returned by each IMS that receives the command. The stored resource definitions in the IMSRSC repository are returned by the command master IMS if the command master IMS is enabled to use the repository.

The command master IMS returns a response line for each generic stored resource definition obtained from the repository. This response line displays the attributes of the generic resource definition. When SHOW(DEFN) is specified without the IMSID filter and all the IMS systems have the same attribute values defined, only the response line for the generic definition is returned. The IMS IDs of the IMS systems that have the stored resource definition defined are not returned. If an IMS system has a stored resource definition with one or more attribute values that differ from the generic stored resource definition, an additional response line is returned for each IMS that has different attribute values.

If SHOW(DEFN,LOCAL) is specified, the runtime resource definitions from the IMS system are returned by each IMS that received the command.

If SHOW(DEFN,GLOBAL) is specified, the stored resource definitions from the repository are returned by the command master IMS. SHOW(DEFN,GLOBAL) is valid only when the command master IMS is enabled to use the repository. If the command master IMS is not enabled to use the repository, SHOW(DEFN,GLOBAL) results in an error return and reason code.

If SHOW(DEFN) is specified with other parameters, only the requested definitional attributes are returned. For example, if SHOW(DEFN,TIMESTAMP) is specified, only the time stamps are returned.

Restrictions:
- SHOW(DEFN) cannot be specified with DEFNTYPE, MODEL, STATUS, REGION, or WORK.
- The LclStat, LModelName, LModelType, and LDefnType columns, which are returned on the QRY RTC SHOW(ALL) command, are not returned with SHOW(DEFN).
- The Repo and IMSid columns, which are returned with SHOW(DEFN), are not returned with SHOW(ALL).
- When querying route code information from the repository, the SHOW(DEFN) filter is not supported when used with the STATUS filter. The runtime filter of STATUS is not valid with SHOW(DEFN), SHOW(DEFN,GLOBAL), SHOW(DEFN,LOCAL), SHOW(DEFN,IMSID), SHOW(DEFN,IMSID,GLOBAL) or SHOW(DEFN,IMSID,LOCAL).

If SHOW(DEFN,IMSID) is specified, a response line is returned for the generic stored resource definition, and an additional response line is returned for each IMS that has the resource defined in the repository, regardless of whether their stored resource definitions are the same as the generic resource definition.
The repository information for SHOW(DEFN) or SHOW(DEFN,IMSID) is processed only by the command master IMS and is valid only when the command master IMS is enabled to use the repository.

DEFNTYPE
Definition type that the resource was defined with.

GLOBAL
Specifies that the stored resource definitions from the repository are to be returned. If SHOW(GLOBAL,DEFN) is specified, the global resource definitions from the repository are returned by the command master IMS. SHOW(GLOBAL,DEFN) is valid only when the command master IMS is enabled to use the repository.

IMSID
Specifies that the IMS IDs of the IMS systems whose resource lists contain the specified resource name are to be returned. SHOW(IMSID) is processed only by the command master IMS and is valid only when the command master IMS is enabled to use the repository.

When SHOW(IMSID) is specified with the DEFN filter, a separate line is returned for each IMS that has the resource defined, along with the stored resource definitions.

When SHOW(IMSID) is specified without the DEFN filter, a separate line is returned for each IMS that has the resource defined, along with the resource name. No resource definitions are returned.

SHOW(IMSID) cannot be specified with any other SHOW filters other than DEFN and GLOBAL. If SHOW(IMSID,GLOBAL) is specified, GLOBAL is ignored; that is, SHOW(IMSID,GLOBAL) is treated as SHOW(IMSID). SHOW(DEFN,IMSID,LOCAL) is treated as SHOW(DEFN,LOCAL).

INQ
Inquiry option for transaction messages associated with this routing code.

LOCAL
Specifies that the runtime resource definitions from the IMS system are to be returned.

SHOW(DEFN,LOCAL) returns only the local definitional attributes from the IMS system that processes the command.

MODEL
The model name and model type used to create this resource. If the resource is created with all of the attributes defined and no model specified, the model name and model type are blank. The CREATE command specified without the LIKE keyword creates a resource using the default descriptor as a model. The default descriptor is either the IMS descriptor DBFDSRT1 or user-defined. The CREATE command specified with the LIKE keyword creates a resource using a model. The resource is created with all the same attributes as the model. Attributes set explicitly by the CREATE command override the model attributes. The model type can either be a descriptor (DESC) or a resource (RSC). The model name and model type are for reference only. The resource attributes might not match the model, if attributes are overridden by CREATE or UPDATE command values, or the model is updated later. The model name and model type can be used to identify resources that were created with the same model. The model name and model type of a resource are exported and imported. The IMPORT command does not use the model name and model type when creating a resource.
PGM
Program associated with this routing code.

REGION
Regions where the routing code is active.

Note: You cannot specify this filter with other SHOW filters; you must specify SHOW(REGION) individually.

STATUS
Local routing code status. For a description of the possible routing code status returned, see the STATUS keyword in the "Output fields for the QUERY RTC command" under "Output fields" on page 499.

TIMESTAMP
The creation time (TIMECREATE), last update time (TIMEUPDATE), last access time (TIMEACCESS), and last import time (TIMECREATE) time stamps are returned. The time is returned in local time in the format YYYY.JJ:MM:SS.TH, where:
- YYYY is the year.
- JJ is the Julian day (001 - 365).
- HH is the hour (01 - 24).
- MM is the minute (00 - 59).
- SS is the seconds (00 - 59).
- TH is the tenths and hundredths of a second (00 - 99).

WORK
Work in progress for the routing code specified on NAME parameter and its associated resources. The QRY RTC SHOW(WORK) command can be issued before a DELETE, IMPORT or UPDATE command to check for any work in progress for the specified routing code and any of its associated resources. Any work in progress might cause the subsequent DELETE, IMPORT or UPDATE commands to fail. The QRY RTC SHOW(WORK) command returns the resource name, resource type, and work status for the work in progress for the routing code specified on the NAME parameter or work in progress for an associated resource. If no work is in progress for the specified resource as response line is returned with a work status of blanks.

SHOW(WORK) specified with NAME(*) might take a long time.

Notes:
1. You cannot specify this filter with other SHOW filters; you must specify SHOW(WORK) individually.
2. The QRY RTC SHOW(WORK) command is not valid on an XRF alternate.

STATUS()
Selects routing codes for display that match the NAME parameter and possess at least one of the specified routing code status values.

ACTIVE
Sets the STATUS() filter to return information about active routing codes.

NOTINIT
Sets the STATUS() filter to return information about routing codes that are not initialized and cannot be used.
NOTSCHD
Sets the STATUS() filter to return information about routing codes that are not scheduled.

STOQ
Sets the STATUS() filter to return information about routing codes that are stopped. Transactions that are associated with this routing code are not processed.

Usage notes
This command can be issued only through the Operations Manager API. Fast Path must be installed on the system. This command applies to DB/DC and DCCTL systems. This command is allowed on XRF alternate and RSR tracker systems.

If you want to display information about resource definitions, specify SHOW(DEFN). If you want to know which IMS systems have the resource defined and also know the attributes or resource definitions at each IMS system, specify SHOW(DEFN,IMSID). If you want to know which IMS systems have the resource defined, specify SHOW(IMSID).

Output fields
The following table shows the QUERY RTC output fields. The columns in the table are as follows:

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>LCL</td>
<td>Completion code.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>error</td>
<td>LCL</td>
<td>Completion code text that briefly explains the meaning of the non-zero completion code.</td>
</tr>
</tbody>
</table>

Chapter 5. QUERY commands
Table 187. Output fields for the QUERY RTC command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFNT</td>
<td>LDefnType</td>
<td>DEFNTYPE</td>
<td>LCL</td>
<td>Definition type, which can be one of the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CREATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Defined by a CREATE command.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IMPORT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Defined by an IMPORT command.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IMS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Defined by IMS. RTCDUMMY is an IMS-defined routing code created by the system definition process if no routing codes are defined.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MODBLKS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Defined by system definition in the MODBLKS data set.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UPDATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Defined by system definition in the MODBLKS data set, but changed into a dynamic resource by an UPDATE command.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSID</td>
<td>IMSId</td>
<td>IMSID</td>
<td>GBL</td>
<td>Returns the IMSIDs that have resource defined from the repository.</td>
</tr>
<tr>
<td>INQ</td>
<td>LInq</td>
<td>INQ, DEFN</td>
<td>LCL</td>
<td>Inquiry transaction associated with routing code (Y) or not (N). The value is obtained from the local IMS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The inquiry option is not enabled.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The inquiry option is enabled. The transaction messages associated with this routing code do not cause a change to a database. Programs are prohibited from issuing Insert, Delete, or Replace calls to a database.</td>
</tr>
<tr>
<td>Short label</td>
<td>Long label</td>
<td>Keyword</td>
<td>Scope</td>
<td>Meaning</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>---------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>LSTT</td>
<td>LcLStat</td>
<td>STATUS</td>
<td>LCL</td>
<td>Local routing code status.</td>
</tr>
</tbody>
</table>
| | | | | **ACTIVE**
| | | | | Routing code is active. |
| | | | | **NOTINIT-xx-reason**
| | | | | Routing code is not initialized and cannot be used. The NOTINIT status is displayed in the format NOTINIT-xx-reason, to identify where an error was detected and the reason the routing code was not initialized. xx is the reason code that identifies the unique location in one module where this reason code is set. DBFRCTE MACRO defines each reason code that might be set in the routing code bad reason code (field RCTEBADR) and identifies the module that sets it. NOTINIT-00 indicates that the reason is unknown. Call IBM Software Support (Action: 1).
| | | | | reason explains the reason code xx in abbreviated text format up to 13 characters. For possible reason values and their descriptions, see Table 188 on page 502. |
| | | | | **NOTSCHD**
| | | | | Routing code is not scheduled or stopped. |
| | | | | **STOQ**
| | | | | Routing code is stopped for queuing of input message. |
| MBR | MbrName | N/A | LCL | IMSplex member that built the output line. |
| MDLN | LModelName | MODEL | LCL | Model name. Name of the resource used as a model to create this resource. DBFDSRT1 is the IMS descriptor name for routing codes. |
| MDLT | LModelType | MODEL | LCL | Model type, either RSC or DESC. RSC means that the resource was created using another resource as a model. DESC means that the resource was created using a descriptor as a model. |
| PGM | PgmName | PGM | LCL | Program name. |
| REG | Region | REGION | LCL | Region where the routing code is active. |
| REPO | Repo | DEFN | GBL | Indicates whether the output line contains the stored resource definitions.
| | | | | **Y** Indicates repository definitions.
| | | | | **(blank)** Indicates local definitions. |
| RINQ | Inq | INQ, DEFN | GBL | Inquiry transaction associated with routing code (Y) or not (N). The value is obtained from the repository. |
| RPGM | PgmName | DEFN | GBL | Program name. The value is obtained from the repository. |
| RTC | Rtcode | RTC | LCL | Routing code name. |
| RTMCR | TimeCreate | DEFN | GBL | Create time from the repository. This is the time the resource was first created in the repository. |
Table 187. Output fields for the QUERY RTC command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTMUP</td>
<td>TimeUpdate</td>
<td>DEFN</td>
<td>GBL</td>
<td>Update time from the repository. This is the time the resource was last updated in the repository.</td>
</tr>
</tbody>
</table>
| TMAC | LTimeAccess | TIMESTAMP | LCL | The time that the resource was last accessed. The last access time is retained across warm start, emergency restart, EXPORT and IMPORT. The updating of the last access time is not logged. After a restart, the last access time reflects the time recorded in the restart checkpoint log records. The value is returned from the local IMS. For a routing code resource, the following actions update the last access time:
 - When a message is queued to the balancing group using the specified routing code.
 - CREATE command references the resource as a model. |
| TMCR | LTimeCreate | TIMESTAMP | LCL | The time that the routing code was created. This is the result of a CREATE RTC command, IMPORT command that creates the routing code, or IMS initialization. The create time is retained across warm start, emergency restart, EXPORT and IMPORT. The value is returned from the local IMS. |
| TMIM | LTimeImport | TIMESTAMP | LCL | The time that the resource was last imported, if applicable. The import time is retained across warm start and emergency restart. The value is returned from the local IMS. |
| TMUP | LTimeUpdate | TIMESTAMP | LCL | The last time the attributes of the runtime resource definition were updated as a result of the UPDATE RTC command or the IMPORT command. The update time is retained across warm start and emergency restart. The output value is obtained from the local IMS. |
| WRK | Work | WORK | LCL | Work is in progress for the routing code or one of its associated resources. The work in progress can be one of the following:
 - **ACTIVE**
 Routing code is active.
 - **ANOTHER CMD IN PROGRESS**
 Another command (such as DELETE or UPDATE) to delete or update the routing code is already in progress. |

Table 188. Reason information for NOTINIT-xx-reason status

<table>
<thead>
<tr>
<th>Reason</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOPGM</td>
<td>The program that this routing code references is not defined. No program PDIR control block exists. Action: 2.</td>
</tr>
</tbody>
</table>
Table 188. Reason information for NOTINIT-xx-reason status (continued)

<table>
<thead>
<tr>
<th>Reason</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPOCHGLIST</td>
<td>The routing code name exists in the change list in the IMSRSC repository for this IMS, and the change list is being processed or the change list processing failed because of an error. This routing code cannot be used, scheduled, updated, exported, or referenced as a model until it is successfully imported so that the runtime routing code definition and the stored definition in the repository are synchronized. Action: 3.</td>
</tr>
</tbody>
</table>

Note: Actions that can be taken to initialize the routing code are:
1. Call IBM Software Support.
2. Issue the CREATE PGM command to create the program. Issue the UPDATE RTC START(Q) command to complete routing code initialization.
3. If IMS change list processing failed and message DFS4411E was issued, correct the problem and take one of the following actions:
 - Shut down IMS and restart it in order to try processing the change list again.
 - Issue the IMPORT DEFN SOURCE(REPO) NAME(ricname) TYPE(RTC) command to import the routing code, where ricname is the routing code name.

Return, reason, and completion codes

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 189. Return and reason codes for the QUERY RTC command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>Command completed successfully. The command output contains a line for each resource, accompanied by its completion code. See the completion code table for details.</td>
</tr>
<tr>
<td>X'00000004'</td>
<td>X'00001010'</td>
<td>No resources were found to be returned. The resource names specified might be invalid, or there were no resources that match the filter specified, or there were no resources that had work to display for the SHOW(WORK) specified.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002004'</td>
<td>Invalid command keyword or invalid command keyword combination.</td>
</tr>
<tr>
<td>X'000000C0'</td>
<td>X'00003000'</td>
<td>Command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code. See the completion code table for details.</td>
</tr>
<tr>
<td>X'000000C0'</td>
<td>X'00003004'</td>
<td>Command was not successful for any of the resources. The command output contains a line for each resource, accompanied by its completion code. See the completion code table for details.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004004'</td>
<td>No CQS address space.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>Command is not valid on the RSR tracker.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004018'</td>
<td>No resource structure, or resource structure is not available.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004024'</td>
<td>No Fast Path defined.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004100'</td>
<td>Resource structure is full.</td>
</tr>
<tr>
<td>Return code</td>
<td>Reason code</td>
<td>Meaning</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004100'</td>
<td>No RM address space.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004104'</td>
<td>No SCI address space.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004300'</td>
<td>Command is not allowed because online change for MODBLKS is enabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(DFSDFxxx or DFSCGxxx defined with MODBLKS OLC, or MODBLKS not</td>
</tr>
<tr>
<td></td>
<td></td>
<td>defined).</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004500'</td>
<td>IMS is not enabled to use the repository.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004501'</td>
<td>RM is not enabled with the repository.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004502'</td>
<td>Repository is not available.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004503'</td>
<td>Repository is stopped.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004504'</td>
<td>Repository spare recovery is in progress.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004505'</td>
<td>No IMS resource list exists, or no resources for the resource type</td>
</tr>
<tr>
<td></td>
<td></td>
<td>exist in the IMS resource list.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004507'</td>
<td>Repository access is denied.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004508'</td>
<td>Repository maximum put length exceeded.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004509'</td>
<td>RM data version is lower than the IMS data version.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000450A'</td>
<td>Repository Server is being shut down.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000450B'</td>
<td>Repository Server is not available.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000450C'</td>
<td>Repository Server is busy.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000450D'</td>
<td>RM failed to define some of the internal fields related to the IMSRSC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>repository.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005000'</td>
<td>DFSOCMD response buffer could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005010'</td>
<td>IMODULE GETMAIN error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005100'</td>
<td>RM request error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005104'</td>
<td>CQS error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005108'</td>
<td>SCI request error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005110'</td>
<td>Repository error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'0000551C'</td>
<td>A request to view the data in the repository was rejected because a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>corrupted resource list was detected. The QUERY RTC command is rejected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>because the resource list is unusable. Contact IBM Software Support.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Send in the output from the command in error, and a dump of the local</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RM address space where the command executed or the dump of all RM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>address spaces in the IMSplex. Also send a copy of the IMSRSC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>repository RID and RMD data sets.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. The following table includes an explanation of the completion codes.

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command completed successfully for routing code.</td>
<td></td>
</tr>
</tbody>
</table>
Table 190. Completion codes for the QUER Y RTC command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>Routing code name is invalid, or the wildcard parameter specified does not match any resource names.</td>
</tr>
</tbody>
</table>

Examples

The following are examples of the QUERY RTC command:

Example 1 for QUERY RTC command

TSO SPOC input:

```
QUERY RTC NAME(%%%%,TXCDJN11,TXBANKI2,RTC0*) SHOW(ALL)
```

TSO SPOC output:

```
(screen 1)
Rtcode MbrName CC LPgmName LInq LcIStat LModelName LModelType
GFP1 IMS1 0 DCGPSPBF1 N NOTSCHD
GFP2 IMS1 0 DCGPSPBF2 N NOTSCHD
RTC00001 IMS1 0 DCGPSPBF3 N NOTSCHD GFP2 RSC
TXBANKI2 IMS1 0 BANKIFP N NOTSCHD
TXCDJN11 IMS1 0 DDLTNJN1 Y NOTSCHD

(screen to the right screen 2)
Rtcode MbrName CC LTimeCreate LTimeUpdate
GFP1 IMS1 0 2011.180 12:37:38.07
GFP2 IMS1 0 2011.180 12:37:38.07
RTC00001 IMS1 0 2011.180 12:40:05.33
TXBANKI2 IMS1 0 2011.180 12:37:38.07
TXCDJN11 IMS1 0 2011.180 12:37:38.07

(screen to the right screen 3)
Rtcode MbrName CC LTimeAccess LTimeImport LDefnType
GFP1 IMS1 0 MODBLKS
GFP2 IMS1 0 2011.180 13:18:54.79 MODBLKS
RTC00001 IMS1 0 CREATE
TXBANKI2 IMS1 0 MODBLKS
TXCDJN11 IMS1 0 MODBLKS
```

OM API output:

```
<imsout>
<ctl>
<omname>OM1OM</omname>
<omsnp>1.5.0</omsnp>
<xmlvsn>20</xmlvsn>
<statime>2011.180 21:00:03.888063</statime>
<stotime>2011.180 21:00:03.888992</stotime>
<staseq>C7FF05A4527BF4CA</staseq>
<stoseq>C7FF05A452B602CA</stoseq>
<rqsttkn1>USRT005 10140003</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>IMS1</master>
<userid>USRT005</userid>
<verb>QRY</verb>
```

Chapter 5. QUERY commands 505
<input>QUERY RTC NAME(%%%%,TXCDJN11, TXBANKI2, RTC0*) SHOW(ALL) </input>
</cmd>

<cmdrsphdr>
<hdr slbl="RTC" llbl="Rtcode" Scope="LCL" Sort="a" Key="1" Scroll="no" Len="8" Dtype="CHAR" Align="left" />
<hdr slbl="MBR" llbl="MbrName" Scope="LCL" Sort="a" Key="4" Scroll="no" Len="8" Dtype="CHAR" Align="left" />
<hdr slbl="CC" llbl="CC" Scope="LCL" Sort="n" Key="0" Scroll="no" Len="4" Dtype="CHAR" Align="right" />
<hdr slbl="CTXT" llbl="CText" Scope="LCL" Sort="n" Key="0" Scroll="yes" Len="*" Dtype="CHAR" Skipb="yes" Align="left" />
<hdr slbl="PGM" llbl="LPgmName" Scope="LCL" Sort="n" Key="0" Scroll="yes" Len="8" Dtype="CHAR" Align="left" />
<hdr slbl="INQ" llbl="LInq" Scope="LCL" Sort="n" Key="0" Scroll="yes" Len="1" Dtype="INT" Align="left" />
<hdr slbl="LSTT" llbl="LclStat" Scope="LCL" Sort="n" Key="0" Scroll="yes" Len="*" Dtype="CHAR" Align="left" />
<hdr slbl="MDLN" llbl="LModelName" Scope="LCL" Sort="n" Key="0" Scroll="yes" Len="8" Dtype="CHAR" Align="left" />
<hdr slbl="MDLT" llbl="LModelType" Scope="LCL" Sort="n" Key="0" Scroll="yes" Len="4" Dtype="CHAR" Align="left" />
<hdr slbl="TMCR" llbl="LTimeCreate" Scope="LCL" Sort="n" Key="0" Scroll="yes" Len="20" Dtype="CHAR" Align="left" />
<hdr slbl="TMUP" llbl="LTimeUpdate" Scope="LCL" Sort="n" Key="0" Scroll="yes" Len="20" Dtype="CHAR" Align="left" />
<hdr slbl="TMAC" llbl="LTimeAccess" Scope="LCL" Sort="n" Key="0" Scroll="yes" Len="20" Dtype="CHAR" Align="left" />
<hdr slbl="TMIM" llbl="LTimeImport" Scope="LCL" Sort="n" Key="0" Scroll="yes" Len="20" Dtype="CHAR" Align="left" />
<hdr slbl="DFNT" llbl="LDefnType" Scope="LCL" Sort="n" Key="0" Scroll="yes" Len="8" Dtype="CHAR" Align="left" />
</cmdrsphdr>

<cmdrspdata>
<rsp>RTC(GFP1) MBR(IMS1) CC(0) PGM(DCGPSBF) INQ(N)
LSTT(NOTSCHD) TMCR(2011.180 12:37:38.07) TMUP()
TMAC() TMIM() DFNT(MODBLKS)
</rsp>

<rsp>RTC(GFP2) MBR(IMS1) CC(0) PGM(DCGPSBF2) INQ(N)
LSTT(NOTSCHD) TMCR(2011.180 12:37:38.07) TMUP()
TMAC(2011.180 13:18:54.79) TMIM()
DFNT(MODBLKS)
</rsp>

<rsp>RTC(TXCDJN11) MBR(IMS1) CC(0) PGM(DDLTJN11) INQ(Y)
LSTT(NOTSCHD) TMCR(2011.180 12:37:38.07) TMUP()
TMAC() TMIM() DFNT(MODBLKS)
</rsp>

<rsp>RTC(TXBANKI2) MBR(IMS1) CC(0) PGM(BANKIFP) INQ(N)
LSTT(NOTSCHD) TMCR(2011.180 12:37:38.07) TMUP()
TMAC() TMIM() DFNT(MODBLKS)
</rsp>

<rsp>RTC(RTC00001) MBR(IMS1) CC(0) PGM(DCGPSBF2) INQ(N)
LSTT(NOTSCHD) MDLN(GFP2) MDLT(RSC) TMCR(2011.180 12:40:05.33)
TMUP() TMAC() TMIM()
DFNT(CREATE)
</rsp>
</cmdrspdata>
</imsout>

Explanation: The QUERY RTC command is specified with SHOW(ALL), so all output fields are returned for the specified routing codes. All of the routing code output fields do not fit on one screen, so the user must scroll to the right for additional output fields. The routing code name, the member name that built the line of output, and the completion code are displayed on every screen. Routing code wildcard parameter %%%% causes all routing codes with 4-character names to be displayed. The routing codes that were generated in stage 1 MODBLKS generation are created when IMS cold starts and defined with a definition type of
MODBLKS. Routing codes RTC00001 and RTC00002 were created dynamically using CREATE RTC commands and display a definition type of CREATE. RTC00001 was created using routing code GFP2 as the model and RTC00002 was created using default descriptor DBFDSRT1. Routing code GFP2 displays the last access time stamp, from when it was referred to by the CREATE RTC command that created routing code RTC00001, using routing code GFP2 as the model. Routing code RTC00002 shows the last update time, because its program was changed by an UPDATE RTC command since it was created.

Example 2 for QUERY RTC command

TSO SPOC input:

```
QUERY RTC NAME(RTC00001) SHOW(DEFN,PGM,INQ)
```

TSO SPOC output:

```
Rtcode MbrName CC Repo IMSid PgmName LPgmName Inq Linq
RTC00001 IMS1 0 Y DCGPSBF2 N
RTC00001 IMS1 0 IMS1 DCGPSBF2 N
RTC00001 IMS2 0 IMS2 DCGPSBF2 N
RTC00001 IMS3 0 IMS3 DCGPSBF2 N
```

OM API input:

```
CMD(QUERY RTC NAME(RTC00001) SHOW(DEFN,PGM,INQ))
```

OM API output:

```
<imsout>
<ctl>
<omname>OM1OM </omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20 </xmlvsn>
<staseq>C7FF0371FDEF225C</staseq>
<rqsttkn>USRRT005 10135014</rqsttkn1>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>IMS1 </master>
<userid>USRRT005 </userid>
<verb>QRY </verb>
<kwd>RTC </kwd>
<input>QUERY RTC NAME(RTC00001) SHOW(DEFN,PGM,INQ) </input>
</cmd>
<cmdrsphdr>
<hdr slbl="RTC" lbl="Rtcode" scope="LCL" sort="a" key="1" scroll="no" len="8" dtype="CHAR" align="left" />
<hdr slbl="MBR" lbl="MbrName" scope="LCL" sort="a" key="4" scroll="no" len="8" dtype="CHAR" align="left" />
<hdr slbl="CC" lbl="CC" scope="LCL" sort="a" key="0" scroll="no" len="4" dtype="CHAR" align="right" />
<hdr slbl="CCTXT" lbl="CCText" scope="LCL" sort="n" key="0" scroll="yes" len="*" dtype="CHAR" skip="yes" align="left" />
<hdr slbl="REPO" lbl="Repo" scope="LCL" sort="d" key="2" scroll="no" len="1" dtype="CHAR" align="left" />
<hdr slbl="AMISID" lbl="IMSId" scope="GBL" sort="n" key="0" scroll="yes" len="4" dtype="CHAR" align="left" skip="yes" />
<hdr slbl="RPGM" lbl="PgmName" scope="GBL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left" />
<hdr slbl="PGM" lbl="LPgmName" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left" />
```

Chapter 5. QUERY commands 507
Explanation: The stored resource definitions and the runtime resource definitions for the specified resources are returned. Only the program name and the INQ information are returned because the SHOW(PGM,INQ) option is specified.

Example 3 for QUERY RTC command

TSO SPOC input:
QUERY RTC NAME(E*) SHOW(DEFN)

TSO SPOC output:

<table>
<thead>
<tr>
<th>RtcCode</th>
<th>MbrName</th>
<th>CC</th>
<th>Repo</th>
<th>LmId</th>
<th>PgmName</th>
<th>Lnq</th>
<th>TimeCreate</th>
<th>TimeUpdate</th>
<th>LTimeCreate</th>
<th>LTimeUpdate</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMHTX2</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td>EMHPSB2</td>
<td>N</td>
<td>2011.180</td>
<td>12:37:33.37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMHTX2</td>
<td>IMS1</td>
<td>0</td>
<td>IMS1</td>
<td>EMHPSB2</td>
<td>N</td>
<td>2011.180</td>
<td>12:37:33.33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMHTX2</td>
<td>IMS2</td>
<td>0</td>
<td>IMS2</td>
<td>EMHPSB2</td>
<td>N</td>
<td>2011.180</td>
<td>12:37:33.33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMHTX2</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td>EMHPSB2</td>
<td>N</td>
<td>2011.180</td>
<td>12:37:33.33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMHTX2</td>
<td>IMS2</td>
<td>0</td>
<td>IMS2</td>
<td>EMHPSB2</td>
<td>N</td>
<td>2011.180</td>
<td>12:37:33.33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMHTX3</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td>EMHPSB2</td>
<td>N</td>
<td>2011.180</td>
<td>12:37:33.33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMHTX3</td>
<td>IMS1</td>
<td>0</td>
<td>IMS1</td>
<td>EMHPSB2</td>
<td>N</td>
<td>2011.180</td>
<td>12:37:33.33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMHTX3</td>
<td>IMS2</td>
<td>0</td>
<td>IMS2</td>
<td>EMHPSB2</td>
<td>N</td>
<td>2011.180</td>
<td>12:37:33.33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMHTX3</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td>EMHPSB2</td>
<td>N</td>
<td>2011.180</td>
<td>12:37:33.33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMHTX3</td>
<td>IMS2</td>
<td>0</td>
<td>IMS2</td>
<td>EMHPSB2</td>
<td>N</td>
<td>2011.180</td>
<td>12:37:33.33</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(scrolled right to screen 2)

<table>
<thead>
<tr>
<th>RtcCode</th>
<th>MbrName</th>
<th>CC</th>
<th>Repo</th>
<th>LTimeAccess</th>
<th>TimeImport</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMHTX2</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td>2011.180</td>
<td>12:37:38.07</td>
</tr>
<tr>
<td>EMHTX2</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td>2011.180</td>
<td>12:37:38.07</td>
</tr>
<tr>
<td>EMHTX2</td>
<td>IMS2</td>
<td>0</td>
<td>Y</td>
<td>2011.180</td>
<td>12:37:38.07</td>
</tr>
<tr>
<td>EMHTX3</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td>2011.180</td>
<td>12:37:38.07</td>
</tr>
<tr>
<td>EMHTX3</td>
<td>IMS2</td>
<td>0</td>
<td>Y</td>
<td>2011.180</td>
<td>12:37:38.07</td>
</tr>
<tr>
<td>EMHTX3</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td>2011.180</td>
<td>12:37:38.07</td>
</tr>
<tr>
<td>EMHTX3</td>
<td>IMS2</td>
<td>0</td>
<td>Y</td>
<td>2011.180</td>
<td>12:37:38.07</td>
</tr>
</tbody>
</table>
OM API input:
CMD(QUERY RTC NAME(E+) SHOW(DEFN))

OM API output:

```xml
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2011.180 21:11:32.267556</statime>
<stotime>2011.180 21:11:32.351185</stotime>
<staseq>C7FF0834CFE246DE</staseq>
<stoseq>C7FF0834E44D1F9A</stoseq>
<rqtstkn1>USRRT005 10141132</rqtstkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>IMS1</master>
.userid>USRRT005</userid>
<verb>QRY</verb>
<kwd>RTC</kwd>
<input>QUERY RTC NAME(E*) SHOW(DEFN)</input>
</cmd>
<cmdrsphdr>
<hdr slbl="RTC" llbl="Rtcode" scope="LCL" sort="a" key="1" scroll="no" len="8" dtype="CHAR" align="left"/>
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" key="4" scroll="no" len="8" dtype="CHAR" align="left"/>
<hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0" scroll="yes" len="4" dtype="CHAR" align="right"/>
<hdr slbl="CCTXT" llbl="CCText" scope="LCL" sort="n" key="0" scroll="yes" len="*" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="REPO" llbl="Repo" scope="LCL" sort="n" key="0" scroll="yes" len="1" dtype="CHAR" align="left"/>
<hdr slbl="IMSID" llbl="IMSid" scope="GBL" sort="n" key="0" scroll="yes" len="4" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="RPGM" llbl="PgmName" scope="GBL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left"/>
<hdr slbl="PGM" llbl="LPgmName" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left"/>
<hdr slbl="RINQ" llbl="Inq" scope="GBL" sort="n" key="0" scroll="yes" len="1" dtype="INT" align="left"/>
<hdr slbl="INQ" llbl="LInq" scope="LCL" sort="n" key="0" scroll="yes" len="1" dtype="INT" align="left"/>
<hdr slbl="RTMCR" llbl="LTimeCreate" scope="GBL" sort="n" key="0" scroll="yes" len="20" dtype="CHAR" align="left"/>
<hdr slbl="TMCR" llbl="LTimeCreate" scope="LCL" sort="n" key="0" scroll="yes" len="20" dtype="CHAR" align="left"/>
<hdr slbl="RTMUP" llbl="LTimeUpdate" scope="GBL" sort="n" key="0" scroll="yes" len="20" dtype="CHAR" align="left"/>
<hdr slbl="TMUP" llbl="LTimeUpdate" scope="LCL" sort="n" key="0" scroll="yes" len="20" dtype="CHAR" align="left"/>
<hdr slbl="TMAC" llbl="LTimeAccess" scope="GBL" sort="n" key="0" scroll="yes" len="20" dtype="CHAR" align="left"/>
<hdr slbl="TMIM" llbl="LTimeImport" scope="GBL" sort="n" key="0" scroll="yes" len="20" dtype="CHAR" align="left"/>
</cmdrsphdr>
<cmdrspdata>
<rsp>RTC(EMHTX2) MBR(IMS1) CC(0) PGM(EMHPSB2) INQ(N) IMSID(IMS1) TMCR(2011.180 12:37:38.07) TMUP( ) TMAC( ) TMIM( )</rsp>
<rsp>RTC(EMHTX22) MBR(IMS1) CC(0) PGM(EMHPSB2) INQ(N) IMSID(IMS1) TMCR(2011.180 12:37:38.07) TMUP( ) TMAC( ) TMIM( )</rsp>
<rsp>RTC(EMHTX3) MBR(IMS1) CC(0) PGM(EMHPSB2) INQ(N) IMSID(IMS1) TMCR(2011.180 12:37:38.07) TMUP( ) TMAC( ) TMIM( )</rsp>
</cmdrspdata>
</imsout>
```

Chapter 5. QUERY commands 509
Explanation: A line is returned for each resource that matches the wildcard name. The resource definitions from each IMS that has the resource defined and the global repository definition are returned. The repository information is returned by the command master IMS. There are no IMS-specific sections in the repository for each resource name that matches the wildcard name.

Related concepts:

- How to interpret CSL request return and reason codes (System Programming APIs)

Related reference:

- /DISPLAY MODIFY command (Commands)
- /DISPLAY RTCODE command (Commands)
- /DISPLAY STATUS command (Commands)
- Command keywords and their synonyms (Commands)

QUERY RTCDESC command

Use the QUERY RTCDESC command to query Fast Path routing descriptors. A descriptor is a model that can be used to create descriptors.

Subsections:
- “Environment” on page 511
- “Syntax” on page 511
- “Keywords” on page 511
- “Usage notes” on page 514
- “Output fields” on page 514
- “Return, reason, and completion codes” on page 516
- “Example” on page 518
Environment

The following table lists the environments (DB/BC, DBCTL and DCCTL) in which you can use the commands and keywords.

Table 191. Valid environments for the QUERY RTCDESC command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY RTCDESC</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SHOW</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DEFAULT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
QUERY RTCDESC
```

Keywords

The following keywords are valid for the QUERY RTCDESC command:

NAME

Specifies the 1-8 character name of the routing code descriptor. Wildcards can be specified in the name. The name is a repeatable parameter. The default is NAME(*), which returns all routing code descriptor resources.

DEFAULT

Selects routing code descriptors for display that possess the default value specified. DEFAULT(Y) displays the one and only default descriptor. DEFAULT(N) displays all the other descriptors that are not the default.

SHOW

Specifies the routing code descriptor output fields to be returned. The routing code descriptor name is always returned, along with the name of the IMS that created the output and the completion code. The filters supported with the SHOW keyword are:
ALL
Returns all information about the routing code descriptor itself. Other SHOW keywords can be specified to return information about resources related to the routing code descriptor.

DEFAULT
Default descriptor option.

DEFN
Specifies that the resource definitions are to be returned.

The routing code descriptor attributes that can be returned are: INQ, PGM, DEFAULT, the repository create and update time stamps, and the IMS runtime create, update, import and access time stamps.

If SHOW(DEFN) is specified without any other SHOW filters or with the IMSID filter, all the definitional attributes, including those defined globally in the repository and those defined locally in the IMS system, are returned. The runtime resource definitions from the IMS system are returned by each IMS that receives the command. The stored resource definitions in the repository are returned by the command master IMS if the command master IMS is enabled to use the repository.

The command master IMS returns a response line for each generic stored resource definition obtained from the repository. This response line displays the attributes of the generic resource definition. When SHOW(DEFN) is specified without the IMSID filter and all the IMS systems have the same attribute values defined, only the response line for the generic definition is returned. The IMS IDs of the IMS systems that have the stored resource definition defined are not returned. If an IMS system has a stored resource definition with one or more attribute values that differ from the generic stored resource definition, an additional response line is returned for each IMS that has different attribute values.

If SHOW(DEFN,LOCAL) is specified, the runtime resource definitions from the IMS system are returned by each IMS that received the command.

If SHOW(DEFN,GLOBAL) is specified, the stored resource definitions from the repository are returned by the command master IMS. SHOW(DEFN,GLOBAL) is valid only when the command master IMS is enabled to use the repository.

If SHOW(DEFN) is specified with other parameters, only the requested definitional attributes are returned. For example, if SHOW(DEFN,TIMESTAMP) is specified only the time stamps are returned.

Restrictions:
- SHOW(DEFN) cannot be specified with DEFNTYPE or MODEL.
- The LModelName, LModelType, and LDefnType columns, which are returned on the QRY RTCDESC SHOW(ALL) command, are not returned with SHOW(DEFN).
- The Repo and IMSid columns, which are returned with SHOW(DEFN), are not returned with SHOW(ALL).

When querying route code descriptor information from the repository, resource definitions stored in the repository are used to determine the response lines with the repository information, and the runtime resource definitions are used to determine the response lines with the IMS runtime resource information. The response lines are returned for each stored resource or runtime resource definition that matches the specified filter. If
SHOW(DEFN,GLOBAL) is specified, only the stored resource definitions that match the specified filter are returned. If SHOW(DEFN,LOCAL) is specified, only the runtime resource definitions that match the specified filter are returned.

If SHOW(DEFN,IMSID) is specified, a response line is returned for the generic stored resource definition, and an additional response line is returned for each IMS that has the resource defined in the repository, regardless of whether their stored resource definitions are the same as the generic resource definition.

DEFNTYPE
Definition type that the descriptor was defined with.

GLOBAL
Specifies that the stored resource definitions from repository are to be returned. If SHOW(GLOBAL,DEFN) is specified, the global resource definitions from the repository are returned by the command master IMS. SHOW(GLOBAL,DEFN) is valid only when the command master IMS is enabled to use the repository.

IMSID
Specifies that the IMS IDs of the IMS systems whose resource lists contain the specified resource name are to be returned. SHOW(IMSID) is processed only by the command master IMS and is valid only if the command master IMS is enabled to use the repository.

When SHOW(IMSID) is specified with the DEFN filter, a separate line is returned for each IMS that has the resource defined, along with the stored resource definitions.

When SHOW(IMSID) is specified without the DEFN filter, a separate line is returned for each IMS that has the resource defined, along with the resource name. No resource definitions are returned.

SHOW(IMSID) cannot be specified with any other SHOW filters other than DEFN and GLOBAL. If SHOW(IMSID,GLOBAL) is specified, GLOBAL is ignored; that is, SHOW(IMSID,GLOBAL) is treated as SHOW(IMSID). SHOW(DEFN,IMSID,LOCAL) is treated as SHOW(DEFN,LOCAL).

INQ
Inquiry option for transaction messages that are associated with this routing code descriptor.

LOCAL
Specifies that the runtime resource definitions from the IMS system are to be returned.

SHOW(DEFN,LOCAL) returns only the local definitional attributes from the IMS system that processes the command.

MODEL
The model name and model type used to create this descriptor. If the descriptor is created with all of the attributes defined and no model specified, the model name and model type are blank. The CREATE command specified without the LIKE keyword creates a descriptor using the default descriptor as a model. The default descriptor is either the IMS descriptor DBFDSRT1 or user-defined. The CREATE command specified with the LIKE keyword creates a descriptor by using a model. The descriptor is created with all the same attributes as the model. Attributes set explicitly by the CREATE command override the model attributes.
model type can either be a descriptor (DESC) or a resource (RSC). The model name and model type are for reference only. The descriptor attributes might not match the model, if attributes are overridden by CREATE or UPDATE command values, or the model is updated later. The model name and model type can be used to identify resources that were created with the same model. The model name and model type of a resource are exported and imported. The IMPORT command does not use the model name and model type when creating a resource.

PGM

Program that is associated with this routing code.

TIMESTAMP

The creation time (TIMECREATE), last update time (TIMEUPDATE), last access time (TIMEACCESS), and last import time (TIMECREATE) time stamps are returned. The time is returned in local time in the format YYYY.JJJ HH:MM:SS.TH, where:
- YYYY is the year.
- JJJ is the Julian day (001 - 365).
- HH is the hour (01 - 24).
- MM is the minute (00 - 59).
- SS is the seconds (00 - 59).
- TH is the tenths and hundredths of a second (00 - 99).

Usage notes

This command can be issued only through the Operations Manager API. Fast Path must be installed on the system. This command applies to DB/DC and DCCTL systems. This command is allowed on XRF alternate and RSR tracker systems. The QUERY RTCDESC command is not valid if online change for MODBLKS is enabled (DFSDFxxx or DFSCGxxx defined with MODBLKS=OLC, or MODBLKS not defined).

If you want to display information about resource definitions, specify SHOW(DEFN). If you want to know which IMS systems have the resource defined and also know the attributes or resource definitions at each IMS system, specify SHOW(DEFN,IMSID). If you want to know which IMS systems have the resource defined, specify SHOW(IMSID).

Output fields

The following table shows the QUERY RTCDESC output fields. The columns in the table are as follows:

- **Short label**
 Contains the short label generated in the XML output.

- **Long label**
 Contains the long label generated in the XML output.

- **Keyword**
 Identifies keyword on the command that caused the field to be generated. N/A appears for output fields that are always returned. error appears for output fields that are returned only in case of an error.

- **Scope**
 Identifies the scope of the output field.
Meaning

Provides a brief description of the output field.

Table 192. Output fields for the QUERY RTCDESC command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>LCL</td>
<td>Completion code.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>error</td>
<td>LCL</td>
<td>Completion code text that briefly explains the meaning of the non-zero completion code.</td>
</tr>
<tr>
<td>DESC</td>
<td>DescName</td>
<td>RTCDESC</td>
<td>LCL</td>
<td>Routing code descriptor name.</td>
</tr>
<tr>
<td>DFNT</td>
<td>LDefnType</td>
<td>DEFNTYPE</td>
<td>LCL</td>
<td>Definition type, which can be one of the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CREATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Defined by a CREATE command.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IMPORT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Defined by an IMPORT command.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IMS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Defined by IMS. DBFDSRT1 is an IMS-defined routing code descriptor containing the default routing code values.</td>
</tr>
<tr>
<td>DFLT</td>
<td>LDflt</td>
<td>DEFAULT</td>
<td>LCL</td>
<td>Default descriptor (Y) or not (N).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The descriptor is not the default.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The descriptor is the default. When a descriptor is created without the LIKE keyword, any attribute not specified on the CREATE command takes the value defined in the default descriptor. Only one descriptor can be defined as the default for a resource type. IMS defines a default routing code descriptor called DBFDSRT1, where all attributes are defined with the default value. Defining a user-defined descriptor to be the default overrides the current default descriptor.</td>
</tr>
<tr>
<td>IMSID</td>
<td>IMSid</td>
<td>IMSID</td>
<td>GBL</td>
<td>Returns the IMSIDs that have the resource defined. The output value is obtained from the repository.</td>
</tr>
<tr>
<td>INQ</td>
<td>LInq</td>
<td>INQ, DEFN</td>
<td>LCL</td>
<td>Inquiry transaction associated with routing code (Y) or not (N). The output value is obtained from the local IMS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The inquiry option is not enabled.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The inquiry option is enabled. The transaction messages associated with this routing code do not cause a change to a database. Programs are prohibited from issuing Insert, Delete, or Replace calls to a database.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>LCL</td>
<td>IMSplex member that built the output line.</td>
</tr>
<tr>
<td>MDLN</td>
<td>LModelName</td>
<td>MODEL</td>
<td>LCL</td>
<td>Model name. Name of the descriptor used as a model to create this resource. DBFDSRT1 is the IMS descriptor name for routing codes.</td>
</tr>
<tr>
<td>MDLT</td>
<td>LModelType</td>
<td>MODEL</td>
<td>LCL</td>
<td>Model type, either RSC or DESC. RSC means that the resource was created using another resource as a model. DESC means that the resource was created using a descriptor as a model.</td>
</tr>
<tr>
<td>PGM</td>
<td>PgmName</td>
<td>PGM</td>
<td>LCL</td>
<td>Program name.</td>
</tr>
</tbody>
</table>
Table 192. Output fields for the QUERY RTCDESC command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDFL</td>
<td>DFlt</td>
<td>DEFN</td>
<td>GBL</td>
<td>Default descriptor (Y) or not (N). The value is obtained from the repository.</td>
</tr>
<tr>
<td>REPO</td>
<td>Repo</td>
<td>DEFN</td>
<td>GBL</td>
<td>Indicates whether the output line contains the stored resource definitions. Y Indicates repository definitions. (blank) Indicates local definitions.</td>
</tr>
<tr>
<td>RINQ</td>
<td>Inq</td>
<td>INQ, DEFN</td>
<td>GBL</td>
<td>Inquiry transaction associated with routing code (Y) or not (N). The output value is obtained from the repository.</td>
</tr>
<tr>
<td>RPGM</td>
<td>PgmName</td>
<td>DEFN</td>
<td>GBL</td>
<td>Program name. The value is obtained from the repository.</td>
</tr>
<tr>
<td>RTMCR</td>
<td>TimeCreate</td>
<td>DEFN</td>
<td>GBL</td>
<td>Create time from the repository. This is the time the resource was first created in the repository.</td>
</tr>
<tr>
<td>RTMUP</td>
<td>TimeUpdate</td>
<td>DEFN</td>
<td>GBL</td>
<td>Update time from the repository. This is the time the resource was last updated in the repository.</td>
</tr>
<tr>
<td>TMAC</td>
<td>LTimeAccess</td>
<td>TIMESTAMP</td>
<td>LCL</td>
<td>The time that the routing code descriptor was last accessed. The last access time is retained across warm start, emergency restart, EXPORT and IMPORT. The updating of the last access time is not logged. After a restart, the last access time reflects the time recorded in the restart checkpoint log records. The output value is obtained from the local IMS. For a routing code descriptor, when the CREATE command references the descriptor as a model, the last access time is updated.</td>
</tr>
<tr>
<td>TMCR</td>
<td>LTimeCreate</td>
<td>TIMESTAMP</td>
<td>LCL</td>
<td>The time that the routing code descriptor was created. The output value is obtained from the local IMS. This value is the result of a CREATE RTCDESC command, IMPORT command that creates the routing code, or IMS initialization. The create time is retained across warm start, emergency restart, EXPORT and IMPORT.</td>
</tr>
<tr>
<td>TMIM</td>
<td>LTimeImport</td>
<td>TIMESTAMP</td>
<td>LCL</td>
<td>The time that the routing code descriptor was last imported, if applicable. The import time is retained across warm start and emergency restart. The output value is obtained from the local IMS.</td>
</tr>
<tr>
<td>TMUP</td>
<td>LTimeUpdate</td>
<td>TIMESTAMP</td>
<td>LCL</td>
<td>The last time the attributes of the runtime resource definition were updated as a result of the UPDATE RTCDESC command or the IMPORT command. The update time is retained across warm start and emergency restart. The output value is obtained from the local IMS.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.
Table 193. Return and reason codes for the QUERY RTCDESC command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>Command completed successfully. The command output contains a line for each resource, accompanied by its completion code. See the completion code table for details.</td>
</tr>
<tr>
<td>X'00000004'</td>
<td>X'00001010'</td>
<td>No resources were found to be returned. The resource names specified might be invalid, or there were no resources that match the filter specified, or there were no resources that had work to display for the SHOW(WORK) specified.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002004'</td>
<td>Invalid command keyword or invalid command keyword combination.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003000'</td>
<td>Command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code. See the completion code table for details.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>Command was not successful for any of the resources. The command output contains a line for each resource, accompanied by its completion code. See the completion code table for details.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004004'</td>
<td>No CQS address space.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>Command is not valid on the RSR tracker.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004018'</td>
<td>No resource structure exists, or resource structure is not available.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004024'</td>
<td>No Fast Path defined.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004100'</td>
<td>Resource structure is full.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004104'</td>
<td>No RM address space.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004108'</td>
<td>No SCI address space.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004300'</td>
<td>Command is not allowed because online change for MODBLKS is enabled (DFSDFxxx or DFSCGxxx defined with MODBLKS OLC, or MODBLKS not defined).</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004500'</td>
<td>IMS is not enabled to use the repository.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004501'</td>
<td>RM is not enabled with the repository.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004502'</td>
<td>Repository is not available.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004503'</td>
<td>Repository is stopped.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004504'</td>
<td>Repository spare recovery is in progress.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004505'</td>
<td>No IMS resource list exists, or no resources for the resource type exist in the IMS resource list.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004507'</td>
<td>Repository access is denied.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004508'</td>
<td>Repository maximum put length exceeded.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004509'</td>
<td>RM data version is lower than the IMS data version.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000450A'</td>
<td>Repository Server is being shut down.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000450B'</td>
<td>Repository Server is not available.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000450C'</td>
<td>Repository Server is busy.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000450D'</td>
<td>RM failed to define some of the internal fields related to the IMSRSC repository.</td>
</tr>
</tbody>
</table>
Errors unique to the processing of this command are returned as completion codes.
The following table includes an explanation of the completion codes.

Table 194. Completion codes for the QUER Y RTCDESC command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command completed successfully</td>
<td>for routing code or routing code descriptor.</td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>Routing code or routing code descriptor name is invalid, or the wildcard parameter specified does not match any resource names.</td>
</tr>
</tbody>
</table>

Example

The following is an example of the QUER Y RTCDESC command:

Example 1 for QUER Y RTCDESC command

TSO SPOC input:

QRY RTCDESC SHOW(ALL)

TSO SPOC output:

<table>
<thead>
<tr>
<th>DescName</th>
<th>MbrName</th>
<th>CC</th>
<th>LPgmName</th>
<th>LInq</th>
<th>LModelName</th>
<th>LModelType</th>
<th>LDflt</th>
<th>DBFDSRT1</th>
<th>IMSI</th>
<th>LTimeCreate</th>
<th>LTimeUpdate</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBFDSRT1</td>
<td>IMSI</td>
<td>0</td>
<td>N</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2011.180</td>
<td>12:37:38.07</td>
</tr>
</tbody>
</table>
OM API input:

CMD(QUERY RTCDESC SHOW(ALL))

OM API output:

```xml
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2011.18021:20:16.670548</statime>
<stotime>2011.18021:20:16.671350</stotime>
<staseq>C7FF0A28EBF54657</staseq>
<rqsttkn1>USR00510142016</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>IMS1</master>
<userid>USR005</userid>
<verb>QRY</verb>
<kwd>RTCDESC</kwd>
<input>QRY RTCDESC SHOW(ALL)</input>
</cmd>
</cmdrsphdr>
<rsp>
<cmdrspdata>
<rsp>DESC(DBFDSRT1) MBR(IMS1) CC(0) PGM( ) INQ(N)
DFLT(Y) TMCR(2011.18012:37:38.07) TMUP( )
TMAC(2011.18013:18:55.75) TMIM( ) DFNT(IMS )</rsp>
</cmdrspdata>
</imsout>
```

Table: DescName MbrName CC LTimeAccess LTimeImport LDefnType

| DBFDSRT1 | IMS1 | 0 | 2011.180 | 13:18:55.75 | IMS |

Chapter 5. QUERY commands

519
Explanation: All routing code descriptors are returned with all output fields. All of the routing code descriptor output fields do not fit on one screen, so the user must scroll to the right for additional output fields. The routing code descriptor name, the member name that built the line of output, and the completion code are displayed on every screen. IMS-defined descriptor DBFDSRT1 contains the IMS default routing code values.

Example 2 for QUERY RTCDESC command

TSO SPOC input:

```
QUERY RTCDESC NAME(*) SHOW(DEFN,PGM,INQ))
```

TSO SPOC output:

```
<table>
<thead>
<tr>
<th>DescName</th>
<th>MbrName</th>
<th>CC</th>
<th>CCText</th>
<th>Repo</th>
<th>IMSid</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>IMS1</td>
<td>0</td>
<td>IMS1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBFDSRT1</td>
<td>IMS1</td>
<td>0</td>
<td>IMS2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBFDSRT1</td>
<td>IMS2</td>
<td>0</td>
<td>IMS3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(scrolled to the right screen 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DescName</td>
<td>MbrName</td>
<td>CC</td>
<td>Repo</td>
<td>IMSid</td>
<td>PgmName</td>
</tr>
<tr>
<td>*</td>
<td>IMS1</td>
<td>0</td>
<td>IMS1</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>DBFDSRT1</td>
<td>IMS2</td>
<td>0</td>
<td>IMS2</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>DBFDSRT1</td>
<td>IMS3</td>
<td>0</td>
<td>IMS3</td>
<td>N</td>
<td></td>
</tr>
</tbody>
</table>
```

OM API input:

```
CMD(QRY RTCDESC NAME(*) SHOW(DEFN,PGM,INQ))
```

OM API output:

```
<imsout>
<ctl>
<omname>OM10M</omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20</xmlvsn>
<staseq>C7FF0C384AB08F1C</staseq>
<stoseq>C7FF0C385FDBFD40</stoseq>
<rqqsttkn1>USRT005 10412929</rqqsttkn1>
<rc>02000000</rc>
<rsn>00003000</rsn>
<rsnmsg>CSLN023I</rsnmsg>
<rstxt>At least one request was successful.</rstxt>
</ctl>
<cmderr>
<mbr name="IMS1">
<typ>IMS</typ>
<styp>DBDC</styp>
<rc>00000000</rc>
<rsn>00003000</rsn>
<rstxt>At least one request successful</rstxt>
</mbr></cmderr>
<cmd>
<master>IMS1</master>
<userid>USRT005</userid>
<verb>QRY</verb>
<kwd>RTCDESC</kwd>
<input>QRY RTCDESC NAME(*) SHOW(DEFN,PGM,INQ)</input>
</cmd>
</cmdrsphdr>
```
Explanation: The stored resource definitions and the runtime resource definitions for the specified resources are returned. There are no stored resource definitions in the repository for the routing code descriptors, so an error completion code is returned for the repository information.

Related concepts:

- How to interpret CSL request return and reason codes (System Programming APIs)

Related reference:

- Command keywords and their synonyms (Commands)

QUERY STRUCTURE command

Use the QUERY STRUCTURE command to display information about IMS coupling facility structures used by members of an IMSplex.

Subsections:

- “Environment” on page 522
- “Syntax” on page 522
- “Keywords” on page 522
- “Usage notes” on page 522
- “Output fields” on page 523
- “Return, reason, and completion codes” on page 523
- “Examples” on page 525
Environment

There are no environment indicators for the QUERY STRUCTURE command itself, because it does not run in the address space of any IMS control or dependent region. QUERY STRUCTURE is processed in an RM command processing environment.

Syntax

```
QUERY STRUCTURE
  NAME(*),
  NAME(structurename*)
  SHOW(ALL),
  SHOW(STATISTICS)
```

Keywords

The following keywords are valid for the QUERY STRUCTURE command:

NAME()

Specifies the names of the structures for which information is to be returned. The structure name can be a generic parameter, to enable easy specification of a group of structures whose names match a generic parameter mask.

SHOW()

Specifies the output fields to be returned. If SHOW is not specified, only the structure names, IMSplex member that builds the output line, and completion codes are returned. This provides a method for a system management application to obtain a list of all structure names. This can be used to determine the resource structure that is managed by RM. The parameters supported with the SHOW keyword are as follows:

- **ALL**
 Returns all the output fields.

- **STATISTICS**
 Displays statistics information for the structures that match the specification in the NAME() parameter.

- **TYPE**
 Returns the type of the specified structure. For example, the type might be RSRC, which identifies a resource structure.

Usage notes

This command is supported only by Resource Manager (RM) to return information about a resource structure.
The command syntax for this command is defined in Extensible Markup Language (XML) and is available to automation programs which communicate with Operations Manager (OM).

Output fields

The following table contains information about the output fields for QUERY STRUCTURE. The columns in the table are as follows:

Short label
Contains the short label generated in the XML output.

Long label
Contains the long label generated in the XML output.

Keyword
Identifies the keyword on the command that caused the field to be generated. N/A appears for output fields that are always returned.

Meaning
Provides a brief description of the output field.

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRNM</td>
<td>StructureName</td>
<td>N/A</td>
<td>Resource structure name. The structure name is always returned.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>IMSplex member that built the output line. The RM identifier of the RM that built the output line.</td>
</tr>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code for the line of output. The completion code is always returned.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>N/A</td>
<td>Completion code text that briefly explains the meaning of the nonzero completion code. This field is returned only for an error completion code.</td>
</tr>
<tr>
<td>TYP</td>
<td>Type</td>
<td>TYPE</td>
<td>Structure type. RSRC indicates the RM resource structure.</td>
</tr>
<tr>
<td>LEA</td>
<td>LeAlloc</td>
<td>STATISTICS</td>
<td>Number of list entries that are allocated in the structure.</td>
</tr>
<tr>
<td>LEI</td>
<td>LeInuse</td>
<td>STATISTICS</td>
<td>Number of list entries in use in the structure.</td>
</tr>
<tr>
<td>ELMA</td>
<td>ElmAlloc</td>
<td>STATISTICS</td>
<td>Number of data elements that are allocated in the structure.</td>
</tr>
<tr>
<td>ELMl</td>
<td>ElmInuse</td>
<td>STATISTICS</td>
<td>Number of data elements in use in the structure.</td>
</tr>
<tr>
<td>RATIO</td>
<td>LE/EL</td>
<td>STATISTICS</td>
<td>Entry to element ratio. It is in the format of list entries/data elements.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The return and reason codes that can be returned as a result of the QUERY STRUCTURE command are standard for all commands entered through the OM API.
The following table contains the return and reason codes that can be returned to OM from a QUERY STRUCTURE command.

Table 196. Return and reason codes for the QUERY STRUCTURE command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The QUERY STRUCTURE command completed successfully.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00000534'</td>
<td>Command did not complete because of a CQSQUERY buffer allocation failure.</td>
</tr>
<tr>
<td>X'0300000C'</td>
<td>X'00003000'</td>
<td>The QUERY STRUCTURE command is successful for at least one resource name. The QUERY STRUCTURE command is not successful for one or more resource names. The completion code indicates the reason for the error with the resource name. The completion codes that can be returned by the QUERY STRUCTURE command are listed in the QUERY STRUCTURE completion code table.</td>
</tr>
<tr>
<td>X'0300000C'</td>
<td>X'00003004'</td>
<td>No requests were successful. The resource names specified might be invalid, or there were no resources that match the filter specified.</td>
</tr>
<tr>
<td>X'03000014'</td>
<td>X'0000502C'</td>
<td>The QUERY STRUCTURE command processing terminated. RM was unable to obtain storage for the command output header.</td>
</tr>
<tr>
<td>X'03000014'</td>
<td>X'00005030'</td>
<td>The QUERY STRUCTURE command processing terminated. RM was unable to obtain storage for the command output response.</td>
</tr>
<tr>
<td>X'03000014'</td>
<td>X'00005200'</td>
<td>The QUERY STRUCTURE command processing terminated because of an unexpected Common Queue Server (CQS) error.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

The following table contains the completion codes that can be returned on a QUERY STRUCTURE command.

Table 197. Completion codes for the QUERY STRUCTURE command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The QUERY STRUCTURE command completed successfully for the resource.</td>
</tr>
<tr>
<td>4</td>
<td>NO RESOURCES FOUND</td>
<td>The structure name is unknown to the client that is processing the request. The structure name might have been typed in error, or the structure might not be defined or allocated at this time. If this is a wildcard request there were no matches for the name. Confirm the correct spelling of the structure name is specified on the command.</td>
</tr>
<tr>
<td>30</td>
<td>INVALID CHARACTER, RESOURCE NAME</td>
<td>Incorrect or unsupported characters are included in the structure name.</td>
</tr>
</tbody>
</table>
Table 197. Completion codes for the QUERY STRUCTURE command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>CQS UNEXPECTED ERROR</td>
<td>Command failed because of a CQS error.</td>
</tr>
</tbody>
</table>

Examples

The following is an example of the QUERY STRUCTURE command:

Example 1 for QUERY STRUCTURE command

This command displays all of the resource structures in the IMSplex and their statistics. Only one resource structure is defined, IMSRSRC01. The number of list entries allocated on the resource structure is 3577, the number of list entries in use on the structure is 676. The number of data elements allocated is 3574, the number of data elements in use is 24. The list entry to data element ratio on the resource structure is one to one. Not many list entries or data elements are in use on the resource structure, so the resource structure is not approaching full.

TSO SPOC input:

```plaintext```
QRY STRUCTURE SHOW(STATISTICS)
```

TSO SPOC output:

```
<table>
<thead>
<tr>
<th>StructureName</th>
<th>MbrName</th>
<th>CC</th>
<th>LeAlloc</th>
<th>LeInuse</th>
<th>ElmAlloc</th>
<th>ElmInuse</th>
<th>LE/EL</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSRSRC01</td>
<td>RM1RM</td>
<td>0</td>
<td>3577</td>
<td>676</td>
<td>3574</td>
<td>24</td>
<td>0001/0001</td>
</tr>
</tbody>
</table>
```

OM API input:

```plaintext```
CMD (QRY STRUCTURE SHOW(STATISTICS))
```

OM API output:

```
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.1.0</omvsn>
<xmlvsn>1</xmlvsn>
<statime>2002.16314:31:34.901057</statime>
<stotime>2002.16314:31:34.941134</stotime>
<staseq>B7C49C9430410C1</staseq>
<stoseq>B7C49C94309C44</stoseq>
<rqsttkn1>USRT011 10073134</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>RM1RM</master>
<userid>USRT011</userid>
<verb>QRY</verb>
<kwd>STRUCTURE</kwd>
<input>QUERY STRUCTURE SHOW(ALL)</input>
</cmd>
<cmdrsphdr>
<hdr slbl="STRNM" llbl="StructureName" scope="LCL" sort="A" key="1" scroll="NO" len="16" dtype="CHAR" align="left"/>
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="N" key="0" scroll="NO" len="8" dtype="CHAR" align="left"/>
<hdr slbl="CC" llbl="CC" scope="LCL" sort="N" key="0" scroll="YES" len="4" dtype="INT" align="right"/>
```
QUERY TRAN command

Use the QUERY TRAN command to display information about transactions (for example, class, status, queue count, and others) across the IMSplex. This command can be specified only through the OM API and is valid on an XRF alternate.

Subsections:
- “Environment”
- “Syntax” on page 527
- “Keywords” on page 528
- “Usage notes” on page 539
- “Equivalent IMS type-1 commands” on page 539
- “Output fields” on page 540
- “Return, reason, and completion codes” on page 557
- “Examples” on page 560

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) from which the QUERY TRAN command and keywords can be issued.

Table 198. Valid environments for the QUERY TRAN command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY TRAN</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CLASS</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CONV</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>QCNT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Table 198. Valid environments for the QUERY TRAN command and keywords (continued)

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>REMOTE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>RESP</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SHOW</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>STATUS</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
QUERY TRAN 
  NAME(*)
  NAME(name)
  CLASS(class number)
  QCNT(number)
  QCNT(LT, number)
  QCNT(LE, number)
  QCNT(GT, number)
  QCNT(GE, number)
  QCNT(EQ, number)
  QCNT(NE, number)
  CONV(N)
  STATUS(AFFIN)
  STATUS(BAL)
  STATUS(CONV)
  STATUS(CPIC)
  STATUS(DYN)
  STATUS(IOPREV)
  STATUS(LCK)
  STATUS(QUIT)
  STATUS(QERR)
  STATUS(QSTP)
  STATUS(SUSPEND)
  STATUS(STO)
  STATUS(STOSCHD)
  STATUS(TRACE)
  STATUS(USTO)

Chapter 5. QUERY commands 527
```
Keywords

The following keywords are valid for the QUERY TRAN command:

CLASS()

Displays transactions that possess at least one of the specified classes. This
key word allows for additional filtering by CLASS value. If no filter is specified (such as STATUS, CLASS or QCNT), all the transactions matching the transaction name are returned.

The output returned when the CLASS filter is specified includes the class value of the transaction that caused the transaction name to be displayed even if the SHOW(CLASS) option is not specified.

CONV()
Selects transactions for display that possess the conversational attributes specified.

FP()
Selects transactions for display that possess the Fast Path option specified. If more than one FP option is specified, selects transactions for display that possess at least one of the Fast Path options specified.

NAME()
Specifies the 1-8 character name of the transaction. Wildcards can be specified in the name. The name is a repeatable parameter. The default is NAME(*), which returns all transactions. If no filter is specified (such as STATUS, CLASS or QCNT), all the transactions matching the transaction name are returned.

QCNT()
Selects transactions that have a queue count less than (LT), less than or equal to (LE), greater than (GT), greater than or equal to (GE), equal to (EQ), or not equal to (NE) the specified numbers. The specified number cannot be a 1 when LT is specified. This keyword allows for additional filtering by QCNT value.

Transactions with a queue count of 0 are not returned when the QCNT filter is specified. When a filter of QCNT(LT,n) is specified, transactions with a queue count greater than 0 and less than n are returned. If no filter is specified (such as STATUS, CLASS or QCNT), all the transactions matching the transaction name are returned.

The QCNT filter is valid in both a shared-queues environment and a non-shared-queues environment.

In a shared-queues environment, if QCNT is specified, the performance implication is that the shared queues are read. In this environment, the QUERY TRAN QCNT command is processed only by the master IMS as the queues are global. The command master returns all the transactions on the shared queues that match the queue count filter specified. If QCNT is specified with a wildcard transaction name, the performance implication is that all the shared-queues transaction messages on the Coupling Facility must be read.

In a non-shared-queues environment, the local queue count values are used to determine the transactions to be displayed. In this environment, the QUERY TRAN QCNT command is processed by each IMS the command is routed to as the queues are local. Each IMS returns all the transactions it found locally that match the queue count filter specified.

The output returned when the QCNT filter is specified includes the queue count of the transaction that caused the transaction name to be displayed even if the SHOW(QCNT) option is not specified.

REMOTE()
Selects transactions for display that possess the remote option specified.

RESP()
Selects transactions for display that possess the response mode option specified.
SHOW()

Specifies the transaction output fields to be returned. The transaction name is always returned along with the name of the IMS that created the output and the completion code. If SHOW is not specified, only the transaction names are returned if the QCNT, CLASS, or STATUS filter is not specified. This keyword provides a method for a system management application to obtain a list of transactions that match the transaction names that are currently known in the IMSplex.

Important: The only SHOW option supported when the QCNT() filter is specified is the AFFIN option. No other SHOW options are supported with the QCNT() filter because of performance reasons.

AFFIN

IMS affinity of the messages on the shared queues.

If the AFFIN option is used as a status filter, IMS shows all the transactions that have affinity status.

If the SHOW(ALL) or SHOW(STATUS) keyword is specified, and if a transaction has affinity status, AFFIN is displayed in the LclStat column.

If the SHOW(AFFIN) keyword is used with the QCNT filter, messages on the shared queue are displayed with their AFFIN value.

The affinity that is shown when the SHOW(AFFIN) keyword is specified is valid only with the QCNT filter and is ignored for the other variations of the QUERY TRAN command.

The AFFIN option is valid only in a shared-queues environment and is ignored in a non-shared-queues environment.

ALL

Returns all information about the transaction itself. Other SHOW keywords can be specified to return information about resources that are related to the transaction.

Global values are returned only for those status fields and attributes for which global information is kept for the IMSplex.

AOCMD

Specifies that you want the AOI option returned which indicates whether the transaction can issue the type-1 AOI CMD call or the type-2 AOI ICMD call.

CLASS

Scheduling class used to determine which message regions can process the transaction locally on a particular IMS.

CMTMODE

Specifies when database updates and non-express output messages are committed. This operand affects emergency restart.

CONV

Conversation option.

CPRI

The current priority. The current priority is the normal priority, when the transaction queue count is less than the limit count. The current priority is raised to the limit priority if the transaction queue count is equal to, or exceeds, the limit cover.
DCLWA
Log write-ahead option.

DEFN
Specifies that the resource definitions are to be returned.
The transaction attributes that can be returned are: AOCMD, CLASS, CMTMODE, CONV, DCLWA, DIRROUTE, EDITUC, EDITRTN, EMHBSZ, EXPRTIME, FP, INQ, LCT, LPRI, MAXRGN, MSGTYPE, NPRI, PLCT, PLCTTIME, PARLIM, PGM, RECOVER, REMOTE, RESP, SERIAL, SIDL, SEGNO, SEGSZ, SPASZ, SPATRUNC, TRANSTAT, WFI, the repository create and update time stamps, the IMS runtime create, update, import and access time stamps, and the IMS runtime MSNAME.

If SHOW(DEFN) is specified without any other SHOW filters or with the IMSID filter, all the definitional attributes are returned. The runtime resource definitions from the IMS system are returned by each IMS that receives the command. The stored resource definitions in the IMSRSC repository are returned by the command master IMS if the command master IMS is enabled to use the repository.

The command master IMS returns a response line for each generic stored resource definition that is obtained from the repository. This response line displays the attributes of the generic resource definition. When SHOW(DEFN) is specified without the IMSID filter and all the IMS systems have the same attribute values defined, only the response line for the generic definition is returned. The IMS IDs of the IMS systems that have the stored resource definition defined are not returned. If an IMS system has a stored resource definition with one or more attribute values that differ from the generic stored resource definition, an additional response line is returned for each IMS that has different attribute values.

If SHOW(DEFN,LOCAL) is specified, the runtime resource definitions from the IMS system are returned by each IMS that received the command.

If SHOW(DEFN,GLOBAL) is specified, the stored resource definitions from the repository are returned by the command master IMS. SHOW(DEFN,GLOBAL) is valid only when the command master IMS is enabled to use the repository.

If SHOW(DEFN) is specified with other parameters, only the requested definitional attributes are returned. For example, if SHOW(DEFN,TIMESTAMP) is specified, only the time stamps are returned.

Restrictions:
- SHOW(DEFN) cannot be specified with DEFNTYPE, MODEL, QCNT, STATUS, or WORK.
- The LclStat, LModelName, LModelType, and LDefnType columns, which are returned on the QRY TRAN SHOW(ALL) command, are not returned with SHOW(DEFN).
- The Repo and IMSid columns, which are returned with SHOW(DEFN), are not returned with SHOW(ALL).
- When querying transaction information from the repository, the SHOW(DEFN) filter is not supported when used with either the QCNT or STATUS filter. The runtime filters of QCNT and STATUS are not valid...
with SHOW(DEFN), SHOW(DEFN,GLOBAL), SHOW(DEFN,LOCAL), SHOW(DEFN,IMSID), SHOW(DEFN,IMSID,GLOBAL) or SHOW(DEFN,IMSID,LOCAL).

Resource definitions that are stored in the repository are used to determine the response lines with the repository information, and the runtime resource definitions are used to determine the response lines with the IMS runtime resource information. The response lines are returned for each stored resource or runtime resource definition that matches the specified filter. If SHOW(DEFN,GLOBAL) is specified, only the stored resource definitions that match the specified filter are returned. If SHOW(DEFN,LOCAL) is specified, only the runtime resource definitions that match the specified filter are returned.

If SHOW(DEFN,IMSID) is specified, a response line is returned for the generic stored resource definition, and an additional response line is returned for each IMS that has the resource defined in the repository, regardless of whether their stored resource definitions are the same as the generic resource definition.

DEFNTPYE
Definition type, which describes how the resource was defined.

DIRROUTE
MSC directed routing option.

EDITRTN
Input edit routine that edits messages before the program receives the message.

EDITUC
Uppercase translation option of the input data.

EMHBSZ
EMH buffer size that is required to run the Fast Path transaction.

EXPRTIME
Transaction expiration time in seconds.

FP
Fast Path option.

GLOBAL
For output fields that have both local and global values, this option returns only the global values. If used with another SHOW keyword to request a specific output field, this OPTION requests that only the global value of the specified output field is returned. IMS retrieves global information from the source that maintains the data. For example, RM maintains some global information, and CQS maintains other global information. Global output is returned only by the command master. The QUERY TRAN command can return global information from the RM resource structure if global status is maintained for transactions.

The QUERY TRAN command returns global information if you specified that the IMSplex maintain global transaction status in RM. You can specify this during IMS initialization in either the DFSDFxxx or DFSCGxxx PROCLIB member with PLEXPARM(GSTSTRAN(Y)). You can also change it dynamically using the UPD IMS SET(PLEXPARM(GSTSTRAN(Y)) command. If you do not specify that global database status is to be maintained, the GLOBAL keyword is processed, and the global status is not updated.
If SHOW(GLOBAL) is specified without SHOW(DEFN), the repository information is not returned. SHOW(GLOBAL) returns any global status information from the resource structure if GSTSTRAN=Y is enabled. It also returns the global queue count from IMS shared queues. If SHOW(GLOBAL,DEFN) is specified, the global resource definitions from the repository are returned by the command master IMS. SHOW(GLOBAL,DEFN) is valid only when the command master IMS is enabled to use the repository.

IMSID
Specifies that the IMS IDs of the IMS systems whose resource lists contain the specified resource name are to be returned. SHOW(IMSID) is processed only by the command master IMS and is valid only when the command master IMS is enabled to use the repository.

When SHOW(IMSID) is specified with the DEFN filter, a separate line is returned for each IMS that has the resource defined, along with the stored resource definitions.

When SHOW(IMSID) is specified without the DEFN filter, a separate line is returned for each IMS that has the resource defined, along with the resource name. No resource definitions are returned.

SHOW(IMSID) cannot be specified with any other SHOW filters other than DEFN and GLOBAL. If SHOW(IMSID,GLOBAL) is specified, GLOBAL is ignored; that is, SHOW(IMSID,GLOBAL) is treated as SHOW(IMSID). SHOW(DEFN,IMSID,LOCAL) is treated as SHOW(DEFN,LOCAL).

INQ
Inquiry option.

LCT
Limit count. Specifies the number that, when compared to the number of input transactions queued and waiting to be processed, determines whether the normal or limit priority value is assigned to this transaction. The limit count value can range from 1 through 65 535.

The limit count value is ignored for a transaction that is processed by a BMP.

The limit count value is ignored in a shared-queues environment.

LOCAL
For output fields that have both local and global values, this option returns only the local values. If used with another SHOW keyword to request a specific output field, this option requests that only the local value of the specified output field is returned. Local output is returned by each IMS that processes the command.

SHOW(DEFN,LOCAL) returns only the local definitional attributes from the IMS system that processes the command.

LPRI
Limit priority. The scheduling priority to which this transaction is raised when the numbers of input transactions enqueued and waiting to be processed is equal to or greater than the limit count value. The scheduling priority is an attribute used to select a transaction for scheduling. A transaction of higher priority is scheduled before a lower priority one, if they are defined with the same class.

The limit priority value is ignored for a transaction that is processed by a BMP.
MAXRGN

Maximum region count. This limits the number of message processing program (MPP) regions that can be concurrently schedule to process a transaction. When the number of MPP regions is not limited, one transaction might monopolize all available regions. MAXRGN(0) means that no limit is imposed.

MODEL

The model name and model type used to create this resource. The model name and model type are blank for IMS-defined resources and descriptors and queue-only transactions created by the DFSINSX0 exit. The CREATE command specified without the LIKE keyword creates a resource using the default descriptor as a model. The default descriptor is either the IMS descriptor DFSDSTR1 or user-defined. The CREATE command specified with the LIKE keyword creates a resource using a model. The resource is created with all the same attributes as the model. Attributes set explicitly by the CREATE command override the model attributes. The model type can either be a descriptor (DESC) or a resource (RSC). The model name and model type are for reference only. The resource attributes might not match the model, if attributes are overridden by CREATE or UPDATE command values, or the model is updated later. The model name and model type can be used to identify resources that were created with the same model. The model name and model type of a resource are exported and imported. The IMPORT command does not use the model name and model type when creating a resource. The model name is blank if the resource is IMS-defined.

MSGTYPE

Message segment type (single or multiple segment). It specifies the time at which an incoming message is considered complete and available to be routed to an application program for subsequent processing.

If MSC-directed routing is used in a multiple IMS system configuration, IMS does not ensure that both the message and the transaction destined to process that message are either single segment or multiple segments.

MSNAME

The logical link path name, remote system ID, and local system ID are returned.

Logical link path name in a multiple IMS system configuration (MSC). A logical link path is a path between any two IMS systems. The IMS systems are identified by the remote system ID and the local system ID associated with the logical link path. The remote system ID identifies the system in which messages using this path are to be processed. The local system ID identifies this system.

The remote system ID (SIDR) identifies the IMS system on which the application program runs. A value of 0 means MSC is not enabled on this system. The local system ID and remote system ID are the same for local transactions.

The local system ID (SIDL) identifies the originating system to which responses are returned. A value of 0 means MSC is not enabled on this system. The local system ID and remote system ID are the same for local transactions.

NPRI

Normal scheduling priority. The scheduling priority is an attribute that is
used to select a transaction for scheduling. A transaction of higher priority is scheduled before a lower priority one, if they are defined with the same class. The normal priority is assigned to the transaction as the scheduling priority when the number of input transactions that are enqueued and waiting to be processed is less than the limit count value.

The normal priority value is ignored for a transaction that is processed by a BMP.

PARLIM
Parallel processing limit count. This value is the maximum number of messages that can currently be queued, but not yet processed, by each active message region that is currently scheduled for this transaction. This value is the threshold value to be used when the associated program is defined with a scheduling type of parallel. An additional region is scheduled whenever the current transaction enqueue count exceeds the PARLIM value multiplied by the number of regions that are currently scheduled for this transaction.

PARLIM(0) indicates that any input message can cause a new region to be scheduled. PARLIM(65535) indicates that parallel processing is disabled and IMS allows the transaction to be scheduled in only one region at a time.

PGM
The name of the program that is associated with this transaction. This name matches the PSB name in ACBLIB. SHOW(PSB) is an alias of SHOW(PGM).

PLCT
Processing limit count. This value is the maximum number of messages that are sent to the application program by the IMS for processing without reloading the application program.

PLCT(0) means that a maximum of one message is sent to the application program at a single program load.

PLCT(65535) means that no limit is placed on the number of messages that are processed at a single program load.

PLCTTIME
Processing limit count time. This value is the amount of time (in hundredths of seconds) allowable to process a single transaction (or message). The number specifies the maximum CPU time allowed for each message to be processed in the message processing region.

For the Fast Path potential transactions that are defined in the system definition TRANSACT macro, the value shown is the CPU-time-per-transaction number, which is specified on the PROCLIM keyword, multiplied by 100.

PLCTTIME(6553500) means that no time limit is placed on the application program.

PSB
The name of the program that is associated with this transaction. This name matches the PSB name in ACBLIB. SHOW(PSB) is an alias of SHOW(PGM).

QCNT
Transaction message queue count.
In a non-shared-queues environment, the local transaction message queue count is returned. This count represents the number of messages on the IMS system where the command is issued.

In a shared-queues environment, both the local transaction message queue count and the global transaction message queue count are returned.

- The local queue counts value that is returned in this environment represents the messages being processed by the IMS system where this command is issued. Do not use local queue counts for queue evaluation purposes.
- The global transaction message queue count represents the current message queue count on the shared queues structure. This count represents the number of messages that can be processed by the IMS system where the command is issued. This count includes messages that can be processed by any IMS system (messages with no affinity), plus messages that can be processed by the IMS system where the command is issued (messages with an affinity to the IMS system that issued the command).

RECOVER

Recovery option.

REMOTE

Remote option.

RESP

Response option.

RGC

Number of regions the transaction is currently scheduled in the local IMS.

SEGNO

Segment number. This value is the maximum number of application program output segments that are allowed into the message queues per Get Unique (GU) call from the application program.

SEGNO(0) means that the number of segments is not checked by the online system at the execution time.

SEGSZ

Segment size. This value is the maximum number of bytes allowed in any one output segment.

SEGSZ(0) means that the segment size is not checked by the online system at execution time.

SERIAL

Serial option.

SPASZ

Scratchpad area size for a conversational transaction.

SPATRUNC

The SPA data truncation option indicates whether the SPA data should be truncated or preserved across a program switch to a transaction that is defined with a smaller SPA.

When a conversation initially starts, and when a program is switched, the SPATRUNC option is checked and set or reset as specified. When the
option is set, it remains set for the life of the conversation, or until a program switch occurs to a transaction that specifies the option is to be reset.

When a program switch occurs, the truncated data option for the new transaction is first checked, and that specification is set for the conversation and is used for the SPA inserted into the output message. If the option is not specified for the new transaction, the option currently in effect for the conversation is used.

STATUS

Local transaction status. For a description of the possible transaction status returned, see the STATUS keyword in the "Output fields for the QUERY TRAN command" table under page 540.

TIMESTAMP

The creation time (TIMECREATE), last update time (TIMEUPDATE), last access time (TIMEACCESS), and last import time (TIMEIMPORT) time stamps are returned. The time is returned in local time in the format YYYYJJJ HH:MM:SS.TH, where:

- YYYY is the year.
- JJJ is the Julian day (001 - 365).
- HH is the hour (01 - 24).
- MM is the minute (00 - 59).
- SS is the seconds (00 - 59).
- TH is the tenths and hundredths of a second (00 - 99).

TRANSTAT

Transaction level statistics option.

WFI

Wait-for-input option.

WORK

Work in progress for the transaction specified on the NAME parameter and its associated resources. The QUERY TRAN SHOW(WORK) command can be issued before a DELETE, IMPORT or UPDATE command to check for any work in progress for the specified transaction and any of its associated resources. Any work in progress might cause the subsequent DELETE, IMPORT or UPDATE commands to fail. If no work is in progress for the specified resource, a response line is returned with a work status of blanks.

Notes:
1. SHOW(WORK) specified with NAME(*) might have a performance impact on the processing of the command.
2. You cannot specify this filter with other SHOW filters; you must specify SHOW(WORK) individually.
3. The QRY TRAN SHOW(WORK) command is not valid on an XRF alternate.

STATUS()

Selects transactions for display that possess at least one of the specified transaction statuses. This keyword allows for additional filtering by transaction status. If a STATUS, CLASS, or QCNT filter is not specified, all the transactions matching the transaction name are returned.
The output returned when the STATUS filter is specified includes the status of the transaction that caused the transaction name to be displayed even if the SHOW(STATUS) option is not specified.

Filtering is based only on local status, even if RM maintains global status.

AFFIN
Transaction is registered with local affinity with IMS.

BAL
Transaction is eligible for load balancing (for example, with parallel limits specified).

CPIC
This CPI-C transaction was built dynamically on this IMS system and can process only on this IMS system.

DYN
Transaction was built in a shared-queues environment, is not defined to this IMS, and therefore, cannot be scheduled in this IMS subsystem.

IOPREV
Indicates that a BMP program containing GSAM cannot complete scheduling because I/O prevention has not completed. Further I/O requests to data sets are inhibited.

LCK
Transaction is locked by a /LOCK TRAN command.

NOTINIT
Transaction is not initialized and cannot be used.

QERR
I/O error has occurred on this queue for this MSC remote transaction.

QSTP
Transaction queuing is stopped by online change because the transaction is affected by the online change. Online change might be changing or deleting the transaction, or changing or deleting a program, PSB, database, or DMB referenced by the transaction. Transaction queuing is stopped until the online change is committed or aborted.

SUSPEND
Transaction has messages on the suspend queue.

STOQ
Transaction is stopped for queuing and can no longer be queued globally. This status might be caused by a previous UPDATE TRAN, /PURGE TRAN or /STO TRAN command.

STOSCHD
Transaction is stopped for scheduling and can no longer be scheduled globally. This status might be caused by a previous UPDATE TRAN, /PSTOP TRAN or /STO TRAN command or an application abend.

TRACE
Transaction is being traced.

USTO
Transaction scheduling stopped because of unavailable data.
Usage notes

The transaction information displayed depends on whether the IMS issuing the QUERY TRAN command is running with RM services. If the QUERY TRAN command is issued by an IMS command master running without RM, all transaction information local to that IMS is returned. If the QUERY TRAN command is issued by an IMS command master running with RM, the IMS command master retrieves global information from CQS or RM as specified.

If the QUERY TRAN command is routed for global information to all IMS systems in an environment where some IMS systems use RM services and other IMS systems do not, the command results will vary because any of the IMS systems can be the command master. The RM environment of the IMS command master affects the type of transaction information that is displayed. You might want to route QUERY TRAN to specific IMS systems if some IMS systems are using RM. Here are two examples of why you might receive different command results:

1. The IMSplex has non-cloned systems and the transaction is only defined by an IMS that has RMENV=N. The IMS command master is running with RM services, but because the transaction is not defined to RM, no global information is obtained. The results are two response lines:
 - The IMS command master returns the transaction name as invalid.
 - The IMS with RMENV=N returns its local information.

2. The IMSplex has non-cloned systems. If global queue counts are requested, and the IMS command master does not have RM running, no global queue counts are returned for transactions that are not defined locally at the command master. All other IMS systems return only their local information.

In a shared-queues environment, a QUERY TRAN NAME(tranname) QCNT(GT,0) command returns the total count of messages on the shared queue structure for transaction tranname. This count includes messages that can be processed by any IMS (messages with no affinity), plus messages with affinity to an IMS. A QUERY TRAN NAME(tranname) QCNT(GT,0) SHOW(AFFIN) command returns one line for the transaction name with messages that can be processed by any IMS (messages with no affinity). Another line is returned for the transaction that has messages queued with affinity to an IMS. This line shows the number of messages that are queued with affinity, as well as the IMSID of the IMS to which they have affinity. A QUERY TRAN NAME(tranname) QCNT(GT,0) or QUERY TRAN NAME(tranname) QCNT(GT,0) SHOW(AFFIN) command is processed only by the command master IMS because the command master IMS can obtain information for all IMS subsystems in the IMSplex environment.

If you want to display information about resource definitions, specify SHOW(DEFN). If you want to know which IMS systems have the resource defined and also know the attributes or resource definitions at each IMS system, specify SHOW(DEFN,IMSID). If you want to know which IMS systems have the resource defined, specify SHOW(IMSID).

Equivalent IMS type-1 commands

The following table shows variations of the QUERY TRAN command and the type-1 IMS commands that display similar information.
Table 199. Type-1 equivalents for the QUERY TRAN command

<table>
<thead>
<tr>
<th>QUERY TRAN command</th>
<th>Similar IMS type-1 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY TRAN NAME(tranname) SHOW(ALL)</td>
<td>/DISPLAY TRAN tranname</td>
</tr>
<tr>
<td>QUERY TRAN SHOW(ALL)</td>
<td>/DISPLAY TRAN ALL</td>
</tr>
<tr>
<td>QUERY TRAN NAME(tranname) SHOW(QCNT)</td>
<td>/DISPLAY TRAN tranname QCNT</td>
</tr>
<tr>
<td>QUERY TRAN NAME(tranname) SHOW(QCNT)</td>
<td>/DISPLAY STATUS TRANSACTION</td>
</tr>
<tr>
<td>STATUS(IOPREV,LCK,ERR,SUSPEND,STOQ,STOSCHD,USTO) SHOW(STATUS)</td>
<td>/DISPLAY STATUS TRANSACTION</td>
</tr>
</tbody>
</table>

Output fields

The following table shows the output fields for the QUERY TRAN command. The columns in the table are as follows:

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFIN</td>
<td>Affinity</td>
<td>AFFIN</td>
<td>GBL</td>
<td>Affinity of the transaction messages on the shared queues, or affinity registration of the transactions for this IMS. For a transaction message on the shared queues (that is, the QCNT option), AFFIN displays the IMS ID or the recoverable service element (RSE) name of the IMS system that the message can be processed on. For a transaction registration, AFFIN displays the IMS ID or the RSE name appended to the transaction that was registered to CQS with local affinity.</td>
</tr>
</tbody>
</table>

Table 200. Output fields for the QUERY TRAN command
Table 200. Output fields for the QUERY TRAN command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOCMD</td>
<td>LAOCMD</td>
<td>AOCMD</td>
<td>LCL</td>
<td>Transaction supports AOI CMD calls (CMD, TRAN, or Y) or not (N). The output value is obtained from the local IMS.</td>
</tr>
<tr>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td>Indicates that the transaction is not permitted to issue AOI type-1 CMD calls. The transaction is permitted to issue AOI type-2 ICMD calls.</td>
</tr>
<tr>
<td>CMD</td>
<td></td>
<td></td>
<td></td>
<td>Indicates that the transaction is permitted to issue type-1 AOI CMD calls and type-2 AOI ICMD calls. If the AOI1 execute parameter is defined as C, R, or A, authorization checking is based on which transactions can issue a particular command. In this case, the commands (or first three characters of the commands) need to be defined to RACF or equivalent product as a user. The type-1 AOI transactions must be defined as profiles under the TIMS class, and for each transaction, the commands it can issue must be specified. Defining AOCMD(CMD) requires you to create fewer user IDs than you need to create for the AOCMD(TRAN) definition. However, defining AOCMD(CMD) requires you to create or modify a larger number of resource profiles.</td>
</tr>
<tr>
<td>TRAN</td>
<td></td>
<td></td>
<td></td>
<td>Indicates that the transaction is permitted to issue type-1 AOI CMD calls and type-2 AOI ICMD calls. If the AOI1 execute parameter is defined as C, R, or A, the transaction code is used for authorization. The first authorization check results in the accessor environment element (ACEE) being built. This environment is kept for use by future authorization checks. The type-1 AOI transaction must be defined to RACF or equivalent product as a user. The transactions will then be specified on RACF PERMIT statements for each command they are allowed to issue from a type-1 AOI transaction. Specifying AOI transactions as users to RACF might conflict with the name of a user already defined to RACF. If this conflict occurs, then either the transaction name or the existing user name needs to be changed.</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td>Indicates that the transaction is permitted to issue type-1 AOI CMD calls and type-2 AOI ICMD calls. If the AOI1 execute parameter is defined as C, R, or A, the user ID or program name is used for authorization. For some environments, if a Get Unique call has not yet occurred, the program name is used for authorization.</td>
</tr>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>N/A</td>
<td>Completion code. The completion code indicates whether IMS was able to process the command for the specified resource. The completion code is always returned. Refer to Table 204 on page 559 for more information.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CC Text</td>
<td>error</td>
<td>LCL</td>
<td>Completion code text that briefly explains the meaning of the nonzero completion code.</td>
</tr>
</tbody>
</table>
Table 200. Output fields for the QUERY TRAN command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMTM</td>
<td>LCmtMode</td>
<td>CMTMODE</td>
<td>LCL</td>
<td>Commit mode for the transaction: commit after a single message (SNGL) or multiple messages (MULT). The output value is obtained from the local IMS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MULT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Database updates and non-express output messages are committed only when the application program terminates normally, when the processing limit count has been reached, or, in the case of a pseudo-WFI dependent region, when there are no more messages on the queue. For example, if five transactions are processed during a single schedule of a program, all five are committed only when the fifth one is completed and the program terminates. Until a transaction has been committed, locks for updated database records are not released and non-express output messages are not queued for output. If an application ends abnormally before committing its messages, emergency restart requeues all the messages that were processed within the commit scope and makes them available for reprocessing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SNGL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Database updates and non-express output messages are committed when the application program completes processing each transaction. IMS invokes commit processing either when the application program requests the next message (issues a GU to the IO-PCB), or when the application program terminates. If an application ends abnormally before committing its message, emergency restart requeues the message that was in process before the abend and makes it available for reprocessing.</td>
</tr>
</tbody>
</table>
Table 200. Output fields for the QUERY TRAN command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONV</td>
<td>LConv</td>
<td>CONV</td>
<td>LCL</td>
<td>Conversation option. Transaction is conversational (Y), or not (N). The output value is obtained from the local IMS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Restriction: The method to filter on a conversational transaction has changed between IMS Version 9 and IMS Version 10. In IMS Version 9, the command is QUERY TRAN STATUS(CONV). In IMS Version 10 or later, the command is QUERY TRAN CONV(Y). If IMS is running in an IMSplex with IMS Version 10 or later and either IMS Version 8 or IMS Version 9 systems, and the command is to be processed on all systems, the command must be issued as QUERY TRAN STATUS(CONV) CONV(Y). The IMS Version 10 system or later processes the CONV(Y) filter, while the IMS Version 8 and IMS Version 9 systems process the STATUS(CONV) filter. If a command is issued to an IMS Version 10 system or later with STATUS(CONV) without CONV(Y), the command is rejected.</td>
</tr>
<tr>
<td>CONVID</td>
<td>LConvID</td>
<td>WORK</td>
<td>LCL</td>
<td>Conversation ID for transaction that has a conversation in progress.</td>
</tr>
<tr>
<td>DCLW</td>
<td>LDCLWA</td>
<td>DCLWA</td>
<td>LCL</td>
<td>Perform log write-ahead for recoverable, nonresponse mode input messages and transaction output messages (Y) or not (N). The output value is obtained from the local IMS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
</tr>
</tbody>
</table>
Table 200. Output fields for the QUERY TRAN command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFNT</td>
<td>LDefnType</td>
<td>DEFNTYPE</td>
<td>LCL</td>
<td>Definition type, which can be one of the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CPIC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A CPI-C transaction that was dynamically built on this IMS system.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CREATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Defined by a CREATE command.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DFSINSX0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Defined by user exit DFSINSX0. The resource can be exported only if the export option was set. This does not apply to descriptors.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IMPORT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Defined by the IMPORT command.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IMS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Defined by IMS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MODBLKS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Defined by system definition in the MODBLKS data set.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UPDATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Defined by system definition in the MODBLKS data set, but changed into a dynamic resource by the UPDATE command. This does not apply to descriptors.</td>
</tr>
<tr>
<td>DRR</td>
<td>LDirRoute</td>
<td>DIRROUTE</td>
<td>LCL</td>
<td>Supports MSC directed routing (Y) or not (N). The output value is obtained from the local IMS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N The application program processing a transaction is not informed of the system which originated the transaction. The name of the originating LTERM is placed in the I/O PCB.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y The application program processing a transaction is informed of the system which originated the transaction, if MSC directed routing is used in a multiple IMS system configuration. An MSNAME corresponding to a logical path back to the originating system is placed in the I/O PCB.</td>
</tr>
<tr>
<td>EDT</td>
<td>LEditRtn</td>
<td>EDITRTN</td>
<td>LCL</td>
<td>Input edit routine name.</td>
</tr>
<tr>
<td>EDTT</td>
<td>LEditUC</td>
<td>EDITUC</td>
<td>LCL</td>
<td>Input data is to be translated to uppercase (Y) or not (N). The output value is obtained from the local IMS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N Input data is not translated to uppercase. It can consist of uppercase and lowercase characters as entered from the terminal.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y Input data is to be translated to uppercase before it is presented to the processing program. If FP(E), the transaction is to be translated to uppercase before being presented to the edit/routing exit routine.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Specifying EDITUC(Y) for VTAM terminals prevents the transmission of embedded device control characters.</td>
</tr>
<tr>
<td>EMH</td>
<td>LEMHBSz</td>
<td>EMHBSZ</td>
<td>LCL</td>
<td>EMH buffer size. The output value is obtained from the local IMS.</td>
</tr>
<tr>
<td>EXPRT</td>
<td>LExprTm</td>
<td>EXPRTIME</td>
<td>LCL</td>
<td>Transaction expiration time. The output value is obtained from the local IMS.</td>
</tr>
</tbody>
</table>
Table 200. Output fields for the QUERY TRAN command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP</td>
<td>LFP</td>
<td>FP</td>
<td>LCL</td>
<td>Fast Path potential candidate (P), Fast Path exclusive (E), or FP option not enabled (N). The output value is obtained from the local IMS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Restriction: The method to filter on a Fast Path transaction has changed between IMS Version 9 and IMS Version 10. In Version 9, the command is QUERY TRAN STATUS(FPE), QUERY TRAN STATUS(FPP) or QUERY TRAN STATUS(FPE,FPP). In IMS Version 10 or later, the command is QUERY TRAN FP(E), QUERY TRAN FP(P), or QUERY TRAN FP(E,P). If IMS is running in an IMSplex with IMS Version 10 or later and either IMS Version 8 or IMS Version 9 systems, and the command is to be processed on all systems, the command must be issued as QUERY TRAN STATUS(FPE) FP(E), QUERY TRAN STATUS(FPP) FP(P), or QUERY TRAN STATUS(FPE,FPP) FP(E,P). The IMS Version 10 system or later processes the FP() filter, while the IMS Version 8 and IMS Version 9 systems process the STATUS() filter. If a command is issued to an IMS Version 10 system or later with STATUS(FPE), STATUS(FPP), or STATUS(FPE,FPP) without FP(), the command is rejected.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IMSID</th>
<th>IMSid</th>
<th>IMSID</th>
<th>GBL</th>
<th>Returns the IMSIDs that have the resource defined. The output value is obtained from the repository.</th>
</tr>
</thead>
<tbody>
<tr>
<td>INQ</td>
<td>Linq</td>
<td>INQ</td>
<td>LCL</td>
<td>Inquiry transaction (Y) or not (N). The output value is obtained from the local IMS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCLS</th>
<th>LCls</th>
<th>CLASS</th>
<th>LCL</th>
<th>Scheduling class used to determine which message regions can process the transaction locally on a particular IMS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCP</td>
<td>LCPRI</td>
<td>CPRI</td>
<td>LCL</td>
<td>Local current scheduling priority. The current scheduling priority is used to calculate which transaction is selected for scheduling.</td>
</tr>
</tbody>
</table>
Table 200. Output fields for the QUERY TRAN command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLCT</td>
<td>LLCT</td>
<td>LCT</td>
<td>LCL</td>
<td>Limit count in the local IMS. The limit count is the number that, when compared to the number of input transactions queued and waiting to be processed, determines whether the normal or limit priority value is assigned to this transaction.</td>
</tr>
<tr>
<td>LLP</td>
<td>LLPRI</td>
<td>LPRI</td>
<td>LCL</td>
<td>Local limit scheduling priority. The limit scheduling priority is the priority to which this transaction is raised when the number of input transactions enqueued and waiting to be processed is equal to or greater than the limit count value.</td>
</tr>
<tr>
<td>LMRG</td>
<td>LMaxRgn</td>
<td>MAXRGN</td>
<td>LCL</td>
<td>Local maximum region count. The maximum region count is the maximum number of message processing program (MPP) regions that can be concurrently scheduled to process a transaction that is eligible for parallel scheduling.</td>
</tr>
<tr>
<td>LNP</td>
<td>LNPRI</td>
<td>NPRI</td>
<td>LCL</td>
<td>Local normal scheduling priority. The normal scheduling priority is the priority assigned to this transaction when the number of input transactions enqueued and waiting to be processed is less than the limit count value.</td>
</tr>
<tr>
<td>LPLCT</td>
<td>LPLCT</td>
<td>PLCT</td>
<td>LCL</td>
<td>Local processing limit count. The processing limit count is the number of transaction messages a program can process in a single scheduling.</td>
</tr>
<tr>
<td>LPLM</td>
<td>LParLim</td>
<td>PARLIM</td>
<td>LCL</td>
<td>Local parallel processing limit count. The parallel limit count is the maximum number of messages that can currently be queued, but not yet processed, by each active message region currently scheduled for this transaction. An additional message region is scheduled whenever the transaction queue count exceeds the PARLIM value multiplied by the number of regions currently scheduled for this transaction.</td>
</tr>
<tr>
<td>LQ</td>
<td>LQCnt</td>
<td>QCNT</td>
<td>LCL</td>
<td>Local transaction message queue count.</td>
</tr>
<tr>
<td>LSNO</td>
<td>LSegNo</td>
<td>SEGNO</td>
<td>LCL</td>
<td>Local application program output segment limit allowed in message queues for each GU call.</td>
</tr>
<tr>
<td>LSSZ</td>
<td>LSegSz</td>
<td>SEGSZ</td>
<td>LCL</td>
<td>Local application program output segment size limit allowed in the message queues for each GU call.</td>
</tr>
</tbody>
</table>
Table 200. Output fields for the QUERY TRAN command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSTT</td>
<td>LclStat</td>
<td>STATUS</td>
<td>LCL</td>
<td>Local transaction status.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BAL Transaction is eligible for load balancing (for example, with parallel limits specified).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CPIC This CPI-C transaction was built dynamically on this IMS system and can process only on this IMS system.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DYN Transaction was built in a shared-queues environment, is not defined to this IMS, and therefore, cannot be scheduled in this IMS subsystem.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IOPREV Indicates that a BMP program containing GSAM cannot complete scheduling because I/O prevention has not completed. Further I/O requests to data sets are inhibited.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LOCK Transaction is locked by a /LOCK TRAN or UPD TRAN SET(LOCK(ON)) command.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NOTINIT-xx-reason Transaction is not initialized and cannot be used. NOTINIT status is displayed in the format NOTINIT-xx-reason, where xx is the reason code that identifies the unique location in one module where this reason code is set. NOTINIT-00 indicates that the reason is unknown. Action: 1. IAPS MACRO defines each reason code that might be set in the transaction bad reason code (field SMBBADR) and identifies the module that sets it. reason explains the reason code xx in abbreviated text format up to 13 characters. For possible reason values and their descriptions, see Table 201 on page 555.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>QERR I/O error has occurred on this queue for this MSC remote transaction.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>QSTP Transaction queuing is stopped by online change because the transaction is affected by the online change. Online change might be changing or deleting the transaction, or changing or deleting a program, PSB, database, or DMB referenced by the transaction. Transaction queuing is stopped until the online change is committed or aborted.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SUSPEND Transaction has messages on the suspend queue.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>STOQ Transaction is stopped for queuing, and messages can no longer be queued to it. This status might be caused by a previous UPDATE TRAN, /PURGE TRAN, or /STO TRAN command.</td>
</tr>
</tbody>
</table>

(to be continued)
Table 200. Output fields for the QUERY TRAN command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSTT</td>
<td>LclStat</td>
<td>STATUS</td>
<td>LCL</td>
<td>STOSCHD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TRA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>USTO</td>
</tr>
<tr>
<td>LU</td>
<td>LUName</td>
<td>WORK</td>
<td>LCL</td>
<td></td>
</tr>
<tr>
<td>MDLN</td>
<td>LModelName</td>
<td>MODEL</td>
<td>LCL</td>
<td></td>
</tr>
<tr>
<td>MDLT</td>
<td>LModelType</td>
<td>MODEL</td>
<td>LCL</td>
<td></td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>MSGT</td>
<td>LMsgType</td>
<td>MSGTYPE</td>
<td>LCL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MULTSEG</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SNGLSEG</td>
</tr>
<tr>
<td>MSN</td>
<td>LMSName</td>
<td>MSNAME</td>
<td>LCL</td>
<td></td>
</tr>
<tr>
<td>NODE</td>
<td>NodeName</td>
<td>WORK</td>
<td>LCL</td>
<td></td>
</tr>
<tr>
<td>PLCTT</td>
<td>LPLCTTime</td>
<td>PLCTTIME</td>
<td>LCL</td>
<td></td>
</tr>
<tr>
<td>PSB</td>
<td>LPSBNName</td>
<td>PSB</td>
<td>LCL</td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>Qcnt</td>
<td>QCNT,</td>
<td>GBL</td>
<td></td>
</tr>
<tr>
<td>RAOCMD</td>
<td>LAOCMD</td>
<td>DEFN,</td>
<td>GBL</td>
<td></td>
</tr>
<tr>
<td>RCLS</td>
<td>Cls</td>
<td>DEFN,</td>
<td>GBL</td>
<td></td>
</tr>
<tr>
<td>RCMTM</td>
<td>CmtpMode</td>
<td>DEFN,</td>
<td>GBL</td>
<td></td>
</tr>
<tr>
<td>RCONV</td>
<td>Conv</td>
<td>DEFN,</td>
<td>GBL</td>
<td></td>
</tr>
<tr>
<td>Short label</td>
<td>Long label</td>
<td>Keyword</td>
<td>Scope</td>
<td>Meaning</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>-----------</td>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>RCV</td>
<td>LRecover</td>
<td>RECOVER</td>
<td>LCL</td>
<td>Recovered during an IMS emergency or normal restart (Y) or not (N). The output value is obtained from the local IMS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N Recovery option is disabled. The transaction is not recovered.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y Recovery option is enabled. The transaction is recovered during IMS emergency or normal restart.</td>
</tr>
<tr>
<td>RDCLW</td>
<td>DCLWA</td>
<td>DEFN, DCLWA</td>
<td>GBL</td>
<td>Perform log write-ahead for recoverable, nonresponse mode input messages and transaction output messages (Y) or not (N). The output value is obtained from the repository.</td>
</tr>
<tr>
<td>RDRRT</td>
<td>DirRoute</td>
<td>DEFN, DIRROUTE</td>
<td>GBL</td>
<td>Supports MSC directed routing (Y) or not (N). The output value is obtained from the repository.</td>
</tr>
<tr>
<td>REDTR</td>
<td>Editrtn</td>
<td>DEFN, EDITRTN</td>
<td>GBL</td>
<td>Edit routine value obtained from the repository.</td>
</tr>
<tr>
<td>REDTT</td>
<td>EditUC</td>
<td>DEFN, EDITUC</td>
<td>GBL</td>
<td>Input data is to be translated to uppercase (Y) or not (N). The output value is obtained from the repository. For the values to be returned, see “LEditUC” in this table.</td>
</tr>
<tr>
<td>REMHBS</td>
<td>EMHBSz</td>
<td>DEFN, EMHBSZ</td>
<td>GBL</td>
<td>EMH buffer size. The output value is obtained from the repository.</td>
</tr>
<tr>
<td>REPO</td>
<td>Repo</td>
<td>DEFN</td>
<td>GBL</td>
<td>Indicates whether the output line contains the stored resource definitions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y Indicates repository definitions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(blank) Indicates local definitions.</td>
</tr>
<tr>
<td>REXPRT</td>
<td>ExprTm</td>
<td>DEFN, EXPRTIME</td>
<td>GBL</td>
<td>Transaction expiration time. The output value is obtained from the repository.</td>
</tr>
<tr>
<td>RFP</td>
<td>FP</td>
<td>DEFN, FP</td>
<td>GBL</td>
<td>Fast Path potential candidate (P), Fast Path exclusive (E), or FP option not enabled (N). The output value is obtained from the repository. For the values to be returned, see the description for “LFP” in this table.</td>
</tr>
<tr>
<td>RGC</td>
<td>LRegCnt</td>
<td>RGC</td>
<td>LCL</td>
<td>Number of regions the transaction is currently scheduled in the local IMS. The output value is obtained from the local IMS.</td>
</tr>
<tr>
<td>RINQ</td>
<td>Inq</td>
<td>DEFN, INQ</td>
<td>GBL</td>
<td>Inquiry transaction (Y) or not (N). The output value is obtained from the repository. For the values to be returned, see the description for “Linq” in this table.</td>
</tr>
<tr>
<td>RLCT</td>
<td>Lct</td>
<td>DEFN, LCT</td>
<td>GBL</td>
<td>Limit count value in the repository. The limit count is the number that, when compared to the number of input transactions queued and waiting to be processed, determines whether the normal or limit priority value is assigned to this transaction.</td>
</tr>
<tr>
<td>RLP</td>
<td>LPRI</td>
<td>DEFN, LPRI</td>
<td>GBL</td>
<td>Local limit scheduling priority value in the repository. The limit scheduling priority is the priority to which this transaction is raised when the number of input transactions enqueued and waiting to be processed is equal to or greater than the limit count value.</td>
</tr>
<tr>
<td>RMRG</td>
<td>RMaxRgn</td>
<td>DEFN, MAXRGN</td>
<td>GBL</td>
<td>Maximum region count obtained from the repository. The maximum region count is the maximum number of message processing program (MPP) regions that can be concurrently scheduled to process a transaction that is eligible for parallel scheduling.</td>
</tr>
</tbody>
</table>
Table 200. Output fields for the QUERY TRAN command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMSGT</td>
<td>MsgType</td>
<td>DEFN,</td>
<td>GBL</td>
<td>Message type of single segment (SNGLSEG) or multiple segment (MULSEG). The output value is obtained from the repository. For the values to be returned, see the description for “LMsgType” in this table.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MSGTYPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMT</td>
<td>L.Remote</td>
<td>REMOTE</td>
<td>L.CL</td>
<td>Remote transaction (Y) or not (N). The output value is obtained from the local IMS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNP</td>
<td>NPRI</td>
<td>DEFN,</td>
<td>GBL</td>
<td>Normal scheduling priority value obtained from the repository. The normal scheduling priority is the priority assigned to this transaction when the number of input transactions enqueued and waiting to be processed is less than the limit count value.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NPRI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPLCT</td>
<td>PLCT</td>
<td>DEFN,</td>
<td>GBL</td>
<td>Processing limit count obtained from the repository. The processing limit count is the number of transaction messages a program can process in a single scheduling.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PLCT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPLCTT</td>
<td>PLCTTime</td>
<td>DEFN,</td>
<td>GBL</td>
<td>Processing limit count time value in the repository.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PLCTTIME</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPLM</td>
<td>ParLim</td>
<td>DEFN,</td>
<td>GBL</td>
<td>Parallel processing limit count obtained from the repository. The parallel limit count is the maximum number of messages that can currently be queued, but not yet processed, by each active message region currently scheduled for this transaction. An additional message region is scheduled whenever the transaction queue count exceeds the PARLIM value multiplied by the number of regions currently scheduled for this transaction.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PARLIM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPSB</td>
<td>PsbName</td>
<td>DEFN,</td>
<td>GBL</td>
<td>PSB name associated with the transaction. The output value is obtained from the repository.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PGM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RRCV</td>
<td>Recover</td>
<td>DEFN,</td>
<td>GBL</td>
<td>Recovered during an IMS emergency or normal restart (Y) or not (N). The output value is obtained from the repository. For the values to be returned, see the description for “LRecover” in this table.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RECOVER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RRMT</td>
<td>Remote</td>
<td>DEFN,</td>
<td>GBL</td>
<td>Remote transaction (Y) or not (N). The output value is obtained from the repository. For the values to be returned, see the description for “LRemote” in this table.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>REMOTE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 200. Output fields for the QUER Y TRAN command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>RRSP</td>
<td>Resp</td>
<td>DEFN, RESP</td>
<td>GBL</td>
<td>Response mode transaction (Y) or not (N). The output value is obtained from the repository. For the values to be returned, see the description for “LResp” in this table.</td>
</tr>
<tr>
<td>RSER</td>
<td>Serial</td>
<td>DEFN, SERIAL</td>
<td>GBL</td>
<td>Transaction is processed serially (Y) or not (N). The output value is obtained from the repository. For the values to be returned, see the description for “LSerial” in this table.</td>
</tr>
<tr>
<td>RSIDL</td>
<td>SIDL</td>
<td>DEFN, MSNAME</td>
<td>GBL</td>
<td>Local system ID. The output value is obtained from the repository.</td>
</tr>
<tr>
<td>RSIDR</td>
<td>SIDR</td>
<td>DEFN, MSNAME</td>
<td>GBL</td>
<td>Remote system ID. The output value is obtained from the repository.</td>
</tr>
<tr>
<td>RSNO</td>
<td>SegNo</td>
<td>DEFN, SEGNO</td>
<td>GBL</td>
<td>Application program output segment limit allowed in message queues for each GU call. The value is obtained from the repository.</td>
</tr>
<tr>
<td>RSP</td>
<td>LResp</td>
<td>RESP</td>
<td>LCL</td>
<td>Response mode transaction (Y) or not (N). The output value is obtained from the local IMS.</td>
</tr>
</tbody>
</table>

- **N** Response mode option is disabled. For terminals specifying or accepting a default of OPTIONS=TRANRESP, input should not stop after this transaction is entered.

- **Y** Response mode option is enabled. For terminals specifying or accepting a default of OPTIONS=TRANRESP, no additional messages are to be allowed after this transaction is entered until this transaction sends a response message back to the terminal. Response mode can be forced or negated by individual terminal definition. RESP(Y) is ignored during online processing for all terminals that do not operate in response mode.

Restriction: The method to filter on a remote transaction changed between IMS Version 9 and IMS Version 10. In Version 9, the command is QUERY TRAN STATUS(RESP). In IMS Version 10 or later, the command is QUER Y TRAN RESP(Y). If IMS is running in an IMSplex with IMS Version 10 or later and either IMS Version 8 or IMS Version 9 systems, and the command is to be processed on all systems, the command must be issued as QUERY TRAN STATUS(RESP) RESP(Y). The IMS Version 10 system or later processes the RESP(Y) filter, while the IMS Version 8 and IMS Version 9 systems process the STATUS(RESP) filter. If a command is issued to an IMS Version 10 system or later with STATUS(RESP) without RESP(Y), the command is rejected.

| RSPASZ | LSpaSz | DEFN, SPASZ | GBL | Conversational transaction scratchpad area size. The output value is obtained from the repository. |
Table 200. Output fields for the QUERY TRAN command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSPATR</td>
<td>SpaTrunc</td>
<td>DEFN, SPATRUNC</td>
<td>GBL</td>
<td>Conversational transaction SPA data should be truncated (R) or preserved (S) across a program switch to a transaction that is defined with a smaller SPA. The SPATRUNC value defined for the conversational transaction is stored in the repository. A QUERY TRAN command with SHOW(DEFN) returns a SPATRUNC value of R, S, or null from the repository values.</td>
</tr>
<tr>
<td>RSSSZ</td>
<td>SegSz</td>
<td>DEFN, SEGSZ</td>
<td>GBL</td>
<td>Application program output segment size limit allowed in the message queues for each GU call. The value is obtained from the repository.</td>
</tr>
<tr>
<td>RTLS</td>
<td>TranStat</td>
<td>DEFN, TRANSTAT</td>
<td>GBL</td>
<td>Transaction level statistics logged (Y) or not (N). The output value is obtained from the repository. For the values to be returned, see the description for “LTranStat” in this table.</td>
</tr>
<tr>
<td>RTMCR</td>
<td>TimeCreate</td>
<td>DEFN, TIMESTAMP</td>
<td>GBL</td>
<td>Create time from the repository. This is the time the resource was first created in the repository.</td>
</tr>
<tr>
<td>RTMUP</td>
<td>TimeUpdate</td>
<td>DEFN, TIMESTAMP</td>
<td>GBL</td>
<td>Update time from the repository. This is the time the resource was last updated in the repository.</td>
</tr>
<tr>
<td>RWFI</td>
<td>WFI</td>
<td>DEFN, WFI</td>
<td>GBL</td>
<td>Wait-for-input transaction (Y) or not (N). The output value is obtained from the repository. For the values to be returned, see the description for “LWFI” in this table.</td>
</tr>
</tbody>
</table>

S S is shown on the QRY TRAN command for a conversational transaction in one of the following conditions:

- If the transaction is defined with SPATRUNC=S on the CREATE TRAN or CREATE TRANDESC command
- If SPA=STRUNC is specified on the TRANSACT macro
- If the system-wide truncated data option is set as TRUNC=Y in the DFSDCxxx member

R R is shown on the QRY TRAN command for a conversational transaction in one of the following conditions:

- If the transaction is defined with SPATRUNC=R on the CREATE TRAN or CREATE TRANDESC command
- If SPA=RTRUNC is specified on the TRANSACT macro
- If the system-wide truncated data option is not set as TRUNC=N in the DFSDCxxx member.

null A null value indicates that the transaction does not have the SPATRUNC value defined and that the value is overridden with the system-wide truncated data option defined with the TRUNC= option on the DFSDCxxx member.
Table 200. Output fields for the QUERY TRN command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>SER</td>
<td>LSerial</td>
<td>SERIAL</td>
<td>LCL</td>
<td>Transaction is processed serially (Y) or not (N). The output value is obtained from the local IMS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N Serial option is disabled. Messages for the transaction are not processed serially. Message processing can be processed in parallel. Messages are placed on the suspend queue after a U3303 pseudoabend. Scheduling continues until repeated failures result in the transaction being stopped with a USTOP.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y Serial option is enabled. Messages for the transaction are processed serially. U3303 pseudoabends do not cause the message to be placed on the suspend queue but rather on the front of the transaction message queue, and the transaction is stopped with a USTOP. The USTOP of the transaction is removed when the transaction or the class is started with a /START command.</td>
</tr>
<tr>
<td>SIDL</td>
<td>LSIDL</td>
<td>MSNAME</td>
<td>LCL</td>
<td>Local system ID. The output value is obtained from the local IMS.</td>
</tr>
<tr>
<td>SIDR</td>
<td>LSIDR</td>
<td>MSNAME</td>
<td>LCL</td>
<td>Remote system ID. The output value is obtained from the local IMS.</td>
</tr>
<tr>
<td>SPASZ</td>
<td>LSpaSz</td>
<td>SPASZ</td>
<td>LCL</td>
<td>Conversational transaction scratchpad area size. The output value is obtained from the local IMS.</td>
</tr>
<tr>
<td>SPATR</td>
<td>LSPATrunc</td>
<td>SPATRUNC</td>
<td>LCL</td>
<td>Conversational transaction SPA data should be truncated (R) or preserved (S) across a program switch to a transaction that is defined with a smaller SPA. The output value is obtained from the local IMS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S IMS preserves all the data in the SPA, even when a program switch is made to a transaction that is defined with a smaller SPA. The transaction with the smaller SPA does not see the truncated data, but when the transaction switches to a transaction with a larger SPA, the truncated data is used.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R Truncated data is not preserved.</td>
</tr>
<tr>
<td>STT</td>
<td>Status</td>
<td>GLOBAL,</td>
<td>GBL</td>
<td>Global transaction status, which can be one of the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STATUS</td>
<td></td>
<td>STAQ Transaction has a global status of started for queuing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>STASCHD Transaction has a global status of started for scheduling.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>STOQ Transaction has a global status of stopped for queuing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>STOSCHD Transaction has a global status of stopped for scheduling.</td>
</tr>
<tr>
<td>TLS</td>
<td>LTranStat</td>
<td>TRANSTAT</td>
<td>LCL</td>
<td>Transaction level statistics logged (Y) or not (N). The output value is obtained from the local IMS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N Transaction level statistics logging is not active.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y Transaction level statistics logging is active.</td>
</tr>
</tbody>
</table>
Table 200. Output fields for the QUERY TRAN command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
</table>
| TMAC | LTimeAccess | TIMESTAMP | LCL | The time that the resource was last accessed. The output value is obtained from the local IMS. The last access time is retained across warm start, emergency restart, EXPORT and IMPORT. The updating of the last access time is not logged. After a restart, the last access time reflects the time recorded in the restart checkpoint log records. The transaction time stamp is not updated for Fast Path exclusive transactions; only the associated routing code time stamp is updated. For a transaction descriptor, the following actions update the last access time:
 • Message is queued to the transaction from any source (program, command, other).
 • Message is dequeued by an application program (MSG GU). If a DEQ command is issued to dequeue a message, that action does not update the access time.
 • CREATE command or DFSINSX0 exit references the resource as a model. |
| TMCR | LTimeCreate | TIMESTAMP | LCL | The time that the resource was created. The output value is obtained from the local IMS. This is the result of a CREATE TRAN command, IMPORT command that creates the transaction, or IMS initialization. The create time is retained across warm start, emergency restart, EXPORT and IMPORT. |
| TMEM | TMember | WORK | LCL | OTMA tmember that initiated conversation. |
| TMIM | LTimeImport | TIMESTAMP | LCL | The time that the resource was last imported. The import time is retained across warm start and emergency restart. The output value is obtained from the local IMS. |
| TMUP | LTimeUpdate | TIMESTAMP | LCL | The last time the attributes of the runtime resource definition were updated as a result of the UPDATE TRAN, a type-1 command, or the IMPORT command. The update time is retained across warm start and emergency restart. The output value is obtained from the local IMS. |
| TPIP | TPipe | WORK | LCL | OTMA tpipe that initiated conversation. |
| TRAN | Trancode | TRAN | LCL | Transaction name. A transaction defines the processing characteristics of messages destined for an application program. |
| USER | UserName | WORK | LCL | User that initiated conversation. |
Table 200. Output fields for the QUERY TRAN command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>WFI</td>
<td>LWFI</td>
<td>WFI</td>
<td>LCL</td>
<td>Wait-for-input transaction (Y) or not (N). The output value is obtained from the local IMS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WRK</th>
<th>Work</th>
<th>WORK</th>
<th>LCL</th>
<th>Work is in progress for the transaction or one of its associated resources. The work in progress can be one of the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ANOTHER CMD IN PROGRESS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IN CONVERSATION</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IN USE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>QUEUEING</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SCHEDULED</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SUSPENDED</td>
</tr>
</tbody>
</table>

Table 201. Reason information for NOTINIT-xx-reason status

<table>
<thead>
<tr>
<th>Reason</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDRTRN</td>
<td>The input edit routine that is referred to by the transaction could not be loaded.</td>
</tr>
<tr>
<td>NOMSN</td>
<td>The MSNAME that is referred to by the transaction does not exist.</td>
</tr>
<tr>
<td>NOPGM</td>
<td>The program that this transaction references is not defined. No program PDIR control block exists. Action: 2.</td>
</tr>
<tr>
<td>NORTC</td>
<td>The Fast Path routing code that this transaction references is not defined. No Fast Path routing code RCTE control block exists. Action: 3.</td>
</tr>
</tbody>
</table>
Table 201. Reason information for NOTINIT-xx-reason status (continued)

<table>
<thead>
<tr>
<th>Reason</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTBL</td>
<td>The table that is used to manage transaction input edit routines could not be allocated.</td>
</tr>
<tr>
<td>REPOCHGLIST</td>
<td>The transaction name exists in the change list in the IMSRSC repository for this IMS, and the change list is being processed or the change list processing failed because of an error. This transaction cannot be used, scheduled, updated, exported, or referenced as a model until it is successfully imported so that the runtime transaction definition and the stored definition in the repository are synchronized. Action: 4.</td>
</tr>
</tbody>
</table>

Note: Actions that can be taken to initialize the transaction are:
1. Call IBM.
2. Issue a CREATE PGM command to create the program. Issue an UPDATE TRAN START(Q,SCHD) command to complete transaction initialization.
3. Issue a CREATE RTC command to create the routing code. Issue an UPDATE TRAN START(Q,SCHD) command to complete transaction initialization.
4. If IMS change list processing failed and message DFS4411E was issued, correct the problem and take one of the following actions:
 • Shut down IMS and restart it in order to try processing the change list again.
 • Issue the IMPORT DEFN SOURCE(REPO) NAME(tranname) TYPE(TRAN) command to import the transaction, where tranname is the transaction name.

How the SHOW keyword on QUERY TRAN determines the type of output

The following table provides some examples of how the SHOW keyword determines the type of output returned on the QUERY TRAN command.

Table 202. How the SHOW keyword on QUERY TRAN determines the type of output

<table>
<thead>
<tr>
<th>Form of SHOW keyword used</th>
<th>Type of output returned</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHOW(LOCAL)</td>
<td>Only those output fields that are local to an IMS system. SHOW(ALL,LOCAL) provides the same output.</td>
</tr>
<tr>
<td>SHOW(GLOBAL)</td>
<td>Only those output fields that are globally maintained, such as data maintained by RM or CQS. SHOW(ALL,GLOBAL) provides the same output.</td>
</tr>
<tr>
<td>SHOW(ALL)</td>
<td>All the output fields for those fields that have both local and global data. Both values are returned in the output.</td>
</tr>
<tr>
<td>SHOW(QCNT,GLOBAL)</td>
<td>Only global QCNT values.</td>
</tr>
<tr>
<td>SHOW(QCNT,LOCAL)</td>
<td>Only local QCNT values.</td>
</tr>
<tr>
<td>SHOW(QCNT)</td>
<td>Both local and global QCNT values, because there is no LOCAL or GLOBAL qualifier.</td>
</tr>
<tr>
<td>SHOW(ALL,GLOBAL)</td>
<td>Only those output fields that are globally maintained, such as data maintained by RM or CQS. SHOW(GLOBAL) provides the same output.</td>
</tr>
<tr>
<td>SHOW(ALL,LOCAL)</td>
<td>Only those output fields that are local to an IMS system. SHOW(LOCAL) provides the same output.</td>
</tr>
</tbody>
</table>
If specific output fields are listed in the SHOW keyword, you can specify them as either local or global; however, you cannot combine a list of SHOW keywords in which some are global and some are local.

Return, reason, and completion codes

The return and reason codes that can be returned as a result of the QUERY TRAN command are standard for all commands entered through the OM API.

The following table contains the return and reason codes that can be returned to OM from a QUERY TRAN command.

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The QUERY TRAN command completed successfully.</td>
</tr>
<tr>
<td>X'00000004'</td>
<td>X'00000010'</td>
<td>No resources were found to be returned. The resource names specified might be invalid, or there were no resources that match the filter specified, or there were no resources that had work to display for the SHOW(WORK) specified.</td>
</tr>
<tr>
<td>X'00000004'</td>
<td>X'00001000'</td>
<td>The QUERY TRAN command was not processed on the IMS system as the IMS system is not the command master. No resource information is returned.</td>
</tr>
<tr>
<td>X'00000004'</td>
<td>X'00001004'</td>
<td>The QUERY TRAN command was processed for a few resources and a partial list of resources is returned. The command terminated because the resource count to be returned exceeded the maximum number of resources that can be returned by a QUERY TRAN command. The maximum number of resources that can be returned by a QUERY TRAN command is 5000. Issue the command again with a generic mask or other filters so the number of resources to be returned is less than 5000.</td>
</tr>
<tr>
<td>X'00000004'</td>
<td>X'00001010'</td>
<td>No resources were found to be returned. The resource names specified might be invalid or there were no resources that match the filter specified.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002004'</td>
<td>Invalid command keyword or invalid command keyword combination.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002040'</td>
<td>The QUERY TRAN command has more than one filter value specified or an invalid filter value is specified for the QCNT filter. Only one of the CLASS, STATUS, or QCNT filters can be specified. A value of 0 might have been specified for QCNT with LE, GE or, EQ. Or a value of 1 might have been specified for QCNT with LT.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000204C'</td>
<td>The CLASS value specified is invalid. Confirm the correct CLASS value is specified on the command.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002137'</td>
<td>Transaction referenced as a model is a queue-only transaction with a status of DYN, which cannot be used as a model.</td>
</tr>
<tr>
<td>Return code</td>
<td>Reason code</td>
<td>Meaning</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003000'</td>
<td>The QUERY TRAN command was successful for some resources but failed for others. The completion code indicates the reason for the error with the resource name.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>The QUERY TRAN command was not successful for any of the resource names specified. The completion code indicates the reason for the error with the resource name.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004004'</td>
<td>The QUERY TRAN command processing terminated because there is no CQS address space.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>The QUERY TRAN command processing terminated because the TRAN keyword is not valid on the RSR tracker.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004018'</td>
<td>The QUERY TRAN command processing terminated because no resource structure exists or the resource structure is not available.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004100'</td>
<td>The QUERY TRAN command processing terminated because the resource structure is full.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004104'</td>
<td>The QUERY TRAN command processing terminated because there is no RM address space.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004108'</td>
<td>The QUERY TRAN command processing terminated because there is no SCI address space.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004500'</td>
<td>IMS is not enabled to use the repository.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004501'</td>
<td>RM is not enabled with the repository.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004502'</td>
<td>Repository is not available.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004503'</td>
<td>Repository is stopped.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004504'</td>
<td>Repository spare recovery is in progress.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004505'</td>
<td>No IMS resource list exists, or no resources for the resource type exist in the IMS resource list.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004507'</td>
<td>Access to the repository was denied.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004508'</td>
<td>Repository maximum put length exceeded.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004509'</td>
<td>RM data version is lower than the IMS data version.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000450A'</td>
<td>Repository Server (RS) is being shut down.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000450B'</td>
<td>RS is not available.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000450C'</td>
<td>RS is busy.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000450D'</td>
<td>RM failed to define some of the internal fields related to the IMSRSC repository.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005004'</td>
<td>The QUERY TRAN command processing terminated because a DFSOCMD response buffer could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005008'</td>
<td>The QUERY TRAN command processing terminated because the DFSPOOL storage could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'0000501C'</td>
<td>IMODULE GETMAIN error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005100'</td>
<td>The QUERY TRAN command processing terminated because of an RM error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005104'</td>
<td>CQS error.</td>
</tr>
</tbody>
</table>
Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

The following table contains completion codes that can be returned on a QUERY TRAN command.

Table 204. Completion codes for the QUERY TRAN command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command completed successfully for transaction.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>Transaction name is invalid, or the wildcard parameter specified does not match any resource names.</td>
</tr>
<tr>
<td>50</td>
<td>CQS IS UNAVAILABLE</td>
<td>The QUERY TRAN command could not be completed for the resource as CQS is not available. Make sure CQS is available before issuing the command again.</td>
</tr>
<tr>
<td>51</td>
<td>NO RESOURCE STRUCTURE</td>
<td>The QUERY TRAN command could not be completed for the resource as there is no resource structure or it is unavailable.</td>
</tr>
<tr>
<td>52</td>
<td>RESOURCE STRUCTURE FULL</td>
<td>The QUERY TRAN command could not be completed for the resource as the resource structure is full.</td>
</tr>
<tr>
<td>90</td>
<td>INTERNAL ERROR</td>
<td>The QUERY TRAN command could not be completed for the resource because of an IMS internal error.</td>
</tr>
<tr>
<td>94</td>
<td>RM REQUEST ERROR</td>
<td>The QUERY TRAN command could not be completed for the resource because of an RM error.</td>
</tr>
<tr>
<td>98</td>
<td>CQS REQUEST ERROR</td>
<td>The QUERY TRAN command could not be completed for the resource because of a CQS error.</td>
</tr>
</tbody>
</table>
Examples

The following are examples of the QUERY TRAN command:

Example 1 for QUERY TRAN command

TSO SPOC input:

```
QRY TRAN NAME(PART,TRAN000%,CDEBTRN4,CONV13V0,TXBBANKI4,FPACP) SHOW(ALL)
```

TSO SPOC output:

screen 1

<table>
<thead>
<tr>
<th>Trancode</th>
<th>MbrName</th>
<th>CC</th>
<th>LPSBname</th>
<th>LCls</th>
<th>LQcnt</th>
<th>LLCT</th>
<th>LPLCT</th>
<th>LPLCTime</th>
<th>LCPR</th>
<th>LNPRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDEBTRN4</td>
<td>IMS1</td>
<td>0</td>
<td>CDEBS</td>
<td>1 0</td>
<td>65535</td>
<td>65535</td>
<td>6553500</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CONV13V0</td>
<td>IMS1</td>
<td>0</td>
<td>CPGM1V0</td>
<td>1 0</td>
<td>65535</td>
<td>65535</td>
<td>6553500</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>FPACP</td>
<td>IMS1</td>
<td>0</td>
<td>TACP1</td>
<td>1 0</td>
<td>65535</td>
<td>65535</td>
<td>6553500</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PART</td>
<td>IMS1</td>
<td>0</td>
<td>DFSSAM02</td>
<td>4 0</td>
<td>2</td>
<td>65535</td>
<td>6553500</td>
<td>7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>TRAN0001</td>
<td>IMS1</td>
<td>0</td>
<td>DFSSAM02</td>
<td>4 0</td>
<td>2</td>
<td>65535</td>
<td>6553500</td>
<td>7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>TRAN0002</td>
<td>IMS1</td>
<td>0</td>
<td>DFSSAM04</td>
<td>1 0</td>
<td>65535</td>
<td>65535</td>
<td>6553500</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>TXBBANKI4</td>
<td>IMS1</td>
<td>0</td>
<td>BANK1FP</td>
<td>1 0</td>
<td>65535</td>
<td>65535</td>
<td>6553500</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

screen 2

<table>
<thead>
<tr>
<th>Trancode</th>
<th>MbrName</th>
<th>LQcnt</th>
<th>LLCT</th>
<th>LTimeUpdate</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDEBTRN4</td>
<td>IMS1</td>
<td>0</td>
<td>13:19:01.81</td>
<td></td>
</tr>
<tr>
<td>CONV13V0</td>
<td>IMS1</td>
<td>0</td>
<td>13:19:09.30</td>
<td></td>
</tr>
<tr>
<td>FPACP</td>
<td>IMS1</td>
<td>0</td>
<td>13:18:45.91</td>
<td></td>
</tr>
<tr>
<td>PART</td>
<td>IMS1</td>
<td>0</td>
<td>13:19:21.67</td>
<td></td>
</tr>
<tr>
<td>TRAN0001</td>
<td>IMS1</td>
<td>0</td>
<td>13:19:27.69</td>
<td></td>
</tr>
<tr>
<td>TRAN0002</td>
<td>IMS1</td>
<td>0</td>
<td>13:23:15.27</td>
<td></td>
</tr>
</tbody>
</table>

screen 3

<table>
<thead>
<tr>
<th>Trancode</th>
<th>MbrName</th>
<th>LCmsType</th>
<th>LSPATrunc</th>
<th>LSIDR</th>
<th>LSIDL</th>
<th>LDCLWA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDEBTRN4</td>
<td>IMS1</td>
<td>SNGL</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONV13V0</td>
<td>IMS1</td>
<td>SNGL</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPACP</td>
<td>IMS1</td>
<td>SNGL</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PART</td>
<td>IMS1</td>
<td>SNGL</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRAN0001</td>
<td>IMS1</td>
<td>SNGL</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRAN0002</td>
<td>IMS1</td>
<td>SNGL</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TXBBANKI4</td>
<td>IMS1</td>
<td>SNGL</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

screen 4

<table>
<thead>
<tr>
<th>Trancode</th>
<th>MbrName</th>
<th>LSPASz</th>
<th>LSegNo</th>
<th>LRegCnt</th>
<th>LResp</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDEBTRN4</td>
<td>IMS1</td>
<td>0</td>
<td>1</td>
<td>6553500</td>
<td></td>
</tr>
<tr>
<td>CONV13V0</td>
<td>IMS1</td>
<td>0</td>
<td>1</td>
<td>6553500</td>
<td></td>
</tr>
<tr>
<td>FPACP</td>
<td>IMS1</td>
<td>0</td>
<td>1</td>
<td>6553500</td>
<td></td>
</tr>
<tr>
<td>PART</td>
<td>IMS1</td>
<td>0</td>
<td>1</td>
<td>6553500</td>
<td></td>
</tr>
<tr>
<td>TRAN0001</td>
<td>IMS1</td>
<td>0</td>
<td>1</td>
<td>6553500</td>
<td></td>
</tr>
<tr>
<td>TRAN0002</td>
<td>IMS1</td>
<td>0</td>
<td>1</td>
<td>6553500</td>
<td></td>
</tr>
<tr>
<td>TXBBANKI4</td>
<td>IMS1</td>
<td>0</td>
<td>1</td>
<td>6553500</td>
<td></td>
</tr>
</tbody>
</table>

screen 5

<table>
<thead>
<tr>
<th>Trancode</th>
<th>MbrName</th>
<th>LSerial</th>
<th>LParLim</th>
<th>LResp</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDEBTRN4</td>
<td>IMS1</td>
<td>10</td>
<td>6553500</td>
<td></td>
</tr>
<tr>
<td>CONV13V0</td>
<td>IMS1</td>
<td>10</td>
<td>6553500</td>
<td></td>
</tr>
<tr>
<td>FPACP</td>
<td>IMS1</td>
<td>10</td>
<td>6553500</td>
<td></td>
</tr>
<tr>
<td>PART</td>
<td>IMS1</td>
<td>10</td>
<td>6553500</td>
<td></td>
</tr>
<tr>
<td>TRAN0001</td>
<td>IMS1</td>
<td>10</td>
<td>6553500</td>
<td></td>
</tr>
<tr>
<td>TRAN0002</td>
<td>IMS1</td>
<td>10</td>
<td>6553500</td>
<td></td>
</tr>
<tr>
<td>TXBBANKI4</td>
<td>IMS1</td>
<td>10</td>
<td>6553500</td>
<td></td>
</tr>
</tbody>
</table>

screen 6

<table>
<thead>
<tr>
<th>Trancode</th>
<th>MbrName</th>
<th>LRemote</th>
<th>LSerial</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDEBTRN4</td>
<td>IMS1</td>
<td>10</td>
<td>6553500</td>
</tr>
<tr>
<td>CONV13V0</td>
<td>IMS1</td>
<td>10</td>
<td>6553500</td>
</tr>
<tr>
<td>FPACP</td>
<td>IMS1</td>
<td>10</td>
<td>6553500</td>
</tr>
<tr>
<td>PART</td>
<td>IMS1</td>
<td>10</td>
<td>6553500</td>
</tr>
<tr>
<td>TRAN0001</td>
<td>IMS1</td>
<td>10</td>
<td>6553500</td>
</tr>
<tr>
<td>TRAN0002</td>
<td>IMS1</td>
<td>10</td>
<td>6553500</td>
</tr>
<tr>
<td>TXBBANKI4</td>
<td>IMS1</td>
<td>10</td>
<td>6553500</td>
</tr>
</tbody>
</table>

screen 7
OM API input:
CMD(QRY TRAN NAME(PART,TRAN000%,CDEBTRN4,CONV13V0,TXBANKI4,FPACP) SHOW(ALL))

OM API output:

<cmdrsphdr>
<hdr slbl="TRAN" lbl="Trancode" scope="LCL" sort="a" key="1" scroll="no" len="8" dtype="CHAR" align="left" />
<hdr slbl="MBR" lbl="MbrName" scope="LCL" sort="a" key="5" scroll="no" len="8" dtype="CHAR" align="left" />
<hdr slbl="CC" lbl="CC" scope="LCL" sort="n" key="0" scroll="yes" len="4" dtype="INT" align="right" skipb="no" />
<hdr slbl="CCTXT" lbl="CCText" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left" />
<hdr slbl="PSB" lbl="LPSBName" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left" />
<hdr slbl="LCLS" lbl="LCls" scope="LCL" sort="n" key="0" scroll="yes" len="3" dtype="INT" align="right" />
<hdr slbl="LQ" lbl="LQCnt" scope="LCL" sort="d" key="4" scroll="yes" len="8" dtype="INT" align="right" />
<hdr slbl="LLCT" lbl="LLCT" scope="LCL" sort="n" key="0" scroll="yes" len="5" dtype="INT" align="right" />
<hdr slbl="LPLCT" lbl="LPLCT" scope="LCL" sort="n" key="0" scroll="yes" len="5" dtype="INT" align="right" />
<hdr slbl="PLCT" lbl="PLCTime" scope="LCL" sort="n" key="0" scroll="yes" len="7" dtype="INT" align="right" />
<hdr slbl="LCPR" lbl="LCPRName" scope="LCL" sort="n" key="0" scroll="yes" len="2" dtype="INT" align="right" />
<hdr slbl="LNP" lbl="LNPRI" scope="LCL" sort="n" key="0" scroll="yes" len="2" dtype="INT" align="right" />
<hdr slbl="LLP" lbl="LLPRI" scope="LCL" sort="n" key="0" scroll="yes" len="2" dtype="INT" align="right" />
<hdr slbl="LSSZ" lbl="LSegSz" scope="LCL" sort="n" key="0" scroll="yes" len="5" dtype="INT" align="right" />
<hdr slbl="LSNO" lbl="LSegNo" scope="LCL" sort="n" key="0" scroll="yes" len="5" dtype="INT" align="right" />
<hdr slbl="LPLM" lbl="LParLim" scope="LCL" sort="n" key="0" scroll="yes" len="5" dtype="INT" align="right" />
</cmdrsphdr>
<table>
<thead>
<tr>
<th>Command</th>
<th>Field</th>
<th>Description</th>
<th>Length</th>
<th>Data Type</th>
<th>Sort</th>
<th>Key</th>
<th>Scope</th>
<th>Align</th>
</tr>
</thead>
<tbody>
<tr>
<td>RGC</td>
<td>LRegCnt</td>
<td></td>
<td>5</td>
<td>INT</td>
<td></td>
<td></td>
<td>LCL</td>
<td></td>
</tr>
<tr>
<td>LMRG</td>
<td>LMaxRgn</td>
<td></td>
<td>5</td>
<td>INT</td>
<td></td>
<td></td>
<td>LCL</td>
<td></td>
</tr>
<tr>
<td>EDTR</td>
<td>LEDitRn</td>
<td></td>
<td>8</td>
<td>CHAR</td>
<td></td>
<td></td>
<td>LCL</td>
<td></td>
</tr>
<tr>
<td>FF</td>
<td>LFP</td>
<td></td>
<td>1</td>
<td>CHAR</td>
<td></td>
<td></td>
<td>LCL</td>
<td>CHAR</td>
</tr>
<tr>
<td>EMBHS</td>
<td>LEMBHSSz</td>
<td></td>
<td>5</td>
<td>CHAR</td>
<td></td>
<td></td>
<td>LCL</td>
<td>CHAR</td>
</tr>
<tr>
<td>CMTM</td>
<td>LCmtMode</td>
<td></td>
<td>4</td>
<td>INT</td>
<td></td>
<td></td>
<td>LCL</td>
<td>CHAR</td>
</tr>
<tr>
<td>MSGT</td>
<td>LMsgType</td>
<td></td>
<td>7</td>
<td>CHAR</td>
<td></td>
<td></td>
<td>LCL</td>
<td>CHAR</td>
</tr>
<tr>
<td>SPATR</td>
<td>LSPATrunc</td>
<td></td>
<td>1</td>
<td>CHAR</td>
<td></td>
<td></td>
<td>LCL</td>
<td>CHAR</td>
</tr>
<tr>
<td>SIDR</td>
<td>LSIDR</td>
<td></td>
<td>5</td>
<td>CHAR</td>
<td></td>
<td></td>
<td>LCL</td>
<td>CHAR</td>
</tr>
<tr>
<td>SIDL</td>
<td>LSIDL</td>
<td></td>
<td>4</td>
<td>INT</td>
<td></td>
<td></td>
<td>LCL</td>
<td>CHAR</td>
</tr>
<tr>
<td>DCLW</td>
<td>LDCLWA</td>
<td></td>
<td>1</td>
<td>CHAR</td>
<td></td>
<td></td>
<td>LCL</td>
<td>CHAR</td>
</tr>
<tr>
<td>DRT</td>
<td>LDDirRoute</td>
<td></td>
<td>4</td>
<td>CHAR</td>
<td></td>
<td></td>
<td>LCL</td>
<td>CHAR</td>
</tr>
<tr>
<td>EDTT</td>
<td>LEDitUC</td>
<td></td>
<td>1</td>
<td>CHAR</td>
<td></td>
<td></td>
<td>LCL</td>
<td>CHAR</td>
</tr>
<tr>
<td>INQ</td>
<td>LInq</td>
<td></td>
<td>1</td>
<td>CHAR</td>
<td></td>
<td></td>
<td>LCL</td>
<td>CHAR</td>
</tr>
<tr>
<td>RCV</td>
<td>LRecover</td>
<td></td>
<td>1</td>
<td>CHAR</td>
<td></td>
<td></td>
<td>LCL</td>
<td>CHAR</td>
</tr>
<tr>
<td>RSP</td>
<td>LResp</td>
<td></td>
<td>1</td>
<td>CHAR</td>
<td></td>
<td></td>
<td>LCL</td>
<td>CHAR</td>
</tr>
<tr>
<td>RMT</td>
<td>LRemote</td>
<td></td>
<td>1</td>
<td>CHAR</td>
<td></td>
<td></td>
<td>LCL</td>
<td>CHAR</td>
</tr>
<tr>
<td>WFI</td>
<td>LWFI</td>
<td></td>
<td>1</td>
<td>CHAR</td>
<td></td>
<td></td>
<td>LCL</td>
<td>CHAR</td>
</tr>
<tr>
<td>AOCMD</td>
<td>LAssCmd</td>
<td></td>
<td>4</td>
<td>CHAR</td>
<td></td>
<td></td>
<td>LCL</td>
<td>CHAR</td>
</tr>
<tr>
<td>CONV</td>
<td>LConv</td>
<td></td>
<td>1</td>
<td>CHAR</td>
<td></td>
<td></td>
<td>LCL</td>
<td>CHAR</td>
</tr>
<tr>
<td>TLS</td>
<td>LTTranStat</td>
<td></td>
<td>1</td>
<td>CHAR</td>
<td></td>
<td></td>
<td>LCL</td>
<td>CHAR</td>
</tr>
<tr>
<td>LSTT</td>
<td>LClStat</td>
<td></td>
<td>1</td>
<td>CHAR</td>
<td></td>
<td></td>
<td>LCL</td>
<td>CHAR</td>
</tr>
<tr>
<td>MDLN</td>
<td>LModelName</td>
<td></td>
<td>4</td>
<td>CHAR</td>
<td></td>
<td></td>
<td>LCL</td>
<td>CHAR</td>
</tr>
<tr>
<td>MSN</td>
<td>LMSN</td>
<td></td>
<td>8</td>
<td>CHAR</td>
<td></td>
<td></td>
<td>LCL</td>
<td>CHAR</td>
</tr>
<tr>
<td>TMAC</td>
<td>LTTimeAccess</td>
<td></td>
<td>20</td>
<td>CHAR</td>
<td></td>
<td></td>
<td>LCL</td>
<td>CHAR</td>
</tr>
<tr>
<td>TmüP</td>
<td>LTTimeUpdate</td>
<td></td>
<td>20</td>
<td>CHAR</td>
<td></td>
<td></td>
<td>LCL</td>
<td>CHAR</td>
</tr>
<tr>
<td>TMCRT</td>
<td>LTTimeCreate</td>
<td></td>
<td>20</td>
<td>CHAR</td>
<td></td>
<td></td>
<td>LCL</td>
<td>CHAR</td>
</tr>
<tr>
<td>TIM</td>
<td>LTTimeImport</td>
<td></td>
<td>20</td>
<td>CHAR</td>
<td></td>
<td></td>
<td>LCL</td>
<td>CHAR</td>
</tr>
<tr>
<td>DFNT</td>
<td>LDefnType</td>
<td></td>
<td>8</td>
<td>CHAR</td>
<td></td>
<td></td>
<td>LCL</td>
<td>CHAR</td>
</tr>
<tr>
<td>EXPRT</td>
<td>LExprTm</td>
<td></td>
<td>5</td>
<td>INT</td>
<td></td>
<td></td>
<td>LCL</td>
<td>CHAR</td>
</tr>
</tbody>
</table>
All the transaction output fields do not fit on one screen, so the user must scroll to the right for additional output fields. The transaction name and the member name that built the output fields do not fit on one screen. Transaction PART has a status of stopped for scheduling and queuing. Transactions CDEBTRN4 and CONV13V0 are conversational. Transaction FPACP is Fast Path potential. Transaction CONV13V0 is
remote. Transactions TRAN0001 and TRAN0002 are dynamic, they display the LModelName and LModelType used to create them, and they have a definition type of CREATE.

Example 2 for QUERY TRAN command

TSO SPOC input:
QUERY TRAN STATUS(AFFIN)

TSO SPOC output:
Trancode MbrName CC LclStat
APOL12 IMS1 0 AFFIN

Explanation: This example shows the use of the AFFIN option as a filter to query transactions that have affinity status.

Example 3 for QUERY TRAN command

TSO SPOC input:
QUERY TRAN NAME(APOL11 APOL12) SHOW(STATUS)

TSO SPOC output:
Trancode MbrName CC LclStat
APOL11 IMS1 0
APOL12 IMS1 0 AFFIN

Explanation: This example queries transaction status for transactions APOL11 and APOL12. The output shows that transaction APOL12 has affinity status.

Example 4 for QUERY TRAN command

TSO SPOC input:
QUERY TRAN QCNT(GT,0) SHOW(AFFIN)

TSO SPOC output:
Trancode MbrName CC QCnt Affinity
APOL12 IMS1 0 1
APOL12 IMS1 0 1 IMS1

Explanation: This example queries transaction messages on the shared queue and shows which messages have affinity status.

Example 5 for QUERY TRAN command

TSO SPOC input:
QRY TRAN NAME(PART) SHOW(DEFN,CLASS)

TSO SPOC output:
Trancode MbrName CC Repo IMSid CLs LCls
PART IMS1 0 Y 1
PART IMS1 0 Y IMS3 5
PART IMS1 0 IMS1 1
PART IMS2 0 IMS2 99
PART IMS3 0 IMS3 5

OM API input:
OM API output:

```xml
<imsout>
<ctl>
<omname>OM1</omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2011.182 21:12:56.087584</statime>
<stotime>2011.182 21:12:56.099946</stotime>
<staseq>C8018C3FABC2038C</staseq>
<stoseq>C8018C3FAEC6A010</stoseq>
<rqsttkn1>USRRT005 10141256</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>IMS1</master>
<userid>USRT005</userid>
<verb>QRY</verb>
<input>QRY TRAN NAME(PART) SHOW(DEFN,CLASS)</input>
</cmd>
<cmdrsphdr>
<hdr slbl="TRAN" llbl="Trancode" scope="LCL" sort="a" key="1" scroll="no" len="8" dtype="CHAR" align="left"/>
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" key="5" scroll="no" len="8" dtype="CHAR" align="left"/>
<hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0" scroll="yes" len="4" dtype="INT" align="right" skipb="no"/>
<hdr slbl="CCTXT" llbl="CCText" scope="LCL" sort="n" key="0" scroll="yes" len="*" dtype="CHAR" skipb="yes" align="left"/>
<hdr slbl="REPO" llbl="Repo" scope="LCL" sort="d" key="2" scroll="no" len="1" dtype="CHAR" align="left"/>
<hdr slbl="IMSID" llbl="IMSid" scope="GBL" sort="n" key="0" scroll="yes" len="4" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="RCLS" llbl="Cls" scope="GBL" sort="n" key="0" scroll="yes" len="3" dtype="INT" align="right"/>
<hdr slbl="LCLS" llbl="LCls" scope="LCL" sort="n" key="0" scroll="yes" len="3" dtype="INT" align="right"/>
</cmdrsphdr>
<cmdrspdata>
<rsp>TRAN(PART ) MBR(IMS1 ) CC( 0 ) LCLS( 1 ) IMSID(IMS1 ) </rsp>
<rsp>TRAN(PART ) MBR(IMS1 ) CC( 0 ) REPO(Y) RCLS( 1 ) </rsp>
<rsp>TRAN(PART ) MBR(IMS1 ) CC( 0 ) REPO(Y) IMSID(IMS3 ) RCLS( 5 ) </rsp>
<rsp>TRAN(PART ) MBR(IMS3 ) CC( 0 ) LCLS( 5 ) IMSID(IMS3 ) </rsp>
<rsp>TRAN(PART ) MBR(IMS2 ) CC( 0 ) LCLS( 99 ) IMSID(IMS2 ) </rsp>
</cmdrspdata>
</imsout>

Explanation: The stored resource definitions and the runtime resource definitions for the specified resources are returned. PART has the generic definition in the repository and also a specific section for IMS3 in the repository.

Example 6 for QUERY TRAN command

TSO SPOC input:
QRY TRAN NAME(PART*) SHOW(DEFN)

TSO SPOC output:

Chapter 5. QUERY commands 565
### (screen 1)

<table>
<thead>
<tr>
<th>Trancode</th>
<th>MbrName</th>
<th>CC</th>
<th>Repo</th>
<th>IMSId</th>
<th>PSBname</th>
<th>LPSBname</th>
<th>C1L</th>
<th>L1C</th>
<th>LCT</th>
<th>LLCT</th>
<th>PLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PART 1</td>
<td>IMS1</td>
<td>0</td>
<td>0</td>
<td>DFSSAM02</td>
<td>4</td>
<td>2</td>
<td>6553</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PART 2</td>
<td>IMS1</td>
<td>0</td>
<td>IMS1</td>
<td>DFSSAM02</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PART</td>
<td>IMS2</td>
<td>0</td>
<td>IMS2</td>
<td>DFSSAM02</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARTROOT 1</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td>TPARPP</td>
<td>1</td>
<td>2</td>
<td>6553</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARTROOT 2</td>
<td>IMS1</td>
<td>0</td>
<td>IMS1</td>
<td>TPARAPP</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARTROOT 2</td>
<td>IMS2</td>
<td>0</td>
<td>IMS2</td>
<td>TPARAPP</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### (scrollled to the right screen 2)

<table>
<thead>
<tr>
<th>Trancode</th>
<th>MbrName</th>
<th>Repo</th>
<th>CT</th>
<th>LPLCT</th>
<th>PLCTTime</th>
<th>LPLCTTime</th>
<th>LCPRI</th>
<th>LPRI</th>
<th>LNPRI</th>
<th>LPRI</th>
<th>LLPRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>PART 1</td>
<td>IMS1</td>
<td>Y</td>
<td>35</td>
<td>655350</td>
<td></td>
<td></td>
<td>7</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PART 2</td>
<td>IMS2</td>
<td></td>
<td></td>
<td>655350</td>
<td></td>
<td></td>
<td>7</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARTROOT 1</td>
<td>IMS1</td>
<td>Y</td>
<td>35</td>
<td>655350</td>
<td></td>
<td></td>
<td>7</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARTROOT 2</td>
<td>IMS1</td>
<td></td>
<td></td>
<td>655350</td>
<td></td>
<td></td>
<td>7</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARTROOT 2</td>
<td>IMS2</td>
<td></td>
<td></td>
<td>655350</td>
<td></td>
<td></td>
<td>7</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### (scrollled to the right screen 3)

<table>
<thead>
<tr>
<th>Trancode</th>
<th>MbrName</th>
<th>Repo</th>
<th>SegSz</th>
<th>LSegSz</th>
<th>SegNo</th>
<th>LSegNo</th>
<th>ParLim</th>
<th>LParLim</th>
<th>LRegCnt</th>
<th>MaxRgn</th>
</tr>
</thead>
<tbody>
<tr>
<td>PART 1</td>
<td>IMS1</td>
<td>Y</td>
<td>0</td>
<td>0</td>
<td></td>
<td>65535</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PART 2</td>
<td>IMS2</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td>65535</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARTROOT 1</td>
<td>IMS1</td>
<td>Y</td>
<td>0</td>
<td>0</td>
<td></td>
<td>65535</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARTROOT 2</td>
<td>IMS1</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td>65535</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARTROOT 2</td>
<td>IMS2</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td>65535</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### (scrollled to the right screen 4)

<table>
<thead>
<tr>
<th>Trancode</th>
<th>MbrName</th>
<th>Repo</th>
<th>LMaxRgn</th>
<th>EditRtn</th>
<th>LEditRtn</th>
<th>FP</th>
<th>LFP</th>
<th>EMHBSz</th>
<th>LEMHBSz</th>
<th>CmtMode</th>
</tr>
</thead>
<tbody>
<tr>
<td>PART 1</td>
<td>IMS1</td>
<td>Y</td>
<td>0</td>
<td>N</td>
<td>0</td>
<td></td>
<td></td>
<td>MULT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PART 2</td>
<td>IMS2</td>
<td></td>
<td>0</td>
<td>N</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARTROOT 1</td>
<td>IMS1</td>
<td>Y</td>
<td>0</td>
<td>N</td>
<td>0</td>
<td></td>
<td></td>
<td>SNGL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARTROOT 2</td>
<td>IMS1</td>
<td></td>
<td>0</td>
<td>N</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARTROOT 2</td>
<td>IMS2</td>
<td></td>
<td>0</td>
<td>N</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### (scrollled to the right screen 5)

<table>
<thead>
<tr>
<th>Trancode</th>
<th>MbrName</th>
<th>Repo</th>
<th>LCntMode</th>
<th>MsgType</th>
<th>LMsgType</th>
<th>SPATrunc</th>
<th>LSPATrunc</th>
<th>SPASz</th>
<th>LSPASz</th>
</tr>
</thead>
<tbody>
<tr>
<td>PART 1</td>
<td>IMS1</td>
<td>Y</td>
<td>MULT</td>
<td>MULTSEG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PART 2</td>
<td>IMS2</td>
<td></td>
<td>MULT</td>
<td>MULTSEG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARTROOT 1</td>
<td>IMS1</td>
<td>Y</td>
<td>MULT</td>
<td>MULTSEG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARTROOT 2</td>
<td>IMS1</td>
<td></td>
<td>SNGL</td>
<td>MULTSEG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARTROOT 2</td>
<td>IMS2</td>
<td></td>
<td>SNGL</td>
<td>MULTSEG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### (scrollled to the right screen 6)

<table>
<thead>
<tr>
<th>Trancode</th>
<th>MbrName</th>
<th>Repo</th>
<th>SIDR</th>
<th>LSDIR</th>
<th>SIDL</th>
<th>LSIDL</th>
<th>DCLWA</th>
<th>LDCLWA</th>
<th>DirRoute</th>
<th>LDirRoute</th>
</tr>
</thead>
<tbody>
<tr>
<td>PART 1</td>
<td>IMS1</td>
<td>Y</td>
<td>0</td>
<td>0</td>
<td>Y</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PART 2</td>
<td>IMS2</td>
<td></td>
<td>0</td>
<td>0</td>
<td>Y</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARTROOT 1</td>
<td>IMS1</td>
<td>Y</td>
<td>0</td>
<td>0</td>
<td>Y</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARTROOT 2</td>
<td>IMS1</td>
<td></td>
<td>0</td>
<td>0</td>
<td>Y</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARTROOT 2</td>
<td>IMS2</td>
<td></td>
<td>0</td>
<td>0</td>
<td>Y</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### (scrollled to the right screen 7)

<table>
<thead>
<tr>
<th>Trancode</th>
<th>MbrName</th>
<th>Repo</th>
<th>EditUC</th>
<th>LEditUC</th>
<th>Inq</th>
<th>LInq</th>
<th>Recover</th>
<th>LRecover</th>
<th>Resp</th>
<th>LResp</th>
<th>Remote</th>
</tr>
</thead>
<tbody>
<tr>
<td>PART 1</td>
<td>IMS1</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>PART 2</td>
<td>IMS2</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>PARTROOT 1</td>
<td>IMS1</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>PARTROOT 2</td>
<td>IMS1</td>
<td></td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>PARTROOT 2</td>
<td>IMS2</td>
<td></td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
</tbody>
</table>

### (scrollled to the right screen 8)

<table>
<thead>
<tr>
<th>Trancode</th>
<th>MbrName</th>
<th>Repo</th>
<th>LRemote</th>
<th>Serial</th>
<th>LSerial</th>
<th>WFI</th>
<th>LWFI</th>
<th>AOQMID</th>
<th>LAOCMD</th>
<th>Conv</th>
<th>LConv</th>
</tr>
</thead>
<tbody>
<tr>
<td>PART 1</td>
<td>IMS1</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>PART 2</td>
<td>IMS2</td>
<td></td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>
OM API input:

CMD(QRY TRAN NAME(PART*) SHOW(DEFN))

OM API output:

<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2011.190 02:15:21.735325</statime>
<stotime>2011.190 02:15:21.827190</stotime>
<staseq>C80A9CE6EF890DB8</staseq>
<stoseq>C80A9CE705F76C0C</stoseq>
<rqsttkn1>USRT011 10191521</rqsttkn1>
<rc>00000000</rc>
<rtn>00000000</rtn>
</ctl>
<cmd>
<master>IMS1</master>
<userid>USRT011</userid>
<verb>QRY</verb>
<kwd>TRAN</kwd>
<input>QRY TRAN NAME(PART*) SHOW(DEFN)</input>
</cmd>
</cmdrsphdr>
<hdr sibl="TRAN" llbl="Trancode" scope="LCL" sort="a" key="1" scroll="no" len="8" dtype="CHAR" align="left" />
<hdr sibl="MBR" llbl="MbrName" scope="LCL" sort="a" key="5" scroll="no" len="8" dtype="CHAR" align="left" />
<hdr sibl="CC" llbl="CC" scope="LCL" sort="n" key="0" scroll="yes" len="4" dtype="INT" align="right" skipb="no" />
<hdr sibl="CCTXT" llbl="CCText" scope="LCL" sort="n" key="0" scroll="yes" len="*" dtype="CHAR" skipb="yes" align="left" />
<hdr sibl="REPO" llbl="Repo" scope="LCL" sort="d" key="2" scroll="no"
<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Length</th>
<th>Scope</th>
<th>Alignment</th>
<th>Sort</th>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>REHMBS</td>
<td>CHAR</td>
<td>1</td>
<td>GBL</td>
<td>left</td>
<td>no</td>
<td>0</td>
</tr>
<tr>
<td>RPSB</td>
<td>INT</td>
<td>4</td>
<td>BGL</td>
<td>right</td>
<td>no</td>
<td>0</td>
</tr>
<tr>
<td>STT</td>
<td>CHAR</td>
<td>8</td>
<td>left</td>
<td>right</td>
<td>no</td>
<td>0</td>
</tr>
<tr>
<td>RCLS</td>
<td>INT</td>
<td>3</td>
<td>GBL</td>
<td>right</td>
<td>no</td>
<td>0</td>
</tr>
<tr>
<td>LCLS</td>
<td>INT</td>
<td>3</td>
<td>BGL</td>
<td>right</td>
<td>no</td>
<td>0</td>
</tr>
<tr>
<td>RLCT</td>
<td>INT</td>
<td>5</td>
<td>BGL</td>
<td>right</td>
<td>no</td>
<td>0</td>
</tr>
<tr>
<td>RPLCT</td>
<td>INT</td>
<td>5</td>
<td>BGL</td>
<td>right</td>
<td>no</td>
<td>0</td>
</tr>
<tr>
<td>PLCT</td>
<td>INT</td>
<td>7</td>
<td>BGL</td>
<td>right</td>
<td>no</td>
<td>0</td>
</tr>
<tr>
<td>LCP</td>
<td>INT</td>
<td>2</td>
<td>GBL</td>
<td>right</td>
<td>no</td>
<td>0</td>
</tr>
<tr>
<td>RNP</td>
<td>INT</td>
<td>2</td>
<td>GBL</td>
<td>right</td>
<td>no</td>
<td>0</td>
</tr>
<tr>
<td>LNP</td>
<td>INT</td>
<td>2</td>
<td>GBL</td>
<td>right</td>
<td>no</td>
<td>0</td>
</tr>
<tr>
<td>RLP</td>
<td>INT</td>
<td>2</td>
<td>GBL</td>
<td>right</td>
<td>no</td>
<td>0</td>
</tr>
<tr>
<td>LLP</td>
<td>INT</td>
<td>2</td>
<td>GBL</td>
<td>right</td>
<td>no</td>
<td>0</td>
</tr>
<tr>
<td>RSZ</td>
<td>INT</td>
<td>5</td>
<td>GBL</td>
<td>right</td>
<td>no</td>
<td>0</td>
</tr>
<tr>
<td>LSSZ</td>
<td>INT</td>
<td>5</td>
<td>GBL</td>
<td>right</td>
<td>no</td>
<td>0</td>
</tr>
<tr>
<td>RSNO</td>
<td>INT</td>
<td>5</td>
<td>GBL</td>
<td>right</td>
<td>no</td>
<td>0</td>
</tr>
<tr>
<td>LSN0</td>
<td>INT</td>
<td>5</td>
<td>GBL</td>
<td>right</td>
<td>no</td>
<td>0</td>
</tr>
<tr>
<td>RPLM</td>
<td>INT</td>
<td>5</td>
<td>GBL</td>
<td>right</td>
<td>no</td>
<td>0</td>
</tr>
<tr>
<td>LPLM</td>
<td>INT</td>
<td>5</td>
<td>GBL</td>
<td>right</td>
<td>no</td>
<td>0</td>
</tr>
<tr>
<td>RGC</td>
<td>INT</td>
<td>5</td>
<td>GBL</td>
<td>right</td>
<td>no</td>
<td>0</td>
</tr>
<tr>
<td>RMRG</td>
<td>INT</td>
<td>5</td>
<td>GBL</td>
<td>right</td>
<td>no</td>
<td>0</td>
</tr>
<tr>
<td>REDTR</td>
<td>INT</td>
<td>8</td>
<td>GBL</td>
<td>left</td>
<td>no</td>
<td>0</td>
</tr>
<tr>
<td>EDTTR</td>
<td>INT</td>
<td>8</td>
<td>GBL</td>
<td>left</td>
<td>no</td>
<td>0</td>
</tr>
<tr>
<td>RFP</td>
<td>INT</td>
<td>4</td>
<td>GBL</td>
<td>left</td>
<td>no</td>
<td>0</td>
</tr>
<tr>
<td>FP</td>
<td>CHAR</td>
<td>1</td>
<td>GBL</td>
<td>left</td>
<td>no</td>
<td>0</td>
</tr>
<tr>
<td>REMHBS</td>
<td>CHAR</td>
<td>5</td>
<td>GBL</td>
<td>right</td>
<td>no</td>
<td>0</td>
</tr>
<tr>
<td>EMHBSZ</td>
<td>CHAR</td>
<td>5</td>
<td>GBL</td>
<td>right</td>
<td>no</td>
<td>0</td>
</tr>
<tr>
<td>RCMTM</td>
<td>CHAR</td>
<td>4</td>
<td>GBL</td>
<td>left</td>
<td>no</td>
<td>0</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
<td>Type</td>
<td>Alignment</td>
<td>Scope</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>------</td>
<td>-----------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LWFI</td>
<td></td>
<td></td>
<td></td>
<td>GBL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serial</td>
<td></td>
<td></td>
<td></td>
<td>LCL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remote</td>
<td></td>
<td></td>
<td></td>
<td>GBL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resp</td>
<td></td>
<td></td>
<td></td>
<td>LCL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remote</td>
<td></td>
<td></td>
<td></td>
<td>GBL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serial</td>
<td></td>
<td></td>
<td></td>
<td>LCL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resp</td>
<td></td>
<td></td>
<td></td>
<td>LCL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remote</td>
<td></td>
<td></td>
<td></td>
<td>LCL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serial</td>
<td></td>
<td></td>
<td></td>
<td>LCL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resp</td>
<td></td>
<td></td>
<td></td>
<td>LCL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chapter 5. QUERY commands 569
<trans>
<hdr scroll="yes" len="1" dtype="CHAR" align="left" />
<cmdrspdata>
<trans data="PARTROOT"/>
</cmdrspdata>
</trans>
Explanation: A line is returned for each resource that matches the wildcard name. The resource definitions from each IMS that has the resource defined and the global repository definition are returned. The repository information is returned by the command master IMS. There are no IMS specific sections in the repository for each resource name that matches the wildcard name.

Related concepts:
- How to interpret CSL request return and reason codes (System Programming APIs)

Related reference:
- /DISPLAY MODIFY command (Commands)
- /DISPLAY STATUS command (Commands)
- /DISPLAY TRAN command (Commands)
- Command keywords and their synonyms (Commands)

### QUERY TRANDESC command

Use the QUERY TRANDESC command to query information about transaction descriptors.

A descriptor is a model that can be used to create descriptors or resources.

Subsections:
- "Environment"
- "Syntax" on page 572
- "Keywords" on page 573
- "Usage notes" on page 579
- "Output fields" on page 579
- "Return, reason, and completion codes" on page 592
- "Examples" on page 593

### Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY TRANDESC</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHOW</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DEFAULT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Syntax

QUERY

TRANDESC

NAME(*)

NAME(name)

name*

SHOW(ALL)

DEFAULT(N)

Y

AOCMD
CLASS
CMTMODE
CONV
CPRI
DCLWA
DEFAULT
DEFN
DEFNTYPE
DIRROUTE
EDITRTN
EDITUC
EMHBSZ
EXPRTIME
FP
GLOBAL
IMSID
INQ
LCT
LOCAL
LPRI
MAXRGN
MODEL
MSGTYPE
MSNAME
NPRI
PARLIM
PGM
PLCT
PLCTTIME
PSB
RECOVER
REMOTE
RESP
SENGO
SEGSZ
SERIAL
SPASZ
SPATRUNC
TIMESTAMP
TRANSTAT
WFI
Keywords

The following keywords are valid for the QUERY TRANDESC command:

**DEFAULT**
Selects transaction descriptors for display that possess the default value specified. DEFAULT(Y) displays the only default descriptor. DEFAULT(N) displays all the other descriptors that are not the default.

**NAME**
Specifies the 1-8 character name of the transaction descriptor. Wildcards can be specified in the name. The name is a repeatable parameter. The default is NAME(*), which returns all transaction descriptors.

**SHOW**
Specifies the transaction descriptor output fields to be returned. The transaction descriptor name is always returned along with the name of the IMS that created the output and the completion code. The filters that are supported with the SHOW keyword are:

**ALL**
Returns all information about the transaction descriptor itself.

**AOCMD**
Specifies that you want the AOI option returned which indicates whether the transaction can issue the type-1 AOI CMD call or the type-2 AOI ICMD call. If AOCMD is defined as CMD, TRAN, or Y, and the AOI1 execution parameter is defined as AOI1=N, no authorization checking is done and the transaction is permitted to issue CMD and ICMD calls.

**CLASS**
Scheduling class used to select a transaction for scheduling. A transaction can be scheduled if there is a message processing region available for that class.

**CMTMODE**
Specifies when database updates and non-express output messages are committed. This operand affects emergency restart.

**CONV**
Conversation option indicates whether the transaction is conversational.

**CPRI**
The current priority. The current priority is the normal priority, when the transaction queue count is less than the limit count. The current priority is raised to the limit priority if the transaction queue count is equal to, or exceeds, the limit count. The current priority for transaction descriptors is always 0 because the current priority is a runtime scheduling value that does not apply to transaction descriptors, which are never scheduled.

**DCLWA**
Log write-ahead option.

**DEFAULT**
Default descriptor option.

**N** The descriptor is not the default.

**Y** The descriptor is the default. When a descriptor or resource is created without the LIKE keyword, any attribute not specified on the CREATE command takes the value defined in the default descriptor. Only one descriptor can be defined as the default for a resource type.
defines a default transaction descriptor called DFSDSTR1, where all attributes are defined with the default value. Defining a user-defined descriptor to be the default overrides the current default descriptor.

**DEFN**

Specifies that the resource definitions are to be returned.

The transaction descriptor attributes that can be returned are: AOCMD, CLASS, CMTMODE, CONV, DCLWA, DEFAULT, DIRROUTE, EDITUC, EDITRWN, EMHBSZ, EXPRTIME, FP, INQ, LCT, LPRI, MAXRGN, MSGTYPE, NPRI, PLCT, PLCTTIME, PARLIM, PGM, RECOVER, REMOTE, RESP, SERIAL, SIDR, SIDL, SEGNO, SEGSZ, SPASZ, SPATRUNC, TRANSTAT, WFI, the repository create and update time stamps, the IMS runtime create, update, import and access time stamps, and the IMS runtime MSNAME.

If SHOW(DEFN) is specified without any other SHOW filters or with the IMSID filter, all the definitional attributes, including those defined globally in the repository and those defined locally in the IMS system, are returned. The runtime resource definitions from the IMS system are returned by each IMS that receives the command. The stored resource definitions in the IMSRSC repository are returned by the command master IMS if the command master IMS is enabled to use the repository.

The command master IMS returns a response line for each generic stored resource definition obtained from the repository. This response line displays the attributes of the generic resource definition. When SHOW(DEFN) is specified without the IMSID filter and all the IMS systems have the same attribute values defined, only the response line for the generic definition is returned. The IMS IDs of the IMS systems that have the stored resource definition defined are not returned. If an IMS system has a stored resource definition with one or more attribute values that differ from the generic stored resource definition, an additional response line is returned for each IMS that has different attribute values.

If SHOW(DEFN,LOCAL) is specified, the runtime resource definitions from the IMS system are returned by each IMS that received the command.

If SHOW(DEFN,GLOBAL) is specified, the stored resource definitions from the repository are returned by the command master IMS. SHOW(DEFN,GLOBAL) is valid only when the command master IMS is enabled to use the repository.

If SHOW(DEFN) is specified with other parameters, only the requested definitional attributes are returned. For example, if SHOW(DEFN,TIMESTAMP) is specified, only the time stamps are returned.

**Restrictions:**

- SHOW(DEFN) cannot be specified with DEFNTYPE or MODEL.
- The LModelName, LModelType, and LDefnType columns, which are returned on the QRY TRANDESC SHOW(ALL) command, are not returned with SHOW(DEFN).
- The Repo and IMSid columns, which are returned with SHOW(DEFN), are not returned with SHOW(ALL).

If SHOW(DEFN,IMSID) is specified, a response line is returned for the generic stored resource definition, and an additional response line is
returned for each IMS that has the resource defined in the repository, regardless of whether their stored resource definitions are the same as the generic resource definition.

When querying transaction descriptor information from the repository, resource definitions that are stored in the repository are used to determine the response lines with the repository information, and the runtime resource definitions are used to determine the response lines with the IMS runtime resource information. The response lines are returned for each stored resource or runtime resource definition that matches the specified filter. If SHOW(DEFN,GLOBAL) is specified, only the stored resource definitions that match the specified filter are returned. If SHOW(DEFN,LOCAL) is specified, only the runtime resource definitions that match the specified filter are returned.

**DEFNTYPE**
Definition type. This is how the descriptor or resource was defined.

**DIRROUTE**
MSC directed routing option.

**EDITRTN**
Input edit routine that edits messages before the program receives the message.

**EDITUC**
The uppercase translation of input data.

**EMHBSZ**
EMH buffer size required to run the Fast Path transaction.

**EXPRTIME**
Transaction expiration time in seconds.

**FP** Fast Path option.

**GLOBAL**
Specifies that the stored resource definitions from the repository are to be returned.

If SHOW(GLOBAL,DEFN) is specified, the global resource definitions from the repository are returned by the command master IMS. SHOW(GLOBAL,DEFN) is valid only when the command master IMS is enabled to use the repository.

**IMSID**
Specifies that the IMS IDs of the IMS systems whose resource lists contain the specified resource name are to be returned. SHOW(IMSID) is processed only by the command master IMS and is valid only if the command master IMS is enabled to use the repository.

When SHOW(IMSID) is specified with the DEFN filter, a separate line is returned for each IMS that has the resource defined, along with the stored resource definitions.

When SHOW(IMSID) is specified without the DEFN filter, a separate line is returned for each IMS that has the resource defined, along with the resource name. No resource definitions are returned.

SHOW(IMSID) cannot be specified with any other SHOW filters other than DEFN and GLOBAL. If SHOW(IMSID,GLOBAL) is specified, GLOBAL is ignored; that is, SHOW(IMSID,GLOBAL) is treated as SHOW(IMSID). SHOW(DEFN,IMSID,LOCAL) is treated as SHOW(DEFN,LOCAL).
INQ
Inquiry option.

LCT
Limit count. Specifies the number that, when compared to the number of input transactions queued and waiting to be processed, determines whether the normal or limit priority value is assigned to this transaction. The limit count value can range from 1 through 65535.

The limit count value is ignored for a transaction processed by a BMP.

The limit count value is ignored in a shared-queues environment.

LOCAL
Specifies that the runtime resource definitions from the IMS system are to be returned.

SHOW(DEFN,LOCAL) returns only the local definitional attributes from the IMS system that processes the command.

LPRI
Limit priority. The scheduling priority to which this transaction is raised when the number of input transactions enqueued and waiting to be processed is equal to or greater than the limit count value. The scheduling priority is an attribute used to select a transaction for scheduling. A transaction of higher priority is scheduled before a lower priority one, if they are defined with the same class.

The limit priority value is ignored for a transaction processed by a BMP.

MAXRGN
Maximum region count. This limits the number of message processing program (MPP) regions that can be concurrently scheduled to process a transaction. When the number of MPP regions is not limited, one transaction might monopolize all available regions. MAXRGN(0) means that no limit is imposed.

MODEL
The model name and model type used to create this resource or descriptor. If the descriptor or resource is created with one or more attributes defined and no model specified, the model name and model type is the default descriptor. The model name and model type are blank for the IMS-defined transaction descriptor DFSDSTR1. The CREATE command specified without the LIKE keyword creates a descriptor or resource using the default descriptor as a model. The default descriptor is either the IMS descriptor DFSDSTR1 or user-defined. The CREATE command specified with the LIKE keyword creates a descriptor or resource using a model. The descriptor or resource is created with all the same attributes as the model. Attributes set explicitly by the CREATE command override the model attributes. The model type can either be a descriptor (DESC) or a resource (RSC). The model name and model type are for reference only. The descriptor or resource attributes might not match the model, if attributes are overridden by CREATE or UPDATE command values, or the model is updated later. The model name and model type can be used to identify resources that were created with the same model. The model name and model type of a resource are exported and imported. The IMPORT command does not use the model name and model type when creating a resource.

MSGTYPE
Message segment type (single or multiple segment). It specifies the time at which an incoming message is considered complete and available to be routed to an application program for subsequent processing.

If MSC-directed routing is used in a multiple IMS system configuration, IMS does not ensure that both the message and the transaction destined to process that message are either single segment or multiple segments.

**MSNAME**

The logical link path name, remote system ID, and local system ID are returned.

Logical link path name in a multiple IMS system configuration (MSC). A logical link path is a path between any two IMS systems. The IMS systems are identified by the remote system ID and the local system ID associated with the logical link path. The remote system ID identifies the system in which messages using this path are to be processed. The local system ID identifies this system.

The remote system ID (SIDR) identifies the IMS system on which the application program runs. A value of 0 means MSC is not enabled on this system. The local system ID and remote system ID are the same for local transactions.

The local system ID (SIDL) identifies the originating system to which responses are returned. A value of 0 means MSC is not enabled on this system. The local system ID and remote system ID are the same for local transactions.

**NPRI**

Normal scheduling priority. The scheduling priority is an attribute used to select a transaction for scheduling. A transaction of higher priority is scheduled before a lower priority one, if they are defined with the same class. The normal priority is assigned to the transaction as the scheduling priority when the number of input transactions enqueued and waiting to be processed is less than the limit count value.

The normal priority value is ignored for a transaction processed by a BMP.

**PARLIM**

Parallel processing limit count. This is the maximum number of messages that can currently be queued, but not yet processed, by each active message region currently scheduled for this transaction. This is the threshold value to be used when the associated program is defined with a scheduling type of parallel. An additional region is scheduled whenever the current transaction enqueue count exceeds the PARLIM value multiplied by the number of regions currently scheduled for this transaction.

PARLIM(0) indicates that any input message can cause a new region to be scheduled. PARLIM(65535) indicates that parallel processing is disabled and IMS allows the transaction to be scheduled in only one region at a time.

**PGM**

The name of the program associated with this transaction. This name matches the PSB name in ACBLIB.

**PLCT**
Processing limit count. This is the maximum number of messages sent to the application program by the IMS for processing without reloading the application program.

- PLCT(0) means that a maximum of one message is sent to the application program at a single program load.
- PLCT(65535) means that no limit is placed on the number of messages processed at a single program load.

**PLCTTIME**

Processing limit count time. This is the amount of time (in hundredths of seconds) allowable to process a single transaction (or message). The number specifies the maximum CPU time allowed for each message to be processed in the message processing region.

PLCTTIME(6553500) means that no time limit is placed on the application program.

**PSB**

The name of the program associated with this transaction. This name matches the PSB name in ACBLIB.

**RECOVER**

Recovery option.

**REMOTE**

Remote option.

**RESP**

Response-mode option.

**SEGNO**

Segment number. This is the maximum number of application program output segments that are allowed into the message queues per Get Unique (GU) call from the application program.

SEGNO(0) means that the number of segments is not checked by the online system at execution time.

**SEGSZ**

Segment size. This is the maximum number of bytes allowed in any one output segment.

SEGSZ(0) means that the segment size is not checked by the online system at execution time.

**SERIAL**

Serial option.

**SPASZ**

Scratchpad area size for a conversational transaction.

**SPATRUNC**

The SPA data truncation option indicates whether the SPA data should be truncated or preserved across a program switch to a transaction that is defined with a smaller SPA.

When a conversation initially starts and a program switch occurs, the SPATRUNC option is checked and set or reset as specified. When the
option is set, it remains set for the life of the conversation, or until a program switch occurs to a transaction that specifies the option is to be reset.

When a program switch occurs, the truncated data option for the new transaction is first checked, and that specification is set for the conversation and is used for the SPA inserted into the output message. If the option is not specified for the new transaction, the option currently in effect for the conversation is used.

**TIMESTAMP**

The creation time (TIMECREATE), last update time (TIMEUPDATE), last access time (TIMEACCESS), and last import time (TIMEIMPORT) time stamps are returned. The time is returned in local time in the format YYYY:JJJ HH:MM:SS.TH, where:

- YYYY is the year.
- JJJ is the Julian day (001 - 365).
- HH is the hour (01 - 24).
- MM is the minute (00 - 59).
- SS is the seconds (00 - 59).
- TH is the tenths and hundredths of a second (00 - 99).

**TRANSTAT**

Transaction level statistics option.

**WFI**

Wait-for-input option.

**Usage notes**

This command can be issued only through the Operations Manager API. This command applies to DB/DC and DCCTL systems. This command is allowed on XRF alternate and RSR tracker systems. The QUERY TRANDESC command is not valid if online change for MODBLKS is enabled (DFSDFxxx or DFSCGxxx defined with MODBLKS=OLC, or MODBLKS not defined).

If you want to display information about resource definitions, specify SHOW(DEFN). If you want to know which IMS systems have the resource defined and also know the attributes or resource definitions at each IMS system, specify SHOW(DEFN,IMSID). If you want to know which IMS systems have the resource defined, specify SHOW(IMSID).

**Output fields**

The following table shows the QUERY TRANDESC output fields. The columns in the table are as follows:

**Short label**

Contains the short label generated in the XML output.

**Long label**

Contains the long label generated in the XML output.

**Keyword**

Identifies keyword on the command that caused the field to be generated. N/A appears for output fields that are always returned. error appears for output fields that are returned only in case of an error.
**Scope**  Identifies the scope of the output field.

**Meaning**  Provides a brief description of the output field.

### Table 206. Output fields for the QUERY TRANDESC command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOCMD</td>
<td>LAOCMD</td>
<td>AOCMD</td>
<td>LCL</td>
<td>Indicates whether the transaction can issue the type-1 AOI CMD call or the type-2 AOI ICMD call. The output value is obtained from the local IMS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CMD</td>
<td>Indicates that the transaction is permitted to issue type-1 AOI CMD calls and type-2 AOI ICMD calls. If the AOI1 execute parameter is defined as C, R, or A, authorization checking is based on which transactions can issue a particular command. In this case, the commands (or the first three characters of the commands) need to be defined to RACF or an equivalent product as a user. The type-1 AOI transactions must be defined as profiles under the TIMS class, and for each transaction, the commands it can issue must be specified.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>Indicates that the transaction is not permitted to issue type-1 AOI CMD calls. The transaction is permitted to issue type-2 AOI ICMD calls.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TRAN</td>
<td>Indicates that the transaction is permitted to issue type-1 AOI CMD calls and type-2 AOI ICMD calls. If the AOI1 execute parameter is defined as C, R, or A, the transaction code is used for authorization. For some environments, if a Get Unique call has not yet occurred, the program name is used for authorization. For some environments, if a Get Unique call has not yet occurred, the program name is used for authorization. The transactions will then be specified on RACF PERMIT statements for each command they are allowed to issue from a type-1 AOI transaction. Specifying AOI transactions as users to RACF might conflict with the name of a user already defined to RACF. If this conflict occurs, then either the transaction name or the existing user name needs to be changed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td>Indicates that the transaction is permitted to issue type-1 AOI CMD calls and type-2 AOI ICMD calls. If the AOI1 execute parameter is defined as C, R, or A, the user ID or the program name is used for authorization. For some environments, if a Get Unique call has not yet occurred, the program name is used for authorization. For some environments, if a Get Unique call has not yet occurred, the program name is used for authorization.</td>
</tr>
</tbody>
</table>
### Table 206. Output fields for the QUERY TRANDESC command  (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td><em>error</em></td>
<td>LCL</td>
<td>Completion code text that briefly explains the meaning of the non-zero completion code.</td>
</tr>
<tr>
<td>CMTM</td>
<td>LCmtMode</td>
<td>CMTMODE</td>
<td>LCL</td>
<td>Commit mode for the transaction: commit after a single message (SNGL) or multiple messages (MULT). The output value is obtained from the local IMS.</td>
</tr>
</tbody>
</table>

**MULT**

Database updates and non-express output messages are committed only when the application program terminates normally, when the processing limit count has been reached, or, in the case of a pseudo-WFI dependent region, when there are no more messages on the queue. For example, if five transactions are processed during a single schedule of a program, all five are committed only when the fifth one is completed and the program terminates. Until a transaction has been committed, locks for updated database records are not released and non-express output messages are not queued for output. If an application ends abnormally before committing its messages, emergency restart requeues all the messages that were processed within the commit scope and makes them available for reprocessing.

**SNGL**

Database updates and non-express output messages are committed when the application program completes processing each transaction. IMS invokes commit processing either when the application program requests the next message (issues a GU to the IO-PCB), or when the application program terminates. If an application ends abnormally before committing its message, emergency restart requeues the message that was in process before the abend and makes it available for reprocessing.
### Table 206. Output fields for the QUERY TRANDESC command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONV</td>
<td>LConv</td>
<td>CONV</td>
<td>LCL</td>
<td>Conversation option. Transaction is conversational (Y), or not (N). The output value is obtained from the local IMS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>N</strong> Transaction is not conversational.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>Y</strong> Transaction is conversational. The transaction message is destined for a conversational program. A conversational program processes transactions made up of several steps. A conversational program receives a message from a terminal, replies to the terminal, but saves the data from the transaction in a scratchpad area (SPA). When the person at the terminal enters more data, the program has the data it saved from the last message in the SPA, so it can continue processing the request without the person at the terminal having to enter the data again.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DCLW</th>
<th>LDCLWA</th>
<th>DCLWA</th>
<th>LCL</th>
<th>Perform log write-ahead for recoverable, nonresponse mode input messages and transaction output messages (Y) or not (N). The output value is obtained from the local IMS.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>N</strong> IMS does not perform log write-ahead.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>Y</strong> IMS performs log write-ahead for recoverable, nonresponse input messages and transaction output messages. If not defined for the transaction, the default is the DCLWA parameter in the IMSCTRL macro. This ensures that a nonresponse input transaction is made recoverable across IMS failures, prior to IMS acknowledging receipt of the input.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Database changes are made recoverable prior to IMS sending associated output reply messages.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>This ensures that information in the log buffers is written to the IMS log, before the associated input acknowledgment or output reply is sent to the terminal.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DESC</th>
<th>DescName</th>
<th>TRANDESC</th>
<th>LCL</th>
<th>Transaction descriptor name.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFNT</td>
<td>LDefnType</td>
<td>DEFNTYPE</td>
<td>LCL</td>
<td>Definition type (CREATE, IMPORT, UPDATE).</td>
</tr>
<tr>
<td>DFLT</td>
<td>LDflt</td>
<td>TRANDESC</td>
<td>LCL</td>
<td>Default descriptor (Y) or not (N).</td>
</tr>
<tr>
<td>Short label</td>
<td>Long label</td>
<td>Keyword</td>
<td>Scope</td>
<td>Meaning</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>----------</td>
<td>-------</td>
<td>--------------------------------------------------------------------------</td>
</tr>
<tr>
<td>DRR</td>
<td>LDirRoute</td>
<td>DIRROUTE</td>
<td>LCL</td>
<td>Supports MSC directed routing (Y) or not (N). The output value is obtained from the local IMS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N  The application program processing a transaction is not informed of the system which originated the transaction. The name of the originating LTERM is placed in the I/O PCB.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y  The application program processing a transaction is informed of the system which originated the transaction, if MSC directed routing is used in a multiple IMS system configuration. An MSNAME corresponding to a logical path back to the originating system is placed in the I/O PCB.</td>
</tr>
<tr>
<td>EDTR</td>
<td>LEditRtn</td>
<td>EDITRRTN</td>
<td>LCL</td>
<td>Input edit routine name.</td>
</tr>
<tr>
<td>EDTO</td>
<td>LEditUC</td>
<td>EDITUC</td>
<td>LCL</td>
<td>Input data is to be translated to uppercase (Y) or not (N). The output value is obtained from the local IMS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N  Input data is not translated to uppercase. It can consist of uppercase and lowercase characters as entered from the terminal.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y  Input data is to be translated to uppercase before it is presented to the processing program. If FP(Y), the transaction is to be translated to uppercase before being presented to the edit/routing exit routine. Specifying EDITUC(Y) for VTAM terminals prevents the transmission of embedded device control characters.</td>
</tr>
<tr>
<td>EMHBS</td>
<td>LEMHBSz</td>
<td>EMHBSZ</td>
<td>LCL</td>
<td>EMH buffer size. The output value is obtained from the local IMS.</td>
</tr>
<tr>
<td>EXPRT</td>
<td>LExprTm</td>
<td>EXPRTIME</td>
<td>LCL</td>
<td>Transaction expiration time. The output value is obtained from the local IMS.</td>
</tr>
<tr>
<td>FP</td>
<td>LFP</td>
<td>FP</td>
<td>LCL</td>
<td>Fast Path potential candidate (P), Fast Path exclusive (E), or FP option not enabled (N). The output value is obtained from the local IMS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E  Fast Path exclusive transaction. Any message for this transaction is always routed to a Fast Path application program.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N  Fast Path option is not enabled. When FP(N) is specified, any attempt to use Fast Path resources or commands will yield unpredictable results.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P  Fast Path potential transaction. Any message for this transaction can potentially be routed to a Fast Path application program.</td>
</tr>
<tr>
<td>IMSID</td>
<td>IMSid</td>
<td>IMSID</td>
<td>GBL</td>
<td>The IMSIDs that have the resource defined. The output values are obtained from the repository.</td>
</tr>
<tr>
<td>Short label</td>
<td>Long label</td>
<td>Keyword</td>
<td>Scope</td>
<td>Meaning</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>---------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>INQ</td>
<td>Linq</td>
<td>INQ</td>
<td>LCL</td>
<td>Inquiry transaction (Y) or not (N). The output value is obtained from the local IMS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N  Inquiry option is disabled.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y  Inquiry option is enabled. This is an inquiry transaction that, when entered, does not cause a change in any database. Programs are prohibited from issuing ISRT, DLET, or REPL calls to a database when scheduled to process a transaction defined as INQ(Y). An application program cannot do an SQL INSERT, DELETE, or UPDATE when the IMS transaction is defined with INQ(Y).</td>
</tr>
<tr>
<td>LCLS</td>
<td>LCls</td>
<td>CLASS</td>
<td>LCL</td>
<td>Scheduling class used to determine which message regions can process the transaction locally on a particular IMS.</td>
</tr>
<tr>
<td>LCP</td>
<td>LCPRI</td>
<td>CPRI</td>
<td>LCL</td>
<td>Local current scheduling priority. The current scheduling priority is used to calculate which transaction is selected for scheduling.</td>
</tr>
<tr>
<td>LLCT</td>
<td>LLCT</td>
<td>LCT</td>
<td>LCL</td>
<td>Limit count in the local IMS. The limit count is the number that, when compared to the number of input transactions queued and waiting to be processed, determines whether the normal or limit priority value is assigned to this transaction.</td>
</tr>
<tr>
<td>LLP</td>
<td>LLPRI</td>
<td>LPRI</td>
<td>LCL</td>
<td>Local limit scheduling priority. The limit scheduling priority is the priority to which this transaction is raised when the number of input transactions enqueued and waiting to be processed is equal to or greater than the limit count value.</td>
</tr>
<tr>
<td>LMRG</td>
<td>LMaxRgn</td>
<td>MAXRGN</td>
<td>LCL</td>
<td>Local maximum region count. The maximum region count is the maximum number of message processing program (MPP) regions that can be concurrently scheduled to process a transaction that is eligible for parallel scheduling.</td>
</tr>
<tr>
<td>LNP</td>
<td>LPRI</td>
<td>NPRI</td>
<td>LCL</td>
<td>Local normal scheduling priority. The normal scheduling priority is the priority assigned to this transaction when the number of input transactions enqueued and waiting to be processed is less than the limit count value.</td>
</tr>
<tr>
<td>LPLCT</td>
<td>LPLCT</td>
<td>PLCT</td>
<td>LCL</td>
<td>Local processing limit count. The processing limit count is the number of transaction messages a program can process in a single scheduling.</td>
</tr>
<tr>
<td>LPLM</td>
<td>LParLim</td>
<td>PARLIM</td>
<td>LCL</td>
<td>Local parallel processing limit count. The parallel limit count is the maximum number of messages that can currently be queued, but not yet processed, by each active message region currently scheduled for this transaction. An additional message region is scheduled whenever the transaction queue count exceeds the PARLIM value multiplied by the number of regions currently scheduled for this transaction.</td>
</tr>
<tr>
<td>Short label</td>
<td>Long label</td>
<td>Keyword</td>
<td>Scope</td>
<td>Meaning</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>---------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>LNO</td>
<td>LSegNo</td>
<td>SEGNO</td>
<td>LCL</td>
<td>Local application program output segment limit allowed in message queues for each GU call.</td>
</tr>
<tr>
<td>LSSZ</td>
<td>LSegSz</td>
<td>SEGSZ</td>
<td>LCL</td>
<td>Local application program output segment size limit allowed in the message queues for each GU call.</td>
</tr>
<tr>
<td>MDLN</td>
<td>LModelName</td>
<td>MODEL</td>
<td>LCL</td>
<td>Model name. Name of the resource or descriptor used as a model to create this descriptor. DFSDSTR1 is the IMS descriptor name for transactions. The output value is obtained from the local IMS.</td>
</tr>
<tr>
<td>MDLT</td>
<td>LModelType</td>
<td>MODEL</td>
<td>LCL</td>
<td>Model type, either RSC or DESC. RSC means that the descriptor was created using another resource as a model. DESC means that the descriptor was created using a descriptor as a model.</td>
</tr>
<tr>
<td>MSGT</td>
<td>LMsgType</td>
<td>MSGTYPE</td>
<td>LCL</td>
<td>Message type of single segment (SNGLSEG) or multiple segment (MULTSEG). The output value is obtained from the local IMS.</td>
</tr>
</tbody>
</table>

**MULTSEG**

Specifies that the incoming message can be more than one segment in length. It is not eligible for scheduling to an application program until an end-of-message indication is received, or a complete message is created by MFS.

**SNGLSEG**

Specifies that the incoming message is one segment in length. It becomes eligible for scheduling when the terminal operator indicates end-of-segment.

<table>
<thead>
<tr>
<th>MSN</th>
<th>LMSName</th>
<th>MSNAME</th>
<th>LCL</th>
<th>Logical link path name.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLCTT</td>
<td>LPLCTTime</td>
<td>PLCTIME</td>
<td>LCL</td>
<td>Processing limit count time.</td>
</tr>
<tr>
<td>PSB</td>
<td>LPSBName</td>
<td>PGM or PSB</td>
<td>LCL</td>
<td>Program name associated with the transaction. The output value is obtained from the local IMS.</td>
</tr>
<tr>
<td>RAOCMD</td>
<td>LAOCDM</td>
<td>DEFN, AOCMD</td>
<td>GBL</td>
<td>Indicates whether the transaction can issue the type-1 AOI CMD call or the type-2 AOI ICMD call. The output value is obtained from the repository. For the values to be returned, see the description for “LAOCDM” in this table.</td>
</tr>
<tr>
<td>RCLS</td>
<td>Cls</td>
<td>DEFN, CLASS</td>
<td>GBL</td>
<td>Class value in the repository.</td>
</tr>
<tr>
<td>RCMTM</td>
<td>CmtMode</td>
<td>DEFN, CMTMODE</td>
<td>GBL</td>
<td>Commit mode for the transaction: commit after a single message (SNGL) or multiple messages (MULT). The output value is obtained from the repository.</td>
</tr>
<tr>
<td>RCONV</td>
<td>Conv</td>
<td>DEFN, CONV</td>
<td>GBL</td>
<td>Conversation option. Transaction is conversational (Y), or not (N). The output value is obtained from the repository. For the values to be returned, see the description for “LConv” in this table.</td>
</tr>
<tr>
<td>Short label</td>
<td>Long label</td>
<td>Keyword</td>
<td>Scope</td>
<td>Meaning</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>---------------</td>
<td>-------</td>
<td>-----------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>RCV</td>
<td>LRecover</td>
<td>RECOVER</td>
<td>LCL</td>
<td>Recovered during an IMS emergency or normal restart (Y) or not (N). The output value is obtained from the local IMS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>N</strong> Recovery option is disabled. The transaction is not recovered.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>Y</strong> Recovery option is enabled. The transaction is recovered during IMS emergency or normal restart.</td>
</tr>
<tr>
<td>RDCLW</td>
<td>DCLWA</td>
<td>DEFN, DCLWA</td>
<td>GBL</td>
<td>Perform log write-ahead for recoverable, nonresponse mode input messages and transaction output messages (Y) or not (N). The output value is obtained from the repository. For the values to be returned, see the description for “LDCLWA” in this table.</td>
</tr>
<tr>
<td>RDFLT</td>
<td>Dflt</td>
<td>DEFN</td>
<td>GBL</td>
<td>Default descriptor (Y) or not (N). The value is obtained from the repository.</td>
</tr>
<tr>
<td>RDRRT</td>
<td>DirRoute</td>
<td>DEFN, DIRROUTE</td>
<td>GBL</td>
<td>Supports MSC directed routing (Y) or not (N). The output value is obtained from the repository.</td>
</tr>
<tr>
<td>REDTR</td>
<td>EditRtn</td>
<td>DEFN,EDITR</td>
<td>GBL</td>
<td>Input edit routine name. The value is obtained from the repository.</td>
</tr>
<tr>
<td>REDTT</td>
<td>EditUC</td>
<td>DEFN, EDITUC</td>
<td>GBL</td>
<td>Input data is to be translated to uppercase (Y) or not (N). The output value is obtained from the repository. For the values to be returned, see the description for “LEditUC” in this table.</td>
</tr>
<tr>
<td>REMHBS</td>
<td>EMHBSz</td>
<td>DEFN, EMHBSZ</td>
<td>GBL</td>
<td>EMH buffer size. The output value is obtained from the repository.</td>
</tr>
<tr>
<td>REPO</td>
<td>Repo</td>
<td>DEFN</td>
<td>GBL</td>
<td>Indicates whether the output line contains the stored resource definitions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>Y</strong> Indicates repository definitions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><em>(blank)</em> Indicates local definitions.</td>
</tr>
<tr>
<td>REXPRT</td>
<td>ExprTm</td>
<td>DEFN, EXPRTIME</td>
<td>GBL</td>
<td>Transaction expiration time. The output value is obtained from the repository.</td>
</tr>
<tr>
<td>RFP</td>
<td>FP</td>
<td>DEFN, FP</td>
<td>GBL</td>
<td>Fast Path potential candidate (P), Fast Path exclusive (E), or FP option not enabled (N). The output value is obtained from the repository. For the values to be returned, see the description for “LFPr” in this table.</td>
</tr>
<tr>
<td>RGC</td>
<td>LRegCnt</td>
<td>RGC</td>
<td>LCL</td>
<td>Region count. The output value is obtained from the local IMS.</td>
</tr>
<tr>
<td>RINQ</td>
<td>Inq</td>
<td>DEFN, INQ</td>
<td>GBL</td>
<td>Inquiry transaction (Y) or not (N). The output value is obtained from the repository. For the values to be returned, see the description for “LInq” in this table.</td>
</tr>
<tr>
<td>RLCT</td>
<td>Lct</td>
<td>DEFN, LCT</td>
<td>GBL</td>
<td>Limit count value obtained from the repository.</td>
</tr>
<tr>
<td>RLP</td>
<td>LPRI</td>
<td>DEFN, LPRI</td>
<td>GBL</td>
<td>Local limit scheduling priority value in the repository. The limit scheduling priority is the priority to which this transaction is raised when the number of input transactions enqued and waiting to be processed is equal to or greater than the limit count value.</td>
</tr>
<tr>
<td>Short label</td>
<td>Long label</td>
<td>Keyword</td>
<td>Scope</td>
<td>Meaning</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>---------</td>
<td>-------</td>
<td>------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>RMRG</td>
<td>RMaxRgn</td>
<td>DEFN,</td>
<td>GBL</td>
<td>Maximum region count obtained from the repository. The maximum region count is the maximum number of message processing program (MPP) regions that can be concurrently scheduled to process a transaction that is eligible for parallel scheduling.</td>
</tr>
<tr>
<td>RMSGT</td>
<td>MsgType</td>
<td>DEFN,</td>
<td>GBL</td>
<td>Message type of single segment (SNGLSEG) or multiple segment (MULTSEG). The output value is obtained from the repository. For the values to be returned, see the description for “LMsgType” in this table.</td>
</tr>
<tr>
<td>RMT</td>
<td>LRemote</td>
<td>REMOTE</td>
<td>LCL</td>
<td>Remote transaction (Y) or not (N). The output value is obtained from the local IMS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N  Local transaction. The transaction runs on the local system.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y  Remote transaction. The transaction runs on a remote system.</td>
</tr>
<tr>
<td>RPLCT</td>
<td>PLCT</td>
<td>DEFN,</td>
<td>GBL</td>
<td>Processing limit count value in the repository. The processing limit count is the number of transaction messages a program can process in a single scheduling.</td>
</tr>
<tr>
<td>RPLCTT</td>
<td>PLCTTime</td>
<td>DEFN,</td>
<td>GBL</td>
<td>Processing limit count time value in the repository.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PLCTTIME</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPLM</td>
<td>Parlim</td>
<td>DEFN,</td>
<td>GBL</td>
<td>Parallel processing limit count value in the repository. The parallel limit count is the maximum number of messages that can currently be queued, but not yet processed, by each active message region currently scheduled for this transaction. An additional message region is scheduled whenever the transaction queue count exceeds the PARLM value multiplied by the number of regions currently scheduled for this transaction.</td>
</tr>
<tr>
<td>RPSB</td>
<td>PsbName</td>
<td>DEFN,</td>
<td>GBL</td>
<td>Program name associated with the transaction. The output value is obtained from the repository. For the values to be returned, see the description for “LPsbName” in this table.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PGM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RRCV</td>
<td>Recover</td>
<td>DEFN,</td>
<td>GBL</td>
<td>Recovered during an IMS emergency or normal restart (Y) or not (N). The output value is obtained from the repository. For the values to be returned, see the description for “LRecover” in this table.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RECOVER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RRMT</td>
<td>Remote</td>
<td>DEFN,</td>
<td>GBL</td>
<td>Remote transaction (Y) or not (N). The output value is obtained from the repository. For the values to be returned, see the description for “LRemote” in this table.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>REMOTE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RRSP</td>
<td>Resp</td>
<td>DEFN,</td>
<td>GBL</td>
<td>Response mode transaction (Y) or not (N). The output value is obtained from the repository. For the values to be returned, see the description for “LResp” in this table.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RESP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSET</td>
<td>Serial</td>
<td>DEFN,</td>
<td>GBL</td>
<td>Transaction is processed serially (Y) or not (N). The output value is obtained from the repository. For the values to be returned, see the description for “LSerial” in this table.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SERIAL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 206. Output fields for the QUERY TRANDESC command  (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSIDL</td>
<td>SIDL</td>
<td>DEFN, MSNAME</td>
<td>GBL</td>
<td>Local system ID. The output value is obtained from the repository.</td>
</tr>
<tr>
<td>RSIDR</td>
<td>SIDR</td>
<td>DEFN, MSNAME</td>
<td>GBL</td>
<td>Remote system ID. The output value is obtained from the repository.</td>
</tr>
<tr>
<td>RSNO</td>
<td>SegNo</td>
<td>DEFN, SEGNO</td>
<td>GBL</td>
<td>Application program output segment limit allowed in message queues for each GU call. The value is obtained from the repository.</td>
</tr>
<tr>
<td>RSP</td>
<td>LResp</td>
<td>RESP</td>
<td>LCL</td>
<td>Response mode transaction (Y) or not (N). The output value is obtained from the local IMS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>N</strong> Response mode option is disabled. For terminals specifying or accepting a default of OPTIONS=TRANRESP, input should not stop after this transaction is entered.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>Y</strong> Response mode option is enabled. For terminals specifying or accepting a default of OPTIONS=TRANRESP, no additional messages are to be allowed after this transaction is entered until this transaction sends a response message back to the terminal. Response mode can be forced or negated by individual terminal definition. RESP(Y) is ignored during online processing for all terminals that do not operate in response mode.</td>
</tr>
<tr>
<td>RSPASZ</td>
<td>SpaSz</td>
<td>DEFN, SPASZ</td>
<td>GBL</td>
<td>Conversational transaction scratchpad area size. The output value is obtained from the repository.</td>
</tr>
</tbody>
</table>
Table 206. Output fields for the QUERY TRANDESC command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSPATR</td>
<td>SpaTrunc</td>
<td>DEFN, SPATRUNC</td>
<td>GBL</td>
<td>Conversational transaction SPA data should be truncated (R) or preserved (S) across a program switch to a transaction that is defined with a smaller SPA. The SPATRUNC value defined for the conversational transaction is stored in the repository. A QUERY TRANDESC command with SHOW(DEFN) returns a SPATRUNC value of R, S, or null from the repository values.</td>
</tr>
<tr>
<td>RSSSZ</td>
<td>SegSz</td>
<td>DEFN, SEGSZ</td>
<td>GBL</td>
<td>Application program output segment size limit allowed in the message queues for each GU call. The output value is obtained from the repository.</td>
</tr>
<tr>
<td>RTLS</td>
<td>TranStat</td>
<td>DEFN, TRANSTAT</td>
<td>GBL</td>
<td>Transaction level statistics logged (Y) or not (N). The output value is obtained from the repository. For the values to be returned, see the description for &quot;LTranStat&quot; in this table.</td>
</tr>
<tr>
<td>RMCR</td>
<td>TimeCreate</td>
<td>DEFN, TIMESTAMP</td>
<td>GBL</td>
<td>Create time from the repository. This is the time the resource was first created in the repository.</td>
</tr>
<tr>
<td>RMUP</td>
<td>TimeUpdate</td>
<td>DEFN, TIMESTAMP</td>
<td>GBL</td>
<td>Update time from the repository. This is the time the resource was last updated in the repository.</td>
</tr>
<tr>
<td>RWFI</td>
<td>WFI</td>
<td>DEFN, WFI</td>
<td>GBL</td>
<td>Wait-for-input transaction (Y) or not (N). The output value is obtained from the repository. For the values to be returned, see the description for LWFI in this table.</td>
</tr>
</tbody>
</table>

**S**
S is shown on the QUERY TRANDESC command for a conversational transaction in one of the following conditions:
- If the transaction is defined with SPATRUNC=S on the CREATE TRAN or CREATE TRANDESC command
- If SPA=STRUNC is specified on the TRANSACT macro
- If the system-wide truncated data option is set as TRUNC=Y in the DFSDCxxx member

**R**
R is shown on the QUERY TRANDESC command for a conversational transaction in one of the following conditions:
- If the transaction is defined with SPATRUNC=R on the CREATE TRAN or CREATE TRANDESC command
- If SPA=RTRUNC is specified on the TRANSACT macro
- If the system-wide truncated data option is not set as TRUNC=N in the DFSDCxxx member.

**null**
A null value indicates that the transaction does not have the SPATRUNC value defined and that the value is overridden with the system-wide truncated data option defined with the TRUNC= option on the DFSDCxxx member.
<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>SER</td>
<td>LSerial</td>
<td>SERIAL</td>
<td>LCL</td>
<td>Transaction is processed serially (Y) or not (N). The output value is obtained from the local IMS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>N</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>Y</strong></td>
</tr>
<tr>
<td>SIDL</td>
<td>LSIDL</td>
<td>MSNAME</td>
<td>LCL</td>
<td>Local system ID. The output value is obtained from the local IMS.</td>
</tr>
<tr>
<td>SIDR</td>
<td>LSIDR</td>
<td>MSNAME</td>
<td>LCL</td>
<td>Remote system ID. The output value is obtained from the local IMS.</td>
</tr>
<tr>
<td>SPASZ</td>
<td>LSPAsz</td>
<td>SPASZ</td>
<td>LCL</td>
<td>Conversational transaction scratchpad area size. The output value is obtained from the local IMS.</td>
</tr>
<tr>
<td>SPATR</td>
<td>LSPATrunc</td>
<td>SPATRUNC</td>
<td>LCL</td>
<td>Conversational transaction SPA data should be truncated (R) or preserved (S) across a program switch to a transaction that is defined with a smaller SPA. The output value is obtained from the local IMS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>S</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>R</strong></td>
</tr>
<tr>
<td>TLS</td>
<td>LTranStat</td>
<td>TRANSTAT</td>
<td>LCL</td>
<td>Transaction level statistics logged (Y) or not (N). The output value is obtained from the local IMS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>N</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>Y</strong></td>
</tr>
</tbody>
</table>
Table 206. Output fields for the QUERY TRANDESC command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
</table>
| TMAC        | LTimeAccess| TIMESTAMP | LCL   | The time that the descriptor was last accessed. The output value is obtained from the local IMS. The last access time is retained across warm start, emergency restart, EXPORT and IMPORT. The updating of the last access time is not logged. After a restart, the last access time reflects the time recorded in the restart checkpoint log records. For a transaction descriptor, the following action updates the last access time:  
  - CREATE command or DFSINSX0 exit refers to the descriptor as a model. |
| TMCR        | LTimeCreate| TIMESTAMP | LCL   | The time that the descriptor was created. This is the result of a CREATE TRANDESC command, IMPORT command that creates the transaction descriptor, or IMS initialization. The create time is retained across warm start, emergency restart, EXPORT and IMPORT. The output value is obtained from the local IMS. |
| TMIM        | LTimeImport| TIMESTAMP | LCL   | The time that the descriptor was last imported. The import time is retained across warm start and emergency restart. The output value is obtained from the local IMS. |
| TMUP        | LTimeUpdate| TIMESTAMP | LCL   | The last time the attributes of the runtime resource definition were updated as a result of the UPDATE TRANDESC command or the IMPORT command. The update time is retained across warm start and emergency restart. The output value is obtained from the local IMS. |
| WFI         | LWFI       | WFI       | LCL   | Wait-for-input transaction (Y) or not (N). The output value is obtained from the local IMS.  
  - N  Wait-for-input option is disabled.  
  - Y  Wait-for-input option is enabled. A message processing or batch processing application program that processes WFI transactions is scheduled and invoked normally. If the transaction to be processed is defined as WFI, the program is allowed to remain in main storage after it has processed the available input messages. The QC status code (no more messages) is returned to the program if the processing limit count is reached; a command is entered to change the status of the schedule transaction, database, program, or class; commands relating to the databases used by the transaction are entered; or IMS is terminated with a checkpoint shutdown. |
Return, reason, and completion codes

**Table 207. Return and reason codes for the QUERY TRANDESC command**

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The command completed successfully.</td>
<td></td>
</tr>
<tr>
<td>X'00000004'</td>
<td>X'00001010'</td>
<td>No descriptors were found to be returned. The descriptor names specified might be invalid, or there were no descriptors that match the filter specified.</td>
<td></td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002004'</td>
<td>Invalid command keyword or invalid command keyword combination.</td>
<td></td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>No requests were successful.</td>
<td></td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004004'</td>
<td>No CQS address space.</td>
<td></td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004018'</td>
<td>No resource structure, or resource structure is not available.</td>
<td></td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004100'</td>
<td>Resource structure is full.</td>
<td></td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004104'</td>
<td>No RM address space.</td>
<td></td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004108'</td>
<td>No SCI address space.</td>
<td></td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004300'</td>
<td>Command is not allowed because online change for MODBLKS is enabled (DFSDFxxyy or DFSFGxxyy defined with MODBLKS=OLC, or MODBLKS not defined).</td>
<td></td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004500'</td>
<td>IMS is not enabled to use the repository.</td>
<td></td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004501'</td>
<td>RM is not enabled to use the repository.</td>
<td></td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004502'</td>
<td>Repository is not available.</td>
<td></td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004503'</td>
<td>Repository is stopped.</td>
<td></td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004504'</td>
<td>Repository spare recovery is in progress.</td>
<td></td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004505'</td>
<td>No IMS resource list exists, or no resources for the resource type exist in the IMS resource list.</td>
<td></td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004507'</td>
<td>Access to the repository was denied.</td>
<td></td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004508'</td>
<td>Repository maximum put length exceeded.</td>
<td></td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004509'</td>
<td>RM data version is lower than the IMS data version.</td>
<td></td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000450A'</td>
<td>Repository Server (RS) is being shut down.</td>
<td></td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000450B'</td>
<td>RS is not available.</td>
<td></td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000450C'</td>
<td>RS is busy.</td>
<td></td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000450D'</td>
<td>RM failed to define some of the internal fields related to the IMSRSC repository.</td>
<td></td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'0000501C'</td>
<td>IMODULE GETMAIN error.</td>
<td></td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005100'</td>
<td>RM request error.</td>
<td></td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005104'</td>
<td>CQS error.</td>
<td></td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005108'</td>
<td>SCI request error.</td>
<td></td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005110'</td>
<td>Repository error.</td>
<td></td>
</tr>
</tbody>
</table>
Table 207. Return and reason codes for the QUER Y TRANDESC command (continued)

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000014'</td>
<td>X'0000551C'</td>
<td>A request to view the data in the repository was rejected because a corrupted resource list was detected. The QUERY TRANDESC command is rejected because the resource list is unusable. Contact IBM Software Support. Send in the output from the command in error, and a dump of the local RM address space where the command executed or the dump of all RM address spaces in the IMSplex. Also send a copy of the IMSSRC repository RID and RMD data sets.</td>
</tr>
</tbody>
</table>

Table 208. Completion codes for the QUER Y TRANDESC command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command completed successfully for the transaction descriptor.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>Transaction descriptor name is invalid, or the wildcard parameter specified does not match any descriptor names.</td>
</tr>
<tr>
<td>90</td>
<td>INTERNAL ERROR</td>
<td></td>
</tr>
</tbody>
</table>

Examples

The following are examples of the QUER Y TRANDESC command:

Example 1 for QUER Y TRANDESC command:

TSO SPOC input:

QRY TRANDESC SHOW(ALL)

TSO SPOC output:

(Scroll to the right screen 1)

<table>
<thead>
<tr>
<th>DescName</th>
<th>MbrName</th>
<th>CC</th>
<th>LPSName</th>
<th>LCls</th>
<th>LLCT</th>
<th>LPLCT</th>
<th>LPLCTTime</th>
<th>LCPR1</th>
<th>LNPRI</th>
<th>LLPRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONVDESC</td>
<td>IMS1</td>
<td>0</td>
<td>DFSSAM04</td>
<td>1</td>
<td>65535</td>
<td>65535</td>
<td>6553500</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>DFS0STRI</td>
<td>IMS1</td>
<td>0</td>
<td>DFSSAM04</td>
<td>1</td>
<td>65535</td>
<td>65535</td>
<td>6553500</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>FPEDESC</td>
<td>IMS1</td>
<td>0</td>
<td>EMHPSB2</td>
<td>1</td>
<td>0</td>
<td>65535</td>
<td>6553500</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>FPPDESC</td>
<td>IMS1</td>
<td>0</td>
<td>DFSSAM04</td>
<td>1</td>
<td>65535</td>
<td>65535</td>
<td>6553500</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>MCSIDESC</td>
<td>IMS1</td>
<td>0</td>
<td>CPGM1B1</td>
<td>1</td>
<td>65535</td>
<td>65535</td>
<td>6553500</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

(Scroll to the right screen 2)

<table>
<thead>
<tr>
<th>DescName</th>
<th>MbrName</th>
<th>LSegSz</th>
<th>LSegNo</th>
<th>LParLim</th>
<th>LMaxRgn</th>
<th>LEditRtn</th>
<th>LFP</th>
<th>LEMHSBsz</th>
<th>LcmMode</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONVDESC</td>
<td>IMS1</td>
<td>0</td>
<td>0</td>
<td>65535</td>
<td>0</td>
<td>N</td>
<td>0</td>
<td>N</td>
<td>SNGL</td>
</tr>
<tr>
<td>DFS0STRI</td>
<td>IMS1</td>
<td>0</td>
<td>0</td>
<td>65535</td>
<td>0</td>
<td>N</td>
<td>0</td>
<td>E</td>
<td>200</td>
</tr>
<tr>
<td>FPEDESC</td>
<td>IMS1</td>
<td>0</td>
<td>0</td>
<td>65535</td>
<td>0</td>
<td>P</td>
<td>256</td>
<td>SNGL</td>
<td></td>
</tr>
<tr>
<td>FPPDESC</td>
<td>IMS1</td>
<td>0</td>
<td>0</td>
<td>65535</td>
<td>0</td>
<td>N</td>
<td>0</td>
<td>N</td>
<td>SNGL</td>
</tr>
</tbody>
</table>

(Scroll to the right screen 3)

<table>
<thead>
<tr>
<th>DescName</th>
<th>MbrName</th>
<th>LMsgType</th>
<th>LSPATrunc</th>
<th>LSPASz</th>
<th>LSIDR</th>
<th>LSIOL</th>
<th>LDCLWA</th>
<th>LDirRoute</th>
<th>LEditUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONVDESC</td>
<td>IMS1</td>
<td>MULTSEG</td>
<td>R</td>
<td>128</td>
<td>10</td>
<td>10</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>DFS0STRI</td>
<td>IMS1</td>
<td>MULTSEG</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>FPEDESC</td>
<td>IMS1</td>
<td>SNGLSEG</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>FPPDESC</td>
<td>IMS1</td>
<td>SNGLSEG</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>MCSIDESC</td>
<td>IMS1</td>
<td>MULTSEG</td>
<td>0</td>
<td>12</td>
<td>32</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

(Scroll to the right screen 4)

<table>
<thead>
<tr>
<th>DescName</th>
<th>MbrName</th>
<th>LInq</th>
<th>LRecover</th>
<th>LResp</th>
<th>LRemote</th>
<th>LSerial</th>
<th>LWFI</th>
<th>LAOCDMD</th>
<th>LConv</th>
<th>LTranStat</th>
</tr>
</thead>
</table>

Chapter 5. QUERY commands
OM API input:

**CMD(QUERY TRANDESC SHOW(ALL))**

OM API output:

```xml
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2011.182 01:49:24.663483</statime>
<stotime>2011.182 01:49:24.664394</stotime>
<brk>
<rqsttkn1>USRT005 10184924</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>IMS1</master>
</cmd>
<brk>
</imsout>
```

**CMDRSFHDR**

```xml
<hdr slbl="DESC" llbl="DescName" scope="LCL" sort="a" key="1"
scroll="no" len="8" dtype="CHAR" align="left"/>
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" key="5"
scroll="no" len="8" dtype="CHAR" align="left"/>
<hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0"
scroll="yes" len="4" dtype="INT" align="right" skipb="no"/>
<hdr slbl="CCTXT" llbl="CCText" scope="LCL" sort="n" key="0"
scroll="yes" len="*" dtype="CHAR" skipb="yes" align="left"/>
<hdr slbl="PSB" llbl="LPSBname" scope="LCL" sort="n" key="0"
scroll="yes" len="8" dtype="CHAR" align="left"/>
<hdr slbl="LCLS" llbl="LClst" scope="LCL" sort="n" key="0"
scroll="yes" len="3" dtype="INT" align="right"/>
<hdr slbl="LLCT" llbl="LLCT" scope="LCL" sort="n" key="0"
scroll="yes" len="5" dtype="INT" align="right"/>
```

594 Commands, Volume 2: IMS Commands N - V
<table>
<thead>
<tr>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 3</th>
<th>Column 4</th>
<th>Column 5</th>
<th>Column 6</th>
<th>Column 7</th>
<th>Column 8</th>
<th>Column 9</th>
<th>Column 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLBL</td>
</tr>
<tr>
<td>SLTRN</td>
<td>SLCONV</td>
<td>SLREMOTE</td>
<td>SLINQ</td>
<td>SLEDIT</td>
<td>SLSIDL</td>
<td>SLMPL</td>
<td>SMPART</td>
<td>SMLPN</td>
<td>SMLNT</td>
</tr>
<tr>
<td>SLCONF</td>
<td>SLSIDL</td>
<td>SLCALC</td>
<td>SLEDT</td>
<td>SNPART</td>
<td>SMLPN</td>
<td>SMLNT</td>
<td>SLRMT</td>
<td>SLRMT</td>
<td>SLRMT</td>
</tr>
<tr>
<td>SLRMT</td>
</tr>
<tr>
<td>SLRMT</td>
</tr>
<tr>
<td>SLRMT</td>
</tr>
<tr>
<td>SLRMT</td>
</tr>
<tr>
<td>SLRMT</td>
</tr>
<tr>
<td>SLRMT</td>
</tr>
<tr>
<td>SLRMT</td>
</tr>
<tr>
<td>SLRMT</td>
</tr>
<tr>
<td>SLRMT</td>
</tr>
<tr>
<td>SLRMT</td>
</tr>
<tr>
<td>SLRMT</td>
</tr>
<tr>
<td>SLRMT</td>
</tr>
<tr>
<td>SLRMT</td>
</tr>
<tr>
<td>SLRMT</td>
</tr>
<tr>
<td>SLRMT</td>
</tr>
<tr>
<td>SLRMT</td>
</tr>
<tr>
<td>SLRMT</td>
</tr>
<tr>
<td>SLRMT</td>
</tr>
<tr>
<td>SLRMT</td>
</tr>
<tr>
<td>SLRMT</td>
</tr>
<tr>
<td>SLRMT</td>
</tr>
<tr>
<td>SLRMT</td>
</tr>
<tr>
<td>SLRMT</td>
</tr>
</tbody>
</table>
CREA defines descriptor DFSDSTR1 at IMS cold start time to contain the IMS default fields that are displayed on every screen. The fields that are blank are not applicable to the specified transaction descriptor. IMS defines descriptor DFSDSTR1 at IMS cold start time to contain the IMS default values for transactions. A few other descriptors were created dynamically with CREATE TRANDESC commands, including CONVDESC for conversational transactions, FPEDESC for FP exclusive transactions, FPPDESC for FP potential transactions, and MSCDESC for remote MSC transactions. DFSDSTR1 shows the last access time for TimeAccess, which was updated by the last CREATE TRAN or CREATE TRANDESC command that referred to it as the default model.
Example 2 for QUERY TRANDESC command

TSO SPOC input:
QRY TRANDESC NAME(*) SHOW(DEFN,CLASS,FP)

TSO SPOC output:

<table>
<thead>
<tr>
<th>DescName</th>
<th>MbrName</th>
<th>CC</th>
<th>Repo</th>
<th>IMSid</th>
<th>Cls</th>
<th>LCls</th>
<th>FP</th>
<th>LFP</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONVDESC IMS1</td>
<td>0</td>
<td>Y</td>
<td>1</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONVDESC IMS1</td>
<td>0</td>
<td>IMS1</td>
<td>1</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONVDESC IMS2</td>
<td>0</td>
<td>IMS2</td>
<td>1</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONVDESC IMS3</td>
<td>0</td>
<td>IMS3</td>
<td>1</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFSDSTR1 IMS1</td>
<td>0</td>
<td>IMS1</td>
<td>1</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFSDSTR1 IMS2</td>
<td>0</td>
<td>IMS2</td>
<td>1</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFSDSTR1 IMS3</td>
<td>0</td>
<td>IMS3</td>
<td>1</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPEDESC IMS1</td>
<td>0</td>
<td>Y</td>
<td>1</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPEDESC IMS1</td>
<td>0</td>
<td>IMS1</td>
<td>1</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPEDESC IMS2</td>
<td>0</td>
<td>IMS2</td>
<td>1</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPEDESC IMS3</td>
<td>0</td>
<td>IMS3</td>
<td>1</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPPEDESC IMS1</td>
<td>0</td>
<td>Y</td>
<td>1</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPPEDESC IMS1</td>
<td>0</td>
<td>IMS1</td>
<td>1</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPPEDESC IMS2</td>
<td>0</td>
<td>IMS2</td>
<td>1</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPPEDESC IMS3</td>
<td>0</td>
<td>IMS3</td>
<td>1</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSCDESC IMS1</td>
<td>0</td>
<td>Y</td>
<td>1</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSCDESC IMS1</td>
<td>0</td>
<td>IMS1</td>
<td>1</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSCDESC IMS1</td>
<td>0</td>
<td>Y</td>
<td>1</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSCDESC IMS1</td>
<td>0</td>
<td>IMS1</td>
<td>1</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSCDESC IMS1</td>
<td>0</td>
<td>IMS1</td>
<td>1</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSCDESC IMS1</td>
<td>0</td>
<td>IMS1</td>
<td>1</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSCDESC IMS1</td>
<td>0</td>
<td>IMS1</td>
<td>1</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSCDESC IMS2</td>
<td>0</td>
<td>IMS2</td>
<td>1</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSCDESC IMS3</td>
<td>0</td>
<td>IMS3</td>
<td>1</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSCDESC IMS3</td>
<td>0</td>
<td>IMS3</td>
<td>1</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OM API input:
CMD(QRY TRANDESC NAME(*) SHOW(DEFN,CLASS,FP))

OM API output:

```xml
<imsout>
 <ctl>
 <omname>OM10M</omname>
 <omvsn>1.5.0</omvsn>
 <xmlvsn>20</xmlvsn>
 <statime>2011.190 02:08:43.039351</statime>
 <stotime>2011.190 02:08:43.120611</stotime>
 <staseq>C80A986AB5A77887</staseq>
 <stoseq>C80A986AC97E3A9A</stoseq>
 <rqsttkn1>USRT005 10190843</rqsttkn1>
 <rc>00000000</rc>
 <rsn>00000000</rsn>
 </ctl>
 <cmd>
 <master>IMS1</master>
 <userid>USRT005</userid>
 <verb>QRY</verb>
 <kwd>TRANDESC</kwd>
 <input>QRY TRANDESC NAME(*) SHOW(DEFN,CLASS,FP)</input>
 </cmd>
 <cmdrsphdr>
 <hdr slbl="DESC" llbl="DescName" scope="LCL" sort="a" key="1" scroll="no" len="8" dtype="CHAR" align="left"/>
 <hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" key="5" scroll="no" len="8" dtype="CHAR" align="left"/>
 <hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0" scroll="yes" len="4" dtype="INT" align="right" skipb="no"/>
 <hdr slbl="CCTXT" llbl="CCText" scope="LCL" sort="n" key="0" scroll="yes" len="*" dtype="CHAR" skipb="yes" align="left"/>
```
**Explanation:** The stored resource definitions and the runtime resource definitions for the specified resources are returned. The Dflt (Default) column is returned because the local IMS runtime definitions are returned to identify the default descriptor. DFSDDSTR1 is the default descriptor and is only at each IMS system. The default descriptor definitions are not in the repository. The TRANDESC descriptor exists only in the repository.

**Related concepts:**

[How to interpret CSL request return and reason codes (System Programming APIs)](598 Commands, Volume 2: IMS Commands N - V)
QUERY USER command

Use the QUERY USER command to display information about VTAM users across the IMSplex. A user is either a dynamic (ETO) user, or a static or dynamic (ETO) ISC subpool user. In this context, a user ID that is used for user or terminal security is not considered as a user, but rather as a user ID. This command can be specified only through the OM API and is valid on an XRF alternate.

Subsections:
- “Environment”
- “Syntax”
- “Keywords” on page 600
- “Usage notes” on page 604
- “Output fields” on page 605
- “QUERY USER status” on page 610
- “Return, reason, and completion codes” on page 611
- “Examples” on page 613

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY USER</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SHOW</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STATUS</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax
The following keywords are valid for the QUERY USER command:

**NAME()**
Specifies the names of one or more users (dynamic user or ISC subpool user) that are to be displayed. Valid names are 1-8 characters, and wildcards can be specified. To display all users, specify NAME(*). NAME(*) is the default.

**SHOW()**
Specifies the user output fields to be returned. The user name is always returned along with the name of the IMS that created the output and the completion code. If SHOW is not specified, only the user names are returned, provided that the STATUS filter is not specified. This provides a method for a system management application to obtain a list of all user names that are currently known in the IMSplex.

Two parameters, GLOBAL and LOCAL, are used to specify the location (global resources or local resources) where IMS should obtain the information that is
to be displayed. The default is both GLOBAL and LOCAL. The rest of the 
parameters are used to specify what information is displayed.

The parameters supported with the SHOW keyword, which can be specified in 
any order, are:

ALL
Returns all of the output fields, except for those fields displayed when the 
LTERM and CONV parameters are specified. To display LTERM and 
conversation information with all other output, specify 
SHOW(ALL,LTERM,CONV).

AUTOLOGIN
Displays the current autologon information for the specified user. This 
includes the name of the node with which to establish a session, the VTAM 
mode table name, the name of the node descriptor to be used to build the 
node, and (if ISC) the identifier of the other system half-session qualifier.

CONV
The conversation ID, transaction, and conversation status associated with 
the user. Each conversation is returned on a separate command response 
display line. Conversation status is not included when SHOW(ALL) is 
specified. To display conversation information with all other output, 
specify SHOW(ALL,CONV).

EMHQ
Displays the user message queue count in the Expedited Message Handler 
(EMH) queues. The queue count is the sum of the queue counts for each 
LTERM associated with the specified user.

EMHQ is valid only when the GLOBAL parameter is specified on the 
SHOW keyword. If GLOBAL is not specified, then the EMHQ parameter is 
ignored.

EMHQ is processed by the command master only. It is ignored by all other 
IMS systems.

EMHQ is valid only if shared EMH is used in a shared queues 
environment. Otherwise, this parameter is ignored.

If the user resource exists in the resource structure, then the LTERMS 
associated with the global user resource are used to obtain the queue 
counts from the EMH queues. Otherwise, the LTERMS associated with the 
local user resource are used, but if the user does not exist locally on the 
command master, then the queue count is 0.

GLOBAL
When GLOBAL is specified, the command master displays global 
information, depending on the other SHOW parameters specified. This 
includes information from shared queues and the resource structure.

The GLOBAL parameter is processed by the command master only. All 
other IMS systems ignore this parameter. If LOCAL is not also specified, 
then all IMS systems other than the command master ignore the command.

GLOBAL is applicable only when the command master is using shared 
queues or sysplex terminal management (or both). GLOBAL is not 
applicable when the command master is not using shared queues or 
sysplex terminal management. In this environment, if LOCAL is also 
specified, then GLOBAL is ignored. Otherwise, the command master rejects 
the command.
If shared queues are enabled, and global queue counts are requested, then the command master will make requests to CQS to determine the appropriate queue counts. This includes both MSGQ and EMHQ.

If sysplex terminal management is enabled, then the command master will make requests to RM to determine the appropriate global status.

If both GLOBAL and LOCAL are specified (which is the default), then the command master builds global and local information separately. Global information is displayed as one output line (or set of output lines), and local information is displayed as another output line (or set of output lines).

**ID**
Displays the other half-session qualifier name of the ISC node.

**LOCAL**
When LOCAL is specified, then all IMS systems including the command master display local information, depending on the other SHOW parameters specified. This includes information local to the IMS processing the command.

The LOCAL parameter is processed by all IMS systems, including the command master.

LOCAL is applicable in any environment, regardless of whether shared queues or sysplex terminal management are used.

If both GLOBAL and LOCAL are specified (which is the default), then the command master builds global and local information separately. Global information is displayed as one output line (or set of output lines), and local information is displayed as another output line (or set of output lines).

**LTERM**
Displays the logical terminal (lterm) names, if any, associated with the user. A user might have zero or more logical terminals associated with it. Each lterm associated with the user is returned on a separate command response line.

The lterm status is not included when SHOW(ALL) is specified. To display lterm information with all other output, specify SHOW(ALL, LTERM).

**NODE**
Displays the dynamic or ISC node that the user is associated with.

**OWNER**
Displays the owner of the user resource in the resource structure. This applies only when sysplex terminal management is enabled, and is processed by the command master only. All other IMS systems ignore this parameter.

The owner is the IMSID (or RSENAME for XRF systems) of the IMS system that owns the user. An IMS system owns a user resource if the resource is active (the user is signed on), or an IMS system is maintaining significant status for that resource.

**PRESET**
Displays the preset destination name for a user. A user is in preset destination mode following a /SET command. The preset destination name is either a transaction name or a logical terminal (LTERM) name. All messages entered from this user are sent to the preset destination transaction or LTERM.
QCNT
Displays the user message queue count. The queue count is the sum of the queue counts for each lterm associated with the specified user.

The local queue counts value returned on this command represents the messages being processed by the IMS system where this command is issued. In a shared-queues environment, do not use the local queue counts for queue evaluation purposes. The global queue counts, which are returned on this command, represent the current message queue counts on the shared queues structure.

When the LOCAL parameter is also specified on the SHOW keyword, then all IMS systems that process the command, including the command master, display the local queue count. This is valid whether shared message queues are enabled.

When the GLOBAL parameter is also specified on the SHOW keyword, and shared message queues are enabled, then the command master displays the global queue count on the shared message queues (MSGQ). If the user resource exists in the resource structure, then the lterms associated with the global user resource are used to obtain the queue counts from shared queues. Otherwise, the lterms associated with the local user resource are used, but if the user does not exist locally on the command master, then the queue count is 0.

The local and global queue counts are displayed as separate output fields.

RECOVERY
Displays the status recovery mode (SRM) and level of recovery for the user. End-user significant status can be conversation, Fast Path, full-function response mode, or STSN (set-and-test-sequence-number) status.

SRM determines where end-user significant status, if any exists, is recovered following a user signoff, or session or IMS termination. The output displays the SRM for the user as either GLOBAL (sysplex terminal management recovers it in the resource structure), LOCAL (IMS recovers it locally, which indicates an affinity to a particular IMS), or NONE (status is discarded).

Level of recovery determines what end-user significant status, if any exists, is recovered (if SRM is GLOBAL or LOCAL). The output displays whether conversation status is recovered (RCVYCONV), Fast Path status is recovered (RCVYFP), full-function response mode is recovered (RCVYRESP), and STSN status is recovered (RCVYSTSN).

STATUS
Returns local or global status of the user. See “QUERY USER status” on page 610 for a list and meaning of possible status that might be returned.

USERID
The RACF user ID that was used to sign the user on to a node.

VERSION
Displays the RM version number of the user resource. This is the version number assigned to the user, which is assigned by MVS, and maintained by RM, when the resource is created or updated in the resource structure. VERSION applies only when sysplex terminal management is enabled. VERSION is ignored when sysplex terminal management is not enabled.
**STATUS()**

Selects users for display that possess at least one of the specified user statuses. The status might exist locally or globally if sysplex terminal management (STM) is enabled.

The STATUS filter is valid in both a sysplex terminal management environment and in a non-sysplex terminal management environment. In a sysplex terminal management environment, the status selected might exist locally, globally, or both. If sysplex terminal management is not enabled, then the status only exists locally.

If SHOW(LOCAL) is specified, then IMS will select only those users with the appropriate status in the local system. The command is processed by all IMS systems, including the command master.

If SHOW(GLOBAL) is specified, and sysplex terminal management is enabled, then IMS will select only those users with the appropriate status in the resource structure. The command is processed only by the command master. If SHOW(GLOBAL) is specified, but sysplex terminal management is not enabled, then the command is rejected.

If SHOW(GLOBAL,LOCAL) is specified (the default), then IMS will select those users with the appropriate status either locally or in the resource structure (if sysplex terminal management is enabled). The command is processed by all IMS systems. The command master processes both global and local information.

The output returned when the status filter is specified includes the status of the user, even if SHOW(STATUS) is not specified.

To determine which filters can be used to select users with corresponding status, see "QUERY USER status" on page 610.

**Usage notes**

The QUERY USER command can be specified only through the OM API.

The QUERY USER command can be issued on an XRF alternate system, but SHOW(GLOBAL) is not supported. Only local information can be displayed.

The processing of the QUERY USER command is different depending on whether IMS sysplex terminal management is enabled.

- If IMS sysplex terminal management is not enabled, processing is local for each system. The results of type-1 and type-2 commands are similar.
- If IMS sysplex terminal management is enabled, type-1 and type-2 command processing is similar when displaying local information. However, they differ in how global information is displayed.
- For type-1 /DISPLAY commands with IMS sysplex terminal management enabled, the command master displays information from either the resource structure or the local system, but not both. If the resource being displayed is not owned by any system or is owned by the command master, the command master displays the global resource. However, if the resource is owned by a system other than the command master, the command master displays only the local resource, and the owning system is responsible for displaying the global resource.
- For type-2 QUERY commands with IMS sysplex terminal management enabled, the command master is the only system that displays global resource information, regardless of whether the resource is owned. In addition, the
command master displays local resource information. All other IMS systems that process the command display local resource information only. This approach allows more flexibility in displaying all information in an IMSplex.

The SHOW keyword determines which IMS systems process the command, and what information is displayed.

- If SHOW(GLOBAL) is specified, then the command master displays global information, which includes the global queue count if shared queues are enabled, and status from the resource structure if sysplex terminal management is enabled (STM=YES defined in DFSDCxxx PROCLIB member). This is true whether or not the user is active on any particular IMS system. All other IMS systems to which OM routes the command ignore the GLOBAL parameter with return code 'X'00000004' and reason code 'X'00001000'.
- If SHOW(LOCAL) is specified, then each IMS system to which OM routes the command (including the command master) processes the command, and displays information that is local to each system.
- If both GLOBAL and LOCAL are specified (which is the default), then the command master displays both global and local information, and all other IMS systems to which OM routes the command displays local information.

**Similar IMS type-1 commands**

The following table shows variations of the QUER Y USER command and the type-1 IMS commands that perform similar functions.

*Table 210. Type-1 equivalents for the QUERY USER command*

<table>
<thead>
<tr>
<th>QUERY USER command</th>
<th>Similar IMS type-1 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY USER SHOW(AUTOLOGON)</td>
<td>/DISPLAY USER user AUTOLOGON</td>
</tr>
<tr>
<td>QUERY USER SHOW(CONV)</td>
<td>/DISPLAY CONV USER user</td>
</tr>
<tr>
<td>QUERY USER SHOW(EMHQ)</td>
<td>/DISPLAY USER user QCNT EMHQ</td>
</tr>
<tr>
<td>QUERY USER SHOW(ID)</td>
<td>/DISPLAY ASMT USER user</td>
</tr>
<tr>
<td>QUERY USER SHOW(LTERM)</td>
<td>/DISPLAY ASMT USER user</td>
</tr>
<tr>
<td>QUERY USER SHOW(NODE)</td>
<td>/DISPLAY ASMT USER user</td>
</tr>
<tr>
<td></td>
<td>/DISPLAY USER user</td>
</tr>
<tr>
<td>QUERY USER SHOW(OWNER)</td>
<td>/DISPLAY USER user RECOVERY</td>
</tr>
<tr>
<td>QUERY USER SHOW(PRESET)</td>
<td>/DISPLAY USER user</td>
</tr>
<tr>
<td>QUERY USER SHOW(QCNT)</td>
<td>/DISPLAY USER user</td>
</tr>
<tr>
<td></td>
<td>/DISPLAY USER user QCNT</td>
</tr>
<tr>
<td>QUERY USER SHOW(RECOVERY)</td>
<td>/DISPLAY USER user RECOVERY</td>
</tr>
<tr>
<td>QUERY USER SHOW(STATUS)</td>
<td>/DISPLAY USER user</td>
</tr>
<tr>
<td>QUERY USER SHOW(USERID)</td>
<td>/DISPLAY ASMT USER user</td>
</tr>
<tr>
<td></td>
<td>/DISPLAY USER user</td>
</tr>
<tr>
<td>QUERY USER STATUS(CONV)</td>
<td>/DISPLAY CONV</td>
</tr>
<tr>
<td>QUERY USER STATUS(status)</td>
<td>/DISPLAY STATUS USER</td>
</tr>
</tbody>
</table>

**Output fields**

The following table shows the QUERY USER output fields. The columns in the table are:
**Short label**
Contains the short label generated in the XML output.

**Long label**
Contains the column heading for the output field in the formatted output.

**SHOW parameter**
Identifies the parameter on the SHOW keyword that caused the field to be generated. *Error* appears for output fields that are returned for a non-zero completion code. N/A (not applicable) appears for output fields that are always returned.

**Scope**
Identifies the scope of the output field. GBL indicates that the field can be generated only by the command master when displaying global information for SHOW(GLOBAL). LCL indicates that the field can be generated by any IMS displaying local information for SHOW(LOCAL). N/A (not applicable) appears for output fields that are always returned.

**Meaning**
Provides a brief description of the output field.

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>SHOW parameter</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTID</td>
<td>AutLID</td>
<td>AUTOLOGON</td>
<td>GBL</td>
<td>Identifier of the other system half-session qualifier for autologon in the resource structure. This is only applicable if the user is associated with a parallel session ISC node.</td>
</tr>
<tr>
<td>AUTLD</td>
<td>AutLDsc</td>
<td>AUTOLOGON</td>
<td>GBL</td>
<td>The logon descriptor for autologon in the resource structure.</td>
</tr>
<tr>
<td>AUTMD</td>
<td>AutLMdt</td>
<td>AUTOLOGON</td>
<td>GBL</td>
<td>The VTAM mode table name for autologon in the resource structure.</td>
</tr>
<tr>
<td>AUTND</td>
<td>AutLNode</td>
<td>AUTOLOGON</td>
<td>GBL</td>
<td>The node name for autologon in the resource structure.</td>
</tr>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>N/A</td>
<td>Completion code for the line of output. The completion code indicates whether IMS was able to process the command for the specified resource. See &quot;Return, reason, and completion codes&quot; on page 611 for more information. The completion code is always returned.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>Error</td>
<td>N/A</td>
<td>Completion code text that briefly explains the meaning of the non-zero completion code. This field is returned only for an error completion code.</td>
</tr>
<tr>
<td>CONVID</td>
<td>ConvID</td>
<td>CONV</td>
<td>GBL</td>
<td>The conversation ID for a conversation associated with the user, as it exists in the resource structure. A user might have zero, one, or more conversations. Each conversation will have its own line of output.</td>
</tr>
</tbody>
</table>
| CONVSTT     | ConvStat   | CONV           | GBL   | The status of a conversation associated with the user, as it exists in the resource structure. A user might have zero, one, or more conversations. The status can be:  
  - CONVHELD: Conversation is held  
  - CONVACTV: Conversation is active  
  - CONVSCHD: Conversation is scheduled |

Table 211. Output fields for the QUERY USER command
Table 211. Output fields for the QUERY USER command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>SHOW parameter</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONVTRN</td>
<td>ConvTran</td>
<td>CONV</td>
<td>GBL</td>
<td>The transaction for a conversation associated with the user, as it exists in the resource structure. A user might have zero, one, or more conversations.</td>
</tr>
<tr>
<td>EMHQ</td>
<td>EMHQCnt</td>
<td>EMHQ</td>
<td>GBL</td>
<td>Global item queue count in the EMH (Expedited Message Handler) queues. EMHQ is displayed only if shared EMH is used.</td>
</tr>
<tr>
<td>GBL</td>
<td>Gbl</td>
<td>GLOBAL</td>
<td>GBL</td>
<td>If ‘Y’, then the output reflects the status found globally in RM. If blank, then the output reflects the status found locally.</td>
</tr>
<tr>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>GBL</td>
<td>For ISC parallel-session terminals, displays the global half-session qualifier of the other system.</td>
</tr>
<tr>
<td>LAUTID</td>
<td>LAutLID</td>
<td>AUTOLOGON</td>
<td>LCL</td>
<td>Identifier of the other system half-session qualifier for autologon in the local system. This is applicable only if the user is associated with a parallel session ISC node.</td>
</tr>
<tr>
<td>LAUTLD</td>
<td>LAutLDsc</td>
<td>AUTOLOGON</td>
<td>LCL</td>
<td>The logon descriptor for autologon in the local system.</td>
</tr>
<tr>
<td>LAUTMD</td>
<td>LAutLMdt</td>
<td>AUTOLOGON</td>
<td>LCL</td>
<td>The VTAM mode table name for autologon in the local system.</td>
</tr>
<tr>
<td>LAUTND</td>
<td>LAutLNode</td>
<td>AUTOLOGON</td>
<td>LCL</td>
<td>The node name for autologon in the local system.</td>
</tr>
<tr>
<td>LCONVID</td>
<td>LConvID</td>
<td>CONV</td>
<td>LCL</td>
<td>The conversation ID for a conversation associated with the user, as it exists in the local system. A user might have zero, one, or more conversations. Each conversation will have its own line of output.</td>
</tr>
<tr>
<td>LCONVSTT</td>
<td>LConvStat</td>
<td>CONV</td>
<td>LCL</td>
<td>The status of a conversation associated with the user, as it exists in the local system. A user might have zero, one, or more conversations. The status can be: • CONVHELD: Conversation is held • CONVACTV: Conversation is active • CONVSCHD: Conversation is scheduled</td>
</tr>
<tr>
<td>LCONVTRN</td>
<td>LConvTran</td>
<td>CONV</td>
<td>LCL</td>
<td>The transaction for a conversation associated with the user, as it exists in the local system. A user might have zero, one, or more conversations.</td>
</tr>
<tr>
<td>LID</td>
<td>LID</td>
<td>ID</td>
<td>LCL</td>
<td>For ISC parallel-session terminals, displays the local half-session qualifier of the other system.</td>
</tr>
<tr>
<td>LLTERM</td>
<td>LLterm</td>
<td>LTERM</td>
<td>LCL</td>
<td>Local logical terminal names. The logical terminal names associated with the user.</td>
</tr>
<tr>
<td>LNODE</td>
<td>LNode</td>
<td>NODE</td>
<td>LCL</td>
<td>Identifies the dynamic or static node associated with the user on the local system.</td>
</tr>
<tr>
<td>LPRST</td>
<td>LPreset</td>
<td>PRESET</td>
<td>LCL</td>
<td>Identifies the preset destination transaction or LTERM name when the user is in preset destination mode, which is established by the /SET command. All messages entered at this terminal are sent to the preset destination transaction code or LTERM.</td>
</tr>
</tbody>
</table>
### Table 211. Output fields for the QUERY USER command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>SHOW parameter</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>LQ</td>
<td>LQCnt</td>
<td>QCNT</td>
<td>LCL</td>
<td>Local queue count.</td>
</tr>
<tr>
<td>LRCVY</td>
<td>LRcvy</td>
<td>RECOVERY</td>
<td>LCL</td>
<td>The level of recovery for end-user significant status in the local system, which indicates what type of status is recoverable. Any value presented here implies that the corresponding status is recoverable. If SRM is LOCAL, the status will be recovered locally. If SRM is GLOBAL, the status will be recovered globally. These values are not applicable if SRM is NONE or there is no SRM. The status values that can be returned (more than one are possible) are: • CONV: IMS conversations are recoverable (RCVYCONV=YES). • FP: Fast Path status is recoverable (RCVYFP=YES). • RESP: Full-function response mode status is recoverable (RCVYRESP=YES). • STSN: STSN status is recoverable (RCVYSTSN=YES).</td>
</tr>
<tr>
<td>LSRM</td>
<td>LSRM</td>
<td>RECOVERY</td>
<td>LCL</td>
<td>The status recovery mode in the local system, which determines where the end-user significant status is maintained and recovered from. The output will be one of the following: • GBL: Status is saved globally in the IMS resource structure. • LCL: Status is saved in local control blocks and log records. • NONE: Status is not saved in the IMS resource structure or log records. • Blank: SRM is not yet established, or the user is not signed on and there is no end-user significant status.</td>
</tr>
<tr>
<td>LSTT</td>
<td>LclStat</td>
<td>STATUS</td>
<td>LCL</td>
<td>Local user status. See “QUERY USER status” on page 610 for a list and explanation of the possible user status.</td>
</tr>
<tr>
<td>LTERM</td>
<td>Lterm</td>
<td>LTERM</td>
<td>GBL</td>
<td>Global logical terminal names. The logical terminal names associated with the user.</td>
</tr>
<tr>
<td>LUID</td>
<td>LUserid</td>
<td>USERID</td>
<td>LCL</td>
<td>Identifies the local user ID signed on to the user.</td>
</tr>
<tr>
<td>LVER</td>
<td>LVersion#</td>
<td>VERSION</td>
<td>LCL</td>
<td>Version number for the user resource being maintained in the local system. This field applies only when STM is enabled.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>N/A</td>
<td>IMSplex member (modular unit) that built the output line. IMS identifier of the IMS that built the output. The IMS identifier is always returned.</td>
</tr>
<tr>
<td>NODE</td>
<td>Node</td>
<td>NODE</td>
<td>GBL</td>
<td>Identifies the dynamic or static node associated with the user in the resource structure.</td>
</tr>
<tr>
<td>Short label</td>
<td>Long label</td>
<td>SHOW parameter</td>
<td>Scope</td>
<td>Meaning</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>----------------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>OWNER</td>
<td>Owner</td>
<td>OWNER</td>
<td>GBL</td>
<td>Resource owner. IMS identifier or RSENAME of IMS where the user is active. If no owning IMS system exists and RM contains an entry for the resource, the owner field will be blank.</td>
</tr>
<tr>
<td>QCNT</td>
<td>QCnt</td>
<td>QCNT</td>
<td>GBL</td>
<td>Global queue count on the shared queues. Global queue count can only be displayed if shared queues are used.</td>
</tr>
</tbody>
</table>
| RCVY        | Rcvy       | RECOVERY       | GBL   | The level of recovery for end-user significant status in the resource structure, which indicates what type of status is recoverable. Any value presented here implies that the corresponding status is recoverable. If SRM is LOCAL, the status will be recovered locally. If SRM is GLOBAL, the status will be recovered globally. These values are not applicable if SRM is NONE or there is no SRM. The status values that can be returned (more than one are possible) are:  
• CONV: IMS conversations are recoverable (RCVYCONV=YES).  
• FP: Fast Path status is recoverable (RCVYFP=YES).  
• STSN: STSN status is recoverable (RCVYSTSN=YES). |
| SRM         | SRM        | RECOVERY       | GBL   | The status recovery mode in the resource structure, which determines where the end-user significant status is maintained and recovered from. The output will be one of the following:  
• GBL: Status is saved globally in the IMS resource structure.  
• LCL: Status is saved in local control blocks and log records.  
• NONE: Status is not saved in the IMS resource structure or log records.  
• Blank: SRM is not yet established, or the user is not signed on and there is no end-user significant status. |
| STT         | Status     | STATUS         | GBL   | Global user status. See "QUERY USER status" on page 610 for a list and explanation of the possible node status. |
| UID         | Userid     | USERID         | GBL   | Identifies the RACF user ID signed on to the user. |
| USER        | User       | N/A            | N/A   | The user name. The user name is always returned. |
| VER         | Version#   | VERSION        | GBL   | Version number for the user resource being maintained in the resource structure. This field applies only when STM is enabled. |
**QUERY USER status**

The following table shows the possible user status that can be displayed. The columns in the table are:

**Status** The user status that is displayed.

**STATUS parameter** The STATUS() filter that will select users with the specified status.

**Scope** The scope of the status. GBL indicates that the status can be global (it exists in the resource structure when STM is enabled), and is returned with the STT short label. LCL indicates that the status can be local, and is returned with the LSTT short label.

**Meaning** Provides a brief description of the status.

*Table 212. QUERY USER status*

<table>
<thead>
<tr>
<th>Status</th>
<th>STATUS parameter</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALLOC</td>
<td>ALLOC</td>
<td>GBL and LCL</td>
<td>A user or ISC subpool is allocated to a node.</td>
</tr>
<tr>
<td>CONVACT</td>
<td>CONV</td>
<td>GBL and LCL</td>
<td>An active conversation exists.</td>
</tr>
<tr>
<td>CONVHELD</td>
<td>CONV</td>
<td>GBL and LCL</td>
<td>All conversations are held.</td>
</tr>
<tr>
<td>DEADQ</td>
<td>DEADQ</td>
<td>LCL</td>
<td>The user has dead letter queues, or whose last access time was outside the limit set by the DLQT JCL parameter. The DEADQ status can be removed by signing on the user or entering the /DEQUEUE or /ASSIGN command.</td>
</tr>
<tr>
<td>EXCL</td>
<td>EXCL</td>
<td>GBL and LCL</td>
<td>The user is in exclusive mode set by the /EXCLUSIVE command. The exclusive mode restricts the output received by the terminal affected.</td>
</tr>
<tr>
<td>MFST</td>
<td>MFST</td>
<td>GBL and LCL</td>
<td>The user is in MFSTEST mode, set by the UPDATE USER START(MFST) command or the /TEST MFS command. Terminals supported by Message Format Service use format blocks from a special test library if the requested format block is in the test library; otherwise the blocks are obtained from the production library.</td>
</tr>
<tr>
<td>PRST</td>
<td>PRST</td>
<td>LCL</td>
<td>The user is in preset destination mode. PRST mode is established by the /SET command. All messages entered at this terminal are sent to the preset destination transaction code or logical terminal.</td>
</tr>
<tr>
<td>RESP</td>
<td>RESP</td>
<td>LCL</td>
<td>The user is in response mode and the response reply message is available for output or in the process of being sent.</td>
</tr>
<tr>
<td>RESPINP</td>
<td>RESPINP</td>
<td>GBL and LCL</td>
<td>The user is in response mode and the response mode input is still in-doubt; for example, the response reply message is not available for output.</td>
</tr>
</tbody>
</table>
Table 212. QUERY USER status (continued)

<table>
<thead>
<tr>
<th>Status</th>
<th>STATUS parameter</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESPINPFP</td>
<td>RESPINPFP</td>
<td>GBL and LCL</td>
<td>The user is in Fast-Path response mode and the response mode input is still in-doubt; for example, the response reply message is not available for output.</td>
</tr>
<tr>
<td>RM</td>
<td>RM</td>
<td>GBL</td>
<td>The user exists in the resource structure managed by RM.</td>
</tr>
<tr>
<td>RMACTIVE</td>
<td>RMACTIVE</td>
<td>GBL</td>
<td>The user is active (signed on) in the IMSplex, as indicated in the RM structure (RM active).</td>
</tr>
<tr>
<td>RMOWNED</td>
<td>RMOWNED</td>
<td>GBL</td>
<td>The user is owned by an IMS system in the IMSplex, as indicated in the RM structure (RM owned).</td>
</tr>
<tr>
<td>STATIC</td>
<td>STATIC</td>
<td>GBL and LCL</td>
<td>The user was defined during system definition.</td>
</tr>
<tr>
<td>STOSGN</td>
<td>STOSGN</td>
<td>GBL and LCL</td>
<td>The user was stopped from signing on with the UPDATE USER command or the /STOP USER command.</td>
</tr>
<tr>
<td>TEST</td>
<td>TEST</td>
<td>LCL</td>
<td>The user is in test mode set by the /TEST command. Test or echo mode sends any input from the terminal back to the terminal.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

An IMS return and reason code is returned to OM by the QUERY USER command. The OM return and reason codes that may be returned as a result of the QUERY USER command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the QUERY USER command.

Table 213. Return and reason codes for the QUERY USER command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The command completed successfully.</td>
</tr>
<tr>
<td>X'00000004'</td>
<td>X'00001000'</td>
<td>The command was not processed on the IMS system as the IMS system is not the command master. No resource information is returned.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002014'</td>
<td>An invalid character was specified in the resource name.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002040'</td>
<td>An invalid parameter value was specified. An invalid SHOW or STATUS value might have been specified.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003000'</td>
<td>The command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code. See Table 214 on page 612 for details.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>The command was not successful for any resource. The command output contains a line for each resource, accompanied by its completion code. See Table 214 on page 612 for details.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004004'</td>
<td>Command processing terminated because CQS was not active.</td>
</tr>
<tr>
<td>Return code</td>
<td>Reason code</td>
<td>Meaning</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004005'</td>
<td>Command processing terminated because CQS was not connected to the queue structure.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000400C'</td>
<td>Command is not valid on the XRF alternate.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>Command is not valid on the RSR tracker.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004018'</td>
<td>Command processing terminated because the resource structure is not available.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000401C'</td>
<td>Command is not valid on the FDBR region.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000401C'</td>
<td>Command processing terminated because RM is not available.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000401C'</td>
<td>Command processing terminated because SCI is not available.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005004'</td>
<td>A DFSOCMD response buffer could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005008'</td>
<td>DFSPOOL storage could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005100'</td>
<td>Command processing terminated because of an RM error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005104'</td>
<td>Command processing terminated because of a CQS error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005108'</td>
<td>Command processing terminated because of an SCI error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005FFF'</td>
<td>Command processing terminated because of an internal IMS error.</td>
</tr>
</tbody>
</table>

The following table includes an explanation of the completion codes. Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The QUERY USER command completed successfully for the resource.</td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>The resource name is unknown to the client that is processing the request. The resource name might have been typed in error or the resource might not be active at this time. If this is a wildcard request there were no matches for the name. Confirm that the correct spelling of the resource name is specified on the command.</td>
</tr>
<tr>
<td>98</td>
<td>CQS REQUEST ERROR</td>
<td>Global queue counts could not be obtained because of a CQS error.</td>
</tr>
</tbody>
</table>
Table 214. Completion codes for the QUERY USER command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A2</td>
<td>User Resource is in error</td>
<td>The user resource was found in the resource structure, and an associated resource was needed, but it was either not found or appeared to be in error. This is normally an error condition. However, it could be a temporary condition caused by terminal or command activity. The command should be retried.</td>
</tr>
</tbody>
</table>

Examples

The following are examples of the QUERY USER command:

Example 1 for QUERY USER command

TSO SPOC input:
QRY USER NAME(USER2*,XYZ) SHOW(LOCAL)

TSO SPOC output:

<table>
<thead>
<tr>
<th>User</th>
<th>MbrName</th>
<th>CC</th>
<th>CCText</th>
</tr>
</thead>
<tbody>
<tr>
<td>USER23</td>
<td>IMS1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>USER23</td>
<td>IMS2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>USER24A</td>
<td>IMS2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>USER24B</td>
<td>IMS2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>USER24C</td>
<td>IMS2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>XYZ</td>
<td>IMS1</td>
<td>10</td>
<td>NO RESOURCES FOUND</td>
</tr>
<tr>
<td>XYZ</td>
<td>IMS2</td>
<td>10</td>
<td>NO RESOURCES FOUND</td>
</tr>
</tbody>
</table>

Explanation: There are two IMS systems in the IMSplex: IMS1 and IMS2. STM and shared queues are irrelevant because only LOCAL information is requested. IMS1, the command master, displays only local information because no global information is requested. IMS2 displays local information only.

- USER23 exists on IMS1 and IMS2.
- USER24A exists on IMS2.
- USER24B exists on IMS2.
- USER24C exists on IMS2.
- XYZ does not exist on any system.

Example 2 for QUERY USER command

TSO SPOC input:
QRY USER NAME(USER2*)

TSO SPOC output:

<table>
<thead>
<tr>
<th>User</th>
<th>MbrName</th>
<th>CC</th>
<th>Gbl</th>
</tr>
</thead>
<tbody>
<tr>
<td>USER23</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
</tr>
<tr>
<td>USER23</td>
<td>IMS1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>USER23</td>
<td>IMS2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>USER24A</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
</tr>
<tr>
<td>USER24A</td>
<td>IMS2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>USER24B</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
</tr>
</tbody>
</table>
Explanation: There are two IMS systems in the IMSplex: IMS1 and IMS2. RM is maintaining status (STM=YES). Shared queues are irrelevant because queue counts are not requested. IMS1, the command master, displays global and local information. IMS2 displays local information only.

- USER23 exists on IMS1, IMS2 and in the resource structure.
- USER24A exists on IMS2 and in the resource structure.
- USER24B exists on IMS2 and in the resource structure.
- USER24C exists on IMS2 only.
- USER25 exists in the resource structure only.
- USER26 exists in the resource structure only.

Example 3 for QUERY USER command

TSO SPOC input:
QRY USER NAME(USER2*) STATUS(STATIC) SHOW(LOCAL)

TSO SPOC output:

<table>
<thead>
<tr>
<th>User</th>
<th>MbrName</th>
<th>CC</th>
<th>CCText</th>
<th>LclStat</th>
</tr>
</thead>
<tbody>
<tr>
<td>USER24A</td>
<td>IMS2</td>
<td>0</td>
<td>ALLOC,STATIC</td>
<td></td>
</tr>
<tr>
<td>USER24B</td>
<td>IMS2</td>
<td>0</td>
<td>ALLOC,STATIC</td>
<td></td>
</tr>
<tr>
<td>USER24C</td>
<td>IMS2</td>
<td>0</td>
<td>STATIC</td>
<td></td>
</tr>
<tr>
<td>USER2*</td>
<td>IMS1</td>
<td>0</td>
<td>NO RESOURCES FOUND</td>
<td></td>
</tr>
</tbody>
</table>

Explanation: There are two IMS systems in the IMSplex: IMS1 and IMS2. RM and shared queues are irrelevant because no global information is requested. IMS1, the command master, displays local information only because SHOW(LOCAL) is specified. IMS2 displays local information only. All static users are displayed, and status is displayed because the STATUS filter was specified. IMS1 did not find any static users that matched the name specified.

- USER24A exists on IMS2, and is allocated to a node.
- USER24B exists on IMS2, and is allocated to a node.
- USER24C exists on IMS2, but is not allocated.

Example 4 for QUERY USER command

TSO SPOC input:
QRY USER NAME(USER25) SHOW(GLOBAL,CONV,LTERM,STATUS)

TSO SPOC output:

(screen 1)

<table>
<thead>
<tr>
<th>User</th>
<th>MbrName</th>
<th>Gbl</th>
<th>Lterm</th>
<th>ConvID</th>
<th>ConvTran</th>
<th>ConvStat</th>
</tr>
</thead>
<tbody>
<tr>
<td>USER25</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER25</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td>LTERM25A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER25</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td>LTERM25B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER25</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td>1</td>
<td>TRAN1A</td>
<td>CONVHELD</td>
</tr>
<tr>
<td>USER25</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td>2</td>
<td>TRAN1A</td>
<td>CONVHELD</td>
</tr>
<tr>
<td>USER25</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td>3</td>
<td>TRAN1A</td>
<td>CONVACTV</td>
</tr>
</tbody>
</table>

(scrolled right to screen 2)

<table>
<thead>
<tr>
<th>User</th>
<th>Gbl</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>USER25</td>
<td>Y</td>
<td>CONVACT,RM</td>
</tr>
<tr>
<td>USER25</td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>
Explanation: There are two IMS systems in the IMSplex: IMS1 and IMS2. RM is maintaining status (STM=YES). Shared queues are irrelevant because queue counts are not requested. IMS1, the command master, displays global information only. IMS2 ignores the command (RC=4, RSN=x1000) because only global information is requested.

USER25 exists in the resource structure. IMS1 displays a global line that shows that the user is not active (not signed on) in the IMSplex, and has a conversation active. There are two lterms assigned to the user, and are displayed on separate output lines. There are three conversations associated with the user, and are displayed on separate output lines.

Example 5 for QUERY USER command

TSO SPOC input:
QRY USER NAME(USER23) SHOW(CONV,STATUS,OWNER,RECOVERY)

TSO SPOC output:

(screen 1)

<table>
<thead>
<tr>
<th>User</th>
<th>MbrName</th>
<th>CC</th>
<th>Gbl</th>
<th>Owner</th>
<th>SRM</th>
<th>Rcvy</th>
</tr>
</thead>
<tbody>
<tr>
<td>USER23</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
<td>IMS2</td>
<td>LCL</td>
<td>CONV,FP</td>
</tr>
<tr>
<td>USER23</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER23</td>
<td>IMS2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER23</td>
<td>IMS2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(scrolled right to screen 2)

<table>
<thead>
<tr>
<th>User</th>
<th>MbrName</th>
<th>Gbl</th>
<th>ConvID</th>
<th>ConvTran</th>
<th>ConvStat</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>USER23</td>
<td>IMS1</td>
<td>Y</td>
<td>ALLOC,RM,RMACTIVE,RMOWNED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER23</td>
<td>IMS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER23</td>
<td>IMS2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER23</td>
<td>IMS2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(scrolled right to screen 3)

<table>
<thead>
<tr>
<th>User</th>
<th>MbrName</th>
<th>Gbl</th>
<th>LSRM</th>
<th>LRCvy</th>
<th>LConvID</th>
<th>LConvTran</th>
<th>LConvStat</th>
<th>LclStat</th>
</tr>
</thead>
<tbody>
<tr>
<td>USER23</td>
<td>IMS1</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER23</td>
<td>IMS1</td>
<td>LCL</td>
<td>CONV,FP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER23</td>
<td>IMS2</td>
<td>LCL</td>
<td>CONV,FP</td>
<td>ALLOC,CONVACT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER23</td>
<td>IMS2</td>
<td>1</td>
<td>TRAN1A</td>
<td>CONVHELD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER23</td>
<td>IMS2</td>
<td>2</td>
<td>TRAN1B</td>
<td>CONVACTV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Explanation: There are two IMS systems in the IMSplex: IMS1 and IMS2. RM is maintaining status (STM=YES). Shared queues are irrelevant because queue counts are not requested. IMS1, the command master, displays global and local information. IMS2 displays local information.

USER23 exists on IMS1, IMS2 and in the resource structure. IMS1 displays a global line that shows the user is active and owned on IMS2, and its status recovery mode is LOCAL, which means conversation information is not known globally. IMS1 also displays a local line showing that USER23 exists locally, but has no local status. IMS2 displays the local information for the active user, which includes one status line that shows that an active conversation exists, and an additional output line for each conversation active or held locally.
Example 6 for QUERY USER command

TSO SPOC input:
QRY USER NAME(USER23) SHOW(ALL)

TSO SPOC output:

(screenshot 1)
User MbrName CC Gbl QCnt EMQCnt Owner SRM Rcvy Userid Node Version#
USER23 IMS1 0 Y 0 0 IMS2 LCL CONV,FP UID23 NODE23 38
USER23 IMS1 0
USER23 IMS2 0

(scroll right to screen 2)
User MbrName Gbl AutLNode AutLMdt AutLDsc AutLID Status
USER23 IMS1 Y NODE23 SLU2MOD2 NODE23 ALLOC,RM,RMACTIVE,RMOWNED
USER23 IMS1
USER23 IMS2

(scroll right to screen 3)
User MbrName Gbl LQcnt LSRM LRcvy Luserid LNode LVersion# LPreset
USER23 IMS1 Y
USER23 IMS1 0 LCL CONV,FP 0
USER23 IMS2 0 LCL CONV,FP UID23 NODE23 38

(scroll right to screen 4)
User MbrName Gbl LAutLNode LAutLMdt LAutLDsc LAutLID Lc1Stat
USER23 IMS1 Y
USER23 IMS1
USER23 IMS2 NODE23 SLU2MOD2 NODE23 ALLOC,CONVACT

Explanation: There are two IMS systems in the IMSplex: IMS1 and IMS2. RM is maintaining status (STM=YES). Shared queues are active. IMS1, the command master, displays global and local information. IMS2 displays local information.

USER23 exists in IMS1, IMS2, and in the resource structure. IMS1 displays a global line that shows global queue counts and global status from the resource structure. Global status indicates that the user is active on IMS2, and its status recovery mode is LOCAL, which means conversation information is not known globally. IMS1 also displays a local line showing that USER23 exists locally, but has no local status. IMS2 displays the local information for the active user, which shows that conversation status exists locally.

Related concepts:
- How to interpret CSL request return and reason codes (System Programming APIs)

Related tasks:
- Setting DEADQ status time with the DLQT parameter (Communications and Connections)

Related reference:
- /DISPLAY ASMT command (Commands)
- /DISPLAY CONV command (Commands)
- /DISPLAY STATUS command (Commands)
- /DISPLAY USER command (Commands)
- Command keywords and their synonyms (Commands)
QUERY USEREXIT command

Use the type-2 QUERY USEREXIT command to display information about the user exits that are defined in the USER_EXITS section of the DFSDFxxx member of the IMS PROCLIB data set. Information about user exits that are not specified in the USER_EXITS section of the DFSDFxxx member is not displayed in the output of the QUERY USEREXIT command.

Subsections:
- “Environment”
- “Syntax”
- “Keywords”
- “Usage notes” on page 619
- “Output fields” on page 619
- “Return, reason, and completion codes” on page 620
- “Examples” on page 621

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) from which the QUERY USEREXIT command and keywords can be issued.

Table 215. Valid environments for the QUERY USEREXIT command and keywords

<table>
<thead>
<tr>
<th>Command / keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY USEREXIT</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SHOW</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TYPE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
QUERY USEREXIT TYPE(exittype) SHOW(ALL, ACTIVE, CALLS, ENTRYPRT, ETIME, ENTRYPRT, LOADPT, RTIME, SIZE, TEXT)
```

Keywords

The following keywords are valid for the QUERY USEREXIT command:

**TYPE()**

Specifies the user exit type or types for which you want information displayed. You can specify a single user exit type or a list of user exit types separated by
commas. If the SHOW keyword is not specified, only the names of the exit routines for the specified types are returned. The valid user exit types are:

- **BSEX**
  Build Security Environment user exit

- **ICQSEVNT**
  IMS CQS Event user exit

- **ICQSSTEV**
  IMS CQS Structure Event user exit

- **INITTERM**
  Initialization/Termination user exit

- **LOGEDIT**
  Log Edit user exit

- **LOGWRT**
  Logger user exit

- **NDMX**
  Non-Discardable Messages user exit

- **OTMAIOED**
  OTMA Input/Output Edit user exit

- **OTMAYPRX**
  OTMA Destination Resolution user exit

- **OTMARTUX**
  OTMA Resume TPIPE Security user exit

- **PPUE**
  Partner Product user exit

- **RASE**
  Resource Access Security user exit

- **RESTART**
  Restart user exit

**SHOW()**

Specifies the information about the user exit routines to be returned in the output fields of the command response. The exit type and module name fields are always returned along with the name of the IMS that created the output for the user exit type and the completion code. The valid fields that can be specified are the following:

- **ALL**
  All possible output fields are returned.

- **ACTIVE**
  The number of currently active instances of the user exit routine. This is a point-in-time number that represents the number of calls to the user exit that are still in progress and have not returned to IMS.

- **CALLS**
  The number of calls to the user exit since the last user exit routine refresh. For performance reasons serialization is not obtained when IMS collects this number. For an exit type that can run multiple instances in parallel, this number is an approximation. The maximum value that this field can contain is 4,294,967,295 ($2^{32}-1$). When the call count exceeds this value, the field rolls over and starts again from zero.
**ENTRYPT**
The entry point address of the user exit routine.

**ETIME**
The total (cumulative) elapsed time in milliseconds spent in the exit module since it was last refreshed. For performance reasons serialization is not obtained when IMS collects this number. For an exit type that can run multiple instances in parallel, this number is an approximation. The maximum value that can be displayed in this field is \(2,147,483,647\) \(= 2^{31}-1\). If the elapsed time exceeds this value, \(2,147,483,647\) is displayed.

**LOADPT**
The address at which the user exit routine was loaded.

**RTIME**
The local date and time that the user exit routine was last refreshed (or initially loaded, if no refreshes have occurred). The format of the output field is:
```
yyyy-mm-dd hh:mm:ss.th
```

**SIZE**
The size in bytes of the user exit load routine. This value is displayed in hexadecimal.

**TEXT**
The 32 bytes starting from offset +04 from the entry point of the exit module, translated to EBCDIC with non-printable characters replaced by periods (.). This is a common location for module identification information. If your user exit routines contain printable identification data at this point in the module, you can use the TEXT option to display that information.

**Usage notes**

You can issue the QRY USEREXIT command only through the Operations Manager (OM) API.

The output contains an entry for each user exit module within each user exit type specified in the QUERY USEREXIT command. The output of this command is defined in XML and is available to automation programs that communicate with OM.

The QRY USEREXIT command is routed to all IMS systems in the IMSplex as its default routine.

**Output fields**

The following table shows the QUERY USEREXIT output fields. The columns in the table are:

- **Short label**
  Contains the short label that is generated in the XML output.

- **Long label**
  Contains the long label generated in the XML output.

- **Keyword**
  Identifies the keyword on the command that caused the field to be generated. N/A (not applicable) appears for output fields that are always returned.
Scope  Identifies the scope of the output field.

Meaning  Provides a brief description of the output field.

Table 216. Output fields for the QUERY USEREXIT command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTIVE</td>
<td>Active</td>
<td>ACTIVE</td>
<td>LCL</td>
<td>Number of active instances of this exit module.</td>
</tr>
<tr>
<td>CALLS</td>
<td>Calls</td>
<td>CALLS</td>
<td>LCL</td>
<td>Number of calls to this user exit module since the last refresh.</td>
</tr>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>N/A</td>
<td>Completion code for the line of output. The completion code is always returned.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>N/A</td>
<td>N/A</td>
<td>Completion code text that briefly explains the meaning of the nonzero completion code.</td>
</tr>
<tr>
<td>ENTRYPT</td>
<td>EntryPt</td>
<td>ENTRYPT</td>
<td>LCL</td>
<td>The entry point of this user exit module.</td>
</tr>
<tr>
<td>ETIME</td>
<td>ElapseTime</td>
<td>ETIME</td>
<td>LCL</td>
<td>The total time spent in this user exit module since the last refresh.</td>
</tr>
<tr>
<td>LOADPT</td>
<td>LoadPt</td>
<td>LOADPT</td>
<td>LCL</td>
<td>The load point of this user exit module.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>N/A</td>
<td>IMSPLEX member that built the output line. Member name is always returned.</td>
</tr>
<tr>
<td>NAME</td>
<td>ModName</td>
<td>N/A</td>
<td>LCL</td>
<td>User exit module name. User exit module name is always returned.</td>
</tr>
<tr>
<td>RTIME</td>
<td>RefreshTime</td>
<td>RTIME</td>
<td>LCL</td>
<td>The time this user exit module was last refreshed.</td>
</tr>
<tr>
<td>SIZE</td>
<td>ModSize</td>
<td>SIZE</td>
<td>LCL</td>
<td>The size in hexadecimal of this user exit module.</td>
</tr>
<tr>
<td>TEXT</td>
<td>ModuleText</td>
<td>TEXT</td>
<td>LCL</td>
<td>32 bytes from this user exit module translated into EBCDIC.</td>
</tr>
<tr>
<td>TYPE</td>
<td>ExitType</td>
<td>TYPE</td>
<td>LCL</td>
<td>User exit type requested by the QUERY command. User exit type is always returned.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The return and reason codes that can be returned as a result of the QUERY USEREXIT command are standard for all commands entered through the OM API.

The following table contains the return, reason, and completion codes for the QUERY USEREXIT command. Included in the tables is a brief explanation of the codes.

Table 217. Return and reason codes for the QUERY USEREXIT command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The QUERY USEREXIT command completed successfully.</td>
</tr>
</tbody>
</table>
Table 217. Return and reason codes for the QUERY USEREXIT command (continued)

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000004'</td>
<td>X'00001010'</td>
<td>The QUERY USEREXIT command is not processed because no user exit routines were found that matched the TYPE parameter.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003000'</td>
<td>The QUERY USEREXIT command was successful for at least one user exit type. The QUERY USEREXIT command was not successful for one or more user exit types. The completion code indicates the reason for the error with the user exit type. The completion codes that can be returned by the QUERY USEREXIT command are listed in Table 218.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>The QUERY USEREXIT command was not successful for any of the user exit types specified. The completion code indicates the reason for the error with the user exit type. The completion codes that can be returned by the QUERY USEREXIT command are listed in Table 218.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005004'</td>
<td>The QUERY USEREXIT command processing terminated because a DFSOCMD response buffer could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005FFF'</td>
<td>The QUERY USEREXIT command processing terminated because of an internal error.</td>
</tr>
</tbody>
</table>

Errors that are unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

The following table contains completion codes that can be returned on a QUERY USEREXIT command.

Table 218. Completion codes for the QUERY USEREXIT command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The QUERY USEREXIT command completed successfully for the user exit routine.</td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>None of the user exit types specified are known to the IMS that processed the command. The user exit types might have been typed in error. Confirm that the user exit types are spelled correctly on the command.</td>
</tr>
</tbody>
</table>

Examples

The following are examples of the QUERY USEREXIT command:

Example 1 for QUERY USEREXIT command

TSO SPOC input:
QRY USEREXIT TYPE(INITTERM) SHOW(CALLS,RTIME)
### TSO SPOC output:

Response for: QRY USEREXIT TYPE(INITTERM) SHOW(CALLS,RTIME)

<table>
<thead>
<tr>
<th>ExitType</th>
<th>ModName</th>
<th>MbrName</th>
<th>CC</th>
<th>Calls</th>
<th>RefreshTime</th>
</tr>
</thead>
<tbody>
<tr>
<td>INITTERM</td>
<td>DFSITRX2</td>
<td>SYS3</td>
<td>0</td>
<td>1</td>
<td>2013-04-22 10:20:41.12</td>
</tr>
<tr>
<td>INITTERM</td>
<td>DFSITRX0</td>
<td>SYS3</td>
<td>0</td>
<td>1</td>
<td>2013-04-22 10:20:41.12</td>
</tr>
<tr>
<td>INITTERM</td>
<td>DFSITRX1</td>
<td>SYS3</td>
<td>0</td>
<td>1</td>
<td>2013-04-22 10:20:41.12</td>
</tr>
</tbody>
</table>

### OM API input:

CMD(QRY USEREXIT TYPE(INITTERM) SHOW(CALLS,RTIME))

### OM API output:

```
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.4.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2013.112 17:23:12.064868</statime>
<stotime>2013.112 17:23:12.065191</stotime>
<staseq>CB4069B7E10642A1</staseq>
<rqsttkn1>USR003 10102312</rqsttkn1>
<rc>00000000</rc>
</ctl>
<cmd>
<master>SYS3</master>
<userid>USR003</userid>
<verb>QRY</verb>
<kwd>USEREXIT</kwd>
<input>QRY USEREXIT TYPE(INITTERM) SHOW(CALLS,RTIME)</input>
</cmd>
<cmdrsphdr>
<hdr slbl="TYPE" lbl="ExitType" scope="LCL" key="YES" len="8" dtype="CHAR" align="left" />
<hdr slbl="NAME" lbl="ModName" scope="LCL" key="YES" len="8" dtype="CHAR" align="left" />
<hdr slbl="MBR" lbl="MbrName" scope="LCL" key="NO" len="4" dtype="CHAR" align="left" />
<hdr slbl="CC" lbl="CC" scope="LCL" key="NO" len="4" dtype="INT" align="right" />
<hdr slbl="CCTXT" lbl="CCText" scope="LCL" sort="n" key="0" scroll="yes" len="*" dtype="CHAR" align="left" skipb="yes" />
<hdr slbl="CALLS" lbl="Calls" scope="LCL" key="YES" len="10" dtype="INT" align="right" />
<hdr slbl="RTIME" lbl="RefreshTime" scope="LCL" key="no" len="22" dtype="CHAR" align="left" />
</cmdrsphdr>
<cmdrspdata>
<rsp>TYPE(INITTERM) NAME(DFSITRX2) MBR(SYS3) CC(0) CALLS(1) RTIME(2013-04-22 10:20:41.12)</rsp>
<rsp>TYPE(INITTERM) NAME(DFSITRX0) MBR(SYS3) CC(0) CALLS(1) RTIME(2013-04-22 10:20:41.12)</rsp>
<rsp>TYPE(INITTERM) NAME(DFSITRX1) MBR(SYS3) CC(0) CALLS(1) RTIME(2013-04-22 10:20:41.12)</rsp>
</cmdrspdata>
</imsout>
```

### Related concepts:

- [How to interpret CSL request return and reason codes (System Programming APIs)](#)

### Related reference:

- [Command keywords and their synonyms (Commands)](#)

---

622 Commands, Volume 2: IMS Commands N - V
QUERY USERID command

Use the QUERY USERID command to display information about user IDs across the IMSplex. In this context, a user ID is used for user or terminal security. A user ID is not the same as a user, which is either a dynamic (ETO) user, or a static or dynamic (ETO) ISC subpool user. This command can be specified only through the OM API. It is not valid on an XRF alternate.

Subsections:
- “Environment”
- “Syntax”
- “Keywords” on page 624
- “Usage notes” on page 625
- “Similar IMS type-1 commands” on page 626
- “Output fields” on page 626
- “QUERY USERID status” on page 628
- “Return, reason, and completion codes” on page 628
- “Examples” on page 630

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 219. Valid environments for the QUERY USERID command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY USERID</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SHOW</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

A:
### Keywords

The following keywords are valid for the QUERY USERID command:

**NAME()**

Specifies the names of one or more user IDs that are to be displayed. Valid names are 1-8 characters, and wildcards can be specified. To display all user IDs, specify NAME(*). NAME(*) is the default.

**SHOW()**

Specifies the user ID output fields to be returned. The user ID is always returned along with the name of the IMS that created the output and the completion code. If SHOW is not specified, only the user IDs are returned. This provides a method for a system management application to obtain a list of all user IDs that are currently known in the IMSplex.

Two parameters, GLOBAL and LOCAL, are used to specify the location (global resources, or local resources) where IMS should obtain the information that is to be displayed. The default is both GLOBAL and LOCAL.

The rest of the parameters are used to specify what information is displayed.

The parameters supported with the SHOW keyword, which can be specified in any order, are:

- **ALL**
  Returns all the output fields.

- **GLOBAL**
  When GLOBAL is specified, the command master displays global information, depending on the other SHOW parameters specified. This includes information from the resource structure.

  The GLOBAL parameter is processed by the command master only. All other IMS systems ignore this parameter. If LOCAL is not also specified, then all IMS systems other than the command master ignore the command.

  GLOBAL is applicable only if the command master is using sysplex terminal management.

  GLOBAL is not applicable if the command master is not using sysplex terminal management. In this environment, if LOCAL is also specified, then GLOBAL is ignored. Otherwise, the command master rejects the command.

  If sysplex terminal management is enabled, then the command master will make requests to RM to determine the appropriate global status.

  If both GLOBAL and LOCAL are specified (which is the default), then the command master builds global and local information separately. Global information is displayed as one output line, and local information is displayed as another output line.
LOCAL
Specifies that all IMS systems, including the command master, display local information, depending on the other SHOW parameters specified. This includes information local to the IMS processing the command.

The LOCAL parameter is processed by all IMS systems, including the command master.

LOCAL is applicable in any environment, regardless of whether sysplex terminal management is used.

If both GLOBAL and LOCAL are specified (which is the default), then the command master builds global and local information separately. Global information is displayed as one output line, and local information is displayed as another output line.

NODE
Displays the node that the user ID is signed on to. This can be a static node or a dynamic node.

OWNER
Displays the owner of the user ID resource in the resource structure. This applies only when sysplex terminal management is enabled, and is processed by the command master only. All other IMS systems ignore this parameter.

The owner is the IMSID (or RSENNAME for XRF systems) of the IMS system that owns the user ID. An IMS system owns a user ID resource if the resource is active (the user ID is signed on).

STATUS
Returns local or global status of the user ID. See “QUERY USERID status” on page 628 for a list and meaning of possible status that might be returned.

USER
Displays the dynamic or ISC user associated with the user ID.

VERSION
Displays the RM version number of the user ID resource. This is the version number assigned to the user ID, which is assigned by MVS, and maintained by RM, when the resource is created or updated in the resource structure. VERSION applies only when sysplex terminal management is enabled. VERSION is ignored when sysplex terminal management is not enabled. Only the global version number is displayed. IMS does not maintain the version number in the local system.

Usage notes

The QUERY USERID command can be specified only through the OM API.

The QUERY USERID command is not supported on an XRF alternate system.

The processing of the QUERY USERID command is different depending on whether IMS sysplex terminal management is enabled.

- If IMS sysplex terminal management is not enabled, processing is local for each system. The results of type-1 and type-2 commands are similar.
- If IMS sysplex terminal management is enabled, type-1 and type-2 command processing is similar when displaying local information. However, they differ in how global information is displayed.
For type-1 /DISPLAY commands with IMS sysplex terminal management enabled, the command master displays information from either the resource structure or the local system, but not both. If the resource being displayed is not owned by any system or is owned by the command master, the command master displays the global resource. However, if the resource is owned by a system other than the command master, the command master displays only the local resource, and the owning system is responsible for displaying the global resource.

For type-2 QUERY commands with IMS sysplex terminal management enabled, the command master is the only system that displays global resource information, regardless of whether the resource is owned. In addition, the command master displays local resource information. All other IMS systems that process the command display local resource information only. This approach allows more flexibility in displaying all information in an IMSplex.

The SHOW keyword determines which IMS systems process the command, and what information is displayed.

- If SHOW(GLOBAL) is specified, then the command master displays global information, which includes status from the resource structure if sysplex terminal management is enabled (STM=YES defined in DFSDCxxx PROCLIB member). This is true whether or not the user ID is active on any particular IMS system. All other IMS systems to which OM routes the command ignore the GLOBAL parameter with return code X'00000004' and reason code X'00001000'. However, user ID resources are not maintained in the resource structure if multiple signons are allowed (the same user ID is allowed to sign on to multiple terminals simultaneously). The first IMS that joins the IMSplex determines whether multiple signons are allowed in the IMSplex by specifying SGN=G, M, or Z in the IMS startup parameters.

- If SHOW(LOCAL) is specified, then each IMS system to which OM routes the command (including the command master) processes the command, and displays information that is local to each system.

- If both GLOBAL and LOCAL are specified (which is the default), then the command master displays both global and local information, and all other IMS systems to which OM routes the command display local information.

### Similar IMS type-1 commands

The following table shows variations of the QUERY USERID command and the type-1 IMS commands that perform similar functions.

<table>
<thead>
<tr>
<th>QUERY USERID command</th>
<th>Similar IMS type-1 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY USERID SHOW(NODE)</td>
<td>/DISPLAY ASMT USER user</td>
</tr>
<tr>
<td></td>
<td>/DISPLAY USER user</td>
</tr>
<tr>
<td>QUERY USERID SHOW(STATUS)</td>
<td>/DISPLAY USER user</td>
</tr>
<tr>
<td>QUERY USERID SHOW(USER)</td>
<td>/DISPLAY ASMT USER user</td>
</tr>
<tr>
<td></td>
<td>/DISPLAY USER user</td>
</tr>
</tbody>
</table>

### Output fields

The following table shows the QUERY USERID output fields. The columns in the table are:
**Short label**
Contains the short label generated in the XML output.

**Long label**
Contains the column heading for the output field in the formatted output.

**SHOW parameter**
Identifies the parameter on the SHOW keyword that caused the field to be generated. Error appears for output fields that are returned for a non-zero completion code. N/A (not applicable) appears for output fields that are always returned.

**Scope**
Identifies the scope of the output field. GBL indicates that the field can be generated only by the command master when displaying global information for SHOW(GLOBAL). LCL indicates that the field can be generated by any IMS displaying local information for SHOW(LOCAL). N/A (not applicable) appears for output fields that are always returned.

**Meaning**
Provides a brief description of the output field.

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>SHOW parameter</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>N/A</td>
<td>Completion code for the line of output. The completion code indicates whether IMS was able to process the command for the specified resource. See “Return, reason, and completion codes” on page 628 for more information. The completion code is always returned.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>Error</td>
<td>N/A</td>
<td>Completion code text that briefly explains the meaning of the non-zero completion code. This field is returned only for an error completion code.</td>
</tr>
<tr>
<td>GBL</td>
<td>Gbl</td>
<td>GLOBAL</td>
<td>GBL</td>
<td>If 'Y', then the output reflects the status found globally in RM. If blank, then the output reflects the status found locally.</td>
</tr>
<tr>
<td>LNODE</td>
<td>LNode</td>
<td>NODE</td>
<td>LCL</td>
<td>Identifies the dynamic or static node associated with the user ID on the local system.</td>
</tr>
<tr>
<td>LSTT</td>
<td>LclStat</td>
<td>STATUS</td>
<td>LCL</td>
<td>Local user ID status. See “QUERY USERID status” on page 628 for information about the user ID status that might be returned.</td>
</tr>
<tr>
<td>LUSER</td>
<td>LUser</td>
<td>USER</td>
<td>LCL</td>
<td>Identifies the dynamic or ISC user associated with the lterm on the local system.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>N/A</td>
<td>IMSplex member that built output line. IMS identifier of the IMS that built the output. The IMS identifier is always returned.</td>
</tr>
<tr>
<td>NODE</td>
<td>Node</td>
<td>NODE</td>
<td>GBL</td>
<td>Identifies the dynamic or static node associated with the user ID in the resource structure.</td>
</tr>
<tr>
<td>OWNER</td>
<td>Owner</td>
<td>OWNER</td>
<td>GBL</td>
<td>Resource owner. IMS identifier or RSENAME of IMS where the user ID is active. If no owning IMS system exists and RM contains an entry for the resource, the owner field will be blank.</td>
</tr>
</tbody>
</table>
Table 221. Output fields for the QUERY USERID command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>SHOW parameter</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>STT</td>
<td>Status</td>
<td>STATUS</td>
<td>GBL</td>
<td>Global user ID status from the resource structure. See &quot;QUERY USERID status&quot; for information about the user ID status that might be returned.</td>
</tr>
<tr>
<td>UID</td>
<td>UserID</td>
<td>N/A</td>
<td>N/A</td>
<td>User ID name. The user ID is always returned.</td>
</tr>
<tr>
<td>USER</td>
<td>User</td>
<td>USER</td>
<td>GBL</td>
<td>Identifies the dynamic or ISC user associated with the user ID in the resource structure.</td>
</tr>
<tr>
<td>VER</td>
<td>Version#</td>
<td>VERSION</td>
<td>GBL</td>
<td>Version number for the user ID resource being maintained in the resource structure. This field applies only when STM is enabled.</td>
</tr>
</tbody>
</table>

**QUERY USERID status**

The following table shows the possible user ID status that can be displayed. The columns in the table are:

- **Status**: The user ID status that is displayed.
- **Scope**: The scope of the status. GBL indicates that the status can be global (it exists in the resource structure when STM is enabled), and is returned with the STT short label. LCL indicates that the status can be local, and is returned with the LSTT short label.
- **Meaning**: Provides a brief description of the status.

Table 222. QUERY USERID status

<table>
<thead>
<tr>
<th>Status</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM</td>
<td>GBL</td>
<td>The user ID exists in the resource structure managed by RM.</td>
</tr>
<tr>
<td>RMACTIVE</td>
<td>GBL</td>
<td>The user ID is active (signed-on) in the IMSplex, as indicated in the RM structure (RM active).</td>
</tr>
<tr>
<td>RMOWNED</td>
<td>GBL</td>
<td>The user ID is owned by an IMS system in the IMSplex, as indicated in the RM structure (RM owned).</td>
</tr>
</tbody>
</table>

**Return, reason, and completion codes**

An IMS return and reason code is returned to OM by the QUERY USERID command. The OM return and reason codes that may be returned as a result of the QUERY USERID command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the QUERY USERID command.

Table 223. Return and reason codes for the QUERY USERID command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The command completed successfully.</td>
</tr>
</tbody>
</table>
Table 223. Return and reason codes for the QUERY USERID command (continued)

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000004'</td>
<td>X'00001000'</td>
<td>The command was not processed on the IMS system as the IMS system is not the command master. No resource information is returned.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002014'</td>
<td>An invalid character was specified in the resource name.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002040'</td>
<td>An invalid parameter value was specified. An invalid SHOW value may have been specified.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003000'</td>
<td>The command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code. See Table 224 for details.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>The command was not successful for any resource. The command output contains a line for each resource, accompanied by its completion code. See Table 224 for details.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004004'</td>
<td>Command processing terminated because CQS was not active.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000400C'</td>
<td>Command is not valid on the XRF alternate.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>Command is not valid on the RSR tracker.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004018'</td>
<td>Command processing terminated because the resource structure is not available.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000401C'</td>
<td>Command is not valid on the FDBR region.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004104'</td>
<td>Command processing terminated because RM is not available.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004108'</td>
<td>Command processing terminated because SCI is not available.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005004'</td>
<td>A DFSOCMD response buffer could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005008'</td>
<td>DFSPOOL storage could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005100'</td>
<td>Command processing terminated because of an RM error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005104'</td>
<td>Command processing terminated because of a CQS error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005108'</td>
<td>Command processing terminated because of an SCI error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005FFF'</td>
<td>Command processing terminated because of an internal IMS error.</td>
</tr>
</tbody>
</table>

The following table includes an explanation of the completion codes. Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

Table 224. Completion codes for the QUERY USERID command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The QUERY USERID command completed successfully for the resource.</td>
</tr>
</tbody>
</table>
Table 224. Completion codes for the QUERY USERID command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>The resource name is unknown to the client that is processing the request. The resource name might have been typed in error or the resource might not be active at this time. If this is a wildcard request there were no matches for the name. Confirm that the correct spelling of the resource name is specified on the command.</td>
</tr>
<tr>
<td>1A3</td>
<td>Userid resource is in error</td>
<td>The user ID resource was found in the resource structure, and an associated resource was needed, but it was either not found or appeared to be in error. This is normally an error condition. However, it could be a temporary condition caused by terminal or command activity. The command should be retried.</td>
</tr>
</tbody>
</table>

**Examples**

The following are examples of the QUERY USERID command:

*Example 1 for QUERY USERID command*

TSO SPOC input:

```
QRY USERID NAME(USERID*,XYZ) SHOW(ALL)
```

TSO SPOC output:

(screenshot 1)

<table>
<thead>
<tr>
<th>UserID</th>
<th>MbrName</th>
<th>CC</th>
<th>CText</th>
<th>Gbl</th>
<th>Owner</th>
<th>Node</th>
<th>User</th>
<th>Version#</th>
</tr>
</thead>
<tbody>
<tr>
<td>USERID01</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td>Y</td>
<td>IMS1</td>
<td>NODE01</td>
<td>USER01</td>
<td>1</td>
</tr>
<tr>
<td>USERID01</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USERID02</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td>Y</td>
<td>IMS2</td>
<td>NODE02</td>
<td>USER02</td>
<td>1</td>
</tr>
<tr>
<td>USERID02</td>
<td>IMS2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USERID03</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td>Y</td>
<td>IMS1</td>
<td>NODE03</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>USERID03</td>
<td>IMS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XYZ</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td>Y</td>
<td>IMS1</td>
<td>NODE01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XYZ</td>
<td>IMS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XYZ</td>
<td>IMS2</td>
<td>0</td>
<td></td>
<td>Y</td>
<td>IMS2</td>
<td>NODE02</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(screenshot 2)

<table>
<thead>
<tr>
<th>UserID</th>
<th>MbrName</th>
<th>Status</th>
<th>LNode</th>
<th>LUser</th>
</tr>
</thead>
<tbody>
<tr>
<td>USERID01</td>
<td>IMS1</td>
<td>RM,RACTIVE,RMOVED</td>
<td>NODE01</td>
<td>USER01</td>
</tr>
<tr>
<td>USERID01</td>
<td>IMS1</td>
<td>RM,RACTIVE,RMOVED</td>
<td>NODE02</td>
<td>USER02</td>
</tr>
<tr>
<td>USERID03</td>
<td>IMS1</td>
<td>RM,RACTIVE,RMOVED</td>
<td>NODE03</td>
<td></td>
</tr>
<tr>
<td>XYZ</td>
<td>IMS1</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XYZ</td>
<td>IMS1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XYZ</td>
<td>IMS2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Explanation:** There are two IMS systems in the IMSplex: IMS1 and IMS2. RM is maintaining status (STM=YES). Single-signon for user IDs is enforced. IMS1, the command master, displays global and local information. IMS2 displays local information only.
• USERID01 is signed on to dynamic or ISC node NODE01, user USER01 on IMS1.
• USERID02 is signed on to dynamic or ISC node NODE02, user USER02 on IMS2.
• USERID03 is signed on to static node NODE03 on IMS1.
• XYZ does not exist.

Example 2 for QUERY USERID command

TSO SPOC input:
QRY USERID NAME(USERID*) SHOW(ALL)

TSO SPOC output:

<table>
<thead>
<tr>
<th>UserID</th>
<th>MbrName</th>
<th>CC</th>
<th>LNode</th>
<th>LUser</th>
</tr>
</thead>
<tbody>
<tr>
<td>USERID11</td>
<td>IMS1</td>
<td>0</td>
<td>NODE11</td>
<td>USER11</td>
</tr>
<tr>
<td>USERID12</td>
<td>IMS1</td>
<td>0</td>
<td>NODE12A</td>
<td>USER12A</td>
</tr>
<tr>
<td>USERID12</td>
<td>IMS1</td>
<td>0</td>
<td>NODE12B</td>
<td>USER12B</td>
</tr>
<tr>
<td>USERID12</td>
<td>IMS2</td>
<td>0</td>
<td>NODE12C</td>
<td>USER12C</td>
</tr>
<tr>
<td>USERID12</td>
<td>IMS2</td>
<td>0</td>
<td>NODE12D</td>
<td>USER12D</td>
</tr>
<tr>
<td>USERID13</td>
<td>IMS2</td>
<td>0</td>
<td>NODE13</td>
<td></td>
</tr>
</tbody>
</table>

Explanations: There are two IMS systems in the IMSplex: IMS1 and IMS2. RM is maintaining status (STM=YES). Multiple-signons for user IDs are enabled, so user ID resources are not maintained in RM. IMS1 displays local information only because user IDs are not maintained in RM. IMS2 displays local information only.
• USERID11 is signed on to dynamic or ISC node NODE11, user USER11 on IMS1.
• USERID12 is signed on to multiple terminals simultaneously: dynamic or ISC nodes NODE12A and NODE12B on IMS1, dynamic or ISC node NODE12C on IMS2, and static node NODE12D on IMS2.
• USERID13 is signed on to static node NODE13.

Related concepts:
How to interpret CSL request return and reason codes (System Programming APIs)

Related reference:
- /DISPLAY ASMT command (Commands)
- /DISPLAY USER command (Commands)
- Command keywords and their synonyms (Commands)
Chapter 6. QUEUE commands

Use the IMS QUEUE commands to queue or dequeue LTERMs and transactions.

These commands can be issued to an IMSplex using the Batch SPOC utility.

Subsections:
- “QUEUE LTERM command”
- “QUEUE TRAN command” on page 638

QUEUE LTERM command

Use the QUEUE LTERM command to enqueue a message to the specified LTERM or to dequeue and discard messages currently enqueued to the LTERM.

When IMS uses local queue manager data sets, all IMS systems that receive this command process it.

Subsections:
- “Environment”
- “Syntax”
- “Keywords” on page 634
- “Usage notes” on page 635
- “Output fields” on page 635
- “Return, reason, and completion codes” on page 636
- “Examples” on page 637

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 225. Valid environments for QUEUE LTERM command and keywords

<table>
<thead>
<tr>
<th>Command / Keyword</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUEUE LTERM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DATA</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OPTION</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
QUEUE LTERM NAME(ltermname)
```
Keywords

The following keywords are valid for the QUEUE LTERM command:

**NAME**(lterm)

Specifies the 1- to 8-character name of the LTERM.

**DATA**(message data)

Specifies the message data to enqueue to the LTERM. The data is variable in length. This parameter is valid only for OPTION(ENQ). If the COMM macro is defined with OPTION=NOBLANK, DATA is an optional parameter. If the COMM macro is defined with OPTION=BLKREQD (the default), at least one character, even if it is a blank, must be specified in the message data area.

The message data specified can be in mixed case. If the LTERM is defined as EDIT=ULC, the data is enqueued as specified on the command without any uppercase translation. If the LTERM is defined as EDIT=UC, the data is translated to uppercase before the message is enqueued. No EDIT routine is called before the data is enqueued.

The data is enqueued as a single segment message. The maximum length of data that can be enqueued is 32763.

**OPTION()**

Specifies the option parameters.

**DEQALL**

Indicates that all of the messages currently enqueued to the LTERM should be dequeued and discarded. The dequeue function is similar to a /DEQUEUE LTERM command. The node and user must be stopped before messages can be dequeued. To use the DEQALL option, the LTERM must be defined locally on the IMS system, and the node (if the LTERM is associated to a static node) or the user (if the LTERM is associated to dynamic node) must be stopped.

**DEQ1**

Indicates the first (oldest) message on the queue for the LTERM should be dequeued and discarded. The dequeue function is similar to a /DEQUEUE LTERM command. The node and user must be stopped before a message can be dequeued. To use the DEQ1 option, the LTERM must be defined locally on the IMS system, and the node (if the LTERM is associated to a static node) or the user (if the LTERM is associated to dynamic node) must be stopped.

**ENQ**

Indicates that a message is to be enqueued to the specified LTERM. The enqueue function is similar to a /BROADCAST command. If the LTERM is stopped, no message can be enqueued to it.

The QUEUE LTERM OPTION(ENQ) command is not supported for remote LTERM.
Usage notes

If you use the ENQ option when IMS is using shared message queues, with or without STM=YES, only the command master IMS system processes the command. Messages are enqueued to the shared queues. The LTERM does not need to be defined in the IMS system that processes the command. If the LTERM does not exist, the command master IMS attempts to create the LTERM and associated user structure if ETO is active. If the LTERM is stopped, no message can be enqueued to it. If you use the ENQ option and the LTERM name specified is a remote LTERM, the message is placed on the shared queues using the MSNAME associated with the remote LTERM. The command is not processed if the MSNAME associated with the remote LTERM is stopped.

If you use the DEQALL or DEQ1 option when IMS is using shared message queues and STM=NO, only the command master processes the command. When IMS is using shared message queues and STM=YES, the command is processed by the command master IMS if the user or node is not owned, and by the owning system if the user or node is owned. Messages are dequeued from the shared queues. The node (if LTERM associated to a static node) or the user (if LTERM associated to dynamic node) must be stopped. The LTERM does not need to be defined in the IMS processing the command. If the LTERM does not exist, the IMS processing the command first attempts to create the LTERM and its associated user structure if ETO is active, and then processes the command.

The maximum length of the data that can be enqueued is 32,763 bytes. The data is enqueued to the LTERM as a single segment.

The QUEUE LTERM command includes completion code text with the non-zero completion code. The text can be up to 32 bytes and provides the meaning for the returned completion code:

**Note:** Before dequeuing one or all messages from shared message queues, stop the user (for ETO terminals) or NODE (or static terminals) for all IMS systems sharing the queues. The LTERM should not be in conversation mode.

Output fields

Output from QUEUE LTERM is returned encapsulated in `<cmdrsphdr>` and `<cmdrspdata>` XML tags. The short label is generated in the XML output. The SHOW keyword listed is the keyword on the command that causes the field to be generated. A value of “n/a” indicates that the output field is always returned. The following table shows the output fields for the QUEUE LTERM command.

<table>
<thead>
<tr>
<th>Short label</th>
<th>SHOW keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>n/a</td>
<td>The completion code for the output line. The completion code is always returned.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>LCL</td>
<td>The completion code text that briefly explains the meaning of the completion code.</td>
</tr>
<tr>
<td>MBR</td>
<td>n/a</td>
<td>The IMSplex member that built the output line. The member name is always returned.</td>
</tr>
<tr>
<td>LTERM</td>
<td>n/a</td>
<td>The name of the LTERM resource. The LTERM name is always returned.</td>
</tr>
</tbody>
</table>
Table 226. Output fields for the QUEUET LTERM command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>SHOW keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>LQCNT</td>
<td>DEQ1, DEQALL</td>
<td>The number of messages dequeued from a local queue.</td>
</tr>
<tr>
<td>QNCT</td>
<td>DEQ1, DEQALL</td>
<td>The number of messages dequeued from the shared message queue.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

Commands that are issued through the OM API, including QUEUET LTERM, produce a standard set of OM return and reason codes, which are defined in the CSLORR request.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 227. QUEUET LTERM return and reason codes

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The QUEUET LTERM command completed successfully.</td>
</tr>
<tr>
<td>X'00000004'</td>
<td>X'00001000'</td>
<td>The IMS system is not the command master, so the QUEUET LTERM command is not processed on the IMS system.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002004'</td>
<td>An invalid keyword combination of DATA and OPTION(DEQ1</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002008'</td>
<td>An insufficient number of keywords is specified, so the QUEUET LTERM command is not processed.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>The QUEUET LTERM command is not successful for the resource name specified. The completion code indicates the reason for the error with the resource name. The completion codes that can be returned by the command are listed in the QUEUET LTERM completion code table.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000400C'</td>
<td>The QUEUET LTERM command is invalid on the XRF alternate.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>The QUEUET LTERM command is invalid on the RSR tracker.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000401C'</td>
<td>The QUEUET LTERM command is invalid on the FDBR region.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004034'</td>
<td>The message queues are not available, so the QUEUET LTERM command is not processed.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005004'</td>
<td>DFSOCMD0 GETBUF storage could not be obtained, so the QUEUET LTERM command is not processed.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005008'</td>
<td>DFSPOOL HIOP storage could not be obtained, so the QUEUET LTERM command is not processed.</td>
</tr>
</tbody>
</table>
The following table contains completion codes that can be returned on a QUEUE LTERM command.

**Table 228. QUEUE LTERM completion codes**

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The QUEUE LTERM command completed successfully for the specified resource.</td>
</tr>
<tr>
<td>10</td>
<td>Because the resource name was not found, the QUEUE LTERM command is not processed.</td>
</tr>
<tr>
<td>12</td>
<td>Because the LTERM is active, the QUEUE LTERM OPTION(DEQ1</td>
</tr>
<tr>
<td>1A</td>
<td>Because the LTERM is in conversation, the QUEUE LTERM OPTION(DEQ1</td>
</tr>
<tr>
<td>5F</td>
<td>Because the LTERM name has invalid characters, the QUEUE LTERM command is not processed.</td>
</tr>
<tr>
<td>8A</td>
<td>An unsupported wildcard name was used, so the QUEUE LTERM command is not processed.</td>
</tr>
<tr>
<td>8B</td>
<td>A DFSQMGR request error occurred; the QUEUE LTERM command is not processed.</td>
</tr>
<tr>
<td>8C</td>
<td>The LTERM is stopped, so the QUEUE LTERM OPTION(ENQ) command is not processed.</td>
</tr>
<tr>
<td>8D</td>
<td>The LTERM is not stopped, so the QUEUE LTERM OPTION(DEQ1</td>
</tr>
<tr>
<td>93</td>
<td>The QUEUE LTERM command is rejected, because the LTERM name specified is a reserved name.</td>
</tr>
<tr>
<td>9F</td>
<td>The QUEUE LTERM OPTION(ENQ) command is not supported for remote LTERMs.</td>
</tr>
</tbody>
</table>

**Examples**

The following are examples of the QUEUE LTERM command:

**Example 1 for QUEUE LTERM command**

TSO Input:

```
QUEUE LTERM NAME(LTERM1) OPTION(ENQ) DATA(MESSAGE1)
```

TSO Output:

```
Lterm MbrName CC
LTERM1 SYS3 0
```

**Explanation:** The QUEUE LTERM command completed successfully and was processed by the command master IMS.

**Example 2 for QUEUE LTERM command**

TSO Input:

```
QUEUE LTERM NAME(IMSUS01) OPTION(DEQALL)
```

TSO Output:

```
Lterm MbrName CC Qcnt
IMSUS01 IMS2 0 4
```
**Explanation:** Dequeues all messages on the LTERM queue. The QUEUE LTERM command completed successfully and processed by the command master IMS.

**Example 3 for QUEUE LTERM command**

TSO Input:
QUEUELTERMNAME(IMSUS01)OPTION(DEQALL)

TSO Output:

<table>
<thead>
<tr>
<th>LTERM</th>
<th>MbrName</th>
<th>CC</th>
<th>LQcnt</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSUS01</td>
<td>IMS2</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>IMSUS01</td>
<td>IMS3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

**Explanation:** Dequeues all messages on the LTERM queue. The QUEUE LTERM command completed successfully and is processed by all IMS systems that receive the command.

** Related concepts:**

- How to interpret CSL request return and reason codes (System Programming APIs)
- Command keywords and their synonyms (Commands)

---

**QUEUE TRAN command**

Use the QUEUE TRAN command to enqueue a message to the specified transaction or to dequeue and discard messages currently enqueued to the transaction.

The QUEUE TRAN command is defined to OM as ROUTE=ALL. When this command is issued, OM routes the command to all IMS systems that have registered for the command. Depending on the environment, either only the command master IMS processes the command or all IMS process the command. If only the command master processes the command, all other IMS systems that receive the command return with a return and reason code indicating that they are not the IMS command master.

Subsections:

- “Environment”
- “Syntax” on page 639
- “Keywords” on page 639
- “Usage notes” on page 640
- “Output fields” on page 641
- “Return, reason, and completion codes” on page 641
- “Examples” on page 643

**Environment**

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.
Table 229. Valid environments for QUEUE TRAN command and keywords

<table>
<thead>
<tr>
<th>Command / Keyword</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUEUE TRAN</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DATA</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OPTION</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

►► QUEUE TRAN NAME(tranname) OPTION(ENQ) DATA(messagedata) OPTION(DEQALL)

Keywords

The following keywords are valid for the QUEUE TRAN command:

**NAME(tranname)**
Specifies the 1- to 8-character name of the transaction.

**DATA(messagedata)**
Specifies the message data to enqueue to the transaction. The data is variable in length. This parameter is only valid for OPTION(ENQ). If the COMM macro is defined with OPTION=NOBLANK, DATA is an optional parameter. If the COMM macro is defined with OPTION=BLKREQD (the default), at least one character, even if it is a blank, must be specified in the message data area.

The data can be specified in mixed case. If the transaction is defined as EDIT=ULC, the data is enqueued as it was specified on the command, without any uppercase translation. If the transaction is defined as EDIT=UC, the data is translated to uppercase before the message is enqueued. No EDIT routine is called before the data is enqueued.

The data is enqueued as a single segment message. The maximum length of data that can be enqueued is 32 763.

**OPTION()**
Specifies the option parameters:

**ENQ**
This is the default. Indicates that a message is to be enqueued to the specified transaction. The ENQ function is processed only by the command master IMS in both the local queues and shared-queues environment. Any output generated by the transaction is sent as an unsolicited output message to the OM that originated the command. Any MFS formatting associated with the output message is not returned.

The transaction specified for the ENQ cannot be full-function response mode or a Fast Path transaction. The initiated transaction can be conversational, but it cannot be in conversational mode with OM.

**DEQALL**
Indicates that all messages currently enqueued to the transaction should be dequeued and discarded. The transaction must be stopped before messages can be dequeued.
DEQALL is valid in both local queues environment and the shared-queues environment. If IMS is in the local queues environment, all IMS systems that receive the command process the QUEUE TRAN OPTION(DEQALL) command. If IMS is in the shared-queues environment, only the command master IMS processes the QUEUE TRAN OPTION(DEQALL) command.

A QUEUE TRAN OPTION(DEQALL) command can dequeue transaction messages queued to a transaction from APPC or OTMA Clients. The command only dequeues the transaction messages. The APPC or OTMA transaction instance blocks (TIB) created at the IMS system are not deleted and the storage may remain allocated until the next IMS restart. For APPC, the TIB is not released and the APPC conversation (the client) hangs if there is no timeout value specified. The APPCIOT=(x,Y) timeout value for APPC would deallocate the APPC conversation and release the TIB after the timeout limit has been reached.

**DEQ1**

- Indicates that the first (oldest) message on the queue for the transaction should be dequeued and discarded. The transaction must be stopped before the message can be dequeued.

A QUEUE TRAN OPTION(DEQ1) command can dequeue transaction messages queued to a transaction from APPC or OTMA Clients. The command only dequeues the transaction messages. The APPC or OTMA transaction instance blocks (TIB) created at the IMS system are not deleted and the storage may remain allocated until the next IMS restart. For APPC, the TIB is not released and the APPC conversation (the client) hangs if there is no timeout value specified. The APPCIOT=(x,Y) timeout value for APPC would deallocate the APPC conversation and release the TIB after the timeout limit has been reached.

**Usage notes**

This command is processed if the transaction is defined locally at the IMS system. If the transaction is not defined at the IMS system, the Destination Creation exit routine, DFSINSX0, is called. If the exit routine successfully creates a transaction, the command is processed. If the exit does not create a transaction, a response line is returned with an error completion code indicating that the transaction is not found.

The effect of this command differs depending on whether the IMS processing it uses RM’s resource structure. If it does use the resource structure, a message can be enqueued even if the transaction is stopped locally if the transaction does not have a global status of STOQ. To dequeue one or all messages, however, the transaction must be stopped globally and locally for scheduling (STOSCHD). If the IMS does not use the resource structure, no messages can be enqueued if the transaction is stopped for queuing (STOQ). To dequeue one or all messages, the transaction must be stopped for scheduling (STOSCHD).

The QUEUE TRAN OPTION(ENQ) command is not supported for conversational, response mode, Fast Path, and remote transactions. This form of the command performs security checking on the transaction name and on the user ID that issued the command. For OPT10N(ENQ), workload management (WLM) CLASSIFY calls are issued using information passed to the OM from the command. The information passed includes LUNAME=DFSOMAPI and the user ID. Also for OPT10N(ENQ), if the transaction name specified is a remote transaction, the message is placed on the shared queues (on the transaction ready queue) using the remote transaction name.
The command is not processed if the MSNAME associated with the remote transaction is stopped. The TM and MSC Message Routing and Control user exit routine, DFSMSCE0, is not called for a QUEUE TRAN command.

The maximum length of the data that can be enqueued is 32 763 bytes. The data is enqueued to the transaction as a single segment.

If the transaction is processed by an IMS Version 10 or higher system, any generated output to the input destination is sent as an unsolicited output message to the OM that originated the command. The transaction name and IMS ID that processed the transaction are included in the output as follows:

8 byte transactionname + 8 byte IMSID + output message

If the transaction is processed by an IMS Version 9 or earlier, any generated output to the input destination is not queued. The application program receives a status code of AD.

Output fields

Output from the QUEUE TRAN command is returned encapsulated in <cmdrsphdr> and <cmdrspdata> XML tags. The short label is generated in the XML output. The keyword listed is the keyword on the command that causes the field to be generated. A value of “n/a” indicates that the output field is always returned. A value of error indicates that the output field is returned if there is an error (for example, a nonzero completion code).

Table 230. QUEUE TRAN output

<table>
<thead>
<tr>
<th>Short label</th>
<th>SHOW keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>n/a</td>
<td>The completion code for the output line. The completion code is always returned.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>n/a</td>
<td>The completion code text that explains the completion code. The member name is always returned.</td>
</tr>
<tr>
<td>MBR</td>
<td>error</td>
<td>The IMSPlex member that built the output line.</td>
</tr>
<tr>
<td>TRAN</td>
<td>n/a</td>
<td>The name of the transaction resource.</td>
</tr>
<tr>
<td>LQCNT</td>
<td>OPTION(DEQ1</td>
<td>The number of messages dequeued from a local queue.</td>
</tr>
<tr>
<td></td>
<td>DEQALL)</td>
<td></td>
</tr>
<tr>
<td>QNCT</td>
<td>OPTION(DEQ1</td>
<td>The number of messages dequeued from the shared message queue.</td>
</tr>
<tr>
<td></td>
<td>DEQALL)</td>
<td></td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

Commands that are issued through the OM API, including QUEUE TRAN, produce a standard set of OM return and reason codes, which are defined in CSLORR.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.
Table 231. QUEUE TRAN return and reason codes

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The QUEUE TRAN command completed successfully.</td>
</tr>
<tr>
<td>X'00000004'</td>
<td>X'00000000'</td>
<td>The IMS system is not the command master, so the QUEUE TRAN command is not processed on the IMS system.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00000004'</td>
<td>An invalid keyword combination of DATA and OPTION(DEQ1</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00000008'</td>
<td>An insufficient number of keywords is specified, so the QUEUE TRAN command is not processed.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00000004'</td>
<td>The QUEUE TRAN command is not successful for the resource name specified. The completion code indicates the reason for the error with the resource name. The completion codes that can be returned by the command are listed in the QUEUE TRAN completion code table.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000400C'</td>
<td>The QUEUE TRAN command is invalid on the XRF alternate.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>The QUEUE TRAN command is invalid on the RSR tracker.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000401C'</td>
<td>The QUEUE TRAN command is invalid on the FDBR region.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004034'</td>
<td>The message queues are not available, so the QUEUE TRAN command is not processed.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005004'</td>
<td>DFSOCMD0 GETBUF storage could not be obtained, so the QUEUE TRAN command is not processed.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005008'</td>
<td>DFSPOOL HIOP storage could not be obtained, so the QUEUE TRAN command is not processed.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005FFF'</td>
<td>The QUEUE TRAN command could not be processed because of an internal error.</td>
</tr>
</tbody>
</table>

The following table contains completion codes that can be returned on a QUEUE TRAN command.

Table 232. QUEUE TRAN completion codes

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The QUEUE TRAN command completed successfully for the specified resource.</td>
</tr>
<tr>
<td>10</td>
<td>The resource was not found.</td>
</tr>
<tr>
<td>17</td>
<td>Another command is in progress for this transaction.</td>
</tr>
<tr>
<td>1A</td>
<td>Transaction has an active conversation. Use the /EXIT command to terminate the conversation and to dequeue messages.</td>
</tr>
<tr>
<td>51</td>
<td>No resource structure</td>
</tr>
<tr>
<td>52</td>
<td>Resource structure full</td>
</tr>
</tbody>
</table>
### Table 232. QUEUE TRAN completion codes (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>5F</td>
<td>The QUEUE TRAN command is rejected, because the transaction name specified has invalid characters.</td>
</tr>
<tr>
<td>8A</td>
<td>An unsupported wildcard name was used, so the QUEUE TRAN command is not processed.</td>
</tr>
<tr>
<td>8B</td>
<td>A DFSQMGR request error occurred, so the QUEUE TRAN is not processed.</td>
</tr>
<tr>
<td>8C</td>
<td>The transaction is stopped, so the QUEUE TRAN OPTION(ENQ) is not processed.</td>
</tr>
<tr>
<td>8D</td>
<td>The transaction is not stopped, so the QUEUE TRAN OPTION(DEQ1</td>
</tr>
<tr>
<td>94</td>
<td>RM Request error</td>
</tr>
<tr>
<td>96</td>
<td>A RACF security failure has occurred, so the QUEUE TRAN OPTION(ENQ) is not processed.</td>
</tr>
<tr>
<td>98</td>
<td>CQS request error</td>
</tr>
<tr>
<td>99</td>
<td>Transaction is not initialized</td>
</tr>
<tr>
<td>9A</td>
<td>QUEUE TRAN OPTION(ENQ) is not supported for conversational mode.</td>
</tr>
<tr>
<td>9B</td>
<td>QUEUE TRAN OPTION(ENQ) is not supported for Fast Path transactions.</td>
</tr>
<tr>
<td>9C</td>
<td>QUEUE TRAN OPTION(ENQ) is not supported for response mode transactions.</td>
</tr>
<tr>
<td>9D</td>
<td>The MSNAME associated to remote transaction is stopped.</td>
</tr>
<tr>
<td>9F</td>
<td>QUEUE TRAN OPTION(ENQ) is not supported for a remote transaction.</td>
</tr>
</tbody>
</table>

### Examples

The following are examples of the QUEUE TRAN command:

**Example 1 for QUEUE TRAN command**

**TSO Input:**

```
QUEUE TRAN NAME(PART) OPTION(DEQALL)
```

**TSO Output:**

```
Trancode MbrName CC LQcnt
PART IMS1 0 5
PART IMS2 0 2
```

**Explanation:** The command was processed by all the IMS systems that received the command. IMS1 had five messages dequeued from its local queue, and IMS2 had two messages dequeued from its local queue.

**Example 2 for QUEUE TRAN command**

**TSO SPOC input:**

```
QUEUE TRAN NAME(PART) DATA(message1)
```
TSO SPOC output:
Trancode MbrName CC
PART IMS2 0

Explanation: The QUEUE TRAN command completed successfully and was processed by the command master.

Example 3 for QUEUE TRAN command

TSO SPOC input:
QUEUE TRAN NAME(PART) OPTION(DEQALL)

TSO SPOC output:
Trancode MbrName CC Qcnt
PART IMS3 0 2

Explanation: This example shows the QUEUE TRAN OPTION(DEQALL) in a shared-queues environment. Two messages are dequeued by the command master IMS.

Example 4 for QUEUE TRAN command

TSO SPOC input:
QUEUE TRAN NAME(PART) OPTION(DEQALL)

TSO SPOC output:
Trancode MbrName CC LQcnt
PART IMS2 0 2
PART IMS3 0 0
PART SYS3 0 1

Explanation: This example shows the QUEUE TRAN OPTION(DEQALL) in a Local Queues environment. Each IMS processes the command.

Related concepts:
- [How to interpret CSL request return and reason codes (System Programming APIs)](644)

Related reference:
- [Command keywords and their synonyms (Commands)](644)
Chapter 7. /QUIESCE command

The /QUIESCE command initiates the shutdown and deallocates the user for the specified ISC node.

Subsections:
- “Environment”
- “Syntax”
- “Keywords”
- “Usage notes” on page 646
- “Example” on page 646

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 233. Valid environments for the /QUIESCE command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/QUIESCE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NODE</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Syntax

```
/QUIESCE NODE nodename

/QUIESCE USER username

/QUIESCE USER ALL
```

Keywords

The following keywords are valid for the /QUIESCE command:

**NODE**

Specifies the VTAM node for the user to be shut down and deallocated.

**USER**

If the USER keyword is omitted, all half-sessions of an ISC node are affected. The half-sessions must be connected.

Restrictions for using NODE and USER parameters together:

- Commands with the NODE USER keyword pair are valid only if:
  - The USER is signed on to the NODE
  - In an ISC environment, the USER is allocated to the NODE
  - The nodes and users already exist
- /QUIESCE NODE USER commands are valid for ISC nodes only.
Usage notes

This command can be issued to an IMSplex using the Batch SPOC utility.

The \texttt{/QUIESCE NODE} command is valid for ISC nodes only.

\texttt{/QUIESCE} resets preset mode, test mode, lock node, lock lterm, pstop lterm, and purge lterm because these statuses are not significant and are not kept after a logon or restart. \texttt{/QUIESCE} also takes other actions depending on the recovery settings for the node:

\texttt{RCVYCONV=NO}

\texttt{/QUIESCE} causes any IMS conversations (active and held) to be terminated. Any conversational message that is queued or being processed has its output response message delivered asynchronously.

\texttt{RCVYFP=NO}

\texttt{/QUIESCE} causes Fast Path status and messages to be discarded.

\texttt{RCVYRESP=NO}

\texttt{/QUIESCE} resets full-function response mode.

If global resource information is not kept in Resource Manager, \texttt{/QUIESCE} deallocates the user and resets status locally. If global resource information is kept in Resource Manager, \texttt{/QUIESCE} deallocates the user and resets status globally. If the user has no significant status, \texttt{/QUIESCE} deletes the user in Resource Manager. If the node has no significant status, and there are no other half-sessions for the node, \texttt{/QUIESCE} deletes the node in Resource Manager.

If \texttt{ROUTE} is specified, it should be specified with \texttt{ROUTE(*).} The command fails if not routed to the IMS where the node is active.

Example

Entry ET:

\texttt{/QUIESCE NODE CAL USER LAX}

Response ET:

\texttt{/DFS058I QUIESCE COMMAND COMPLETED}

Explanation: The half-session of node CAL using user LAX is shut down.

Related reference:

“UPDATE IMSCON TYPE(ISC) command” on page 1011

“UPDATE IMSCON TYPE(ISCUSER) command” on page 1017
Chapter 8. /RCLSDST command

The /RCLSDST (remote close destination) command causes IMS to disconnect the VTAM terminal from which the command is entered.

Subsections:
- "Environment"
- "Syntax"
- "Usage notes"
- "Example" on page 648

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) from which the command can be issued.

Table 234. Valid environments for the /RCLSDST command

<table>
<thead>
<tr>
<th>Command</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/RCLSDST</td>
<td>X</td>
<td>DBCTL</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
/RCLSDST
/RCL
```

Usage notes

If you are in an active conversational mode, /EXIT or /HOLD must be entered before /RCLSDST is executed. If this command is issued by a signed on user, the user is signed off.

This command does not reset preset mode.

/RCLSDST resets preset mode, test mode, lock node, lock lterm, pstop lterm, and purge lterm because these statuses are not significant and, therefore, are not kept after logons and restart. /RCLSDST also takes other actions depending on the recovery settings for the node:

**RCVYSTSN=NO**

/RCLSDST acts like a /CHANGE NODE COLDSESS command for FINANCE and SLUP nodes by setting the session status to 'cold'. /RCLSDST acts like a /QUIESCE NODE command for ISC (LU6.1) nodes by initiating the shutdown and deallocating the user for the specified node. This action changes the session status to 'cold'. With these actions taken by the /RCLSDST command, the next session initiation request for this node is allowed to again attempt a session cold start. For ETO nodes, the control block structure could be deleted, if no significant status exists.

**RCVYCONV=NO**

/RCLSDST causes any held IMS conversations to be terminated. Any
conversational message that is queued or being processed has its output response message delivered asynchronously.

**RCVYFP=NO**

/RCLSDST causes Fast Path status and messages to be discarded.

**RCVYRESP=NO**

/RCLSDST resets full-function response mode.

If global resource information is not kept in Resource Manager, /RCLSDST logs a node off and resets status locally. If global resource information is kept in Resource Manager, /RCLSDST logs a node off and resets status globally. If the node has no status, /RCLSDST deletes the node in Resource Manager.

**Example**

Entry ET:
/RCLSDST

Response ET:

DFS058I  RCLSDST COMMAND COMPLETED

Explanation: The entering terminal is logged off IMS.
Chapter 9. /RCOMPT command

The /RCOMPT command sets a particular VTAM terminal component to a ready/not ready state.

Subsections:
- “Environment”
- “Syntax”
- “Usage notes” on page 650
- “Example” on page 650

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 235. Valid environments for the /RCOMPT command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/RCOMPT</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CNS</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NOTRDY</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PCH</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDS</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PRT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>RDR</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>READY</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TDS</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>UDS</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>VID</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

© Copyright IBM Corp. 1974, 2016
**Usage notes**

Output messages queued for a particular component will not be sent unless the component is ready. Depending on terminal type, output operations for other components can continue.

**Note:** Defaults are READY and 1.

The ready/not ready state set by the /RCOMPT command can be altered by the following:

- Another /RCOMPT command
- A /COMPT, /START, or /RSTART command
- An I/O error on the terminal component

The command format takes one of the following forms:

- A keyword is used.
  A search is made of the components (as defined in the TERMINAL macro during IMS system definition or logon descriptor) for the component defined that corresponds to the specified keyword. When a match is found, that component type is made ready or not ready as specified by the command.
- A keyword is used with a number other than 1 following the keyword.
  The corresponding occurrence of that component type is made ready or not ready, as specified by the command.
- Number 1 through 4 is used instead of a keyword.
  The component affected is the one defined in that position during system definition or logon descriptor independent of component type.

When using ISC, only parameters 1, 2, 3, and 4 are valid.

**Example**

**Entry ET:**

/RCOMPT VID 2 READY

**Response ET:**

DFS058I RCOMPT COMMAND COMPLETED

**Explanation:** The second display component is declared operable to IMS.

**Entry ET:**

/RCOMPT 4 READY

**Response ET:**

DFS058I RCOMPT COMMAND COMPLETED

**Explanation:** The fourth component defined is declared ready to IMS.

**Related reference:**

/ASSIGN command (Commands)
Chapter 10. /RDISPLAY command

The /RDISPLAY command refers to the terminal assigned as the master terminal and displays either the logical terminal name and the line and physical terminal numbers, or the logical terminal name and the VTAM NODE name.

Subsections:
- “Environment”
- “Syntax”
- “Keywords”
- “Usage notes”
- “Equivalent IMS type-2 commands”
- “Examples” on page 652

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keyword can be issued.

<table>
<thead>
<tr>
<th>Command/Keyword</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/RDISPLAY</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MASTER</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

`/RDISPLAY MASTER`

Keywords

The following keyword is valid for the /RDISPLAY command:

**MASTER**

Specifies the identity of the terminal designated as the master terminal.

Usage notes

If the 3270 master terminal capability was generated during IMS system definition, the logical terminal name, line, and physical terminal number of the secondary master terminal are also displayed.

This command can be issued to an IMSplex using the Batch SPOC utility.

Equivalent IMS type-2 commands

The following table shows variations of the /RDISPLAY command and the IMS type-2 commands that perform similar functions.
**Table 237. Type-2 equivalents for the /RDISPLAY command**

<table>
<thead>
<tr>
<th>Task</th>
<th>/RDISPLAY command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays the primary and secondary master terminal.</td>
<td>/RDISPLAY MASTER</td>
<td>QUERY LTERM STATUS(MTO,SMTO)</td>
</tr>
</tbody>
</table>

**Examples**

The following are examples of the /RDISPLAY command:

**Example 1 for /RDISPLAY command**

Entry ET:
/RDISPLAY MASTER

Response ET:
LTERM CNTRL
PTERM 3-1
*91010/123704*

Explanation: CNTRL is the master terminal logical terminal and is assigned to LINE 3 PTERM 1.

**Example 2 for /RDISPLAY command**

Entry ET:
/RDISPLAY MASTER

Response ET:
LTERM CTRL1
PTERM 4-2
LTERM CTRL2
PTERM 4-4
*91010/12370*

Explanation: CTRL1 is the primary master terminal logical terminal and is assigned to LINE 4 PTERM 2. CTRL2 is the secondary master terminal logical terminal and is assigned to LINE 4 PTERM 4.

**Related reference:**
“QUERY LTERM command” on page 280
Chapter 11. /RECOVER commands

The /RECOVER commands are used with the recovery list of database data sets and areas.

In an IMSplex, the /RECOVER command initiates the operation of the Database Recovery facility. OM sends the /RECOVER command to one IMS.

These commands can be issued to an IMSplex using the Batch SPOC utility.

/RECOVER commands are:
- “/RECOVER ADD command”
- “/RECOVER REMOVE command” on page 658
- “/RECOVER START command” on page 662
- “/RECOVER STOP command” on page 667
- “/RECOVER TERMINATE command” on page 670

/RECOVER ADD command

Use the /RECOVER ADD command to add database data sets and areas to a list (recovery list) of database data sets and areas to be recovered using the Database Recovery Facility.

The database data sets and areas can be specified as database data sets, areas, databases, or groups.

Subsections:
- “Environment”
- “Syntax” on page 654
- “Keywords” on page 654
- “Usage notes” on page 657
- “Examples” on page 657

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 238. Valid environments for the /RECOVER ADD command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/RECOVER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>ADD</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>AREA</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CAGROUP</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DB</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DBDS</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DBDSSGRP</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Table 238. Valid environments for the /RECOVER ADD command and keywords (continued)

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFFLINE</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RCVTOKEN</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RECOVGRP</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SMSOPTS</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>STAGLOBAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STALOCAL</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>USEAREA</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>USEDBDS</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Syntax

```
/RECOVER ADD
/RECOVER OFFLINE
```

Keywords

The following keywords are valid for the /RECOVER ADD command:

**OFFLINE**

With this option, the database remains offline from the IMS system at the completion of the recovery. This option is used to enable the database administrator to verify that the recovery has completed successfully and the databases are ready for use. This is the default if it is not specified on the /RECOVER START command.

The IMS system performing the recovery has exclusive authorization of the database to perform the recovery. The OFFLINE option allows the IMS system to deauthorize the databases at the completion of the recovery without issuing
a START command. This will leave the databases available for processing. If a PITR option has been used in a recovery, the database data set in the RECON is IMAGE COPY NEEDED.

**STAGLOBAL**

This option is used when the full-function database or databases and Fast Path areas are used in a sysplex data sharing environment. A /START DB command with the GLOBAL option is issued on the IMS system which ran the recovery for all full-function databases affected by recovery. A /START AREA command with the GLOBAL option is issued on the IMS system which ran the recovery for all Fast Path areas recovered. This option makes the database or databases available to IMS transactions as soon as all the DBDSs in the recovery list have been recovered. Authorization to use the database is returned to IMS.

**STALOCAL**

This option is used when the DRF is being executed in the operational IMS system where the database or databases are used. A /START DB command is issued on the IMS system which ran the recovery for all full-function databases affected by recovery. A /START AREA is issued on the IMS system which ran the recovery for all Fast Path areas recovered. Fast Path databases are not started with the /START DB command. Only one option needs to be specified and it applies to all DBDSs and areas added to the recovery list.

**USEDBDS | USEAREA**

These options are for Fast Path areas, full-function, and HALDB DBDS. When specified, DRF does not need to restore the image copy before applying log updates. You can use this option when you restore image copies prior to recovery.

**Note:** You must restore non-standard image copies prior to recovery.

This parameter determines whether DRF will restore the image copy for a DBDS before applying log updates.

**RCVTOKEN | RCK**

Specifies the unique identifier associated with a recovery list that the /RECOVER ADD command operates against. RCVTOKEN is optional. If it is not specified, IMS generates a recovery name. However, if the command is intended to add entries to an existing recovery list, RCVTOKEN must be specified with the intended recovery list token **recoveryname**. When RCVTOKEN is specified in a command, it must come before any keywords that identify the names of database data sets, areas, or groups.

**recoveryname**

Specifies the unique recovery token associated with the recovery list that the /RECOVER ADD command operates against. This token can be up to eight characters in length.

**SMSOPTS**

Specifies that the DFSMSdss options are to be associated with the entries being added to the recovery list. The options are only used when restoring image copies created by the Image Copy 2 utility.

**optionname**

Specifies a unique SMS option.

**DELCAT**

Specifies that the data set is to be restored using the DFSMSdss optional keyword, DELETECATALOGENTRY.
Attention: This option is to be used with extreme care. DELCAT is required if SMSOPTS is supplied. This option allows you to recover from a scenario where entire volumes are lost but the catalog entries remain. When this option is specified, SMS deletes the prior catalog entries for the database data sets and areas being restored as part of recovery. Before using this option, read the caution under DELETECATALOGENTRY option of the RESTORE command.

AREA
Specifies that one or more Fast Path areas are to be added to a recovery list.

topname
Specifies a unique Fast Path area.

CAGROUP
Specifies that one or more change accumulation groups, as defined in the RECON data sets, are to have their database data sets and areas added to a recovery list.

groupname
Specifies that the database data sets and areas belonging to the named CA group are to be added to the recovery list.

DB
Specifies that all the areas or full-function database data sets for one or more databases are to be added to a recovery list.

dbname
Specifies the database and the associated database data sets or areas that are to be added to a recovery list.

DBDS
Specifies that one or more full-function database data sets are to be added to a recovery list.

dbname ddname
Specifies a full-function database data set is to be added to a recovery list. Full-function database data sets are specified with the /RECOVER ADD DBDS command as an ordered pair. The first member of the pair is the database name. The second member is the DD name. If more than one full-function database data set is specified, the complete ordered pair must be specified for each database data set. All parameters must be separated by at least one blank space.

DBDSGRP
Specifies that one or more DBDS groups as defined in the RECON data sets will have their database data sets and areas added to a recovery list.

groupname
Specifies that the database data sets and areas belonging to the named DBDS group are to be added to the recovery list.

RECOVGRP
Specifies that the listed groups are recovery groups. A recovery group is a group of full-function databases, DEDB areas, or both that the user defines to IMS as related. All DBDSs that make up the full-function databases and all the DEDB areas making up the recover groups specified in the command are added to a recovery list.

groupname
Specifies the unique name of the group whose database data sets and areas are to be added to a recovery list.
Usage notes

Successful completion of a /RECOVER ADD command results in the specified database data sets and areas being added to a recovery list. Database data sets and areas can be added to a recovery list by specifying one or more database data sets, databases, change accumulation groups (CAGROUP), database data set groups (DBDSGRP), or recovery groups (RECOVGRP). If a database or group is specified, all database data sets and areas making up the database or group are added to a recovery list. If the specified database is a master database for a partitioned HALDB, all database data sets from all partitions that make up the HALDB are added to a recovery list. All groups (including databases) are defined in DBRC.

Database data sets and areas must be registered with DBRC to be recovered with the IMS Recovery Services. If the database data set, area, or group name is not known to DBRC, it is not added to a recovery list and a message is issued.

If a database data set or area specified in a /RECOVER ADD command (individually or as part of a group) is already on a recovery list, processing for the duplicate is ignored and a message is issued. Other database data sets and areas that are not duplicates are processed normally.

This command can be issued in IMS DBCTL and IMS DB/DC environments.

Examples

The COMMAND IN PROGRESS message is issued for /RECOVER ADD commands but is not shown in the following examples.

Example 1 for /RECOVER ADD command

In this example, a /RECOVER ADD STALOCAL command is issued for full-function database data sets. Following a successful recovery of the database data sets, the database is started on the IMS that runs the recovery.

/REC ADD STALOCAL DBDS DBNAME1 DDNAME1 DBNAME2 DDNAME2
DFS4299I FRD6011I THE FOLLOWING ENTRIES ARE ADDED TO THE RECOVERY LIST:
DFS4299I FRD6003I DBNAME1 DDNAME1
DFS4299I FRD6003I DBNAME2 DDNAME2

Example 2 for /RECOVER ADD command

In this example, a /RECOVER ADD command is issued for full-function database data sets. One of the database data sets is not registered in RECON and is rejected.

/RECOVER ADD DBDS DBNAME1 DDNAME1 DBNAME1 DDNAME2
DFS4299I FRD6011I THE FOLLOWING ENTRIES ARE ADDED TO THE RECOVERY LIST:
DFS4299I FRD6003I DBNAME1 DDNAME1
DFS4299I FRD6003I DDNAME2 DBNAME2
DFS4299I FRD6010W UNABLE TO ADD TO RECOVERY LIST, NOT FOUND IN RECON, DBNAME2 DDNAME2

Example 3 for /RECOVER ADD command

In this example, a /RECOVER ADD command is issued for full-function database data set. The database that database data set belongs to is still authorized to two IMS systems.

/RECOVER ADD DBDS DBNAME1 DDNAME1
DFS4299I FRD6011I THE FOLLOWING ENTRIES ARE ADDED TO THE RECOVERY LIST:
DFS4299I FRD6003I DBNAME1 DDNAME1
DFS4299I FRD6003I DBNAME1 DDNAME1 AUTHORIZED BY IMS1
DFS4299I FRD6003I DBNAME1 DDNAME1 AUTHORIZED BY IMS2
Example 4 for /RECOVER ADD command

Databases can be specified as a whole with the /RECOVER ADD DB command. In this example, a full-function database and a Fast Path database have all their database data sets and areas, respectively, added to the recovery list.

/REC ADD DB FFDDB1 FFDDB2
DFS4299I FRD60031 THE FOLLOWING ENTRIES ARE ADDED TO THE RECOVERY LIST:
DFS4299I FRD60031 DDNAME1
DFS4299I FRD60031 DDNAME2
DFS4299I FRD60031 DBAREA3 DDAREA3
DFS4299I FRD60031 DBAREA4 DDAREA4

Example 5 for /RECOVER ADD command

If more than one DATAGROUP is specified, the group names must be separated by at least one blank space. In this example, a /RECOVER ADD command is issued for two database groups.

/REC ADD DATAGROUP GRPNAME1 GRPNAME2
DFS4299I FRD60031 THE FOLLOWING ENTRIES ARE ADDED TO THE RECOVERY LIST:
DFS4299I FRD60031 DBNAME3 DDNAME3
DFS4299I FRD60031 DBNAME4 DDNAME4
DFS4299I FRD60031 DBNAME5 DDNAME5
DFS4299I FRD60031 DBNAME6 DDNAME6
DFS4299I FRD60031 DBNAME7 DDNAME7
DFS4299I FRD60031 DBNAME8 DDNAME8

Example 6 for /RECOVER ADD command

If one or more RECOVGRP is specified, the group names must be separated by at least one blank. In this example, a /RECOVER ADD command is issued for two recovery groups.

/REC ADD RECOVGRP GRPNAME1 GRPNAME2
DFS4299I FRD60031 THE FOLLOWING ENTRIES ARE ADDED TO THE RECOVERY LIST:
DFS4299I FRD60031 DBNAMEA DDNAMEA
DFS4299I FRD60031 DBNAMEB DDNAMEB
DFS4299I FRD60031 DBNAMEC DDNAMEC
DFS4299I FRD60031 DBNAMED DDNAMED
DFS4299I FRD60031 DBNAMEE DDNAMEE
DFS4299I FRD60031 DBNAMEF DDNAMEF

/RECOVER REMOVE command

Use the /RECOVER REMOVE command to remove some or all database data sets and areas from the recovery list.

It can only be issued prior to issuing the /RECOVER START command.

Subsections:
- “Environment”
- “Syntax” on page 659
- “Keywords” on page 659
- “Usage notes” on page 661
- “Examples” on page 661

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.
Table 239. Valid environments for the /RECOVER REMOVE command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/RECOVER</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ALLENTRIES</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>AREA</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CAGROUP</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DB</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DBDS</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DBDSGRP</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RCVTOKEN</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RECOVGRP</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>REMOVE</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
./RECOVER REMOVE RCVTOKEN recoveryname

./RECOVER REMOVE ALLENTRIES

./RECOVER REMOVE AREA areaname

./RECOVER REMOVE CAGRP groupname

./RECOVER REMOVE DB dbname

./RECOVER REMOVE DBDS dbname ddname

./RECOVER REMOVE DBDSGRP groupname

./RECOVER REMOVE RECOVGRP groupname
```

Keywords

The following keywords are valid for the /RECOVER REMOVE command:

- **RCVTOKEN | RCK**
  
  Specifies the unique identifier associated with the recovery list that the /RECOVER REMOVE command operates against. The RCVTOKEN keyword must come before any keywords that identify the names of database data sets, areas, or groups.

  recoveryname
  
  Specifies the unique recovery token associated with the recovery list that the /RECOVER REMOVE command operates against. This token can be up to eight characters in length.
**ALLENTRIES**
Specifications that the recovery list is to be eliminated.

**AREA**
Specifications that one or more Fast Path areas are to be removed from the recovery list.

\[areaname\]
Specifies a unique Fast Path area.

**CAGROUP**
Specifies that the database data sets and areas of one or more change accumulation groups as defined in the RECON data sets are to be removed from the recovery list.

\[groupname\]
Specifies that the database data sets and areas belonging to a specific CA group are to be removed from the recovery list.

**DATAGROUP**
Specifies that the database data sets and areas of one or more database groups (as defined in the RECON data sets) are to be removed from the recovery list.

\[groupname\]
Specifies the database data sets and areas of the unique group name that are to be removed from the recovery list.

**DB**
Specifies that the full-function database data sets or Fast Path areas making up one or more databases are to be removed from the recovery list.

\[dbname\]
Specifies database data sets or areas of the database that are to be added to a recovery list.

**DBDS**
Specifies that one or more full-function database data sets are to be removed from the recovery list.

\[dbname\]
Specifies the database data sets or areas of the database that are to be removed from the recovery list.

\[ddname\]
Specifies the DD name of the database data set. If DBDS is specified on the /RECOVER REMOVE command, \[dbname\] and \[ddname\] must be specified together.

**DBDSGRP**
Specifies that the database data sets and areas of one or more DBDS groups as defined in the RECON data sets are to be removed from the recovery list.

\[groupname\]
Specifies the database data sets and areas of the group that are to be removed from the recovery list.

**RECOVGRP**
Specifies that this group is a recovery group. All DBDSs that make up the full-function databases and all the DEDB areas are removed from the recovery list.

\[groupname\]
Specifies the database data sets and areas of the database that are to be removed from the recovery list.
Usage notes

Use the /RECOVER STOP command to remove entries after recovery has started.

- If /RECOVER REMOVE is issued before the /RECOVER START command, database data sets and areas specified on the /RECOVER REMOVE command individually or as part of databases or groups are removed from the recovery list. A subsequent /RECOVER START command initiates recovery for the remaining members in the recovery list.
- If a /RECOVER REMOVE ALLENTRIES command is issued before the /RECOVER START command, all elements in the list are removed, and the recovery list is eliminated.
- If the /RECOVER REMOVE command is issued after the /RECOVER START command, the /RECOVER REMOVE command is rejected.

If /RECOVER REMOVE is issued with one or more databases or groups, all database data sets and areas that are part of the database or group specified are removed from the recovery list. If a /RECOVER REMOVE command results in the removal of every data set or area entry from the recovery list, the recovery list is eliminated.

This command executes in IMS DBCTL and IMS DB/DC environments.

Examples

The command IN PROGRESS message is issued for /RECOVER commands but is not shown in these examples.

Example 1 for /RECOVER REMOVE command

As with the /RECOVER ADD command, full-function database data sets and Fast Path areas are specified with the /RECOVER REMOVE DBDS command. With the DBDS option, each full-function database data set must be specified as an ordered pair. Each element must be separated by at least one blank space. The first element of the pair is the database name. The second element is the DDNAME. In this example, a /RECOVER REMOVE command is issued for a single full-function database data set.

/RECOVER REMOVE RCVTOKEN DFS00001 DBDS DBNAME1 DDNAME1

DFS4299I FRD6016I THE FOLLOWING ENTRIES WERE REMOVED FROM THE RECOVERY LIST:
DFS4299I FRD6003I DBNAME1 DDNAME1

If more than one full-function database data set is specified in a /RECOVER REMOVE DBDS command, each dbname/ddname ordered pair must be separated by at least one blank space.

/RECOVER REMOVE RCVTOKEN DFS00001 DBDS DBNAME1 DDNAME1 DBNAME3 DDNAME3

DFS4299I FRD6016I THE FOLLOWING ENTRIES WERE REMOVED FROM THE RECOVERY LIST:
DFS4299I FRD6003I DBNAME1 DDNAME1
DFS4299I FRD6003I DBNAME3 DDNAME3

Example 2 for /RECOVER REMOVE command

In this example, a /RECOVER REMOVE command is issued for a single Fast Path area that was not added to the recovery list.
Example 3 for /RECOVER REMOVE command

In this example, a /RECOVER REMOVE command is issued for a full-function database and Fast Path database. All full-function database data sets and Fast Path areas making up the two databases are removed from the recovery list.

/REC REMOVE RCVTOKEN DFS00001 AREA DDAREA1

DFS4299I FRD6018W UNABLE TO REMOVE AREA DDAREA1: NOT IN RECOVERY LIST

Example 4 for /RECOVER REMOVE command

In this example, a /RECOVER REMOVE command is issued to stop recovery for the entire recovery list.

/REC REMOVE RCVTOKEN DFS00001 ALLENT

DFS4299I FRD6016I THE FOLLOWING ENTRIES WERE REMOVED FROM THE RECOVERY LIST:
- DFS4299I FRD6003I DBNAME1 DDNAME1
- DFS4299I FRD6003I DBNAME2 DDNAME2
- DFS4299I FRD6003I DBAREA1 DDAREA1
- DFS4299I FRD6003I DBNAME3 DDNAME3
- DFS4299I FRD6003I DBAREA4 DDAREA4
- DFS4299I FRD6003I DBNAME5 DDNAME5
- DFS4299I FRD6003I DBAREA6 DDAREA6
- DFS4299I FRD6003I DBAREA7 DDAREA7
- DFS4299I FRD6003I DBAREA8 DDAREA8
- DFS4299I FRD6003I DBAREA9 DDAREA9
- DFS4299I FRD6017I RECOVERY LIST IS NOW EMPTY

Related reference:
- “/RECOVER START command”

/RECOVER START command

Use the /RECOVER START command to start the recovery process for all the members of a recovery list.

The recovery process includes performing the following tasks:
- Image copies are restored to the database data sets and areas in the recovery list.
- Change accumulation data is applied to the database data sets and areas in the recovery list.
- The database data sets and areas are brought up to date by applying data changes from log data sets (or up to the recovery time).
- Log data sets cached to a VTS are staged to DASD as a user option.

Subsections:
- “Environment” on page 663
- “Syntax” on page 663
- “Keywords” on page 663
- “Usage notes” on page 665
- “Examples” on page 665
Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 240. Valid environments for the /RECOVER START command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/RECOVER</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ERRORABORT</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ERRORCONT</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NOCHECK</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OFFLINE</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PITR</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RCVTIME</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RCVTOKEN</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>READNUM</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>REMOVE</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>STAGLOBAL</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>STALOCAL</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>START</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>VERIFY</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Syntax

```
> /RECOVER
 START RCVTOKEN recoveryname
 ERRORABORT ERRORCONT
 READNUM
 VERIFY
 OFFLINE
 STAGLOBAL
 STALOCAL
 RCVTIME time-stamp
 PITR NOCHECK
```

Keywords

The following keywords are valid for the /RECOVER START command:

**RCVTOKEN | RCK**

Specifies the token of the recovery list that will be processed. When RCVTOKEN is specified in a command, it must come before any keywords that identify the names of database data sets, areas, or groups.

**recoveryname**

Specifies the unique recovery token associated with the recovery list to be processed. This token can be up to eight characters in length.
ERRORABORT
Specifies that recovery stops for all entries in the recovery list if recovery of any database data set cannot be completed. ERRORABORT is the default.

ERRORCONT
Specifies that recovery is to continue if recovery is able to complete processing for any database data set.

READNUM n
Specifies the number of input devices used in parallel during recovery. Image copies are restored using the number of input devices specified by n. When image copies are restored, log data sets are read using the number of input devices specified by n.

VERIFY
Specifies the report only execution and obtains a list of the log, change accumulation, and image copy data sets required to process recovery for the associated recovery list. This option allows users to perform set up procedures before invoking the recovery process.

OFFLINE
This option leaves all the databases offline after the recovery is complete. When the recovery is complete, DRF will deauthorize the databases. This leaves the databases in a state that allows normal DBRC processing.

STAGLOBAL
This option is used in a sysplex data sharing environment or with two IMS systems sharing data on the same central processing complex (CPC). A /START DB command with the GLOBAL option is issued internally for DL/I databases and a /START AREA command with the GLOBAL option is issued for the Fast Path areas. OFFLINE, STALOCAL, or STAGLOBAL options specified on the /RECOVER START command are used only for database data sets and areas that were added and did not have any of those options specified.

STALOCAL
This option is used to start the databases on the IMS system that ran the DRF recovery. A /START DB command with the LOCAL option is issued internally.

RCVTIME
Specifies the time stamp to which a point in time or time stamp recovery is to be performed.

time-stamp
The time stamp must have a format that is recognizable to IMS. Note that the UTC offset portion of a time stamp cannot be specified using a symbolic value in this command.

Additionally, the time stamp must be surrounded by single quotation marks ('). For example:

/RECOVER START RCVTOKEN R1 RCVTIME '022671213156'

PITR
Specifies that a time stamp recovery (TSR) will be performed to the time specified with the RCVTIME parameter regardless if there are any active database allocations for the specified database data sets.

NOCHECK
If a portion of the database data sets making up a database are in the recovery list being started, NOCHECK specifies that the Database Recovery Facility will
not stop a time stamp recovery or a time stamp recovery to any prior point in time (PITR) if one of the following situations occurs:

- All members of the recovery group are not in the same recovery list.
- All members of the recovery group are not being recovered to an equivalent point in time.

**Usage notes**

Only one /RECOVER START command is allowed to execute in one IMS at a time. If DRF is to run in conjunction with multiple IMS systems simultaneously, ensure that log contention situations do not occur. To avoid log contention situations, ensure that recovery instances that would read the same log data sets do not execute simultaneously in multiple IMS systems.

You can choose to automatically /START any or all members of the recovery list after successful completion of recovery, either on all IMS systems on which they are defined or just the one where the recovery is executed.

If ERRORABORT is in effect, the recovery list will not start until all the DBDSs in the list can be authorized for recovery. This is not true if the ERRORCONT parameter is specified on the /RECOVER START command. Instead, the recovery will continue.

If coordinated online change removes from the system any database data set or area that has been previously added to a recovery list, message DFS4266I with reason code NOT FOUND will be issued after the /RECOVER START command for that recovery list is entered.

**Examples**

The command IN PROGRESS message is issued for /RECOVER commands but is not shown in the following examples.

**Example 1 for /RECOVER START command**

In this example, /RECOVER START initiates recovery for the database data sets and areas from previous examples. Recovery continues until it completes or until one of the database data sets or areas is operable.

```
/REC START RCVTOKEN RCVTKN1 ERRORCONT
DFS4299I FRD6021I RECOVERY STARTED FOR:
 DFS4299I FRD6003I DBNAME1 DDNAME1
 DFS4299I FRD6003I DBNAME2 DDNAME2
 DFS4299I FRD6003I DBAREA1 DDAREA1
 DFS4299I FRD6003I DBNAME3 DDNAME3
 DFS4299I FRD6003I DBAREA4 DDAREA4
 DFS4299I FRD6003I DBAREA5 DDAREA5
 DFS4299I FRD6003I DBAREA6 DDAREA6
 DFS4299I FRD6003I DBNAME7 DDNAME7
 DFS4299I FRD6003I DBAREA8 DDAREA8
```

**Example 2 for /RECOVER START command**

In this example, /RECOVER START RCVTOKEN initiates recovery for the database data sets and areas owned by the recovery token RCVTKN2.

```
/REC START RCVTOKEN RCVTKN2
DFS4299I FRD6021I RECOVERY STARTED FOR:
 DFS4299I FRD6003I DBNAME1 DDNAME1
```
Example 3 for /RECOVER START command

In this example, /RECOVER START RCVTOKEN OFFLINE READNUM 6 initiates recovery for the database data sets and areas from previous examples. Recovery will not continue if any error is detected for any member of the recovery list. The database data sets and areas remain offline after recovery completes.

/RECOVER START RCVTOKEN RCVTKN2 OFFLINE READNUM 6
DF54299I FRD6001I RECOVERY STARTED FOR:
DF54299I FRD6001I DBNAME1 DDNAME1
DF54299I FRD6001I DBNAME2 DDNAME2
DF54299I FRD6001I DBNAME3 DDNAME3
DF54299I FRD6001I DBNAME4 DDNAME4
DF54299I FRD6001I DBNAME5 DDNAME5
DF54299I FRD6001I DBNAME6 DDNAME6
DF54299I FRD6001I DBNAME7 DDNAME7
DF54299I FRD6001I DBNAME8 DDNAME8

Example 4 for /RECOVER START command

In this example, /RECOVER START RCVTOKEN ERRORCONT RCVTIME time-stamp is issued. TSR continues until it completes or until one of the database data sets or areas undergoing recovery encounters an error. After recovery completes, a message is issued listing each database data set and area successfully recovered.

/REC START RCVTOKEN RCVTN2 ERRORABORT RCVTIME '020011015257' NOCHECK
DF54299I FRD6001I RECOVERY STARTED FOR RCVTN2, ERRORABORT, TSR
DF54299I FRD6001I DBNAME1 DDNAME1
DF54299I FRD6001I DBNAME2 DDNAME2
DF54299I FRD6001I DBNAME3 DDNAME3
DF54299I FRD6001I DBNAME4 DDNAME4
DF54299I FRD6001I DBNAME5 DDNAME5
DF54299I FRD6001I DBNAME6 DDNAME6
DF54299I FRD6001I DBNAME7 DDNAME7
DF54299I FRD6001I DBNAME8 DDNAME8

Example 5 for /RECOVER START command

In this example, /RECOVER START RCVTOKEN RCVTIME time-stamp PITR is issued. Point-in-time recovery will continue until it completes or until one of the
database data sets encounters an error. A message is issued listing the database data sets and areas that were not in the recovery list, but might need recovery using point-in-time recovery.

/REC START RCVTOKEN RCVTKN2 RCVTIME '020011015257' PITR
DFS4299I FRD6021I RECOVERY STARTED FOR RCVTKN2, ERRORCONT, PITR
DFS4299I FRD6003I DBNAME1 DDNAME1
DFS4299I FRD6003I DBNAME2 DDNAME2
DFS4299I FRD6003I DBAREA1 DDAREA1
DFS4299I FRD6003I DBNAME3 DDNAME3
DFS4299I FRD6003I DBAREA4 DDAREA4
DFS4299I FRD6003I DBAREA5 DDAREA5
DFS4299I FRD6003I DBAREA6 DDAREA6
DFS4299I FRD6003I DBNAME7 DDNAME7
DFS4299I FRD6003I DBAREA8 DDAREA8
...
DFS4299I FRD6024A GROUP MEMBER DBNAME9 DDNAME9 NOT IN RECOVERY LIST: MEMBER OF A GROUP
DFS4299I FRD6024A GROUP MEMBER DBNAMEA DDNAMEA NOT IN RECOVERY LIST: MEMBER OF A GROUP
DFS4299I FRD6024A GROUP MEMBER DBAREA9 DDAREA9 NOT IN RECOVERY LIST: MEMBER OF A GROUP
...
DFS4299I FRD4031I DATASET RESTORE COMPLETE: DBNAME1 DDNAME1
DFS4299I FRD4031I DATASET RESTORE COMPLETE: DBNAME2 DDNAME2
DFS4299I FRD4031I DATASET RESTORE COMPLETE: DBAREA1 DDAREA1
DFS4299I FRD4031I DATASET RESTORE COMPLETE: DBNAME3 DDNAME3
DFS4299I FRD4031I DATASET RESTORE COMPLETE: DBNAME4 DDNAME4
DFS4299I FRD4031I DATASET RESTORE COMPLETE: DBAREA5 DDAREA5
DFS4299I FRD4031I DATASET RESTORE COMPLETE: DBNAME6 DDNAME6
DFS4299I FRD4031I DATASET RESTORE COMPLETE: DBNAME7 DDNAME7
DFS4299I FRD4031I DATASET RESTORE COMPLETE: DBAREA8 DDAREA8
DFS4277I RECOVERY COMPLETE FOR: RCVTKN2

Related reference:
"/RECOVER REMOVE command" on page 658
"/RECOVER STOP command"

Examples for the DFSURDB0 utility (Database Utilities)

/RECOVER STOP command

Use the /RECOVER STOP command to stop recovery for all database data sets and areas on the recovery list.

Subsections:
- “Environment”
- “Syntax” on page 668
- “Keywords” on page 668
- “Usage notes” on page 669
- “Examples” on page 669

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 241. Valid environments for the /RECOVER STOP command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/RECOVER STOP</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Syntax

```
/RECOVER STOP
```

```
/REC
```

```
ALLENTRIES
```

```
ALLENT
```

```
SAVE
```

```
AREA
```

```
areaname
```

```
CAGRP
```

```
classname
```

```
DB
```

```
dbname
```

```
DBDS
```

```
dbname ddname
```

```
DBDSGRP
```

```
classname
```

```
RECOVGRP
```

```
classname
```

Keywords

The following keywords are valid for the /RECOVER STOP command:

**ALLENTRIES**

Specifies that recovery is to be aborted for all database data sets and areas (all entries) in the recovery list.

**SAVE**

Specifies that the recovery list is not to be deleted when recovery is stopped. This parameter is only allowed with the ALLENT parameter after recovery has been initiated with the /RECOVER START command.

**AREA**

Specifies that recovery processing is to be stopped for the specified Fast Path areas.

```
areaname
```

Specifies a unique Fast Path area.

**CAGROUP**

Specifies that recovery processing is to be stopped for the database data sets and areas making up the specified change accumulation groups as defined in the RECON data sets.

```
grouppname
```

Specifies the unique name of the group whose database data sets and areas are to have recovery processing be stopped.

**DB**

Specifies that recovery processing is to be stopped for the full-function database data sets or Fast Path areas that make up the specified databases.

```
dbname
```

Specifies the database whose database data sets or areas are to be added to a recovery list.
**DBDS**

Specifies that recovery processing is to be stopped for the specified full-function database data sets.

*dbname*

Specifies the database whose database data sets or areas are to be added to a recovery list.

*ddname*

The 8 character identifier associated with the data set name and data set characteristics. *dbname* and *ddname* must be specified together if DBDS is specified on the /RECOVER REMOVE command.

**DBDSGRP**

Specifies that recovery processing is to be stopped for the database data sets and areas making up the specified DBDS groups as defined in the RECON data sets.

*groupname*

Specifies the unique name of the group whose database data sets and areas are to have recovery processing be stopped.

**RECOVGRP**

Specifies that this group is a recovery group. A recovery group is a group of full-function databases or DEDB areas that are considered to be related. All DBDSs that make up the full-function databases and all the DEDB areas are removed from the recovery list.

*groupname*

Specifies the unique name of the group whose database data sets and areas are to have recovery processing be stopped.

**Usage notes**

The command can only be issued for a recovery list that has had /RECOVER START issued against it. If the /RECOVER STOP is issued before the /RECOVER START command, it is rejected. If it is issued after the /RECOVER START command, recovery is stopped for all database data sets in the recovery list. After a /RECOVER STOP command successfully processes, subsequent /RECOVER STOP commands are rejected.

If /RECOVER STOP ALLENT is issued, all recovery processing for the affected recovery list halts, and the existing recovery list is deleted.

**Examples**

The COMMAND IN PROGRESS message is issued for /RECOVER commands but is not shown in the following examples.

**Example 1 for /RECOVER STOP command**

In this example, a /RECOVER STOP command is issued to stop recovery for the entire recovery list.

```
/REC STOP ALLENT
DFS4299I FRD6032I THE FOLLOWING ENTRIES WILL HAVE RECOVERY STOPPED:
DFS4299I FRD60031 DBNAME1 DDNAME1
DFS4299I FRD60031 DBNAME2 DDNAME2
DFS4299I FRD60031 DBAREA1 DDAREA1
DFS4299I FRD60031 DBNAME3 DDNAME3
DFS4299I FRD60031 DBAREA4 DDAREA4
```
Example 2 for /RECOVER STOP command

In this example, a /RECOVER STOP ALLENT SAVE is issued after a /RECOVER START command.

/REC STOP ALLENT SAVE
DFS4299I FRD6032I THE FOLLOWING ENTRIES WILL HAVE RECOVERY STOPPED:
DFS4299I FRD6031I DBNAME1 DBNAME1

Example 3 for /RECOVER STOP command

In this example, a /RECOVER STOP ALLENT command is issued with no recovery in progress.

/REC STOP ALLENT
DFS4299I FRD6031E UNABLE TO STOP ALLENT: RECOVERY NOT IN PROGRESS

Related reference:
“/RECOVER START command” on page 662
“/RECOVER TERMINATE command” on page 670

/RECOVER TERMINATE command

Use the RECOVER TERMINATE command to delete all lists in BEING BUILT status and to terminate the DRS address space.

Subsections:
- “Environment”
- “Syntax”
- “Usage notes” on page 671
- “Example” on page 671

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/RECOVER</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TERMINATE</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Syntax

```
/RECOVER TERMINATE
```

670 Commands, Volume 2: IMS Commands N - V
Usage notes

If a recovery is in progress, the recovery will ignore the /RECOVER TERMINATE command and continue to process. When it completes, another /RECOVER TERMINATE command is required. It will not take effect automatically. If you would like to force DRF down while a recovery is running, you must issue the /RECOVER STOP ALLENT command first. This will stop the recovery, and then you can enter the /RECOVER TERMINATE command to terminate the DRF address space.

Example

In this example, a /RECOVER TERMINATE command is issued with no recovery in progress.

/RECOVER TERMINATE
DFS4299I FRD4202I DATABASE RECOVERY DATA MANAGER TERMINATION COMPLETE

Related reference:
“/RECOVER STOP command” on page 667
Chapter 12. REFRESH USEREXIT command

Use the type-2 REFRESH USEREXIT command to refresh the user exit modules that are defined in the USER_EXITS section of the DFSDFx member. When the command is processed, IMS rereads the DFSDFx member and processes the USER_EXITS section.

Subsections:
- “Environment”
- “Syntax”
- “Keywords”
- “Usage notes” on page 675
- “Output fields” on page 676
- “Return, reason, and completion codes” on page 676
- “Examples” on page 678

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) from which the REFRESH command and keywords can be issued.

Table 243. Valid environments for the REFRESH USEREXIT command and keywords

<table>
<thead>
<tr>
<th>Command / keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFRESH USEREXIT</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TYPE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MEMBER</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```plaintext
REFRESH USEREXIT TYPE(exit_type)
MEMBER(suffix)
```

Keywords

The following keyword is valid for the REFRESH USEREXIT command:

**TYPE(exit_type)**

Specifies the user exit type or types that you want to be refreshed. You can specify a single user exit type or a list of user exit types separated by commas. The valid user exit types are the following:

- **BSEX**
  - Build Security Environment user exit
- **ICQSEVNT**
  - IMS CQS Event user exit
ICQSSTEV
  IMS CQS Structure Event user exit

INITTERM
  Initialization/Termination user exit

LOGEDIT
  Log Edit user exit

LOGWRT
  Logger user exit

NDMX
  Non-Discardable Messages user exit

OTMAIOED
  OTMA Input/Output Edit user exit

OTMAYPRX
  OTMA Destination Resolution user exit

OTMARTUX
  OTMA Resume TPIPE Security user exit

PPUE
  Partner Product user exit

RASE
  Resource Access Security user exit

RESTART
  Restart user exit

If an exit type is specified more than once, it is refreshed only once and no error message is issued.

MEMBER(suffix)
  Specifies a 1- to 3-alphanumeric character value that represents the suffix to a DFSDFxxx member name. The identified DFSDFxxx member is read in and parsed for the EXITDEF statements for the requested user exit types. If the keyword is not specified, the DFSDFxxx member specified for system initialization is used as the default. The DFSDFxxx member specified on system initialization can be determined from message DFS1929I on the system console or log. The command fails if the MEMBER keyword is specified with an invalid xxx value or if the DFSDFxxx member is not found.

This keyword is optional. Normally, the DFSDFxxx member specified on system initialization should be the only one available. The purpose of this keyword is to provide the capability of having the command point to an alternate DFSDFxxx member (different from the system default) for test purposes. Outside of testing, IMS expects the MEMBER keyword to be omitted.

Note: These changes are not saved across a restart. If you refresh your user exits from a DFSDFxxx member that is not the member specified on IMS initialization and you do not update your initialization DFSDFxxx member, the user exit changes will be lost when IMS restarts.

If the MEMBER parameter is specified without any value (MEMBER()), it is treated as if MEMBER is not specified. The DFSDFxxx member specified for initialization will be used.
**Usage notes**

You can issue this command only through the Operations Manager (OM) API.

The output of this command is defined in XML and is available to automation programs that communicate with OM.

When the REFRESH USEREXIT command is entered, IMS performs the following steps:

1. Reads the DFSDFxxx member and process the USER_EXITS section of the DFSDFxxx member.
2. Loads the user exit modules specified in the USER_EXITS section for the exit types specified in the command.
3. Updates the internal IMS control block with pointers to the new user exit modules. Any subsequent calls to the user exit modules will now call the new modules.
4. When the processing has completed in the old exit modules, the old modules will be deleted.

IMS loads the new user exit modules before deleting the old modules. If an error occurs during this process (for example, a module could not be loaded), IMS fails the command for the particular user exit type and leaves the current modules of the user exit type in effect. All modules of the specified user exit type must be loaded successfully for the command to complete successfully.

If your IMSplex has multiple IMS systems, you can refresh the user exit modules in all of the IMS systems in the IMSplex by using the default routing for the command. This sends the REFRESH USEREXIT command to all of the IMS systems in the IMSplex and the user exit modules are refreshed in each of the IMS systems. If the refresh fails on one or more IMS systems, you must resolve the problem that caused the command to fail and reenter the command.

You can use the REFRESH USEREXIT command to add a user exit type to IMS, delete a user exit type, or migrate an existing user exit to be dynamically refreshable:

- To add a user exit type, insert EXITDEF statements into the USER_EXITS section of the DFSDFxxx member for the user exit type you want to add and then enter the REFRESH USEREXIT command for that exit type. If the user exit has an initialization function, the user exit is called with the initialization function before the user exit is made available to IMS.

- To delete a user exit type, remove the EXITDEF statements from the USER_EXITS section of the DFSDFxxx member for the user exit type you want to delete and then enter the REFRESH USEREXIT command for that exit type.

- To migrate an existing user exit, specify the exit routines on the EXITDEF parameter in the USER_EXITS section of the DFSDFxxx member and then enter the REFRESH USEREXIT command for that exit type.

Refreshes are performed at the exit type level, so when an exit routine of a certain exit type is modified, every exit routine of that exit type is refreshed.

Certain messages contain the short form of the command to which the message refers. Because the REFRESH USEREXIT command does not have a short form, the first four characters of the command (REFR) are specified in the message. These four characters are also used to define the command security.
Output fields

The following table shows the REFRESH USEREXIT output fields. The columns in the table are:

**Short label**
Contains the short label that is generated in the XML output.

**Long label**
Contains the long label generated in the XML output.

**Keyword**
Identifies the keyword on the command that caused the field to be generated. N/A (not applicable) appears for output fields that are always returned.

**Scope**
Identifies the scope of the output field.

**Meaning**
Provides a brief description of the output field.

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>N/A</td>
<td>Completion code for the line of output. The completion code is always returned.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>N/A</td>
<td>N/A</td>
<td>Completion code text that briefly explains the meaning of the non-zero completion code.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>N/A</td>
<td>IMSplex member that built the output line. Member name is always returned.</td>
</tr>
<tr>
<td>TYPE</td>
<td>ExitType</td>
<td>TYPE</td>
<td>LCL</td>
<td>User exit type requested by the REFRESH USEREXIT command. User exit type is always returned.</td>
</tr>
<tr>
<td>NAME</td>
<td>ModName</td>
<td>N/A</td>
<td>LCL</td>
<td>Exit routine name that was loaded by this REFRESH USEREXIT command.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The return and reason codes that can be returned as a result of the REFRESH USEREXIT command are standard for all commands entered through the OM API. For a list of the codes and their meaning, see the CSLOMCMD: command request [System Programming APIs](#). The following table contains the return, reason, and completion codes for the REFRESH USEREXIT command. Included in the tables is a brief explanation of the codes.

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The REFRESH USEREXIT command completed successfully.</td>
</tr>
</tbody>
</table>
Table 245. Return and reason codes for the REFRESH USEREXIT command (continued)

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000004'</td>
<td>X'00001024'</td>
<td>The REFRESH USEREXIT command completed successfully and a message was issued.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002014'</td>
<td>The DFSDFxxx suffix specified in the MEMBER parameter contains an invalid character.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003000'</td>
<td>The REFRESH USEREXIT command was successful for at least one user exit type. The REFRESH command was not successful for one or more user exit types. The completion code indicates the reason for the error with the user exit type. The completion codes that can be returned by the REFRESH command are listed in Table 246.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>The REFRESH USEREXIT command was not successful for any of the user exit types specified. The completion code indicates the reason for the error with the user exit type. The completion codes that can be returned by the REFRESH command are listed in Table 246.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005004'</td>
<td>The REFRESH USEREXIT command processing terminated, because a DFSOCMD response buffer could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005FFF'</td>
<td>The REFRESH USEREXIT command processing terminated because of an internal error.</td>
</tr>
</tbody>
</table>

Errors that are unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

The following table contains completion codes that can be returned on a REFRESH USEREXIT command.

Table 246. Completion codes for the REFRESH USEREXIT command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The REFRESH USEREXIT command completed successfully for the user exit type.</td>
</tr>
<tr>
<td>92</td>
<td>An Error was encountered while processing the REFRESH USEREXIT command. Check the messages that are returned with the command output for additional information about the error.</td>
</tr>
<tr>
<td>148</td>
<td>The specified user exit type was successfully deleted and a message was issued.</td>
</tr>
<tr>
<td>14E</td>
<td>The specified user exit type is deleted and will no longer be called.</td>
</tr>
<tr>
<td>14F</td>
<td>The specified user exit type could not be added because there was no EXITDEF for the user exit type in the DFSDFxxx member or because no log record types existed in the DFSVSMxx member (message DFS4586E).</td>
</tr>
</tbody>
</table>
Examples

The following are examples of the REFRESH USEREXIT command:

Example 1 for REFRESH command

TSO SPOC input:

REFRESH USEREXIT TYPE(ICQSEVNT)

TSO SPOC output:

<table>
<thead>
<tr>
<th>ExitType</th>
<th>ModName</th>
<th>MbrName</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICQSEVNT</td>
<td>DFSCQEX0</td>
<td>SYS3</td>
<td>0</td>
</tr>
<tr>
<td>ICQSEVNT</td>
<td>DFSCQEX1</td>
<td>SYS3</td>
<td>0</td>
</tr>
<tr>
<td>ICQSEVNT</td>
<td>DFSCQEX2</td>
<td>SYS3</td>
<td>0</td>
</tr>
</tbody>
</table>

OM API input:

<imsout>
<ctl>
<omname>OMIOM</omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2012.061 20:33:01.174845</statime>
<stotime>2012.061 20:33:01.330060</stotime>
<staseq>C9344A66B2C43D7AAA</staseq>
<stoseq>C9344A66B2C43D7BBB</stoseq>
<rqsttkn1>USRRT002 10123301</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
</cmd>

Explanation: ICQSEVNT exit types are refreshed.

Related concepts:

- [How to interpret CSL request return and reason codes (System Programming APIs)](678)

Related reference:

678 Commands, Volume 2: IMS Commands N - V
Chapter 12. REFRESH USEREXIT command
Chapter 13. /RELEASE command

The /RELEASE command resumes a conversation that was previously saved by means of the /HOLD command.

Subsections:
- “Environment”
- “Syntax”
- “Keywords”
- “Usage notes”
- “Example” on page 682

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keyword can be issued.

<table>
<thead>
<tr>
<th>Command / Keyword</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/RELEASE</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CONVERSATION</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
/RELEASE CONVERSATION conv#
```

Keywords

The following keywords are valid for the /RELEASE command:

CONVERSATION

Specifies the 4-digit identification (including leading zeros) of the conversation to be resumed; CONVERSATION conv# is the 4-digit identification conv# that was provided when the conversation was previously held.

Usage notes

The last message sent to the terminal before /HOLD was entered is sent to the terminal again.

/RELEASE is not valid from an LU 6.2 device. LU 6.2 communications cannot release a conversation, whether started by itself or by another communications protocol.

If global resource information is kept in Resource Manager, /RELEASE updates the conversation globally in Resource Manager. If global resource information is not kept in Resource Manager, /RELEASE updates the conversation locally.
Example

Entry ET:
   /RELEASE CONVERSATION 0001

Response ET:

IMS does not respond to this command except to resend the last message.

Explanation: Conversation 0001 has been released and can be resumed by the terminal operator.
Chapter 14. /RESET command

The /RESET command eliminates the preset mode established by the /SET command.

Subsections:
- “Environment”
- “Syntax”
- “Example”

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) from which the command can be issued.

Table 248. Valid environments for the /RESET command

<table>
<thead>
<tr>
<th>Command</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/RESET</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
/RESET
```

Example

Entry ET:
/RESET

Response ET:

```
DF5058I RESET COMMAND COMPLETED
```

Explanation: The preset mode is no longer in effect.
Chapter 15. /RMxxxxxx commands

The /RMxxxxxx commands are multisegment commands that call functions of IMS Database Recovery Control (DBRC). Each /RMxxxxxx command is an online version of the corresponding batch DBRC command.

The following table lists the DBRC commands that are supported online and describes the utility function of each command:

Table 249. Functions of the DBRC commands supported online

<table>
<thead>
<tr>
<th>Command</th>
<th>Utility function</th>
</tr>
</thead>
<tbody>
<tr>
<td>/RMCHANGE</td>
<td>Changes or modifies information in the RECON data set</td>
</tr>
<tr>
<td>/RMDELETE</td>
<td>Deletes information in the RECON data set</td>
</tr>
<tr>
<td>/RMGENJCL</td>
<td>Generates JCL for:</td>
</tr>
<tr>
<td></td>
<td>• IMS Change Accumulation utility</td>
</tr>
<tr>
<td></td>
<td>• IMS Log Archive utility</td>
</tr>
<tr>
<td></td>
<td>• IMS Log Recovery utility</td>
</tr>
<tr>
<td></td>
<td>• IMS Database Image Copy utility</td>
</tr>
<tr>
<td></td>
<td>• Database Image Copy 2</td>
</tr>
<tr>
<td></td>
<td>• IMS Online Database Image Copy utility</td>
</tr>
<tr>
<td></td>
<td>• Database Recovery utility</td>
</tr>
<tr>
<td></td>
<td>• User-defined output</td>
</tr>
<tr>
<td>/RMINIT</td>
<td>Creates records in the DBRC RECON data set</td>
</tr>
<tr>
<td>/RMLIST</td>
<td>Lists information contained in the RECON data set</td>
</tr>
<tr>
<td>/RMNOTIFY</td>
<td>Notifies DBRC about additional information, which gets recorded in the RECON data set.</td>
</tr>
</tbody>
</table>

These commands enable the IMS master terminal operator or an authorized terminal operator to run certain DBRC utility functions online. For any /RMxxxxxx commands other than /RMLIST, output is limited to what can be put in a 4 KB buffer. For the /RMLIST command that is issued from non-OM API (for example, IMS terminals or master terminals), output is limited to 32 KB. There is no limit to the output generated and returned by the /RMLIST command issued from OM API.

Subsections:
- “Environment”
- “Syntax” on page 686
- “Keywords” on page 686
- “Usage notes” on page 688
- “Examples” on page 688

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keyword can be issued.
<table>
<thead>
<tr>
<th>Command / Keyword</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/RMxxxxxx</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LTERM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Syntax**

```
/RMCHANGE
/RMC
/RMDELETE
/RMD
/RMGENJCL
/RMG
/RMINIT
/RMI
/RMLIST
/RML
/RMNOTIFY
/RMN
```

**Keywords**

The following keywords are valid for the /RMxxxxxx command:

**LTERM ltermname**

Specifies the logical terminal designated for output. If you omit the LTERM keyword, the output destination is the input terminal.

**Recommendation:** Because some of the DBRC commands generate a large amount of output, especially the /RMGENJCL and /RMLIST commands, direct the output to a printer.

**DBRC='modifier parameter_set'**

Specifies the DBRC modifier for the function specified and the parameters that will be passed to DBRC. The DBRC= parameter is required on all /RMxxxxxx commands.

- **modifier**
  - The DBRC modifier for the function specified. The following table lists the DBRC modifiers and the /RMxxxxxx commands with which the modifiers can be issued.

**Table 250. Valid environments for the /RMxxxxxx command and keyword**

<table>
<thead>
<tr>
<th>Command / Keyword</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/RMxxxxxx</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LTERM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Table 251. DBRC modifiers for the /RMxxxxxx commands**

<table>
<thead>
<tr>
<th>Modifier</th>
<th>CHANGE</th>
<th>DELETE</th>
<th>GENJCL</th>
<th>INIT</th>
<th>LIST</th>
<th>NOTIFY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADS</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALLOC</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ARCHIVE</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BKOUT</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAGRP</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CLOSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
### Table 251. DBRC modifiers for the /RMxxxxx commands (continued)

<table>
<thead>
<tr>
<th>Modifier</th>
<th>CHANGE</th>
<th>DELETE</th>
<th>GENJCL</th>
<th>INIT</th>
<th>LIST</th>
<th>NOTIFY</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DBDS</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DBDSGRP</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>GSG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>HISTORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>IC</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LOG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OIC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PART</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PRILOG</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>RECON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>RECOV</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>REORG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SECLOG</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SG</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SUBSYS</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>UIC</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>USER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

*parameter_set*

Represents the required and optional parameters that will be passed to DBRC. For an explanation of the values that can be specified, see the corresponding command. For example, if you specify /RMLIST LTERM(ltermname) DBRC='DBDS parameter_set', see the description of the LIST:DBDS command to understand what parameters can be used in place of parameter_set.

### Table 252. /RMxxxxx commands and corresponding DBRC commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Corresponding DBRC command</th>
</tr>
</thead>
<tbody>
<tr>
<td>/RMCHANGE</td>
<td>For the parameters that can be issued with the /RMCHANGE command, see CHANGE commands (Commands)</td>
</tr>
<tr>
<td>/RMDELETE</td>
<td>For the parameters that can be issued with the /RMDELETE command, see DELETE commands (Commands)</td>
</tr>
<tr>
<td>/RMGENJCL</td>
<td>For the parameters that can be issued with the /RMGENJCL command, see GENJCL commands (Commands)</td>
</tr>
<tr>
<td>/RMINIT</td>
<td>For the parameters that can be issued with the /RMINIT command, see INIT commands (Commands)</td>
</tr>
<tr>
<td>/RMLIST</td>
<td>For the parameters that can be issued with the /RMLIST command, see LIST commands (Commands)</td>
</tr>
<tr>
<td>/RMNOTIFY</td>
<td>For the parameters that can be issued with the /RMNOTIFY command, see NOTIFY commands (Commands)</td>
</tr>
</tbody>
</table>
Usage notes

All /RMxxxxxx formats require an EOM indication to denote end-of-message. An EOS indication must be included for all segments, if any, that precede the last segment. If comments are included with the /RMxxxxxx commands, they must be enclosed in asterisks.

If a failure other than the loss of both RECON data sets occurs while DBRC is processing an online command, DBRC makes the command unavailable for the remaining time the IMS online region is running. After determining and correcting the cause of the original failure, the command can be made available again by resubmitting the online command with the RESET parameter specified in the parameter set. It is the verb, rather than the modifier, level of the command that DBRC makes unavailable. That is, if a DBRC INIT.DB command fails, DBRC makes all INIT commands unavailable. DBRC sends an error message to the originating terminal when the command fails. You can still issue the failing command from other IMS online regions.

Note: DBRC does not make GENJCL commands unavailable, because the GENJCL.ARCHIVE command is needed for automatic archiving.

These commands can be issued to an IMSplex using the Batch SPOC utility.

DBRC does not remember command failures across IMS restarts because it assumes that you will correct the error before restarting IMS.

Examples

The following are examples of the /RMxxxxxx commands:

Examples for /RMCHANGE command

Entry ET (with comments):
/RMCHANGE DBRC='DB DBD(DIVNTZ04) SHARELVL(3)'.*COMMENT*.

Response ET:
CHG. DB DBD(DIVNTZ04) SHARELVL(3)
DSP0203I COMMAND COMPLETED WITH CONDITION CODE 00
DSP0220I COMMAND COMPLETION TIME
DSP0211I COMMAND PROCESSING COMPLETE
DSP0211I HIGHEST CONDITION CODE = 00
DSP0058I RMC COMMAND COMPLETED

Entry ET:
/RMCHANGE DBRC='DBDS DBD(DIVNTZ04) DDN(DIVNTZ04) ICON'.

Response ET:
CHG. DBDS DBD(DIVNTZ04) DDN(DIVNTZ04) ICON
DSP0203I COMMAND COMPLETED WITH CONDITION CODE 00
DSP0220I COMMAND COMPLETION TIME
DSP0211I COMMAND PROCESSING COMPLETE
DSP0211I HIGHEST CONDITION CODE = 00
DSP0058I RMC COMMAND COMPLETED

Entry ET:
/RMC DBRC='DBDS DBD(DEDBJN21) AREA(DB21AR7) VSO PREOPEN'.
Response ET:

DFS000I CHANGE.DBDS DBD(DEDBJN21) AREA(DB21AR7) VSO PREOPEN
DFS000I DSP0203I COMMAND COMPLETED WITH CONDITION CODE 00

Example for /RMDELETE command

Entry ET (with comments):

/RMDELETE DBRC='DB DBD(DIVNTZ04)' /*COMMENT*/.

Response ET:

DELETE.DB DBD(DIVNTZ04)
DSP0203I COMMAND COMPLETED WITH CONDITION CODE 00
DSP0220I COMMAND COMPLETION TIME
DSP0211I COMMAND PROCESSING COMPLETE
DSP0211I HIGHEST CONDITION CODE = 00
DSP0058I RMD COMMAND COMPLETED

Example for /RMGENJCL command

Entry ET (with comments):

/RMGENJCL LTERM SMITH DBRC='IC DBD(HDAMVSAM) DDN(DD1) LIST'.

Response ET:

DSP058I RMG COMMAND COMPLETED

Response LTERM SMITH:

GENJCL.IC DBD(HDAMVSAM) DDN(DD1)
//IC135607 JOB
//IC EXEC PGM=DFSRCC00,PARM='ULU,DFSUDMP0',REGION=800K
//-- THIS JCL ORIGINATES FROM THE USER'S 'JCLPDS' LIBRARY.
//-- %KEYWORDS ARE REPLACED BY THE GENJCL FUNCTION OF
//-- THE IMS DATABASE RECOVERY CONTROL FEATURE.
//-- JCL FOR IMAGE COPY.
//--
//-- SYSPRINT DD SYSOUT=A
//-- RECON1 DD DSN=POCON01,DISP=SHR
//-- RECON2 DD DSN=POCON02,DISP=SHR
//-- IMS DD DSN=IMS.DBDLIB,DISP=SHR
//-- D1 DD DSN=HDAMVASM,DCB=BUFNO=10,DISP=OLD
//-- DATAOUT1 DD DSN=IMS.HDAMVSAM.DD1.IC.ICD1,UNIT=3400,
//-- VOL=(PRIVATE,,,1,SER=(*****)),
//-- LABEL=(1,SL),
//-- DISP=(NEW,KEEP),DCB=BUFNO=10
//-- DFSVSAMP DD *
1024,2
4096,4
//-- SYSIN DD *
D1 HDAMVSAM DD1 DATAOUT1
DSP0203I COMMAND COMPLETED WITH CONDITION CODE 00
DSP0220I COMMAND COMPLETION TIME
DSP0211I COMMAND PROCESSING COMPLETE
DSP0211I HIGHEST CONDITION CODE = 00
DSP0058I RMG COMMAND COMPLETED

Example for /RMINIT command

Entry ET (with comments):

/RMINIT DBRC='DB DBD(DIVNTZ04) SHARELVL(3)' /*COMMENT*/.

Chapter 15. /RMxxxxx commands
Response ET:

INIT.DB DBD(DIVNTZ04) SHARELVL(3)
DSP00203 COMMAND COMPLETED WITH CONDITION CODE 00
DSP02201 COMMAND COMPLETION TIME
DSP02111 COMMAND PROCESSING COMPLETE
DSP02111 HIGHEST CONDITION CODE = 00
DSP0058I RMI COMMAND COMPLETED

Examples for /RMLIST command

Entry ET (with comments):
/RMLIST DBRC='DB DBD(DIVNTZ04)'. *LAST COMMENT*.

Response ET for full-function databases:

IMS VERSION 13 RELEASE 1 DATA BASE RECOVERY CONTROL PAGE 0001
LIST.DB DBD(DIVNTZ02) 13.313 11:49:06.100154 LISTING OF RECON PAGE 0002

DB
DBD=DIVNTZ02 IRLMID=*NULL* DMB#=1 TYPE=IMS
SHARE LEVEL=3 GSGNAME=*NULL* USID=0000000001
AUTHORIZED USID=0000000000 RECEIVE USID=0000000000 HARD USID=0000000000
RECEIVE NEEDED USID=0000000000
DBRCVGRP=*NULL*
FLAGS:
BACKOUT NEEDED =OFF RECOVERY NEEDED COUNT =0
READ ONLY =OFF IMAGE COPY NEEDED COUNT =0
PROHIBIT AUTHORIZATION=OFF AUTHORIZED SUBSYSTEMS =0
RECOVERABLE =YES HELD AUTHORIZATION STATE=0
EEQE COUNT =0
TRACKING SUSPENDED =NO RECEIVE REQUIRED COUNT =0
OFR REQUIRED =NO
REORG INTENT =NO
QUIESCE IN PROGRESS =NO
QUIESCE HELD =NO

----------------------------------------------------------------
DSP0180I NUMBER OF RECORDS LISTED IS 1
DSP0203I COMMAND COMPLETED WITH CONDITION CODE 00
DSP02201 COMMAND COMPLETION TIME 13.313 11:49:06.566767
IMS VERSION 13 RELEASE 1 DATA BASE RECOVERY CONTROL PAGE 0003
DSP02111 COMMAND PROCESSING COMPLETE
DSP02111 HIGHEST CONDITION CODE = 00

Response ET for Fast Path databases:

LIST.DB DBD(DEDBJN22) 13.264 12:10:07.154448 LISTING OF RECON PAGE 0002

DB
DBD=DEDBJN22 IRLMID=*NULL* DMB#=5 TYPE=FP
SHARE LEVEL=3 GSGNAME=*NULL* USID=0000000001
AUTHORIZED USID=0000000000 RECEIVE USID=0000000000 HARD USID=0000000000
AUTHORIZED AREAS =0
RECEIVE NEEDED USID=0000000000
EEQE COUNT =0
FULLSEG DEFAULT =YES

----------------------------------------------------------------
DSP0180I NUMBER OF RECORDS LISTED IS 1
DSP0203I COMMAND COMPLETED WITH CONDITION CODE 00
DSP02201 COMMAND COMPLETION TIME 13.264 12:10:07.484796
IMS VERSION 13 RELEASE 1 DATA BASE RECOVERY CONTROL PAGE 0003
DSP02111 COMMAND PROCESSING COMPLETE
DSP02111 HIGHEST CONDITION CODE = 00
Entry ET:

/RMLIST DBRC='DB DBD(DIVNTZ02) DBDS'

Response ET for full-function databases:

OPTIONS

LIST.DB DBD(DIVNTZ02) DBDS

-----------------------------------------------------------------------------
DB
DBD=DIVNTZ02 IRLMID=*NULL* DMB#=1 TYPE=IMS
SHARE LEVEL=3 GSGNAME=*NULL* USID=0000000000
AUTHORIZED USID=0000000000 RECEIVE USID=0000000000 HARD USID=0000000000
RECEIVE NEEDED USID=0000000000
DBRCVGRP=*NULL* DBDS=SELECT

FLAGS:
BACKOUT NEEDED=OFF RECOVERY NEEDED COUNT=0
READ ONLY=OFF IMAGE COPY NEEDED COUNT=0
PROHIBIT AUTHORIZATION=OFF AUTHORIZED SUBSYSTEMS=0
RECOVERABLE=YES HELD AUTHORIZATION STATE=0
EEQE COUNT=0
TRACKING SUSPENDED=NO RECEIVE REQUIRED COUNT=0
OFF REQUIRED=NO
REORG INTENT=NO
QUIESCE IN PROGRESS=NO
QUIESCE HELD=NO

-----------------------------------------------------------------------------

DSP0180I NUMBER OF RECORDS LISTED IS 3
DSP0203I COMMAND COMPLETED WITH CONDITION CODE 00
DSP0220I COMMAND COMPLETION TIME 13.313 11:49:06.865002

Response ET for Fast Path databases:

Chapter 15. /RMxxxxxx commands  691
LISTING OF RECON  

-----------

DB
DBD=DEDBJN22
SHARE LEVEL=3

COUNTERS:
RECOVERY NEEDED COUNT = 0
IMAGE COPY NEEDED COUNT = 0

PROHIBIT AUTHORIZATION=ON
AUTHORIZED AREAS = 0
RECOVERABLE = YES
EEQE COUNT = 0
FULLSEG DEFAULT = YES

-----------

DBDS
DBD=DEDBJN22
AREA=DB22AR0
SHARE LEVEL=3

DSID=00001
DBORG=DEDB
DSORG=VSAM

GSGNAME=**NULL**
USID=0000000003
AUTHORIZED USID=0000000003
RECEIVE USID=0000000003
HARD USID=0000000003

CAGRP=**NULL**
GENMAX=2
IC AVAIL = 0
IC USED = 0
DSSN=00000002
NOREUSE
RECOVPD=0
NOVSO
NOPREOPEN
NOPRELOAD
NOFULLSG
CFSTR1=**NULL**
CFSTR2=**NULL**
NOLKASID
NOMAS
DEFLTJCL=**NULL**
ICJCL=ICJCL
RECVJCL=ICRCVJCL
RECOVJCL=RECOVJCL
DBRCVGRP=**NULL**

COUNTERS:
PROHIBIT AUTHORIZATION=ON
AUTHORIZED SUBSYSTEMS = 0
Held AUTHORIZATION STATE = 0
IC NEEDED = OFF
ADS AVAIL # = 1
IC RECOMMENDED = ON
REGISTERED ADS # = 1
RECOV NEEDED = OFF
EEQE COUNT = 0
RECEIVE NEEDED = OFF
OFR REQUIRED = NO
TRACKING SUSPENDED = NO
HSSP CIC IN PROGRESS = NO
QUIESCE IN PROGRESS = NO
QUIESCE HELD = NO
ADS LIST:
- ADS DDN--ADS DSN--
  DB22AR0 IMSTESTL.DB22AR0

-----------

ALLOC
ALLOC = 13.264 11:58:28.277601
 DSSN=0000000001 USID=0000000003 START = 13.264 11:55:36.700000
DEALLOC = 13.264 11:59:26.400910

ALLOC
ALLOC = 13.264 12:00:53.523143
 DSSN=0000000002 USID=0000000003 START = 13.264 11:57:23.219776
DEALLOC = 13.264 12:01:17.109739

REORG
RUN = 13.264 11:54:46.529165
 USID = 0000000001
REORG# = 00000

-----------

DBDS
DBD=DEDBJN22
AREA=DB22AR1
SHARE LEVEL=3

DSID=00002
DBORG=DEDB
DSORG=VSAM

GSGNAME=**NULL**
USID=0000000003
AUTHORIZED USID=0000000003
RECEIVE USID=0000000003
HARD USID=0000000003

-----------
Chapter 15. /RMxxxxxx commands 693
Entry ET (With comments):
/RML DBRC='DBDS DBD(DEDBJN21) AREA(DB21AR0)'.*VS0 AREA*.

Response ET:

LIST.DBDS DBD(DEDBJN21) AREA(DB21AR0)

DBDS

DBD=DEDBJN21 AREA=DB21AR0 TYPE=FP
SHARE LEVEL=1 DSID=001 DBORG=DEDB DSORG=VSAM
GSG NAME=**NULL** USID=0000000002
AUTHORIZED USID=0000000002 RECEIVE USID=0000000002 MAX USID=0000000002
RECEIVE NEEDED USID=0000000000
CAGRP=**NULL** GENMAX=5 IC AVAIL=0 IC USED=0 DSSN=0000000
HSSP IC IN PROCESS=NO AVAIL USED PARTIAL
HSSP IC=0 HSSP IC=0 HSSP IC=0
REUSE RECOVPD=0 VSO PREOPEN PRELOAD FULLSEG
DEFLTJCL=**NULL** ICJCL=ICJCL RECVJCL=RECVJCL
COUNTERS:
PROHIBIT AUTHORIZATION=OFF AUTHORIZED SUBSYSTEMS =1
Held AUTHORIZATION STATE=7
IC NEEDED =OFF ADS AVAIL # =1
RECOV NEEDED =OFF REGISTERED ADS # =1
EQE COUNT =0
TRACKING IN PROGRESS =NO RECEIVE NEEDED =OFF
OFR REQUIRED =NO
TRACKING SUSPENDED =NO
HSSP CIC IN PROGRESS =NO
QUIESCE IN PROGRESS =YES
QUIESCE HELD =NO
ADS LIST:

-ADS DDN--ADS DSN--STAT--RUNNING--AVAIL NO

ASSOCIATED SUBSYSTEM INFORMATION:

-SSID- -ACCESS INTENT- -STATE- -SS ROLE-
SYST EXCLUSIVE 7 ACTIVE
ALLOC
ALLOC = 93.076 13:30:35.0* START = 93.076 13:30:23.3
LRID=0000000000000000 DSSN=0000000001 USID=0000000002
REORG
RUN = 93.076 13:23:38.0* USID=0000000000
DSP0180I NUMBER OF RECORDS LISTED IS 3
DSP0203I COMMAND COMPLETED WITH CONDITION CODE 00
DSP0220I COMMAND COMPLETION TIME 93.076 13:37:36.7
DSP0211I COMMAND PROCESSING COMPLETE
DSP0211I HIGHEST CONDITION CODE = 00
DSP0658I RML COMMAND COMPLETED

Entry ET (With comments):
/RML DBRC='DBDS DBD(DEDBJN21) AREA(DB21AR0)'.'*DEDB AREA*.

Response ET:
Example for /RMNOTIFY command

Entry ET (with comments):

/RMNOTIFY DBRC='SUBSYS SSID(IMSB) IRLMID(IRLM1) NORMAL'.

Response ET:

NOTIFY.SUBSYS SSID(IMSB) IRLMID(IRLM1) NORMAL
DSP0203I COMMAND COMPLETED WITH CONDITION CODE 00
DSP0220I COMMAND COMPLETION TIME 93.076 13:38:21.0
DSP0211I COMMAND PROCESSING COMPLETE.
DSP0211I HIGHEST CONDITION CODE = 00
DSP0058I RMN COMMAND COMPLETED

Related reference:

[CHANGE commands (Commands)]
[DELETE commands (Commands)]
Chapter 16. /RSTART command

The /RSTART command starts lines, lines and physical terminals, logical links, nodes, and users when you do not want to reset all associated conditions such as a conversation or special operating mode.

Subsections:
- “Environment”
- “Syntax”
- “Keywords” on page 698
- “Usage notes” on page 700
- “Equivalent IMS type-2 commands” on page 700
- “Examples” on page 700

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 253. Valid environments for the /RSTART command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/RSTART</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>CONTINUOUS</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>LINE</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>LINK</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>LOPEN</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>MODE</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>MSPLINK</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>NODE</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>PTERM</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>USER</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

Syntax
Keywords

The following keywords are valid for the /RSTART command:

LINE
Specifies the line or line/physical terminal to be started with all terminals on the line in the same mode of operation they were in when they were stopped. The /RSTART LINE command allows all input, output, and queuing to start on the line and take the line out of response mode if the line was in this mode. The /RSTART LINE PTERM command does not reset line response mode, but does reset the non-VTAM-attached 3270 terminal response mode and looptest mode.

LOPEN
LOPEN enables stopped and idle remote non-VTAM lines. Enter the /RSTART LINE LOPEN command before any /RSTART LINE PTERM command to avoid having a line that is stopped and idle reset before it can be enabled again. If the line is not stopped or process stopped, and idle, or if enabling is not applicable, the LOPEN keyword is ignored and processing continues.

/RSTART LINE and /RSTART NODE cannot reset terminal response mode if Fast Path is active for a specified physical terminal or node. The /DEQUEUE command must be entered to discard Fast Path output before using the /RSTART command.

LINK
Specifies the logical links to be started, either individually or all at once.
For TCP/IP and VTAM links, the /RSTART LINK command can be issued in either one of the two partner systems to start communication. For CTC or MTM links, communication does not begin until the /RSTART LINK command is entered in both partner IMS systems. The /RSTART LINK command is rejected unless the link is in a stopped and idled status and the assigned physical link is open, as shown in the /DISPLAY command.

**MODE**

The MODE keyword allows you to specify mode table entries to be used when activating an IMS VTAM MSC session. Use of the MODE keyword with non-VTAM links is invalid. If non-VTAM links are referred to specifically in the /RSTART LINK command with the MODE keyword, they will be marked in error.

**MSPLINK**

Resets the PSTOPPED status of MSC TCP/IP or VTAM links to enable logons. If the TCP/IP link is used with TCP/IP generic resources, this keyword also resets the PSTOPGEN status.

**NODE**

Specifies the VTAM node for which input, output, and queuing will start. The /RSTART NODE nodename USER username command restarts the ISC half-session allocated to *username* for *nodename*. The USER keyword is valid only with the NODE keyword and restarts the specified half-session. If the USER keyword is omitted, all half-sessions of the specified node are affected.

**Restrictions for using NODE and USER parameters together:**

- Commands with the NODE USER keyword pair are valid only if:
  - The USER is signed on to the NODE
  - In an ISC environment, the USER is allocated to the NODE
  - The nodes and users already exist
- The /RSTART NODE USER commands are valid for ISC, LUP, and 3600 nodes only.

The NODE parameter can be generic if the USER keyword is not specified. The generic parameter specifies nodes that already exist. If the node was created temporarily to retain status data and the status conditions have been reset, then the node is deleted at the next simple checkpoint.

If global resource information is not kept in Resource Manager, the /RSTART NODE command allows a node to logon to the local IMS, without resetting local status. If global resource information is kept in Resource Manager, the /RSTART NODE command allows a node to logon to any IMS in the IMSplex, without resetting global node status kept in Resource Manager. If the node no longer has significant status, it is deleted by Resource Manager.

**USER**

Specifies the USER for which input, output, and queuing are to start. This command starts the USER without resetting conditions such as conversation mode, exclusive mode, and test mode. The /RSTART USER command applies only to dynamic users.

The USER parameter can be generic where the generic parameter specifies already existing users.

If the user structure is temporary and was created solely to retain status that is now reset, the temporary user is deleted at the next simple checkpoint.
If global resource information is not kept in Resource Manager, the /RSTART USER command allows a user to sign on to the local IMS. If global resource information is kept in Resource Manager, the /RSTART USER command allows a user to sign on to any IMS in the IMSplex. If the user no longer has significant status in Resource Manager, it is deleted.

Usage notes

The /RSTART command checks the validity of all parameters entered by the terminal operator. If an error is detected on parameters that are independent of one another, only the invalid parameters are flagged as being in error and the /RSTART command processes the rest of the parameters.

The /RSTART command can be used to reset conditions previously established by the /START, /STOP, /PSTOP, /PURGE, /MONITOR, /COMPT, or /RCOMPT command.

This command can be issued to an IMSplex using the Batch SPOC utility.

Equivalent IMS type-2 commands

The following table shows variations of the /RSTART command and the IMS type-2 commands that perform similar functions.

<table>
<thead>
<tr>
<th>Task</th>
<th>/RSTART command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resets MSC TCP/IP or VTAM links to enable logons.</td>
<td>/RSTART MSPLINK msplinkname</td>
<td>UPDATE MSPLINK NAME(msplinkname *)</td>
</tr>
<tr>
<td></td>
<td>ALL</td>
<td>START(LOGON)</td>
</tr>
</tbody>
</table>

Examples

The following are examples of the /RSTART command:

**Example 1 for /RSTART command**

Entry ET:

/RSTART LINE 4,5,6,7,8,9,10,11

Response ET:

DFS058I RSTART COMMAND COMPLETED

Response RT:

DFS059I TERMINAL RSTARTED

Explanation: LINES 4,5,6,7,8,9,10, and 11 are started.

**Example 2 for /RSTART command**

Entry ET:

/RSTART LINE 4 5 6 700

Response ET:

DFS058I RSTART COMMAND COMPLETED EXCEPT LINE 700
Example 3 for /RSTART command

Entry ET:
/RSTART LINE 4 PTERM 1, 2

Response ET:
DFS058I  RSTART COMMAND COMPLETED

Response RT:
DFS059I  TERMINAL RSTARTED

Explanation: LINE 4 PTERM 1 and 2 are started.

Example 4 for /RSTART command

Entry ET:
/RSTART LINK ALL

Response ET:
DFS058I  RSTART COMMAND COMPLETED

Explanation: All of the logical links are started. For CTC and MTM links, communication across the link does not begin until the partner in the remote system is started with the /RSTART LINK command.

Response ET:
DFS2168I  CONNECTION ESTABLISHED ON LINK 2

Explanation: The connection for communication between two IMS systems is established. The partner link is started with a /RSTART LINK command. After each connection, the message DFS2168 is returned.

Example 5 for /RSTART command

Entry ET:
/RSTART LINK 2

Response ET:
DFS058I  RSTART COMMAND COMPLETED

Explanation: Logical link 2 is started.

Response ET:
DFS2168I  CONNECTION ESTABLISHED ON LINK 2

Explanation: The two IMS systems are connected.

Example 6 for /RSTART command and a TCP/IP link

Entry ET:
/RSTART LINK 23

Response ET:
DFS2168I  17:37:39 CONNECTION ESTABLISHED ON LINK 0023
Response ET at the partner system:

  DFS2160I 17:37:39 LINK 028 STARTED BY PARTNER TB NODE IMS1
  DFS2168I 17:37:39 CONNECTION ESTABLISHED ON LINK 0028

Explanation: In the Response ET at the partner system, IMS1 is the IMS ID of the partner system in which the /RSTART command was issued.

**Example 7 for /RSTART command and a VTAM link**

Entry ET:

/RSTART LINK 10

Response ET:

  DFS058I 17:34:36 RSTART COMMAND COMPLETED
  DFS2168I 17:34:36 CONNECTION ESTABLISHED ON LINK 0010

Response ET at the partner system:

  DFS2160I 17:34:36 LINK 013 STARTED BY PARTNER AK NODE L6APPL3
  DFS2168I 17:34:36 CONNECTION ESTABLISHED ON LINK 0013

Explanation: In the Response ET at the partner system, L6APPL3 is the APPLID of the partner system in which the /RSTART command was issued.

**Example 8 for /RSTART command**

Entry ET:

/RSTART NODE EAST

Response ET:

  DFS058I  RSTART COMMAND COMPLETED

Explanation: The node named EAST is started.
Chapter 17. /RTAKEOVER command

The /RTAKEOVER command requests a remote takeover of an active IMS subsystem by a tracking subsystem at a secondary site.

The remote takeover causes the tracking subsystem to finish processing and shut down.

Subsections:
- “Environment”
- “Syntax”
- “Usage notes”
- “Examples” on page 705

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/RTAKEOVER</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DUMPQ</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>FREEZE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NOREVERSE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>UNPLAN</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

/RTAKEOVER for an active subsystem

/RTAKEOVER

/RTA

FREEZE

DUMPQ

/RTAKEOVER for a tracking subsystem

/RTAKEOVER

/RTA

UNPLAN

NOREVERSE

Usage notes

If entered on an active subsystem, /RTAKEOVER also causes the active subsystem to shut down. Once the remote tracking subsystem has shut down and remote takeover has successfully completed, one or more subsystems may be brought up in an active role at the secondary site and started with standard IMS restart commands.
Unless you specify the NOREVERSE keyword, a remote takeover can be reversed, even after the /RTAKEOVER command has been issued. The NORTA parameter on the CHANGE.SG command can be used to reverse a remote takeover.

This command can be issued to an IMSplex using the Batch SPOC utility.

/RTAKEOVER for an active subsystem

/RTAKEOVER is issued on the active IMS subsystem to initiate a planned remote takeover and must be specified with either the FREEZE keyword or the DUMPQ keyword.

/RTAKEOVER FREEZE indicates that a /CHECKPOINT FREEZE type of shutdown is performed before the planned takeover occurs.

/RTAKEOVER DUMPQ indicates that a /CHECKPOINT DUMPQ type of shutdown is performed before the planned takeover occurs. This form of takeover provides that all relevant log records reach the tracking subsystem such that no data is lost. This form of takeover allows the capability to rebuild the message queues during the new active start.

/RTAKEOVER must be entered for at least one IMS subsystem in the global service group (GSG) at the active site for which takeover is to occur. The other IMS subsystems at the active site must also be shut down, either with the /RTAKEOVER command, or some form of the /CHECKPOINT command that shuts the system down.

Once the active sends all of its log data sets, the active IMS subsystem shuts down. When all of the active subsystems in the global service group have shut down, the tracking subsystem then completes tracking work, stops online forward recovery (OFR), changes the role of the service group (tracking to active) in the RECON data set, and shuts down.

/RTAKEOVER for a tracking subsystem

/RTAKEOVER UNPLAN is issued on the tracking IMS subsystem to initiate an unplanned remote takeover after the active site fails unexpectedly. /RTAKEOVER UNPLAN causes the tracking subsystem to complete tracking work, stops online forward recovery (OFR), changes the role of the service group (tracking to active) in the RECON data set, and shuts down.

**Recommendation:** Specify the NOREVERSE keyword to enable the tracking IMS subsystem to save and process all data it has received from the active site, regardless of whether that data was committed on the active IMS subsystem.

Although you can still reverse a remote takeover even if you specify NOREVERSE, you should not reverse it; in this case, you receive message DFS4122A when you restart the tracking subsystem.

If you do not specify NOREVERSE, the tracking IMS subsystem discards any uncommitted data it has received from the active subsystem.
Examples

The following are examples of the /RTAKEOVER command:

Example for /RTAKEOVER command at active site

Entry ET:
/RTA FREEZE

Response ET:

DFS2939I REMOTE SITE PLANNED TAKEOVER IN PROGRESS SYS3
DFS2719I MSQL CHECKPOINT WRITTEN TO MSQLCP2 SYS3 DFS9941
*CHKT 94308/160026**FREEZE** SYS3
DFS3499I ACTIVE DDNAMES: MODBLKSA IMSACBB FORMATA MODSTAT ID: 2 SYS3
DFS38041 LATEST RESTART CHKPT: 94308/160026, LATEST BUILDQ CHKPT: 94308/154950 SYS3
DFS40361 CONVERSATION ENDING WITH SERVICE GROUP STLSITE2 SYS3
DFS3257I ONLINE LOG CLOSED ON DFSOLP01 SYS3
DFS24841 JOBNAME=JT160031 GENERATED BY LOG AUTOMATIC ARCHIVING SYS3
DFS0921 IMS LOG TERMINATED SYS3
DFS40361 CONVERSATION ENDING WITH SERVICE GROUP STLSITE2 SYS3
DFS40241 STOP SERVGRP PROCESSING (INTERNAL) COMPLETE SYS3
DFS20911 IMS TIMER SERVICE SHUTDOWN COMPLETE SYS3
DFS0617I RDS BUFFERS HAVE BEEN SUCCESSFULLY PURGED SYS3

Response received at the Tracking system:

DFS2932I DATABASE UPDATES PRIOR TO SYSTEM SYS3 TAKEOVER HAVE BEEN Routed SYS3

Example for /RTAKEOVER DUMPQ at active site

Entry ET:
/RTA DUMPQ

Response ET:

DFS2939I REMOTE SITE PLANNED TAKEOVER IN PROGRESS SYS3
DFS2719I MSQL CHECKPOINT WRITTEN TO MSQLCP2 SYS3
DFS9941 *CHKT 94308/165340**DUMPQ** SYS3
DFS3499I ACTIVE DDNAMES: MODBLKSA IMSACBB FORMATA MODSTAT ID: 2 SYS3
DFS38041 LATEST RESTART CHKPT: 94308/165340, LATEST BUILDQ CHKPT: 94308/165340 SYS3
DFS40361 CONVERSATION ENDING WITH SERVICE GROUP STLSITE2 SYS3
DFS3257I ONLINE LOG CLOSED ON DFSOLP01 SYS3
DFS24841 JOBNAME=JT165345 GENERATED BY LOG AUTOMATIC ARCHIVING SYS3
DFS0921 IMS LOG TERMINATED SYS3
DFS40361 CONVERSATION ENDING WITH SERVICE GROUP STLSITE2 SYS3
DFS40241 STOP SERVGRP PROCESSING (INTERNAL) COMPLETE SYS3
DFS20911 IMS TIMER SERVICE SHUTDOWN COMPLETE SYS3
DFS0617I RDS BUFFERS HAVE BEEN SUCCESSFULLY PURGED SYS3

Response received at the Tracking system:

DFS2932I DATABASE UPDATES PRIOR TO SYSTEM SYS3 TAKEOVER HAVE BEEN Routed SYS3

Example for /RTAKEOVER UNPLAN at remote site

Entry ET:
/RTA UNPLAN

Response ET:
Explanation: An unplanned takeover is successfully initiated for a tracking subsystem that was tracking 2 active subsystems (SYS3 and IMS2).
Chapter 18. /SECURE command

The /SECURE command is used to control the RACF security level. It is used for administrative control of the IMS environment and as an emergency operations control command to throttle RACF activity without requiring an IMS shutdown.

This command can be issued to an IMSplex using the Batch SPOC utility.

Subsections:
- “Environment”
- “Syntax”
- “Keywords” on page 708
- “Examples” on page 709

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 256. Valid environments for the /SECURE command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/SECURE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>APPC</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OTMA</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Note: You can use the SECURE OTMA command in non-OTMA environments to specify the security settings for the DFSYICAL member. The DFSYICAL member is an internal member that is used to process DL/ICAL calls for synchronous program switch, even when OTMA is not enabled. If the DFSYICAL member does not exist when the SECURE OTMA command is issued, it is created automatically and the specified security configuration is applied to it.

Syntax

```plaintext
/SECURE APPC CHECK FULL NONE PROFILE
```
Keywords

The following keywords are valid for the /SECURE command:

APPC
When used with the CHECK, FULL, NONE, or PROFILE parameters. APPC controls the RACF security level for input from LU 6.2 devices. The /DISPLAY APPC command can be used to show the security level that is currently in effect. At IMS startup, the security default is FULL.

CHECK
Causes existing RACF calls to be made. IMS commands are checked using the RACF resource class of CIMS. IMS transactions are checked using TIMS. Disables z/OS System Authorization Facility security for IMS allocate PSBs (APSBs).

FULL
Causes the same processing as the CHECK parameter but uses additional RACF calls to create the security environment for dependent regions and enables z/OS System Authorization Facility security for IMS APSBs for all CPI Communications driven application programs.

NONE
Does not call RACF within IMS for security verification. RACF security
verification in APPC/MVS is not affected. Disables z/OS System Authorization Facility security for IMS APSBs.

**PROFILE**
Causes the values in the TP profile for each transaction to be used. If the TP profile is not defined for a transaction, or if the TP profile does not specify a RACF security level, then the default security is CHECK.

**OTMA**
Is used with the CHECK, FULL, NONE, or PROFILE parameters to control the RACF security level for input from IMS Open Transaction Manager Access (OTMA) clients. The /DISPLAY OTMA command can be used to show the security level that is currently in effect. After an IMS cold start, the security default is FULL if the IMS startup parameter OTMASE= is not used.

**CHECK TMEMBER tmembername**
Causes existing RACF calls to be made for input from the specified OTMA client.

**FULL TMEMBER tmembername**
Causes the same processing as the CHECK parameter for input from the specified OTMA client, but uses additional RACF calls to create the security environment for dependent regions.

**JOIN TMEMBER tmembername**
Causes existing RACF calls to be made on only the OTMA client bid requests from OTMA clients. No transaction or command security checking is performed on individual messages.

**NONE TMEMBER tmembername**
Specifies that there is no RACF security checking within IMS for the input from the specified OTMA client.

**PROFILE TMEMBER tmembername**
Specifies that the values in the Security Data section of the OTMA message prefix of each transaction are used to check security for input from the specified OTMA client.

**REFRESH**
OTMA caches the ACEE for a user ID to reduce the amount of RACF I/O. As a result, a refresh for the cached ACEE is needed after the RACF database is updated. Issuing the /SEC OTMA REFRESH command without the TMEMBER option performs the ACEE refresh for all user IDs for all the OTMA clients. However, the actual ACEE refresh occurs when the next OTMA message for the user ID is received. This is designed to prevent all the RACF ACEE refreshes from happening at one time.

When USER is specified, OTMA refreshes across all TMEMBERs only ACEEs that include the specified user profile.

**USER userid**
An option to refresh only the specified user ID for all OTMA TMEMBERs. userid is the 1-8 character name of RACF User Profile to be refreshed.

**Examples**
The following are examples of the /SECURE command:

*Example 1 for /SECURE command*
Entry ET:
/DIS APPC

Response ET:
IMSLU  #APPC-CONV SECURITY STATUS DESIRED
IMSLUNME  0 PROFILE ENABLED ENABLED
*91242/163820*

Explanation: Enter /DISPLAY APPC to see which security checking option is in effect.

Entry ET:
/SECURE APPC FULL

Response ET:
DFS058I SECURE COMMAND COMPLETED

Example 2 for /SECURE command

Entry ET:
/DIS OTMA

Response ET:
GROUP/MEMBER XCF-STATUS USER-STATUS SECURITY TIB INPT SMEM
XCFGRP1
-IMS1  ACTIVE  SERVER  FULL  8000
-IMS1  N/A  0
-HWS1  ACTIVE  ACCEPT TRAFFIC  FULL  0 5000
-HWS1  HWSYDRU0 239 3600
-HWS2  ACTIVE  ACCEPT TRAFFIC  CHECK  0 5000
-HWS2  HWSYDRU0 239 7200
-HWS2  HWSYDRU0 239 0
-HWS3  ACTIVE  ACCEPT TRAFFIC  NONE  0 5000
-HWS3  HWSYDRU0 239 0
*09121/172200* IMS1

Explanation: Enter /DISPLAY OTMA to view the security setting of each OTMA member.

Entry ET:
/SECURE OTMA FULL

Response ET:
DFS058I SECURE COMMAND COMPLETED

Related reference:
Parameter descriptions for IMS procedures (System Definition)
Chapter 19. /SET command

The /SET command establishes the destination of all messages entered into this terminal to another terminal or to a particular transaction code.

If the terminal is in conversation, the /SET command also sets the destination of only the next message to the specified transaction.

Subsections:
- “Environment”
- “Syntax”
- “Keywords”
- “Usage notes” on page 712
- “Examples” on page 713

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 257. Valid environments for the /SET command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/SET</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CONVERSATION</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LTERM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TRANSACTION</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
 /SET CONVERSATION tranname
 LTERM ltermname
 TRANSACTION tranname
 CONVERSATION tranname (password)
```

Keywords

The following keywords are valid for the /SET command:

CONVERSATION

Directs the next input message to a selected transaction. The terminal being used must be in a conversation that is waiting for an input message. For example, the response message must have been received.

In an IMSplex, if global resource information is kept in Resource Manager, the /SET command sets a transaction for the next input message both globally and locally. If global resource information is not kept in Resource Manager, the /SET command sets the transaction just locally.
**LTERM**

Specifies the logical terminal that is the destination of all messages entered into this terminal.

The mode established by /SET LTERM is called preset mode. If the preset mode is established from a 3270 and user-defined formats are not being used, input message must be entered from a cleared screen. Preset mode can be reset by:

```
/CLSDST NODE
/SIGN
/STOP LINE PTERM
/STOP NODE command
/STOP USER command
/RESET
/STOP NODE
/STOP LINE
/STOP USER
```

Once a destination is preset, the terminal operator cannot enter the destination (logical terminal name) as the first part of the message.

In a multiple systems configuration, the name of a remote logical terminal can be specified. If the preset destination is to be deleted (/RESET) or changed (/SET), the command must be entered from some other valid component.

**TRANSACTION**

Specifies the transaction code that is the destination of all messages entered into this terminal. The mode established by /SET TRANSACTION is called preset mode. If the preset mode is established from a 3270 and user-defined formats are not being used, input messages must be entered from a cleared screen. Preset mode can be reset by:

```
/CLSDST NODE
/SIGN
/START LINE PTERM
/RESET
/STOP NODE
/STOP LINE
/STOP USER
```

Once a destination is preset, the terminal operator cannot enter the destination (transaction code) as the first part of the message. In a multiple systems configuration, the name of a remote transaction can be specified. The terminal cannot be in conversation.

**Usage notes**

The status fields of /DISPLAY LINE PTERM, /DISPLAY NODE, or /DISPLAY USER indicate if a physical terminal, node, or user is in preset destination mode (PRST), and display the destination transaction code or logical terminal name.

A transaction name can be defined with password protection in SAF for the CONVERSATION and TRANSACTION keywords. If the resource is not defined to SAF, or is defined and is authorized to the user, the command is processed. If the resource is defined to SAF but not authorized for use, the command is rejected with a DFS2469W message.

A period that is specified in the password brackets is not treated as a delimiter.
Examples

The following are examples of the /SET command:

Example 1 for /SET command

Entry ET:
/SET CONVERSATION CONVTRAN(password)

Response ET:
    DFS058I  SET COMMAND COMPLETED

Explanation: Any message entered from this terminal is sent to conversation CONVTRAN.

Example 2 for /SET command

Entry ET:
/SET LTERM CNTRL

Response ET:
    DFS058I  SET COMMAND COMPLETED

Explanation: Any message entered from this terminal is sent to LTERM CNTRL.

Example 3 for /SET command

Entry ET:
/SET TRANSACTION IMS(password)

Response ET:
    DFS058I  SET COMMAND COMPLETED

Explanation: Any message entered from this terminal is sent to transaction IMS.
Chapter 20. /SIGN command

The /SIGN command is used to sign on and sign off at terminals attached to IMS.

This command enables IMS to identify who is using the terminal and to determine if you are authorized to enter the transaction or command.

Subsections:
- "Environment"
- "Syntax"
- "Keywords"
- "Usage notes" on page 719
- "Examples" on page 720

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) from which the command can be issued.

Table 258. Valid environments for the /SIGN command

<table>
<thead>
<tr>
<th>Command</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/SIGN</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
SIGN
```

A:

```
USERD userdesc
userpw
PassTicket
PASSPHRASE
PASSPHRASEQ
OFF
```

```
GROUP groupname
NEWPW nuserpw
npassphr
```

```
userdata
```

Keywords

The following keywords are valid for the /SIGN command:
/SIGN ON must be issued for any physical terminal or user ID requiring a signon, or the transaction entered is rejected.

From terminals that require signon, commands other than /SIGN or /RCLSDST are rejected if transaction authorization is requested. Static terminals requiring a signon also have enhanced command authorization with RACF or an equivalent product if RCF=S or RCF=A is specified at system startup.

At terminals not requiring signon, transactions are passed to RACF, an equivalent security product, or a user exit for authorization checking. If /SIGN ON is entered at a terminal not requiring a signon, the signon is processed as if the terminal required a signon. That is, the terminal is placed in a signed on status with the user ID until a /SIGN OFF or another /SIGN ON command is entered.

After any IMS restart or terminal disconnect, the remote terminal operator is required to sign on again using the /SIGN ON command. A terminal can be disconnected by:

- A switched line disconnect
- A VTAM CLSDST
- A line shutdown
- The /IDLE command
- Auto logoff

Signon status is also reset by the /START LINE, /START LINE PTERM, and /START NODE commands and auto signoff.

The remote terminal operator must wait at a static physical terminal for confidential responses, because responses queued for a given physical terminal are sent even if the physical terminal is signed off. If the remote terminal operator must be absent, the /LOCK command can be used to prevent output from being received. Confidential output sent to a dynamic user is queued to the user instead of to the physical terminal when the user has signed off. A successful signon of an existing user turns off the DEADQ status for the user, if that status exists.

For the user exit routine DFSCSGN0, the user ID and userdata parameter values are defined by the installation.

PASSPHRASE

The /SIGN PASSPHRASE command is equivalent to the /SIGN ON command except that it uses RACF password phrases instead of passwords for a signon. A RACF password phrase can be up to 100 bytes. IMS uses 100 bytes as the password phrase and removes leading and trailing blanks, if any, before passing it to RACF.

RACF password phrases are used for password, NEWPW, and VERIFY. RACF does not allow a mixture of passwords and password phrases. For example, if PASSPHRASE is specified on the /SIGN command, you must specify password phrases for all the other keywords such as NEWPW and VERIFY.

A blank is necessary after PASSPHRASE. There must be a blank between the 100-character password phrase and the next keyword. A period within the 100 character does not end the /SIGN command. If there is no additional keyword after the password phrase, the password phrase does not need to have trailing blanks. If a password phrase is less than 9 bytes, IMS will pass the password phrase as a password to RACF. The PASSPHRASE keyword is most likely used on MFS panels, which fill the password phrase with trailing blanks.
RACF password phrases are always mixed case. It is not necessary to turn on mixed-case password for password phrases. The IMS system’s default MFS panels do not support password phrases.

**PASSPHRASEQ**

The /SIGN PASSPHRASEQ command is equivalent to the /SIGN ON command except that it uses RACF password phrases instead of passwords for a signon. A password phrase must start with a single quotation mark (’) and end with a single quotation mark. If you want to include a single quotation mark in a password phrase, you must specify two single quotation marks ("’). For example,

'This is "my" passphrase.'

IMS removes the single quotation mark at the beginning and ending of the password phrase and also removes one single quotation mark if there are two single quotation marks following each other. PASSPHRASEQ must have at least one blank before the beginning single quotation mark. A password phrase can be up to 100 characters. If a password phrase is less than 9 characters, IMS will pass it as a password to RACF. RACF does not allow a mixture of passwords and password phrases. For example, if PASSPHRASEQ is specified on the /SIGN command, you must specify password phrases for all the other keywords such as NEWPW and VERIFY.

RACF password phrases are always mixed case. It is not necessary to turn on mixed-case password for password phrases. The IMS system’s default MFS panels do not support password phrases.

**OFF**

The /SIGN OFF command is used to complete a session on a terminal that required a signon. Static terminals in conversational mode cannot be signed off without first issuing an /EXIT or /HOLD command.

Another method of signing off a terminal is to reenter the /SIGN ON command. This method initiates a new signon at the terminal without having to enter the /SIGN OFF command.

The /SIGN OFF command resets status that is not significant such as preset mode, test mode, lock lterm, pstop lterm, and purge lterm.

/SIGN OFF for ETO users will also take other actions depending on the recovery settings for the user:

**RCVYCONV=NO**

/SIGN OFF causes any IMS conversations (active and held) for an ETO user to be terminated. Any conversational message that is queued or being processed has its output response message delivered asynchronously.

**RCVYFP=NO**

/SIGN OFF causes Fast Path status and messages for an ETO user to be discarded.

**RCVYRESP=NO**

/SIGN OFF resets full-function response mode.

If global resource information is kept in Resource Manager, /SIGN OFF deletes the user ID from Resource Manager (if single user signon enforced) and resets status globally. If the user has no status, /SIGN OFF deletes the user and associated lterms from Resource Manager.
You can specify the following keywords and parameters with the ON, PASSPHRASE, or PASSPHRASEQ keyword:

**APPL**
A keyword that notifies IMS that the following character string should be the application name used by IMS when IMS makes the SAF call to verify the user. The default application name used by IMS is the IMSID. The IMSID can be overridden by the SAPPLID= parameter in the IMS PROCLIB member DFSDCxxx. If the signon specifies a PassTicket instead of a password, the APPL parameter should specify the application name used when the PassTicket was created. The creator of the PassTicket can specify any value to identify an IMS subsystem.

If RACF is used, APPL= should specify the name of the RACF PTKTDATA profile for IMS as defined to RACF by the creator of the PassTicket. If the name of the PTKTDATA profile is the same as the IMSID, the APPL keyword is not needed.

**GROUP**
Is an optional keyword indicating a group name of 8 characters or fewer that is associated with the user ID.

**NEWPW**
Is an optional keyword that indicates a new user password or a new password phrase that replaces the current user password or password phrase specified in userpw. Passwords can be mixed case or uppercase depending on what is specified on the PSWDC keyword in the DFSPBxxx IMS.PROCLIB member. RACF password phrases are always mixed case.

nuserpw
Is a new password of 8 characters or fewer that is associated with the user identification.

npassphr
Is a 9- to 100-character password phrase that is associated with the user identification. If PASSPHRASE is specified, the password phrase must be up to 100 characters. If PASSPHRASEQ is specified, the password phrase must be enclosed in single quotation marks. If a password phrase contains one or more single quotation marks, two single quotation marks must be specified for each single quotation mark.

**USERD**
Is a user descriptor name. This user descriptor name is used in the signon. The userdesc parameter must be a user ID, node name, or DFSUSER.

**userdata**
Is user identification information that has been defined to IMS with the (RACF), equivalent security product or the user exit routine, DFSCSGN0. For RACF, this information consists of the following:

userpw  GROUP  groupname  NEWPW  nuserpw

**userid**
Is a user identification of 8 characters or fewer.

**userpw | PassTicket | passphr**
Specifies user identification in one of the following formats:

userpw
Is a password of 8 characters or fewer that is associated with the user identification. Passwords can be mixed case or uppercase depending on what is specified on the PSWDC keyword in the DFSPBxxx IMS.PROCLIB
member. If support for special characters is enabled in RACF, IMS supports RACF passwords that contain special characters.

**PassTicket**
A one-time password that is generated by a requesting product or function. The *PassTicket* is an alternative to the RACF password. Using a *PassTicket* removes the need to send RACF passwords across the network in clear text.

**passphr**
Is a 9- to 100-character password phrase that is associated with the user identification. If PASSPHRASE is specified, the password phrase must be up to 100 characters. If PASSPHRASEQ is specified, the password phrase must be enclosed in single quotation marks. If a password phrase contains one or more quotation marks, two single quotation marks must be specified for each single quotation mark.

**VERIFY**
Is an optional keyword that requests IMS to verify the new password entered. IMS verifies the new password before passing it to RACF or to the IMS signon exit routines. This keyword can also be used as an alternative to reentering the password on the DFS3656 panel.

**Restriction:** You can use this keyword only when responding to an IMS DFS3656A message and as an alternative to reentering the password on the DFS3656 panel.

**nuserpw**
Is a new password of 8 characters or fewer that is associated with the user identification.

**npassphr**
Is a 9- to 100-character password phrase that is associated with the user identification. If PASSPHRASE is specified, the password phrase must be up to 100 characters. If PASSPHRASEQ is specified, the password phrase must be enclosed in single quotation marks. If a password phrase contains one or more single quotation marks, two single quotation marks must be specified for each single quotation mark.

**Usage notes**

When SGN=G, Z, or M is specified, the user can sign on multiple times to both STATIC and ETO terminals when the structure name is different from the user ID.

For a static terminal, or a dynamic terminal that has the same SPQBname as the node name, a user will not be allowed to sign on unless all conversations are held, or the user is authorized to use the transaction for the active conversation.

If there is an active conversation for a static terminal, and the user is not authorized to use its transaction, the user can enter a /HOLD command prior to signing on to put all of the conversations in a held state. The user will then be allowed to sign on.

If there is an active conversation for a dynamic terminal that has the SPQBname the same as the node name, only a user that is authorized to use the transaction of the active conversation will be allowed to sign on. The /HOLD command is not allowed prior to signing on for a dynamic terminal.
If there is an active conversation for a dynamic terminal that has the SPQBname the same as the USERID, the conversation will be associated with that user at signoff. That same user can sign on to any dynamic terminal and continue the conversation if they are still authorized to use the conversational transaction. Any new user that signs on to the dynamic terminal will not be in a conversation unless they are continuing a conversation from a previous signon or starting a new conversation by entering an authorized conversational transaction.

The status fields of /DISPLAY NODE and /DISPLAY LINE PTERM indicate whether a terminal is signed on with the word SIGN.

You can use password phrases for user identification.

A period is normally used as the delimiter at the end of IMS commands. When support for special characters is enabled in RACF, a period becomes a valid character in the RACF password. Therefore, when a password is specified at the end of the /SIGN command, you must insert a space before the period that you are using as the end-of-command delimiter. If a space is not added before the period that you are using as the end-of-command delimiter and support for special characters is enabled in RACF, the period is treated as part of the password and not as a delimiter.

**Examples**

The following are examples of the /SIGN command:

**Example 1 for /SIGN command**

Entry ET:

```
DFS3649A /SIGN COMMAND REQUIRED FOR IMS
```

```
DATE: 11/03/92 TIME: 14:39:33
```

```
NODE NAME: DT327001
```

```
USERID: IMSUS01
```

```
PASSWORD: IMSPW01
```

```
USER DESCRIPTOR:
GROUP NAME:
NEW PASSWORD:
```

```
OUTPUT SECURITY AVAILABLE
```

Response ET:

```
DFS3650I SESSION STATUS FOR IMS
```

```
DATE: 11/03/92 TIME: 14:41:48
```

```
NODE NAME: DT327001
```

```
USERID: IMSUS01
```

```
PRESET DESTINATION:
```

```
CURRENT SESSION STATUS:
```

```
OUTPUT SECURITY AVAILABLE
```
Explanation: The user with user ID IMSUS01 and password IMSPW01 has successfully signed on to a dynamic terminal. The signon is done with the panel (DFS3649A).

Example 2 for /SIGN command

Entry ET:
/SIGN IMSUS02 IMSPW02

Response ET:

DFS3650I SESSION STATUS FOR IMS

DATE: 11/03/92       TIME: 14:41:48
NODE NAME:     DT327001
USERID:          IMSUS02
PRESET DESTINATION: 

CURRENT SESSION STATUS:

OUTPUT SECURITY AVAILABLE

Explanation: The user with user ID IMSUS02 and password IMSPW02 has successfully signed on to a dynamic terminal. The signon is done with the /SIGN command.

Example 3 for /SIGN command

Entry ET:
/SIGN IMSUS03 IMSPW03

Response ET:

DFS3650I SESSION STATUS FOR IMS

DATE: 11/03/92       TIME: 14:45:53
NODE NAME:     L3270A
USERID:          IMSUS03
PRESET DESTINATION: 

CURRENT SESSION STATUS:

NO OUTPUT SECURITY AVAILABLE

Explanation: The user with user ID IMSUS03 and password IMSPW03 has successfully signed on to a static terminal.

Example 4 for /SIGN command

Entry ET:
/SIGN PASSPHRASEQ IMSUS03 'this is my 'password'' now'

Response ET:

DFS3650I SESSION STATUS FOR IMS

DATE: 06/07/13       TIME: 15:26:42
NODE NAME:     L3270A
USERID:          IMSUS03
PRESET DESTINATION: 
CURRENT SESSION STATUS:

NO OUTPUT SECURITY AVAILABLE

Explanation: The user with user ID IMSUS03 and password phrase this is my 'password' now has successfully signed on to a static terminal.

*Example 5 for /SIGN command*

Entry ET:

/SIGN PASSPHRASE IMSUS03 this is my 'password' now.

Response ET:

DFS3650I SESSION STATUS FOR IMS

DATE: 06/07/13    TIME: 15:36:42
NODE NAME: L3270A
USERID: IMSUS03
PRESET DESTINATION:

CURRENT SESSION STATUS:

NO OUTPUT SECURITY AVAILABLE

Explanation: The user with user ID IMSUS03 and password phrase this is my 'password' now has successfully signed on to a static terminal. Note that the period is part of the password phrase and that no trailing blanks have been added.

Related concepts:

- [z/OS: RACF secured signon PassTicket](#)

Related tasks:

- [z/OS: Using the secured signon function](#)

Related reference:

- [z/OS: RACF password authentication options](#)
Chapter 21. /SMCOPY command

The /SMCOPY command is used by the master terminal operator to control the printing of certain output to the secondary master terminal.

This command can be issued to an IMSplex using the Batch SPOC utility.

Subsections:
- “Environment”
- “Syntax”
- “Keywords”
- “Usage notes” on page 724
- “Example” on page 724

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 259. Valid environments for the /SMCOPY command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/SMCOPY</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MASTER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MSG</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TERMINAL</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

![Diagram of /SMCOPY command syntax]

Keywords

The following keywords are valid for the /SMCOPY command:

MASTER

Turns ON or OFF the printing of the above subset of IMS commands and command responses when issued from the master terminal.
**TERMINAL**

Turns ON or OFF the printing of the above subset of IMS commands and command responses when issued from terminals other than the master terminal.

Input coming through Operations Manager is not reflected in the secondary master. This also applies to input coming from MCS/E-MCS terminals.

**MSG**

**ON**

All system messages will be logged to the secondary master. This is the default.

Before logging a message to the secondary master, if the installation type-2 exit routine indicated it needs to be called for messages, the exit routine is called first. The exit routine then determines if the message is logged to the secondary master.

**OFF**

IMS does not send system messages to the secondary master.

**Usage notes**

System definition establishes whether the commands and their responses will be printed on the secondary master and the origin of the printed command (master terminal, remote terminal, or both). /SMCOPY provides online control of the printing established by system definition.

**Example**

A system definition has established that copies of the above subset of commands and command responses, when issued from any terminal, will be printed on the secondary master terminal (operand COPYLOG=ALL was specified on the COMM macro).

Entry ET:

```
/SMCOPY TERMINAL OFF
```

Response ET:

```
DFS058I SMCOPY COMMAND COMPLETED
```

Explanation: The secondary master terminal does not receive copies of IMS commands and command responses issued from remote terminals. Commands and responses issued from the master terminal are still received.

**Related reference:**

[IMS type-1 commands logged to the secondary master terminal (Commands)](Commands)
Chapter 22. /SSR command

The /SSR command is a multisegment command that allows the IMS operator to enter an external subsystem command as part of the command input. (The external system is not a CCTL subsystem.)

Subsection:
- “Environment”
- “Syntax”
- “Usage notes”
- “Example”

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) from which the command can be issued.

Table 260. Valid environments for the /SSR command

<table>
<thead>
<tr>
<th>Command</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/SSR</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

►►/SSR—text◄◄

Usage notes

Routing is the only function IMS performs. The command is processed by the external subsystem and the response (from the external subsystem, not CCTL) is routed back to the entering terminal.

All /SSR formats require an EOM indication to denote end-of-message. An EOS indication must be included for all segments that precede the last segment.

text is the alphanumeric external subsystem command.

Example

Entry ET:
/SSR ;START DATABASE (DSN8D22P)

Response ET:
DFS058I SSR COMMAND COMPLETED
DSN9022I ; DSNTDIS 'START DATABASE' NORMAL COMPLETION

Explanation: The START DATABASE command is successfully routed to the DB2 subsystem for processing.
Chapter 23. /START commands

The /START commands make IMS resources available for reference and use.

/START also checks the validity of all parameters entered by the terminal operator. If an error is detected on parameters that are independent of one another, only the invalid parameters are indicated as being in error and the /START command processes the rest of the parameters. For example,

/START LINE 4 6 200
DFS058 START COMMAND COMPLETED EXCEPT LINE 200

signifies parameter value 200 is not a valid line number.

When a resource becomes available, the system parameters used for this initialization of IMS are displayed in message DFS1929I. The system parameters are also written to the job log.

These commands can be issued to an IMSplex using the Batch SPOC utility.

/START commands are:

- "/START APPC command" on page 728
- "/START AREA command" on page 728
- "/START AUTOARCH command" on page 732
- "/START CLASS command" on page 733
- "/START DATAGR command" on page 733
- "/START DB command" on page 737
- "/START DC command" on page 745
- "/START DESC command" on page 746
- "/START ISOLOG command" on page 747
- "/START LINE command" on page 747
- "/START LTERM command" on page 749
- "/START LUNAME command" on page 751
- "/START MADIOT command" on page 752
- "/START MSNAME command" on page 753
- "/START NODE command" on page 754
- "/START OLDS command" on page 755
- "/START OTMA command" on page 756
- "/START PGM command" on page 757
- "/START REGION command" on page 759
- "/START RTC command" on page 761
- "/START SB command" on page 762
- "/START SERVGRP command" on page 763
- "/START SLDSREAD command" on page 765
- "/START SUBSYS command" on page 765
- "/START SURV command" on page 767
- "/START THREAD command" on page 767
- "/START TMEM command" on page 768
- "/START TRAN command" on page 771
- "/START TRKARCH command" on page 774
- "/START USER command" on page 775
- "/START VGR command" on page 776
- "/START WADS command" on page 777
- "/START XRCTRACK command" on page 778
/START APPC command

Use the /START APPC command to instruct IMS to activate the connection to APPC/z/OS and to start accepting transaction schedule requests from APPC/z/OS.

This command reverses the effect of a /PURGE APPC command or a /STOP APPC(CANCEL) command.

The /START APPC command sets the desired status to ENABLED. The current status is initially set to STARTING. When APPC/z/OS responds to the start request, the status changes to either ENABLED or FAILED.

Subsections:
- “Environment”
- “Syntax”

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 261. Valid environments for the /START APPC command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/START APPC</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>APPC</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
/START APPC
```

/START AREA command

Use the /START AREA command to specify the specific areas of DEDBs to be allocated. For z/OS, you can use the /START AREA command to reallocate DEDB areas.

Subsections:
- “Environment”
- “Syntax” on page 729
- “Keywords” on page 729
- “Usage notes” on page 730
- “Equivalent IMS type-2 commands” on page 731
- “Examples” on page 731

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.
Table 262. Valid environments for the /START AREA command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/START AREA</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>GLOBAL</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOCAL</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```plaintext
/START AREA areaname
```

Keywords

The following keywords are valid for the /START AREA command:

**GLOBAL**

The GLOBAL keyword applies when an IRLM is active. GLOBAL specifies that the command applies to all subsystems sharing the area. The GLOBAL keyword and the ALL parameter are mutually exclusive. The /START command is rejected if both ALL and GLOBAL are specified. The GLOBAL keyword requires that IRLM be active. The command will be rejected if IRLM is not active.

If the area is registered in the RECON data set, the /STA AREA GLOBAL command will reset the prohibit authorization flag to off (PROHIBIT AUTH = OFF).

The GLOBAL command is processed by the IMS system where the command was initiated. This system will process the command locally and then request IRLM NOTIFY to route and process the command on sharing IMS systems.

If global DB or AREA status is maintained, the global status maintained in RM is also updated. The global status is set to STOA.

If the command is entered from OM API, the global status is updated by the command master IMS. If the command is not entered from OM API, the IMS that initiated the GLOBAL command updates the global status in RM.

You must specify if the global area status must be maintained in RM. You can specify this during IMS initialization in either the DFSDFxxx or DFSCGxxx PROCLIB member with PLEXPARM(GSTSAREA(Y)). You can also change it dynamically using the UPDATE IMS SET(PLEXPARM(GSTSAREA(Y))) command. If you do not specify that global database status is to be maintained, the GLOBAL keyword is processed as in prior releases, and the global status is not updated.

If global status in RM is successfully updated, message DFS0988I for RSRCTYPE=AREA is issued. If global status is not successfully updated, message DFS3308I is issued, indicating RM failure, and no command response.
lines are generated. Any RM error is traced to the OCMD trace table. Users can issue a QRY AREA STATUS(GLOBAL) command to obtain the global status of the resources in RM.

The X'594C' log record for databases is updated to include both global status and global command time stamp.

The GLOBAL keyword is not supported on an RSR tracking subsystem.

If the GLOBAL keyword on a command is entered from an OM API, the command is processed only by the command master IMS. The command master IMS will make DBRC calls to update the RECON with GLOBAL status. It will also request IRLM NOTIFY to route and process the command on sharing IMS systems, and then process the command locally. All other non-master IMS systems ignore the /START command with the GLOBAL keyword.

Messages produced on the NOTIFIED systems will appear only on the system console and will not be routed back to the OM API which originally entered the command.

If multiple IMS systems have been explicitly specified in the route list, the master IMS system will process the command as described previously. However, the non-master IMS systems, to which OM routes the command, will reject the command with the following return and reason code listed in the following table:

Table 263. Return and reason code for GLOBAL keyword issued from the OM API

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000004'</td>
<td>X'00001000'</td>
<td>The command contained the GLOBAL keyword and was routed to more than one IMS system in the IMSPLEX. The non-master IMS systems will reject this command when OM routes the command to them. The master IMS system will process this command and use IRLM NOTIFY to route and process the command on the non-master IMS systems. See the discussion under the GLOBAL keyword.</td>
</tr>
</tbody>
</table>

**LOCAL**

Specifies that the command only applies to the IMS subsystem in which the command is entered. This command does not affect any other subsystem sharing the area.

LOCAL is the default.

**Usage notes**

For areas on an RSR tracking subsystem, /START AREA is used to resume tracking for those areas that were stopped by a previous /DBRECOVERY command or by errors found during tracking subsystem processing. /START AREA also starts online forward recovery (OFR) for those areas that are not current with mainline tracking.

For virtual storage option (VSO) areas that have been defined with the PREOPEN option, /START AREA causes the areas to be preopened. If the VSO area is defined with the PRELOAD option, /START AREA causes the area to be opened and loaded into the z/OS data space.
Restriction: This command only applies to the IMS subsystem on which it is entered; it does not preload or preopen areas on other IMS subsystems in the sysplex that share the area.

The /START AREA command has no effect on VSO areas that are in virtual storage when the command is issued.

The output of the /START AREA command is changed when the command is entered through the OM API. In this case, the DFS058I message is not returned to OM. For commands that specify GLOBAL, only the command master returns the asynchronous messages to OM. When a command is processed with the LOCAL keyword, all IMS systems are able to return the asynchronous messages to OM. The command response returned to OM contains one or more of the following messages as appropriate.

Fast Path messages: DFS0011I, DFS140I, DFS0488I, DFS0666I, DFS1407I, DFS2980E, DFS2981E, DFS3320I, DFS3325I, DFS3342I, DFS3720I, DFS3824I

/START AREA ALL causes message DFS0488 to be issued for every area that is not started successfully, but you do not see a DFS0488 message for every area that does start successfully. You do see a final DFS0488 message which indicates the end of command processing.

While the database is being quiesced, this command cannot be processed successfully.

**Equivalent IMS type-2 commands**

The following table shows variations of the /START AREA command and the IMS type-2 commands that perform similar functions.

<table>
<thead>
<tr>
<th>Task</th>
<th>/START AREA command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starts the area.</td>
<td>/START AREA areaname</td>
<td>UPDATE AREA NAME(areaame) START(ACCESS)</td>
</tr>
</tbody>
</table>

**Examples**

The following is an example of the /START AREA command:

**Entry ET:**

```
/START AREA DB1AREA0 DB1AREA1
```

**Response ET:**

```
DFS058I START COMMAND IN PROGRESS
DFS0488I START COMMAND COMPLETED. AREA=DB1AREA0
DFS0488I START COMMAND COMPLETED. AREA=DB1AREA1
```

Explanation: DEDB areas DB1AREA0 and DB1AREA1 are started.

**Related concepts:**

Maintaining global information for databases, DEDB areas, and transactions (System Administration)

**Related reference:**

Chapter 23. /START commands
/START AUTOARCH command

Use the /START AUTOARCH command to set the value to change the automatic archiving option selected at system initialization or to set the value to start automatic archiving after a previous /STOP AUTOARCH command.

Subsections:
- "Environment"
- "Syntax"
- "Keywords"
- "Examples"

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 265. Valid environments for the /START AUTOARCH command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/START AUTOARCH</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>AUTOARCH</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
/START AUTOARCH #olds
```

Keywords

The following keywords are valid for the /START AUTOARCH command:

`#olds`

Specifies the number of OLDSs that are to be filled before the /DBRC GENJCL ARCHIVE command is generated. It is optional and defaults to either the value specified at system initialization or to one. If /DBR NOFEOV or /DBD NOFEOV is issued before $nn$ OLDSs are filled, the number of OLDSs currently filled will be archived.

Examples

The following is an example of the /START AUTOARCH command:

Entry ET:
```
/START AUTOARCH 4
```

Response ET:
```
DFS058I START COMMAND COMPLETED
```

Explanation: Automatic archiving will be initiated after 4 OLDS data sets are filled.
/START CLASS command

Use the /START CLASS command to specify transaction class, allowing scheduling of application programs to begin.

Message regions must have appropriate classes assigned to them before scheduling will proceed.

Subsections:
- “Environment”
- “Syntax”
- “Examples”

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 266. Valid environments for the /START CLASS command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/START CLASS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
/START CLASS cls# ALL
```

Examples

The following is an example of the /START CLASS command:

Entry ET:

```
/START CLASS ALL
```

Response ET:

```
DFS058I START COMMAND COMPLETED
```

Explanation: All classes of transactions are made available for scheduling into message processing regions.

/START DATAGRP command

Use the /START DATAGRP command to specify groups of DL/I databases and Fast Path DEDBs to be allocated.

Data groups are logical groupings of databases and areas; they enable simplified command processing for databases. You define a data group in the RECON data set by using the INIT.DBDSGRP command with parameters GRPNAME and DBGRP. DATAGRP is valid on active and RSR tracking subsystems.
Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 267. Valid environments for the /START DATAGRP command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/START</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ACCESS</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DATAGRP</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>LOCAL</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Syntax

```
/START DATAGRP datagroupname LOCAL A B
```

A:

```
ACCESS= RO
```

B:

```
NODBALLOC DBALLOC
```

Keywords

The following keywords are valid for the /START DATAGRP command:

ACCESS

Overwrites the access intent for a database. The original database access is specified during IMS system definition.

Changing the access intent for a DEDB is allowed only when no PSBs are scheduled that access any areas in the DEDB. You might have to stop PSBs and regions that have wait-for-input (WFI) transactions scheduled before you can change a DEDB’s access intent.

Changing the access intent of a database with the /START DB ACCESS= command causes any VSO areas of the database to be removed from virtual
storage. Because the access intent of a DEDB cannot be changed while any of its areas are authorized to an IMS subsystem, IMS closes any open areas before processing the command. If a VSO area is closed as a result of the command, it is also removed from the data space.

The /START AREA command must be used to reactivate the VSO options (VSO and PREOPEN) and PRELOAD option for the area. If an area is opened as a result of an access request rather than by the /START AREA command, it is opened as a non-VSO area.

Non-VSO areas with the PREOPEN option are closed as a result of the /START DB ACCESS= command. These areas are reopened either at the next access request for the area or by the /START AREA command.

The GLOBAL and ACCESS keywords are mutually exclusive. The /START command is rejected if both keywords are specified.

The meanings of the ACCESS parameter values are:

- **RO** Specifies that the named database is available for read-only processing on this IMS subsystem.
  
  The only programs which can use the database on this subsystem are those which have a PCB processing option of GO (PROCOPT=GO). Programs which access the data using the GO processing option might see uncommitted data, since a sharing IMS subsystem could be updating the database, which is opened for input only.

- **RD** Specifies that the named database is available for read-only processing on this IMS subsystem.
  
  Programs with update intent can be scheduled, but cannot update the database. ACCESS=RD differs from ACCESS=RO in that the data is read with integrity (locking is performed) and all programs can access the data, not just those with a processing option of GO. The database is opened for read-only processing.

- **UP** Specifies that the named database is for update as well as read processing in the IMS subsystem.

- **EX** Specifies that the named database is to be used exclusively by this IMS subsystem.
  
  This exclusive access is guaranteed only when the database is registered to DBRC.

**NODBALLOC | DBALLOC**

Indicates whether the databases within the data group are to be allocated. NODBALLOC is the default.

**NODBALLOC**

Indicates that the databases within the data group are not to be allocated. The databases will be allocated when they are scheduled. This command does not affect any other subsystem sharing the database.

**DBALLOC**

Indicates that the databases within the data group are to be allocated.

**LOCAL**

Specifies that the /START command applies only to the IMS subsystem in which the command is entered.
Usage notes

For databases and areas on an RSR tracking subsystem, /START DATAGRPG is used to resume tracking for those areas that were stopped by a previous /DBRECOVERY command or by errors found during tracking subsystem processing. /START DATAGRPG also starts online forward recovery (OFR) for those databases and areas that are not current with mainline tracking.

After processing for a /START DATAGRPG completes, a DFS0488 message is issued indicating the end of processing. A DFS0488 message is also issued for every database or area that does not start successfully.

If the data group contains both full function and Fast Path databases, a DFS0488 message might be issued indicating the /START DATAGRPG command completed successfully before any messages are issued that indicate a Fast Path area did not start successfully. This situation is caused by the asynchronous processing of Fast Path databases.

For virtual storage option (VSO) areas that have been defined with the PREOPEN option, /START AREA causes the areas to be reopened. If the VSO area is defined with the PRELOAD option, /START AREA causes the area to be opened and loaded into the z/OS data space.

A data group is defined in the RECON data set using the INIT.DBDSGRP command with the parameters GRPNAME and DBGPR or DBDSGRP. The DATAGRPG keyword on the /START command can specify either a DBDS group or a database group name.

If the ACCESS keyword is specified on the /START DATAGRPG command along with the DBDS group name, the ACCESS keyword is not applied to the Fast Path DEDB databases associated with the Fast Path DEDB areas in the DBDS group. If the intent is to use the ACCESS keyword for Fast Path DEDB databases, the DATAGRPG parameter must be a database group name that does not contain area names.

Recommendation: Although you can use DBDS groups as well as database groups for this command, you should use database groups whenever possible to eliminate the overhead of converting the DBDS group to a database group.

Equivalent IMS type-2 commands

The following table shows variations of the /START DATAGRPG command and the IMS type-2 commands that perform similar functions.

<table>
<thead>
<tr>
<th>Task</th>
<th>/START DATAGRPG command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starts the data group.</td>
<td>/START DATAGRPG datagrpname</td>
<td>UPDATE DATAGRPG NAME(datagrpname) START(ACCESS)</td>
</tr>
</tbody>
</table>

Related reference:
“UPDATE DATAGRPG command” on page 919
/START DB command

Use the /START DB command to specify the DBD name. The /START DB command permits access from transactions that read or update databases.

The /START DB command can be used to allocate or reallocate all databases other than DEDBs. The /START AREA command must be entered to allocate or deallocate DEDB areas.

Subsections:
- “Environment”
- “Syntax”
- “Keywords” on page 738
- “Usage notes” on page 741
- “Equivalent IMS type-2 commands” on page 743
- “Examples” on page 744

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/START</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ACCESS</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DB</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DBALLOC</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>GLOBAL</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>LOCAL</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NOBACKOUT</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NODBALLOC</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NOOPEN</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OPEN</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Syntax
The following keywords are valid for the /START DB command:

**ACCESS**

Specifies the type of access that is intended for the named database. This keyword overrides the database access that is specified at system definition. Changing the ACCESS parameter of a DEDB is allowed only when all the AREAS in the DEDB are not authorized by the subsystem.

Changing the access intent of a database with the /START DB ACCESS= command causes any VSO areas of the database to be removed from virtual storage. Because the access intent of a DEDB cannot be changed while any of its areas are authorized to an IMS subsystem, IMS closes any open areas before it processes the command. If a VSO area is closed as a result of the command, it is also removed from the data space.

The /START AREA command must be used to reactivate the VSO options (VSO and PREOPEN) and PRELOAD option for the area. If an area is opened as a result of an access request rather than by the /START AREA command, it is opened as a non-VSO area.

Non-VSO areas with the PREOPEN option are closed as a result of the /START DB ACCESS= command. These areas are reopened either at the next access request for the area or by the /START AREA command.

The GLOBAL and ACCESS keywords are mutually exclusive. The /START command is rejected if both keywords are specified.

Issuing a /START DB command with the ACCESS parameter is not valid for an MSBD.

The meanings of the ACCESS parameter values are:

- **RO**  Specifies that the named database is available for read-only processing on this IMS subsystem. The only programs that can use the database on this subsystem are those that have a PCB processing option of GO (PROCOPT=GO). Programs that access the data by using the GO
processing option might see uncommitted data, because a sharing IMS subsystem could be updating the database, which is opened for input only.

**RD** Specifies that the named database is available for read-only processing in this IMS subsystem. Programs with update intent can be scheduled, but cannot update the database. ACCESS of RD differs from ACCESS of RO in that the data is read with integrity (locking is performed) and all programs can access the data, not just those with a processing option of GO. The database is opened for read-only processing.

**UP** Specifies that the named database is for update and read processing in the IMS subsystem.

**EX** Specifies that the named database is to be used exclusively by this IMS subsystem. This exclusive access is guaranteed only when the database is registered to DBRC.

**DBALLOC**
Indicates that the specified databases are to be allocated. DBALLOC is the default except for /START DB ALL commands.

**NODBALLOC**
Indicates that the specified databases are not to be allocated. The databases will be allocated when they are scheduled. NODBALLOC is the default for /START DB ALL commands.

**GLOBAL**
Specifies that the command applies to all subsystems that are sharing the database. GLOBAL requires that IRLM be active. The command is rejected if IRLM is not active.

If the database is registered in the RECON data set, the /START DB GLOBAL command will reset the prohibit authorization flag to off (PROHIBIT AUTH = OFF).

The /START DB GLOBAL command is processed by the IMS system where the command was initiated. This system will process the command locally and then request IRLM NOTIFY to route and process the command on sharing IMS systems.

If global DB status is maintained, the global status that is maintained in RM is also updated. The global status is set to STA.

If the command is entered from OM API, the global status is updated by the command master IMS. If the command is not entered from OM API, the IMS that initiated the GLOBAL command updates the global status in RM.

You must specify whether the global database status must be maintained in RM. You can specify this during IMS initialization in the DFSDFxxx or DFSCGxxx PROCLIB member with PLEXPARM(GSTSDB(Y)). You can also change it dynamically using the UPD IMS SET(PLEXPARM(GSTSDB(Y)) command. If you do not specify that global database status is to be maintained, the GLOBAL keyword is processed as in prior releases, and the global status is not updated.

If global status in RM is successfully updated, message DFS0988I for RSRCTYPE=DB is issued. If global status is not successfully updated, message DFS3308I is issued, indicating RM failure, and no command response lines are generated. Any RM error is traced to the OCMD trace table. Users can issue a QRY DB STATUS(GLOBAL) command to obtain the global status of the resources in RM.
The X’4C’ log record for databases is updated to include both global status and
global command time stamp. It includes the DDB name for the area. The
GLOBAL keyword and the ALL parameter are mutually exclusive. The /START command is rejected if both ALL and GLOBAL are specified.

The GLOBAL keyword is not supported on an RSR tracking subsystem.

If the GLOBAL keyword on a command is entered from an OM API, the
command should only be routed to one IMS system in the IMSplex. The IMS
that receives the command from OM will make DBRC calls to update the
RECON with GLOBAL status. It will also request IRLM NOTIFY to route and
process the command on sharing IMS systems, and then process the command
locally.

Messages that are produced on the NOTIFIED systems will be displayed only
on the system console and will not be routed back to the OM API that
originally entered the command.

If multiple IMS systems have been explicitly specified in the route list, the
master IMS system will process the command as described previously.
However, the non-master IMS systems, to which OM routes the command, will
reject the command with the following return and reason code listed in the
following table:

**Table 270. Return and reason code for GLOBAL keyword issued from the OM API**

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X’00000004’</td>
<td>X’00001000’</td>
<td>The command contained the GLOBAL keyword and was routed to more than one IMS system in the IMSplex. The non-master IMS systems will reject this command when OM routes the command to them. The master IMS system will process this command and use IRLM NOTIFY to route and process the command on the non-master IMS systems. See the discussion under the GLOBAL keyword.</td>
</tr>
</tbody>
</table>

**LOCAL**

Specifies that the command applies only to the IMS subsystem in which the
command is entered. This command does not affect any other subsystem
sharing the database.

LOCAL is the default.

**NOBACKOUT**

Suppresses backout restart for a database not registered in DBRC. If there was
a prior dynamic backout or emergency restart backout failure, then a /START,
command will attempt to perform the backout again. However, if the log data
required to perform the backout has been archived, the backout must be
performed by executing the Batch Backout utility.

If the database is registered in DBRC and is using share control, then DBRC is
informed when batch backout is successfully executed, and the failing backout
will not be attempted again when the /START command is issued.

If the database is registered in DBRC and is using recovery control, DBRC is
not informed when batch backout is successfully executed. You must specify
the NOBACKOUT keyword to inform IMS that it does not have to attempt to
execute the failed backout again.

NOBACKOUT is not valid with the ALL parameter.
OPEN | NOOPEN

Indicates that the named databases should be opened or should not be opened as part of the /START DB processing. NOOPEN is the default except when the database has EEQEs or the database was previously authorized but not allocated. If the database has EEQEs or was previously authorized but not allocated, then the database will be opened until the NOOPEN keyword is specified. Operators need to be aware of the results of issuing this command. Check the return code in message DFS0488I.

Specifying /START DB OPTION(OPEN) can cause the randomizer routine or the selection partition routine to load.

Restriction: The OPEN parameter is not supported:
- On a HALDB master. The command will result in message DFS0488I RC=57, but if only one HALDB master database was specified in the command, the online partition structures of the HALDB master database will be rebuilt if needed. No rebuild will be attempted if more than one database name is listed in the command.
- In an RSR environment.
- On an XRF alternate.
- With keywords ALL, GLOBAL, or NOBALLOCC.

Usage notes

For a DEDB, the /START DB command also causes any unloaded randomizer, which is specified in the DBD source, to be reloaded.

You can use the UPD DB START(ACCESS) AREA(*) command to allocate the areas of a DEDB.

When you issue the CREATE DB command for a DEDB, you must specify RESIDENT(Y). DEDBs are always resident. The residency default for the CREATE DB command is non-resident.

After a DEDB is created, you must start it before you can use it in a similar manner as when you add a DEDB or change a DEDB using the online change (OLC) process. After an OLC process that either adds a DEDB or changes a DEDB, the DEDB and the areas must be started. The /START DB command or the UPD DB command will start the database and load the randomizer. The /START AREA command or the UPD AREA command will start the individual areas.

When the name that is specified is for a partition, the action that is taken to allocate data sets varies. The action varies depending on the status of the master database and whether the DMB for the master database is already loaded. If a partition has the /DBRECOVERY command called against it, then the partition cannot be allocated by the /START command even if the DBALLOC keyword is specified. The partition can be allocated by the /START command if the OPEN keyword is used or if the database has EEQEs. The partition will get allocated at first reference if the partition cannot be allocated by the /START command, the OPEN keyword is not used, and the database does not have EEQEs. This applies to partitioned PHDAM and PHIDAM database types.

PHDAM or PHIDAM partitions that had the /DBRECOVERY command issued against them, cannot be allocated with the /START DB DBALLOC command. However, if the partition databases have EEQEs, or the OPEN keyword is used with the /START DB command, or the databases were previously authorized but
not allocated, the partitions can be allocated. If you do not use the OPEN keyword, the PSINDEX partition is allocated and the PHDAM and PHIDAM partitions are not allocated until they are authorized.

When a /START DB command is issued for all transactions whose processing program has access to a successfully started database, the USTOPPED attribute will be reset and any messages on the suspend queue for that transaction will be transferred to the normal queue.

If one or more of the named databases requires backout or recovery, and the database is registered in DBRC, the database that require backout or recovery is dropped from the command and the remainder of the databases continue processing. If the database is not registered in DBRC, specify the NOBACKOUT keyword to inform IMS that it does not have to attempt to execute the failed backout again.

To start a HIDAM database, both the index and the data area DBD names must be specified. If a backout failure occurred for this database, the /START command causes the backout to be attempted again.

If a DL/I database is in use by a batch message processing (BMP) region when the /START DB command is issued, a DFS0565I message is returned to the master terminal, the command is ignored for the database indicated in the message, and processing continues for any other databases that are specified in the command. The master terminal operators must wait until the BMP program ends before they reissue the /START DB command to start the database indicated in the DFS0565I message. However, if allocation of a database fails during the scheduling or processing of a BMP region, the /START DB command for that database is processed while the BMP region is still active, and a DFS0565I message is not issued.

For databases on an RSR tracking subsystem, /START DB is used to resume tracking for those databases that were stopped by a tracking subsystem processing. The /START DB command also starts online forward recovery (OFR) for those databases that are not current with mainline tracking.

The /START DB ALL command causes message DFS0488I to be issued. All databases that were defined during the system definition process will be started if possible.

The output of the /START DB command is changed when the command is entered through the OM API. In this case, the DFS058I message is not returned to OM. The command response returned to OM contains one or more of the following messages as appropriate to the database type and the command completion.

- Full-function database messages: DFS030I, DFS132, DFS160, DFS216, DFS0402I, DFS0488I, DFS0740I, DFS1407, DFS2026, DFS3317I, DFS3318I, DFS3320I, DFS3325I, DFS3465I, DFS3466I
- Fast Path database messages: DFS140I, DFS666, DFS3062

When you enter this command, the database name can be an existing non-HALDB, a HALDB master, or a HALDB partition. A command against a HALDB partition operates exactly like a command against a non-HALDB except for the /START DB command and the UPDATE DB START(ACCESS) command. A HALDB partition is
not allocated during the command unless it was previously authorized but not allocated, the OPEN keyword was specified, or the partition has EEQEs. The partition is allocated at first reference.

The HALDB partition reflects conditions such as STOPPED (shown as STOACC or STOSCHD or STOUPDS on QUERY DB), LOCKED, or NOTOPEN. When a HALDB partition is stopped, it must be explicitly started again. The type-1 commands with the keyword ALL, type-2 commands with NAME(*), and commands against a HALDB master do not change the STOPPED (shown as STOACC, STOSCHD or STOUPDS on QUERY DB) and LOCKED indicators in each HALDB partition.

When the command target is a HALDB master, processing acts on all HALDB partitions. For example, if the IMS command is /DBR on the HALDB master, all of the HALDB partitions are closed, deallocated, and deauthorized. On a /DISPLAY DB command, only the HALDB master displays STOPPED (each HALDB partition does not display STOPPED unless it was itself stopped). If a /DBR command was issued against a HALDB master, the display output of a /DISPLAY DB command shows the HALDB master (as STOPPED), but does not display the status of the partitions.

Each partition inherits the access limitations of its HALDB master. If the /DBD command is issued against a HALDB master, all of its partitions close. A subsequent reference to any of the partitions results in the partition opening for input, although the partition's access might be UPDATE or EXCLUSIVE. The DBRC authorization state reflects the limited access.

Restrictions:

- The /START DB command cannot be processed against a HALDB partition on an IMS system while HALDB Online Reorganization (OLR) is running against that partition on the same IMS system.
- The /START DB ACCESS=UP command cannot be issued against a HALDB master while OLR is reorganizing any of its partitions.
- While the database is being quiesced, this command cannot be processed successfully.

The /START DB command is not allowed for a database that is marked bad with the NOTINIT-48-REP0CHGLIST reason code because the IMS change list processing is not complete for the database or the change list processing failed.

### Equivalent IMS type-2 commands

The following table shows variations of the /START DB command and the IMS type-2 commands that perform similar functions.

<table>
<thead>
<tr>
<th>Task</th>
<th>/START DB command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starts a database and change access intent of the database.</td>
<td>/START DB ACCESS</td>
<td>UPDATE DB START(ACCESS) SET(ACCTYPE())</td>
</tr>
<tr>
<td>Starts a database.</td>
<td>/START DB dbname</td>
<td>UPDATE DB NAME(dbname) START(ACCESS)</td>
</tr>
</tbody>
</table>
Examples

The following are examples of the /START DB command:

Example 1

TSO SPOC input:

STA DB BANKATMS BANKTERM BANKLDGR BE3ORDER

TSO SPOC output:

SYS3 DFS0488I STA COMMAND COMPLETED. DBN= BANKATMS RC=04
SYS3 DFS0488I STA COMMAND COMPLETED. DBN= BANKTERM RC=04
SYS3 DFS0488I STA COMMAND COMPLETED. DBN= BANKLDGR RC=04
SYS3 DFS0488I STA COMMAND COMPLETED. DBN= BE3ORDER RC=08
IMS3 DFS0488I STA COMMAND COMPLETED. DBN= BANKATMS RC=04
IMS3 DFS0488I STA COMMAND COMPLETED. DBN= BANKTERM RC=04
IMS3 DFS0488I STA COMMAND COMPLETED. DBN= BANKLDGR RC=04
IMS3 DFS0488I STA COMMAND COMPLETED. DBN= BE3ORDER RC=08

OM API input:

CMD (STA DB BANKATMS BANKTERM BANKLDGR BE3ORDER )

OM API output:

<?xml version="1.0"?>
<!DOCTYPE imsout SYSTEM "imsout.dtd">
<imsout>
<ctl>
<omname>OM1OM </omname>
<omvsn>1.1.0</omvsn>
<xmlvsn>1 </xmlvsn>
<statime>2002.197 21:59:29.210362</statime>
<stotime>2002.197 21:59:30.213238</stotime>
<staseq>B7EFC01B367FAE02</staseq>
<stoseq>B7EFC01C2B576D8F</stoseq>
<rqsttkn>USRT005 10145929</rqsttkn>
<rc>0200000C</rc>
<rsn>00003008</rsn>
</ctl>
<cmderr>
<mbr name="SYS3 ">
<typ>IMS </typ>
<styp>DBDC </styp>
<rc>00000014</rc>
<rsn>00005050</rsn>
<rnsntext>Command processing error</rnsntext>
</mbr>
<mbr name="IMS3 ">
<typ>IMS </typ>
<styp>DBDC </styp>
<rc>00000014</rc>
<rsn>00005050</rsn>
<rnsntext>Command processing error</rnsntext>
</mbr>
</cmderr>
<cmd>
<master>SYS3 </master>
<userid>USRT005 </userid>
<verb>STA </verb>
<kwd>DB </kwd>
<input>/STA DB BANKATMS BANKTERM BANKLDGR BE3ORDER </input>
</cmd>
<msgdata>
<mbr name="SYS3 ">

Explanation: The START DB command is routed from OM to the two active IMS systems - SYS3 and IMS3. The response from both IMS systems is returned to OM. The databases BANKATMS, BANKTERM, BANKLDGR, and BE3ORDER are started at both IMS systems.

Example 2

Entry ET:
/START DB TREEFARM

Response ET:
DFS058I (time stamp) START COMMAND IN PROGRESS
DFS0488I START COMMAND COMPLETED. DBN=TREEFARM RC=0.

Explanation: Database TREEFARM is started.

Related concepts:
- Maintaining global information for databases, DEDB areas, and transactions

Related reference:
"UPDATE DB command" on page 936

Related information:
- DFS2406I (Messages and Codes)
- DFS2838I (Messages and Codes)

/START DC command

Use the /START DC command to open the VTAM ACBs (if MNPS for XRF is used, then both the MNPS and APPLID ACBs are opened) if they are not already open, to enable logons to IMS, and to enable optional transaction manager functions such as IMS generic resource support and IMS persistent sessions support for RNR.

- IMS generic resource support: The defined VTAM generic resource group is joined with GRNAME in the IMS or DCC PROCLIB members.
- IMS persistent sessions support for RNR: Session activity that was suspended because of a major outage is resumed or terminated, as appropriate, if the RNR option was specified in the DFSDCxxx PROCLIB member.

If the /START DC command is issued on an XRF alternate system that is using MNPS, the command will only open the APPLID ACB. The MNPS ACB is not opened until XRF takeover processing.

Subsections:
Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 272. Valid environments for the /START DC command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/START</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DC</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

►► /START DC

/START DESC command

Use the /START DESC command to define the LU62 descriptors from DFS62xxx PROCLIB member to IMS.

The full PROCLIB member name needs to be specified. The PROCLIB member must start with DFS62.

Subsections:

 conventions

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 273. Valid environments for the /START DESC command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/START</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DESC</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Syntax

►► /START DESC proclibmember

 746 Commands, Volume 2: IMS Commands N - V
/START ISOLOG command

The /START ISOLOG command indicates that the RSR tracking subsystem is to initiate a request for isolated log data from the isolated log sender at the active site.

/START ISOLOG can only be entered on an RSR tracking subsystem.

/START ISOLOG may be needed when:

- The active system failed and was not restarted, and the OLDS at the time of failure was closed using the Log Recovery utility.
- Batch jobs or utilities running at the active were unable to send logs.
- Permanent error status is shown for gaps in the output of a /DISPLAY TRACKING STATUS command. If the log problem at the active has been corrected, use /START ISOLOG to initiate retry.

Successful completion of syntax checking of the /START ISOLOG command results in the DFS058 START COMMAND COMPLETED message, although processing of the command continues asynchronously.

Subsections:

- “Environment”
- “Syntax”

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/START ISOLOG</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ISOLOG</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
/START ISOLOG
```

/START LINE command

The /START LINE command makes communication lines that are idle and in a stopped or process stopped state available for use. It also terminates any conversations that are active on the line.

Subsections:

- “Environment” on page 748
- “Syntax” on page 748
- “Usage notes” on page 748
- “Examples” on page 749
Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 275. Valid environments for the /START LINE command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/START LINE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LINE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PTERM</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Syntax

```
/START LINE line#
/START LINE PTERM pterm#
```

Usage notes

All terminals are removed from looptest mode, MFTEST mode, or exclusive mode, and any terminals in signon status are reset. The /START LINE command without the PTERM keyword enables the line again (resulting in a non-VTAM LOPEN macro).

If the line must be enabled again, /START LINE must be entered prior to any /START LINE PTERM command.

The /START LINE PTERM command makes one or more physical terminals available for use. The physical terminals are removed from response mode, test mode, looptest mode, MFTEST mode, preset destination mode, or exclusive mode, and resets terminals in signon status. If IMS encounters a stopped and idle line when processing /START LINE PTERM, it restarts the line. Any inoperable components are marked as operable.

To activate I/O operations for a LINE, LINE PTERM, or NODE without altering the status of the associated/specified terminals, use /RSTART instead of /START.

If an error is detected on parameters that are independent of one another, only the invalid parameters are indicated as being in error and processing continues for the rest of the parameters. This happens for /START LINE if:

- The specified line is already started or is not idle.
- Any terminals on the line had conversations that could not be canceled (because an application program is scheduled).
- The specified line could not be started because of IMS internal processing.
- The DD statement is missing from the IMS execution JCL.

The /START LINE command no longer resets preset mode, test mode, and response mode since these statuses are no longer significant and therefore are not
kept after a /START LINE command or restart.

**Examples**

The following are examples of the /START LINE command:

**Example 1 for /START LINE command**

Entry ET:
/START LINE 4 PTERM 1, 2

Response ET:
DFS058I START COMMAND COMPLETED

Response RT:
DFS059I TERMINAL STARTED

Explanation: Physical terminals 1 and 2 on line 4 are started.

**Example 2 for /START LINE command**

Entry ET:
/START LINE 4,5,6,7,8,9,10,11

Response ET:
DFS058I START COMMAND COMPLETED

Response RT:
DFS059I TERMINAL STARTED

Explanation: Lines 4, 5, 6, 7, 8, 9, 10, and 11 are started.

**Example 3 for /START LINE command**

Entry ET:
/START LINE 4 5 6 700

Response ET:
DFS058I START COMMAND COMPLETED EXCEPT LINE 5 700

Response RT:
DFS059I TERMINAL STARTED

Explanation: Lines 4 and 6 are started. The /DISPLAY LINE command can be used to determine why line 5 did not start successfully. (700 is an invalid line number.)

**/START LTERM command**

Use the /START LTERM command to specify the logical terminals to be started and to reset the QLOCK state. (QLOCK indicates that the LTERM is locked from sending any further output or from receiving input that can create additional output for the same LTERM until the state is reset by a specific request received on the session.) /START LTERM is rejected for remote logical terminals.
Subsections:
- "Environment"
- "Syntax"
- "Usage notes"

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

*Table 276. Valid environments for the /START LTERM command and keywords*

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/START</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LTERM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
/START LTERM
```

Usage notes

The LTERM keyword is only effective for existing LTERMs.

The LTERM parameter can be generic where the generic parameter specifies LTERMs that already exist.

If global resource information is kept in Resource Manager, the /START LTERM command allows messages to be queued to the LTERM from anywhere in the IMSplex and the change is reflected both in Resource Manager and in the local IMS system.

Examples

The following is an example of the /START LTERM command:

Entry ET:

```
/START LTERM APPLE, TREE, FRUIT
```

Response ET:

```
DFS058I START COMMAND COMPLETED
```

Response RT:

```
DFS059I TERMINAL STARTED
```

Explanation: Logical terminals APPLE, TREE, and FRUIT are started.
/START LUNAME command

Use the START LUNAME command to specify the LU name that is to be started.

Subsections:
• "Environment"
• "Syntax"
• "Keywords"
• "Usage notes"

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 277. Valid environments for the START LUNAME command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/START</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>INPUT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LUNAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OUTPUT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

Keywords

The following keywords are valid for the /START LUNAME command:

INPUT
Specifying the keyword INPUT starts an luname for any input and synchronous outbound activities. Specifying the parameter ALL with the keyword INPUT causes all future LU 6.2 inbound and synchronous output activities to be started as well.

OUTPUT
Specifying the keyword OUTPUT starts an luname for asynchronous outbound activities. Specifying the parameter ALL with the keyword OUTPUT causes all future LU 6.2 outbound asynchronous activities to be started as well.

Usage notes

Specifying neither INPUT nor OUTPUT is the same as specifying both INPUT and OUTPUT. The LU name is started for any input and both synchronous and
asynchronous outbound activities. Specifying the parameter ALL in this case also causes the start of all future LU 6.2 inbound activities, outbound synchronous, and asynchronous activities.

A network-qualified LU name is optional for the LUNAME keyword. If the LU name is not network-qualified and no TP name is specified, all the network-qualified LU names whose LU name matches the LU name specified are also started.

/START LUNAME TPNAME starts a particular tname of an luname. The keyword OUTPUT is the default for this command.

If the specified resource does not exist, a structure is created to retain the status.

Related reference:
Command keywords and their synonyms (Commands)

/START MADSIOT command

Use the /START MADSIOT command to specify the MADS I/O timing function.

Subsections:
- “Environment”
- “Syntax”
- “Usage notes”

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 278. Valid environments for the /START MADSIOT command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/START</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MADSIOT</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Syntax

/START MADSIOT

Usage notes

The /START MADSIOT command is valid only after the long busy handling function is disabled for a link failure, a structure failure, or a rebuild failure. When the /START MADSIOT command completes normally, one of the two following messages is returned to the operator's console:
- DFS1728E START MADSIOT COMMAND FAILED RSN=rrr
- DFS1727I MADSIOT TIMING FUNCTION RESUMED SUCCESSFULLY

The purpose of this command is to enable MADS I/O Timing function. If MADS I/O Timing list structure is not defined in DFSVSMxx, the command will be
rejected. If MADS I/O Timing function is already enabled, the command will be ignored. If MADS I/O Timing function is not enabled and all sharing partners successfully connect to MADS I/O Timing list structure on the coupling facility, the command will complete successfully; if any sharing partners fails to connect to MADS I/O Timing list structure, the command will fail.

The output of the /STA MADSIOT command is changed when the command is entered through the OM API. In this case, the DFS058I message is not returned to OM. The command response returned to OM contains one or more of the following messages as appropriate.

Fast Path messages: DFS0023I, DFS0007I, DFS1270I, DFS1727I, DFS1552A, DFS1728E

/START MSNAME command

Use the /START MSNAME command to specify the logical link path that is to be started. The MSNAME keyword can be generic.

Subsections:
- “Environment”
- “Syntax”
- “Examples”

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 279. Valid environments for the /START MSNAME command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/START</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>MSNAME</td>
<td>×</td>
<td></td>
<td>×</td>
</tr>
</tbody>
</table>

Syntax

```
/START MSNAME msname
```

Examples

The following is an example of the /START MSNAME command:

Entry ET:

/START MSNAME CHICAGO

Response ET:

DFS058I START COMMAND COMPLETED

Explanation: A logical link path associated with the name CHICAGO is started.
Related reference:

“UPDATE MSNAME command” on page 1078

/START NODE command

Use the /START NODE command to allow IMS to accept logons from, or initiate logons to, terminals attached to VTAM without actually initiating a session with the terminal. When a stopped node is started by using the /START NODE command, the terminal can log on to IMS or IMS can initiate a session with the terminal by using the //OPNDS1 NODE command.

The /START NODE command operates only if the node is disconnected, idle, and stopped. In addition to resetting the STOPPED status, the command resets MFSTEST mode, exclusive mode, DEACT status, and conversational mode by terminating the conversations.

Subsections:
- “Environment”
- “Syntax”
- “Usage notes”
- “Examples” on page 755

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 280. Valid environments for the /START NODE command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/START NODE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NODE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>USER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

Usage notes

The /START NODE command is valid for existing nodes only (including any temporary nodes present in the system).

There is no need to issue a //DEQUEUE command for Fast Path messages. When the response mode is reset for a NODE or USER destination of Fast Path messages
by either a /STOP NODE or a /STOP USER command, the Fast Path messages are
discarded when the accompanying /START NODE or /START USER command is
issued. In this case, IMS writes a X'67D0' Subtype 11 trace log record.

The /START NODE nodename USER username command applies to ISC sessions
only, and it is used to start a half session allocated to USER username for NODE
nodename. The USER keyword when used with the NODE keyword affects the
specified half-session. When the USER keyword is omitted, all half-sessions of the
specified node are affected.

Restrictions for using NODE and USER parameters together:

• Commands with the NODE USER keyword pair are valid only if:
  – The USER is signed on to the NODE
  – In an ISC environment, the USER is allocated to the NODE
  – The nodes and users already exist
• /START NODE USER commands are valid for ISC, LUP, and 3600 nodes only.

The NODE parameter can be generic if the USER keyword is not present. The
generic parameter specifies nodes that already exist.

The /START NODE command no longer resets test mode and preset mode,
because these statuses are no longer significant and therefore no longer carried
across logon or restart. MFSTEST mode (at the node level) and exclusive mode are
still reset.

If global resource information is kept in Resource Manager, the /START NODE
command allows a node to log on to any IMS in the IMSplex and resets MFSTEST
mode and exclusive mode. If the node no longer has significant status, it is deleted
from Resource Manager.

If a node in conversational mode receives the message, DFS058I START COMMAND
COMPLETED EXCEPT when a /START NODE command is issued, it is possible that
the conversation is INUSE by some other process. This is a temporary condition;
you can reissue the /START NODE command.

Examples

The following is an example of the /START NODE command:

Entry ET:
/START NODE HARRY

Response ET:
DFS058I START COMMAND COMPLETED

Explanation: The physical terminal that is associated with the node HARRY is
started.

/START OLDS command

The /START OLDS command indicates that either a previously stopped OLDS is
to be started or that IMS is to add a new OLDS log data set.
If a new OLDS is being added, olds# is an OLDS identifier that is defined by the DFSMDA macro specification. If in dual mode, both primary and secondary OLDSs are started. olds# must be 00-99.

When using /START OLDS, an OLDS must be defined in the DFSMDA macro, even if it is allocated in JCL.

Subsections:

- “Environment”
- “Syntax”
- “Examples”

**Environment**

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/START OLDS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

**Syntax**

```
/START OLDS olds#
```

**Examples**

The following is an example of the /START OLDS command:

Entry ET:

/START OLDS 09

Response ET:

DFS058I  START COMMAND IN PROGRESS

Explanation: OLDS data set DFSOLP09 (DFSOLS09) will be started for logging.

---

**/START OTMA command**

Use the /START OTMA command to cause IMS to join the z/OS cross-system coupling facility (XCF) group for the IMS Open Transaction Manager Access (OTMA).

Subsections:

- “Environment” on page 757
- “Syntax” on page 757
- “Usage notes” on page 757
- “Examples” on page 757
Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 282. Valid environments for the /START OTMA command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/START</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>OTMA</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
/START OTMA
```

Usage notes

/START OTMA command processing is as follows:
1. IMS joins the XCF group.
2. Following a successful Client-Bid, IMS sends an ACK message to the OTMA client.
3. IMS begins sending all Commit-then-Send (commit mode 0) output messages to the OTMA client.

The NOCHECK option specifies that the command is not recovered during emergency restart for OTMA.

Examples

The following is an example of the /START OTMA command:

Entry ET:
/STA OTMA

Response ET:
DFS2360I 14:02:53 XCF GROUP JOINED SUCCESSFULLY. SYS3
DFS058I 14:02:53 START COMMAND COMPLETED SYS3
DFS996I *IMS READY* SYS3

/START PGM command

Use the /START PGM command to specify the application program that is to be started.

This command also clears the indicator preventing a program from scheduling when I/O prevention has not completed. The integrity of a GSAM database residing on DASD can be affected if I/O prevention has not been done on a failing active system.

/START PGM does not start a CPI Communications driven transaction program.

Subsections:
Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 283. Valid environments for the /START PGM command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/START PGM</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PGM</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
/START PGM pgmname
```

Usage notes

The /START PGM command is not allowed for a program that is marked bad with the NOTINIT-57-REP0CHGLIST reason code because the IMS change list processing is not complete for the program or the change list processing failed.

Equivalent IMS type-2 commands

The following table shows variations of the /START PGM command and the IMS type-2 commands that perform similar functions.

Table 284. Type-2 equivalents for the /START PGM command

<table>
<thead>
<tr>
<th>Task</th>
<th>/START PGM command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starts program scheduling.</td>
<td>/START PGM pgmname</td>
<td>UPDATE PGM NAME(pgmname)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>START(SCHD)</td>
</tr>
</tbody>
</table>

Examples

The following are examples of the /START PGM command:

Example 1 for /START PGM command

Entry ET:
/START PROGRAM ALL

Response ET:
DFS058I START COMMAND COMPLETED
Explanation: All application programs are started.

*Example 2 for /START PGM command*

Entry ET:
/START PROGRAM APPLETRE

Response ET:
DFS058I START COMMAND COMPLETED

Explanation: Application program APPLETRE is started.

Related reference:
“UPDATE PGM command” on page 1124

/START REGION command

Use the /START REGION command to specify the set of message processing region JCL to be passed to z/OS. If no member name is specified, the default member name is used.

Subsections:
- “Environment”
- “Syntax”
- “Usage notes”
- “Examples” on page 760

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

*Table 285. Valid environments for the /START REGION command and keywords*

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/START</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LOCAL</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>REGION</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

Usage notes

IMS dependent regions of the same type (MPP, BMP, or IFP) can share a PROCLIB member containing the startup JCL for the type of region. Use the JOBNAME or
LOCAL keywords of the /START REGION command to enable IMS to set (or override) the IMS ID for the dependent region to match the IMS ID of the IMS that processes the command.

**Restriction:** The JCL for the region to be started must include the IMSID= execution parameter.

Use the JOBNAME keyword to override the job name on the JOB statement of the default or specified JCL member for a dependent region.

If you specify the LOCAL keyword, IMS overrides the symbolic IMSID parameter in the JCL of the default or specified member. LOCAL is the default if you specify the JOBNAME keyword.

When the LOCAL or JOBNAME keywords are specified on the /START REGION command, the PROCLIB member must be a job that runs a procedure to start the dependent region. The procedure cannot be an instream procedure. For example, suppose that the /START REGION command is entered in one of the following formats:

/START REGION member_name LOCAL
/START REGION member_name JOBNAME job_name
/START REGION member_name JOBNAME job_name LOCAL

In these instances, member_name is a job that runs a procedure to start the dependent region and has the following format:

//job_name JOB ... (parameters)...
//   EXEC proc_name,
//   IMSID=xxxx

The operator can start more dependent regions than were specified in the IMS system definition or the EXEC parameter, up to 999. A request to start more regions than the system-definition value (but less than or equal to 999) might be rejected if resources are not available.

The /START REGION command is not mirrored on the XRF alternate subsystem. You must enter this command on the alternate subsystem if you want it to affect the alternate subsystem.

**Examples**

The following are examples of the /START REGION command:

**Example 1 for /START REGION command**

Entry ET:
/START REGION

Response ET:
DFS058I  START COMMAND IN PROGRESS

Response ET:
DFS551I  IFP|MESSAGE|BATCH  REGION XXXXXXXX STARTED.  ID=yy TIME=zzzz
   CLASSES=xxx,xxx,xxx,xxx
Explanation: One message region or batch region (ID=yy) is started at TIME=zzzz. The transactions associated with the classes listed in the response can now be scheduled.

**Example 2 for /START REGION command**

Entry ET:
/START REGION IMSWT000

Response ET:
DFS058I START COMMAND IN PROGRESS

Explanation: The JCL stored as member IMSWT000 is used to start the spool SYSOUT utility for the data sets associated with the spool line corresponding to the IMSWT000 procedure.

**Example 3 for /START REGION command**

Entry ET:
/START REGION MEMABC

Response ET:
DFS058I START COMMAND IN PROGRESS

Response ET:
DFS551I IFP|MESSAGE|BATCH REGION XXXXXX STARTED. ID=yy TIME=zzzz CLASSES=xxx,xxx,xxx,xxx

Explanation: The JCL stored as member XXXXXX is used to start a message processing region or batch message processing region with the classes specified by the EXEC statement parameters in MEMABC.

Related reference:
[PRDR=name parameter for procedures (System Definition)](https://example.com)

**/START RTC command**

Use the /START RTC command to specify the Fast Path routing codes to be activated and to allow transactions associated with the routing codes to be processed.

Subsections:
- “Environment”
- “Syntax” on page 762
- “Usage notes” on page 762
- “Equivalent IMS type-2 commands” on page 762
- “Examples” on page 762

**Environment**

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.
Table 286. Valid environments for the /START RTC command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/START</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>RTC</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

**Syntax**

```
/START RTC rtcname
```

**Usage notes**

The /START RTC command is not allowed for a routing code that is marked bad with the NOTINIT-07-REPOCH6LIST reason code because the IMS change list processing is not complete for the routing code or the change list processing failed.

**Equivalent IMS type-2 commands**

The following table shows variations of the /START RTC command and the IMS type-2 commands that perform similar functions.

<table>
<thead>
<tr>
<th>Task</th>
<th>/START RTC command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starts queuing to a Fast Path routing code.</td>
<td>/START RTC rtcname</td>
<td>UPDATE RTC NAME(rtcname) START(Q)</td>
</tr>
</tbody>
</table>

**Examples**

The following is an example of the /START RTC command:

Entry ET:

/START RTCODE ALL

Response ET:

DFS058I  START COMMAND COMPLETED

Explanation: All the Fast Path routing codes are activated. Transactions associated with these routing codes can now be processed.

**Related reference:**

“UPDATE RTC command” on page 1170

**/START SB command**

Use the /START SB command to dynamically allow sequential buffering. This command does not affect sequential buffering applications scheduled before this command was issued.

Subsections:

- “Environment” on page 763
Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/START SB</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
/START SB
```

Examples

The following is an example of the /START SB command:

Entry ET:

```
/START SB
```

Response ET:

```
DFS058I START COMMAND COMPLETED
```

Entry ET:

```
/DISPLAY POOL DBAS
```

Response ET:

```
SEQUENTIAL BUFFERING: STATUS = NOT-STOPPED
MAX N.A. FREE N.A. CURR 160K HIGH 320K
DATABASE BUFFER POOL: SIZE 67584
REQ1 0 REQ2 0 READ 0 BISAM 0 WRITES 0
KEYC 0 LCYL 0 PURG 0 OWNRR 0 ERRORS 00/00
DATABASE BUFFER POOL: BSIZE 12288
RRBA 0 RKEY 0 BFALT 0 NREC 0 SYN PTS 0
NMBUSF 29 VRDS 0 FOUND 0 VWT 0 ERRORS 00/00
DATABASE BUFFER POOL: BSIZE 356352
RRBA 0 RKEY 0 BFALT 0 NREC 0 SYN PTS 0
NMBUSF 29 VRDS 0 FOUND 0 VWT 0 ERRORS 00/00
86253/104547
```

Explanation: Sequential buffering is started.

/START SERVGRP command

Use the /START SERVGRP command to start communications between the entering service group and the service group at the other site in an Remote Site Recovery (RSR) complex.
Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 289. Valid environments for the /START SERVGRP command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/START</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SERVGRP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

►►/START SERVGRP◄◄

Usage notes

If the subsystem is not currently identified to the Transport Manager Subsystem (TMS), an attempt to identify precedes an attempt to connect to the other subsystem. /START SERVGRP is supported on an active IMS subsystem and an RSR tracking subsystem.

The /START SERVGRP command is not normally needed for an active subsystem because the logger normally attempts to identify to TMS at each OLDS switch to establish connections with the other subsystem. However, the operator might want to trigger this process between OLDS switches; for instance, if a network outage between the active and tracking sites has been repaired and the operator does not want to wait until the next OLDS switch to re-establish communications.

Successful completion of the syntax checking of the /START SERVGRP command results in the DFS058 START COMMAND COMPLETED message, although processing of the command continues asynchronously.

Examples

The following is an example of the /START SERVGRP command:

Entry ET (at the active site):
/START SERVGRP

Response ET (to the active subsystem):
DFS058 START COMMAND COMPLETED

Explanation: Communications between the subsystem at the active site and the subsystem at the RSR tracking site are started.
/START SLDSREAD command

The /START SLDSREAD command indicates whether IMS is enabled to retrieve records from both a system log data set (SLDS) and OLDS or OLDS only. The default is that SLDSREAD is enabled.

Subsections:
- “Environment”
- “Syntax”

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 290. Valid environments for the /START SLDSREAD command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/START</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SLDSREAD</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

►►/START SLDSREAD◄◄

/START SUBSYS command

Use the /START SUBSYS command to specify the external subsystem to which IMS is to connect.

Subsections:
- “Environment”
- “Syntax” on page 766
- “Keywords” on page 766
- “Usage notes” on page 766

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 291. Valid environments for the /START SUBSYS command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/START</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SSM</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SUBSYS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Syntax

```
/START SUBSYS subsysname
 ALL
 SSM ssname
```

Keywords

The following keywords are valid for the /START SUBSYS command:

**SSM**

Allows external subsystem connection processing to occur even though the option was not requested when IMS was started.

The syntax and usage of the SSM keyword are the same as the SSM= EXEC parameter that can be specified on the IMS startup JCL. The SSM keyword is followed by a 1 to 4 character identifier. IMS concatenates the SSM identifier to the IMSID to create an SSM PROCLIB member name. The SSM PROCLIB member is then used for external subsystem processing.

The SSM keyword is not valid if either of the following conditions apply:

- The SSM= keyword is specified in the EXEC parameters of the startup JCL.
- The /START SUBSYS SSM command has been previously issued.

Usage notes

This command can also be used to dynamically reconfigure existing subsystem definitions. The installation can start IMS with the subsystem PROCLIB member defining one subsystem. The PROCLIB member can then be changed or added to. The operator can then /STOP the existing subsystem connections or only the one that has changed. By issuing the /START SUBSYS command, IMS will pick up the new or changed definitions and attempt to connect to those subsystems.

The /START SUBSYS ALL command connects IMS to all external subsystems. Also, the SSM keyword can be used with the /START SUBSYS command.

If the subsystem connection was abnormally terminated, IMS puts the connection in a stopped state. In this instance, the /START command must be used to reestablish the connection.

Examples

The following is an example of the /START SUBSYS command:

Entry ET:
```
/START SUBSYS ABC
```

Response ET:
```
DFS058I START COMMAND COMPLETED
```

Explanation: IMS has established a connection to the requested subsystem. It is likely that an external subsystem (not CCTL) connection message will be received at this time. If this is not the case, the /DISPLAY command can be used.
/START SURV command

Use the /START SURV command in an XRF environment to start the operation of the IMS surveillance function.

Subsections:
- “Environment”
- “Syntax”
- “Usage notes”

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 292. Valid environments for the /START SURV command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/START SURV</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
/START SURV
```

Usage notes

When surveillance is on for a function, potential failures of the active system are detected. Based on information from surveillance, the alternate system either requests a takeover or informs the operator of the potential failure. The following are the surveillance functions to be started:

- **ALL**: Same as specifying LNK, RDS, and LOG.
- **LNK**: ISC link.
- **LOG**: System log.
- **RDS**: Restart data set.

The surveillance function is generally started during IMS system definition by using the /START SURVEILLANCE control statement. **ALL** is the default.

/START THREAD command

Use the /START THREAD command to specify the set of message processing region JCL to be passed to z/OS. If no member name is specified, the default member name is used.

Subsections:
- “Environment” on page 768
Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 293. Valid environments for the /START THREAD command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/START THREAD</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>THREAD</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Syntax

Use the /START TMEM command to cause IMS to send an Open Transaction Manager Access (OTMA) command to OTMA clients to request that input resume for the specified transaction membername. IMS then resumes sending output to the OTMA client.

Usage notes

The /START THREAD command is used only for DEDB utility regions. BMP regions are started by JCL. CCTL threads are started automatically at connection: first to the MINTHREAD value, and later (on demand) to MAXTHREAD value.

/START TMEM command

Use the /START TMEM command to cause IMS to send an Open Transaction Manager Access (OTMA) command to OTMA clients to request that input resume for the specified transaction membername. IMS then resumes sending output to the OTMA client.
Syntax

```
/START
/STA
/TMEM
 tmembrename
 A
 ALL
 INPUT—yyyy
```

A:

```
TPIPE
 ALL
 tpipename
 120
 TIMEOUT
 xx
 INPUT
 5000
 yyyy
```

Keywords

The following keywords are valid for the /START TMEM command:

**INPUT**

Specifies the maximum number of concurrent input messages from the OTMA member. OTMA monitors the growth of the input messages from the member. A DFS1988W warning message is sent to the system console to indicate that the input messages reached 80% of the limit and the message is issued every 5% thereafter. When the maximum is reached, a DFS1989E error message is sent to the console. Any subsequent OTMA input message from this member will be rejected with the OTMA sense code X’30’.

When the number of input messages (transaction instance blocks (YTIBs)) reaches the maximum, the /DISPLAY command shows FLOOD status under the user-status column. FLOOD status is relieved when the input messages are processed and recede to 50% or less of the maximum value or a /START TMEMBER INPUT command is issued with a higher maximum value specified.

The input value is a 1- to 5-digit decimal integer. Valid values are 200 - 65000 or 0. If the value is 1 - 200, it is treated as 200. If the value is over 65000, a value of 65000 is used. If the value is 0, OTMA deactivates the message flood detection.

If this keyword is specified with the ALL keyword, the following is true:

- The value can be one- to five-digit decimal integer 0 - 99999. If the value is 1 - 99999, it indicates the maximum number of input messages from all the OTMA members that can be waiting at the same time to be processed. To avoid too many OTMA unprocessed or waiting messages or TIBs in the system, this value is used as a global flood threshold to protect IMS from getting storage-related abends. A non-zero value activates the global flood control for OTMA for the system. If you specify a value of 0, OTMA deactivates the global flood monitoring and control. If the value is 1 - 200, it is treated as 200.

- When a non-zero global flood limit is specified, it activates the global flood control. When the global flood limit is reached, OTMA rejects all the new input transactions from all the members, including synchronous program switch requests from the internal OTMA member DFSYICAL.
DFS3429E error message is sent to the console and MTO. A protocol message with the command type set to X'3C' is sent to all the OTMA members with “unavailable for work” status. When OTMA members receive this new status, they can choose to take corrective action when this degraded condition occurs. One example would be the rerouting of all the new transaction requests from one IMS system to another. The /DISPLAY OTMA command of this degraded system also shows “SERVER-FLOOD” in the user status of the OTMA server member.

- The DFS3428W warning message is issued to IMS MTO and system console along with OTMA protocol messages that reflect a warning status to all the OTMA member clients when the global flood limit has reached 80%. And this message is issued every 5% thereafter until the global message limit is reached. This global flood status is relieved when the input messages in the system are processed and the number of total transaction instance blocks (TIB) in the system is reduced to 50% of the global limit or less. A DFS0793I is sent to IMS MTO and system console along with OTMA protocol messages that reflect a good status to all the OTMA members.

- When this command is not issued and there is no global limit in OTMA client descriptor, the default global flood processing takes place in the system and the default global flood limit is set to 10000 to protect the system. The default action points of the OTMA global flood process issue:
  - Warning message DFS3428W starting at 80% of the flood limit and every 5% thereafter.
  - Warning message DFS4388W when 100% is reached.
  - Relief message DFS0793I when the flood is relieved and back to 50%.

  Also, the OTMA protocol message that reflect a warning or good status is sent to all the OTMA members.

TPIPE

When it is used with the /START command, TPIPE causes IMS to send an OTMA command to its OTMA clients to request that the input resume for the specified transaction pipe. IMS then resumes sending output to the OTMA client. If the member specified is a super member, output is resumed for the super member’s transaction pipe, but no OTMA command is sent. If the member specified is a regular member whose hold queue output is managed by a super member, IMS resumes output for the specified member’s transaction pipe and it also resumes output for the super member’s transaction pipe. An OTMA command is sent to the regular member’s OTMA client. Output is only resumed on the IMS that processes the command. If output cannot be resumed for both the regular member’s transaction pipe and the super member’s transaction pipe, it is not resumed for either transaction pipe. The DFS058I COMMAND COMPLETED EXCEPT message is issued with the name of the regular member for which output could not be resumed.

Restriction: If a transaction pipe has a resynchronization pending status, IMS does not start the transaction pipe.

TIMEOUT

Sets the timeout interval for acknowledgments to commit-then-send (CM0) and send-then-commit (CM1) output messages.

After OTMA delivers a send-then-commit output message that used synclevel=confirm or synclevel=syncpt, OTMA expects an acknowledge
(ACK or NAK) message from the OTMA client, such as IMS Connect. If the acknowledge message is not received by IMS within the specified timeout value, OTMA will take the timeout action to abort the transaction. This prevents IMS dependent region from getting the WAITSYNPT or WAIT/RRS status for long time.

The TIMEOUT keyword also applies to acknowledgments for transaction messages sent to a remote IMS system by way of an IMS-to-IMS TCP/IP connection. When the timeout interval expires, the unacknowledged message is rerouted to the default timeout queue, DFS$$TOQ.

The timeout interval must be 0 - 255 seconds, with a default value of 120 seconds. When 0 is specified, the timeout function is disabled.

Examples

The following are examples of the /START TMEM command:

Example 1 for /START TMEM command

Entry ET:
/START TMEMBER CLIENT1 TPIPE TPIPESY

Response ET:
DFS058I 15:39:40 START COMMAND COMPLETED SYS3
DFS996I *IMS READY* SYS3

Example 2 for /START TMEM command

Entry ET:
/START TMEMBER HWS1 INPUT 2000

Response ET:
DFS058I START COMMAND COMPLETED

Explanation: The maximum concurrent input message count for the OTMA member HWS1 has been set to 2000. Based on the number specified, IMS OTMA will monitor the growth of the input messages to prevent a message flood condition.

/START TRAN command

Use the /START TRAN command to specify the transactions to be started.

Subsections:

- “Environment”
- “Syntax” on page 772
- “Usage notes” on page 772
- “Equivalent IMS type-2 commands” on page 773
- “Examples” on page 773

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.
Table 295. Valid environments for the /START TRAN command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/START</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFFINITY</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CLASS</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TRAN</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
/START TRAN

transname
transname*

AFFINITY

CLASS cls#

ALL

```

Usage notes

The /START TRAN ALL CLASS cls# command causes all transactions associated with the specified class to be started.

If a transaction that has messages on the suspend queue is started, the suspend queue associated with the transaction is automatically transferred to the normal queue.

The TRAN keyword can be generic where the generic parameter specifies transactions that already exist.

You can use the /START TRAN transname AFFINITY command to start a local affinity transaction queue in a shared-queues environment. Starting a local affinity transaction queue in a shared-queues environment causes this IMS system to be notified when transaction messages that have an affinity name of this IMS system’s IMSID or RSENAMEx (XRF) appended to the transaction name are on the shared queues for processing. This affinity registration is in addition to the normal transaction registration (registration with the transaction name appended with blanks).

When a transaction is started with affinity, the affinity registration status cannot be removed and the QUERY TRAN command always shows the affinity status. The following /STOP TRAN transname command therefore stops both normal and affinity registration. The subsequent /START TRAN transname command (with or without the AFFINITY keyword) always performs both normal and affinity registration.

The affinity status is lost across IMS cold starts. If the DFSMSCE0 user message routing exit is used to set local affinity for an input transaction message in a shared-queues environment and the IMS control region is stopped and
subsequently cold started, you must issue the /START TRAN AFFINITY command or the UPDATE TRAN NAME(tranname) START(SCHD) OPTION(AFFIN) command. These commands register the transaction with affinity status so that the messages will be processed.

At the end of cold start processing, when shared-queues informs are done, the inform for the transaction is done without affinity to the local IMSID. Because local affinity is set by the exit and is not part of the transaction definition, it is not maintained across a cold start. As a result, the message with local affinity cannot be scheduled. The /START TRAN tranname AFFINITY command issues an inform for the transaction with affinity to the local IMSID.

The /START TRAN tranname AFFINITY command does not support generic transaction names of ALL in the parameter.

In a shared-queues environment, the /START TRAN command will result in IMS registering interest for the transaction, which indicates that the transaction can be scheduled at the IMS. A /START TRAN ALL command does not register transactions that are already registered to CQS.

The /START TRAN command is not allowed for a transaction that is marked bad with the NOTINIT-15-REPOCHGLIST reason code because the IMS change list processing is not complete for the transaction or the change list processing failed.

**Equivalent IMS type-2 commands**

The following table shows variations of the /START TRAN command and the IMS type-2 commands that perform similar functions.

<table>
<thead>
<tr>
<th>Task</th>
<th>/START TRAN command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starts a transaction.</td>
<td>/START TRAN tranname</td>
<td>UPDATE TRAN NAME(tranname) START(Q,SCHD,SUSPEND)</td>
</tr>
</tbody>
</table>

**Examples**

The following are examples of the /START TRAN command:

**Example 1 for /START TRAN command**

Entry ET:
/START TRAN ALL CLASS 6

Response ET:
DF5058I START COMMAND COMPLETED

Explanation: All transactions associated with class 6 are started.

**Example 2 for /START TRAN command**

Entry ET:
/START TRAN TRNNAME, SEED

Response ET:
Explanation: Transactions PIT and SEED are started.

**Example 3 for /START TRAN command**

Entry ET:
/START TRAN APOL12 AFFINITY

Response ET:
DFS058I START COMMAND COMPLETED

Explanation: Transaction APOL12 is started with affinity.

Related reference:
“UPDATE TRAN command” on page 1183

/START TRKARCH command

Use the /START TRKARCH command to indicate that the RSR tracking subsystem is to initiate a request to start the automatic archiving of the tracking log data sets.

This keyword allows the user to start automatic archive after it has been terminated following archive data set full conditions.

Successful completion of the syntax checking of the /START TRKARCH command results in the DFS058I START COMMAND COMPLETED message, although processing of the command continues asynchronously.

Subsections:
• “Environment”
• “Syntax”

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

**Table 297. Valid environments for the /START TRKARCH command and keywords**

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/START</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TRKARCH</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

**Syntax**

```
/START TRKARCH
```
/START USER command

Without the NODE keyword, USER specifies the ISC user or the dynamic user to start. The USER parameter can be generic where the generic parameter specifies users that already exist.

Subsections:
- "Environment"
- "Syntax"
- "Usage notes"

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 298. Valid environments for the /START USER command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/START</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>USER</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
/START

/START USER username

/START USER ALL

/START USER username
```

Usage notes

The /START USER command applies only to users that are stopped and signed off. The /START USER command also terminates any active conversations before starting the user.

The /START USER command removes the user from MFSTEST mode and exclusive mode. If the USER structure is temporary and the status conditions that caused the creation of the structure have been reset, the temporary user is deleted at the next simple checkpoint.

For ISC users, the user is started and made available for allocation.

For dynamic users, the user is started and made available for signon. If the dynamic user was in either Fast Path input or output response mode, and the Fast Path input or output response mode is reset by the /STOP USER and /START USER commands issued in sequence, IMS writes a X'67D0' Subtype 11 trace log record.

The /START USER command no longer removes the user from test mode, and preset mode. MFSTEST mode can now be associated with the node and with the user. MFSTEST mode (at the user level) and exclusive mode are still reset. The other statuses are no longer significant and therefore not carried across signon or restart.
If global resource information is not kept in Resource Manager, the /START USER command allows a user to signon to the local IMS. If global resource information is kept in Resource Manager, the /START USER command allows a user to signon to any IMS in the IMSplex.

If a user in conversational mode receives the message, DFS058I START COMMAND COMPLETED EXCEPT when a /START USER command is issued, it is possible that the conversation is INUSE by some other process. This is a temporary condition; you can reissue the /START USER command.

**Examples**

The following is an example of the /START USER command:

**Entry ET:**

/DISPLAY USER IMSUS01 IMSUS02

**Response ET:**

```
USER ENQCT DEQCT QCT
IMSUS01 0 0 0 STOPPED
IMSUS02 0 0 0 STOPPED
91091/111727
```

**Entry ET:**

R 38,/START USER IMSUS01

**Response ET:**

DFS058I 11:19:05 START COMMAND COMPLETED

**Entry ET:**

/DISPLAY USER IMSUS01 IMSUS02

**Response ET:**

```
USER ENQCT DEQCT QCT
IMSUS01 0 0 0
IMSUS02 0 0 0 STOPPED
91091/113038
```

**Entry ET:**

/START USER APPLE*

**Response ET:**

DFS3633 11:19:35 GENERIC PARAMETER RESOURCES NOT FOUND, NO ACTION TAKEN

**/START VGR command**

The /START VGR command causes the IMS subsystem to join a VTAM generic resource group. The command is rejected if the VTAM ACB is closed (usually the result of a /STOP DC command).

Subsections:

- “Environment” on page 777
- “Syntax” on page 777
- “Keywords” on page 777
Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 299. Valid environments for the /START VGR command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/START VGR</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>GRSNAME</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>VGR</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
/START VGR

GRSNAME generic_resource_name
```

Keywords

The following keywords are valid for the /START VGR command:

The GRSNAME keyword allows you to specify the generic resource name if the IMS subsystem does not have one. The IMS subsystem already has a generic resource name if it has the GRSNAME= keyword specified on its EXEC statement.

The GRSNAME is ignored if GRSNAME= was specified on the EXEC statement, or if it was already specified on a previous /START VGRS command. If GRSNAME= was not specified on the EXEC statement or any previous /START VGRS command, then all VTAM sessions must be terminated prior to executing the /START command with GRSNAME specified.

/START WADS command

The /START WADS command indicates that either a previously stopped WADS is to be started or that IMS is to add a new WADS to the pool of available WADSs.

Subsections:

- “Environment”
- “Syntax” on page 778
- “Keywords” on page 778
- “Usage notes” on page 778

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 300. Valid environments for the /START WADS command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/START WADS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>WADS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Syntax

```plaintext
/START WADS wads#
/STA
```

Keywords

The following keywords are valid for the /START WADS command:

- **wads#**
  - If a new WADS is being added, `wads#` is a WADS identifier that is defined by the DFSMDA macro specification. `wads#` must be 0-9.

Usage notes

When using the /START WADS command, a WADS must be defined in the DFSMDA macro, even if it is allocated in JCL.

/START XRCTRACK command

The /START XRCTRACK command results in calls to the log router to initiate or terminate XRC tracking. It is only valid on a tracking IMS system.

Subsections:
- “Environment”
- “Syntax”

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/START XRCTRACK</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```plaintext
/START XRCTRACK
/STA
```
Chapter 24. /STOP commands

The /STOP commands stop the sending, receiving, or queuing of output messages to a particular communication line, terminal, user, or logical path.

You can also use these commands to stop the scheduling or queuing of messages containing a specific transaction code, the execution of a specific program, or the use of a given database.

For VTAM nodes, the currently connected terminal is disconnected. All further logons are rejected until the node is the subject of a /START or /RSTART command.

The /STOP command validity checks all parameters entered by the terminal operator. If an error is detected on parameters that are independent of one another, only the invalid parameters are indicated as being in error and the /STOP command processes the rest of the parameters.

The /STOP command can be used to reset conditions previously established by the /START, /RSTART, /PSTOP, /PURGE, or /MONITOR commands.

These commands can be issued to an IMSplex using the Batch SPOC utility.

- "/STOP ADS command" on page 780
- "/STOP APPC command" on page 781
- "/STOP AREA command" on page 785
- "/STOP AUTOARCH command" on page 787
- "/STOP BACKUP command" on page 785
- "/STOP CLASS command" on page 786
- "/STOP DATAGRP command" on page 787
- "/STOP DB command" on page 788
- "/STOP DC command" on page 792
- "/STOP DESC command" on page 793
- "/STOP LINE command" on page 794
- "/STOP LTERM command" on page 795
- "/STOP LUNAME command" on page 797
- "/STOP MADIOT command" on page 798
- "/STOP MSNAME command" on page 799
- "/STOP NODE command" on page 800
- "/STOP OLDS command" on page 802
- "/STOP OTMA command" on page 803
- "/STOP PGM command" on page 804
- "/STOP REGION command" on page 805
- "/STOP RTC command" on page 813
- "/STOP SB command" on page 814
- "/STOP SERVGRP command" on page 815
- "/STOP SLDSREAD command" on page 815
- "/STOP SUBSYS command" on page 816
- "/STOP SURV command" on page 818
- "/STOP THREAD command" on page 818
- "/STOP TMEM command" on page 821
- "/STOP TRAN command" on page 823
- "/STOP USER command" on page 825
- "/STOP VGR command" on page 827
- "/STOP WADS command" on page 828
- "/STOP XRCTRACK command" on page 828

/STOP ADS command

The /STOP ADS command specifies the area data set to be closed and deallocated.
The AREA is not stopped as long as at least one data set in the AREA remains open. /STOP ADS is rejected if the specified ADS is the last data set available in the AREA.

Subsections:
- “Environment”
- “Syntax”
- “Usage notes”

**Environment**

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

*Table 302. Valid environments for the /STOP ADS command and keywords*

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/STOP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ADS</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

**Syntax**

```
/stp ads ddname
```

**Usage notes**

Although the /STOP ADS command has no option of LOCAL/GLOBAL, if the DEDB area is shared at the block level, the response is the same as if GLOBAL were specified.

The output of the /STOP ADS command is changed when the command is entered through the OM API. In this case, the DFS058I message is not returned to OM. The command response returned to OM contains one or more of the following messages as appropriate.

Fast Path messages: DFS140I, DFS0488I, DFS0666I, DFS1407I, DFS3720I, DFS3721I, DFS3771I

**/STOP APPC command**

The /STOP APPC command instructs IMS to stop scheduling transactions from LU 6.2 devices. The /STOP APPC command can be used in a transient stopped state. It causes remote LU 6.2 devices to receive a sense code of TP_Not_Available_NoRetry. This is likely to lead to further attempts to access IMS.

Subsections:
- “Environment” on page 781
- “Syntax” on page 781
- “Keywords” on page 781
- “Usage notes” on page 781
Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 303. Valid environments for the /STOP APPC command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/STOP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>APPC</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CANCEL</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

►► /STOP APPC CANCEL ◄◄

Keywords

The following keyword is valid for the /STOP APPC command:

CANCEL

Causes APPC/MVS to initiate a shutdown request when a long stopped period is anticipated, for example, at the end of the day's processing. All remote LU 6.2 devices receive a sense code of TP_Not_Available_No_Retry. The remote LU 6.2 devices stop trying to access this application.

The /STOP APPC CANCEL command sets the desired status to CANCEL according to responses from APPC/MVS. If the desired status is DISABLED, then IMS rejects /STOP APPC CANCEL when it is entered.

Note: The sense code returned to the LU 6.2 remote device for an incoming ATTACH to a stopped APPC/IMS system is determined by APPC/MVS, and it might differ from release to release. In general, the remote LU 6.2 application should wait for a period of time after rejection before any attempts to reestablish a session with IMS.

Usage notes

The /STOP APPC command sets the desired status to STOPPED. The current status is set to STOPPED or FAILED according to the response from APPC/MVS.

/STOP AREA command

The /STOP AREA command specifies that the data sets associated with this area are closed.

Subsections:
- “Environment” on page 782
- “Syntax” on page 782
- “Keywords” on page 782
- “Usage notes” on page 784
- “Equivalent IMS type-2 commands” on page 784
- “Examples” on page 784
Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 304. Valid environments for the /STOP AREA command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/STOP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>AREA</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>GLOBAL</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>LOCAL</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NOPFA</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Syntax

```
/STOP AREA areaname
```

Keywords

The following keywords are valid for the /STOP AREA command:

GLOBAL

Specifies when an IRLM is active and that the command applies to all subsystems sharing the database or area.

The GLOBAL keyword and the ALL parameter are mutually exclusive. If both keywords are specified, the command is rejected. The GLOBAL keyword requires that IRLM be active. If IRLM is not active, the command is rejected. DBRC is informed that the database or area has been stopped and will update the RECON data set to indicate the stopped condition.

The GLOBAL command is processed by the IMS system where the command was initiated. This system will process the command locally and then request IRLM NOTIFY to route and process the command on sharing IMS systems.

If global DB or AREA status is maintained, the global status maintained in RM is also updated. The global status is set to STOPPED.

If the command is entered from OM API, the global status is updated by the command master IMS. If the command is not entered from OM API, the IMS that initiated the GLOBAL command updates the global status in RM.

You must specify if the global area status must be maintained in RM. You can specify this during IMS initialization in either the DFSDFxxx or DFSCGxxx PROCLIB member with PLEXPARM(GSTSAREA(Y)). You can also change it dynamically using the UPDATE IMS SET(PLEXPARM(GSTSAREA(Y))) command. If you do not specify that the global area status is to be maintained, then the GLOBAL keyword is processed as in prior releases, and the global status is not updated.
If global status in RM is successfully updated, message DFS0988I for RSRC_TYPE=AREA is issued. If global status is not successfully updated, message DFS3308I is issued, indicating RM failure, and no command response lines are generated. Any RM error is traced to the OCMID trace table. Users can issue a QRY_DB_STATUS(GLOBAL) command to obtain the global status of the resources in RM.

The X'594C' log record for DEDB areas includes both global status and global command time stamp.

The GLOBAL keyword is not supported on an RSR tracking subsystem.

If the GLOBAL keyword on a command is entered from an OM API, the command should only be routed to one IMS system in the IMSplex. The IMS that receives the command from OM will make DBRC calls to update the RECON with GLOBAL status. It will also request IRLM NOTIFY to route and process the command on sharing IMS systems, and then process the command locally.

Messages produced on the NOTIFIED systems will appear only on the system console and will not be routed back to the OM API which originally entered the command.

If multiple IMS systems have been explicitly specified in the route list, the master IMS system will process the command as described previously. However, the non-master IMS systems, to which OM routes the command, will reject the command with the following return and reason code listed in the following table:

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000004'</td>
<td>X'00001000'</td>
<td>The command contained the GLOBAL keyword and was routed to more than one IMS system in the IMSplex. The non-master IMS systems will reject this command when OM routes the command to them. The master IMS system will process this command and use IRLM NOTIFY to route and process the command on the non-master IMS systems. See the discussion under the GLOBAL keyword.</td>
</tr>
</tbody>
</table>

**LOCAL**

Specifies that the command only applies to the subsystem in which the command is entered. This command does not affect any other subsystem sharing the database or area. LOCAL is the default.

**NOPFA**

Specifies that DBRC is not notified that the database or area has changed status. You can use this keyword when you need to authorize the database for use after it is offline, for example, for offline utilities. By using this keyword, DBRC does not prevent further authorizations for the database or area. NOPFA can be specified only with the GLOBAL keyword.

**Recommendation:** Before restarting the database or area, issue this command without the NOPFA keyword to inform DBRC of the change in status for the database or area.
Usage notes

Use the /DISPLAY AREA command to determine if the area is stopped or closed. If the area is stopped, the area must be made available using the /START AREA command. In z/OS, all the data sets are deallocated. If the system processes a /STOP AREA command during HSSP processing, the area will be released after the current commit processing completes. Any image copy option in effect at /STOP time can affect the continued system operation. All virtual storage option (VSO) DEDB areas that are being stopped and that are in a z/OS data space are removed from the data space and updates are written out to DASD.

The output of the /STOP AREA command is changed when the command is entered through the OM API. In this case, the DFS058I message is not returned to OM. For commands that specify GLOBAL, only the command master returns the asynchronous messages to OM. When a command is processed with the LOCAL keyword, all IMS systems are able to return the asynchronous messages to OM. The command response returned to OM contains one or more of the following messages as appropriate.

Fast Path messages: DFS140I, DFS170I, DFS0488I, DFS0666I, DFS1407I, DFS306I, DFS3342I, DFS3720I, DFS3824I

/STOP AREA is not supported on an RSR tracking subsystem.

While the database is being quiesced, this command cannot be processed successfully.

Equivalent IMS type-2 commands

The following table shows variations of the /STOP AREA command and the IMS type-2 commands that perform similar functions.

<table>
<thead>
<tr>
<th>Task</th>
<th>/STOP AREA command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stops an area.</td>
<td>/STOP AREA areaname</td>
<td>UPDATE AREA NAME(areaname)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STOP(SCHD)</td>
</tr>
</tbody>
</table>

Examples

The following is an example of the /STOP AREA command:

Entry ET:
/STOP AREA DB1AREA0 DB1AREA1

Response ET:
DFS058I STOP COMMAND IN PROGRESS
DFS0488I STOP COMMAND COMPLETED. AREA=DB1AREA0
DFS0488I STOP COMMAND COMPLETED. AREA=DB1AREA1

Explanation: The DEDB areas DB1AREA0 and DB1AREA1 are stopped for processing.

Related concepts:
Maintaining global information for databases, DEDB areas, and transactions (System Administration)
/STOP AUTOARCH command

The /STOP AUTOARCH command specifies that automatic archiving is to be stopped.

Subsections:
- “Environment”
- “Syntax”
- “Examples”

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/STOP AUTOARCH</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
/STOP AUTOARCH
```

Examples

The following is an example of the /STOP AUTOARCH command:

Entry ET:
/STOP AUTOARCH

Response ET:
DFS058I STOP COMMAND COMPLETED

Explanation: Automatic archiving is stopped.

/STOP BACKUP command

The /STOP BACKUP command terminates the alternate system in an XRF environment. This command must be entered on the alternate system. The ABDUMP keyword results in a dump of the alternate system.

Subsections:
- “Environment” on page 786
- “Syntax” on page 786
Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 308. Valid environments for the /STOP BACKUP command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/STOP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ABDUMP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>BACKUP</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

►► /STOP BACKUP ABDUMP

/STOP CLASS command

The /STOP CLASS command prevents further scheduling of application programs for the designated class.

Subsections:
- "Environment"
- "Syntax"
- "Usage notes"
- "Examples" on page 787

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 309. Valid environments for the /STOP CLASS command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/STOP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CLASS</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

►► /STOP CLASS cls#

Usage notes

All regions currently handling transactions assigned to the specific class are allowed to run until the limit count is reached (MPPs) or the input queue contains no more messages (BMPs and MPPs).
The region is not allowed to wait for the next message (wait-for-input mode). Instead a QC status code (no more messages) is returned to the application (MPPs).

If the region is already scheduled and waiting for the next message (wait-for-input mode) when the command is entered, the region is notified and a QC status code is returned to the application (MPPs).

A batch message processing region (BMP) scheduled against wait-for-input (WFI) transactions returns a QC status code (no more messages) for /PSTOP REGION, /DBD, /DBR, or /STA commands only.

**Examples**

The following is an example of the /STOP CLASS command:

Entry ET:
/STOP CLASS 3

Response ET:
DFS058I STOP COMMAND COMPLETED

Explanation: No further scheduling of application programs for class 3 transactions occurs. All message processing programs currently handling class 3 transactions are allowed to run until the processing limit count is reached or the input queue contains no more messages.

**/STOP DATAGRP command**

The /STOP DATAGRP command specifies groups of DL/I databases, Fast Path DEDBs, and Fast Path areas to be stopped.

Data groups are logical groupings of databases and areas; they enable simplified command processing for databases and areas. You define a data group in the RECON data set by using the INIT.DBDSGRP command with parameters GRPNAME and DBGRP. DATAGRP is not valid on RSR tracking subsystems.

Subsections:
- “Environment”
- “Syntax” on page 788
- “Usage notes” on page 788
- “Equivalent IMS type-2 commands” on page 788

**Environment**

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/STOP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DATAGRP</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>LOCAL</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
### Syntax

```
/STOP DATAGRPI datagroupname LOCAL
```

### Usage notes

During `/STOP DATAGRPI` processing, all virtual storage option (VSO) DEDBs that are in a z/OS data space are removed from the data space and updates are written out to DASD.

**Recommendation:** Although you can use DBDS groups as well as DB groups for this command, you should use DB groups whenever possible to eliminate the overhead of converting the DBDS group to a DB group.

### Equivalent IMS type-2 commands

The following table shows variations of the `/STOP DATAGRPI` command and the IMS type-2 commands that perform similar functions.

<table>
<thead>
<tr>
<th>Task</th>
<th><code>/STOP DATAGRPI</code> command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stops a data group.</td>
<td><code>/STOP DATAGRPI datagrpname</code></td>
<td>UPDATE DATAGRPI NAME(datagrpname) STOP(SCHD)</td>
</tr>
</tbody>
</table>

**Related reference:**

“UPDATE DATAGRPI command” on page 919

### `/STOP DB` command

The `/STOP DB` command prevents subsequently scheduled programs from accessing the database, without affecting currently scheduled programs or closing the database.

### Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>/STOP</code></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DB</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>GLOBAL</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Table 312. Valid environments for the /STOP DB command and keywords  (continued)

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCAL</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NOPFA</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Syntax

```
/STOP DB dbname LOCAL
```

Usage notes

If the database is a DEDB or MSDB, programs using the database will not be scheduled. For other databases, the programs will still be scheduled but a call against the database will result in either a 3303 pseudoabend, or a BA status code, if the INIT call was issued.

The /STOP DB command deletes the randomizer routine from memory.

If the database is stopped after the region is scheduled, the region is not allowed to wait for the next message (wait-for-input mode). If there are no more messages available for the region to process, a QC status (no more messages) will be returned to the application (MPPs). If the region is already scheduled and waiting for the next message (wait-for-input mode) when the command is entered, the region is notified and a QC status code is returned to the application (MPPs).

A batch message processing region (BMP) scheduled against wait-for-input (WFI) transactions returns a QC status code (no more messages) for /PSTOP REGION, /DBD, /DBR, or /STA commands only.

In an IFP region, the /STOP command has no effect until the region is started again. Issuing a /STOP DB command with the ACCESS parameter is not valid for an MSBD.

The GLOBAL command is processed by the IMS system where the command was initiated. This system will process the command locally and then request IRLM NOTIFY to route and process the command on sharing IMS systems.

If global DB status is maintained, the global status maintained in RM is also updated. The global status is set to STOSCHD.

If the command is entered from OM API, the global status is updated by the command master IMS. If the command is not entered from OM API, the IMS that initiated the GLOBAL command updates the global status in RM.

If global status in RM is successfully updated, message DFS0988I for RSRCTYPE=DB is issued. If global status is not successfully updated, message DFS3308I is issued, indicating RM failure, and no command response lines are
generated. Any RM error is traced to the OCMD trace table. Users can issue a QRY DB STATUS(GLOBAL) command to obtain the global status of the resources in RM.

The X'4C' log record for databases is updated to include both global status and global command time stamp.

For DBCTL, when CCTL schedules a PSB, the DBCTL thread SCHED request defines the thread as LONG or SHORT. If the database is currently scheduled to a LONG thread, the command is rejected; otherwise, the thread is allowed to complete before the database is acted upon. This results in either a commit point or transaction termination.

The output of the /START DB command is changed when the command is entered through the OM API. In this case, the DFS058I message is not returned to OM. The command response returned to OM contains one or more of the following messages as appropriate to the database type and the command completion.
- Full-function database messages: DFS132, DFS160, DFS216, DFS0488I, DFS1407, DFS2026, DFS3318I, DFS3466I
- Fast Path database messages: No unique messages are returned.

See the AREA keyword for a description of the LOCAL and NOPFA keywords.

When you enter this command, the database name can be an existing non-HALDB, a HALDB master, or a HALDB partition. A command against a HALDB partition operates exactly like a command against a non-HALDB except for the /START DB command and the UPDATE DB START(ACCESS) command. A HALDB partition is not allocated during the command unless it was previously authorized but not allocated, the OPEN keyword was specified, or the partition has EEQEs. The partition is allocated at first reference.

The HALDB partition reflects conditions such as STOPPED (shown as STOACC or STOSCHD or STOUPDS on QUERY DB), LOCKED, or NOTOPEN. When a HALDB partition is stopped, it must be explicitly started again. The type-1 commands with the keyword ALL, type-2 commands with NAME(*), and commands against a HALDB master do not change the STOPPED (shown as STOACC, STOSCHD or STOUPDS on QUERY DB) and LOCKED indicators in each HALDB partition.

When the command target is a HALDB master, processing acts on all HALDB partitions. For example, if the IMS command is /DBR on the HALDB master, all of the HALDB partitions are closed, deallocated, and deauthorized. On a /DISPLAY DB command, only the HALDB master displays STOPPED (each HALDB partition does not display STOPPED unless it was itself stopped). If a /DBR command was issued against a HALDB master, the display output of a /DISPLAY DB command shows the HALDB master (as STOPPED), but does not display the status of the partitions.

Each partition inherits the access limitations of its HALDB master. If the /DBD command is issued against a HALDB master, all of its partitions close. A subsequent reference to any of the partitions results in the partition opening for input, although the partition’s access might be UPDATE or EXCLUSIVE. The DBRC authorization state reflects the limited access.

Restrictions:
1. The /STOP DB command is not supported on an RSR tracking subsystem.
2. The /STOP DB command cannot be processed against a HALDB partition on an IMS system while HALDB Online Reorganization (OLR) is running against that partition on the same IMS system.
3. While the database is being quiesced, this command cannot be processed successfully.

The /STOP DB command is not allowed for a database that is marked bad with the NOTINIT-48-REPOCHGLIST reason code because the IMS change list processing is not complete for the database or the change list processing failed.

**Equivalent IMS type-2 commands**

The following table shows variations of the /STOP DB command and the IMS type-2 commands that perform similar functions.

<table>
<thead>
<tr>
<th>Task</th>
<th>/STOP DB command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stops a database.</td>
<td>/STOP DB dbname</td>
<td>UPDATE DB NAME(dbname) STOP(SCHD)</td>
</tr>
</tbody>
</table>

**Examples**

The following are examples of the /STOP DB command:

**Example 1 for /STOP DB command**

**Entry ET:**

/STOP DATABASE TREEFARM

**Response ET:**

DFS058I STOP COMMAND IN PROGRESS  
DFS0488I STOP COMMAND COMPLETED. DBN=TREEFARM RC=0

**Explanation:** Database TREEFARM is stopped.

**Example 2 for /STOP DB command**

**TSO SPOC input:**

STO DB BANKATMS BANKTERM BANKLDGR BE3ORDER

**TSO SPOC output:**

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SYS3</td>
<td>DFS0488I STO COMMAND</td>
<td>STO COMMAND COMPLETED.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DBN= BANKATMS RC= 0</td>
</tr>
<tr>
<td>SYS3</td>
<td>DFS0488I STO COMMAND</td>
<td>STO COMMAND COMPLETED.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DBN= BANKTERM RC= 0</td>
</tr>
<tr>
<td>SYS3</td>
<td>DFS0488I STO COMMAND</td>
<td>STO COMMAND COMPLETED.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DBN= BANKLDGR RC= 0</td>
</tr>
<tr>
<td>SYS3</td>
<td>DFS0488I STO COMMAND</td>
<td>STO COMMAND COMPLETED.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DBN= BE3ORDER RC= 0</td>
</tr>
<tr>
<td>IMS3</td>
<td>DFS0488I STO COMMAND</td>
<td>STO COMMAND COMPLETED.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DBN= BANKATMS RC= 0</td>
</tr>
<tr>
<td>IMS3</td>
<td>DFS0488I STO COMMAND</td>
<td>STO COMMAND COMPLETED.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DBN= BANKTERM RC= 0</td>
</tr>
<tr>
<td>IMS3</td>
<td>DFS0488I STO COMMAND</td>
<td>STO COMMAND COMPLETED.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DBN= BANKLDGR RC= 0</td>
</tr>
<tr>
<td>IMS3</td>
<td>DFS0488I STO COMMAND</td>
<td>STO COMMAND COMPLETED.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DBN= BE3ORDER RC= 0</td>
</tr>
</tbody>
</table>

**OM API input:**

CMD ( STO DB BANKATMS BANKTERM BANKLDGR BE3ORDER )

**OM API output:**
The /STOP DC command prohibits you from logging on to VTAM and ensures that all VTAM node sessions have terminated before IMS issues the DFS2111I message, which says the ACB is closed.

Subsections:
- "Environment" on page 793
- "Syntax" on page 793
"Usage notes"

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 314. Valid environments for the /STOP DC command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/STOP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DC</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

The /STOP DC command can be used either before or after the /CLSDST NODE or /STOP NODE command, the only difference being that logons can still occur if the /STOP DC command is not entered. However, the command cannot start or complete processing if the VTAM ACBs (APPLID and MNPS) are not open or the VTAM nodes remain active. If the nodes are active, the /CLSDST NODE or /STOP NODE command must be issued to close the nodes; in some cases, a /IDLE NODE command can be issued to cause an OS VTAM VARY command to be issued against any nodes that remain connected.

/STOP DESC command

The /STOP DESC command defines the LU62 descriptors from DFS62DTx PROCLIB member to IMS.

Usage notes

There are two ACBs if MNPS for XRF is used. If you use XRF with MNPS, both the APPLID and MNPS ACB are closed. If you are not using XRF or using XRF without MNPS, there is only one ACB, the VTAM ACB, which is closed. APPLID ACB is the same as VTAM ACB.

The /STOP DC command can be used either before or after the /CLSDST NODE or /STOP NODE command, the only difference being that logons can still occur if the /STOP DC command is not entered. However, the command cannot start or complete processing if the VTAM ACBs (APPLID and MNPS) are not open or the VTAM nodes remain active. If the nodes are active, the /CLSDST NODE or /STOP NODE command must be issued to close the nodes; in some cases, a /IDLE NODE command can be issued to cause an OS VTAM VARY command to be issued against any nodes that remain connected.

/STOP DESC command

The /STOP DESC command defines the LU62 descriptors from DFS62DTx PROCLIB member to IMS.

Subsections:
• "Environment"
• "Syntax" on page 794

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 315. Valid environments for the /STOP DESC command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/STOP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DESC</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Syntax

/STOP LINE command

The /STOP LINE command stops message queuing for lines and stops the sending and receiving of messages over the lines. However, lines are not considered stopped unless they are stopped and idle. Use /DISPLAY LINE to verify line status.

Subsections:
- “Environment”
- “Syntax”
- “Usage notes”
- “Examples” on page 795

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 316. Valid environments for the /STOP LINE command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/STOP LINE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PTERM</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Syntax

Usage notes

The /STOP LINE PTERM command ensures that no input messages from any of the specified terminals assigned to the specified lines will be received by IMS after the command is issued.

The /STOP LINE command resets preset mode, test mode, response mode, lock pterm, lock lterm, pstop lterm, and purge lterm because these statuses are not significant and therefore are not kept after a /START LINE or restart.
Examples

The following are examples of the /STOP LINE command:

**Example 1**

Entry ET:
/STOP LINE 4,5,6,7,8,9,10,11

Response ET:
  DFS058I STOP COMMAND COMPLETED

Response RT:
  DFS059I TERMINAL STOPPED

Explanation: Lines 4, 5, 6, 7, 8, 9, 10, and 11 and their associated physical terminals are stopped.

**Example 2**

Entry ET:
/STOP LINE 4 8 900

Response ET:
  DFS058I STOP COMMAND COMPLETED EXCEPT LINE 900

Response RT:
  DFS059I TERMINAL STOPPED

Explanation: Lines 4 and 8 and their associated physical terminals are stopped. 900 is an invalid line number.

**Example 3**

Entry ET:
/STOP LINE 4 PTERM 1, 2

Response ET:
  DFS058I STOP COMMAND COMPLETED

Response RT:
  DFS059I TERMINAL STOPPED

Explanation: Physical terminals 1 and 2 on line 4 are stopped.

/STOP LTERM command

The /STOP LTERM command specifies the LTERM that is to be stopped. The /STOP LTERM command with a logical terminal that is in a QLOCKED state does not reset the QLOCK state, but puts the LTERM in a STOPPED and QLOCKED state.

Subsections:

- "Environment" on page 796
Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 317. Valid environments for the /STOP LTERM command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/STOP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LTERM</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Syntax

```
/STOP LTERM ltermname
/STOP LTERM ltermname*
ALL
```

Usage notes

If IMS internally resets the QLOCK condition, the LTERM remains in a STOPPED state. (QLOCK indicates that the LTERM is locked from sending any further output or from receiving input that can create additional output for the same LTERM until the state is reset by a specific request received on the session.)

The /STOP LTERM command is rejected for remote logical terminals.

The LTERM parameter can be generic where the generic parameter specifies LTERMs that already exist.

When a specific lterm name is specified in the command, IMS creates the lterm if it does not exist and ETO is enabled.

If global resource information is kept in Resource Manager, the /STOP LTERM command stops messages from being queued to the lterm anywhere in the IMSplex and the change is reflected both in Resource Manager and in the local IMS system.

Examples

The following is an example of the /STOP LTERM command:

Entry ET:

/STOP LTERM APPLE, TREE, FRUIT

Response ET:

DFS058I STOP COMMAND COMPLETED

Response RT:
Examination: Logical terminals APPLE, TREE, and FRUIT are stopped.

/STOP LUNAME command

The /STOP LUNAME command specifies a particular LU name that is to be stopped.

Subsections:
- “Environment”
- “Syntax”
- “Usage notes”

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 316. Valid environments for the /STOP LUNAME command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/STOP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>INPUT</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LUNAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OUTPUT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

Usage notes

Specifying the keyword INPUT with the LUNAME keyword stops an LU name for any input and synchronous outbound activities. Specifying the parameter ALL with INPUT causes all future LU 6.2 input and synchronous outbound activities to be stopped as well.

Specifying the keyword OUTPUT with the LUNAME keyword stops an LU name for any asynchronous outbound activities. Specifying the parameter ALL with OUTPUT causes all future LU 6.2 asynchronous outbound activities to be stopped as well.

Specifying neither INPUT nor OUTPUT is the same as specifying both INPUT and OUTPUT. The LU name is stopped for any input, and both synchronous and
asynchronous outbound activities. Specifying the parameter ALL in this case stops all future LU 6.2 inbound activities, synchronous and asynchronous outbound activities.

A network-qualified LU name is optional for the LUNAME keyword. If the LU name is not network-qualified and no TP name is specified, all network-qualified LU names whose LU names match the LU name specified are also stopped.

The /STOP LUNAME TPNAME command stops a particular TP name of the LU name specified. The keyword OUTPUT is the default for this command.

If the specified resource does not exist, a structure is created to retain the status.

Related reference:
- Command keywords and their synonyms (Commands)

/STOP MADSIOT command

The /STOP MADSIOT command allows users to disable the MADS I/O timing function in a MADS I/O timing enabled environment.

Subsections:
- "Environment"
- "Syntax"
- "Usage notes"

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/STOP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MADSIOT</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Syntax

```
/STOP MADSIOT
```

Usage notes

When /STOP MADSIOT completes normally, the following message is returned to the operator's console:

DFS12761 MADS I/O TIMING FUNCTION STOPPED SUCCESSFULLY

/START MADSIOT allows users to resume the MADS I/O timing function.

If MADS I/O Timing list structure is not defined in DFSVSMxx, the command will be rejected. If MADS I/O Timing function is already disabled, the command will be ignored. If MADS I/O Timing function is enabled and all sharing partners successfully disconnect from MADS I/O Timing list structure on the coupling
facility, the command will complete successfully; if any sharing partners fails to disconnect to MASD I/O Timing list structure, the command will fail.

The output of the /STOP MADS2OT command is changed when the command is entered through the OM API. In this case, the DFS058I message is not returned to OM. The command response returned to OM contains one or more of the following messages as appropriate.

Fast Path messages: DFS0023I, DFS0008I, DFS1271I, DFS1276I, DFS1275E, DFS1219E

/STOP MSNAME command

The /STOP MSNAME command stops the sending of all messages (primary requests) from a terminal except those continuing a conversation. This includes all messages destined for remote transactions with the SYSID of the MSNAME and for remote logical terminals associated with this MSNAME.

Subsections:
• "Environment"
• "Syntax"
• "Examples"

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 320. Valid environments for the /STOP MSNAME command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/STOP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MSNAME</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Syntax

```
/STOP MSNAME msname
```

Examples

The following is an example of the /STOP MSNAME command:

Entry ET:
/STOP MSNAME BOSTON

Response ET:
DFS058I STOP COMMAND COMPLETED

Explanation: The logical link path associated with the name BOSTON is stopped.
/STOP NODE command

The /STOP NODE command specifies the VTAM node to be stopped and logged off. The NODE parameter can be generic if the USER keyword is not specified and applies to nodes that already exist.

Subsections:
- “Environment”
- “Syntax”
- “Usage notes”
- “Examples” on page 801

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 321. Valid environments for the /STOP NODE command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/STOP</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NODE</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>USER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

Usage notes

The /STOP NODE command prevents future logons until a /START NODE command is issued.

/STOP NODE without the USER keyword is supported for nodes that do not yet exist. It causes the node to be created and stopped which prevents the dynamic node from logging on. /STOP NODE without the USER keyword affects all half-sessions of the specified node.

/STOP NODE USER is valid for ISC and non-ISC nodes and users; however the user must still be allocated or signed on to the node. /STOP NODE USER for ISC nodes stops the named half-session defined in USER username for NODE nodename.
Restrictions for using NODE and USER parameters together:

- Commands with the NODE USER keyword pair are valid only if:
  - The USER is signed on to the NODE
  - In an ISC environment, the USER is allocated to the NODE
  - The nodes and users already exist
- /STOP NODE USER commands are valid for ISC and non-ISC nodes and users.

/STOP NODE resets preset mode, test mode, lock node, lock lterm, and purge lterm, because these statuses are not significant and therefore are not kept after a logon or restart. For Fast Path input response mode, you must also issue the /START NODE command before the mode is reset. The /STOP NODE command also takes other actions depending on the recovery settings for the node:

**RCVYSTSN=NO**
/STOP NODE acts like a /CHANGE NODE COLDSESS command for FINANCE and SLUP nodes by setting the session status to 'cold'. /STOP NODE acts like a /QUIESCE NODE command for ISC (LU6.1) nodes by initiating the shutdown and deallocating the user for the specified node. This action changes the session status to 'cold'. With these actions taken by the /STOP NODE command, the next session initiation request for this node is allowed to again attempt a session cold start (after a /START NODE command has been entered).

**RCVYCONV=NO**
/STOP NODE causes any IMS conversations (active and held) to be terminated. Any conversational message that is queued or being processed will have its output response message delivered asynchronously.

**RCVYFP=NO**
/STOP NODE causes Fast Path status and messages to be discarded

**RCVYRESP=NO**
/STOP NODE resets full-function response mode.

If global resource information is kept in Resource Manager, the /STOP NODE command sets a global stop status for the node and prevents the node from logging on anywhere in the IMSplex. If global resource information is not kept in Resource Manager, /STOP NODE creates the node, if it does not exist in an ETO environment, and sets stop status for the local node. If the node does not exist in a non-ETO environment, the /STOP NODE command is rejected.

**Examples**

The following is an example of the /STOP NODE command:

**Entry ET:**
/STOP NODE HARRY

**Response ET:**
DFS058I  STOP COMMAND COMPLETED

Explanation: The physical terminal associated with node HARRY is disconnected (/CLSDST) and further logons are prevented.
/STOP OLDS command

The /STOP OLDS command indicates that IMS is to stop using an OLDS log data set.

Subsections:
- “Environment”
- “Syntax”
- “Keywords”
- “Usage notes”
- “Examples”

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 322. Valid environments for the /STOP OLDS command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/STOP OLDS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>OLDS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
/STOP OLDS olds#
```

Keywords

The following keyword is valid for the /STOP OLDS command:

`olds#`

Identifies an OLDS that is defined by JCL or a DFSMDA macro and is currently started. `olds#` must be 00 through 99.

Usage notes

The stopped OLDS will be dynamically deallocated when it is no longer possible for it to be accessed for dynamic backout.

If in dual mode, both primary and secondary OLDSs are stopped. If there are only two OLDS data sets available, or if the specified OLDS is the one currently being used for output, the /STOP OLDS command will be rejected.

Examples

The following is an example of the /STOP OLDS command:

Entry ET:

```
/STOP OLDS 09
```

Response ET:
Explanation: The subject OLDS, DFSOLP09 (DFSOLS09), will be stopped.

/STOP OTMA command

The /STOP OTMA command causes IMS to leave the z/OS cross-system coupling facility (XCF) group for IMS Open Transaction Manager Access (OTMA).

Subsections:
- “Environment”
- “Syntax”
- “Usage notes”
- “Examples”

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 323. Valid environments for the /STOP OTMA command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/STOP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>OTMA</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Syntax

```
/STOP OTMA
```

Usage notes

/STOP OTMA command processing is as follows:

1. IMS leaves the XCF group.
2. For any IMS OTMA output awaiting an ACK message, IMS aborts the message. For Commit-then-Send transactions, the output remains enqueued to the transaction pipe. For Send-then-Commit transactions, IMS aborts the transaction.

When the /STOP OTMA command is issued, it will clear or reject all the ICAL messages for all the transaction pipes. However, the /STOP OTMA command does not halt processing for the DFSYICAL tmember for synchronous program switching. To clear a wait state for a synchronous program switch request, use the /PSTOP or /STOP REGIN ABDUMP command.

Examples

The following is an example of the /STOP OTMA command:

Entry ET:
/STOP PGM command

The /STOP PGM command specifies the application program that is to be stopped.

Subsections:
- “Environment”
- “Syntax”
- “Usage notes”
- “Equivalent IMS type-2 commands”
- “Examples” on page 805

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/STOP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PGM</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
/STOP PGM pgmname
```

Usage notes

The /STOP PGM command does not stop CPI Communications driven transaction programs.

The /STOP PGM command is not allowed for a program that is marked bad with the NOTINIT-57-REPOCHGLIST reason code because the IMS change list processing is not complete for the program or the change list processing failed.

Equivalent IMS type-2 commands

The following table shows variations of the /STOP PGM command and the IMS type-2 commands that perform similar functions.
Table 325. Type-2 equivalents for the /STOP PGM command

<table>
<thead>
<tr>
<th>Task</th>
<th>/STOP PGM command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stops program scheduling.</td>
<td>/STOP PGM pgmname</td>
<td>UPDATE PGM NAME(pgmname)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STOP(SCHD)</td>
</tr>
</tbody>
</table>

Examples

The following is an example of the /STOP PGM command:

Entry ET:
/STOP PROGRAM APPLETRE

Response ET:
DFS058I   STOP COMMAND COMPLETED

Explanation: Application program APPLETRE is stopped.

Related reference:
“UPDATE PGM command” on page 1124

/STOP REGION command

Use the /STOP REGION command to stop IMS regions, application programs, or both. /STOP REGION is not mirrored on the XRF alternate system. You must enter this command on the alternate system if you want it to affect the alternate system.

Subsections:
- “Environment”
- “Syntax”
- “Keywords” on page 806
- “Examples” on page 807

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 326. Valid environments for the /STOP REGION command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/STOP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ABDUMP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CANCEL</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>JOBNAME</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>REGION</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TRANSACTION</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Syntax
Keywords

The following keywords are valid for the /STOP REGION command:

**REGION reg#**

Is used to terminate one or more message processing regions at the conclusion of processing the current transaction. The region identifier is _reg#_.

/STOP REGION _reg#_ can also be used to terminate Fast Path regions. /STOP REGION _reg#_ cannot be used to terminate batch regions.

A Fast Path utility region is terminated at the next system checkpoint of the utility.

**REGION reg#–reg#**

Is used to terminate a range of message processing regions at the conclusion of processing the current transaction.

**REGION reg# ABDUMP tranname**

Causes abnormal termination of an application program.

The region identifier is _reg#_ and the transaction code is _tranname_.

If the transaction indicated by _tranname_ is currently running in REGION _reg#_, an error message is received at the master terminal, indicating an application program abend. The region will remain active, but the transaction will be stopped. The command is ignored if the transaction is not currently scheduled in region _reg#_.

/STOP REGION _reg#_ ABDUMP should be used only for a region that appears to be looping or in a wait state. If this command does not abnormally terminate the application running in a region, the /STOP REGION _reg#_ CANCEL command can be used. This might cause the control region to terminate with abend 113 if parallel DL/I is being used. See /STOP REGION _reg#_ CANCEL for further warnings.

If the /CHECKPOINT command cannot shut down IMS because a message processing region appears to be active, but the region is no longer active in the system (a condition commonly referred to as a phantom region), the /STOP REGION _reg#_ ABDUMP command can be used to correct the situation. In this case, the /STOP REGION _reg#_ ABDUMP command detects that the region is no longer active and cleans the internal IMS entries for the nonexistent region, which allows the shut down process to proceed normally.

If a message processing region experiences a catastrophic failure and abnormally terminates and a /DISPLAY ACTIVE REGION shows the region is still defined to IMS, the /STOP REGION _reg#_ ABDUMP command can be used
to correct the situation. In this case, the /STOP REGION reg# ABDUMP command detects the region is no longer active and cleans the internal IMS entries for the nonexistent region.

The tranname variable is not valid for batch, IFP, or Fast Path utility regions.

**REGION reg# TRANSACTION tranname**

Stops a message processing program in wait-for-input (WFI) mode from processing within the specified region.

The region identifier is reg# and the transaction code is tranname.

If the transaction indicated by tranname is currently running in region reg#, the IMS message DFS0569I is received at the master terminal, indicating that a QC status code (no more messages) was returned to the application program (MPPs). The region that contained the application is still active and the transaction is not stopped. A batch message processing program in WFI mode must be stopped using the /PSTOP command.

A batch message processing region (BMP) scheduled against wait-for-input (WFI) transactions returns a QC status code (no more messages) for, /PSTOP REGION, /DBD, /DBR, or /STA commands only.

**REGION reg# CANCEL**

Is used if the region cannot be stopped with a /STOP REGION ABDUMP command and must be preceded by a /STOP REGION ABDUMP command.

The region identifier is reg#.

Using the /STOP REGION CANCEL command can cause the IMS control region to terminate with user abend 113 if parallel DL/I is being used. A z/OS CANCEL command will be rejected.

**REGION JOBNAME**

Identifies regions to be stopped by their job names. The job name must be 1-8 alphanumeric or national ($,@) characters. The first character of the job name must be either alphabetic or national.

**Examples**

The following are examples of the /STOP REGION command:

**Example 1 for /STOP REGION command**

Entry ET:

/DISPLAY A

Response ET:

<table>
<thead>
<tr>
<th>REGID</th>
<th>JOBNAME</th>
<th>TYPE</th>
<th>TRAN/STEP</th>
<th>PROGRAM</th>
<th>STATUS</th>
<th>CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MPP</td>
<td>TXCDRN24</td>
<td>DDLTRN24</td>
<td>1, 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BMP</td>
<td>BMP</td>
<td>BMP255</td>
<td>,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IFPN</td>
<td>FPM</td>
<td>NO MSG.</td>
<td>DDLTJN26</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Explanation: Fast Path message-driven region 3 currently has no messages to process.
Entry ET:
/STOP REG 3

Response ET:
DFS058I STOP COMMAND IN PROGRESS

Entry ET:
/DISPLAY A

Response ET:

<table>
<thead>
<tr>
<th>REGID</th>
<th>JOBNAME</th>
<th>TYPE</th>
<th>TRAN/STEP</th>
<th>PROGRAM</th>
<th>STATUS</th>
<th>CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>MPP</td>
<td>TP</td>
<td>TXCDRN24</td>
<td>DDLTRN24</td>
<td>1, 2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>BMP</td>
<td>BMP</td>
<td>BMP</td>
<td>BMP255</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Explanation: Fast Path region 3 has been stopped. If region 3 had been processing a message, IMS would have terminated the region on completion of the transaction.

Example 2 for /STOP REGION command

Entry ET:
/STOP REG 1

Response ET:

Explanation: /STOP REGION (with no keywords) is not valid for batch regions.

Example 3 for /STOP REGION command

Entry ET:
/DISPLAY A

Response ET:
<table>
<thead>
<tr>
<th>REGID</th>
<th>JOBNAME</th>
<th>TYPE</th>
<th>TRAN/STEP</th>
<th>PROGRAM</th>
<th>STATUS</th>
<th>CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>MPP</td>
<td>TP</td>
<td>TXCDRN24</td>
<td>DDLTRN24</td>
<td>1, 2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>BMP</td>
<td>BMP</td>
<td>BMP255</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>FPU</td>
<td>FPU</td>
<td>IFP</td>
<td>DBF#FPU0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**VTAM ACB CLOSED**

LINE ACTIVE-IN - 1 ACTIV-OUT - 0
NODE ACTIVE-IN - 0 ACTIV-OUT - 0
LINK ACTIVE-IN - 0 ACTIV-OUT - 0

*89041/142453*

---

**Explanation:** Fast Path utility region 3 has been stopped. The Fast Path utility DBF#FPU0 was terminated at the next system checkpoint.

**Example 4 for /STOP REGION command**

**Entry ET:**

/STOP REG 3

**Response ET:**

DF5058I STOP COMMAND IN PROGRESS

**Entry ET:**

/DISPLAY A

**Response ET:**

<table>
<thead>
<tr>
<th>REGID</th>
<th>JOBNAME</th>
<th>TYPE</th>
<th>TRAN/STEP</th>
<th>PROGRAM</th>
<th>STATUS</th>
<th>CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>MPP</td>
<td>TP</td>
<td>TXCDRN24</td>
<td>DDLTRN24</td>
<td>1, 2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>BMP</td>
<td>BMP</td>
<td>BMP255</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>FPRGN</td>
<td>FP</td>
<td>NONE</td>
<td>SYS3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**VTAM ACB CLOSED**

LINE ACTIVE-IN - 1 ACTIV-OUT - 0
NODE ACTIVE-IN - 0 ACTIV-OUT - 0
LINK ACTIVE-IN - 0 ACTIV-OUT - 0

*89041/142758*

**Explanation:** Transaction TXCDRN24 in region 2 is looping or in a wait state.

---

**Entry ET:**

/STOP REG 2 ABDUMP TXCDRN24

**Response ET:**

DF5058I STOP COMMAND IN PROGRESS
DF5555I TRAN TXCDRN24 ABEND S000,U0474 SYS ID 220 MSG IN PROGRESS
Explanation: The application program has been terminated with a U0474 ABEND. This abend indicates termination in response to a user request (/STOP REGION ABDUMP).

Entry ET:
/DISPLAY A

Response ET:

<table>
<thead>
<tr>
<th>REGID</th>
<th>JOBNAME</th>
<th>TYPE</th>
<th>TRAN/STEP</th>
<th>PROGRAM</th>
<th>STATUS</th>
<th>CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>MPP</td>
<td>TP</td>
<td>WAITING</td>
<td>1, 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>BMP</td>
<td>BMP</td>
<td>BMP</td>
<td>BMP255</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FPRGN</td>
<td>FP</td>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DBRICT13</td>
<td>DBRC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VTAM ACB CLOSED
LINE ACTIVE-IN - 1 ACTIV-OUT - 0
NODE ACTIVE-IN - 0 ACTIV-OUT - 0
LINK ACTIVE-IN - 0 ACTIV-OUT - 0
*89041/143420*

Explanation: The application has been terminated but the region remains active.

Entry ET:
/DISPLAY PROG DDLTRN24

Response ET:

PROGRAM TRAN TYPE
DDLTRN24 TXCDRN24 TP
*90340/143749*

Explanation: The program has not been stopped.

Entry ET:
/DISPLAY TRANSACTION TXCDRN24

Response ET:

TRAN	CLS	ENQCT	QCT	LCT	PLCT	CP	NP	LP	SEGSZ	SEGNO	PARLM	RC	PSBNAME: DDLTRN24	STATUS: STOP
------	-----	-------	-----	-----	------	----	----	----	-------	-------	-------	----	*90340/143802*	
TXCDRN24	2	1	0	65535	65535	1	1	0	0	0	0	0		

Explanation: The transaction has been stopped.

**Example 5 for /STOP REGION command**

Entry ET:
/DISPLAY A

Response ET:

<table>
<thead>
<tr>
<th>REGID</th>
<th>JOBNAME</th>
<th>TYPE</th>
<th>TRAN/STEP</th>
<th>PROGRAM</th>
<th>STATUS</th>
<th>CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>MPP</td>
<td>TP</td>
<td>WAITING</td>
<td>1, 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>BMP</td>
<td>BMP</td>
<td>BMP</td>
<td>BMP255</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>FPU</td>
<td>FPU</td>
<td>IFP</td>
<td>DBP#FPU0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DBRICT13</td>
<td>DBRC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VTAM ACB CLOSED
LINE ACTIVE-IN - 1 ACTIV-OUT - 0
NODE ACTIVE-IN - 0 ACTIV-OUT - 0
LINK ACTIVE-IN - 0 ACTIV-OUT - 0
*89041/144248*
Entry ET:
/STOP REG 3 ABDUMP

Response ET:
DFS058I STOP COMMAND IN PROGRESS

Explanation: A transaction code is not entered when terminating a Fast Path utility with a /STOP REGION ABDUMP command.

*Example 6 for /STOP REGION command*

Entry ET:
/DISPLAY A

Response ET:

<table>
<thead>
<tr>
<th>REGID</th>
<th>JOBNAME</th>
<th>TYPE</th>
<th>TRAN/STEP</th>
<th>PROGRAM</th>
<th>STATUS</th>
<th>CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>MPP</td>
<td>TP</td>
<td>TXCDRN24</td>
<td>DDLTRN24</td>
<td>WAIT=INPUT</td>
<td>1, 2</td>
</tr>
<tr>
<td>1</td>
<td>BMP</td>
<td>BMP</td>
<td>BMP</td>
<td>BMP255</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FPRGN</td>
<td>FP</td>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DBR1CT13</td>
<td>DBRC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VTAM ACB CLOSED
LINE ACTIVE-IN - 1 ACTIV-OUT - 0
NODE ACTIVE-IN - 0 ACTIV-OUT - 0
LINE ACTIVE-IN - 0 ACTIV-OUT - 0
*89041/150141*

Explanation: Message processing program DDLTRN24 is waiting for an input message.

Entry ET:
/STOP REGION 2 TRANSACTION TXCDRN24

Response ET:
DFS058I STOP COMMAND IN PROGRESS
DFS0569I STOP OR STOP COMPLETE FOR REGION0002 TRAN TXCDRN24.

Explanation: A QC status code was returned to the WFI application program DDLTRN24.

Entry ET:
/DISPLAY A

Response ET:

<table>
<thead>
<tr>
<th>REGID</th>
<th>JOBNAME</th>
<th>TYPE</th>
<th>TRAN/STEP</th>
<th>PROGRAM</th>
<th>STATUS</th>
<th>CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>MPP</td>
<td>TP</td>
<td>WAITING</td>
<td>1, 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>BMP</td>
<td>BMP</td>
<td>BMP</td>
<td>BMP255</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FPRGN</td>
<td>FP</td>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DBR1CT13</td>
<td>DBRC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VTAM ACB CLOSED
LINE ACTIVE-IN - 1 ACTIV-OUT - 0
NODE ACTIVE-IN - 0 ACTIV-OUT - 0
LINK ACTIVE-In - 0 ACTIV-OUT - 0
*89041/150206*

Explanation: The WFI application has been terminated but the region is still active.

Entry ET:
/DISPLAY TRANSACTION TXCDRN24
Response ET:

```
TRAN CLS ENQCT QCT LCT PLCT CP NP LP SEGSZ SEGNO PARLM RC
TXCDRN24 2 4 0 65535 65535 1 1 0 0 0 0
PSBNAME: DDLTRN24
+90340/150219*
```

Explanation: The transaction is not stopped.

**Example 7 for /STOP REGION command**

Entry ET:

```
/DISPLAY A
```

Response ET:

```
REGID JOBNAME TYPE TRAN/STEP PROGRAM STATUS CLASS
2 MPP TP TXCDRN24 DDLTRN24 WAIT-INPUT 1, 2
1 BMP BMP BMP BMP255
FPRGN FP NONE
DBR1CT13 DBRC
VTAM ACB CLOSED
LINE ACTIVE-IN - 1 ACTIV-OUT - 0
NODE ACTIVE-IN - 0 ACTIV-OUT - 0
+89041/150813*
```

Entry ET:

```
/STOP REGION 2 TRANSACTION TRAN255
```

Response ET:

```
DFS058I STOP COMMAND IN PROGRESS
DFS058I TRAN TRAN255 NOT SCHEDULED
```

Explanation: TRAN255 is a valid transaction for the IMS system but it is not currently scheduled in region 2. If TRAN255 had not been a valid transaction for the IMS system, only message DFS230I (TRAN SPECIFIED WITH ABDUMP OR TRAN KEYWORD IS NOT VALID) would have been issued.

**Example 8 for /STOP REGION command**

Entry ET:

```
D A,L
```

Response ET:

```
JOBS M/S TS USERS SYSAS INITS ACTIVE/MAX VTAM OAS
00001 00010 00001 00019 00020 00001/00020 00000
LLA LLA LLA NSW S VLF VLF VLF NSW S
JES2 JES2 IEFPROC NSW S RMF RMF IEFPROC NSW S
IMSVTAM IMSVTAM IEFPROC NSW S TSO TSO STEP1 NSW S
CQS CQS IEFPROC NSW S IMSECTA9 IMSECTA9 IEFPROC NSW S
DLICTA9 DLICTA9 DLISAS NSW S DBRECTA9 DBRECTA9 DBRC NSW S
MPP610C MPP MPP NSW J
USR001 OWT
```

Explanation: MPP610C is an IMS message processing region.

Entry ET:

```
/STOP REGION JOBNAME MPP610C
```
Response ET:

DFS058I STOP COMMAND IN PROGRESS
DFS552I MESSAGE REGION MPP610C STOPPED ID=00001 TIME=1616 SYSX

SMF000I MPP610C MPP DFSRRC00 0000
$HASP395 MPP610C ENDED

Related reference:

"/STOP THREAD command" on page 818

/STOP RTC command

Use the /STOP RTC command to specify that transactions associated with this routing code are not processed.

Subsections:

- “Environment”
- “Syntax”
- “Usage notes”
- “Equivalent IMS type-2 commands”

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 327. Valid environments for the /STOP RTC command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/STOP RTC</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
/STOP RTC rtcname
```

Usage notes

The /STOP RTC command is not allowed for a routing code that is marked bad with the NOTINIT-07-REPOCHGLIST reason code because the IMS change list processing is not complete for the routing code or the change list processing failed.

Equivalent IMS type-2 commands

The following table shows variations of the /STOP RTC command and the IMS type-2 commands that perform similar functions.

Table 328. Type-2 equivalents for the /STOP RTC command

<table>
<thead>
<tr>
<th>Task</th>
<th>/STOP RTC command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stops queuing to a Fast Path routing code.</td>
<td>/STOP RTC rtcname</td>
<td>UPDATE RTC NAME(rtcname) STOP(Q)</td>
</tr>
</tbody>
</table>
Related reference:

“UPDATE RTC command” on page 1170

/STOP SB command

Use the /STOP SB command to disallow further use of sequential buffering. /STOP SB does not affect sequential buffering applications scheduled before this command was issued.

Subsections:
- “Environment”
- “Syntax”
- “Examples”

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 329. Valid environments for the /STOP SB command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/STOP SB</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
/STOP SB
```

Examples

The following is an example of the /STOP SB command:

Entry ET:
/STOP SB

Response ET:
DFS058 STOP COMMAND COMPLETED

Entry ET:
/DISPLAY POOL DBAS

Response ET:

```
SEQUENTIAL BUFFERING: STATUS = STOPPED
 MAX N.A. FREE N.A. CURR OK HIGH 320K
DATABASE BUFFER POOL: SIZE 67584
 REQ1 0 REQ2 0 READ 0 BISAM 0 WRITES 0
 KEYC 0 LCYL 0 PURG 0 OWNRR 0 ERRORS 00/00
DATABASE BUFFER POOL: BSIZE 128KB
 RRBA 0 RKEY 0 BFALT 0 NREC 0 SYN PTS 0
 NMBUFS 29 VRDS 0 FOUND 0 VWTS 0 ERRORS 00/00
```
/STOP SERVGRP command

Use the /STOP SERVGRP command to stop communications between the service group in an RSR complex at which the command was entered and the service group at the other site. /STOP SERVGRP also severs the relationship between the IMS subsystem and the TMS subsystem.

Subsections:
- “Environment”
- “Syntax”
- “Usage notes”

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 330. Valid environments for the /STOP SERVGRP command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/STOP SERVGRP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

►►/STOP SERVGRP◄◄

Usage notes

Once communications are stopped, the logger stops sending log data to the RSR tracking subsystem. No more attempts to re-establish failed conversations are made at OLDS switch. The /STOP SERVGRP command is normally not needed. The /STOP SERVGRP command is valid from an active subsystem and a tracking subsystem.

Successful completion of the syntax checking of the /STOP SERVGRP command results in the DFS058 STOP COMMAND COMPLETED message, although processing of the command continues asynchronously.

/STOP SLDSREAD command

The /STOP SLDSREAD command indicates whether IMS is enabled to retrieve records from both a system log data set (SLDS) and OLDS or OLDS only. The default is that SLDSREAD is enabled.

Subsections:
- “Environment” on page 816
- “Syntax” on page 816
Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 331. Valid environments for the /STOP SLDSREAD command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/STOP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SLDSREAD</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
/STOP
```

Usage notes

If the SLDSREAD process is active, issuing the /STOP SLDSREAD command causes a U4095 symptom dump to be taken, and the SLDSREAD processing is stopped. This abend is not fatal, and IMS continues to function normally. Any backout processes that were active have to be backed out manually by using the batch backout utilities.

If the SLDSREAD process is not active, issuing the /STOP SLDSREAD command prevents any SLDSREAD processes from being started if an SLDS should be needed for backout processing. Use the batch backout utilities to back out any application programs that failed.

/STOP SUBSYS command

Use the /STOP SUBSYS command to specify the name of the external subsystem whose connection is to be terminated.

Subsections:
- “Environment”
- “Syntax” on page 817
- “Usage notes” on page 817
- “Examples” on page 817

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 332. Valid environments for the /STOP SUBSYS command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/STOP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SUBSYS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Syntax

```
/STOP SUBSYS subsysname
```

Usage notes

The `/STOP SUBSYS` command does enable application programs currently accessing external resources to complete normally. When those applications have terminated, the connection to the subsystem will also terminate. The application must complete all message processing before actual connection termination. The next occurrence of an external subsystem call will receive a nonzero return code, indicating the connection is not available. A `/START` command is then necessary to reestablish the connection.

The `/STOP SUBSYS` command can also be used to dynamically reconfigure existing subsystem definitions. The operator can issue the `/STOP SUBSYS` command, change or add to the PROCLIB member, and then issue the `/START SUBSYS` command. IMS attempts to connect those subsystems defined in the PROCLIB member.

If system failure occurs after the `/STOP SUBSYS` command is processed, the stopped status is still set.

Examples

The following are examples of the `/STOP SUBSYS` command:

**Example 1**

Entry ET:

```
/STOP SUBSYS ALL
```

Response ET:

```
DFS058I STOP COMMAND IN PROGRESS
```

Explanation: IMS has initiated the termination of the connection. When all dependent regions have terminated their connections, IMS will complete the termination. It is likely that an external subsystem message indicating connection termination will be received at this time.

**Example 2**

Entry ET:

```
/STOP SUBSYS XXX1 XXX3
```

Response ET:

```
DFS058I STOP COMMAND IN PROGRESS
```

Explanation: IMS has initiated the termination of the connection. When all dependent regions have terminated their connections, IMS will complete the
termination. It is likely that an external subsystem message indicating connection termination will be received at this time

/STOP SURV command

Use the /STOP SURV command in an XRF environment to stop the operation of the IMS surveillance function.

Subsections:

- "Environment"
- "Syntax"
- "Keywords"

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 333. Valid environments for the /STOP SURV command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/STOP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SURV</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
/STOP SURV
```

Keywords

The following keywords are valid for the /STOP SURV command:

**ALL**

The same as specifying LNK, LOG, and RDS. This is the default.

**LNK**

ISC link.

**LOG**

System log.

**RDS**

Restart data set.

/STOP THREAD command

Use the /STOP THREAD command to stop an inactive CCTL thread. The DEDB utility region is terminated at the next system checkpoint.

Subsections:

- "Environment" on page 819
Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 334. Valid environments for the /STOP THREAD command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/STOP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ABDUMP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CANCEL</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>THREAD</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TRANSACTION</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

For information about the keywords that are valid for the /STOP THREAD command, see the description about the same keywords under the /STOP REGION command.

Usage notes

The /STOP THREAD command is not valid for:

- Active CCTL threads
- BMPs

The THREAD ABDUMP command abnormally ends BMPs and DEDB utilities. If this command is used with CCTL threads, a U0474 abend results.

Examples

The following are examples of the /STOP THREAD command:

Example 1

Entry ET:

```
/DISPLAY A REGION
```
Example 2

Entry ET:
/STOP THREAD 2

Response ET:

Example 3

Entry ET:
/DISPLAY A REGION

Response ET:
Response ET:

<table>
<thead>
<tr>
<th>REGID</th>
<th>JOBNAME</th>
<th>TYPE</th>
<th>TRAN/STEP</th>
<th>PROGRAM</th>
<th>STATUS</th>
<th>CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BATCHREG</td>
<td>BMP</td>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPRGN</td>
<td>FP</td>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 CICS1A</td>
<td>DBT</td>
<td>IEFPROC</td>
<td>BMP255</td>
<td>ACTIVE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 CICS1A</td>
<td>DBT</td>
<td>IEFPROC</td>
<td>PLVAPZ12</td>
<td>ACTIVE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBRCHA1</td>
<td>DBRC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLICHA1</td>
<td>DLS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*00082/144731*

Entry ET:

/STOP THREAD 2 ABDUMP

Response ET:

/DFS058I STOP COMMAND IN PROGRESS

Response ET:

DF5554A CICS1A 00002 IEFPROC BMP255 (3) 000,0474 20
/002 14:49:11 RTKN=CICS1 B3CB1C87B9F4E83

Entry ET:

/DISPLAY A REGION

Response ET:

Related reference:

“/STOP REGION command” on page 805

/STOP TMEM command

Use the /STOP TMEM command to cause IMS to send an Open Transaction Manager Access (OTMA) command to OTMA clients to request that input be suspended for the specified transaction pipe name.

Subsections:

- “Environment”
- “Syntax” on page 822
- “Keywords” on page 822
- “Usage notes” on page 823
- “Examples” on page 823

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/STOP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Chapter 24. /STOP commands 821
Table 335. Valid environments for the /STOP TMEM command and keywords (continued)

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMEM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TPIPE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
►► /STOP
 /STO
 TMEM
 tmembername
 TPIPE
 ALL
 TPI
 tpipename

▼
 tmembername
 ALL
```

Keywords

The following keyword is valid for the /STOP TMEM command:

**TPIPE**

When used with the /STOP command, TPIPE causes IMS to send an OTMA command to its OTMA clients to request that the input be suspended for the specified transaction pipe. IMS then stops sending output to the OTMA client. If the member specified is a super member, output is suspended for the super member's transaction pipe, but no OTMA command is sent. If the member specified is a regular member whose hold queue output is managed by a super member, IMS suspends output from the specified member's transaction pipe and it also suspends output from the super member's transaction pipe. An OTMA command is sent to the regular member's OTMA client. Output is only suspended on the IMS that processes the command. If output cannot be suspended for both the regular member's transaction pipe and the super member's transaction pipe, it is not suspended for either transaction pipe. The DFS058I COMMAND COMPLETED EXCEPT message is issued with the name of the regular member for which output could not be suspended.

While processing the /STOP TMEMBER TPIPE command, IMS creates a temporary transaction pipe (if one does not already exist) with the stopped status. IMS sets the synchronization status for this transaction pipe when it sends or receives the first message for the transaction pipe.

While processing the /STOP TMEMBER TPIPE command, OTMA checks for wait status (WAIT_A, WAIT_H, WAIT_R, and WAIT-SYNCPPOINT) for the messages using the tpipe. If a wait status is found, OTMA clears the wait status by generating an internal NAK message. This NAK message for a send-then-commit (CM1) response will cause a U0119 pseudoabend for the transaction. However, the NAK message for a commit-then-send (CM0) response will wash back the response to the tpipe queue. The message in the tpipe queue can be retrieved again later.

After a /STOP TMEMBER xxx TPIPE ALL command is issued, newly created tpipes will not be stopped for either input or output.

The /STOP TMEMBER xxx TPIPE xxx command will not create a temporary tpipe if the tmember does not exist (DFS058I STOP COMMAND COMPLETED EXCEPT TPIPE xxx will be issued).
Usage notes

You can stop any number of individual tmembers or all tmembers. IMS then stops sending output to the OTMA client and prevents any further output from being sent to the client.

When the /STOP TMEM TPIPE command is issued, it will clear the wait states of all messages for the transaction pipe.

You can issue the /STOP TMEM command to the DFSYICAL OTMA member to halt synchronous program switch processing. After the DFSYICAL tmember is stopped, all subsequent DL/I CAL calls made to initiate a synchronous program switch are rejected. The requesting application will receive the AIB return code X'00000100' with the reason code X'00000110' and the extended reason code X'00000005'.

Examples

The following is an example of the /STOP TMEM command:

Entry ET:
/STO T MEMBER CLIENT1 TPIPE TPIPESY

Response ET:
DFS058I 15:38:03 STOP COMMAND COMPLETED SYS3
DFS996I *IMS READY* SYS3

/STOP TRAN command

Use the /STOP TRAN command to stop the queuing and scheduling of messages destined for a transaction or class of transactions, or to stop transaction scheduling by class. However, output can still be queued if it originates from the application program.

The /STOP TRAN command stops the scheduling of transactions; however, the transactions will continue to be processed until the limit count is reached. If the limit count is large, the processing interval will be long.

Subsections:
- “Environment”
- “Syntax” on page 824
- “Usage notes” on page 824
- “Equivalent IMS type-2 commands” on page 824
- “Examples” on page 825

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 336. Valid environments for the /STOP TRAN command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/STOP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Chapter 24. /STOP commands 823
Table 336. Valid environments for the /STOP TRAN command and keywords (continued)

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLASS</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TRAN</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

The following syntax is used to execute the /STOP TRAN command:

```
/STOP TRAN [tranname] [tranname*] [ALL] [CLASS cls#] [ALL]
```

Usage notes

If the region is already scheduled and waiting for the next message (wait-for-input mode) when the command is entered, a QC status (no more messages) is returned to the application (MPPs). If there are no more messages available for the region to process, the region is not allowed to wait for the next message. Instead, a QC status is returned to the application (MPPs).

A batch message processing region (BMP) scheduled against wait-for-input (WFI) transactions returns a QC status code (no more messages) for /PSTOP REGION, /DBD, /DBR, or /STA commands only.

In a shared-queues environment, if you issue a /STOP TRAN command for a transaction that is not defined on that IMS subsystem, IMS creates an SMB if the Output Creation user exit routine indicates the destination is a valid transaction. The SMB is marked as “dynamic”.

A dynamic SMB created by a /STOP TRAN command can only be used to queue messages for the transaction and place the messages on the shared queues. The transaction cannot be scheduled or assigned. IMS does process checkpoints for the transaction, but does not save them across an IMS restart if they do not have a valid status.

In a shared-queues environment, the /STOP TRAN command will result in IMS deregistering interest for the transaction, which indicates that the transaction cannot be scheduled at that IMS.

The /STOP TRAN command is not allowed for a transaction that is marked bad with the NOTINIT-15-REPOCHGLIST reason code because the IMS change list processing is not complete for the transaction or the change list processing failed.

Equivalent IMS type-2 commands

The following table shows variations of the /STOP TRAN command and the IMS type-2 commands that perform similar functions.
Table 337. Type-2 equivalents for the /STOP TRAN command

<table>
<thead>
<tr>
<th>Task</th>
<th>/STOP TRAN command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stops the queuing and</td>
<td>/STOP TRAN tranname</td>
<td>UPDATE TRAN NAME(tranname)</td>
</tr>
<tr>
<td>scheduling of messages</td>
<td>STOP(Q,SCHD)</td>
<td></td>
</tr>
<tr>
<td>destined for a transaction.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Examples**

The following are examples of the /STOP TRAN command:

**Example 1 for /STOP TRAN command**

Entry ET:

/STOP TRANSACTION ALL CLASS 6

Response ET:

DFS058I STOP COMMAND COMPLETED

Explanation: All transactions associated with class 6 will be marked as stopped and all class 6 transactions are no longer available for scheduling. All message processing regions currently processing class 6 transactions are allowed to run until the processing limit count is reached or the input queue contains no more messages.

**Example 2 for /STOP TRAN command**

Entry ET:

/STOP TRANSACTION PIT, SEED

Response ET:

DFS058I STOP COMMAND COMPLETED

Explanation: Transaction codes PIT and SEED are stopped.

**Related reference:**

"UPDATE TRAN command” on page 1183

/STOP USER command

The /STOP USER command requires the ISC user to stop or the signed on user to stop and sign off. The USER parameter can be generic and applies only to users that already exist.

Subsections:

- "Environment”
- “Syntax” on page 826
- “Usage notes” on page 826
- “Examples” on page 827

**Environment**

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.
Table 338. Valid environments for the /STOP USER command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/STOP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>USER</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Syntax

```
/STOP
/STO

username
username

ALL
```

Usage notes

For ISC users, the /STOP USER command specifies the ISC user that is to be made unavailable for allocation until a /START USER command is issued.

For signed on users, the /STOP USER command should specify the user structure name to prevent future signons until a /START USER command is issued.

The /STOP USER command is supported for users that do not yet exist. It causes the user to be created and stopped, which prevents the dynamic user from signing on.

The /STOP USER command will not cause the user to be signed off if the associated node is not active or the associated node is not in session.

The /STOP USER command for an ETO user session resets status that is not significant such as preset mode, test mode, lock lterm, pstop lterm, and purge lterm. For Fast Path input response mode, you must also issue the /START USER command before the mode is reset.

The /STOP USER command for ETO users also takes other actions depending on the recovery settings for the user:

**RCVYCONV=NO**

/STOP USER causes any IMS conversations (active and held) for an ETO user to be terminated. Any conversational message that is queued or being processed will have its output response message delivered asynchronously.

**RCVYFP=NO**

/STOP USER causes Fast Path status and messages for an ETO user to be discarded.

**RCVYRESP=NO**

/STOP USER resets full-function response mode.

If global resource information is kept in Resource Manager, the /STOP USER command sets a global stop signon status for the user and prevents the user from signing on anywhere in the IMSplex. If global resource information is not kept in Resource Manager, /STOP USER creates the user, if it does not exist in an ETO environment, and sets stop status for the local user. If the user does not exist in a non-ETO environment, the /STOP USER command is rejected.
Examples

The following is an example of the /STOP USER command:

Entry ET:
/DISPLAY USER IMS*

Response ET:

<table>
<thead>
<tr>
<th>USER</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
<th>SYS3</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSU06</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ALLOC(DTSLU602)</td>
</tr>
<tr>
<td>IMSU04</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ALLOC(DTSLU603)</td>
</tr>
<tr>
<td>IMSU03</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ALLOC(DTSLU601)</td>
</tr>
<tr>
<td>IMSU02</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ALLOC(DTSLU202)</td>
</tr>
<tr>
<td>IMSU01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ALLOC(DTSLU201)</td>
</tr>
<tr>
<td>IMSU09</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>ALLOC(ENDS02) STATIC</td>
</tr>
<tr>
<td>IMSU08</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>ALLOC(ENDS01) STATIC</td>
</tr>
<tr>
<td>IMSU11</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>ALLOC(ENDS03) STATIC</td>
</tr>
<tr>
<td>IMSU10</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>ALLOC(IMSSLU2A) STATIC</td>
</tr>
</tbody>
</table>

/*91091/111454*/

Entry ET:
/STOP USER IMSU01 IMSU02

Response ET:

DFS058I 11:16:24 STOP COMMAND COMPLETED

Entry ET:
/STOP USER HELLO%

Response ET:

DFS3633 11:18:25 GENERIC PARAMETER RESOURCES NOT FOUND, NO ACTION TAKEN

Entry ET:
/DISPLAY USER IMSU01 IMSU02

Response ET:

<table>
<thead>
<tr>
<th>USER</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSU01</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IMSU02</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

/*91091/111727*/

/STOP VGR command

Use the /STOP VGR command to cause the IMS subsystem to drop out of a generic resources group. This command is rejected if the VTAM ACB is closed (usually the result of a /STOP DC command).

Subsections:

- “Environment”
- “Syntax” on page 828
- “Usage notes” on page 828

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.
Table 339. Valid environments for the /STOP VGR command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/STOP</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>VGR</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

Syntax

►► /STOP VGR

Usage notes

While this command prevents VTAM from routing new sessions using a generic resource name to the IMS subsystem, it does not affect existing sessions, and affinities remain (until terminated through normal processing).

/STOP WADS command

Use the /STOP WADS command to indicate that a WADS is to be removed from the pool of available WADS. IMS does not enable the active WADS (if WADS mode is single), or the active WADS pair (if WADS mode is dual), to be stopped. wads# must be 0 through 9.

Subsections:
- "Environment"
- "Syntax"

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 340. Valid environments for the /STOP WADS command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/STOP</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>WADS</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Syntax

►► /STOP WADS wads#

/STOP XRCTRACK command

The /STOP XRCTRACK command results in calls to the log router to initiate or terminate XRC tracking. It is only valid on a tracking IMS system.

Subsections:
- "Environment" on page 829
• "Syntax"

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 341. Valid environments for the /STOP XRCTRACK command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/STOP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DC</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
/STOP
XRCTRACK
```

Chapter 24. /STOP commands
Chapter 25. /SWITCH command

Use the /SWITCH command to switch active data sets or to change between the active and alternate systems. Certain combinations of keywords are valid only in the active or alternate systems, as shown in the format in the syntax diagram.

This command can be issued to an IMSplex using the Batch SPOC utility.

Subsections:
- “Environment”
- “Syntax”
- “Keywords” on page 832
- “Examples” on page 833

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 342. Valid environments for the /SWITCH command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/SWITCH</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ABDUMP</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACTIVE</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BACKUP</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHECKPOINT</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>FORCE</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OLDS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SYSTEM</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WADS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

/SWITCH for an active XRF subsystem

/SWITCH for an alternate XRF subsystem
Keywords

The following keywords are valid for the /SWITCH command:

SYSTEM
Requests a takeover by the alternate system from the current active system in an XRF environment.

/SWITCH SYSTEM without the FORCE keyword causes the active system to attempt to gracefully quiesce before the alternate system becomes active. System activity currently in progress is allowed to complete. New activity is queued. This disables surveillance on the active system, but not the alternate. Therefore, surveillance (if enabled) will eventually trigger a takeover if it does not eventually quiesce.

Unless the optional FORCE keyword is specified, the command is only operable when entered on the active system.

FORCE
Causes an immediate termination of the active system, forcing the alternate system to become the active.

ABDUMP
Results in a diagnostic dump of the active system when entered from either the active system or the alternate system (if it is on the same processor as the active system).

ACTIVE, BACKUP
Indicates the system on which the command is being entered. The keyword ACTIVE is required when the command is entered on an active system. The keyword BACKUP is optional when the command is entered on an alternate system. /SWITCH SYSTEM FORCE, without the ACTIVE keyword, can only be entered on an alternate system. This prevents the inadvertent abend of a newly created active system that is mistakenly assumed to still be the alternate system.

OLDS, CHECKPOINT
Causes switching of the active log data set. This log switch capability is identical to that provided with /DBDUMP and /DBRECOVERY commands. You can specify the CHECKPOINT keyword to take a simple checkpoint after the active log data set has been switched to the next OLDS. The /SWITCH OLDS CHECKPOINT command operates in all IMS environments.

WADS
Causes switching of the active write-ahead log data set. If you are using dual logging for the WADS, this command causes IMS to use the next available WADS pair.

This command is rejected if no unused WADS is available, or for dual logging, if no unused pair of WADS is available.
Examples

The following are examples of the /SWITCH command:

Example 1 for /SWITCH command

Entry ET:
/SWITCH OLDS

Response ET:

DFS3257I ONLINE LOG NOW SWITCHED
DFS058I 17:10:51 SWITCH COMMAND COMPLETED

Entry ET:
/SWITCH OLDS CHECKPOINT

Response ET:

DFS3257I ONLINE LOG NOW SWITCHED - FROM DFSOLP01 TO DFSOLP02
DFS058I 17:12:53 SWITCH COMMAND COMPLETED

DFS2719I MSDB CHECKPOINT WRITTEN TO MSDBCP2
DFS994I *CHKPT 91057/171254**SIMPLE*
DFS3499I ACTIVE DDNAMES: MODBLKSA IMSACBA FORMATA MOOSTAT ID: 1
DFS3804I LATEST RESTART CHKPT: 91057/132000, LATEST BUILDQ CHKPT: 91057/132414

Example 2 for /SWITCH command

Entry ET (Master Terminal for active system IMSA):
/SWITCH SYSTEM FORCE

Response ET:

A response message is not returned for the /SWITCH SYSTEM FORCE command. Any further input to the master terminal of the active system is inhibited.

Response RT (z/OS console for active system IMSA):

The z/OS console for the active system will show a user 0604 abend in progress for IMSA. If the ABDUMP keyword had been included on the /SWITCH command, the 0604 abend would be accompanied by a diagnostic dump of the active system.

Response RT (master terminal for alternate system IMSB):

The following figure is a screen that shows some of the messages associated with the beginning of takeover on the alternate system.
Intermediate screens are not shown. They would indicate such takeover functions as:

- Enabling of dependent region processing
- IRLM takeover
- Backout processing
- Draining of suspend queue
- Session switching

The following figure is a screen that shows takeover is complete.

Takeover is complete and the alternate system is now an active system. The XRF environment status line indicates that the newly created active system is running in I/O toleration mode (awaiting I/O prevention).

Related concepts:
Takeover phase of the XRF process (System Administration)
Chapter 26. TERMINATE commands

Use the TERMINATE commands to terminate a global online change or to stop one or more HALDB OLRs that are in progress.

- "TERMINATE OLC command"
- "TERMINATE OLREORG command" on page 849

TERMINATE OLC command

When the TERMINATE OLC (stop online change) command is issued by an IMS command master that is running with RM services (RMENV=Y), the command terminates a global online change and coordinates with all of the IMS systems in the IMSplex.

Subsections:
- "Environment"
- "Syntax"
- "Usage notes"
- "TERMINATE OLC error handling" on page 838
- "Output fields" on page 840
- "Return, reason, and completion codes" on page 841
- "Examples" on page 847

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) from which the TERMINATE OLC command can be issued.

<table>
<thead>
<tr>
<th>Command / Keyword</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>TERMINATE OLC</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Syntax

```
TERMINATE OLC
```

Usage notes

If an IMS is not running with RM services (RMENV=N), the TERMINATE OLC command terminates an online change for that IMS only. If an IMS system is not running with RM, each IMS must have a unique OLCSTAT data set which cannot be shared. If the OLCSTAT data set contains the name of an IMS other than the one that is processing the online change, TERMINATE OLC is rejected because the OLCSTAT data set is invalid for the environment. To determine which IMS member names are invalid, issue the QUERY OLC command to display the contents of the OLCSTAT data set. You can use the OLC utility, DFSUOLC0, to correct the data set.
Each IMS system that does not have RM services and participates in global online change, must separately issue the TERMINATE OLC command. In a non-RM environment, if more than one IMS is specified in the route list for the TERMINATE OLC command or the default of route all is specified, online change is only performed for the IMS command master. To determine which IMS systems are defined with RMENVNO, issue a QUERY MEMBER SHOW(ATTRIB) command.

This command can be specified only through the OM API. OM sends the TERMINATE OLC command to an IMS in the IMSplex.

This command can be issued to an IMSplex using the Batch SPOC utility.

The TERMINATE OLC command can be used to abort an IMSplex-wide global online change initiated by a INITIATE OLC PHASE(PREPARE) command, before the online change is successfully committed with a INITIATE OLC PHASE(COMMIT) command.

The TERMINATE OLC command can be used to abort an online change after an INITIATE OLC PHASE(COMMIT) failure that occurs before the OLCSTAT data set is updated. Once the commit process has updated the OLCSTAT data set, the online change is considered to be successful and cannot be aborted.

A TERMINATE OLC command that aborts a global online change is similar to the /MODIFY ABORT command, except that it applies to all of the IMS systems in an IMSplex that are participating in the global online change. The TERMINATE OLC command can be used to terminate an INIT OLC TYPE(ACBMBR) command in progress. If the updated members have not been committed, the TERM OLC command will delete the new versions of the updated members in the active ACBLIB. The TERM OLC command for a TYPE(ACBLIB) will log a X'7010' log record indicating that the member OLC has been terminated.

The TERMINATE OLC command is not supported if local online change is enabled. The TERMINATE OLC command is rejected if the IMS to which the command is routed does not support global online change. If this occurs and there is an IMS that supports global online change, the user must route the command to a specific IMS that supports global online change.

The TERMINATE OLC command is invalid on the XRF alternate, RSR tracker, and FDBR system.

The OM command timeout default of 300 seconds (5 minutes) might not be enough time for the online change phase to complete. You might need to specify a timeout value on the command based on the needs of the installation. To change the timeout value, use the TIMEOUT parameter of the CSLOMCMCD command request or specify a Wait (timeout) value when you issue the TERMINATE OLC command from TSO SPOC.

The command syntax for this command is defined in XML and is available to automation programs which communicate with OM.

**TERMINATE OLC error handling**

Errors unique to the processing of this command are returned as a completion code. A completion code is returned for each action against an individual resource.
The TERMINATE OLC command might result in an error that leaves IMS systems in various online change states. Correct the error. Issue the QUERY MEMBER TYPE(IMS) SHOW(STATUS) command to display the online change state of all the IMS systems in the IMSplex. Evaluate the QUERY MEMBER TYPE(IMS) output to help you determine what to do:

- None of the IMS systems in an online change state
  The TERMINATE OLC command succeeded or was not applicable. No further action needs to be taken.

- Some of the IMS systems in a prepare complete state
  The online change is not committed. Correct the problem that caused TERMINATE OLC to fail, then try the TERMINATE OLC command again.
  The IMS systems that are in an online change state remain in an online change state until you abort the online change.

- All IMS systems in a prepare complete state
  The online change is not committed. Correct the problem that caused TERMINATE OLC to fail, then try the TERMINATE OLC command again.
  The IMS systems that are in an online change state remain in an online change state until you abort the online change.

- Some IMS systems in prepare complete and commit phase 1 complete state
  The commit phase failed before the master updated the OLCSTAT data set, so the online change is not committed. Correct the problem that caused TERMINATE OLC to fail and try the TERMINATE OLC command again.
  The IMS systems that are in an online change state remain in an online change state until you abort the online change.

- All IMS systems in commit phase 1 complete state
  If the commit phase failed before the master updated the OLCSTAT data set, the online change is not committed. Correct the problem that caused TERMINATE OLC to fail and try the TERMINATE OLC command again.
  If the commit phase failed after the master updated the OLCSTAT data set, the online change is committed. The TERMINATE OLC command is not permitted. You must correct the problem that caused the commit command to fail and try the INITIATE OLC PHASE(COMMIT) command again.
  The IMS systems that are in an online change state remain in an online change state until you abort the online change or commit the online change.
  You can determine whether the OLCSTAT data set has been updated by the modify ID. Issue the QUERY OLC LIBRARY(OLCSTAT) SHOW(MODID) command. Check if the modify ID returned is different from the modify ID returned by the INITIATE OLC PHASE(PREPARE) command, or the modify ID returned by a QUERY OLC LIBRARY(OLCSTAT) SHOW(MODID) command issued before the INITIATE OLC PHASE(COMMIT) command.

- Some IMS systems in commit phase 1 complete state and some in commit phase 2 complete state
  The online change is committed. The TERMINATE OLC command is not permitted. You must correct the problem that caused the commit command to fail and try INITIATE OLC PHASE(COMMIT) again.
  The IMS systems that are in an online change state remain in an online change state until you finish the online change with an INITIATE OLC PHASE(COMMIT) command.

- All IMS systems in commit phase 2 complete state
The online change is committed. The TERMINATE OLC command is not permitted. You must correct the problem that caused the commit command to fail and try INITIATE OLC PHASE(COMMIT) again.

The IMS systems that are in an online change state remain in an online change state until you finish the online change with an INITIATE OLC PHASE(COMMIT) command.

- Some IMS systems in commit phase 2 complete state and some not in online change state

The online change is committed. The TERMINATE OLC command is not permitted. You must correct the problem that caused the commit command to fail and try INITIATE OLC PHASE(COMMIT) again.

The IMS systems that are in an online change state remain in an online change state until you finish the online change with an INITIATE OLC PHASE(COMMIT) command.

Errors unique to the processing of this command are returned as a completion code. A completion code is returned for an IMS participating in the online change phase.

**Output fields**

The following table shows the output fields for a TERMINATE OLC command. The columns in the table are as follows:

**Short label**
Contains the short label generated in the XML output.

**Keyword**
Identifies keywords on the command that caused the field to be generated. N/A appears for output fields that are always returned.

**Meaning**
Provides a brief description of the output field.

<table>
<thead>
<tr>
<th>Table 344. Output fields for the TERMINATE command</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Short label</strong></td>
<td><strong>Keyword</strong></td>
<td><strong>Meaning</strong></td>
</tr>
<tr>
<td>MBR</td>
<td>N/A</td>
<td>IMSplex member that built the line of output. IMS identifier of the IMS that was master of the abort phase. IMS identifier is always returned.</td>
</tr>
<tr>
<td>IMSMBR</td>
<td>N/A</td>
<td>IMS member that performed the global online change phase. The IMS member name is always returned.</td>
</tr>
<tr>
<td>CC</td>
<td>N/A</td>
<td>Completion code from the IMS member that performed the online change phase. Completion code is always returned.</td>
</tr>
<tr>
<td>CCTXT</td>
<td><em>error</em></td>
<td>Completion code text that briefly explains the meaning of the non-zero completion code.</td>
</tr>
<tr>
<td>ERRT</td>
<td>N/A</td>
<td>Error text associated with a nonzero completion code returned by the IMS member that performed the online change phase. Error text might be returned if the completion code is nonzero.</td>
</tr>
</tbody>
</table>
Return, reason, and completion codes

The OM return and reason codes that might be returned as a result of this command are standard for all commands entered through the OM API. Refer to the OM CSLOMCMDCMD Return and Reason code section for the list of codes and their meanings.

An IMS return and reason code is returned to OM by the TERMINATE OLC command.

Some reason codes are accompanied by a complete list of IMS systems and completion codes. The reason code meaning indicates whether a list is returned. A partial list of IMS systems and completion codes might be returned with any TERMINATE OLC error reason code, if any output was built before the error was detected.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

**Table 345. Return and reason codes for the TERMINATE OLC command**

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The TERMINATE OLC command completed successfully. The TERMINATE OLC command is applied to all of the IMS systems listed in the OLCSTAT data set. All of the IMS systems in the IMSplex are no longer in an online change state. An output line is built for each IMS listed in the OLCSTAT data set. Each output line contains the IMS member name and a completion code of zero.</td>
</tr>
<tr>
<td>X'00000004'</td>
<td>X'0000100C'</td>
<td>The TERMINATE OLC command completed successfully, but was not applicable to one or more IMS systems for acceptable reasons. The TERMINATE OLC command applies to all of the IMS systems listed in the OLCSTAT data set. An output line is built for each IMS listed in the OLCSTAT data set. Each output line contains the IMS member name and a completion code. A nonzero completion code may be accompanied by error text. One or more of the IMS systems contain a completion code that indicates that the terminate online change did not apply to this IMS, such as the IMS state is abended, the IMS state is shutdown, or this IMS is already in the correct online change state. The TERMINATE OLC completion code table contains the list of completion codes and error text that can be returned by the TERMINATE OLC command.</td>
</tr>
<tr>
<td>Return code</td>
<td>Reason code</td>
<td>Meaning</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003000'</td>
<td>The TERMINATE OLC command is successful for at least one IMS but not all IMS systems. The TERMINATE OLC command applies to all IMS systems listed in the OLCSTAT data set. An output line is built for each IMS listed in the OLCSTAT data set. Each output line contains the IMS member name and a completion code. A nonzero completion code might be accompanied by error text. One or more of the IMS systems returned an error completion code. The TERMINATE OLC completion code table contains the list of completion codes and error text that can be returned by the TERMINATE OLC command. If the TERMINATE OLC command fails for one or more IMS systems, correct the problem and issue the TERMINATE OLC command again. For more details, see <a href="#">“TERMINATE OLC error handling” on page 838</a>.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>The TERMINATE OLC command failed for all of the IMS systems. The TERMINATE OLC command applies to all of the IMS systems listed in the OLCSTAT data set. An output line is built for each IMS listed in the OLCSTAT data set. Each output line contains the IMS member name and a completion code. A nonzero completion code might be accompanied by error text. All of the IMS systems returned an error completion code. The TERMINATE OLC completion code table contains the list of completion codes and error text that can be returned by the TERMINATE OLC command. If the TERMINATE OLC command fails for one or more IMS systems, correct the problem and issue the TERMINATE OLC command again. For more details, see <a href="#">“TERMINATE OLC error handling” on page 838</a>.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004004'</td>
<td>The TERMINATE OLC command failed because there is no CQS. RM attempted to access the process resource on the resource structure, but it failed because CQS is not available. The online change phase might have succeeded on one or more IMS systems. For more details, see <a href="#">“TERMINATE OLC error handling” on page 838</a>.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000400C'</td>
<td>The TERMINATE OLC command failed because it is invalid for an XRF alternate.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>The TERMINATE OLC command failed because it is invalid for an RSR tracker.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004018'</td>
<td>The TERMINATE OLC command failed because the RM resource structure is not available. One or more IMS systems in the IMSplex might still be in an online change state. For more details, see <a href="#">“TERMINATE OLC error handling” on page 838</a>.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004100'</td>
<td>The TERMINATE OLC command is rejected because the resource structure is full. RM failed trying to create the process resource on the resource structure. One or more IMS systems might still be in an online change state. For more details, see <a href="#">“TERMINATE OLC error handling” on page 838</a>.</td>
</tr>
</tbody>
</table>
### Table 345. Return and reason codes for the TERMINATE OLC command (continued)

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000010'</td>
<td>X'00004104'</td>
<td>The TERMINATE OLC command failed because RM is not available. The online change phase might have succeeded on one or more IMS systems. Either there is no RM address space, or RM is active but not registered to SCI because CQS or the resource structure is not available. For more details, see “TERMINATE OLC error handling” on page 838.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004108'</td>
<td>The TERMINATE OLC command failed because SCI is not available. One or more IMS systems might still be in an online change state. For more details, see “TERMINATE OLC error handling” on page 838.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000410C'</td>
<td>The TERMINATE OLC command is rejected, because global online change is not enabled. Local online change is enabled. Use the /MODIFY command for local online change. If your IMSplex is made up of some IMS systems that support global online change and some that support local online change, route the TERMINATE OLC command to an IMS that is enabled for global online change.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004110'</td>
<td>The TERMINATE OLC command is rejected, because the command does not apply to the online change state of the command master. TERMINATE OLC is rejected if the command master is not in an online change state. TERMINATE OLC is rejected if the command master has already committed the online change. For more details, see “TERMINATE OLC error handling” on page 838.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000411C'</td>
<td>The OLCSTAT data set contains the name of an IMS other than the IMS processing the online change. Use DFSUOLC0 to correct the data set.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004114'</td>
<td>The TERMINATE OLC command failed because of an error accessing the OLCSTAT data set. One or more IMS systems in the IMSplex might still be in an online change state. A DFS2843 message is sent to the OM output exit as unsolicited output. For more details, see “TERMINATE OLC error handling” on page 838.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004118'</td>
<td>The TERMINATE OLC command failed because of an error allocating the OLCSTAT data set. One or more IMS systems in the IMSplex might still be in an online change state. A DFS2848 message is sent to the OM output exit as unsolicited output. For more details, see “TERMINATE OLC error handling” on page 838.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000411C'</td>
<td>The TERMINATE OLC command failed because of an error in the OLCSTAT data set contents. One or more of the values is invalid. A DFS2844 message is sent to the OM output exit as unsolicited output.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004120'</td>
<td>The TERMINATE OLC command is rejected because an online change phase is already in progress on this IMS, which might be INITIATE OLC, TERMINATE OLC, or /DISPLAY MODIFY.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005000'</td>
<td>The TERMINATE OLC command failed because of an IMODULE GETSTOR storage request failed.</td>
</tr>
</tbody>
</table>
Table 345. Return and reason codes for the TERMINATE OLC command (continued)

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000014'</td>
<td>X'00005004'</td>
<td>The TERMINATE OLC command failed because a DFSOCMD response buffer could not be obtained. One or more IMS systems in the IMSplex might still be in an online change state. For more details, see “TERMINATE OLC error handling” on page 838.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005100'</td>
<td>The TERMINATE OLC command failed because of an RM error. One or more IMS systems in the IMSplex might still be in an online change state. For more details, see “TERMINATE OLC error handling” on page 838.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005104'</td>
<td>The TERMINATE OLC command failed because of a CQS error. One or more IMS systems in the IMSplex might still be in an online change state. For more details, see “TERMINATE OLC error handling” on page 838.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005108'</td>
<td>The TERMINATE OLC command failed because of an SCI error. One or more IMS systems in the IMSplex might still be in an online change state. For more details, see “TERMINATE OLC error handling” on page 838.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005FFF'</td>
<td>The TERMINATE OLC command failed because of an internal IMS error. One or more IMS systems in the IMSplex might still be in an online change state. For more details, see “TERMINATE OLC error handling” on page 838.</td>
</tr>
</tbody>
</table>

The following table contains the completion codes that can be returned on a TERMINATE OLC command, the meaning of the completion code, and any error text associated with the code.

Table 346. Completion codes for the TERMINATE OLC command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Meaning</th>
<th>ERROR TEXT (uppercase)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The online change commit or abort phase completed successfully.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>The online change type does not apply to this IMS. For example, an ACBLIB online change does not apply to a DCCTL IMS. This IMS does nothing.</td>
<td></td>
</tr>
</tbody>
</table>
| 2               | The online change phase was not attempted by this IMS for one of the following reasons:  
  • The online change phase master encountered an error and did not direct this IMS to perform the online change phase. |
<table>
<thead>
<tr>
<th>Completion code</th>
<th>Meaning</th>
<th>ERROR TEXT (uppercase)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>The online change for this IMS is already completed or terminated. This IMS coordinates the termination of the global online change, but this IMS does not have to do anything locally. The TERMINATE OLC command completed successfully and cleaned up information about the global online change, if there was any. An example of this is the information that RM keeps to manage the global online change.</td>
<td>ERROR TEXT (uppercase)</td>
</tr>
<tr>
<td>58</td>
<td>An IMS is not registered to RM. An OLCSTAT data set contains an IMS that is not registered to RM. Terminate fails for that IMS.</td>
<td>ERROR TEXT (uppercase)</td>
</tr>
<tr>
<td>60</td>
<td>IMODULE GETMAIN storage error.</td>
<td>ERROR TEXT (uppercase)</td>
</tr>
<tr>
<td>61</td>
<td>BCB storage error.</td>
<td>ERROR TEXT (uppercase)</td>
</tr>
<tr>
<td>62</td>
<td>HIOP storage error.</td>
<td>ERROR TEXT (uppercase)</td>
</tr>
<tr>
<td>63</td>
<td>WKAP storage error.</td>
<td>ERROR TEXT (uppercase)</td>
</tr>
<tr>
<td>80</td>
<td>Data set error.</td>
<td>Function (8 char), ddname (8 char), return code (8 bytes), and error detail (8 char).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Function can be one of the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• OPEN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Data set open error.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• READ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Data set read error.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DDname can be OLCSTAT.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Return code is the data set service return code.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reason code is the data set service reason code.</td>
</tr>
<tr>
<td>90</td>
<td>Internal error.</td>
<td>Module name that detected internal error (8 char), unused (8 char), return code or function code (8 bytes), and error detail (8 char).</td>
</tr>
</tbody>
</table>
Table 346. Completion codes for the TERMINATE OLC command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Meaning</th>
<th>ERROR TEXT (uppercase)</th>
</tr>
</thead>
<tbody>
<tr>
<td>91</td>
<td>The online change commit phase 2 or abort phase timed out before this IMS responded to the online change commit phase 2 or abort phase. The commit phase 2 or abort might have succeeded on this IMS. Issue QUERY MEMBER TYPE(IMS) to determine the online change state of this IMS.</td>
<td></td>
</tr>
</tbody>
</table>
### Table 346. Completion codes for the TERMINATE OLC command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Meaning</th>
<th>ERROR TEXT (uppercase)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2</td>
<td>IMS state error.</td>
<td>IMS state error (32 char). The IMS state can be one of the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <strong>ABENDED</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>This IMS ended abnormally since the last successful online change. Online change is terminated on this IMS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <strong>NOT-REACHABLE</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The online change phase is rejected because this IMS is NOT-REACHABLE. The SCI on the OS image where this IMS is active is down. Restart the SCI and issue the INITIATE OLC or TERMINATE OLC command again.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <strong>OLC ALREADY COMMITTED</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The online change terminate is rejected because online change is already committed. All IMS systems have completed commit phase 1 and the OLCSTAT data set was updated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <strong>OLC NOT IN PROGRESS</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The IMS is not in an online change state. The request to terminate the online change does not apply to this IMS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <strong>OLC PHASE IN PROGRESS</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The online change phase is rejected because this IMS has an online change phase already in progress.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <strong>RESTART NOT COMPLETE</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>This IMS initialized before the online change was initiated, but has not completed restart. The online prepare or abort phase is rejected as long as this IMS is in this state. Cancel this IMS, then abort the online change before attempting the online change prepare phase again.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <strong>SHUTDOWN</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>This IMS shut down normally since the last successful online change. Online change is terminated on this IMS.</td>
</tr>
</tbody>
</table>

### Examples

**TSO SPOC input:**

TERMINATE OLC

**TSO SPOC output:**
OM API input:
CMD (TERMINATE OLC)

OM API output:

<imsout>
<ctl>
<omname>OM10M </omname>
<omvsn>1.1.0</omvsn>
<xmlvsn>1 </xmlvsn>
<statime>15:49:27.197919</statime>
<stotime>15:49:27.712209</stotime>
<staseq>B7C4ADFC04DF841</staseq>
<stoseq>B7C4ADFC8ADD1F45</stoseq>
<rqtsttkn>USRRT011 10084927</rqtsttkn>
<rc>02000000</rc>
<rsn>00003000</rsn>
</ctl>
</msout>

<cmderr>
<mbr name="IMS2 " type=IMS styp=DBDC rc=02000004 rsn=00001008/>
<mbr name="SYS3 " type=IMS styp=DBDC rc=02000004 rsn=00001008/>
</cmderr>
<cmd>
<master>IMS3 </master>
<userid>USRRT011 </userid>
<verb>TERM</verb>
<kwd>OLC </kwd>
<input>TERMINATE OLC</input>
</cmd>
<cmdrsphdr>
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left" />
<hdr slbl="IMSMBR" llbl="Member" scope="LCL" sort="a" key="1" scroll="no" len="8" dtype="CHAR" align="left" />
<hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0" scroll="yes" len="4" dtype="INT" align="right" />
</cmdrsphdr>
<cmdrspdata>
<rsp>MBR(IMS3 ) IMSMBR(SYS3 ) CC( 0 )</rsp>
<rsp>MBR(IMS3 ) IMSMBR(IMS2 ) CC( 0 )</rsp>
<rsp>MBR(IMS3 ) IMSMBR(IMS3 ) CC( 0 )</rsp>
</cmdrspdata>
</imsout>

Explanation: Global online change was aborted for the IMSplex after a successful INITIATE OLC PHASE(PREPARE) command. Global online change was successfully terminated.

Related concepts:
TERMINATE OLREORG command

The TERMINATE OLREORG command is used to stop one or more HALDB online reorganizations (OLRs) that are in progress.

The command stops OLR processing at a unit of reorganization boundary, unless the OPTION keyword is specified.

This command supports the type-1 command format and the type-2 command format. The type-1 command format is `/TERMINATE OLREORG`. The type-1 command response is returned as a DFS0725I pre-edit message. The type-2 command format is TERMINATE OLREORG. The type-2 command response is returned as XML and is available to automation programs.

Subsections:
- “Environment”
- “Syntax”
- “Keywords” on page 850
- “Usage notes” on page 850
- “Output fields” on page 851
- “Return, reason, and completion codes” on page 852
- “Examples” on page 852

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) from which the TERMINATE OLREORG command can be issued.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>TERMINATE OLREORG</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NAME</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>OPTION</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

Type-1 command syntax

```
/TERMINATE OLREORG NAME(partname) OPTION(ABORT FORCE)
```
Type-2 command syntax

```
TERMINATE OLREORG NAME (partname)
```

```
OPTION (ABORT)
```

**Keywords**

The following keywords are valid for the TERMINATE OLREORG command:

**NAME()**

Specifies the names or name of a HALDB partition for which the OLR is to be stopped. You can specify only PHDAM or PHIDAM HALDB partition names. A parameter with the wildcard character (*) is not allowed, except as NAME(*) for all defined HALDB partitions.

For the type-2 version of this command, you can specify one or more HALDB partition names.

For the type-1 version of the command, you can specify only one partition name.

**OPTION()**

Allows you to specify the FORCE or ABORT options.

**ABORT**

Causes the HALDB OLR to be stopped immediately, possibly with a completion code of abend U0474, without waiting for the current unit-of-reorganization to complete. Backout may be required depending on the state of the online reorganization at termination.

**FORCE**

Specifies that the HALDB OLR for the named part name is to be stopped when the next record boundary is encountered. All of the moved data up to that point is committed to DASD and no backout is required.

**Attention:** If the HALDB OLR is stopped prior to completion, the OPTION(NODEL) is not retained and must be specified on the INITIATE OLREORG command that is issued to resume the stopped online reorganization or on the UPDATE OLREORG command.

**Usage notes**

If /TERMINATE OLREORG or TERMINATE OLREORG is issued from OM API, it is treated as a type-2 command. Therefore, if you issue TERM OLREORG as a type-2 command from an OM API, the only valid command verb form is TERM or TERMINATE. Similarly, if /TERMINATE OLREORG is issued from a terminal, it is treated as a type-1 command. Therefore, you can issue /TERMINATE OLREORG using the first three command characters, such as /TER OLREORG.

If an online reorganization is started with the ALTER option to modify the structure of the database, IMS reorganizes all of the partitions in the database. In
In this case, if you need to stop the reorganization of all of the partitions in the database, specify an asterisk in the NAME keyword, for example TERMINATE OLREORG NAME(*). You cannot specify the name of the HALDB master database. You can use either the type-1 or type-2 format of the TERMINATE OLREORG command to stop alter processing; however, if the altered database is shared, only the type-2 command can be routed to all of the IMS systems that share the database.

This command can be issued to an IMSplex using the Batch SPOC utility.

The TERMINATE OLREORG command causes HALDB OLR to be stopped for the specified HALDB partitions. After a HALDB OLR is terminated, it is no longer active and it does not have an owning IMS. The partitions remain in cursor-active status until the online reorganization is resumed with an INITIATE OLREORG command and completes, or until you run an offline reorganization.

Command responses for /TERMINATE OLREORG

When you issue the /TERMINATE OLREORG command as a type-1 command, the command response is returned in a message format.

When the command completes successfully, the message, DFS0725I, is returned to the system console and to the master terminal with a completion code of 0. If the command results in an error, a non-zero completion code or an error message is returned to the master terminal and system console.

DFS0725I INITIATE|UPDATE|TERMINATE OLREORG COMMAND FOR DB dbnamexx COMPLETE.

CC= nn

where: dbnamexx is the HALDB partition name entered on the command

nn is the completion code

Output fields

This section describes the responses from the OM API for the TERMINATE OLREORG command. The following table shows the TERMINATE OLREORG output fields. The columns in the table are as follows:

Short label
Contains the short label that is generated in the XML output. This field does not apply to the /TERMINATE command.

Show Keyword
Identifies the command keyword that caused the field to be generated. N/A appears for output fields that are always returned.

Meaning
Provides a brief description of the output field.

<table>
<thead>
<tr>
<th>Short label</th>
<th>Show Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>PART</td>
<td>N/A</td>
<td>Partition name.</td>
</tr>
<tr>
<td>MBR</td>
<td>N/A</td>
<td>The IMS that built the command response line.</td>
</tr>
<tr>
<td>CC</td>
<td>N/A</td>
<td>Completion code.</td>
</tr>
</tbody>
</table>
Return, reason, and completion codes

The OM return and reason codes that might be returned as a result of the TERMINATE OLREORG command are standard for all commands that are entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 349. Return and reason codes for the TERMINATE OLREORG command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The TERMINATE OLREORG command completed successfully.</td>
</tr>
<tr>
<td>X'00000004'</td>
<td>X'00001010'</td>
<td>No matches found for filter.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003000'</td>
<td>At least one request was successful.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>None of the requests was successful.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000400C'</td>
<td>Command issued on an XRF alternate.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>Command issued on an RSR tracker.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005000'</td>
<td>A GETMAIN error occurred.</td>
</tr>
</tbody>
</table>

The following table includes an explanation of the completion codes. Errors unique to the processing of TERMINATE OLREORG command are returned as completion codes. A completion code is returned for each action against a HALDB partition.

Table 350. Completion codes for the TERMINATE OLREORG command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The TERMINATE OLREORG command completed successfully for the partition.</td>
</tr>
<tr>
<td>10</td>
<td>Resource name is invalid.</td>
</tr>
<tr>
<td>14</td>
<td>Resource is not a partition name.</td>
</tr>
<tr>
<td>1C</td>
<td>Resource is a partitioned secondary index.</td>
</tr>
<tr>
<td>24</td>
<td>No HALDB OLR is in progress.</td>
</tr>
</tbody>
</table>

Examples

The following are examples of the TERMINATE OLREORG command:

Example 1 for /TERMINATE OLREORG command

Entry ET:
/TERMOLREORG NAME(PDHDKOA)

Response ET:
DFS0725I TERMINATE OLREORG COMMAND FOR DB PDHDKOA COMPLETE. CC= 24

Explanation: The TERM OLREORG command is issued for partition PDHDKOA to stop the OLR that is in progress. The command is not successful because OLR is not in progress for the partition.
Example 2 for TERMINATE OLREORG command

TSO SPOC input:
TERM OLREORG NAME(PDHDOKA,PDHDOKC)

TSO SPOC output:
Partition MbrName CC
PDHDOKA IMSA 0
PDHDOKA IMS1 24
PDHDOKC IMSA 24
PDHDOKC IMS1 24

OM API input:
CMD ( TERM OLREORG NAME(PDHDOKA,PDHDOKC))

OM API output:
<imsout>
<ctl>
<omname>OM1OM </omname>
<omvsn>1.2.0</omvsn>
<xmlvsn>1</xmlvsn>
<staseq>89962C747DF93586</staseq>
<rqttnk1>USRTO05 10143113</rqttnk1>
<rc>0200000C</rc>
<rsn>00003000</rsn>
</ctl>
</imsout>

<cmderr>
<mbr name="IMSA ">
<typ>IMS </typ>
<styp>DBCTL </styp>
<rc>0000000C</rc>
<rsn>00003004</rsn>
<rsntext>At least one request successful</rsntext>
</mbr>

<mbr name="IMS1 ">
<typ>IMS </typ>
<styp>DBDC </styp>
<rc>0000000C</rc>
<rsn>00003004</rsn>
<rsntext>At least one request successful</rsntext>
</mbr>
</cmderr>

<cmd>
<master>IMSA </master>
<userid>USRT005 </userid>
</cmd>

<cmdrsphdr>
</cmdrsphdr>

<rsp> PART(PDHDOKA ) MBR(IMSA ) CC( 0) </rsp>
<rsp> PART(PDHDOKC ) MBR(IMSA ) CC( 24) </rsp>
<rsp> PART(PDHDKOA ) MBR(IMS1 ) CC( 24 ) </rsp>
<rsp> PART(PDHDKOC ) MBR(IMS1 ) CC( 24 ) </rsp>
</cmdrspdata>
</imsout>

Explanation: The TERM OLREORG command is issued to stop the OLR for partitions PDHDOKA and PDHDOKC. The command is routed to IMSA and IMS1. The command is successful for partition PDHDOKA at IMSA, where OLR is in progress. The command is not successful for PDHDOKC at IMSA because OLR is not in progress for PDHDOKC on IMSA. The command is not successful for either of the two partitions at IMS1, because OLR is not in progress for PDHDOKA and PDHDOKC on IMS1.

Related concepts:

- How to interpret CSL request return and reason codes (System Programming APIs)

Related reference:

- Command keywords and their synonyms (Commands)
Chapter 27. /TEST command

Use the /TEST command to place a terminal or a user into either test mode or MFSTEST mode.

Subsections:
- "Environment"
- "Syntax"
- "Keywords"
- "Usage notes" on page 856
- "Examples" on page 857

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/TEST</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LINE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NODE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PTERM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>USER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
/TEST
/TES
MFS
 LINE—line#
 PTERM—pterm#
 NODE—nodename
 USER—username
```

Keywords

The following keywords are valid for the /TEST command:

**MFS**

Specifies MFS test mode for the terminal or user. The MFS parameter is valid only for terminals supported by Message Format Service (MFS). When the /TEST MFS USER command is issued for a dynamic user, it is not possible to determine if the MFSTEST mode is valid until the user signs on to a terminal. Once the user signs on to a terminal, a check is made to determine whether that terminal supports MFSTEST mode. If the terminal does not support MFSTEST mode, the mode is not propagated to the terminal and is removed from the USER unless another /TEST MFS USER command is issued.
LINE, PTERM
Specifies the non-VTAM line and pterm to place into MFSTEST mode.

NODE
Specifies the VTAM node to place into MFSTEST mode.

The /TEST MFS NODE form of the command is valid only for statically defined nodes.

Restrictions for using NODE and USER parameters together:
- Commands with the NODE USER keyword pair are valid only if:
  - The USER is signed on to the NODE
  - In an ISC environment, the USER is allocated to the NODE
  - The nodes and users already exist
- /TEST MFS NODE USER commands are valid for ISC, LUP, and 3600 nodes only. For ISC, the /TEST MFS NODE nodename USER username form of the command is supported for ISC nodes and applies to the half-session allocated to the USER username.

USER
When specified without the NODE keyword, USER specifies the dynamic user to place into MFSTEST mode. MFSTEST mode status is kept from one signon to another. For example, if a user issues a /TEST MFS command, signs off, and then signs on again at another terminal, the MFSTEST mode is still in effect. If the user does not exist, it is created and MFSTEST mode is set.

Usage notes

This command can be issued to an IMSplex using the Batch SPOC utility.

In test or echo mode, any input from the terminal is sent back. Input and output errors are not checked, and IMS error notification procedures are bypassed. Echo mode continues until reset with an /END, /STOP LINE, /STOP LINE PTERM, or a /STOP NODE command. The /DISPLAY command identifies a terminal or user in test mode or MFSTEST mode. If no keywords are supplied, the terminal entering the command is placed into test mode or MFSTEST mode.

Test mode is not a command significant status, so the commands to set test mode are not recoverable nor are they kept after signons and can only be set by the end user or terminal, not remotely by an operator. The /TEST LINE, /TEST NODE, and /TEST USER commands, which set test mode remotely, are no longer supported.

In MFSTEST mode, terminals supported by the Message Format Service use format blocks from a special test library if the requested format block is in the test library; otherwise, the blocks are obtained from the production library. MFSTEST mode continues until reset with an /END command. Certain error conditions can occur that cause MFSTEST mode to terminate. If an error condition occurs, the terminal operator receives an error message.

MFSTEST mode is a command significant status, is recoverable and is remembered across logons and signons. For example, if a /TEST MFS NODE command is entered at a node, the node logs off and logs back on at another terminal, MFSTEST mode is still in effect. If a dynamic user issues a /TEST MFS USER command, signs off, and then signs on again at another terminal, MFSTEST mode is still in effect.
/TEST MFS NODE applies to dynamic nodes in addition to static nodes because MFSTEST mode is associated with dynamic nodes as well as dynamic users. /TEST MFS NODE and /TEST MFS NODE USER set MFSTEST mode at the node level. /TEST MFS USER sets MFSTEST at the user level. /TEST MFS with no keywords sets MFSTEST at the node level for static terminals (they have no user level) and at the user level for dynamic terminals.

The /TEST NODE USER command is supported for static and dynamic ISC sessions. For ISC, /TEST MFS NODE USER is required. You cannot use /TEST MFS NODE (without USER) for ISC and have it apply to all of the half-sessions.

If global resource information is kept in Resource Manager, MFSTEST mode is set globally. If global resource information is not kept in Resource Manager, the resource does not exist, and ETO is enabled, the resource (node or user) is created and MFSTEST mode is set. If a temporary node is dynamically created to hold command status, and the temporary node has MFSTEST status, then, when a logon occurs for the node, the MFSTEST status is set for the logged-on node. If the node logging on is an ISC parallel session, MFSTEST is set only for the first half-session that is logged on. Subsequent ISC half-sessions will not be put into MFSTEST mode.

**Examples**

The following are examples of the /TEST command:

**Example 1 for /TEST command**

Entry ET:

/TEST

Response ET:

DFS058I TEST COMMAND COMPLETED

Entry ET:

NOW IS THE TIME TO COME TO THE AID

Response ET:

NOW IS THE TIME TO COME TO THE AID

Explanation: The entering terminal is placed in echo mode and continues to receive message input as output until test mode is terminated.

**Example 2 for /TEST command**

Entry ET:

/TEST MFS

Response ET:

DFS058I TEST COMMAND COMPLETED

Explanation: The entering terminal is placed into MFSTEST mode.
Chapter 28. /TRACE commands

Use the /TRACE commands to direct and to control the IMS capabilities for tracing internal IMS events. They also start, stop, and define the activity to be monitored by the IMS Monitor.

The information developed by the LINE, LINK, NODE, UNITYPE, TRANSACTION, PROGRAM, PSB, and TCO keywords is written on the IMS system log (type X'5F' for PSB, and type X'67' records for the other keywords mentioned.) PI (program isolation) and TABLE trace information is kept in storage or logged (type X'67' records), depending on specification of additional keywords. The MONITOR keyword provides no such output on the system log; it only controls the IMS Monitor. The monitor develops its own output data and writes it on a separate data set.

This command can be issued to an IMSplex using the Batch SPOC utility.

The status and options of the current IMS traces can be displayed with the /DISPLAY TRACE command.

Subsections:
- "/TRACE EXIT command" on page 860
- "/TRACE LINE command" on page 861
- "/TRACE LINK command" on page 863
- "/TRACE LUNAME command" on page 866
- "/TRACE MONITOR command" on page 867
- "/TRACE NODE command" on page 870
- "/TRACE OSAMGTF command" on page 874
- "/TRACE PI command" on page 875
- "/TRACE PGM command" on page 877
- "/TRACE PSB command" on page 879
- "/TRACE TABLE command" on page 880
- "/TRACE TCO command" on page 886
- "/TRACE TIMEOUT command" on page 886
- "/TRACE TMEMBER command" on page 888
- "/TRACE TRAN command" on page 889
- "/TRACE TRAP command" on page 891
- "/TRACE UNITYPE command" on page 892

Related concepts:
- Using IMS reports (System Administration)

Related reference:
- "UPDATE PGM command" on page 1124
/TRACE EXIT command

Use the /TRACE EXIT command to identify user exit tracing.

Subsections:
• “Environment”
• “Syntax”
• “Keywords”
• “Usage notes”

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 352. Valid environments for the /TRACE EXIT command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/TRACE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>EXIT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SET</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
/TRACE
/TRA
SET [ON | OFF]
EXIT
```

Keywords

The following keyword is valid for the /TRACE EXIT command:

**DFSMSCEO**

The TM and MSC Message Routing and Control user exit. When this keyword is used on the /TRACE EXIT command, the traces causes IMS to write type 6701-MSEA and 6701-MSEB log records to the log data set when the exit routine is called. A 6701-MSEA record is logged when the exit is called if the trace is active for the entry point. A 6701-MSEB record is logged when the exit returns to IMS.

Usage notes

When using the EXIT keyword, you must specify one of the following parameters to turn on or off:
ALL  The trace is turned on or off for all entry points.
LRDI  Calls the Link Receive Direct Routing exit entry point.
LRIN  Calls the Link Receive Intermediate exit entry point.
LRLT  Calls the Link Receive LTERM exit entry point.
LRTR  Calls the Link Receive Transaction exit entry point.
PRCH  Calls the Program Routing CHNG Call exit entry point.
PRGU  Calls the Program Routing GU Call exit entry point.
PRIS  Calls the Program Routing ISRT Call exit entry point.
TR62  Calls the Terminal Routing LU62 exit entry point.
TRBT  Calls the Terminal Routing non-VTAM exit entry point.
TROT  Calls the Terminal Routing OTMA exit entry point.
TRVT  Calls the Terminal Routing VTAM exit entry point.

/TRACE LINE command

Use the /TRACE LINE command to cause events related to the lines to be traced.

Subsections:
• “Environment”
• “Syntax”
• “Keywords” on page 862
• “Examples” on page 863

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 353. Valid environments for the /TRACE LINE command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/TRACE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LEVEL</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>LINE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MODULE</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SET</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TAKEOVER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

![Syntax Diagram]
Keywords

The following keywords are valid for the /TRACE LINE command:

LEVEL

Expands the LINE, LINK, NODE, or UNITYPE trace functions. The LEVEL specification is for the entire IMS system and is changed only by reissuing /TRACE with different values or by restarting the IMS control region.

LEVEL indicates the extent of the control block trace information desired. The indicated control blocks are only traced at relevant times. All levels are inclusive of numerically lower levels. The following list displays the levels and their associated blocks.

Level Blocks
1 CLB (DECB) or LLB(MSC)  
CTB or LTB(MSC)  
IOB (for non-VTAM lines) or IOSB (MSC for channel-to-channel links)  
2 CNT or LNB(MSC)  
CXB  
CRB  
CIB  
CCB  
PD stack  
3 queue manager buffers  
Input/output line buffers  
LXB (for channel-to-channel links and processor storage to processor storage)  
4 save area sets (IMS dispatching)

If the first /TRACE SET ON command does not specify LEVEL, a default of 4 will be used. Specifying LEVEL on subsequent commands will change the defaults.

MODULE

Is used to expand the LINE, LINK, NODE, or UNITYPE trace functions. The MODULE specification is for the entire IMS system and is changed only by reissuing /TRACE with different values or by restarting the IMS control region.

MODULE indicates which modules are to have their control blocks traced.

ALL Both device-dependent module (DDM) and MFS  
DDM Communication analyzer and device-dependent module interfaces
**MFS**  Communication analyzer and Message Format Service (MFS) module interfaces

If the first /TRACE SET ON command does not specify MODULE, a default of ALL will be used. Specifying MODULE on subsequent commands will change the defaults.

**TAKEOVER**

Controls tracing during takeover only, and is separate from regular tracing. TAKEOVER tracing can be set for LINE, LINK, NODE, and UNITYPE keywords.

TAKEOVER only applies in an XRF environment. When TAKEOVER is used with SET OFF, the trace is turned off before takeover. When an output message is dequeued for a terminal, takeover tracing will stop for that terminal.

If both regular and takeover tracing are entered, the most recent setting will override any previous settings; for example, takeover tracing will override regular tracing if regular tracing was entered first. This means that either regular or TAKEOVER tracing can be in effect, but not both.

/TRACE TAKEOVER can be issued only from an XRF active system. It is rejected if entered from an alternate or non-XRF system. It is recovered across restart and takeover, and only needs to be entered once until cold start. Tracing occurs only if the session was active at the time of the takeover.

**Examples**

The following is an example of the /TRACE LINE command:

To turn on the Message Format Service module and communication analyzer level 4 control block tracing for all physical terminals on line 4.

**Entry ET:**

/TRACE SET ON LINE 4 LEVEL 4 MODULE MFS

**Response ET:**

DFS058I  TRACE COMMAND COMPLETED

**/TRACE LINK command**

Use the /TRACE LINK command to cause events related to the logical links to be traced.

**Subsections:**

- "Environment"
- "Syntax" on page 864
- "Keywords" on page 864
- "Examples" on page 865

**Environment**

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.
Table 354. Valid environments for the /TRACE LINK command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/TRACE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LEVEL</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LINK</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MODULE</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SET</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>TAKEOVER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
►► /TRACE
| TRA |
| SET |
| OFF |
| LINK
| link# |
| LEVEL
| 1 |
| 2 |
| 3 |
| 4 |
| A |
```

A:

```
MODULE
| DDM |
| MFS |
| ALL |
| TAKEOVER |
```

Keywords

The following keywords are valid for the /TRACE LINK command:

**LEVEL**

Expands the LINE, LINK, NODE, or UNITYPE trace functions. The LEVEL specification is for the entire IMS system and is changed only by reissuing /TRACE with different values or by restarting the IMS control region.

LEVEL indicates the extent of the control block trace information desired. The indicated control blocks are only traced at relevant times. All levels are inclusive of numerically lower levels. The following list displays the levels and their associated blocks.

**Level**	**Blocks**
1	CLB (DECB) or LLB(MSC)
CTB or LTB(MSC)	
IOB (for non-VTAM lines) or IOSB (MSC for channel-to-channel links)	
2	CNT or LNB(MSC)
CXB	
CRB	
CIB	
CCB	
PD stack

3 queue manager buffers
Input/output line buffers
LXB (for channel-to-channel links and processor storage to processor storage)

4 save area sets (IMS dispatching)

If the first /TRACE SET ON command does not specify LEVEL, a default of 4 will be used. Specifying LEVEL on subsequent commands will change the defaults.

**MODULE**

Is used to expand the LINE, LINK, NODE, or UNITYPE trace functions. The MODULE specification is for the entire IMS system and is changed only by reissuing /TRACE with different values or by restarting the IMS control region.

MODULE indicates which modules are to have their control blocks traced.

<table>
<thead>
<tr>
<th>MODULE</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>Both device-dependent module (DDM) and MFS</td>
</tr>
<tr>
<td>DDM</td>
<td>Communication analyzer and device-dependent module interfaces</td>
</tr>
<tr>
<td>MFS</td>
<td>Communication analyzer and Message Format Service module interfaces</td>
</tr>
</tbody>
</table>

If the first /TRACE SET ON command does not specify MODULE, a default of ALL will be used. Specifying MODULE on subsequent commands will change the defaults.

**TAKEOVER**

Controls tracing during takeover only, and is separate from regular tracing. TAKEOVER tracing can be set for LINE, LINK, NODE, and UNITYPE keywords.

TAKEOVER only applies in an XRF environment. When TAKEOVER is used with SET OFF, the trace is turned off before takeover. When an output message is dequeued for a terminal, takeover tracing will stop for that terminal.

If both regular and takeover tracing are entered, the most recent setting will override any previous settings; for example, takeover tracing will override regular tracing if regular tracing was entered first. This means that either regular or TAKEOVER tracing can be in effect, but not both.

/TRACE TAKEOVER can be issued only from an XRF active system. It is rejected if entered from an alternate or non-XRF system. It is recovered across restart and takeover, and only needs to be entered once until cold start. Tracing occurs only if the session was active at the time of the takeover.

**Examples**

The following is an example of the /TRACE LINK command:

To turn on tracing for a logical link:

Entry ET:

/TRACE SET ON LINK 2 LEVEL 4 MODULE ALL
/TRACE LUNAME command

Use the /TRACE LUNAME command to activate and deactivate tracing for a particular LU name or TP name of the LU name.

Subsections:
- “Environment”
- “Syntax”
- “Usage notes”

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 355. Valid environments for the /TRACE LUNAME command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/TRACE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>INPUT</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LUNAME</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OUTPUT</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SET</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
/TRACE
/TRA
SET ON LUNAME luname

/luname INPUT
/luname OUTPUT
```

Usage notes

Specifying this command causes trace entries to be written to the LUMI trace table. For this reason, the /TRACE SET ON TABLE LUMI command must be entered first in order to create the table for trace entries that will be created by subsequent /TRACE SET ON LUNAME commands. A trace entry is written:
- On LU 6.2 module entries/exits
- When APPC calls are made
- When errors are encountered

The INPUT and OUTPUT keywords provide the operator with the flexibility to control the volume of trace data for LU 6.2 devices.

Specifying the keyword INPUT with the LUNAME keyword indicates tracing is activated or deactivated for input and synchronous outbound activities. Specifying
the parameter ALL with the INPUT keyword causes all future LU 6.2 input and synchronous outbound activities to be traced as well.

Specifying the keyword OUTPUT with the LUNAME keyword indicates tracing is activated or deactivated for asynchronous outbound activities. Specifying the parameter ALL with OUTPUT causes all future LU 6.2 asynchronous outbound activities to be traced as well.

Specifying neither INPUT or OUTPUT is the same as both INPUT and Tracing is activated or deactivated for input and both synchronous and asynchronous outbound activities. Specifying the parameter ALL in this case causes all future LU 6.2 inbound activities, synchronous and asynchronous outbound activities to be traced as well.

The network-qualified LU name is optional for the LUNAME keyword. If the LU name is not a network-qualified LU name and no TP name is specified, tracing is activated or deactivated for all the network-qualified LU names in the system whose LU name matches the LU name specified.

If the specified resource does not exist and tracing is activated, a structure is created to retain the status.

/TRACE MONITOR command

Use the /TRACE MONITOR command to activate or deactivate the IMS Monitor.

Subsections:
- “Environment”
- “Syntax”
- “Keywords” on page 868
- “Usage notes” on page 869
- “Examples” on page 870

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/TRACE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MONITOR</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SET</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
/TRACE MONITOR
/TRACE ON
/TRACE OFF
/TRACE SET
/TRACE MONITOR
```
Keywords

When activating the monitor, you must specify one or more of the following MONITOR parameters to indicate the events to be monitored:

**ALL**
- Monitors all of the activity in this list.

**APDB**
- Monitors activity between application programs and databases, including Fast Path activity. Monitoring includes all application program requests to external subsystem databases. Monitoring can optionally be limited to a subset of full-function databases or partitions, Fast Path DEDBs and MSDBs, and the areas comprising those DEDBs by specifying database names or area names.

You can specify the **ALL** parameter to indicate all databases, areas, and partitions, or you can explicitly enter database names, area names, and partition names.

**APMQ**
- Monitors activity between application programs and message queues, including Fast Path activity.

**INTERVAL**
- Monitors events for a fixed interval of time, entered in seconds. **INTERVAL** defines the period of time after which no monitor log records will be written. The duration of the monitoring must be less than twenty-four hours (86,400 seconds). When **INTERVAL** is not specified, monitoring will continue until the /TRACE SET OFF MONITOR command is issued, or until IMS shuts down.

**LA**
- Monitors line and logical link events.
REGION
Monitors events related to specific dependent regions. The regions might or might not currently be active. Each region can be specified as:

- A region number from 1 to 999 (reg#). The number cannot exceed the MAXPST with which IMS was brought up.
- A range of region numbers from 1 to 999 (reg#–reg#). The number cannot exceed the MAXPST with which IMS was brought up.
- A region name (regionname).

If REGION is not specified, or when REGION ALL is specified, the activities of all dependent regions are monitored.

SCHD
Monitors scheduling and termination events, including Fast Path activities.

Usage notes
You can specify any combination of ALL, APDB, APMQ, INTERVAL, LA, REGION, and SCHD parameters on the MONITOR keyword, as shown in the following table.

The following table lists the environments (DB/DC, DBCTL, and DCCTL) from which the MONITOR keyword parameters can be issued.

<table>
<thead>
<tr>
<th>Keyword parameter</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>APDB</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>APMQ</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>INTERVAL</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LA</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>REGION</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SCHD</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

The IMS Monitor report output varies depending upon which keywords or parameters you specify. Sections of the report can be misleading if required records are excluded. For example, if you specify the APDB parameter without the SCHD parameter, PSB/PCB relationships will not be correctly represented. To get the total DL/I call reports without the IMS line activity, the correct parameters to specify are APDB, APMQ, and SCHD.

The monitor writes log records until one of the following occurs:

- /TRACE SET OFF MONITOR is entered.
- The time interval specified by the INTERVAL parameter is reached.
- IMS is shut down.

When deactivating the monitor, no parameters are required. Any parameters that are entered, other than ALL, are ignored. ALL is the default. If the monitor is to be reactivated, a new set of MONITOR keyword parameters must be selected.

The APDB dbname option cannot be used to filter the TYPE62 monitor log records by database names.
Examples

The following are examples of the `/TRACE MONITOR` command:

Entry ET:

```
/TRACE SET ON MONITOR ALL
```

Response ET:

```
DFS058I TRACE COMMAND COMPLETED
DFS2500I DATASET DFSDCMON SUCCESSFULLY ALLOCATED
DFS2212I DC MONITOR STARTED
```

Explanation: The monitor is activated and all events will be monitored.

Entry ET:

```
/TRACE SET OFF MONITOR
```

Response ET:

```
DFS058I TRACE COMMAND COMPLETED
DFS2500I DATASET DFSDCMON SUCCESSFULLY DEALLOCATED
DFS2212I DC MONITOR STOPPED
```

Explanation: The monitor is deactivated.

Entry ET:

```
/TRACE SET ON MONITOR LA
```

Response ET:

```
DFS058I TRACE COMMAND COMPLETED
```

Explanation: The monitor is activated. Line and logical link activities will be monitored. The monitoring of events from the previous activation of the monitor no longer apply.

/TRACE NODE command

Use the `/TRACE NODE` command to cause events related to the node or nodes to be traced.

Subsections:
- “Environment”
- “Syntax” on page 871
- “Keywords” on page 871
- “Usage notes” on page 872
- “Examples” on page 873

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/TRACE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Table 358. Valid environments for the `/TRACE NODE` command and keywords
Table 358. Valid environments for the /TRACE NODE command and keywords (continued)

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEVEL</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MODULE</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SET</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TAKEOVER</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Syntax

```
/TRACE
/TRA
SET ON
SET OFF
```

```
NODE

nodename
gerename
LEVEL

A

MODULE

DDM

TAKEOVER

MFS

ALL
```

Keywords

The following keywords are valid for the /TRACE NODE command:

**LEVEL**

Expands the LINE, LINK, NODE, or UNITYPE trace functions. The LEVEL specification is for the entire IMS system and is changed only by reissuing /TRACE with different values or by restarting the IMS control region.

LEVEL indicates the extent of the control block trace information desired. The indicated control blocks are only traced at relevant times. All levels are inclusive of numerically lower levels. The following list displays the levels and their associated blocks.

**Level Blocks**

1. CLB (DECB) or LLB(MSC)
   - CTB or LTB(MSC)
   - IOB (for non-VTAM lines) or IOSB (MSC for channel-to-channel links)
2. CNT or LNB(MSC)
   - CXB
CRB
CIB
CCB
PD stack

3 queue manager buffers
Input/output line buffers
LXB (for channel-to-channel links and processor storage to processor storage)

4 save area sets (IMS dispatching)

If the first /TRACE SET ON command does not specify LEVEL, a default of 4 will be used. Specifying LEVEL on subsequent commands will change the defaults.

**MODULE**

Is used to expand the LINE, LINK, NODE, or UNITYPE trace functions. The MODULE specification is for the entire IMS system and is changed only by reissuing /TRACE with different values or by restarting the IMS control region.

MODULE indicates which modules are to have their control blocks traced.

**ALL** Both device-dependent module (DDM) and MFS

**DDM** Communication analyzer and device-dependent module interfaces

**MFS** Communication analyzer and Message Format Service module interfaces

If the first /TRACE SET ON command does not specify MODULE, a default of ALL will be used. Specifying MODULE on subsequent commands will change the defaults.

**TAKEOVER**

Controls tracing during takeover only, and is separate from regular tracing. TAKEOVER tracing can be set for LINE, LINK, NODE, and UNITYPE keywords.

TAKEOVER only applies in an XRF environment. When TAKEOVER is used with SET OFF, the trace is turned off before takeover. When an output message is dequeued for a terminal, takeover tracing will stop for that terminal.

If both regular and takeover tracing are entered, the most recent setting will override any previous settings; for example, takeover tracing will override regular tracing if regular tracing was entered first. This means that either regular or TAKEOVER tracing can be in effect, but not both.

/TRACE TAKEOVER can be issued only from an XRF active system. It is rejected if entered from an alternate or non-XRF system. It is recovered across restart and takeover, and only needs to be entered once until cold start. Tracing occurs only if the session was active at the time of the takeover.

**Usage notes**

The NODE parameter can be generic if the USER keyword is not specified and applies to nodes that already exist. Generic NODE parameters do not cause any dynamic nodes to be created.
For ISC nodes, the /TRACE NODE nodename without the USER applies to all half-sessions for NODE nodename, including dynamic ISC sessions that are dynamically allocated later.

For nodes that do not exist, /TRACE SET ON NODE nodename without the USER keyword causes the dynamic NODE nodename to be created to maintain knowledge of the trace request when the node becomes active. Until the node becomes active, /DISPLAY NODE shows a type of UNK (unknown). If the trace is subsequently turned off and the temporary node still exists, it is deleted at the next checkpoint.

Restrictions for using NODE and USER parameters together:
• Commands with the NODE USER keyword pair are valid only if:
  – The USER is signed on to the NODE
  – In an ISC environment, the USER is allocated to the NODE
  – The nodes and users already exist
• /TRACE NODE USER commands are valid for ISC and non-ISC nodes and users.

If global resource information is kept in Resource Manager, /TRACE NODE sets a global trace status for the node and sets the trace status locally. If global resource information is not kept in Resource Manager, /TRACE NODE sets the trace status locally. If the node does not exist in an ETO environment, IMS creates the node and sets trace status for the local node.

Examples

The following are examples of the /TRACE NODE command:

The following example shows how IMS creates temporary nodes to retain trace status data.

The /TRACE command is issued for a dynamic ISC NODE that does not yet exist, DTSU607, causing a temporary node to be created to retain the trace status. Once the ISC parallel sessions IMSUS01 and IMSUS02 are allocated, the trace status is applied to them both.

Entry ET:
  /TRACE SET ON NODE DTSU607

Response ET:
  DFS058 TRACE COMMAND COMPLETED

Entry ET:
  /DISPLAY NODE DTSU607

Response ET:
  NODE-USR TYPE CID RECD ENQCT DEQCT QCT SENT
  DTSU607 UNK 00000000 0 0 0 0 0 TRA
  *90127/091634*

Entry ET:
  /DISPLAY NODE DTSU607
Response ET:

<table>
<thead>
<tr>
<th>NODE-USR</th>
<th>TYPE</th>
<th>CID</th>
<th>RECD</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
<th>SENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTSLU607</td>
<td>LUT6</td>
<td>-N/A</td>
<td>0000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>TRA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-IMSUS01</td>
<td>0100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>SIGN(IMSUS01 ) IDLE CON TRA PRI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-IMSUS02</td>
<td>0100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>SIGN(IMSUS02 ) IDLE CON TRA PRI</td>
</tr>
</tbody>
</table>

*90127/091432*

In the following example, the /TRACE command is issued for ISC node LU6NDPA. In the response ET, the value TCP in the TYPE column indicates that the ISC node uses TCP/IP, not VTAM.

Entry ET:

/TRACE SET ON NODE LU6NDPA

Response ET:

DFS058I 12:28:44 TRACE COMMAND COMPLETED IMS1

Entry ET:

/DISPLAY NODE LU6NDPA

Response ET:

<table>
<thead>
<tr>
<th>DFS000I</th>
<th>NODE-USR TYPE</th>
<th>CID</th>
<th>RECD</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
<th>SENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFS000I</td>
<td>LU6NDPA TCP</td>
<td>-N/A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IDLE</td>
</tr>
<tr>
<td>DFS000I</td>
<td>-N/A</td>
<td>********</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IDLE</td>
</tr>
<tr>
<td>DFS000I</td>
<td>-N/A</td>
<td>********</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IDLE</td>
</tr>
<tr>
<td>DFS000I</td>
<td>-N/A</td>
<td>********</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IDLE</td>
</tr>
<tr>
<td>DFS000I</td>
<td>-N/A</td>
<td>********</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IDLE</td>
</tr>
</tbody>
</table>

/TRACE OSAMGTF command

Use the /TRACE SET OSAMGTF command to activate or deactivate the OSAM Buffer Handle GTF (Generalized Trace Facility) subroutine. When activated, the OSAMGTF trace generates the z/OS Generalized Trace Facility trace entries for all the IMS requests to the OSAM Buffer Handler.

Subsections:

- “Environment”
- “Syntax” on page 875

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 359. Valid environments for the /TRACE OSAMGTF command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/TRACE</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OSAMGTF</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SET</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Syntax

/TRACE PI command

Use the /TRACE PI command to cause program isolation trace entries to be written to a trace table.

Subsections:
- "Environment"
- "Syntax"
- "Keywords"
- "Usage notes" on page 876
- "Examples" on page 877

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 360. Valid environments for the /TRACE PI command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/TRACE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>OPTION</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PI</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SET</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>VOLUME</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

Keywords

The following keywords are valid for the /TRACE PI command:

OPTION

Indicates a request for one of the following program isolation trace options:

- ALL Both LOG and TIME.
- LOG Requests that traced data be written to the system log. If SET OFF, tracing continues but no buffers are transferred to the system log. LOG is the default.
The log option includes the possibility of externally tracing to a data set other than the IMS OLDS. If specified, DASD external tracing has first priority, TAPE external tracing has second priority, and IMS OLDS has third priority. External tracing to the OLDS is not done without operator approval. EXTERNAL trace is available to the alternate system only for DASD/TAPE type, but not for OLDS.

**TIME**  
Requests that an additional time field be included in each ENQ/DEQ request trace record if a WAIT was needed. This field will contain elapsed wait time. If set OFF, tracing continues but only the time of day is recorded.

Entries for Fast Path have no elapsed wait time.

**VOLUME**  
Specifies the volume of entries to be written to the PI trace table: LOW volume, MEDIUM volume (default), or HIGH volume.

**Usage notes**

PI trace entries are written in the same trace table as DL/I and lock activity trace entries. A PI trace entry contains information about program isolation ENQ/DEQ calls and DL/I calls. The trace entry created by `/TRACE TABLE DLI` contains different information about DL/I calls and is written as a separate entry in the same trace table. Starting the LOCK trace also causes PI tracing to occur.

If PI is entered without the OPTION keyword, the program isolation trace is kept in storage without being logged. If you are using the program isolation trace to provide statistics and performance data, you should enter OPTION(ALL).

The following table lists various `/TRACE` command formats and shows whether the command influences tracing, logging, and the additional time field.

*Table 361. `/TRACE` command formats*

<table>
<thead>
<tr>
<th>Command</th>
<th>Tracing</th>
<th>Logging</th>
<th>Additional time field</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>/TRACE SET ON PI</code></td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td><code>/TRACE SET OFF PI</code></td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td><code>/TRACE SET ON PI OPTION</code></td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td><code>/TRACE SET OFF PI OPTION</code></td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td><code>/TRACE SET ON PI OPTION TIME</code></td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td><code>/TRACE SET OFF PI OPTION TIME</code></td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td><code>/TRACE SET ON PI OPTION ALL</code></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td><code>/TRACE SET OFF PI OPTION ALL</code></td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

**Note:**

1. This is the same command as `/TRACE SET ON | OFF PI OPTION LOG.`
Examples

The following are examples of the /TRACE PI command:

Example 1

To turn on program isolation tracing, include the additional time field in the trace record and have the trace information logged:

Entry ET:
   /TRACE SET PI OPTION ALL

Response ET:
   DFS058I  TRACE COMMAND COMPLETED

Example 2

To turn off logging of program isolation trace data but continue the trace in storage:

Entry ET:
   /TRACE SET OFF PI OPTION LOG

Response ET:
   DFS058I  TRACE COMMAND COMPLETED

Example 3

To stop program isolation tracing.

Entry ET:
   /TRACE SET OFF PI

Response ET:
   DFS058I  TRACE COMMAND COMPLETED

/TRACE PGM command

Use the /TRACE PGM command to trace the DL/I portion of Data Communications (DC) for a specific program.

Subsections:
- “Environment”
- “Syntax” on page 878
- “Usage notes” on page 878
- “Equivalent IMS type-2 commands” on page 879

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.
Table 362. Valid environments for the /TRACE PGM command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/TRACE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PGM</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SET</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

**Syntax**

![Syntax diagram]

**Usage notes**

Each DL/I call to a TPPCB, issued by the user application program, is traced on entry to and exit from the DC call handler DFSDLA30. On entry to DFSDLA30 a type 6701-LA3A record is written, on exit from DFSDLA30 a type 6701-LA3B record is written.

Each record will contain the following items if applicable:
- TPPCB
- Up to 64 bytes of the I/O area
- SMB
- PST

If the batch message program (BMP) being traced is IBM IMS Queue Control Facility for z/OS, a 6701-MRQB record is logged by the IMS Queue Control Facility module DFSQMRQ0. The default program name for the IMS Queue Control Facility BMP is MRQPSB, and can be overridden on the MSGQUEUE system definition macro.

Items logged in the 6701-MRQB record, if applicable, are:
- TPPCB
- AIB
- I/O AREA
- PST
- QTPDST
- QSAPWKAD
- QMBA
- PSTDCA
- REG14-12

When CPI Communications driven transaction programs issue the DL/I APSB call specifying a PSB that contains alternate PCBs, only the PGM keyword is applicable.
Equivalent IMS type-2 commands

The following table shows variations of the /TRACE PGM command and the IMS type-2 commands that perform similar functions.

Table 363. Type-2 equivalents for the /TRACE PGM command

<table>
<thead>
<tr>
<th>Task</th>
<th>/TRACE PGM command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starts the tracing of a program.</td>
<td>/TRACE SET ON PGM pgmname</td>
<td>UPDATE PGM NAME(pgname) START(TRACE)</td>
</tr>
<tr>
<td>Stops the tracing of a program.</td>
<td>/TRACE SET OFF PGM pgmname</td>
<td>UPDATE PGM NAME(pgname) STOP(TRACE)</td>
</tr>
</tbody>
</table>

Related concepts:
- Diagnosing problems in the Queue Control Facility Message Requeuer

Related reference:
- IMS Queue Control Facility overview
- “UPDATE PGM command” on page 1124

/TRACE PSB command

Use the /TRACE PSB command to record all full function IMS DL/I database calls issued for the named PSB. FP/DC/SAA calls are not captured when /TRACE SET ON PSB initiated tracing of PSBs.

Subsections:
- “Environment”
- “Syntax” on page 880
- “Keywords” on page 880
- “Usage notes” on page 880
- “Examples” on page 880

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 364. Valid environments for the /TRACE PSB command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/TRACE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>COMP</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOCOMP</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PSB</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SET</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Syntax

```
/TRACE SET ON PSB psbname COMP
```

Keywords

The following keywords are valid for the /TRACE PSB command:

COMP

Used with the /TRACE SET PSB command to generate PCB and
data-compare statement images.

The /TRACE SET PSB psbname COMP command only applies to BMPs in a
DBCTL environment.

NOCOMP

Prevents PCB and data-compare statement images from being generated.
NOCOMP is the default.

Usage notes

For LU 6.2, the PSB keyword is applicable only if the CPI Communications driven
transaction program has issued a DL/I APSB call to allocate a PSB.

The information resulting from the use of this keyword is written on the X'5F' log
record. The X'5F' log records are written only on the OLDS, whether or not
DFSTRUxx external trace data sets are used.

Examples

The following is an example of the /TRACE PSB command:

To trace all DL/I calls issued for PSB AALST:

Entry ET:

```
/TRACE SET ON PSB AALST COMP
```

Response ET:

```
DF5058I TRACE COMMAND COMPLETED
```

/TRACE TABLE command

Use the /TRACE TABLE command with the SET keyword to start or stop online
tracing into the specified trace tables.

Subsections:

- “Environment” on page 881
- “Syntax” on page 881
- “Keywords” on page 881
- “Usage notes” on page 884
- “Examples” on page 885
Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 365. Valid environments for the /TRACE TABLE command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/TRACE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>OPTION</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SET</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TABLE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>VOLUME</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

![Diagram of TRACE syntax]

Keywords

The following keywords are valid for the /TRACE TABLE command:

**OPTION**

Indicates whether the trace tables are to be logged.
NOLOG
Indicates that the trace tables are not logged. This means that there will be no record of trace tables that have been reused. NOLOG is the default.
The same trace table is used for DL/I, LOCK, and PI trace information. Whether this table is logged depends on the logging option of the last /TRACE command that was entered for DL/I, PI, or LOCK.

LOG
Requests that the trace tables be written to the system log before they are reused (wrapped).
The log option includes the possibility of externally tracing to a data set other than the IMS OLDS. If specified, DASD external tracing has first priority, TAPE external tracing has second priority, and IMS OLDS has third priority. External tracing to the OLDS is not done without operator approval. This option is ignored for the retrieve trace and the Fast Path trace (default).
FPTRACE has its own SYSOUT. External trace is available to the alternate system only for DASD/TAPE type, but not for OLDS.

VOLUME
Specifies the volume of entries to be written to the specified trace table: LOW volume, MEDIUM volume (default), or HIGH volume.
The VOLUME keyword is valid on active and RSR tracking subsystems.

You can specify the trace that you want to activate or deactivate by using one of the following TABLE keyword parameters:

ALL
Indicates that traces into all trace tables are to be enabled or disabled. This is the default.

CSLT
Indicates that the CSL trace is to be activated or deactivated.

DIAG
Indicates that the /DIAGNOSE command trace tables are to be activated or deactivated.

DISP
Indicates that the dispatcher trace is to be activated or deactivated.

DL/I
Indicates that DL/I tracing is to be activated or deactivated.

DLOG
Indicates that the logging trace is to be activated or deactivated.

FAST
Indicates that the Fast Path trace is to be activated or deactivated.
Fast Path trace is activated by including the FPTRACE DD statement in the dependent region JCL to define the destination of the trace output and by issuing the operator command /TRACE SET ON TABLE FAST.

Recommendation: Run this trace only in a test environment because the FPTRACE output is large.

FPTT
Indicates that the Fast Path table trace is to be activated or deactivated.
**IDC0**
Indicates that tracing of errors in modules DFSCNXA0 and DFSIDC00 is to be activated or deactivated.

**LATC**
Indicates that the latch trace is to be activated or deactivated.

**LOCK**
Indicates that LOCK and PI tracing is to be activated or deactivated.

**LRTT**
Indicates that the log router trace table is to be activated or deactivated. LRTT is only valid for an RSR tracking subsystem.

**LUMI**
Indicates that the LU 6.2 manager trace is to be activated or deactivated.
/TRACE SET ON TABLE LUMI must be entered first before entering any
/TRACE SET ON LUNAME command in order to create the LUMI trace table
for trace entries.
LUMI is not valid for an RSR tracking subsystem.

**MSCT**
Indicates that the MSC trace is to be activated or deactivated.

**OCMD**
Indicates that the OM command trace is to be activated or deactivated.

**ODBA**
Indicates that the ODBA trace table is to be activated or deactivated. ODBA is
not valid in an RSR tracker, batch, or DCCTL environment.

**ORTT**
Indicates that the Online Recovery System trace is to be activated or deactivated.

**OTMT**
Indicates that the IMS Open Transaction Manager Access (OTMA) trace is to be
activated or deactivated.

**QMGR**
Indicates that the queue manager trace is to be activated or deactivated.

**RETR**
Indicates that the DL/I retrieve trace is to be activated or deactivated. RETR is
not valid for an RSR tracking subsystem.

**RRST**
Indicates that the Resource Recovery trace is activated or deactivated.

**SCHD**
Indicates that the scheduler trace is to be activated or deactivated. SCHD is not
valid for an RSR tracking subsystem.

**SECT**
Indicates that the security trace table is to be activated or deactivated.

**SQTT**
Indicates that the shared queues trace is to be activated or deactivated. SQTT is
only valid in a shared-queues environment.

**STRG**
Indicates that the storage manager trace is to be activated or deactivated.
SUBS
Indicates that the external subsystem trace is to be activated or deactivated.
SUBS is not valid for an RSR tracking subsystem.

Usage notes

The TABLE keyword parameter indicates the specific trace that is to be activated or deactivated. The DL/I, LOCK, and PI traces share the same trace tables. However, turning on the DL/I trace does not turn on the LOCK trace, and vice versa.

The following trace into trace tables can be turned on or off with the online /TRACE command.

The following table shows the environments in which the trace tables are valid.

Table 366. Trace tables and environments in which they are valid

<table>
<thead>
<tr>
<th>Trace table</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CSLT</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DIAG</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DISP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DL/I</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DLOG</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>FAST</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>FPTT</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>IDC0</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LATC</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LOCK</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LRTT</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LUMI</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MSCT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OCMR</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ODBA</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ORRT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OTMT</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>QMGR</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>RETR</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RRST</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SCHD</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SECT</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SQTT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>STRG</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SUBS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Examples

The following are examples of the /TRACE TABLE command:

**Example 1 for /TRACE TABLE command**

To turn on online tracing into the DL/I trace table:

Entry ET:
/TRACE SET ON TABLE DL/I

Response ET:
DFS058I TRACE COMMAND COMPLETED

**Example 2 for /TRACE TABLE command**

To turn on the dispatcher's trace tables and have them written to the system log:

Entry ET:
/TRACE SET ON TABLE DISP OPTION LOG

When the dispatcher's trace tables are no longer required:

Entry ET:
/TRACE SET OFF TABLE DISP

Response ET:
DFS058I TRACE COMMAND COMPLETED

**Example 3 for /TRACE TABLE command**

To turn on storage manager trace tables:

Entry ET:
/TRACE SET ON TABLE STRG

Response ET:
DFS058I TRACE COMMAND COMPLETED

When the storage manager trace tables are no longer needed:

Entry ET:
/TRACE SET OFF TABLE STRG

Response ET:
DFS058I TRACE COMMAND COMPLETED

**Example 4 for /TRACE TABLE command**

To turn on online tracing into the security trace table:

Entry ET:
/TRACE SET ON TABLE SECT
Use the /TRACE TCO command to trace TCO (Time Controlled Operation) activity. For the first /TRACE command with the TCO keyword, the default module and level information is used.

TCO trace is basically a DC LINE or NODE trace, and the information developed is also written on the type X'67' log record.

Subsections:
- “Environment”
- “Syntax”

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 367. Valid environments for the /TRACE TCO command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/TRACE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SET</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TCO</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

Use the /TRACE TIMEOUT command to start or stop the I/O Timeout Detection facility.

Subsections:
- “Environment”
- “Syntax” on page 887
- “Keywords” on page 887
- “Usage notes” on page 887

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.
Table 368. Valid environments for the /TRACE TIMEOUT command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/TRACE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>AUTO</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSG</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SET</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TIMEOUT</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
/TABLE /SET OFF /TIMEOUT 00
```

Keywords

The following keywords are valid for the /TRACE TIMEOUT command:

- **time#**
  is the number of minutes used to determine if the I/O response is overdue. After this number of minutes, time has run out for the response. The range is from 1 through 60; the default value is 0.

  If `time#` is 0, or not specified, then when I/O is initiated for a node, the node will be placed on a queue, so that its status can be displayed with the /DISPLAY TIMEOVER command. You will not be notified if the node does not receive a response and the time elapses, and the node will not be reactivated.

  If `time#` is not 0, then the following keywords can be used.

- **MSG**
  Indicates that a message is issued to the master terminal when I/O takes longer than `time#` minutes. The message indicates that the time has elapsed.

- **AUTO**
  IMS issues a message to the master terminal, then perform a VTAM VARY NET,INACT and a VARY NET,ACT, if I/O takes longer than `time#` minutes. An /OPNDST is performed for operable devices that are not shared. For ISC nodes, a message is issued, but there is no automatic (AUTO) restart of any sessions and no VTAM VARY commands issued.

Usage notes

If you want to change the time period or the action to be taken if timeout occurs, you can enter the /TRACE SET ... TIMEOUT command while the Timeout Detection facility is already active. However, if nodes are receiving or sending input or output, they will function according to the previous settings of the /TRACE ... TIMEOUT command. If this is undesirable, then you should enter the /TRACE SET OFF TIMEOUT command before reentering /TRACE SET ... TIMEOUT.
If the timeout trace facility failed during IMS initialization, the /TRACE SET ...
TIMEOUT command is rejected with an error message.

The VTAM TIMEOUT I/O facility is automatically started during IMS shutdown.
It is set for 1 minute and AUTO.

/TRACE TMEMBER command

Use the /TRACE TMEMBER command to trace IMS Open Transaction Manager
Access (OTMA) client activity for OTMA clients.

Subsections:
• "Environment"
• "Syntax"
• "Keywords"
• "Usage notes" on page 889
• "Examples" on page 889

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which
you can use the commands and keywords.

Table 369. Valid environments for the /TRACE TMEMBER command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/TRACE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SET</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TMEMBER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TPIPE</td>
<td>x</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
/TTRACE SET ON

/TTRACT SET OFF

/TMEMBER tmembername ALL

/TPIPE tpipename ALL
```

Keywords

The following keyword is valid for the /TRACE TMEMBER command:

TPIPE

Is used to trace transaction pipe activity for OTMA clients.

While processing the /TRACE TMEMBER TPIPE command, IMS creates a
temporary transaction pipe (if one does not already exist) with the trace status.
IMS sets the synchronization status for this transaction pipe when it sends or
receives the first message for the transaction pipe.
If the member specified is a super member, trace status is updated for the super member's transaction pipe. If the member specified is a regular member whose hold queue output is managed by a super member, trace status is updated for both the regular member’s transaction pipe and the super member’s transaction pipe.

Usage notes

If the member specified is a super member, trace status is updated for the super member. If the member specified is a regular member whose hold queue output is managed by a super member, trace status is updated for both the regular member and the super member. Trace status is only updated on the IMS that processes the command. If the member specified is a regular member whose hold queue output is managed by a super member, and the trace status cannot be updated for both the regular member and the super member, the status is not updated for either member. The DFS058I COMMAND COMPLETED EXCEPT message is issued with the name of the regular member for which trace status could not be updated.

The TRACE SET ON/OFF TMEMBER xxxx command is issued to trace all the member activities, including transaction pipe activities. This command is the superset of the TRACE SET ON/OFF TMEMBER xxxx TPIPE ALL command.

Examples

The following is an example of the /TRACE TMEMBER command:

Entry ET:

/TRACE SET ON TMEMBER CLIENT1 TPIPE TPIPESY

Response ET:

DFS058I 15:45:05 TRACE COMMAND COMPLETED SYS3
DFS996I *IMS READY* SYS3

/TRACE TRAN command

Use the /TRACE TRAN command to trace the DL/I portion of Data Communications (DC) for a specific transaction.

Subsections:

- “Environment”
- “Syntax” on page 890
- “Usage notes” on page 890
- “Equivalent IMS type-2 commands” on page 890
- “Examples” on page 891

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 370. Valid environments for the /TRACE TRAN command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/TRACE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Table 370. Valid environments for the /TRACE TRAN command and keywords (continued)

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>SET</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TRAN</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
/TRACE SET ON TRAN transname
/TRACE SET OFF TRAN transname
```

Usage notes

Each DL/I call to a TPPCB, issued by the user application program, is traced on entry to and exit from the DC call handler DFSDLA30. Upon entry to DFSDLA30, a type 6701-LA3A record is written; upon exit from DFSDLA30, a type 6701-LA3B record is written.

Additionally, in a shared-queues environment, a type 6701-ITQA record is written by module DFSITQS0 whenever a notification is received from CQS that there are messages available for the transaction.

Each of type 6701-LA3A and 6701-LA3B records will contain the following items, if applicable:
- TPPCB
- Up to 64 bytes of the I/O area
- Scheduler message block (SMB)
- Partition specification table (PST)

Each type 6701-ITQA record will contain the following items:
- IMSID of the IMS that wrote the record
- The AWE that was queued to DFSITQS0 to notify it that the transaction had messages to process
- SMB

Equivalent IMS type-2 commands

The following table shows variations of the /TRACE TRAN command and the IMS type-2 commands that perform similar functions.

Table 371. Type-2 equivalents for the /TRACE TRAN command

<table>
<thead>
<tr>
<th>Task</th>
<th>/TRACE TRAN command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starts the tracing of a transaction.</td>
<td>/TRACE SET ON TRAN transname</td>
<td>UPDATE TRAN NAME(tranname) START(TRACE)</td>
</tr>
<tr>
<td>Stops the tracing of a transaction.</td>
<td>/TRACE SET OFF TRAN transname</td>
<td>UPDATE TRAN NAME(tranname) STOP(TRACE)</td>
</tr>
</tbody>
</table>
Examples

The following is an example of the /TRACE TRAN command:

To log the PCB, I/O area, and PST whenever module DFSDLA30 is invoked to process transaction APPLE:

Entry ET:

/TRACE SET ON TRAN APPLE

Response ET:

DFS058I TRACE COMMAND COMPLETED

Related reference:

“UPDATE TRAN command” on page 1183

/TRACE TRAP command

Use the /TRACE TRAP command to detect overwrites of MFS blocks. When /TRACE is used, IMS attempts to detect overwrites in the MFS blocks.

If an overwrite occurs, IMS sends a warning message.

Subsections:

• “Environment”
• “Syntax”

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 372. Valid environments for the /TRACE TRAP command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/TRACE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SET</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>TRAP</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

Related reference:

Trace records (Diagnosis)
/TRACE UNITYPE command

Use the /TRACE UNITYPE command to trace events that are related to the physical terminals of the specified type.

Subsections:
• “Environment”
• “Syntax”
• “Keywords”
• “Usage notes” on page 893

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 373. Valid environments for the /TRACE UNITYPE command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/TRACE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LEVEL</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SET</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>UNITYPE</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Syntax

Keywords

The following keywords are valid for the /TRACE UNITYPE command:

LEVEL

Expands the LINE, LINK, NODE, or UNITYPE trace functions. The LEVEL specification is for the entire IMS system and is changed only by reissuing /TRACE with different values or by restarting the IMS control region.

LEVEL indicates the extent of the control block trace information desired. The indicated control blocks are only traced at relevant times. All levels are inclusive of numerically lower levels. The following list displays the levels and their associated blocks.

<table>
<thead>
<tr>
<th>Level</th>
<th>Blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CLB (DECB) or LLB(MSC)</td>
</tr>
<tr>
<td></td>
<td>CTB or LTB(MSC)</td>
</tr>
<tr>
<td></td>
<td>IOB (for non-VTAM lines) or IOSB (MSC for channel-to-channel links)</td>
</tr>
<tr>
<td>2</td>
<td>CNT or LNB(MSC)</td>
</tr>
</tbody>
</table>
CXB
CRB
CIB
CCB
PD stack
3 queue manager buffers
Input/output line buffers
LXB (for channel-to-channel links and processor storage to processor storage)
4 save area sets (IMS dispatching)

If the first /TRACE SET ON command does not specify LEVEL, a default of 4 is used. Specifying LEVEL on subsequent commands will change the defaults.

**MODULE**

Is used to expand the LINE, LINK, NODE, or UNITYPE trace functions. The MODULE specification is for the entire IMS system and is changed only by reissuing /TRACE with different values or by restarting the IMS control region.

MODULE indicates which modules are to have their control blocks traced.

**ALL** Both device-dependent module (DDM) and MFS

**DDM** Communication analyzer and device-dependent module interfaces

**MFS** Communication analyzer and Message Format Service module interfaces

If the first /TRACE SET ON command does not specify MODULE, a default of ALL will be used. Specifying MODULE on subsequent commands will change the defaults.

**Usage notes**

The UNITYPE keyword is used to trace all terminals of a specific type. Parameters (unitypename) are similar to the identifiers displayed in the TYPE column by the /DISPLAY NODE and /DISPLAY LINE/PTERM commands. The following table shows the terminal types for UNITYPE parameters.

<table>
<thead>
<tr>
<th>UNITYPE parameter</th>
<th>Terminal type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2260R</td>
<td>2260/2265 REMOTE</td>
</tr>
<tr>
<td>3286</td>
<td>3284/3286</td>
</tr>
<tr>
<td>2980</td>
<td>2980</td>
</tr>
<tr>
<td>3270R</td>
<td>3270 REMOTE</td>
</tr>
<tr>
<td>3270L</td>
<td>3270 LOCAL</td>
</tr>
<tr>
<td>RDR/PTR</td>
<td>LOCAL SYSIN/SYSOUT</td>
</tr>
<tr>
<td>FIN</td>
<td>3600</td>
</tr>
<tr>
<td>3277</td>
<td>3270 VTAM</td>
</tr>
<tr>
<td>SLU1</td>
<td>SLU TYPE 1</td>
</tr>
<tr>
<td>SLU2</td>
<td>SLU TYPE 2</td>
</tr>
</tbody>
</table>
Table 374. UNITYPE parameters and terminal types (continued)

<table>
<thead>
<tr>
<th>UNITYPE parameter</th>
<th>Terminal type</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLUP</td>
<td>SLU TYPE P</td>
</tr>
<tr>
<td>LUT6</td>
<td>LU TYPE 6</td>
</tr>
<tr>
<td>NTO</td>
<td>NTO</td>
</tr>
<tr>
<td>CONSOLE</td>
<td>z/OS SYSTEM CONSOLE</td>
</tr>
<tr>
<td>TWX</td>
<td>TWX SWITCHED</td>
</tr>
<tr>
<td>3275SW</td>
<td>3270 SWITCHED</td>
</tr>
<tr>
<td>MSCMTM</td>
<td>MSC Memory to Memory communications</td>
</tr>
<tr>
<td>MSCCTC</td>
<td>MSC Channel to Channel communications</td>
</tr>
<tr>
<td>MSCTCPIP</td>
<td>MSC TCP/IP communications</td>
</tr>
<tr>
<td>MSCVTAM</td>
<td>MSC VTAM communications</td>
</tr>
</tbody>
</table>

If global resource information is kept in Resource Manager, /TRACE UNITYPE sets a global trace status for all of the nodes of a specific type. This requires that the inactive static nodes be processed on every IMS system. The UNITYPE keyword is similar to specifying a generic parameter. If global resource information is not kept in Resource Manager, /TRACE UNITYPE sets the trace status locally.
Chapter 29. /UNLOCK commands

/UNLOCK commands release resources that, in most cases, have been previously locked by the /LOCK command.

If the terminals are on a switched communication network and a physical or logical terminal disconnection occurs, an implied /UNLOCK is processed against the physical terminal and inquiry logical terminal.

When using ISC, the /UNLOCK command can only be used with logical terminals assigned to allocated users.

This command can be issued to an IMSplex using the Batch SPOC utility.

/UNLOCK SYSTEM is only valid if it is entered from the master terminal or from the system console on an XRF system.

A resource name can be defined with password protection in SAF for the DATABASE, LTERM, PROGRAM, and TRANSACTION keywords. If the parameter, LOCKSEC=Y (N is the default) is specified on the DFSPBxxx IMS.PROCLIB member, IMS calls the SAF and user exit. If the resource is not defined to SAF, or is defined and is authorized to the user, the command is processed. If the resource is defined to SAF but not authorized for use, the command is rejected with a DFS3689W message.

A period that is specified in the password brackets is not treated as a delimiter.

Subsections:
- “/UNLOCK DB command” on page 896
- “/UNLOCK LTERM command” on page 897
- “/UNLOCK NODE command” on page 898
- “/UNLOCK PGM command” on page 899
- “/UNLOCK PTERM command” on page 900
- “/UNLOCK SYSTEM command” on page 901
- “/UNLOCK TRAN command” on page 903

/UNLOCK DB command

The /UNLOCK DB command specifies the database to be unlocked.

Subsections:
- “Environment” on page 896
- “Syntax” on page 896
- “Usage notes” on page 896
- “Equivalent IMS type-2 commands” on page 897
- “Examples” on page 897
Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 375. Valid environments for the /UNLOCK DB command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/UNLOCK</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DB</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Syntax

```
/UNLOCK
/UNL
[dbname] (password)
```

Usage notes

The output of the /UNLOCK DB command is changed when the command is entered through the OM API. In this case, the DFS058I message is not returned to OM. The command response returned to OM contains one or more of the following messages: DFS0488I, DFS3466I, DFS132.

When you enter this command, the database name can be an existing non-HALDB, a HALDB master, or a HALDB partition. A command against a HALDB partition operates exactly like a command against a non-HALDB with the exception of the /START DB and the UPDATE DB START(ACCESS) command. A HALDB partition is not allocated during the command unless it was previously authorized but not allocated, the OPEN keyword was specified, or the partition has EEQEs. The partition is allocated at first reference.

The HALDB partition reflects conditions such as STOPPED, LOCKED, or NOTOPEN. When a HALDB partition is stopped, it must be explicitly started again. Commands with the keyword ALL and commands against a HALDB master do not change the STOPPED and LOCKED indicators in each HALDB partition.

When the command target is a HALDB master, processing acts on all HALDB partitions. For example, if the IMS command is /DBR on the HALDB master, all of the HALDB partitions are closed, deallocated, and deauthorized. Only the HALDB master displays STOPPED (each HALDB partition does not display STOPPED unless it was itself stopped). If a /DBR command was issued against a HALDB master, the display output of a /DISPLAY DB command shows the HALDB master (as STOPPED), but does not display the status of the partitions.

Each partition inherits the access limitations of its HALDB master. If the /DBD command is issued against a HALDB master, all of its partitions close. A subsequent reference to any of the partitions results in the partition opening for input, although the partition's access might be UPDATE or EXCLUSIVE. The DBRC authorization state reflects the limited access.

This command can be issued by APPC and OTMA clients.
/UNLOCK DB is valid only if entered from the master terminal, the system console, a TCO script, or from an AOI application program.

While the database is being quiesced, this command cannot be processed successfully.

**Equivalent IMS type-2 commands**

The following table shows variations of the /UNLOCK DB command and the IMS type-2 commands that perform similar functions.

<table>
<thead>
<tr>
<th>Task</th>
<th>/UNLOCK DB command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unlocks a database.</td>
<td>/UNLOCK DB dbname</td>
<td>UPDATE DB NAME(dbname) SET(LOCK(OFF))</td>
</tr>
</tbody>
</table>

**Examples**

The following is an example of the /UNLOCK DB command:

**Entry ET:**

```
/UNLOCK DB TREEFARM
```

**Response ET:**

```
DFS058I UNLOCK COMMAND COMPLETED
```

Explanation: Database TREEFARM is unlocked and can be used.

**Related reference:**

“UPDATE DB command” on page 936

**/UNLOCK LTERM command**

The /UNLOCK LTERM command specifies the logical terminal to be unlocked. This keyword applies only to the entering physical terminal and to logical terminals assigned to that physical terminal.

**Subsections:**

- “Environment”
- “Syntax” on page 898
- “Usage notes” on page 898

**Environment**

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/UNLOCK</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LTERM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Chapter 29. /UNLOCK commands 897
Syntax

```
/UNLOCK LTERM ltermname (password)
```

Usage notes

The /UNLOCK LTERM ALL command can only be used when all of the logical terminals associated with the entering physical terminal do not have passwords.

/UNLOCK LTERM applies only to the entering physical terminal.

/UNLOCK LTERM is not allowed from the OM API.

/UNLOCK NODE command

The /UNLOCK NODE command specifies the VTAM node to be unlocked. This keyword applies only to the entering physical terminal and to logical terminals assigned to that physical terminal.

Subsections:
- "Environment"
- "Syntax"
- "Usage notes"

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 378. Valid environments for the /UNLOCK NODE command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/UNLOCK</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NODE</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Syntax

```
/UNLOCK NODE
```

Usage notes

/UNLOCK NODE applies only to the entering physical terminal.

/UNLOCK NODE is not allowed from the OM API.
/UNLOCK PGM command

The /UNLOCK PGM command specifies the application program to be unlocked.

This command can be issued by APPC and OTMA clients.

Subsections:
- "Environment"
- "Syntax"
- "Usage notes"
- "Equivalent IMS type-2 commands"
- "Examples"

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 379. Valid environments for the /UNLOCK PGM command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/UNLOCK PGM</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
/UNLOCK PGM pgmname [password]
```

Usage notes

The /UNLOCK PGM command is valid only if entered from the master terminal, the system console, a TCO script, or from an AOI application program.

Equivalent IMS type-2 commands

The following table shows variations of the /UNLOCK PGM command and the IMS type-2 commands that perform similar functions.

Table 380. Type-2 equivalents for the /UNLOCK PGM command

<table>
<thead>
<tr>
<th>Task</th>
<th>/UNLOCK PGM command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unlocks a program.</td>
<td>/UNLOCK PGM pgmname</td>
<td>UPDATE PGM NAME(pgmname) SET(LOCK(OFF))</td>
</tr>
</tbody>
</table>

Examples

The following is an example of the /UNLOCK PGM command:

Entry ET:

```
/UNLOCK PGM APPLETRE
```
Response ET:

`DFS058I  UNLOCK COMMAND COMPLETED`

Explanation: Application program APPLETRE is unlocked and can be executed.

Related reference:

“UPDATE PGM command” on page 1124

/UNLOCK PTERM command

The /UNLOCK PTERM command specifies the physical terminal to be unlocked. This keyword applies only to the entering physical terminal and to logical terminals assigned to that physical terminal.

This command can be issued by APPC and OTMA clients.

Subsections:

- “Environment”
- “Syntax”
- “Usage notes”
- “Examples”

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

*Table 381. Valid environments for the /UNLOCK PTERM command and keywords*

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/UNLOCK PTERM</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
/UNLOCK PTERM
```

Usage notes

/UNLOCK PTERM applies only to the entering physical terminal.

/UNLOCK PTERM is not allowed from the OM API.

Examples

The following is an example of the /UNLOCK PTERM command:

Entry ET:

```
/UNLOCK PTERM
```

Response ET:

`DFS058I  UNLOCK COMMAND COMPLETED`
Explanation: The physical terminal from which the command is entered is unlocked.

/UNLOCK SYSTEM command

The /UNLOCK SYSTEM command notifies a newly created active system in an XRF complex that I/O prevention is complete.

Subsections:
- “Environment”
- “Syntax”
- “Usage notes”
- “Examples”

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/UNLOCK SYSTEM</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SYSTEM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
/UNLOCK SYSTEM
```

Usage notes

I/O prevention is initiated at takeover to ensure that the failing active system cannot write to the databases. The alternate system then initiates I/O toleration to ensure database integrity and to enable new transaction processing as soon as possible. /UNLOCK SYSTEM ends the I/O toleration phase of processing.

/UNLOCK SYSTEM is valid only if it is entered from the master terminal or from the system console on an XRF system.

Examples

The following is an example of the /UNLOCK SYSTEM command:

The following three figures illustrate the use of the /UNLOCK SYSTEM command on a newly created active system. Each figure is a formatted master screen for the newly created active system IMSB.

The following figure shows a screen of a newly created active system in the I/O toleration phase of processing (awaiting I/O prevention). Database DD41M803 has an I/O toleration EEQE.
The following figure shows a screen of the use of the /UNLOCK SYSTEM command to notify the newly created active system that I/O prevention is complete (the XRF system status line now indicates that processing is no longer degraded by I/O toleration).

The following figure shows that the I/O toleration EEQE for database DD41M803 has been deleted as part of /UNLOCK SYSTEM processing.

Related concepts:
- Takeover phase of the XRF process (System Administration)
/UNLOCK TRAN command

The /UNLOCK TRAN command specifies the transaction code to be unlocked.

Subsections:
- “Environment”
- “Syntax”
- “Usage notes”
- “Equivalent IMS type-2 commands”
- “Examples” on page 904

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 383. Valid environments for the /UNLOCK TRAN command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/UNLOCK</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TRAN</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
/UNLOCK TRAN tranname (password)
```

Usage notes

The /UNLOCK TRAN command cannot be used for Fast Path exclusive or CPI Communications driven transaction programs.

This command can be issued by APPC and OTMA clients.

The /UNLOCK TRAN command is valid only if entered from the master terminal, the system console, a TCO script, or from an AOI application program.

Equivalent IMS type-2 commands

The following table shows variations of the /UNLOCK TRAN command and the IMS type-2 commands that perform similar functions.

Table 384. Type-2 equivalents for the /UNLOCK TRAN command

<table>
<thead>
<tr>
<th>Task</th>
<th>/UNLOCK TRAN command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unlocks a transaction.</td>
<td>/UNLOCK TRAN tranname</td>
<td>UPDATE TRAN NAME(traname) SET(LOCK(OFF))</td>
</tr>
</tbody>
</table>
Examples

The following is an example of the /UNLOCK TRAN command:

Entry ET:
    /UNLOCK TRAN SEED

Response ET:
    DFS058I  UNLOCK COMMAND COMPLETED

Explanation: Transaction SEED is unlocked and can be scheduled.

Related reference:
"UPDATE TRAN command" on page 1183
Chapter 30. UPDATE commands

Use the IMS UPDATE commands to update IMS resources or resource descriptors.

These commands can be issued through TSO SPOC, IBM Management Console for IMS and DB2 for z/OS, the Manage Resources options in the IMS Applications menu, or other user-written programs that issue commands through OM API.

These commands can also be issued to an IMSplex by using the Batch SPOC utility.

UPDATE commands are:
- “UPDATE AREA command”
- “UPDATE DATAGRP command” on page 919
- “UPDATE DB command” on page 936
- “UPDATE DBDESC command” on page 963
- “UPDATE IMS command” on page 969
- “UPDATE IMSCON commands” on page 981
- “UPDATE LE command” on page 1061
- “UPDATE MSLINK command” on page 1067
- “UPDATE MSNAME command” on page 1078
- “UPDATE MSPLINK command” on page 1085
- “UPDATE ODBM commands” on page 1093
- “UPDATE OLREORG command” on page 1109
- “UPDATE OTMADESC command” on page 1115
- “UPDATE PGM command” on page 1124
- “UPDATE PGMDESC command” on page 1138
- “UPDATE POOL command” on page 1147
- “UPDATE RM command” on page 1159
- “UPDATE RTC command” on page 1170
- “UPDATE RTCDESC command” on page 1176
- “UPDATE TRAN command” on page 1183
- “UPDATE TRANDESC command” on page 1217

UPDATE AREA command

Use the UPDATE AREA command to change the status of area resources.

When the UPDATE AREA command is issued, the command is processed only by the IMS to which it is routed. The command does not preload or preopen areas on other IMS systems in the IMSplex that share the area. The UPDATE AREA command is routed by OM. OM routes the command to all active DB/DC or DBCTL IMS systems, unless specific routing is specified. OM selects one IMS as the command master.

Subsections:
- “Environment” on page 906
- “Syntax” on page 906
- “Keywords” on page 907
Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) from which the UPDATE AREA command and keywords can be issued.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE AREA</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OPTION</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SCOPE</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>START</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>STOP</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Syntax

![Syntax diagram]

"Usage notes" on page 911
"Equivalent IMS type-1 commands" on page 911
"Output fields" on page 911
"Return, reason, and completion codes" on page 912
"Examples" on page 916
Keywords

The following keywords are valid for the UPDATE AREA command:

NAME() Specifies the names of the specific areas that are to be processed or a group of areas to be processed.

Wildcard parameters can be specified. The area names that match the generic or wildcard parameter are processed. For specific or wildcard names, response lines are returned for all the area names that are processed.

NAME(*) indicates that the command is to be applied to all the areas in the system. When the NAME(*) is specified, the response lines are returned for only the area names that resulted in an error. If OPTION(ALLRSP) is specified with NAME(*), response lines are returned for all the area names that are processed.

OPTION() Specifies the additional functions to be performed. Following is a list of additional functions:

ALLRSP Indicates that the response lines are to be returned for all areas that are processed on the command. ALLRSP is only valid with NAME(*). The default action is to return response lines only for the areas that resulted in an error.

FEOV Indicates to force end of volume after the command processing is complete. The IMS log switches to the next OLDS, and a simple checkpoint is taken unless specified with STOP(QUIESCE). This switch is marked as a recovery point for log archiving purposes. A simple checkpoint is not taken when specified with STOP(QUIESCE).

FEOV is valid only with START(QUIESCE) OPTION(NOHOLD), STOP(ACCESS), or STOP(QUIESCE), and is not valid on an RSR tracker. OPTION(FEOV) is the default when specified with START(QUIESCE) OPTION(NOHOLD) or STOP(QUIESCE).

For quiesce processing, the end of volume will be forced after the quiesce point has been reached, causing the logs to be switched before the quiesce is released, so that any new updates occur on the new IMS log. This occurs during the stop quiesce processing of a START(QUIESCE) OPTION(NOHOLD) or when a
STOP(QUIESCE) is issued to release a quiesce from a previous START(QUIESCE) OPTION(HOLD).

**HOLD**

Specifies that after the quiesce has been achieved successfully the area should remain quiesced. A subsequent STOP(QUIESCE) would be required to release the quiesce on the DEDB area. HOLD is valid only with the START(QUIESCE) keyword. This keyword is mutually exclusive with the NOHOLD keyword.

**NOFEOV**

Indicates to not force end of volume after the command processing is complete. The IMS log does not switch to the next OLDS and a simple checkpoint is not taken.

NOFEOV is valid only with START(QUIESCE) OPTION(NOHOLD), STOP(ACCESS), or STOP(QUIESCE). OPTION(NOFEOV) is the default when specified with STOP(ACCESS).

**NOHOLD**

Specifies that after the quiesce has been achieved successfully the area should automatically release the quiesce. If neither HOLD nor NOHOLD is specified, NOHOLD is assumed. NOHOLD is valid only with the START(QUIESCE) keyword. This keyword is mutually exclusive with the HOLD keyword.

**OPEN**

Specifies to open the DEDB area data sets that are specified on the NAME() parameter, even if the area is not registered on DBRC as PREOPEN. The OPTION(OPEN) is processed locally by all IMS systems that receive the command and is not maintained as a global status in RM.

**PFA**

Sets or resets the prevent further authorization (PFA) status in the RECON data set for the DEDB area. Use the PFA option with UPDATE AREA START(ACCESS) to enable access to a DEDB area. Use the PFA option with UPDATE AREA STOP (ACCESS|SCHD) to prevent access to a DEDB area. If you specify OPTION(PFA), the command master IMS updates the RECON only if the command is successful at the master IMS.

**SCOPE()**

Specifies where IMS should apply the change. The default is ALL.

**ALL**

Changes are applied to the active IMS systems to which the command is routed. If you specify that global area status is to be maintained, changes are also applied globally by updating the value maintained by RM. The RM status is updated only by the command master IMS. If global area status is not maintained, the command action is same as the SCOPE(ACTIVE) command.

This option does not apply to the quiesce function. The scope of a quiesce is always all instances of the area usage across the IMSPlex. There is not a global status of QUIESCE for a DEDB area. Using SCOPE(ALL) for a START(QUIESCE) or STOP(QUIESCE) does not change the global status for the area.

**ACTIVE**

Changes are applied to the active IMS systems to which the command
is routed to. Any global status information maintained in the RM resource structure is not changed by the SCOPE(ACTIVE) command.

This option does not apply to the quiesce function. The scope of a quiesce is always all instances of the area usage across the IMSplex. There is no quiesce which would only apply to a subset of the IMSplex.

The UPDATE AREA command keywords that update information locally in the active IMS system and globally in RM when SCOPE(ALL) is specified include:

- START(ACCESS)
- STOP(SCHD)
- STOP(ACCESS)

**SET()**

Specifies the attribute values to be changed.

**ACCTYPE()**

Specifies the access intent for the named area. This keyword can be specified only if START(ACCESS) is specified. This keyword overrides the database access intent of its DEDB.

You can specify one of the following keywords:

**BRWS**

Specifies that the named area is available for read-only processing on this IMS subsystem. The only programs that can use the area on this subsystem are those that have a PCB processing option of GO (PROCOPT=GO). Programs that access the data by using the GO processing option might access uncommitted data because a sharing IMS subsystem could be updating the area. The area is opened for read-only processing.

**EXCL**

Specifies that the named area is to be used exclusively by this IMS subsystem. This exclusive access is guaranteed only when the area is registered to DBRC.

**READ**

Specifies that the named area is available for read processing in this IMS subsystem. Programs with update intent can be scheduled, but cannot update the area. ACCTYPE of READ differs from ACCTYPE of BRWS in that the data is read with integrity (locking is performed) and all programs can access the data, not just those with a processing option of GO. The area is opened for read.

**UPD**

Specifies that the named area is available for update as well as read processing in the IMS subsystem.

**TIMEOUT(nnn)**

Specifies the number of seconds to wait before a timeout occurs in a DEDB area quiesce. The timeout value can be 1 - 999 seconds. The TIMEOUT parameter value can override the DBQUIESCETO parameter in the DFSCGxxx member of the IMS PROCLIB data set. If the TIMEOUT parameter is omitted and the DBQUIESCETO parameter is not specified, the default timeout value is 30 seconds. The TIMEOUT keyword is valid only with the START(QUIESCE) keyword.
START

Specifies the attributes that are to be started.

ACCESS

Specifies the specific areas of a DEDB to be allocated or reallocated.

An UPDATE AREA START(ACCESS) can be issued on an RSR tracker to resume tracking for those areas that were stopped or had tracking errors. In addition, Online Forward Recovery (OFR) is started for areas that are not current with mainline tracking.

For Virtual Storage Option (VSO) areas, the UPDATE AREA START(ACCESS) can be used to preopen areas that are defined with the PREOPEN option. For VSO areas defined with the PRELOAD option, the command causes the areas to be loaded into the z/OS data space or an XES structure depending on the share level of the area. The command has no effect on VSO areas that are in virtual storage.

QUIESCE

Specifies that the DEDB areas named on the command are to be quiesced to establish a new recovery point. The scope of a quiesce is always all instances of the area usage across the IMSplex. There is no quiesce that would apply only to a subset of the IMSplex.

STOP

Specifies the attributes that are to be stopped.

ACCESS

Stops the access and updating of the specified DEDB areas and closes them.

The UPDATE AREA STOP(ACCESS) command for VSO areas removes the areas from the data space or XES structure and forces updates to be written back to DASD.

An UPDATE AREA START(ACCESS) command is required to open and reallocate the areas closed by the UPDATE AREA STOP(ACCESS) command.

QUIESCE

Specifies that the DEDB areas named on the command should be made available again by releasing the quiesce on the areas.

Unlike START(QUIESCE), where each area resource listed must be quiesced in order for the command to complete successfully, STOP(QUIESCE) continues to process each listed resource even if some resources are not in quiesced state or cannot be released from quiesced state. For those resources that are not in quiesced state or cannot be released from quiesced state, the command returns a response line for each of those resources.

SCHD

Specifies that the data sets associated to the areas are to be closed and deallocated.

Note: An UPDATE AREA START(ACCESS) is required to reallocate the areas stopped by the UPDATE AREA STOP(SCHD) command.

If UPDATE AREA STOP(SCHD) is processed during HSSP processing, the area will be released after the current commit
processing completes. Any image copy option in process when the command is issued can affect the continued system operation.

For VSO DEDB areas that are in a z/OS data space or XES structure, the UPDATE AREA STOP(SCHD) command action results in the removal of the VSO areas from the data space or XES structure and the writing of updates to DASD.

Usage notes

The UPDATE AREA command can only be specified using the OM API. The command is also not allowed on the XRF alternate.

The UPDATE AREA STOP(SCHD) command and the UPDATE AREA START(ACCESS) SET(ACCTYPE()) command are not allowed on any RSR tracker. However, the commands UPDATE AREA START(ACCESS) or UPDATE AREA STOP(ACCESS) are allowed only on a database level RSR tracker. The UPDATE AREA START(ACCESS) and UPDATE AREA STOP(SCHD) commands are recoverable, and a X'22' log record is written but the UPDATE AREA STOP(ACCESS) command is not recoverable.

A new log record, X'594C', is written for every DEDB area to which the UPDATE AREA command applies. It also includes global status and the global command time stamp.

The UPDATE AREA command is enhanced to return CCTXT with a non-zero completion code. The CCTXT can be up to 32 bytes, and it includes information about what the completion code means. The UPDATE AREA SCOPE(ALL) command returns a response line with the completion code for the global status update. The CCTXT for that code is GBL CC.

While the database is being quiesced, this command with keywords other than STOP(QUIESCE) cannot be processed successfully.

Equivalent IMS type-1 commands

The following table shows variations of the UPDATE AREA command and the type-1 IMS commands that perform similar functions.

<table>
<thead>
<tr>
<th>Table 386. Type-1 equivalents for the UPDATE AREA command</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE AREA command</td>
</tr>
<tr>
<td>UPDATE AREA NAME(name) STOP(ACCESS)</td>
</tr>
<tr>
<td>UPDATE AREA NAME(name) START(ACCESS)</td>
</tr>
<tr>
<td>UPDATE AREA NAME(name) STOP(SCHD)</td>
</tr>
</tbody>
</table>

Output fields

The following table shows the UPDATE AREA output fields. The columns in the table are as follows:

Short label
Contains the short label generated in the XML output.

Keyword
Identifies keyword on the command that caused the field to be generated.
N/A appears for output fields that are always returned. ERR appears for output fields that are returned only in case of an error.

### Meaning

Provides a brief description of the output field.

**Table 387. Output fields for the UPDATE AREA command**

<table>
<thead>
<tr>
<th>Short label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>AREA</td>
<td>N/A</td>
<td>Area name. The area name is always returned.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>error</td>
<td>The completion code text that briefly explains the meaning of the completion code.</td>
</tr>
<tr>
<td>CC</td>
<td>N/A</td>
<td>Completion code for the line of output. Completion code is always returned.</td>
</tr>
<tr>
<td>GBL</td>
<td>SCOPE(ALL)</td>
<td>Indicates that the response line is for the global update.</td>
</tr>
<tr>
<td>EERT</td>
<td>ERR</td>
<td>Error text returned to add more meaning to the completion code and may include a return code from a service. The error text may be returned for a non-zero completion code.</td>
</tr>
<tr>
<td>MBR</td>
<td>N/A</td>
<td>The IMSplex member that built the output line. The IMS identifier of the IMS for which the area information is displayed. The IMS identifier is always returned.</td>
</tr>
</tbody>
</table>

### Return, reason, and completion codes

An IMS return and reason code is returned to OM by the UPDATE AREA command. The OM return and reason codes that may be returned as a result of the UPDATE AREA command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

**Table 388. Return and reason codes for the UPDATE AREA command**

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The UPDATE AREA command completed successfully.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002014'</td>
<td>The UPDATE AREA command is not processed because an invalid character is found in the area name parameter.</td>
</tr>
</tbody>
</table>
| X'00000008' | X'00002040' | Either more than one keyword or an invalid combination of filters was specified on the UPDATE AREA command. For example, the following keyword combinations are incorrect:  
  * START(ACCESS) and STOP(ACCESS)  
  * STOP(ACCESS) and OPTION(OPEN)  
  * STOP(SCHD) and OPTION(OPEN)  
  * OPTION(NOFEOV,FEOV)  
  Check the input command and reenter the correct combinations. |
<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000008'</td>
<td>X'00005000'</td>
<td>The UPD AREA command processing terminated because IMODULE GETSTOR storage could not be obtained.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003000'</td>
<td>The UPDATE AREA command processing terminated because WKAP or MAIN pool storage could not be obtained.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>The UPDATE AREA command processing terminated because a DFSCOMD response buffer could not be obtained.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003005'</td>
<td>The UPDATE AREA command processing terminated because AWE could not be obtained.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'0000300F'</td>
<td>An invalid TIMEOUT value is specified. The value must be a numeric value between 1 and 999.</td>
</tr>
</tbody>
</table>
The following table includes an explanation of the completion codes. Errors unique
to the processing of UPDATE AREA command are returned as completion codes. A
completion code is returned for each action against an individual resource.

**Table 389. Completion codes for the UPDATE AREA command**

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>COMMAND COMPLETE FOR NONE</td>
<td>This error is returned when all the areas could not be quiesced.</td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCE FOUND</td>
<td>No resource found.</td>
</tr>
<tr>
<td>11</td>
<td>DUPLICATE RESOURCE NAME</td>
<td>The resource name is specified multiple times on the command and is ignored.</td>
</tr>
<tr>
<td>17</td>
<td>ANOTHER CMD IN PROGRESS</td>
<td>This error is returned when the quiesce could not be started because another database command was in progress.</td>
</tr>
<tr>
<td>53</td>
<td>NO RM ADDRESS SPACE</td>
<td>This error is returned when the quiesce could not be started because the RM address space is not present.</td>
</tr>
<tr>
<td>55</td>
<td>NO FAST PATH INSTALLED</td>
<td>The command failed because Fast Path is not installed.</td>
</tr>
<tr>
<td>81</td>
<td>DBRC ERROR</td>
<td>This error is returned when an unexpected DBRC error occurs during the quiesce command.</td>
</tr>
<tr>
<td>90</td>
<td>INTERNAL ERROR</td>
<td>The command entered is not processed because of an internal error.</td>
</tr>
<tr>
<td>91</td>
<td>TIMEOUT ERROR</td>
<td>This error is returned when the quiesce could not be completed within the timeout period. The quiesce might be processing longer than the timeout value, or an IMSplex component involved in the process might have failed or hung. Check the state of the IMSplex components by, for example, issuing a QUERY IMSPLEX command or checking the z/OS system log.</td>
</tr>
<tr>
<td>92</td>
<td>COMMAND PROCESSING ERROR</td>
<td>The command entered is not processed because of a command error. A unique completion code could not be generated to explain the error. The message number and the return code that could not be converted to a completion code are listed in the error text.</td>
</tr>
<tr>
<td>A5</td>
<td>PREVENT FURTHER AUTH ON</td>
<td>The command entered is not processed, because the database or area is defined to DBRC as 'prevent further authorization'.</td>
</tr>
<tr>
<td>A9</td>
<td>DB OR AREA AUTHORIZATION ERROR</td>
<td>Area authorization to DBRC failed.</td>
</tr>
<tr>
<td>D1</td>
<td>DATABASE WRITE ERROR</td>
<td>This error is returned when the quiesce could not be completed because the database has a write error.</td>
</tr>
<tr>
<td>D2</td>
<td>DATABASE NEEDS BACKOUT</td>
<td>This error is returned when the quiesce could not be completed because the database needs backout.</td>
</tr>
<tr>
<td>D3</td>
<td>DATABASE OR AREA NEEDS RECOVERY</td>
<td>This error is returned when the quiesce could not be completed because the database needs recovery.</td>
</tr>
<tr>
<td>Completion code</td>
<td>Completion code text</td>
<td>Meaning</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------------------------------------</td>
<td>------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>D9</td>
<td>COMMAND PROCESSING ERROR</td>
<td>The UPDATE AREA START(ACCESS) command could not be processed for the area name because the area open failed.</td>
</tr>
<tr>
<td>E0</td>
<td>DATABASE OR AREA IN RECOVERY</td>
<td>The command is not processed because the database or area is in recovery.</td>
</tr>
<tr>
<td>E5</td>
<td>PARTICIPANTS UNABLE TO QUIESCE</td>
<td>This error is returned when the quiesce could not be completed successfully across the IMSplex. The IMS with this completion code was the quiesce participant that was not able to be quiesced.</td>
</tr>
<tr>
<td>E6</td>
<td>QUIESCE COMMUNICATION FAILURE</td>
<td>This error is returned when the quiesce could not be completed because of a failure to communicate across the IMSplex. There could be a problem with RM, OM, or SCI that has caused the communication failure to occur.</td>
</tr>
<tr>
<td>E7</td>
<td>CMD NOT ALLOWED</td>
<td>This error is returned when the database command could not be processed because a quiesce command was in progress.</td>
</tr>
<tr>
<td>E8</td>
<td>DATABASE HAS INTENT TO REORGANIZE</td>
<td>This error is returned when the quiesce could not be started because the RECON data sets indicate that there is an intent to reorganize the database.</td>
</tr>
<tr>
<td>E9</td>
<td>DB IN WRONG STATE TO BE QUIESCED</td>
<td>This error is returned when the named resource is in the wrong state for quiesce processing to proceed.</td>
</tr>
<tr>
<td>EF</td>
<td>DATABASE IS IN ERROR</td>
<td>This error is returned when the quiesce could not be completed because the database is in error.</td>
</tr>
<tr>
<td>F0</td>
<td>NO AREA LOCK</td>
<td>The command processing failed because the area lock could not be obtained.</td>
</tr>
<tr>
<td>F1</td>
<td>AREA NOT STOPPED</td>
<td>The command entered is not processed because the area is not stopped.</td>
</tr>
<tr>
<td>F2</td>
<td>PRELOAD IS ACTIVE FOR AREA</td>
<td>The command is not processed because preload is active for the area.</td>
</tr>
<tr>
<td>F3</td>
<td>UNRESOLVED INDOUBTS FOR AREA</td>
<td>The command entered is not processed because unresolved indoubts exist for the area.</td>
</tr>
<tr>
<td>F4</td>
<td>ALLOCATION FAILED</td>
<td>Allocation failed for the area name.</td>
</tr>
<tr>
<td>F5</td>
<td>AREA NEEDS RECOVERY</td>
<td>The command processing failed because the area needs recovery.</td>
</tr>
<tr>
<td>F6</td>
<td>ADS NUMBER DISCREPANCY</td>
<td>The command failed for the AREA because there is a discrepancy between the number of ADS allocated by IMS and the number of ADS known to DBRC. Correct the discrepancy and reissue the command to deallocate the data sets.</td>
</tr>
<tr>
<td>F7</td>
<td>AREA IS NOT LOADED INTO CF</td>
<td>The area open failed and is not loaded into the Coupling Facility.</td>
</tr>
<tr>
<td>F8</td>
<td>AREA HAS I/O TOLERATED CI</td>
<td>The command is not processed because the area has an I/O tolerated CI.</td>
</tr>
<tr>
<td>F9</td>
<td>AREA HAS SECOND CI EEQE</td>
<td>The command is not processed because the area has a second CI EEQE.</td>
</tr>
</tbody>
</table>
Table 389. Completion codes for the UPDATE AREA command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC</td>
<td>UTILITY ACTIVE ON AREA</td>
<td>This error is returned when the area is in use by a utility.</td>
</tr>
<tr>
<td>FD</td>
<td>AREA HAS EEQE</td>
<td>This error is returned when the area has an extended error queue element (EEQE).</td>
</tr>
<tr>
<td>FE</td>
<td>AREA HAS EQE</td>
<td>This error is returned when the area has an error queue element (EQE).</td>
</tr>
<tr>
<td>190</td>
<td>DB ACCESS LESS THAN AREA ACCESS</td>
<td>The command fails for the resource, because the DEDB access is less than the area access.</td>
</tr>
<tr>
<td>191</td>
<td>AREA ACCESS ALREADY AT LEVEL.</td>
<td>The command fails for the resource, because the area access is already at the area access level.</td>
</tr>
<tr>
<td>192</td>
<td>AREA IN USE-UTIL.</td>
<td>The command fails for the resource, because a utility is running against the area.</td>
</tr>
</tbody>
</table>

Examples

The following are examples of the UPDATE AREA command:

Example 1 for UPDATE AREA command

TSO SPOC input:
UPD AREA NAME(DB21AR1*) STOP(ACCESS)

TSO SPOC output:

<table>
<thead>
<tr>
<th>AreaName</th>
<th>MbrName</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB21AR1</td>
<td>IMS2</td>
<td>0</td>
</tr>
<tr>
<td>DB21AR1</td>
<td>SYS3</td>
<td>0</td>
</tr>
<tr>
<td>DB21AR10</td>
<td>IMS2</td>
<td>0</td>
</tr>
<tr>
<td>DB21AR10</td>
<td>SYS3</td>
<td>0</td>
</tr>
<tr>
<td>DB21AR11</td>
<td>IMS2</td>
<td>0</td>
</tr>
<tr>
<td>DB21AR11</td>
<td>SYS3</td>
<td>0</td>
</tr>
</tbody>
</table>

OM API output:

CMD(UPD AREA NAME(DB21AR1*) STOP(ACCESS))

OM API output:

```xml
<imsout>
 <ctl>
 <omname>OM1OM</omname>
 <omvsn>1.2.0</omvsn>
 <xmlvsn>1</xmlvsn>
 <statime>2003.132 16:17:33.260435</statime>
 <stotime>2003.132 16:17:33.281165</stotime>
 <staseq>B968A333F5A93283</staseq>
 <stoseq>B968A333FAB8DC83</stoseq>
 <rqsttkn1>USR7005 10091733</rqsttkn1>
 <rc>00000000</rc>
 <rsn>00000000</rsn>
 </ctl>
</imsout>
```
Explanation: The command stops access to all the areas that match the area name specified and makes them unavailable. The areas data sets are closed and deallocated.

Example 2 of UPDATE AREA command

TSO SPOC input:
UPD AREA NAME(*) STOP(SCHD)

TSO SPOC output:
Log for . . . : UPD AREA NAME(*) STOP(SCHD)
IMSplex . . . . . : PLEX1
Routing . . . . . :
Return code . . : 00000000
Reason code . . : 00000000
Command master .. IMS2

OM API input:
CMD(UPD AREA NAME(*) STOP(SCHD))

OM API output:
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.2.0</omvsn>
<xmlvsn>1</xmlvsn>
<statime>2003.132 16:22:15.799896</statime>
<staseq>8968A44169058CB6E</staseq>
<stoseq>8968A443106E6BE7D</stoseq>
<rqsttkn>USRT005 10092215</rqsttkn>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>IMS2</master>
<userid>USRT005</userid>
<verb>UPD</verb>
</cmd>
Explanation: The command is routed to IMS2 and SYS3, and the command is successful at both IMS systems. No response lines are returned because the default action for NAME(*) is to return response lines only for the area names that resulted in an error. OPTION(ALLRSP) can be specified to obtain all the area names processed on the command.

Example 3 of UPDATE AREA command

TSO SPOC input:
UPDATE AREA NAME(DD01AR0) STOP(ACCESS) SCOPE(ALL)

TSO SPOC output:

<table>
<thead>
<tr>
<th>AreaName</th>
<th>MbrName</th>
<th>CC</th>
<th>Global</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD01AR0</td>
<td>IMS1</td>
<td>0</td>
<td>Y</td>
</tr>
<tr>
<td>DD01AR0</td>
<td>IMS1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>DD01AR0</td>
<td>IMS2</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Explanation: The UPDATE AREA STOP(ACCESS) command for area DD01AR0 is successfully processed at IMS1 and IMS2. Command master IMS1 successfully updates the global status.

Example 4 of UPDATE AREA command

TSO SPOC input:
UPDATE AREA NAME(DB22AR0,DB22AR1,DB22AR2,DB22AR3) START(ACCESS) OPTION(OPEN)

TSO SPOC output:

<table>
<thead>
<tr>
<th>AreaName</th>
<th>MbrName</th>
<th>CC</th>
<th>CText</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB22AR0</td>
<td>IMS1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>DB22AR1</td>
<td>IMS1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>DB22AR2</td>
<td>IMS1</td>
<td>A9</td>
<td>DB OR AREA AUTHORIZATION ERROR</td>
</tr>
<tr>
<td>DB22AR3</td>
<td>IMS1</td>
<td>A9</td>
<td>DB OR AREA AUTHORIZATION ERROR</td>
</tr>
</tbody>
</table>

Explanation: This command opens the DEDB area data sets that are specified on the NAME() parameter, even if the area is not registered on DBRC as PREOPEN. The OPTION(OPEN) is processed locally by all IMS systems that receive the command and is not maintained as a global status in RM.

Example 5 of UPDATE AREA command

TSO SPOC input:
UPDATE AREA NAME(AXYZ01) START(QUIESCE) OPTION(HOLD)

TSO SPOC output:

<table>
<thead>
<tr>
<th>AreaName</th>
<th>MbrName</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>AXYZ01</td>
<td>IM02</td>
<td>0</td>
</tr>
<tr>
<td>AXYZ01</td>
<td>IM01</td>
<td>0</td>
</tr>
<tr>
<td>AXYZ01</td>
<td>IM03</td>
<td>0</td>
</tr>
</tbody>
</table>

Explanation: This example is of a successful quiesce and hold for a DEDB area.

Example 6 of UPDATE AREA command
TSO SPOC input:
UPD AREA NAME(AXYZ01) STOP (QUIESCE)

TSO SPOC output:

<table>
<thead>
<tr>
<th>AreaName</th>
<th>MbrName</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>AXYZ01</td>
<td>IM03</td>
<td>0</td>
</tr>
<tr>
<td>AXYZ01</td>
<td>IM02</td>
<td>0</td>
</tr>
<tr>
<td>AXYZ01</td>
<td>IM01</td>
<td>0</td>
</tr>
</tbody>
</table>

Explanation: example is of releasing the quiesce for a DEDB area.

**Example 7 of UPDATE AREA command**

TSO SPOC input:
UPDATE AREA NAME(D0010001) START (ACCESS) SET (ACCTYPE (READ))

TSO SPOC output:

<table>
<thead>
<tr>
<th>AreaName</th>
<th>MbrName</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>D0010001</td>
<td>IMS1</td>
<td>0</td>
</tr>
</tbody>
</table>

Explanation: DEDB DEDBJ0001 has database access of update. Area D0010001 of DEDB DEDBJ001 access is changed from update to read.

Related concepts:

- Maintaining global information for databases, DEDB areas, and transactions (System Administration)
- How to interpret CSL request return and reason codes (System Programming: APIs)

Related reference:

- Command keywords and their synonyms (Commands)
- "/START AREA command" on page 728
- "/STOP AREA command" on page 781

### UPDATE DATAGRP command

Use the UPDATE DATAGRP command to allow changes to the status of the members of a data group.

Subsections:
- “Environment”
- “Syntax” on page 920
- “Keywords” on page 920
- “Usage notes” on page 924
- “Equivalent IMS type-1 commands” on page 924
- “Output fields” on page 924
- “Return, reason, and completion codes” on page 925
- “Examples” on page 933

**Environment**

The following table lists the environments (DB/DC, DBCTL, and DCCTL) from which the UPDATE DATAGRP command and keywords can be issued.
<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE DATAGRP</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OPTION</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SCOPE</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>START</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>STOP</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

**Syntax**

```
UPDATE DATAGRP NAME(datagpname)
```

**Keywords**

The following keywords are valid for the UPDATE DATAGRP command:

**NAME()**

Specifies the name of the data group to be processed.

**OPTION()**

Specifies the additional functions to be performed. Following is a list of additional functions:

- **ALLRSP**
  
  Indicates that the response lines are to be returned for all the members of the data group (all databases, areas, or both) that are processed on the command.
The default action is to return response lines only for the databases and areas or both that resulted in an error. A response line with the data group name is always returned.

**DBALLOC**
 Indicates that the databases in the data group are to be allocated when they are started.

DBALLOC can only be specified with START(ACCESS).

Only one of DBALLOC or NODBALLOC can be specified.

**FEOV**
 Indicates to force end of volume after the command processing is complete. The IMS log switches to the next OLDS, and a simple checkpoint is taken unless specified with STOP(QUIESCE). This switch is marked as a recovery point for log archiving purposes. A simple checkpoint is not taken when specified with STOP(QUIESCE).

FEOV is valid only with START(QUIESCE) OPTION(NO HOLD) or STOP(ACCESS) or STOP(QUIESCE). FEOV is not valid on an RSR tracker. OPTION(FEOV) is the default when specified with START(QUIESCE) OPTION(NO HOLD) or STOP(QUIESCE).

For quiesce processing, the end of volume will be forced after the quiesce point has been reached, causing the logs to be switched before the quiesce is released, so that any new updates occur on the new IMS log. This occurs during the stop quiesce processing of a START(QUIESCE) OPTION(NO HOLD) or when a STOP(QUIESCE) is issued to release a quiesce from a previous START(QUIESCE) OPTION(HOLD).

**HOLD**
 Specifies that after the quiesce has been achieved successfully the data group members should remain quiesced. A subsequent STOP(QUIESCE) would be required to release the quiesce on the data group members. This keyword is only valid with the START(QUIESCE) keyword. HOLD is mutually exclusive with NOHOLD.

**NODBALLOC**
 Indicates that the databases in the data group are not to be allocated when they are started. The databases will be allocated when they are scheduled.

NODBALLOC can only be specified with START(ACCESS). NODBALLOC is the default action for UPDATE DATAGRP command if OPTION(DBALLOC) is not specified.

Only one of DBALLOC or NODBALLOC can be specified.

**NOFEOV**
 Indicates to not force end of volume after the command processing is complete. The IMS log does not switch to the next OLDS, and a simple checkpoint is not taken.

NOFEOV is valid only with START(QUIESCE) OPTION(NO HOLD), STOP(ACCESS), or STOP(QUIESCE). OPTION(NOFEOV) is the default when specified with STOP(ACCESS).
NOHOLD
Specifies that after the quiesce has been achieved successfully the
data group members should automatically release the quiesce. If
you do not specify either HOLD or NOHOLD, NOHOLD is
assumed. This keyword is only valid with the START(QUIESCE)
keyword. NOHOLD is mutually exclusive with HOLD.

SCOPE
Specifies where IMS should apply the change.

ACTIVE
SCOPE(ACTIVE) specifies that the changes are to be applied to the
IMS systems that are currently active and to which the command is
routed.

This option does not apply to the quiesce function. The scope of a
quiesce is always all instances of the data group usage across the
IMSplex. There is no quiesce which would only apply to a subset
of the IMSplex.

ALL
SCOPE(ALL) specifies that the changes are to be applied to the
active IMS systems.

This option does not apply to the quiesce function. The scope of a
quiesce is always all instances of the data group members usage
across the IMSplex. There is not a global status of QUIESCE for a
data group or its members. Using SCOPE(ALL) for a
START(QUIESCE) or STOP(QUIESCE) does not change the global
status for the data group members.

Currently, ACTIVE and ALL produce the same results.

SET
Specifies the attribute values to be changed or sets the database state.

ACCTYPE
Specifies the access intent for the named database. This keyword
can be specified only if START(ACCESS) is specified. This keyword
overrides the database access intent specified at system definition.

BRWS
Specifies that the named database is available for read-only
processing on this IMS subsystem. The only programs that
can use the database on this subsystem are those that have
a PCB processing option of GO (PROCOPT=GO). Programs
that access the data using the GO processing option might
see uncommitted data because another program could be
updating the database. The database is opened for
read-only processing.

EXCL
Specifies that the named database is to be used exclusively
by this IMS subsystem. This exclusive access is guaranteed
only when the database is registered to DBRC.

READ
Specifies that the named database is available for read-only
processing in this IMS subsystem. Programs with update
intent can be scheduled, but cannot update the database.
ACCTYPE of READ differs from ACCTYPE of BRWS in
that the data is read with integrity (locking is performed)
and all programs can access the data, not just those with a
processing option of GO. The database is opened for
read-only processing.
UPD  Specifies that the named database is available for update as well as read processing in this IMS subsystem.

TIMEOUT(\textit{nnn})
Specifies the number of seconds to wait before a timeout occurs in a data group quiesce. The timeout value can be 1 - 999 seconds. The TIMEOUT parameter value can override the DBQUIESCETO parameter in the DFSCGxxx member of the IMS PROCLIB data set. If the TIMEOUT parameter is omitted and the DBQUIESCETO parameter is not specified, the default timeout value is 30 seconds. The TIMEOUT keyword is valid only with the START(QUIESCE) keyword.

START()
Specifies the attributes that are to be started.

ACCESS
Specifies that the members of the specified data group name are to be started. See UPDATE AREA START(ACCESS) and UPDATE DB START(ACCESS) for a description of the actions performed on the databases and areas in the data group.

Additional functions to be performed along with START(ACCESS) can be specified using the OPTION keyword.

An UPDATE DATAGRP START(ACCESS) command with SET(ACCTYPE) or OPTION(DBALLOC | NODBALLOC | NOBACKOUT | OPEN | NOOPEN) is invalid on the RSR tracker.

QUIESCE
Specifies that the data group named on the command is to be quiesced to establish a new recovery point. The scope of a quiesce is always all instances of the data group usage across the IMSplex.

STOP()
Specifies the attributes to be stopped.

ACCESS
Specifies that offline processing is to be done for the members of the specified data group. See UPDATE AREA STOP(ACCESS) and UPDATE DB STOP(ACCESS) for a description of the actions performed on the databases and areas in the data group.

QUIESCE
Specifies that the data group named on the command should be made available again by releasing the quiesce on the data group members.

Unlike START(QUIESCE), where each data group resource listed must be quiesced in order for the command to complete successfully, STOP(QUIESCE) continues to process each listed resource even if some resources are not in quiesced state or cannot be released from quiesced state. For those resources that are not in quiesced state or cannot be released from quiesced state, the command returns a response line for each of those resources.

SCHD
Specifies that the members of the specified data group name are to be stopped. See UPDATE AREA STOP(ACCESS) and UPDATE DB STOP(ACCESS) for a description of the actions performed on the databases and areas in the data group.
Usage notes

The UPDATE DATAGRP command can only be specified through the OM API and can be processed only by the DB/DC and DBCTL environments. In addition, the UPDATE DATAGRP command is not allowed on the XRF alternate.

When the UPDATE DATAGRP command is issued, it only applies to the IMS system to which it is routed. It does not apply to the other IMS systems in the IMSplex that share the database or areas in the data group. The routing of the UPDATE DATAGRP command is done by OM. OM routes the command to all active DB/DC or DBCTL IMS systems, unless specific routing is specified. OM selects one IMS as the command master.

A response line is returned for the data group name from each IMS. Response lines are also returned for each data group member that resulted in an error. No response lines are returned for the data group members that are processed successfully unless OPTION(ALLRSP) is specified.

A data group is defined in the RECON data set by using the INIT.DBDSGRP command with the parameters GRPNAME and DBGPRP (to define a DB group), MEMBERS (to define a DBDS group), or RECOVGRP (to define a recovery group). The DATAGRP keyword on the UPDATE command can specify either a DBDS group or a DB group (DL/I databases or DEDB areas).

If the ACCESS keyword is specified on the UPDATE DATAGRP command along with the DBDS group name, the ACCESS keyword is not applied to the Fast Path DEDB databases associated with the Fast Path DEDB areas in the DBDS group. If the intent is to use the ACCESS keyword for Fast Path DEDB databases, the DATAGRP parameter must be a data group name that does not contain area names.

While the database is being quiesced, this command with keywords other than STOP(QUIESCE) cannot be processed successfully.

Equivalent IMS type-1 commands

The following table shows variations of the UPDATE DATAGRP command and the type-1 IMS commands that perform similar functions.

<table>
<thead>
<tr>
<th>UPDATE DATAGRP command</th>
<th>Similar IMS type-1 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE DATAGRP NAME(name) STOP(ACCESS) /DBR DATAGRP datagrpname</td>
<td></td>
</tr>
<tr>
<td>UPDATE DATAGRP NAME(name) START(ACCESS) /START DATAGRP datagrpname</td>
<td></td>
</tr>
<tr>
<td>UPDATE DATAGRP NAME(name) STOP(SCHD) /STOP DATAGRP datagrpname</td>
<td></td>
</tr>
</tbody>
</table>

Output fields

The following table shows the output fields for the UPDATE DATAGRP. The columns in the table are as follows:

Short label
Contains the short label generated in the XML output.

Keyword
Identifies the keyword on the command that caused the field to be
generated. N/A appears for output fields that are always returned. ERR appears for output fields that are returned only in case of an error.

### Meaning
Provides a brief description of the output field.

#### Table 391. Output fields for UPDATE DATAGRP command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>AREA</td>
<td>N/A</td>
<td>Area name. The Area name is returned if there are one or more areas in the data group.</td>
</tr>
<tr>
<td>CC</td>
<td>N/A</td>
<td>Completion code for the line of output. Completion code is always returned.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>error</td>
<td>The completion code text that briefly explains the meaning of the completion code.</td>
</tr>
<tr>
<td>DB</td>
<td>N/A</td>
<td>Database name. The database name is returned if there are one or more databases in the data group.</td>
</tr>
<tr>
<td>DG</td>
<td>N/A</td>
<td>Data group name. The data group name is always returned.</td>
</tr>
<tr>
<td>ERR</td>
<td>ERR</td>
<td>Error text returned to add more meaning to the completion code and may include a return code from a service. The error text is only returned if the completion code is non-zero.</td>
</tr>
<tr>
<td>MBR</td>
<td>N/A</td>
<td>The IMSplex member that built output line. The IMS identifier of the IMS for which the database information is displayed. The IMS identifier is always returned.</td>
</tr>
</tbody>
</table>

### Return, reason, and completion codes
An IMS return and reason code is returned to OM by the UPDATE DATAGRP command. The OM return and reason codes that may be returned as a result of the UPDATE DATAGRP command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

#### Table 392. Return and reason codes for the UPDATE DATAGRP command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The UPDATE DATAGRP command completed successfully.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002004'</td>
<td>An invalid keyword or more than one keyword is specified on the UPDATE DATAGRP command.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002014'</td>
<td>The UPDATE DATAGRP command is not processed because an invalid character is found in the data group name.</td>
</tr>
</tbody>
</table>
Table 392. Return and reason codes for the UPDATE DATAGRP command (continued)

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000008'</td>
<td>X'00002040'</td>
<td>More than one filter or keyword value is specified on the UPDATE DATAGRP command. Either more than one keyword or an invalid combination of filters was specified. For example, START(ACCESS) and STOP(ACCESS) was specified, or OPTION(DBALLOC,NODBALLO) was specified. Check the input command and reenter the correct combinations.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00005000'</td>
<td>The UPD DATAGRP command processing terminated because IMODULE GETSTOR storage could not be obtained.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000501C'</td>
<td>The UPD DATAGRP command processing terminated because IMODULE GETMAIN storage could not be obtained.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003000'</td>
<td>The UPDATE DATAGRP command is successful for at least one member in the data group. The UPDATE DATAGRP command is not successful for one or more members in the data group. The completion code indicates the reason for the error with the data group member name. The completion codes that can be returned by the UPDATE DATAGRP command are listed in the UPDATE DATAGRP completion code table.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>The UPDATE DATAGRP command is not successful for all the members in the data group. The completion code indicates the reason for the error with the data group member name. The completion codes that can be returned by the UPDATE DATAGRP command are listed in the UPDATE DATAGRP completion code table.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000400C'</td>
<td>The UPDATE DATAGRP command is not processed because it is not valid on the XRF alternate.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>The UPDATE DATAGRP command is not processed because it is not valid on the RSR tracker.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004200'</td>
<td>Commands are not processed because IMS shutdown is in progress.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004208'</td>
<td>Invalid command for RMENV=NO.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004400'</td>
<td>MINVERS in the RECON data sets is not 11.1.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005004'</td>
<td>The UPDATE DATAGRP command processing terminated because a DFSOCMD response buffer could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005008'</td>
<td>The UPDATE DATAGRP command processing terminated because DFSPOOL storage could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'0000500C'</td>
<td>The UPDATE DATAGRP command processing terminated because AWE could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005014'</td>
<td>The UPDATE DATAGRP command processing terminated because BCB storage could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005FFF'</td>
<td>The UPDATE DATAGRP command processing terminated because of an internal error.</td>
</tr>
</tbody>
</table>
Table 392. Return and reason codes for the UPDATE DATAGRP command (continued)

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'02000008'</td>
<td>X'0000203C'</td>
<td>An invalid TIMEOUT value is specified. The value must be a numeric value between 1 and 999.</td>
</tr>
</tbody>
</table>

The following table includes an explanation of the completion codes. Errors unique to the processing of UPDATE DATAGRP command are returned as completion codes. A completion code is returned for each action against an individual resource.

Table 393. Completion codes for the UPDATE DATAGRP command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The command completed successfully for the resource.</td>
</tr>
<tr>
<td>8</td>
<td>COMMAND COMPLETE FOR SOME</td>
<td>Some. The command completed with error for some of the AREAS of the DEDB. Response lines for the area names in error are returned.</td>
</tr>
<tr>
<td>C</td>
<td>COMMAND COMPLETE FOR NONE</td>
<td>None. The command completed with error for all the AREAs of the DEDB. Response lines for the area names in error are returned.</td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>No resource found. Database name is invalid, or the wildcard parameter specified does not match any database names.</td>
</tr>
<tr>
<td>11</td>
<td>DUPLICATE RESOURCE NAME</td>
<td>Duplicate resource name. The resource name is specified multiple times on the command and is ignored.</td>
</tr>
<tr>
<td>17</td>
<td>ANOTHER CMD IN PROGRESS</td>
<td>This error is returned when the quiesce could not be started because another database command was in progress.</td>
</tr>
<tr>
<td>23</td>
<td>DB STOP ACCESS IN PROGRESS</td>
<td>A /DBRECOVERY, or UPDATE DB STOP(ACCESS) command to stop database access is in progress. This takes the database offline.</td>
</tr>
<tr>
<td>25</td>
<td>DB STOP UPDATES IN PROGRESS</td>
<td>A /DBDUMP or UPDATE DB STOP(UPDATES) command to stop database updates is in progress.</td>
</tr>
<tr>
<td>26</td>
<td>DEDB STOP IN PROGRESS</td>
<td>/DBRECOVERY, /STOP, or UPDATE DB STOP(SCHD) command to stop database scheduling is in progress for a DEDB.</td>
</tr>
<tr>
<td>31</td>
<td>NOT ALLOWED FOR A DEDB</td>
<td>Database is a DEDB. The command entered is not valid for the DEDB in the IMS environment.</td>
</tr>
<tr>
<td>32</td>
<td>NOT ALLOWED FOR AN MSDB</td>
<td>Database is a MSDB. The command entered is not valid for the MSDB in the IMS environment.</td>
</tr>
</tbody>
</table>
Table 393. Completion codes for the UPDATE DATAGRP command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>NOT ALLOWED FOR A HALDB MASTER</td>
<td>Command invalid HALDB master. The command OPTION is invalid for the HALDB master but partition structure rebuild will be done if structure rebuild is needed and if only one HALDB master was specified in the command. No rebuild will be attempted if there is more than one database name listed in the command. If there are multiple database names listed in the command and all are invalid except the HALDB master, then rebuild will be attempted if needed.</td>
</tr>
<tr>
<td>48</td>
<td>NOT ALLOWED FOR IMS RESOURCE</td>
<td>The specified UPDATE command is not allowed for an IMS descriptor or resource. DFSICDB1 is an example of an IMS descriptor. The only IMS descriptor attribute you can update is DEFAULT(Y).</td>
</tr>
<tr>
<td>53</td>
<td>NO RM ADDRESS SPACE</td>
<td>This error is returned when the quiesce could not be started because the RM address space is not present.</td>
</tr>
<tr>
<td>55</td>
<td>NO FAST PATH INSTALLED</td>
<td>The command failed because Fast Path is not installed.</td>
</tr>
<tr>
<td>56</td>
<td>FF DB + LSO=Y + TRK = ERROR</td>
<td>Command is invalid on the RSR tracker because of the LSO=Y option.</td>
</tr>
<tr>
<td>65</td>
<td>DMB POOL STORAGE ERROR</td>
<td>DMB pool storage error. The command failed because of DMB pool storage request failure.</td>
</tr>
<tr>
<td>66</td>
<td>DMB POOL FULL</td>
<td>DMB pool full. The command failed because the DMB pool was full.</td>
</tr>
<tr>
<td>6C</td>
<td>NOT ALLOWED FOR A HALDB PARTITION</td>
<td>An UPDATE command specified a change to the residency option for a HALDB partition. The residency option is valid only for the master and not the partitions.</td>
</tr>
<tr>
<td>6F</td>
<td>REFERENCED BY PROGRAM</td>
<td>An UPDATE DB command is issued to change the resident option. There is a currently scheduled program that is referencing that database. The UPD command fails.</td>
</tr>
<tr>
<td>76</td>
<td>RECOVER CMD ACTIVE</td>
<td>/RECOVER START command is in progress to recover one or more databases with the database recovery services.</td>
</tr>
<tr>
<td>81</td>
<td>DBRC ERROR</td>
<td>DBRC error.</td>
</tr>
<tr>
<td>90</td>
<td>INTERNAL ERROR</td>
<td>The command entered is not processed because of an internal error.</td>
</tr>
<tr>
<td>91</td>
<td>TIMEOUT ERROR</td>
<td>This error is returned when the quiesce could not be completed within the timeout period.</td>
</tr>
</tbody>
</table>
Table 393. Completion codes for the UPDATE DATAGRP command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>92</td>
<td>COMMAND PROCESSING ERROR</td>
<td>Command processing error. The command entered is not processed because of a command error. A unique completion code could not be generated to explain the error. The message number and the return code that could not be converted to a completion code are listed in the error text.</td>
</tr>
<tr>
<td>A0</td>
<td>DYNAMIC ALLOCATION FAILED</td>
<td>Dynamic allocation failed. The command entered is not processed because the dynamic allocation failed for the DB.</td>
</tr>
<tr>
<td>A1</td>
<td>DB IS AUTHORIZED BY BATCH</td>
<td>Database is authorized by Batch. The command entered is not processed because the database is authorized by batch.</td>
</tr>
<tr>
<td>A2</td>
<td>DB IS AUTHORIZED BY ANOTHER IMS</td>
<td>Database is authorized by another IMS. The command entered is not processed because the database is authorized by another active or abnormally terminated IMS and its authorization state is incompatible with the current authorization request.</td>
</tr>
<tr>
<td>A3</td>
<td>AUTHORIZATION CHANGE FAILED</td>
<td>Authorization change failed. The DBRC CHNGAUTH request resulted in an error.</td>
</tr>
<tr>
<td>A4</td>
<td>DATABASE NOT REGISTERED TO DBRC</td>
<td>Database not registered to DBRC. The command processing failed as the database is not registered to DBRC.</td>
</tr>
<tr>
<td>A5</td>
<td>PREVENT FURTHER AUTH ON</td>
<td>Prevent Further Auth ON. The command entered is not processed because the database or area is defined to DBRC as prevent further Auth.</td>
</tr>
<tr>
<td>A6</td>
<td>INVALID DATABASE RECORD IN RECON</td>
<td>Invalid database record in RECON. The command entered is not processed because an invalid parameter was found during the evaluation process of the database usage compatibility. The database record might be invalid in the RECON data set.</td>
</tr>
<tr>
<td>A7</td>
<td>DBRC UNAUTH FAILED FOR CHNGAUTH</td>
<td>DBRC unauth failed during change authorization. The command is not processed because of an error during UNAUTH processing during change authorization request.</td>
</tr>
<tr>
<td>A8</td>
<td>INVALID DB RECORD IN RECON</td>
<td>Invalid database record in RECON. An UPDATE DB SET(ACCTYPE) command is entered to change the database authorization level. An encoded state of zero is returned by DBRC during the change authorization processing.</td>
</tr>
<tr>
<td>A9</td>
<td>DB OR AREA AUTHORIZATION ERROR</td>
<td>Database or area authorization error. For a database, the command entered is not processed because of a database authorization error. For an area, area authorization to DBRC failed.</td>
</tr>
<tr>
<td>AA</td>
<td>DB IN USE-BMP</td>
<td>The UPDATE DB command is rejected because the database is in use by a BMP.</td>
</tr>
<tr>
<td>Completion code</td>
<td>Completion code text</td>
<td>Meaning</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------------------</td>
<td>--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>AB</td>
<td>DB IN USE-DBCTL LONG THREAD</td>
<td>The UPDATE DB command is rejected because the database is in use by a long-running DBCTL thread.</td>
</tr>
<tr>
<td>AC</td>
<td>FP AREA HELD-LONG BUSY WAIT</td>
<td>The UPDATE DB command is rejected because the area of the DEDB is in long-busy wait.</td>
</tr>
<tr>
<td>AD</td>
<td>DYNAMIC UNALLOCATION FAILED</td>
<td>The UPDATE DB command is not successful because of a dynamic unallocation error. No SVC99 is issued.</td>
</tr>
<tr>
<td>AE</td>
<td>DYNAMIC ALLOCATION ERROR</td>
<td>The UPDATE DB command is not successful because of a dynamic allocation error. No SVC99 is issued.</td>
</tr>
<tr>
<td>C1</td>
<td>OLR DDIR MISSING OR DFSNPNT ZERO</td>
<td>Unknown DMB referenced for database. The command cannot be processed because an unknown data management block is referenced for the database. Refer to the DFS564I message put out to the system console to identify the DMB name that cannot be referenced.</td>
</tr>
<tr>
<td>CC</td>
<td>OLR IS ACTIVE FOR DATABASE</td>
<td>OLR is active for database. The command failed as OLR is active for the database.</td>
</tr>
<tr>
<td>D0</td>
<td>DATABASE CLOSE ERROR</td>
<td>Database close error. The command processing failed because of a database close error.</td>
</tr>
<tr>
<td>D1</td>
<td>DATABASE WRITE ERROR</td>
<td>Database write error. The command processing failed because of a database write error.</td>
</tr>
<tr>
<td>D2</td>
<td>DATABASE NEEDS BACKOUT</td>
<td>Database needs backout. The command processing failed as the database needs backout.</td>
</tr>
<tr>
<td>D3</td>
<td>DATABASE OR AREA NEEDS RECOVERY</td>
<td>Database or AREA needs recovery. The command processing failed as the database or area needs recovery.</td>
</tr>
<tr>
<td>D4</td>
<td>DATABASE NEEDS IMAGE COPY</td>
<td>Database needs image copy. The command processing failed as the database needs image copy.</td>
</tr>
<tr>
<td>D5</td>
<td>DATABASE HAS NO BACKOUTS</td>
<td>Database has no backouts. The command processing failed as there are no backouts for the database.</td>
</tr>
<tr>
<td>D6</td>
<td>DATABASE IN USE</td>
<td>Database in use. A SET(ACCTYPE) is specified for the DEDB and the authorization level cannot be changed as the DEDB is in use in a region.</td>
</tr>
<tr>
<td>D7</td>
<td>DB I/O PREVENTION NOT COMPLETE</td>
<td>Database I/O prevention not complete. The database cannot be started as it is extended because of a XRF takeover and the I/O prevention is not complete.</td>
</tr>
<tr>
<td>D8</td>
<td>DATABASE BACKOUTS PENDING</td>
<td>Database backouts pending. The access type specified for the database cannot be changed as restartable backouts are pending for the database.</td>
</tr>
<tr>
<td>D9</td>
<td>DATABASE/AREA OPEN FAILED</td>
<td>Database or area open failed. The command failed because an error occurred while opening the database or area.</td>
</tr>
</tbody>
</table>
Table 393. Completion codes for the UPDATE DATAGRP command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>DA</td>
<td>DATABASE BEING RECALLED BY HSM</td>
<td>Database being recalled from HSM. The command processing failed because the database is being recalled from HSM.</td>
</tr>
<tr>
<td>DB</td>
<td>PARTITION OPEN FAILED</td>
<td>Partition open failed. The partition open failed because the master is offline. This can also occur if the partition has been deleted and partition structure rebuild has occurred. Partition structure rebuild can be accomplished by issuing an UPD DB NAME(haldbmst) START(ACCESS) OPTION(OPEN) command, where haldbmst is the partition's master, or by issuing a qualified GU call for a key in the key range of the partition. List.recon can be used to determine if the partition exists or has been deleted.</td>
</tr>
<tr>
<td>DC</td>
<td>HALDB PARTITION BUILD FAILURE</td>
<td>Database partition build failure. The database partition build for the DDIR or DMB failed. Refer to the DFS0415I message sent to the system console to determine the reason of the failure.</td>
</tr>
<tr>
<td>DD</td>
<td>HALDB PARTITION INIT FAILURE</td>
<td>Database partition initialization failed. The database partition initialization for the DDIR or DMB failed. Refer to the DFS0415 message sent to the system console for the details.</td>
</tr>
<tr>
<td>DE</td>
<td>ACBLIB READ FAILURE</td>
<td>ACBLIB read failure. The command is not processed because there was an error reading the ACBLIB.</td>
</tr>
<tr>
<td>DF</td>
<td>DB DIRECTORY INIT FAILURE</td>
<td>Database directory initialization failed. The command is not processed because of a database directory initialization failure.</td>
</tr>
<tr>
<td>E0</td>
<td>DATABASE OR AREA IN RECOVERY</td>
<td>Database or area in recovery. The command is not processed because the database or area is in recovery.</td>
</tr>
<tr>
<td>E1</td>
<td>DATABASE HAS NOT BEEN DBR'ED</td>
<td>An UPDATE command changing the residency option of a database was not issued for a database that has not been DBR'ed.</td>
</tr>
<tr>
<td>E2</td>
<td>PARALLEL DB OPEN NOT COMPLETE</td>
<td>Restart parallel DB open not complete. The command is not processed because the restart parallel DB open is not complete for the database.</td>
</tr>
<tr>
<td>E5</td>
<td>PARTICIPANT UNABLE TO QUIESCE</td>
<td>This error is returned when the quiesce could not be completed successfully across the IMSplex. The IMS with this completion code was the quiesce participant which was not able to be quiesced.</td>
</tr>
<tr>
<td>E6</td>
<td>QUIESCE COMMUNICATION FAILURE</td>
<td>This error is returned when the quiesce could not be completed because of a failure to communicate across the IMSplex. There could be a problem with RM, OM, or SCI that has caused the communication failure to occur.</td>
</tr>
</tbody>
</table>
### Table 393. Completion codes for the UPDATE DATAGRP command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>E7</td>
<td>CMD NOT ALLOWED</td>
<td>This error is returned when the database command could not be processed because a quiesce command was in progress.</td>
</tr>
<tr>
<td>E8</td>
<td>DATABASE HAS INTENT TO REORGANIZE</td>
<td>This error is returned when the quiesce could not be started because the RECON data sets indicates that there is intent to reorganize the database.</td>
</tr>
<tr>
<td>E9</td>
<td>DB IN WRONG STATE TO BE QUIESCED</td>
<td>This error is returned when the named resource is in the wrong state for quiesce processing to proceed.</td>
</tr>
<tr>
<td>EE</td>
<td>DATABASE BACKOUT ERROR</td>
<td>Database backout error. The command processing failed because of a database backout error.</td>
</tr>
<tr>
<td>EF</td>
<td>DATABASE IS IN ERROR</td>
<td>Database is in error. The command entered is not processed because the database is in error.</td>
</tr>
<tr>
<td>F0</td>
<td>NO AREA LOCK</td>
<td>No AREA lock. The command processing failed because the area lock could not be obtained.</td>
</tr>
<tr>
<td>F1</td>
<td>AREA NOT STOPPED</td>
<td>Area not stopped. The command entered is not processed because the AREA is not stopped.</td>
</tr>
<tr>
<td>F2</td>
<td>PRELOAD IS ACTIVE FOR AREA</td>
<td>Preload is active for AREA. The command is not processed because preload is active for the AREA.</td>
</tr>
<tr>
<td>F3</td>
<td>UNRESOLVED INDOUBTS FOR AREA</td>
<td>Unresolved indoubts for AREA. The command entered is not processed because unresolved indoubts exist for the AREA.</td>
</tr>
<tr>
<td>F4</td>
<td>ALLOCATION FAILED</td>
<td>Allocation failed. Allocation failed for the AREA name.</td>
</tr>
<tr>
<td>F5</td>
<td>AREA NEEDS RECOVERY</td>
<td>AREA needs recovery. The command processing failed because the area needs recovery.</td>
</tr>
<tr>
<td>F6</td>
<td>ADS NUMBER DISCREPANCY</td>
<td>ADS number discrepancy. The command failed for the AREA because there is a discrepancy between the number of ADS allocated by IMS and the number of ADS known to DBRC. Correct the discrepancy and reissue the command to deallocate the data sets.</td>
</tr>
<tr>
<td>F7</td>
<td>AREA IS NOT LOADED INTO CF</td>
<td>Area is not loaded into CF. The AREA OPEN failed and is not loaded into the Coupling Facility.</td>
</tr>
<tr>
<td>F8</td>
<td>AREA HAS I/O TOLERATED CI</td>
<td>Area has I/O tolerated CI. The command is not processed because the AREA has an I/O tolerated CI.</td>
</tr>
<tr>
<td>F9</td>
<td>AREA HAS 2ND CI EEQE</td>
<td>Area has second CI EEQE. The command is not processed because the AREA has a second CI EEQE.</td>
</tr>
<tr>
<td>FC</td>
<td>UTILITY ACTIVE ON AREA</td>
<td>This error is returned when the area is in use by a utility.</td>
</tr>
<tr>
<td>FD</td>
<td>AREA HAS EEQE</td>
<td>This error is returned when the area has an extended error queue element (EEQE).</td>
</tr>
</tbody>
</table>
Table 393. Completion codes for the UPDATE DATAGRP command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>FE</td>
<td>AREA HAS EQE</td>
<td>This error is returned when the area has an error queue element (EQE).</td>
</tr>
</tbody>
</table>

**Examples**

The following are examples of the UPDATE DATAGRP command:

*Example 1 for UPDATE DATAGRP command*

TSO SPOC input:

```
UPD DATAGRP NAME(GROUP1) STOP(ACCESS)
```

TSO SPOC output:

```
DataGroup DBName AreaName MbrName CC
GROUP1 IMSA 0
GROUP1 IMS1 8
GROUP1 DEDBJN03 IMS1 C
GROUP1 DEDBJN03 DB3AREA0 IMS1 F0
```

OM API input:

```
CMD(UPD DATAGRP NAME(GROUP1) STOP(ACCESS))
```

OM API output:

```
<imsout>
<ctl>
<omname>OM1OM </omname>
<omvsn>1.2.0</omvsn>
<statime>2003.129 22:45:55.890843</statime>
<stotime>2003.129 22:45:55.990001</stotime>
<staseq>8965346A9F1263</staseq>
<stoseq>8965346A9F1263</stoseq>
<rqsttkn1>USR005 10154555</rqsttkn1>
<rc>02000000</rc>
<rsn>00003000</rsn>
</ctl>
</cmderr>
<mbr name="IMS1"></mbr>
</cmd>
</cmdrsphdr>
```

<msHDR slbl="DG" llbl="DataGroup" scope="LCL" sort="a" key="1" scroll="no" len="8" dtype="CHAR" align="left" skipb="no"/>
```

<msHDR slbl="DB" llbl="DBName" scope="LCL" sort="a" key="3" scroll="no"/>
Explanation: The command stops access to all the members of data group GROUP1 and takes them offline. The command response lines are returned for all the databases or areas that resulted in an error. No response lines are returned for members for which the command was successful.

Example 2 for UPDATE DATAGRP command

TSO SPOC input:

```
UPD DATAGRP NAME(GROUP1) START(ACCESS) OPTION(ALLRSP)
```

TSO SPOC output:

```
DataGroup DBName   AreaName MbrName  CC
GROUP1 IMSA    0
GROUP1 DB21AR1 IMSA    0
GROUP1 BE3PARTS IMSA    0
GROUP1 DEDBJN03 IMSA    0
GROUP1 IMS1    0
GROUP1 DB21AR1 IMS1    0
GROUP1 BE3PARTS IMS1    0
GROUP1 DEDBJN03 IMS1    0
```

OM API input:

```
CMD(UPD DATAGRP NAME(GROUP1) START(ACCESS) OPTION(ALLRSP))
```

OM API output:

```
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.2.0</omvsn>
<xmlvsn>1</xmlvsn>
<staseq>B965349FB88B4445</staseq>
<stoseq>B965349FE4F0C36A</stoseq>
<rqsttkn1>USRT005 10154651</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>IMS</master>
<userid>USRT005</userid>
<verb>UPD</verb>
<kwd>DATAGRP</kwd>
<input>UPD DATAGRP NAME(GROUP1) START(ACCESS) OPTION(ALLRSP)</input>
```
<cmd>
<cmdrsphdr>
<hdr slbl="DG" llbl="DataGroup" scope="LCL" sort="a" key="1"
 scroll="no" len="8" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="DB" llbl="DBName" scope="LCL" sort="a" key="3"
 scroll="no" len="8" dtype="CHAR" align="left" skipb="yes" />
<hdr slbl="AREA" llbl="AreaName" scope="LCL" sort="a"
 key="4" scroll="no" len="8" dtype="CHAR" align="left" skipb="yes" />
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a"
 key="2" scroll="no" len="8" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="CC" llbl="CC" scope="LCL" sort="n"
 key="0" scroll="yes" len="4" dtype="INT" align="right" skipb="no" />
<hdr slbl="ERRT" llbl="ErrorText" scope="LCL" sort="n"
 key="0" scroll="yes" len="16" dtype="CHAR" align="left" skipb="yes" />
</cmdrsphdr>
</cmdrspdata>

<rsp>DB(DEDBJN03) DG(GROUP1) MBR(IMSA) CC(0) </rsp>
<rsp>DB(BE3PARTS) DG(GROUP1) MBR(IMSA) CC(0) </rsp>
<rsp>AREA(DB21AR1) DG(GROUP1) MBR(IMSA) CC(0) </rsp>
<rsp>DB(DEDBJN03) MGR(IMSA) CC(0) </rsp>
<rsp>DB(BE3PARTS) MGR(IMSA) CC(0) </rsp>
<rsp>AREA(DB21AR1) MGR(IMSA) CC(0) </rsp>

Explanation: The command starts access of all the members of data group,
GROUP1, and makes them available. The command response lines are returned for
all the databases or areas that are processed with OPTION(ALLRSP) specified.

Example 3 for UPDATE DATAGRP command

TSO SPOC input:
UPDATE DATAGRP NAME(DBGXYZ) START(QUIESCE) OPTION(HOLD)

TSO SPOC output:

<table>
<thead>
<tr>
<th>DataGroup</th>
<th>DBName</th>
<th>MbrName</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBGXYZ</td>
<td>DB1XYZ</td>
<td>IM02</td>
<td>0</td>
</tr>
<tr>
<td>DBGXYZ</td>
<td>DB2XYZ</td>
<td>IM02</td>
<td>0</td>
</tr>
<tr>
<td>DBGXYZ</td>
<td>IM02</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>DBGXYZ</td>
<td>DB1XYZ</td>
<td>IM01</td>
<td>0</td>
</tr>
<tr>
<td>DBGXYZ</td>
<td>DB2XYZ</td>
<td>IM01</td>
<td>0</td>
</tr>
<tr>
<td>DBGXYZ</td>
<td>IM01</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>DBGXYZ</td>
<td>IM03</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>DBGXYZ</td>
<td>IM03</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>DBGXYZ</td>
<td>DB1XYZ</td>
<td>IM01</td>
<td>0</td>
</tr>
<tr>
<td>DBGXYZ</td>
<td>DB2XYZ</td>
<td>IM01</td>
<td>0</td>
</tr>
</tbody>
</table>

Explanation: This example is of a successful quiesce-and-hold for a data group.

Example 4 for UPDATE DATAGRP command

TSO SPOC input:
UPD DATAGRP NAME(DBGXYZ) START(QUIESCE)

TSO SPOC output:

<table>
<thead>
<tr>
<th>DataGroup</th>
<th>DBName</th>
<th>MbrName</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBGXYZ</td>
<td>DB1XYZ</td>
<td>IM02</td>
<td>0</td>
</tr>
<tr>
<td>DBGXYZ</td>
<td>DB2XYZ</td>
<td>IM02</td>
<td>0</td>
</tr>
<tr>
<td>DBGXYZ</td>
<td>IM02</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>DBGXYZ</td>
<td>DB1XYZ</td>
<td>IM01</td>
<td>0</td>
</tr>
<tr>
<td>DBGXYZ</td>
<td>DB2XYZ</td>
<td>IM01</td>
<td>0</td>
</tr>
<tr>
<td>DBGXYZ</td>
<td>IM01</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 30. UPDATE commands 935
Explanation: This example is of a successful quiesce-and-go for a data group.

Example 5 for UPDATE DATAGRP command

TSO SPOC input:
UPD DATAGRP NAME(DBGXYZ) STOP(QUIESCE)

TSO SPOC output:

<table>
<thead>
<tr>
<th>DataGroup</th>
<th>DBName</th>
<th>MbrName</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBGXYZ</td>
<td>DB1XYZ</td>
<td>IM02</td>
<td>0</td>
</tr>
<tr>
<td>DBGXYZ</td>
<td>DB2XYZ</td>
<td>IM02</td>
<td>0</td>
</tr>
<tr>
<td>DBGXYZ</td>
<td></td>
<td>IM01</td>
<td>0</td>
</tr>
<tr>
<td>DBGXYZ</td>
<td>DB1XYZ</td>
<td>IM01</td>
<td>0</td>
</tr>
<tr>
<td>DBGXYZ</td>
<td>DB2XYZ</td>
<td>IM01</td>
<td>0</td>
</tr>
<tr>
<td>DBGXYZ</td>
<td></td>
<td>IM03</td>
<td>0</td>
</tr>
<tr>
<td>DBGXYZ</td>
<td>DB1XYZ</td>
<td>IM03</td>
<td>0</td>
</tr>
<tr>
<td>DBGXYZ</td>
<td>DB2XYZ</td>
<td>IM03</td>
<td>0</td>
</tr>
<tr>
<td>DBGXYZ</td>
<td></td>
<td>IM03</td>
<td>0</td>
</tr>
</tbody>
</table>

Explanation: This example is of releasing the quiesce for a data group.

Related concepts:
- How to interpret CSL request return and reason codes (System Programming APIs)

Related reference:
- Command keywords and their synonyms (Commands)
 - ”/START DATAGRP command” on page 733
 - ”/STOP DATAGRP command” on page 787

UPDATE DB command

Use the UPDATE DB command to update status or definition information about databases. For example, UPDATE DB can make a database available, take the database offline, stop scheduling, stop updates, lock, and unlock a database.

Subsections:
- “Environment”
- “Syntax” on page 937
- “Keywords” on page 938
- “Usage notes” on page 946
- “Equivalent IMS type-1 commands” on page 948
- “Output fields” on page 948
- “Return and reason codes” on page 949
- “Examples” on page 959

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) from which the UPDATE DB command and keywords can be issued.
Table 394. Valid environments for the UPDATE DB command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE DB</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OPTION</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SCOPE</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SET</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>START</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>STOP</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Syntax

```
UPDATE DB NAME dbname*,
START (ACCESS)
SET (ACCESS)
SET (ACCTYPE(BRWS), EXCL, READ, UPD)
SET (ACCTYPE(BRWS), EXCL, READ, UPD)
SET (TIMEOUT(nnn))
STOP (ACCESS)
SET (ACCESS)
SET (SCHD)
SET (UPDATES)
SET (QUIESCE)
SET (QUIESCE)
SET (LOCK(ON), OFF)
SET (LOCK(ON), OFF)
SET (RESIDENT(N, Y))
SET (RESIDENT(N, Y))
SYNCHRONIZED
```

Chapter 30. UPDATE commands 937
Keywords

The following keywords are valid for the UPDATE DB command:

AREA(*)

Specifies the areas of the databases that are to be processed or, if you specify AREA(*), indicates that the command applies to all the areas in the database.

The UPDATE DB START(ACCESS) AREA(*) command starts the DEDB and all of its areas and allows scheduling of new applications against the DEDB.

The AREA(*) keyword is ignored for non-DEDB databases. You cannot specify both the AREA(*) and the NAME(*) keywords. If you specify the AREA(*) keyword with the START(ACCESS) SET(ACCTYPE) keyword, all the DEDB areas are restarted after they are stopped by the START(ACCESS) SET(ACCTYPE) keyword.

NAME()

Specifies the 1-8 character name of the database (DBD name). Wildcards can be specified in the name. The name is a repeatable parameter. If the NAME parameter specified is a specific or wildcard name, command responses are returned for all the resource names that are processed. For NAME(*) command responses are returned only for the resource names that resulted in an error. OPTION(ALLRSP) can be specified with NAME(*) to obtain the command responses for all the resource names that are processed.

NAME(*) is the designed method on IMSplex commands to enable the user to specify that the command applies to all the database resources.

The database names that match the generic or wildcard parameter are processed. For specific or wildcard names, response lines are returned for all the database names that are processed.

When the database specified is a DEDB, a response line is returned for the DEDB name. A response line is also returned for all the areas of a DEDB that resulted in errors. A response line is not returned for the areas of a DEDB for which the command action is successful.

OPTION()

Specifies additional functions to be performed along with the UPDATE DB command.

ALLRSP

Indicates that the response lines are to be returned for all resources that are processed on the command. The default action is to return response lines only for the resources that resulted in an error. It is only valid with NAME(*) or AREA(*). ALLRSP is ignored for other NAME values.

DBALLOC

Indicates that the database is to be allocated when it is started.

DBALLOC can be specified with START(ACCESS) only. DBALLOC is the default action when specific database names are specified on the command. Only one of DBALLOC or NODBALLOC can be specified.

OPTION(DBALLOC) is not valid for a HALDB master.
FEOV Indicates to force end of volume after the command processing is complete.

The IMS log switches to the next OLDS, and a simple checkpoint is taken unless specified with STOP(QUIESCE). This switch is marked as a recovery point for log archiving purposes. A simple checkpoint is not taken when specified with STOP(QUIESCE).

FEOV is valid only with START(QUIESCE) OPTION(NOHOLD), STOP(QUIESCE), STOP(UPDATES), or STOP(ACCESS), and does not apply to an RSR tracker. OPTION(FEOV) is the default when specified with START(QUIESCE) OPTION(NOHOLD) or STOP(QUIESCE).

When START(QUIESCE) or STOP(QUIESCE) is specified, OPTION(FEOV) is the default; that is, the end of volume will be forced after the quiesce point has been reached. The logs are switched before the quiesce is released so that any new updates occur on the new IMS log. Switching of the logs occurs when STOP(QUIESCE) is issued to release a quiesce from a previous START(QUIESCE) OPTION(HOLD).

HOLD Specifies that after the quiesce has been achieved successfully, the database should remain quiesced. A subsequent STOP(QUIESCE) would be required to release the quiesce on the database.

OPTION(HOLD) is valid only with the START(QUIESCE) keyword. OPTION(HOLD) is mutually exclusive with OPTION(NOHOLD).

NOBACKOUT Indicates to suppress backout restart for a database not registered in DBRC.

NOBACKOUT can be specified with START(ACCESS) only and is not valid with NAME(*). OPTION(NOBACKOUT) is not valid for a HALDB master.

NODBALLOC Indicates that the database is not to be allocated when it is started.

The database is allocated when it is scheduled. NODBALLOC can be specified with START(ACCESS) only. NODBALLOC is the default action when NAME(*) is specified. Only one of DBALLOC or NODBALLOC can be specified. OPTION(NODBALLOC) is ignored for HALDB masters.

NOFEOV Indicates to not force end of volume after the command processing is complete. The IMS log does not switch to the next OLDS and a simple checkpoint is not taken.

OPTION(NOFEOV) can be specified only with START(QUIESCE) OPTION(NOHOLD), STOP(ACCESS), STOP(QUIESCE), or STOP(UPDATES). OPTION(NOFEOV) is the default except when START(QUIESCE) or STOP(QUIESCE) is specified.

NOHOLD Specifies that after the quiesce has been achieved successfully the database should automatically release the quiesce. If either HOLD or NOHOLD is not specified, NOHOLD is assumed.
OPTION(NOHOLD) is valid only with the START(QUIESCE) keyword. OPTION(NOHOLD) is mutually exclusive with OPTION(HOLD).

NOOPEN
Indicates that the database is not to be opened when it is started.
NOOPEN can only be specified with START(ACCESS). NOOPEN is the default action unless the database has EEQE’s.
Only one of OPEN or NOOPEN can be specified.
OPTION(NOOPEN) is not valid for a HALDB master.

NORAND
Indicates that the randomizer stays loaded while the UPDATE DB STOP(ACCESS) command is being processed.
This option solves the problem of the Extended Common Service Area (ECSA) becoming fragmented by continuous unloading and reloading of randomizers.

Restriction: OPTION(NORAND) only works for Fast Path DEDBs. It is ignored for full-function databases.
OPTION(NORAND) status is not maintained in the RM resource structure if global database status is maintained. If an UPD DB STOP(ACCESS) OPTION(NORAND) command is issued for a Fast Path DEDB, the STOACC status is saved in the RM resource structure. The randomizer is unloaded when the global STOACC status is applied.

OPEN
Indicates that the database is to be opened when it is started.
OPEN can be specified only with START(ACCESS). Specifying START(ACCESS) OPTION(OPEN) causes the randomizer routine or the selection partition routine to be loaded.
The randomizer is loaded into memory the first time it is referenced by a database. If no other database references the randomizer and the randomizer is deleted from memory, the randomizer is deleted from memory.
OPEN cannot be specified with NAME(*) or if NODBALLOC is specified. Either OPEN or NOOPEN can be specified.
OPTION(OPEN) is not valid for a HALDB master, but the partition structure rebuild is done if structure rebuild is needed and if only one HALDB master was specified in the command. No rebuild is attempted if there is more than one database name listed in the command.
The UPDATE DB AREA(*) START(ACCESS) OPTION(OPEN) command starts and opens all areas under one or more DEDBs specified in the NAME() keyword even if the areas are not registered on DBRC as PREOPEN. The OPTION(OPEN) is processed locally by all IMS systems that receive the command and is not maintained as a global status in RM.

PFA
Sets or resets the “prevent further authorization” (PFA) or the “read-only” status in the RECON for the database. Use the PFA option with UPDATE DB START(ACCESS) to enable access to a database. Use the PFA option with the UPDATE DB STOP (ACCESS | SCHD | UPDATES) command to prevent access to a
database. PFA is optional. If you specify OPTION(PFA), the command master updates the RECON data set only if the command is successful at the master IMS. All other IMS systems that receive the command process is locally. OPTION(PFA) is not valid with SET(LOCK(ON | OFF)).

SCOPE()

Specifies where IMS should apply the change.

ALL

Changes are applied to the IMS systems that are currently active and to which the command is routed. Changes are also applied globally by updating the value maintained by RM. The global status that RM saves can be propagated across some IMS restarts. When an IMS system starts, it obtains global status information from RM. Maintaining global status in RM allows IMS systems to start without a specific setting or status for an area.

If the status or attribute that this command is updating is not maintained globally by RM, then the command is processed as if SCOPE(ACTIVE) is specified. If this command updates status or attributes that are both global and local, RM only updates the global status or attributes.

You must specify if the global area status must be maintained in RM. You can specify this during IMS initialization in either the DFSDFxxx or DFSCGxxx PROCLIB member with PLEXPARM(GSTSDB(Y)). You can also change it dynamically using the UPD IMS SET(PLEXPARM(GSTSDB(Y)) command. If you do not specify that global database status is to be maintained, the GLOBAL keyword is processed as in prior releases, and the global status is not updated.

Restriction: SCOPE(ALL) does not apply to the quiesce function. The scope of a quiesce is always all instances of the database usage across the IMSplex. There is not a global status of QUIESCE for a database. For START(QUIESCE) and STOP(QUIESCE), SCOPE(ALL) is the same as SCOPE(ACTIVE).

ACTIVE

Changes are applied to the active IMS systems to which the command is routed to. Any global status information maintained in the RM resource structure is not changed by the SCOPE(ACTIVE) command.

Restriction: SCOPE(ACTIVE) does not apply to the quiesce function. The scope of a quiesce is always all instances of the database usage across the IMSplex.

RM maintains global status information for some database attributes and values. IMS updates those values in RM based on commands or other internal events. When SCOPE(ALL) is specified, every IMS system that processes the command updates information in its local control blocks. Only the IMS command master calls RM to update the information globally.

The UPDATE DB command keywords that update information locally in the active IMS system and globally in RM when SCOPE(ALL) is specified include:

- START(ACCESS)
- START(ACCESS) SET(ACCTYPE())
- STOP(ACCESS|SCHD|UPDATES)
- SET(LOCK(ON|OFF))

If global status is maintained, UPD DB START(ACCESS) STOP(ACCESS,SCHD,UPDATES) SCOPE(ALL) writes an X'4C' log record to include global status and global time stamp.

SET0 Specifies the attribute values to be changed or sets the database state.

ACCTYPE

Specifies the access intent for the named database. ACCTYPE() can only be specified if START(ACCESS) is also specified. This keyword overrides the database access intent specified at system definition.

BRWS The database is available for read-only processing on this IMS subsystem. The only programs that can use the database on this subsystem are those databases that have a PCB processing option of GO (PROCLOPT=GO). Programs that access the data using the GO processing option might see uncommitted data since a sharing IMS subsystem could be updating the database. The database is opened for read-only processing.

EXCL The database is to be used exclusively by this IMS subsystem. This exclusive access is guaranteed only when the database is registered to DBRC.

READ The database is available for read-only processing in this IMS subsystem. Programs with update intent can be scheduled, but cannot update the database. Access type READ differs from access type BRWS in that the data is read with integrity (locking is performed) and all programs can access the data, not just those with a processing option of GO. The database is opened for read-only processing.

UPD The database is for update as well as read processing in the IMS subsystem.

RESIDENT

Specifies the resident option. The RESIDENT(N) option takes effect right away. The RESIDENT(Y) option takes effect at the next restart, unless the database was updated as RESIDENT(Y) after the checkpoint from which this IMS is performing emergency restart. A database defined as a DEDB in ACBLIB always sets the RESIDENT(Y) attribute when the DEDB is loaded, regardless of the RESIDENT value specified. RESIDENT(N) is rejected for a DEDB.

N The DMB associated with the named database resource is not made resident in storage. The DMB is loaded at scheduling time.

Y The DMB associated with the named database resource is made resident in storage at the next IMS restart. At the next IMS restart, IMS loads the DMB and initializes it. A resident database is accessed in local storage, which eliminates I/O to the ACBLIB. In an online environment, the DMB control blocks are stored in the ACBLIB. If the DLI/SAS address space exists, DLI/SAS loads the DMB, otherwise, it is the IMS control
region that loads it. This makes the DMB dependent on the existence of the corresponding database resource.

The database must be stopped in order for this attribute to be changed. You may need to issue a /DBR DB command or an UPDATE DB STOP(ACCESS) command to stop the database before issuing an UPDATE DB SET(RESIDENT(Y | N)) command.

An UPDATE command specified with SET(RESIDENT) is not valid if online change for MODBLKS is enabled (DFSDFxxx or DFSCGxxx defined with MODBLKS=OLC, or MODBLKS not defined). The UPDATE DB command changes a MODBLKS database to dynamic, if the RESIDENT attribute is changed. These commands are recoverable.

LOCK Locks and unlocks the specified database. NAME(*) cannot be specified with SET(LOCK(ON | OFF)).

ON Locks and prevents subsequently scheduled programs from accessing the database, without affecting currently scheduled programs. The database is not closed.

For a shared secondary index database, an UPDATE DB SET(LOCK(ON)) on the first secondary index or subsequent secondary indexes affects only the named database.

OFF Unlocks the specified databases and resets the effect of an UPDATE DB SET(LOCK(ON)) command. An UPDATE DB SET(LOCK(OFF)) on the first secondary index or subsequent secondary indexes affects only the named database.

TIMEOUT(mnn) Specifies the number of seconds to wait before a timeout occurs in a database quiesce. The timeout value can be 1 - 999 seconds. The TIMEOUT parameter value can override the DBQUIESCETO parameter in the DFSCGxxx member of the IMS PROCLIB data set. If the TIMEOUT parameter is omitted and the DBQUIESCETO parameter is not specified, the default timeout value is 30 seconds. The TIMEOUT keyword is valid only with the START(QUIESCE) keyword.

START() Specifies the attributes that are to be started.

ACCESS The UPDATE DB START(ACCESS) command starts the database and permits access from transactions or programs. The UPDATE DB START(ACCESS) command resets the actions done by a prior UPDATE DB STOP(SCHD), or UPDATE DB STOP(UPDATE). The access intent is set to the database access intent specified at system definition unless SET(ACCTYPE) is specified.

The UPDATE DB START(ACCESS) command can be used to allocate or reallocate all databases other than DEDBs. For a DEDB, an UPDATE AREA command can be used to allocate or reallocate the DEDB areas.
For a DEDB, the UPDATE DB START(ACCESS) command also causes any unloaded randomizer that was specified in the DBD source to be reloaded.

When the UPDATE DB START(ACCESS) command is specified for a HALDB partition, the partition is not allocated unless it has EEQEs, the OPEN keyword is specified, or it was previously authorized but not allocated. The action taken to allocate the data sets is dependent on the status of the master database and its availability.

The UPDATE DB START(ACCESS) command may reset the USTOPPED status for transactions that are suspended. If the transaction is suspended and its processing program has access to the started database, the UPDATE DB START(ACCESS) command results in the USTOPPED attribute being reset. Any messages on the suspend queue for that transaction is transferred to the normal processing queue.

If there was a prior dynamic backout or emergency restart backout failure, then the UPDATE DB START(ACCESS) command attempts to perform the backout again.

If the database is registered to DBRC, then DBRC is informed when batch backout is successfully executed, and the failing backout is not attempted again when an UPDATE DB START(ACCESS) command is issued.

The UPDATE DB START(ACCESS) command is not processed for the databases being accessed by batch programs.

For a HIDAM database, the UPDATE DB START(ACCESS) command must be issued for both the index and the data area DBD. If a backout failure occurs for this database, the command causes the backout to be attempted again.

On an RSR tracker, the UPDATE DB START(ACCESS) command can be used to resume tracking for those databases that were stopped by a tracking subsystem processing. The command can also be used to start online forward recovery (OFR) for those databases that are not current with mainline tracking.

For shared secondary index databases, the UPDATE DB START(ACCESS) can be issued on the first secondary index or subsequent secondary indexes to undo the actions of the prior UPDATE DB STOP(SCHD) and UPDATE DB STOP(UPDATES) commands.

Additional functions can be performed with START(ACCESS) by specifying the OPTION keyword. OPTION(DBALLOC | NODBALLOC), OPTION(NOBACKOUT), OPTION(NOOPEN | OPEN) can be specified along with START(ACCESS). The OPTION keyword is not valid for a HALDB master.

QUIESCE

Specifies that the databases named on the command are to be quiesced to establish a new recovery point. The scope of a quiesce is always all instances of the database usage across the IMSplex. There is no quiesce that would apply only to a subset of the IMSplex.
STOP
Specifies the attributes that are to be stopped.

ACCESS
Starts offline processing of the database. This processing closes and deallocates the database and deauthorizes the database to DBRC. An UPDATE DB START(ACCESS) command is required to reset the effect of an UPDATE DB STOP(ACCESS).

Specifying UPDATE DB STOP(ACCESS), UPDATE DB STOP(UPDATES), or UPDATE DB STOP(SCHEDULE) can cause the randomizer routine or the selection partition routine to be deleted from memory.

OPTION(NOFEOV) is the default action for STOP(ACCESS). The IMS log is not switched to the next OLDS and a simple checkpoint is not taken. OPTION(FEOV) can be specified on the command to switch to the next OLDS and take an IMS simple checkpoint.

The UPDATE DB STOP(ACCESS) command can be used on a database readiness level (DLT) tracker to take shadow areas and databases offline for image copy and recovery. The command can also be used to stop online forward recovery (OFR) in progress for the specified database.

The UPDATE DB STOP(ACCESS) command does not deallocate a data set if a VSAM data set hardware error occurred. For shared secondary index databases, an UPDATE DB STOP(ACCESS) on the first secondary index affects all databases sharing the secondary index data set. An UPDATE DB STOP(ACCESS) command on the subsequent secondary indexes affects only the named database.

QUIESCE
Specifies that the databases named on the command should be made available again by releasing the quiesce on the databases.

Unlike START(QUIESCE), where each database resource listed must be quiesced in order for the command to complete successfully, STOP(QUIESCE) continues to process each listed resource even if some resources are not in quiesced state or cannot be released from quiesced state. For those resources that are not in quiesced state or cannot be released from quiesced state, the command returns a response line for each of those resources.

SCHD
Stops or prevents subsequently scheduled programs from accessing the database, without affecting currently scheduled programs. The database is not closed.

An UPDATE DB START(ACCESS) command can be used to reset the effect of an UPDATE DB STOP(SCHD) command.

If the command is issued for a DEDB or MSDB, programs using the database will not be scheduled. For other databases, the programs will still be scheduled. If the INIT call was issued, however, a call against the database will result in either a 3303 pseudoabend or a BA status code.

When the UPDATE DB STOP(SCHD) command is issued for a database that is in use by an MPP region, the command is processed after the region completes processing the current message. After the current message processing is complete, the
application program receives a QC status indicating no more messages even if there are messages to be processed.

When the UPDATE DB STOP(SCHD) command is issued for a database that is in use by a BMP region, the command is rejected.

In a DBCTL system, CCTL can specify LONG or SHORT when it schedules a PSB. When the UPDATE DB STOP(SCHD) command is issued for a database that is in use by a LONG thread, the command is rejected. When the command is issued for a database that is in use by a SHORT thread, the thread completes before the command is processed.

For a shared secondary index database, an UPDATE DB STOP(SCHD) on the first secondary index or subsequent secondary indexes affects only the named databases.

UPDATES

Stops or prevents transactions or programs from updating the specified DL/I database.

STOP(UPDATES) is not valid for DEDBs or MSDBs.

An UPDATE DB START(ACCESS) command is required to reset the effect of an UPDATE DB STOP(UPDATES) command.

When the UPDATE DB STOP(UPDATES) command is processed, the message processing regions using the specified database are terminated at the conclusion of processing their transactions in preparation to close the database and enable the databases to be opened input only. As the message processing regions terminate programs, the data sets of the database are closed.

OPTION(FEOV) forces the IMS log to switch to the next OLDS. This switch is marked as a recovery point for log archiving purposes. IMS also issues a simple checkpoint. OPTION(NOFEOV), which is the default, overrides this action.

After the command is processed, the scheduling of transactions is resumed. No transactions will be allowed to update the specified databases. Programs with update intent will be scheduled, but update calls to DL/I databases will result in a 3303 pseudoabend, a BA, or BB status code. The pseudoabend or status codes appear only if the application program informed IMS through the INIT STATUS GROUPA or GROUPB call that it is prepared to accept status codes regarding data unavailability.

An UPDATE DB STOP(UPDATES) on the first secondary index affects all databases sharing the secondary index data set. An UPDATE DB STOP(UPDATES) on subsequent secondary indexes affects only the named database.

Usage notes

The UPDATE DB command can only be specified through the OM API and can only be processed by the DB/DC and DBCTL environments. When the UPDATE DB command is issued, it only applies to the IMS system to which it is routed. The command is not processed by other IMS systems in the IMSplex that share the database but do not receive the command. OM selects one IMS as the command master. Also, the command is not allowed on the XRF alternate system, RSR tracker, or FDBR region.
Resources exist for the life of IMS unless they are deleted using a DELETE command or online change for MODBLKS. Resource updates are recoverable across an IMS warm start or emergency restart. Updates to database runtime resource definition attributes such as RESIDENT are lost if IMS is cold started, unless cold start imports definitions that were exported while IMS was up.

Each database is updated individually, unlike the online change process where either all databases are updated or no databases are updated. Some runtime resource definition values for a database can only be updated if the database is not in use. If the database is in use, the update fails. An exception to this rule is status. You can update the status of a database while it is in use. In a sysplex environment with multiple IMS systems, the update might succeed on some IMS systems and fail on others.

Runtime resource definition attributes include the following: RESIDENT.

An UPDATE DB command that changes runtime resource definition attributes such as the RESIDENT attribute is rejected for MSDBs and DEDBs.

The UPDATE DB command returns CCTXT with a nonzero completion code. The CCTXT can be up to 32 bytes, and it includes information about what the completion code means. The UPDATE DB SCOPE(ALL) command returns a response line with the completion code for the global status update. The CCTXT for that code is GBL CC.

If all the attributes specified by the UPDATE command are already defined for the resource, no update is actually made, no resources are quiesced, no log record is created, and a completion code of zero is returned. This avoids unnecessary overhead when no action needs to be taken.

When you enter this command, the database name can be an existing non-HALDB, a HALDB master, or a HALDB partition. A command against a HALDB partition operates exactly like a command against a non-HALDB with the exception of the /START DATABASE and the UPDATE DB START(ACCESS) command. A HALDB partition is not allocated during the command unless it was previously authorized but not allocated, the OPEN keyword was specified, or the partition has EEQEs. The partition is allocated at first reference.

The HALDB partition reflects conditions such as STOPPED (shown as STOACC or STOSCHD or STOUPDS on QUERY DB), LOCKED, or NOTOPEN. When a HALDB partition is stopped, it must be explicitly started again. The type-1 commands with the keyword ALL, type-2 commands with NAME(*), and commands against a HALDB master do not change the STOPPED (shown as STOACC, STOSCHD or STOUPDS on QUERY DB) and LOCKED indicators in each HALDB partition.

When the command target is a HALDB master, processing acts on all HALDB partitions. For example, if the IMS command is /DBR on the HALDB master, all of the HALDB partitions are closed, deallocated, and deauthorized. On a /DISPLAY DB command, only the HALDB master displays STOPPED (each HALDB partition does not display STOPPED unless it was itself stopped). If a /DBR command was issued against a HALDB master, the display output of a /DISPLAY DB command shows the HALDB master (as STOPPED), but does not display the status of the partitions.
Each partition inherits the access limitations of its HALDB master. If the /DBD command is issued against a HALDB master, all of its partitions close. A subsequent reference to any of the partitions results in the partition opening for input, although the partition's access might be UPDATE or EXCLUSIVE. The DBRC authorization state reflects the limited access.

If received during an UPD DB NAME(partname) START(ACCESS) command, where partname is a HALDB partition that was added and partition structure rebuild has not been done, then issue an UPD DB NAME(haldbmst) START(ACCESS) OPTION(OPEN), where haldbmst is the partition's master, followed by an UPD DB NAME(partname) START(ACCESS) command or issue a call for a key in the key range of the new or redefined partition. This will invoke partition structure rebuild and allow the partition to be used.

Restrictions:
- The UPDATE DB START(ACCESS | QUIESCE) and UPDATE DB STOP(ACCESS | QUIESCE | SCHD | UPDATES) commands cannot be processed against a HALDB partition on an IMS system while HALDB Online Reorganization (OLR) is running against that partition on the same IMS system.
- The UPDATE DB START(ACCESS) SET(ACCTYPE(UPD)) and UPDATE DB STOP(ACCESS | UPDATES) commands cannot be issued against a HALDB master while OLR is reorganizing any of its partitions.
- While the database is being quiesced, this command cannot be processed successfully.

Equivalent IMS type-1 commands

The following table shows variations of the UPDATE DB command and the type-1 IMS commands that perform similar functions.

<table>
<thead>
<tr>
<th>UPDATE DB command</th>
<th>Similar IMS type-1 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE DB NAME(name) STOP(UPDATES)</td>
<td>/DBD DB dbname</td>
</tr>
<tr>
<td>UPDATE DB NAME(name) STOP(ACCESS)</td>
<td>/DBR DB dbname</td>
</tr>
<tr>
<td>UPDATE DB NAME(name) START(ACCESS)</td>
<td>/START DB dbname</td>
</tr>
<tr>
<td>UPDATE DB NAME(name) STOP(SCHD)</td>
<td>/STOP DB dbname</td>
</tr>
<tr>
<td>UPDATE DB NAME(name) SET(LOCK(ON))</td>
<td>/LOCK DB dbname</td>
</tr>
<tr>
<td>UPDATE DB NAME(name) SET(LOCK(OFF))</td>
<td>/UNLOCK DB dbname</td>
</tr>
</tbody>
</table>

Output fields

The following table shows the output fields for the UPDATE DB. The columns in the table are as follows:

Short label
Contains the short label generated in the XML output.

Keyword
Identifies the keyword on the command that caused the field to be generated. N/A appears for output fields that are always returned. error appears for output fields that are returned only in case of an error.

Meaning
Provides a brief description of the output field.
Table 396. UPDATE DB output fields

<table>
<thead>
<tr>
<th>Short label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>AREA</td>
<td>error</td>
<td>Area name of the DEDB that resulted in an error during the processing of the command.</td>
</tr>
<tr>
<td>CC</td>
<td>N/A</td>
<td>Completion code.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>error</td>
<td>The completion code text that briefly explains the meaning of the completion code.</td>
</tr>
<tr>
<td>DB</td>
<td>DB</td>
<td>Database name.</td>
</tr>
<tr>
<td>ERRT</td>
<td>error</td>
<td>Error text with diagnostic information. Error text can be returned for a nonzero completion code and contains information that further explains the completion code.</td>
</tr>
<tr>
<td>GBL</td>
<td>GBL</td>
<td>Indicates that the response line is for the global update.</td>
</tr>
<tr>
<td>MBR</td>
<td>N/A</td>
<td>IMSplex member that built output line. IMS identifier of the IMS for which the database information is displayed. IMS identifier is always returned.</td>
</tr>
</tbody>
</table>

Return and reason codes

An IMS return and reason code is returned to OM by the UPDATE DB command. The OM return and reason codes that may be returned as a result of the UPDATE DB command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 397. Return and reason codes for the UPDATE DB command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>Command completed successfully. The command output contains a line for each resource, accompanied by its completion code. If NAME(*) is specified without OPTION(ALLRSP), no output lines are returned. See the completion code table for details.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002004'</td>
<td>An invalid keyword or filter, or more than one keyword is specified on the UPDATE DB command.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002008'</td>
<td>Invalid number of keywords. Either a SET, START, or STOP keyword is required.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002011'</td>
<td>UPDATE DB command processing terminated because you cannot specify more than one keyword with the NAME(*) keyword.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002014'</td>
<td>The UPDATE DB command is not processed because an invalid character is found in the database name parameter.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002040'</td>
<td>More than one filter or keyword value is specified on the UPDATE DB command. Either more than one keyword or an invalid combination of filters was specified. For example, UPDATE DB NAME(dbname) START(ACCESS) OPTION(NORAND) or UPDATE DB NAME(dbname) STOP(UPDATES) OPTION(NORAND)</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002048'</td>
<td>Invalid SET attribute.</td>
</tr>
<tr>
<td>Return code</td>
<td>Reason code</td>
<td>Meaning</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'0003000'</td>
<td>Command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code. If NAME(*) is specified without OPTION(ALLRSP), output lines are only returned for resources with nonzero completion codes. See the completion code table for details.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'0003004'</td>
<td>Command was not successful for any of the resources. The command output contains a line for each resource, accompanied by its completion code. The completion code indicates the reason for the error with the resource name. The completion codes that can be returned by the UPDATE DB command are listed in the UPDATE DB completion code table.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0004000'</td>
<td>The UPDATE DB command is not processed as restart is in progress.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'000400C'</td>
<td>Command is not valid on the XRF alternate.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0004014'</td>
<td>Command is not valid on the RSR tracker.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0004024'</td>
<td>The UPDATE DB command is not processed because Fast Path is not installed.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0004120'</td>
<td>Online change phase is in progress.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0004124'</td>
<td>An UPDATE DB command that specified either START(QUIESCE) or STOP(QUIESCE) was rejected, because another process of the same type, such as another command with QIESCE specified, was already in progress. Wait until the other process has completed.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00041F0'</td>
<td>The UPDATE DB command is not processed because an IMS Checkpoint is in progress.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00041F4'</td>
<td>The UPDATE DB command is not processed because an MSDB Checkpoint is in progress.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00041F8'</td>
<td>The UPDATE DB command is not processed because a takeover is in progress.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0004200'</td>
<td>Commands are not processed because IMS shutdown is in progress.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0004208'</td>
<td>Invalid command for RMENV=NO.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0004300'</td>
<td>Command is not allowed because online change for MODBLKS is enabled (DFSDFxxx or DFSCGxxx defined with MODBLKS=OLC, or MODBLKS not defined).</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0004320'</td>
<td>The UPDATE DB command is not processed because another UPDATE DB START(QUIESCE) or UPDATE DB STOP(QUIESCE) command is in progress.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0004325'</td>
<td>DB quiesce phase is in progress.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0004400'</td>
<td>MINVERS in the RECON data sets is not 11.1.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'0005000'</td>
<td>DFSOCMD response buffer could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'0005008'</td>
<td>DFSPOOL storage could not be obtained.</td>
</tr>
</tbody>
</table>
Table 397. Return and reason codes for the UPDATE DB command (continued)

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000014'</td>
<td>X'00005000'</td>
<td>The UPD DB command processing terminated because IMODULE GETSTOR storage could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'0000500C'</td>
<td>AWE could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005014'</td>
<td>The UPDATE DB command processing terminated because BCB storage could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'0000501C'</td>
<td>The UPD DB command processing terminated because IMODULE GETMAIN storage could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005FFF'</td>
<td>The UPDATE DB command processing terminated because of an internal error.</td>
</tr>
</tbody>
</table>

Completion codes

The following table includes an explanation of the completion codes. Errors unique to the processing of UPDATE DB command are returned as completion codes. A completion code is returned for each action against an individual resource.

Table 398. Completion codes for the UPDATE DB command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The command completed successfully for the resource.</td>
</tr>
<tr>
<td>8</td>
<td>COMMAND COMPLETE FOR SOME</td>
<td>Some. The command completed with error for some of the AREAS of the DEDB. Response lines for the area names in error are returned.</td>
</tr>
<tr>
<td>C</td>
<td>COMMAND COMPLETE FOR NONE</td>
<td>None. The command completed with error for all the AREAS of the DEDB. Response lines for the area names in error are returned. This error is returned when all the databases could not be quiesced.</td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>Database name is invalid, or the wildcard parameter specified does not match any database names.</td>
</tr>
<tr>
<td>17</td>
<td>ANOTHER CMD IN PROGRESS</td>
<td>This error is returned when the quiesce could not be started because another database command was in progress.</td>
</tr>
<tr>
<td>23</td>
<td>DB STOP ACCESS IN PROGRESS</td>
<td>A /DBRECOVERY, or UPDATE DB STOP(ACCESS) command to stop database access is in progress. This takes the database offline.</td>
</tr>
<tr>
<td>25</td>
<td>DB STOP UPDATES IN PROGRESS</td>
<td>A /DBDUMP or UPDATE DB STOP(UPDATES) command to stop database updates is in progress.</td>
</tr>
</tbody>
</table>
Table 398. Completion codes for the UPDATE DB command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>DEDB STOP IN PROGRESS</td>
<td>/DBRECOVERY, /STOP, or UPDATE DB STOP(SCHD) command to stop database scheduling is in progress for a DEDB.</td>
</tr>
<tr>
<td>31</td>
<td>NOT ALLOWED FOR A DEDB</td>
<td>Database is a DEDB. The command entered is not valid for the DEDB in the IMS environment.</td>
</tr>
<tr>
<td>32</td>
<td>NOT ALLOWED FOR AN MSDB</td>
<td>Database is an MSDB. The command entered is not valid for the MSDB in the IMS environment.</td>
</tr>
<tr>
<td>33</td>
<td>NOT ALLOWED FOR A HALDB MASTER</td>
<td>Command invalid HALDB master. The command OPTION is invalid for the HALDB master but partition structure rebuild will be done if structure rebuild is needed and if only one HALDB master was specified in the command. No rebuild will be attempted if there is more than one database name listed in the command. If there are multiple database names listed in the command and all are invalid except the HALDB master, then rebuild will be attempted if needed.</td>
</tr>
<tr>
<td>48</td>
<td>NOT ALLOWED FOR IMS RESOURCE</td>
<td>The specified UPDATE command is not allowed for an IMS descriptor or resource. DFSDSDB1 is an example of an IMS descriptor. The only IMS descriptor attribute you can update is DEFAULT(Y).</td>
</tr>
<tr>
<td>53</td>
<td>NO RM ADDRESS SPACE</td>
<td>This error is returned when the command could not be processed because the RM address space is not present.</td>
</tr>
<tr>
<td>55</td>
<td>NO FAST PATH INSTALLED</td>
<td>No Fast Path installed. The command failed because Fast Path is not installed.</td>
</tr>
<tr>
<td>56</td>
<td>FF DB + LSO=Y + TRK = ERROR</td>
<td>Command is invalid on the RSR tracker because of the LSO=Y option.</td>
</tr>
<tr>
<td>65</td>
<td>DMB POOL STORAGE ERROR</td>
<td>DMB pool storage error. The command failed because of DMB pool storage request failure.</td>
</tr>
<tr>
<td>66</td>
<td>DMB POOL FULL</td>
<td>DMB pool full. The command failed because the DMB pool was full.</td>
</tr>
<tr>
<td>6C</td>
<td>NOT ALLOWED FOR A HALDB PARTITION</td>
<td>An UPDATE command specified a change to the residency option for a HALDB partition. The residency option is valid only for the master and not the partitions.</td>
</tr>
</tbody>
</table>
Table 398. Completion codes for the UPDATE DB command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>6F</td>
<td>REFERENCED BY PROGRAM</td>
<td>An UPDATE DB command is issued to change the resident option. There is a currently scheduled program that is referencing that database. The UPDATE command fails.</td>
</tr>
<tr>
<td>76</td>
<td>RECOVER CMD ACTIVE</td>
<td>/RECOVER START command is in progress to recover one or more databases with the database recovery services.</td>
</tr>
<tr>
<td>81</td>
<td>DBRC ERROR</td>
<td>DBRC error.</td>
</tr>
<tr>
<td>8C</td>
<td>RESOURCE IS STOPPED</td>
<td>The database is stopped. The database might be stopped by a command, such as UPDATE DB, /STOP DB, or /DBRECOVERY, or for some other reason, such as an error.</td>
</tr>
<tr>
<td>90</td>
<td>INTERNAL ERROR</td>
<td>Internal error. The command entered is not processed because of an internal error.</td>
</tr>
<tr>
<td>91</td>
<td>TIMEOUT ERROR</td>
<td>This error is returned when the quiesce could not be completed within the timeout period.</td>
</tr>
<tr>
<td>92</td>
<td>COMMAND PROCESSING ERROR</td>
<td>Command processing error. The command entered is not processed because of an error. A unique completion code could not be generated to explain the error. The message number and the return code that could not be converted to a completion code are listed in the error text.</td>
</tr>
<tr>
<td>A0</td>
<td>DYNAMIC ALLOCATION FAILED</td>
<td>Dynamic allocation failed. The command entered has not completed processing because the dynamic allocation failed for the DB. Some of the command processing might be completed before the error is detected.</td>
</tr>
<tr>
<td>A1</td>
<td>DB IS AUTHORIZED BY BATCH</td>
<td>Database is authorized by batch. The command entered has not completed processing because the database is authorized by batch. Some of the command processing might be completed before the error is detected.</td>
</tr>
<tr>
<td>Completion code</td>
<td>Completion code text</td>
<td>Meaning</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>A2</td>
<td>DB IS AUTHORIZED BY ANOTHER IMS</td>
<td>Database is authorized by another IMS. The command entered has not completed processing because the database is authorized by another active or abnormally terminated IMS and its authorization state is incompatible with the current authorization request.</td>
</tr>
<tr>
<td>A3</td>
<td>AUTHORIZATION CHANGE FAILED</td>
<td>Authorization change failed. The DBRC CHNGAUTH request resulted in an error.</td>
</tr>
<tr>
<td>A4</td>
<td>DATABASE NOT REGISTERED TO DBRC</td>
<td>Database not registered to DBRC. The command processing has not completed because the database is not registered to DBRC. Some of the command processing might be completed before the error is detected.</td>
</tr>
<tr>
<td>A5</td>
<td>PREVENT FURTHER AUTH ON</td>
<td>Prevent further authorization ON. The command entered has not completed processing because the database or area is defined to DBRC as “prevent further authorization”. Some of the command processing might be completed before the error is detected.</td>
</tr>
<tr>
<td>A6</td>
<td>INVALID DATABASE RECORD IN RECON</td>
<td>Invalid database record in the RECON data set. The command entered has not completed processing because an invalid parameter was found during the evaluation process of the database usage compatibility. The database record might be invalid in the RECON data set. Some of the command processing might be completed before the error is detected.</td>
</tr>
<tr>
<td>A7</td>
<td>DBRC UNAUTH FAILED FOR CHNGAUTH</td>
<td>DBRC unauthorized failed during change authorization. The command entered has not completed processing because of an error during UNAUTH processing for the change authorization request.</td>
</tr>
<tr>
<td>A8</td>
<td>INVALID DB RECORD IN RECON</td>
<td>Invalid database record in RECON. An UPDATE DB SET(ACCTYPE) command is entered to change the database authorization level. An encoded state of zero is returned by DBRC during the change authorization processing. Some of the command processing might be completed before the error is detected.</td>
</tr>
</tbody>
</table>
Table 398. Completion codes for the UPDATE DB command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>A9</td>
<td>DB OR AREA AUTHORIZATION ERROR</td>
<td>Database or area authorization error. For a database, the command entered has not completed processing because of a database authorization error. For an area, area authorization to DBRC failed. Some of the command processing might be completed before the error is detected.</td>
</tr>
<tr>
<td>AA</td>
<td>DB IN USE-BMP</td>
<td>The UPDATE DB command was not successful because the database is in use by a BMP. Some of the command processing might be completed before the error is detected.</td>
</tr>
<tr>
<td>AB</td>
<td>DB IN USE-DBCTL LONG THREAD</td>
<td>The UPDATE DB command was not successful because the database is in use by a long-running DBCTL thread. Some of the command processing might be completed before the error is detected.</td>
</tr>
<tr>
<td>AC</td>
<td>FP AREA HELD-LONG BUSY WAIT</td>
<td>The UPDATE DB command was not successful because the AREA of the DEDB is in long-busy wait. Some of the command processing might be completed before the error is detected.</td>
</tr>
<tr>
<td>AD</td>
<td>DYNAMIC UNALLOCATION FAILED</td>
<td>The UPDATE DB command was not successful due to a dynamic unallocation error. Some of the command processing might be completed before the error is detected.</td>
</tr>
<tr>
<td>AE</td>
<td>DYNAMIC ALLOCATION ERROR</td>
<td>The UPDATE DB command was not successful due to a dynamic allocation error. No SVC99 is issued. Some of the command processing might be completed before the error is detected.</td>
</tr>
<tr>
<td>C1</td>
<td>OLR DDIR MISSING OR DFSPNT ZERO</td>
<td>Unknown DMB referenced for database. The command cannot be processed because an unknown data management block is referenced for the database. Refer to the DFS564I message put out to the system console to identify the DMB name that cannot be referenced.</td>
</tr>
<tr>
<td>CC</td>
<td>OLR IS ACTIVE FOR DATABASE</td>
<td>OLR is active for database. The command failed as OLR is active for the database.</td>
</tr>
<tr>
<td>D0</td>
<td>DATABASE CLOSE ERROR</td>
<td>Database close error. The command processing failed because of a database close error.</td>
</tr>
<tr>
<td>Completion code</td>
<td>Completion code text</td>
<td>Meaning</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>D1</td>
<td>DATABASE WRITE ERROR</td>
<td>Database write error. The command processing failed because of a database write error.</td>
</tr>
<tr>
<td>D2</td>
<td>DATABASE NEEDS BACKOUT</td>
<td>Database needs backout. The command processing failed as the database needs backout.</td>
</tr>
<tr>
<td>D3</td>
<td>DATABASE OR AREA NEEDS RECOVERY</td>
<td>Database or AREA needs recovery. The command processing failed as the database or area needs recovery.</td>
</tr>
<tr>
<td>D4</td>
<td>DATABASE NEEDS IMAGE COPY</td>
<td>Database needs image copy. The command processing failed as the database needs image copy.</td>
</tr>
<tr>
<td>D5</td>
<td>DATABASE HAS NO BACKOUTS</td>
<td>Database has no backouts. The command processing failed as there are no backouts for the database.</td>
</tr>
<tr>
<td>D6</td>
<td>DATABASE IN USE</td>
<td>Database in use. A SET(ACCTYPE) is specified for the DEDB and the authorization level cannot be changed as the DEDB is in use in a region.</td>
</tr>
<tr>
<td>D7</td>
<td>DB I/O PREVENTION NOT COMPLETE</td>
<td>Database I/O prevention not complete. The database cannot be started as it is extended because of an XRF takeover and the I/O prevention is not complete.</td>
</tr>
<tr>
<td>D8</td>
<td>DATABASE BACKOUTS PENDING</td>
<td>Database backouts pending. The access type specified for the database cannot be changed as restartable backouts are pending for the database.</td>
</tr>
<tr>
<td>D9</td>
<td>DATABASE/AREA OPEN FAILED</td>
<td>Database open failed. The command failed because of an error opening the database. Refer to DFS0730I messages to determine the reason of the failure.</td>
</tr>
<tr>
<td>DA</td>
<td>DATABASE BEING RECALLED BY HSM</td>
<td>Database being recalled from HSM. The command processing failed because the database is being recalled from HSM.</td>
</tr>
<tr>
<td>Completion code</td>
<td>Completion code text</td>
<td>Meaning</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>DB</td>
<td>PARTITION OPEN FAILED</td>
<td>Partition open failed. The partitions open failed because the master is offline. This can also occur if the partition has been deleted and partition structure rebuild has occurred. Partition structure rebuild can be accomplished by issuing an UPD DB NAME(haldbmst) START(ACCESS) OPTION(OPEN) command, where haldbmst is the partition's master, or by issuing a qualified GU call for a key in the key range of the partition. List.recon can be used to determine if the partition exists or has been deleted.</td>
</tr>
<tr>
<td>DC</td>
<td>HALDB PARTITION BUILD FAILURE</td>
<td>Database partition build failure. The database partitions build for the DDIR or DMB failed. Refer to the DFS0415I message sent to the system console to determine the reason of the failure.</td>
</tr>
<tr>
<td>DD</td>
<td>HALDB PARTITION INIT FAILURE</td>
<td>Database partition initialization failed. The database partition initialization for the DDIR or DMB failed. Refer to the DFS0415 message sent to the system console for the details.</td>
</tr>
<tr>
<td>DE</td>
<td>ACBLIB READ FAILURE</td>
<td>ACBLIB read failure. The command is not processed because there was an error reading the ACBLIB.</td>
</tr>
<tr>
<td>DF</td>
<td>DB DIRECTORY INIT FAILURE</td>
<td>Database directory initialization failed. The command is not processed because of a database directory initialization failure.</td>
</tr>
<tr>
<td>E0</td>
<td>DATABASE OR AREA IN RECOVERY</td>
<td>Database or area in recovery. The command is not processed because the database or area is in recovery.</td>
</tr>
<tr>
<td>E1</td>
<td>DB MUST BE STOPPED AND OFFLINE</td>
<td>The database must be stopped and taken offline in order for the attribute to be changed. You might need to issue a /DBR DB command or an UPDATE DB STOP(ACCESS) command to stop the database and take it offline before issuing the UPDATE DB SET(RESIDENT(Y</td>
</tr>
<tr>
<td>E2</td>
<td>PARALLEL DB OPEN NOT COMPLETE</td>
<td>Restart parallel DB open not complete. The command is not processed because the restart parallel DB open is not complete for the database.</td>
</tr>
<tr>
<td>Completion code</td>
<td>Completion code text</td>
<td>Meaning</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>E5</td>
<td>PARTICIPANT UNABLE TO QUIESCE</td>
<td>This error is returned when the quiesce could not be completed successfully across the IMSplex. The IMS with this completion code was the quiesce participant that was not able to be quiesced.</td>
</tr>
<tr>
<td>E6</td>
<td>QUIESCE COMMUNICATION FAILURE</td>
<td>This error is returned when the quiesce could not be completed because of a failure to communicate across the IMSplex. There could be a problem with RM, OM, or SCI that has caused the communication failure to occur.</td>
</tr>
<tr>
<td>E7</td>
<td>CMD NOT ALLOWED</td>
<td>This error is returned when the database command could not be processed because a quiesce command was in progress.</td>
</tr>
<tr>
<td>E8</td>
<td>DATABASE HAS INTENT TO REORGANIZE</td>
<td>This error is returned when the quiesce could not be started because the RECON data sets indicate that there is an intent to reorganize the database.</td>
</tr>
<tr>
<td>E9</td>
<td>DB IN WRONG STATE TO BE QUIESCED</td>
<td>This error is returned when the named resource is in the wrong state for quiesce processing to proceed.</td>
</tr>
<tr>
<td>EE</td>
<td>DATABASE BACKOUT ERROR</td>
<td>Database backout error. The command processing failed because of a database backout error.</td>
</tr>
<tr>
<td>EF</td>
<td>DATABASE IS IN ERROR</td>
<td>Database is in error. The command entered is not processed because the database is in error.</td>
</tr>
<tr>
<td>F0</td>
<td>NO AREA LOCK</td>
<td>No AREA lock. The command processing failed as the area lock could not be obtained.</td>
</tr>
<tr>
<td>F1</td>
<td>AREA NOT STOPPED</td>
<td>Area not stopped. The command entered is not processed because the AREA is not stopped.</td>
</tr>
<tr>
<td>F2</td>
<td>PRELOAD IS ACTIVE FOR AREA</td>
<td>Preload is active for AREA. The command entered is not processed because the AREA is not stopped.</td>
</tr>
<tr>
<td>F3</td>
<td>UNRESOLVED INDOUBTS FOR AREA</td>
<td>Unresolved indoubts for AREA. The command entered is not processed because unresolved indoubts exist for the AREA.</td>
</tr>
<tr>
<td>F4</td>
<td>ALLOCATION FAILED</td>
<td>Allocation failed. Allocation failed for the AREA name.</td>
</tr>
<tr>
<td>F5</td>
<td>AREA NEEDS RECOVERY</td>
<td>AREA needs recovery. The command processing failed because the area needs recovery.</td>
</tr>
</tbody>
</table>
Table 398. Completion codes for the UPDATE DB command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>F6</td>
<td>ADS NUMBER DISCREPANCY</td>
<td>ADS number discrepancy. The command failed for the AREA because there is a discrepancy between the number of ADS allocated by IMS and the number of ADS known to DBRC. Correct the discrepancy and reissue the command to deallocate the data sets.</td>
</tr>
<tr>
<td>F7</td>
<td>AREA IS NOT LOADED INTO CF</td>
<td>Area is not loaded into CF. The AREA OPEN failed and is not loaded into the Coupling Facility.</td>
</tr>
<tr>
<td>F8</td>
<td>AREA HAS I/O TOLERATED CI</td>
<td>Area has I/O tolerated CI. The command is not processed because the AREA has an I/O tolerated CI.</td>
</tr>
<tr>
<td>F9</td>
<td>AREA HAS 2ND CI EEQE</td>
<td>Area has 2nd CI EEQE. The command is not processed because the AREA has a 2nd CI EEQE.</td>
</tr>
<tr>
<td>FC</td>
<td>UTILITY ACTIVE ON AREA</td>
<td>This error is returned when the area is in use by a utility.</td>
</tr>
<tr>
<td>FD</td>
<td>AREA HAS EEQE</td>
<td>This error is returned when the area has an extended error queue element (EEQE).</td>
</tr>
<tr>
<td>FE</td>
<td>AREA HAS EQE</td>
<td>This error is returned when the area has an error queue element (EQE).</td>
</tr>
<tr>
<td>196</td>
<td>DB has an in-doubt EEQE</td>
<td>This error is returned when an UPDATE DB STOP(ACCESS) command is issued against a database that has an in-doubt EEQE and the NODBR keyword was specified in the DFSVSMxx member of the IMS PROCLIB data set.</td>
</tr>
<tr>
<td>1D7</td>
<td>IMPORT CHANGE LIST ERROR</td>
<td>The resource is in the process of being imported from the change list in the IMSRSC repository or was not successfully imported from the change list. The resource cannot be updated until it is successfully imported from the repository.</td>
</tr>
</tbody>
</table>

Examples

The following are examples of the UPDATE DB command:

Example 1 for UPDATE DB command

TSO SPOC input:

```
UPDATE DB NAME(DEDBJ00%,BADNAME,BAD*) SET(RESPIDENT(Y))
```

TSO SPOC output:
Response for: UPDATE DB NAME(DEDBJ00%,BADNAME,BAD*) SET(RESIDENT(Y))

<table>
<thead>
<tr>
<th>DBName</th>
<th>MbrName</th>
<th>CC</th>
<th>CCText</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAD*</td>
<td>IMS1</td>
<td>10</td>
<td>NO RESOURCES FOUND</td>
</tr>
<tr>
<td>BADNAME</td>
<td>IMS1</td>
<td>10</td>
<td>NO RESOURCES FOUND</td>
</tr>
<tr>
<td>DEDBJ001</td>
<td>IMS1</td>
<td>E1</td>
<td>DATABASE HAS NOT BEEN DBR"D</td>
</tr>
<tr>
<td>DEDBJ002</td>
<td>IMS1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>DEDBJ003</td>
<td>IMS1</td>
<td>E1</td>
<td>DATABASE HAS NOT BEEN DBR"D</td>
</tr>
<tr>
<td>DEDBJ004</td>
<td>IMS1</td>
<td>E1</td>
<td>DATABASE HAS NOT BEEN DBR"D</td>
</tr>
<tr>
<td>DEDBJ005</td>
<td>IMS1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>DEDBJ006</td>
<td>IMS1</td>
<td>E1</td>
<td>DATABASE HAS NOT BEEN DBR"D</td>
</tr>
<tr>
<td>DEDBJ007</td>
<td>IMS1</td>
<td>E1</td>
<td>DATABASE HAS NOT BEEN DBR"D</td>
</tr>
<tr>
<td>DEDBJ008</td>
<td>IMS1</td>
<td>E1</td>
<td>DATABASE HAS NOT BEEN DBR"D</td>
</tr>
<tr>
<td>DEDBJ009</td>
<td>IMS1</td>
<td>E1</td>
<td>DATABASE HAS NOT BEEN DBR"D</td>
</tr>
</tbody>
</table>

OM API input:

CMD(UPDATE DB NAME(DEDBJ00%,BADNAME,BAD*) SET(RESIDENT(Y)))

OM API output:

<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.3.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2006.311 00:34:47.028100</statime>
<stotime>2006.311 00:34:47.031559</stotime>
<staseq>BFAD74E45B4E87</staseq>
<stosq>BFAD74E5307115</stosq>
<rqsttkn1>USR011 10163446</rqsttkn1>
<rc>0200000C</rc>
<rsn>00003008</rsn>
<rsntxt>None of the clients were successful.</rsntxt>
</ctl>
</imsout>

<cmderr>
<mbr name="IMS1"/>
</cmderr>

<cmd>
<master>IMS1</master>
<userid>USR011</userid>
<verb>UPD</verb>
<kwd>DB</kwd>
<input>UPDATE DB NAME(DEDBJ00%,BADNAME,BAD*) SET(RESIDENT(Y))</input>
</cmd>

<cmdrsphdr>
<hdr slbl="DB" ltbl="DBName" scope="LCL" sort="a" key="1" scroll="no"
len="8" dtype="CHAR" align="left" skipb="no"/>
<hdr slbl="AREA" ltbl="AreaName" scope="LCL" sort="a" key="4"
scroll="no" len="8" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="MBR" ltbl="MbrName" scope="LCL" sort="a" key="3"
scroll="no" len="8" dtype="CHAR" align="left" skipb="no"/>
<hdr slbl="CC" ltbl="CC" scope="LCL" sort="n" key="0"
scroll="yes" len="4" dtype="INT" align="right" skipb="no"/>
<hdr slbl="CCTXT" ltbl="CCText" scope="LCL" sort="n" key="0"
scroll="yes" len="16" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="ERRT" ltbl="ErrorText" scope="LCL" sort="n" key="0"
scroll="yes" len="16" dtype="CHAR" align="left" skipb="yes"/>
</cmdrsphdr>
</cmdrspdata>
Explanation: Update some databases to be resident. The update succeeds for databases DEDBJ002 and DEDBJ005, as shown by completion code 0. The update fails for several databases with completion code E1, because the databases need to be taken offline by use of the /DBRECOVER command in order to change a runtime resource definition attribute. The update fails for database BADNAME and for parameter BAD* with completion code 10, since database BADNAME does not exist and no database name starts with BAD.

Example 2 for UPDATE DB command

TSO SPOC input:
UPDATE DB NAME(DEDBJ002) AREA(*) START(ACCESS) OPTION(OPEN)

TSO SPOC output:
<table>
<thead>
<tr>
<th>DBName</th>
<th>MbrName</th>
<th>CC</th>
<th>CCtext</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDBJ002</td>
<td>IMS1</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>DB22AR0</td>
<td>IMS1</td>
<td>0</td>
<td>DB OR AREA AUTHORIZATION ERROR</td>
</tr>
<tr>
<td>DB22AR1</td>
<td>IMS1</td>
<td>A9</td>
<td></td>
</tr>
</tbody>
</table>

Explanation: In this example, CC=A9 means that DBRC returned a nonzero return code for authorization request.

Example 3 for UPDATE DB command

TSO SPOC input:
UPD DB NAME(DEDBJ022) START(QUIESCE) OPTION(HOLD) SET(TIMEOUT(60))

TSO SPOC output:
<table>
<thead>
<tr>
<th>DBName</th>
<th>MbrName</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDBJ022</td>
<td>IMS1</td>
<td>0</td>
</tr>
<tr>
<td>DEDBJ022</td>
<td>IMS2</td>
<td>0</td>
</tr>
<tr>
<td>DEDBJ022</td>
<td>IMS3</td>
<td>0</td>
</tr>
</tbody>
</table>

Explanation: This example is of a successful quiesce and hold for Fast Path DEDB DEDBJ022, which is coordinated across three IMS systems.

Example 4 for UPDATE DB command

TSO SPOC input:
Example 5 for UPDATE DB command

TSO SPOC input:
UPD DB NAME(DEDBJN22) STOP(QUIESCE)

TSO SPOC output:

<table>
<thead>
<tr>
<th>DBName</th>
<th>AreaName</th>
<th>MbrName</th>
<th>CC</th>
<th>CCText</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDBJN22</td>
<td>IMS1</td>
<td></td>
<td>C</td>
<td>COMMAND COMPLETE FOR NONE</td>
</tr>
<tr>
<td>DEDBJN22</td>
<td>DB22AR0</td>
<td>IMS1</td>
<td>E9</td>
<td>DB IN WRONG STATE TO BE QUIESCED</td>
</tr>
<tr>
<td>DEDBJN22</td>
<td>DB22AR1</td>
<td>IMS1</td>
<td>E9</td>
<td>DB IN WRONG STATE TO BE QUIESCED</td>
</tr>
<tr>
<td>DEDBJN22</td>
<td>DB22AR2</td>
<td>IMS1</td>
<td>E9</td>
<td>DB IN WRONG STATE TO BE QUIESCED</td>
</tr>
<tr>
<td>DEDBJN22</td>
<td>DB22AR3</td>
<td>IMS1</td>
<td>E9</td>
<td>DB IN WRONG STATE TO BE QUIESCED</td>
</tr>
<tr>
<td>DEDBJN22</td>
<td>DB22AR4</td>
<td>IMS1</td>
<td>E9</td>
<td>DB IN WRONG STATE TO BE QUIESCED</td>
</tr>
</tbody>
</table>

Explanation: This example attempts to release a quiesce on a DEDB. DEDBJN22 consists of five areas. The command was partially successful because it was able to release the quiesce on DB22AR1 and DB22AR2 only. In this example, DB22AR0, DB22AR3, and DB22AR4 were not in quiesced state. A response line is returned for the DEDB name with CC=8 (“COMMAND COMPLETE FOR SOME”) because only some of the areas under the DEDB were in a state to be released. A response line is also returned for each area that could not be processed.

Related concepts:
- How to interpret CSL request return and reason codes (System Programming APIs)

Related tasks:
- Updating runtime database resource and descriptor definitions with the UPDATE command (System Definition)

Related reference:
- /LOCK command (Commands)
- Command keywords and their synonyms (Commands)
- “/START DB command” on page 737
- “/STOP DB command” on page 788
- “/UNLOCK DB command” on page 895
UPDATE DBDESC command

Use the UPDATE DBDESC command to update database descriptors. A descriptor is a model that can be used to create descriptors or resources.

Updating a descriptor changes only the attributes explicitly specified on the UPDATE command. Attributes not specified retain their existing values. Any database resource or descriptor can be created using this descriptor as a model, by specifying the CREATE command with LIKE(DESC(descriptor_name)). Any descriptor or resource that was already created using this descriptor is not updated.

Subsections:
- “Environment”
- “Syntax”
- “Keywords” on page 964
- “Usage notes” on page 965
- “Output fields” on page 966
- “Return, reason, and completion codes” on page 966
- “Examples” on page 968

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 399. Valid environments for the UPDATE DBDESC command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE DBDESC</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OPTION</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SET</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Syntax

UPDATE DBDESC NAME(name*) A B OPTION(ALLRSP)

A:

SET ACCTYPE(BRWS EXCL READ UPD)

DEFAULT(Y)
Keywords

The following keywords are valid for the UPDATE DBDESC command:

NAME
- Specifies the 1-8 character name of the database descriptor name. Wildcards can be specified in the name. The name is a repeatable parameter. If the NAME parameter specified is a specific or wildcard name, command responses are returned for all the descriptor names that are processed. For NAME(*) command responses are returned only for the descriptor names that resulted in an error. OPTION(ALLRSP) can be specified with NAME(*) to obtain the command responses for all the descriptor names that are processed.

OPTION
- Specifies additional functions to be performed along with the command.
 - **ALLRSP**
 - Indicates that the response lines are to be returned for all descriptors that are processed on the command. The default action is to return response lines only for the descriptors that resulted in an error. It is only valid with names that include a wildcard character. ALLRSP is ignored for other NAME values.

SET
- Specifies the attribute values to be changed.

ACCTYPE
- Specifies the access intent for a database created using this descriptor.
 - **BRWS**
 - The database is available for read-only processing on this IMS subsystem. The only programs that can use the database on this subsystem are those that have a PCB processing option of GO (PROCOPT=GO). Programs that access the data using the GO processing option might see uncommitted data since a sharing IMS subsystem could be updating the database. The database is opened for read-only processing.
 - **EXCL**
 - The database is to be used exclusively by this IMS subsystem. This exclusive access is guaranteed only when the database is registered to DBRC.
 - **READ**
 - The database is available for read-only processing in this IMS subsystem. Programs with update intent can be scheduled, but cannot update the database. Access type READ differs from access type BRWS in that the data is read with integrity (locking is performed) and all programs can access the data, not just those with a processing option of GO. The database is opened for read-only processing.
The database is for update as well as read processing in the IMS subsystem.

DEFAULT(Y)

Specifies this descriptor as the default, which resets the existing default descriptor to DEFAULT(N). When a descriptor is created without the LIKE keyword, any attribute not specified on the CREATE command takes the value defined in the default descriptor. Only one descriptor can be defined as the default for a resource type. IMS defines a database descriptor called DFSDSDB1, where all attributes are defined with the default value. Defining a user-defined descriptor to be the default overrides the current default descriptor. Since only one database descriptor can be the default at one time, only one database name can be specified with DEFAULT(Y).

RESIDENT

Specifies the resident option of a database created using this descriptor. The RESIDENT(Y) option takes effect at the next restart, unless the database was updated as RESIDENT(Y) after the checkpoint from which this IMS is performing emergency restart. A database defined as a DEDB in ACBLIB always sets the RESIDENT(Y) attribute when the DEDB is loaded, regardless of the RESIDENT value specified. RESIDENT(N) is rejected for a DEDB.

- **N** The DMB associated with the named database resource is not made resident in storage. The DMB is loaded at scheduling time.
- **Y** The DMB associated with the named database resource is made resident in storage at the next IMS restart. At the next IMS restart, IMS loads the DMB and initializes it. A resident database is accessed from local storage, which eliminates I/O to the ACBLIB. In an online environment, the DMB control blocks are stored in the ACBLIB. If the DLI/SAS address space exists, DLI/SAS loads the DMB, otherwise, it is the IMS control region that loads it. This makes the DMB dependent on the existence of the corresponding database resource.

Usage notes

Descriptors exist for the life of the IMS unless they are deleted using a DELETE command. Descriptors are recoverable across an IMS warm start or emergency restart. Descriptors are lost if IMS is cold started, unless cold start imports definitions that were exported while IMS was up.

If all the attributes specified by the UPDATE command are already defined for the descriptor, no update is actually made, no descriptors are quiesced, no log record is created, and a completion code of zero is returned. This avoids unnecessary overhead when no action needs to be taken.

The UPDATE DBDESC command can be issued only through the OM API. This command applies to DB/DC and DBCTL systems. The UPDATE DBDESC commands are not valid on the XRF alternate, RSR tracker, or FDBR region. The UPDATE DBDESC commands are not valid if online change for MODBLKS is enabled (DFSDFxXxx or DFSCGxx defined with MODBLKS=OLC, or MODBLKS not defined). This command is recoverable.

Each descriptor is updated individually. Individual updating does not work like online change where either all descriptors are updated or no descriptors are updated. Descriptors can be successfully updated if they are not currently in use. If
a descriptor is in use, the update fails. In a sysplex environment, the update might succeed on some IMS systems and fail on others. A descriptor is in use if another command is in progress that references the command.

If the descriptor is the IMS-defined database descriptor (DFSDSDB1), the only attribute that can be updated is the DEFAULT attribute.

Output fields

The following table shows the UPDATE DBDESC output fields. The columns in the table are as follows:

Short label
Contains the short label generated in the XML output.

Keyword
Identifies keyword on the command that caused the field to be generated. N/A appears for output fields that are always returned. error appears for output fields that are returned only in case of an error.

Meaning
Provides a brief description of the output field.

<table>
<thead>
<tr>
<th>Short label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>N/A</td>
<td>Completion code.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>error</td>
<td>Completion code text that briefly explains the non-zero completion code.</td>
</tr>
<tr>
<td>DESC</td>
<td>DBDESC</td>
<td>Database descriptor name.</td>
</tr>
<tr>
<td>ERRT</td>
<td>error</td>
<td>Error text with diagnostic information. Error text can be returned for a non-zero completion code and contains information that further explains the completion code.</td>
</tr>
<tr>
<td>OLDDEF</td>
<td>DBDESC</td>
<td>Old default descriptor name, if this descriptor is updated to be the default by specifying DEFAULT(Y). The old default descriptor is no longer the default.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>Command completed successfully. The command output contains a line for each descriptor, accompanied by its completion code. If NAME(*) is specified without OPTION(ALLRESP), no output lines are returned. See the completion code table for details.</td>
</tr>
<tr>
<td>X'00000004'</td>
<td>X'00002008'</td>
<td>Invalid number of keywords. Either a SET keyword is required.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002048'</td>
<td>Invalid SET attribute.</td>
</tr>
</tbody>
</table>
Table 401. Return and reason codes for the UPDATE DBDESC command (continued)

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000008'</td>
<td>X'00002133'</td>
<td>Multiple name parameters were specified with DEFAULT(Y). Only one descriptor can be the default at a time.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003000'</td>
<td>Command was successful for some descriptors but failed for others. The command output contains a line for each descriptor, accompanied by its completion code. If NAME(*) is specified without OPTION(ALLRSP), output lines are only returned for descriptors with non-zero completion codes. See the completion code table for details.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>Command was not successful for any of the descriptors. The command output contains a line for each descriptor, accompanied by its completion code. See the completion code table for details.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000400C'</td>
<td>Command is not valid on the XRF alternate.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>Command is not valid on the RSR tracker.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004120'</td>
<td>Online change phase is in progress.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004310'</td>
<td>Storage could not be obtained for the Transection Input edit routine table. A cold start is required to fix this error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005004'</td>
<td>DFSOCMD response buffer could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005008'</td>
<td>DFSPool storage could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'0000500C'</td>
<td>AWE could not be obtained.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. The following table includes an explanation of the completion codes.

Table 402. Completion codes for the UPDATE DBDESC command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>命令完成成功</td>
<td>Command completed successfully for database resource or database resource descriptor.</td>
</tr>
<tr>
<td>17</td>
<td>ANOTHER CMD IN PROGRESS</td>
<td>None. The command completed with error for all the Areas of the DEDB. Response lines for the area names in error are returned.</td>
</tr>
<tr>
<td>48</td>
<td>NOT ALLOWED FOR IMS RESOURCE</td>
<td>The specified UPDATE command is not allowed for an IMS descriptor or resource. DFSDSDB1 is an example of an IMS descriptor. The only IMS descriptor attribute you can update is DEFAULT(Y).</td>
</tr>
<tr>
<td>6C</td>
<td>NOT ALLOWED FOR A HALDB PARTITION</td>
<td>The UPDATE command specified a change to the residency option for a HALDB partition. The residency option is valid only for the master and not the partitions.</td>
</tr>
</tbody>
</table>
Table 402. Completion codes for the UPDATE DBDESC command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>8A</td>
<td>WILDCARD PARAMETER NOT SUPPORTED</td>
<td>A wildcard parameter was specified with DEFAULT(Y). Only one descriptor can be the default at a time.</td>
</tr>
<tr>
<td>1D7</td>
<td>IMPORT CHANGE LIST ERROR</td>
<td>The descriptor is in the process of being imported from the change list in the IMSRSC repository or was not successfully imported from the change list. The descriptor cannot be updated until it is successfully imported from the repository.</td>
</tr>
</tbody>
</table>

Examples

The following are examples of the UPDATE DBDESC command:

Example 1 for UPDATE DBDESC command

TSO SPOC input:
UPDATE DBDESC NAME(*) SET(RESIDENT(Y)) OPTION(ALLRSP)

TSO SPOC output:
Response for: UPDATE DBDESC NAME(*) SET(RESIDENT(Y)) OPTION(ALLRSP)
DescName MbrName CC CCText
BRMSDESC IMS1 0
DESC001 IMS1 0
DESC002 IMS1 0
DESC003 IMS1 0
DESC004 IMS1 0
DESC005 IMS1 0
DFSDSDB1 IMS1 48 NOT ALLOWED FOR IMS RESOURCE
EXCLDESC IMS1 0
RESDESC IMS1 0

OM API input:
CMD(UPDATE DBDESC NAME(*) SET(RESIDENT(Y)) OPTION(ALLRSP))

OM API output:
<imsout>
<ctl>
<omname>OM1OM </omname>
<omvsn>1.3.0</omvsn>
+xmlvsn>20 </xmlvsn>
<statime>2006.312 23:27:37.656606</statime>
<stotime>2006.312 23:27:37.661922</stotime>
<staseq>BFAD4F2D1B11EC8E</staseq>
<stoseq>BFAD4F2D1C5E294E</stoseq>
<rqttrkln>USR011 10152737</rqttrkln>
<rc>0200000C</rc>
<rsn>00003008</rsn>
<rsmmsg>CSLN054I</rsmmsg>
<rsntxt>None of the clients were successful.</rsntxt>
</ctl>
<cmderrr>
<mbr name="IMS1 ">
<typ>IMS </typ>

968 Commands, Volume 2: IMS Commands N - V
Explanation: Update all database descriptors to be resident. The update completed successfully for most database descriptors, as shown by completion code 0. The update failed for IMS-defined descriptor DFSDSDB1 with completion code 48 NOT ALLOWED FOR IMS RESOURCE, since the only attribute that can be updated for DFSDSDB1 is DEFALT(Y).

Related concepts:

- How to interpret CSL request return and reason codes (System Programming APIs)

Related reference:

- Command keywords and their synonyms (Commands)

UPDATE IMS command

Use the UPDATE IMS command to update local and global IMS attributes, which include global status for areas, databases, and transactions in an IMSplex. You can also use the UPDATE IMS command to enable IMS to use the IMSRSC repository.

To change global PLEXPARAM values in an IMSplex, use the UPDATE IMS SET(PLEXPARAM()) command. To change local LCLPARAM values in one or more IMS systems in an IMSplex, use the UPDATE IMS SET(LCLPARAM()) command.
Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) from which the UPDATE IMS command and keywords can be issued.

Table 403. Valid environments for the UPDATE IMS command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE IMS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SET</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>OPTION</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

Keywords

The following keywords are valid for the UPDATE IMS command:
LCLPARM()

Specifies the values for the local parameters to be modified. The LCLPARM() keyword is mutually exclusive with the PLEXPARM() keyword in the UPDATE IMS SET() command.

The UPDATE IMS SET(LCLPARM()) command can be used to modify local parameters such as FPBP64STAT at each IMS system.

For the UPDATE IMS SET(LCLPARM()) command, all IMS systems that received the command from OM process the command.

Specify one of the following options:

AUTOEXPORT(N)

Specifies that the automatic export processing during system checkpoint should be disabled. The AUTOEXPORT keyword is valid in a DRD environment with or without the IMSRSC repository.

For the DRD users who are enabled with RDDS data sets, the UPDATE IMS SET(LCLPARM(AUTOEXPORT(N))) command can be used after successful migration to the repository. This command reduces the processor usage of automatic export at system checkpoints.

After the UPDATE IMS command with the AUTOEXPORT(N) keyword is issued, you can continue using system RDDS data sets on the EXPORT and IMPORT commands and during automatic import. However, during import and automatic import, make sure that the RDDS contains the current data especially if AUTOEXPORT is turned off.

Automatic export to the RDDS can be enabled by specifying AUTOEXPORT=N for the DFSDFxxx PROCLIB member and then starting IMS.

FPBP64STAT

Specifies whether Fast Path 64-bit buffer usage statistics per unit of work (UOW) for dependent regions are to be written to OLDS. The Fast Path 64-bit buffer usage is recorded in X’5945’ log records.

N Does not write Fast Path 64-bit buffer usage statistics per unit of work for dependent regions in X’5945’ log records to OLDS.

Y Writes Fast Path 64-bit buffer usage statistics per unit of work for dependent regions in X’5945’ log records to OLDS.

LOCKTIME

Specifies the IMS LOCKTIME values. You can specify LOCKTIME values in any combination of the following keywords and parameters:

BMP(xx)

Specifies the amount of time that IMS waits before lock requests for BMP regions are timed out. BMP regions include IMS BMP and JBP regions. The value, which represents time in seconds, can range 1 - 32767.

BMPOPT(ABEND | STATUS)

Specifies whether IMS ends a timed-out task abnormally (ABEND) or returns a status code to the application (STATUS).

MSG(yy)

Specifies the amount of time that IMS waits before lock requests for MSG regions are timed out. MSG regions include IMS MPP, JMP, and IFP regions, as well as DRA threads. The value, which represents time in seconds, can range 1 - 32767.
MSGOPT(ABEND | STATUS)
Specifications whether IMS ends a timed-out task abnormally (ABEND) or returns a status code to the application (STATUS).

Updating IMS LOCKTIME values does not affect the lock timeout value in an IRLM. To change the lock timeout value in an IRLM, use the existing MODIFY IRLM command.

Recommendation: Generally, use the same timeout values for both IMS and IRLM. When using two values in IMS, setting the IRLM timeout value to the lower of the two IMS values allows IMS and IRLM to act together. When more than one IMS is identified to the same IRLM, workload conditions might require using different timeout values across IMS systems. In such a case, note the following:
- Using a lower timeout value in IRLM results in lock requests to wait until the time spent for waiting equals the lowest IMS LOCKTIME value.
- Using a higher timeout value in IRLM results in lock requests to wait beyond the IMS time because IRLM does not call IMS until the IRLM timeout value is exceeded.

REPO(Y)
Enables IMS to use the repository.

REPOTYPE(IMSRSC)
The repository type that is to be enabled. REPOTYPE is required with REPO(Y).

During command processing, IMS connects to RM for the repository services to enable IMS to use the repository. If RM is not enabled to use the repository, the UPDATE IMS command results in an error. You must first enable RM to use the repository by issuing the UPDATE RM command.

To disable use of the repository, IMS must be cold started.

When IMS is initialized, repository usage is enabled only if the REPOSITORY=(TYPE=IMSRSC) statement is defined in the REPOSITORY section of the DFSDFxxx PROCLIB member. Therefore, when the UPDATE IMS SET(LCLPARM(REPO(Y) REPOTYPE(IMSRSC)) command is successfully processed, the REPOSITORY=(TYPE=IMSRSC) statement must be added before any IMS restarts because we can disable usage of the repository only across an IMS cold start.

During IMS restart, if the IMS log records indicate that the IMSRC repository was enabled before the restart and the REPOSITORY=(TYPE=IMSRSC) statement is not defined, IMS terminates with a U0168 abend code and X'1C' error code.

For an XRF complex, entering the command on the IMS active system results in the command being processed on the IMS alternate system. Successful completion of the command requires that both the IMS active and alternate systems add the REPOSITORY=(TYPE=IMSRSC) statement in the REPOSITORY section of their respective DFSDFxxx PROCLIB members.
PLEXPARM()

Specifies the values for the global parameters to be modified. The LCLPARM keyword is mutually exclusive with the PLEXPARM keyword in the UPDATE IMS SET() command.

The UPDATE IMS SET(PLEXPARM()) command can be used to modify global status for areas, databases, and transactions that is maintained in an IMSplex. If the command is successful, the values in the RM global PLEXPARM entry along with the values maintained in each IMS system are updated.

For the UPDATE IMS SET(PLEXPARM()) command, all IMS systems in an IMSplex receive the command, but only the command master IMS processes the command. The non-master IMS systems do not process the command that is sent from OM. Instead, the command master IMS coordinates the change across all IMS systems in the IMSplex.

Specify one or more of the following resources:

GSTSAREA

Specifies how area status is maintained in the IMSplex.

- **N**: No global status is maintained for area resources in RM. All global status in RM for area resources is deleted.
- **Y**: Global status is maintained for area resources in RM. Global status is maintained on subsequent UPD AREA SCOPE(ALL) commands or type-1 area commands that include a GLOBAL keyword.

GSTSDB

Specifies how database status is maintained in the IMSplex.

- **N**: No global status is maintained for database resources in RM. All global status in RM for database resources is deleted.
- **Y**: Global status is maintained for database resources in RM. Global status is maintained on subsequent UPD DB SCOPE(ALL) commands or type-1 database commands that include a GLOBAL keyword.

GSTSTRAN

Specifies how transaction status is maintained in the IMSplex.

- **N**: No global status is maintained for transaction resources in RM. All global status in RM for transaction resources is deleted.
- **Y**: Global status is maintained for transaction resources in RM. Global status is maintained on subsequent UPD TRAN SCOPE(ALL) commands.

OPTION()

Specifies options for the UPDATE IMS SET command.

CONTINUE

Indicates that IMS should continue to process a previously entered UPDATE IMS SET command that encountered an error before it completed. The command must be at a point that allows processing to continue, otherwise the command is aborted.

If OPTION(CONTINUE) is specified, no parameters can be passed on the PLEXPARM parameter.

FORCE

OPTION(FORCE) can be used in a DBCTL warm-standby environment when the UPD IMS command fails because the standby did not finish restart processing. If OPTION(FORCE) is specified, the UPD IMS command
can be completed even when an IMS is in restart mode. When OPTION(FORCE) is specified, the IMS in restart mode does not participate and update the UPD IMS values; this option only allows the UPD IMS command to finish at other IMS systems. The DBCTL standby rereads the global entry when it restarts to become the active in order to obtain the current PLEXPARM values. If OPTION(FORCE) is used when a non-DBCTL standby system did not finish restart, the results might not be as expected because the IMS does not run the UPD IMS command. This could lead to errors because of mismatch in the PLEXPARM values.

Usage notes

The UPDATE IMS SET command is a type-2 command that must be issued through the OM API. The command is defined to OM as ROUTE=ALL. OM routes the command to all IMS systems in an IMSplex. This command is not a recoverable command.

The only case in which the command is processed from a log record is on an XRF alternate system, which reads an X'220E' log record of the XRF active system to stay in step with the XRF active. Even in the XRF environment, if a takeover occurs and an IMS restart is required (/ERE or /NRE), the command is not recovered. It requires that the DFSDFxxx PROCLIB member be changed to include a REPOSITORY=(TYPE=IMSRSC) statement in the REPOSITORY section. Otherwise, IMS terminates with a U0168 abend code and X'1C' error code.

In general, when a nonzero return code is received for the UPDATE IMS command, you must enter the UPD IMS SET(PLEXPARM()) OPTION(CONTINUE) command, which tells IMS to either complete the command or to cancel the command and clean up as required. The reason code from the UPD IMS SET(PLEXPARM()) OPTION(CONTINUE) command might indicate the state of the original UPD IMS command. If the command is unable to determine the state of the original UPD IMS command, the reason code indicates that fact. The user can use the QUERY IMS command to find out the state of the global IMSplex parameters.

If an error is encountered during the UPD IMS command processing, another new UPD IMS command cannot be processed until the UPDATE IMS SET(PLEXPARM()) OPTION(CONTINUE) command is issued and completes successfully.

If the error condition that caused the nonzero return code to be received for the UPDATE IMS command is not resolved, the UPDATE IMS SET(PLEXPARM()) OPTION(CONTINUE) command continues to encounter the same error condition. The error condition must be resolved before the command can be cleaned up and another UPDATE IMS command can be entered.

This command is not valid on an RSR tracker, an FDBR system, or an XRF alternate system. However, an FDBR system and an XRF alternate system maintain global PLEXPARM values internally and report their values with a QUERY IMS SHOW (PLEXPARM) command. IMS systems on RST tracker or FDBR systems return a completion code of ICC_NA or 1. The UPD IMS command is allowed to complete at other IMS systems.

The UPD IMS SET command is not allowed if an IMS is in restart. The command fails with a 'B0' return code. The UPD IMS command must be issued after the IMS completed restart processing.
When REPO(Y) is specified, some error conditions result in a DFS3308E, DFS4400E, DFS4457E, or other error message being sent as message output in the command reply. These messages can be used to help diagnose the cause of the error.

Output fields

The following table shows the UPDATE IMS output fields. The columns in the table are as follows:

Short label
Contains the short label generated in the XML output.

Long label
Contains the long label generated in the XML output.

Keyword
Identifies keyword on the command that caused the field to be generated. N/A appears for output fields that are always returned. error appears for output fields that are returned only in case of an error.

Scope
Identifies the scope of the output field.

Meaning
Provides a brief description of the output field.

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC</td>
<td>n/a</td>
<td>n/a</td>
<td>The completion code for the line of output. The completion code is always returned.</td>
</tr>
<tr>
<td>LPARM</td>
<td>LclParmName</td>
<td>LCLPARM</td>
<td>LCL</td>
<td>The name of the local parameter that is being changed. Multiple subparameters of this parameter might be changed depending on what was entered in the command.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>n/a</td>
<td>n/a</td>
<td>The IMS identifier of the IMS that built the output line. The IMS identifier is always returned.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>n/a</td>
<td>LCL</td>
<td>Completion code text returned to provide more information about the completion code. CC text could include a return code from a service. CC text is returned only if the completion code is nonzero.</td>
</tr>
<tr>
<td>PARMNAME</td>
<td>ParmName</td>
<td>PARMNAME</td>
<td>LCL</td>
<td>The name of the global parameter that is being changed. Multiple sub-parameters of this parameter may be changed depending on what was entered in the command.</td>
</tr>
</tbody>
</table>
Table 404. Output fields for the UPDATE IMS command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPOTP</td>
<td>RepositoryType</td>
<td>LCLP, REPO</td>
<td>LCL</td>
<td>The type of the repository.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The return and reason codes that can be returned as a result of the UPDATE IMS command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 405. Return and reason codes for the UPDATE IMS command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The UPDATE IMS command completed successfully.</td>
</tr>
<tr>
<td>X'00000004'</td>
<td>X'00001000'</td>
<td>The UPDATE IMS command was not processed on the IMS system because the IMS system is not the command master. No resource information is returned.</td>
</tr>
<tr>
<td>X'00000004'</td>
<td>X'00001020'</td>
<td>UPD IMS OPTION(CONTINUE) finished cleanup, but state is not known. User must redo or reissue the command.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002004'</td>
<td>Both LCLPARK and PLEXPARM keywords are specified on the UPDATE IMS SET() command. LCLPARK and PLEXPARM are mutually exclusive keywords.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002008'</td>
<td>Neither the PLEXPARM keyword nor the LCLPARM keyword is specified on the UPDATE IMS command. Specify PLEXPARM for global parameters or LCLPARM for local parameters.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002040'</td>
<td>More than one filter value is specified on the UPDATE IMS command.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>No requests were successful.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004000'</td>
<td>The UPDATE IMS command is not processed because IMS restart is not complete.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004004'</td>
<td>No CQS address space.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000400C'</td>
<td>Command is not valid on the XRF alternate.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>Command is not valid on the RSR tracker.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004018'</td>
<td>No resource structure, or resource structure is not available.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000401C'</td>
<td>Command is not valid on the FDBR region.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004100'</td>
<td>The resource structure is full.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004104'</td>
<td>The UPDATE IMS command is not processed because RM is not available.</td>
</tr>
</tbody>
</table>
Table 405. Return and reason codes for the UPDATE IMS command (continued)

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000010'</td>
<td>X'00004108'</td>
<td>The UPDATE IMS command is not processed because SCI is not available.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004124'</td>
<td>The UPDATE IMS command is not processed because a process step is in progress.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004128'</td>
<td>The UPDATE IMS command is not processed because no RM process step is in progress.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004200'</td>
<td>The UPDATE IMS command is not processed because IMS shutdown is in progress.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000420C'</td>
<td>Invalid command for RMENV=NO.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004208'</td>
<td>Error on non-command master. The UPDATE IMS could not complete because of an error on the non master IMS.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004300'</td>
<td>For REPO(Y) or AUTOEXPOR(T(N), the command is rejected because dynamic resource definition (MODBLK=DYN) is not enabled.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004501'</td>
<td>RM is not enabled with the repository.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005000'</td>
<td>The UPDATE IMS command is not processed as the IMODULE GETSTOR storage could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005004'</td>
<td>The UPDATE IMS command processing terminated because a DFSOCMD response buffer could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005100'</td>
<td>The UPDATE IMS command is not processed because of a RM request error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005104'</td>
<td>The UPDATE IMS command is not processed because of a CQS error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005108'</td>
<td>The UPDATE IMS command is not processed because of a SCI request error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'0000510C'</td>
<td>The UPDATE IMS command is not processed as another process is in progress.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005110'</td>
<td>Repository error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005FFF'</td>
<td>The UPDATE IMS command is not processed because of an IMS internal error.</td>
</tr>
</tbody>
</table>

Errors that are unique to the processing of the UPDATE IMS command are returned as completion codes. A completion code is returned for each action against an individual resource.

Table 406. Completion codes for the UPDATE IMS command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The UPDATE IMS command completed successfully.</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Command is not applicable to the IMS.</td>
</tr>
</tbody>
</table>
Table 406. Completion codes for the UPDATE IMS command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>NO FASTPATH INSTALLED</td>
<td>Command is not applicable because Fast Path is not installed.</td>
</tr>
<tr>
<td>B0</td>
<td></td>
<td>IMS restart is not complete. The UPD IMS command could not complete because an IMS did not complete restart. You need to terminate the UPD IMS command with an UPD IMS SET(PLEXPARM()) OPTION(CONTINUE). The UPD IMS SET(PLEXPARM(...)) command must be issued after the IMS finishes restart processing.</td>
</tr>
<tr>
<td>BB</td>
<td></td>
<td>Command is not applicable as RMENV=NO.</td>
</tr>
<tr>
<td>146</td>
<td>INVALID KEYWORD FOR DCCTL</td>
<td>Command is not applicable in a DCCTL system.</td>
</tr>
<tr>
<td>147</td>
<td>FPP64 NOT ENABLED</td>
<td>Command is not applicable because Fast Path 64-bit buffer manager is not enabled.</td>
</tr>
</tbody>
</table>

Examples

The following are examples of the UPDATE IMS command:

Example 1 for UPDATE IMS command

TSO SPOC input:
UPDATE IMS SET(PLEXPARM(GSTSAREA(Y),GSTSDB(Y),GSTSTRAN(N)))

TSO SPOC output:
Response for UPDATE IMS SET(PLEXPARM(GSTSAREA(Y),GSTSDB(Y),GSTSTRAN(N)))
ParmName MbrName CC
PLEXPARM PRODIMS1 0
PLEXPARM PRODIMS2 0
PLEXPARM SYS3 0

Explanation: The UPD IMS command is processed successfully at the three active IMS systems (PRODIMS1, PRODIMS2, and SYS3) in the IMSplex and is updated successfully in RM.

Example 2 for UPDATE IMS command

TSO SPOC input:
UPDATE IMS SET(PLEXPARM(GSTSTRAN(Y)))

TSO SPOC output:
Response for UPDATE IMS SET(PLEXPARM(GSTSTRAN(Y)))
ParmName MbrName CC GSTSTRAN
PLEXNAME PRODIMS1 0 Y
PLEXNAME PRODIMS2 0 Y
PLEXNAME SYS3 0 Y

Explanation: The UPD IMS command is processed successfully at the three active IMS systems (PRODIMS1, PRODIMS2, and SYS3) in the IMSplex and is updated successfully in RM.
Example 3 for UPDATE IMS command

TSO SPOC input:
UPDATE IMS SET(PLEXPARM(GSTSTRAN(N)))

TSO SPOC output:
Response for: UPDATE IMS SET(GSTSTRAN(Y))
MbrName CC GSTSTRAN CCText
SYS3 0 Y
PRODIM1 0 Y
PRODIM2 16 Y IMS TIMED OUT

Example 4 for UPDATE IMS command

TSO SPOC input:
UPDATE IMS SET(LCLPARM(FPBP64STAT(Y)))

TSO SPOC output:
ParmName Lc1ParmName MbrName CC
LCLPARM FPBP64STAT IMS1 0
LCLPARM FPBP64STAT IMS2 0

Explanation: In this example, the UPDATE IMS command turns on FPBP64STAT logging.

Example 5 for UPDATE IMS command

TSO SPOC input:
UPDATE IMS SET(LCLPARM(FPBP64STAT(N)))

TSO SPOC output:
ParmName Lc1ParmName MbrName CC
LCLPARM FPBP64STAT IMS1 0
LCLPARM FPBP64STAT IMS2 0

Explanation: In this example, the UPDATE IMS command turns off FPBP64STAT logging.

Example 6 for UPDATE IMS command

TSO SPOC input:
UPD IMS SET(LCLPARM(LOCKTIME(MSG(40),MSGOPT(ABEND),BMP(30),BMPOPT(STATUS))))

TSO SPOC output:
ParmName Lc1ParmName MbrName CC
LCLPARM LOCKTIME IMS1 0
LCLPARM LOCKTIME IMS2 0

Explanation: In this example, the UPDATE IMS command updates IMS LOCKTIME values.

Example 7 for UPDATE IMS command

TSO SPOC input:
UPD IMS SET(LCLPARM(REPO(Y) REPOTYPE(IMSRC)))
TSO SPOC output:

<table>
<thead>
<tr>
<th>ParmName</th>
<th>LclParmName</th>
<th>RepositoryType</th>
<th>MbrName</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCLPARM</td>
<td>REPO</td>
<td>IMSRSC</td>
<td>IMS1</td>
<td>0</td>
</tr>
<tr>
<td>LCLPARM</td>
<td>REPO</td>
<td>IMSRSC</td>
<td>IMS2</td>
<td>0</td>
</tr>
</tbody>
</table>

OM API input:

CMD(UPD IMS SET(LCLPARM(REPO(Y) REPOTYPE(IMSRSC))))

OM API output:

```xml
<imsout>
<ctl>
<omname>OM1OM </omname>
<omvsn>1.5.0 </omvsn>
<xmlvsn>20 </xmlvsn>
<stotime>2011.190 01:45:07.618879 </stotime>
<statime>2011.190 01:45:07.574341 </statime>
<staseq>C80A9624DC03F148</staseq>
<rqsttkn1>USRT005 10184507</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
</imsout>
```

Explanation: In this example, IMS1 and IMS2 are enabled to use the repository for REPOTYPE=IMSRSC. The user needs to issue the QUERY IMS command to obtain the repository name.

Example 8 for UPDATE IMS command

TSO SPOC input:

UPDATE IMS SET(LCLPARM(AUTOEXPORT(N))

TSO SPOC output:
ParmName LcIParmName MbrName CC
LcIParm AUTOEXPORT IMS1 0
LcIParm AUTOEXPORT IMS2 0

Explanation: In this example, IMS1 and IMS2 have AUTOEXPORT disabled at the next checkpoint.

Related concepts:
- How to interpret CSL request return and reason codes (System Programming APIs)

Related reference:
- Command keywords and their synonyms (Commands)
- DFSDFxxx member of the IMS PROCLIB data set (System Definition)

UPDATE IMSCON commands

Use the UPDATE IMSCON commands to update status or configuration definitions of one or more IMS Connect resources.

The TYPE keyword is a required keyword that specifies the type of IMS Connect resource to update. There is no default TYPE parameter.

The UPDATE IMSCON command is processed by every IMS Connect to which OM routes the command, whether or not OM has designated a particular IMS Connect as the command master.

Subsections:
- “UPDATE IMSCON TYPE(ALIAS) command”
- “UPDATE IMSCON TYPE(CLIENT) command” on page 986
- “UPDATE IMSCON TYPE(CONFIG) command” on page 991
- “UPDATE IMSCON TYPE(CONVERTER) command” on page 998
- “UPDATE IMSCON TYPE(DATASTORE) command” on page 1002
- “UPDATE IMSCON TYPE(IMSPLEX) command” on page 1007
- “UPDATE IMSCON TYPE(ISC) command” on page 1011
- “UPDATE IMSCON TYPE(ISCUSER) command” on page 1017
- “UPDATE IMSCON TYPE(LINK) command” on page 1022
- “UPDATE IMSCON TYPE(MSC) command” on page 1027
- “UPDATE IMSCON TYPE(ODBM) command” on page 1031
- “UPDATE IMSCON TYPE(PORT) command” on page 1035
- “UPDATE IMSCON TYPE(RACFUID) command” on page 1040
- “QUERY IMSCON TYPE(RMTIMSCON) command” on page 1050
- “UPDATE IMSCON TYPE(SENDCLNT) command” on page 1055

Related reference:
- Equivalent IMS Connect WTOR, z/OS, and type-2 commands (Commands)

UPDATE IMSCON TYPE(ALIAS) command

Use the UPDATE IMSCON TYPE(ALIAS) command to set or change the attributes of an IMS alias that is associated with an IMS Open Database Manager (ODBM).
Environment

The UPDATE IMSCON command is applicable only to IMS Connect. To issue this command, the following conditions must be satisfied:

- IMS Connect must be active and configured to communicate with the Common Service Layer (CSL) Structured Call Interface (SCI).
- A type-2 command environment with Structured Call Interface (SCI) and Operations Manager (OM) must be active.

Syntax

```
UPDATE IMSCON TYPE(ALIAS) NAME(alias_name|alias_name*)
```

```
ODBM(odbm_name|odbm_name*)
```

```
START(ROUTE) | STOP(ROUTE)
```

Keywords

The following keywords are valid for the UPDATE IMSCON TYPE(ALIAS) command.

NAME

Specifies the name of the IMS alias. You can specify a single alias name or a list of alias names separated by commas. Wildcards can be used in the names.

ODBM

Specifies the name of the IMS ODBM to be updated. You can specify a single ODBM name or a list of ODBM names separated by commas. Wildcards can be used in the names. This keyword is optional.

START(ROUTE) | STOP(ROUTE)

Mutually exclusive keywords that you use to enable or disable message routing to an IMS ODBM that is associated with the specified IMS alias.

START(ROUTE)

Enables message routing to an IMS ODBM that is associated with the specified IMS alias. The alias represents the IMS data store that the client
wants to send a message to. The START(ROUTE) keyword sets the specified IMS alias to active so that IMS Connect can route to that alias.

Whereas the UPDATE IMSCON TYPE(ODBM) command starts communication between the IMS Connect and an IMS ODBM, the UPDATE IMSCON TYPE(ALIAS) command sets the specified IMS alias to active so that IMS Connect can route to that alias.

STOP(ROUTE)
Disables message routing to an IMS ODBM that is associated with the specified IMS alias. The STOP(ROUTE) keyword sets the specified alias to inactive so that IMS Connect cannot route to that alias. You can resume routing by specifying the START(ROUTE) keyword.

If you stop routing messages to a particular alias by using the STOP(ROUTE) keyword, and then issue the UPDATE IMSCON TYPE(ODBM) STOP(COMM) command followed by UPDATE IMSCON TYPE(ODBM) START(COMM), the alias status is lost. In other words, the alias will be active again after the UPDATE IMSCON TYPE(ODBM) commands.

Usage notes

You can issue the UPDATE IMSCON TYPE(ALIAS) command only through the Operations Manager (OM) API.

IMS Connect can process IMS Connect type-2 commands only if the IMSplex from which the commands were issued has a status of active.

Modifications that are made to IMS Connect resources by use of this command are not saved across restarts of IMS Connect.

Equivalent WTOR and z/OS commands

The following table lists IMS Connect WTOR (Write to Operator with Reply) and IMS Connect z/OS commands that perform similar functions as the UPDATE IMSCON TYPE(ALIAS) command.

Notes:
• IMS Connect WTOR commands are replies to the outstanding IMS Connect reply message.
• IMS Connect z/OS commands are issued through the z/OS (MVS) interface by using the IMS Connect jobname.

<table>
<thead>
<tr>
<th>UPDATE IMSCON TYPE(ALIAS) command</th>
<th>Equivalent IMSCON WTOR command</th>
<th>Equivalent IMSCON z/OS command</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE IMSCON TYPE(ALIAS) NAME(alias_name) ODBM(odbm_name) START(COMM)</td>
<td>STARTIA alias_name odbm_name</td>
<td>UPDATE ALIAS NAME(aliasName) ODBM(odbmName) START(ROUTE)</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(ALIAS) NAME(alias_name) ODBM(odbm_name) STOP(COMM)</td>
<td>STOPIA alias_name odbm_name</td>
<td>UPDATE ALIAS NAME(aliasName) ODBM(odbmName) STOP(ROUTE)</td>
</tr>
</tbody>
</table>
Output fields

Short label
Contains the short label that is generated in the XML output.

Long label
Contains the column heading displayed on the TSO SPOC screen.

Keyword
Identifies the keyword on the command that caused the field to be generated. N/A (not applicable) is displayed for output fields that are always returned. error is displayed for output fields that are returned only in the case of an error.

Meaning
Provides a brief description of the output field.

Table 408. Output fields for the UPDATE IMSCON TYPE(ALIAS) command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALIAS</td>
<td>AliasName</td>
<td>N/A</td>
<td>The alias name of an IMS data store defined to the instance of ODBM. The alias name is always returned.</td>
</tr>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code that indicates whether IMS Connect was able to process the command for the specified resource. The completion code is always returned. See Table 410 on page 985.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the nonzero completion code. This field is returned only for an error completion code.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>Identifier of the IMS Connect that built the output line. The identifier is always returned.</td>
</tr>
<tr>
<td>ODBM</td>
<td>ODBMName</td>
<td>ODBM</td>
<td>Name of the ODBM associated with the alias.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The return and reason codes that can be returned as a result of the UPDATE IMSCON TYPE(ALIAS) command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 409. Return and reason codes for the UPDATE IMSCON TYPE(ALIAS) command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The UPDATE IMSCON TYPE(ALIAS) command completed successfully. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003000'</td>
<td>The command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003004'</td>
<td>The command was not successful for any resource. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
</tbody>
</table>
Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

Table 410. Completion codes for the UPDATE IMSCON TYPE(ALIAS) command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The UPDATE IMSCON TYPE(ALIAS) command completed successfully for the resources.</td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>The resource name is unknown to the client that is processing the request. The resource name might have been typed in error or the resource might not be active at this time. If a wildcard was specified in the command, there were no matches for the name. Confirm that the correct spelling of the resource name is specified on the command.</td>
</tr>
</tbody>
</table>

Examples

Example 1 for UPDATE IMSCON TYPE(ALIAS) command

TSO SPOC input:

UPDATE IMSCON TYPE(ALIAS) NAME(IMS1) ODBM(ODBMA) START(ROUTE)

TSO SPOC output:

AliasName MbrName CC ODBName
IMS1 HWS1 0 ODBMA

OM API input:

CMD (UPDATE IMSCON TYPE(ALIAS) NAME(IMS1) ODBM(ODBMA) START(ROUTE))

OM API output:

<imsout>
<ctl>
<omname>OM10M </omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2010.298 15:34:49.371591</statime>
<stotime>2010.298 15:34:49.372641</stotime>
<staseq>C683044FA3C7630</staseq>
<stoseq>C683044FA7E1E70</stoseq>
<rqttnk1>USRT001 10083449</rqttnk1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>HWS1 </master>
<userid>USRT001 </userid>
<verb>UPD </verb>
<kwd>IMSCON </kwd>
<input>UPD IMSCON TYPE(ALIAS) NAME(IMS1) ODBM(ODBMA) START(ROUTE) </input>
</cmd>
</cmdrsphdr>
<hdr slbl="ALIAS" llbl="AliasName" scope="LCL" sort="a" key="1" scroll="no" len="8" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" key="2" scroll="no" len="8" dtype="CHAR" align="left" skipb="no" />
Explanation: Message routing to the IMS Open Database (ODBM), ODBMA, associated with the IMS alias, IMS1, has been enabled.

Related reference:
- STARTIA command (Commands)
- STOPIA command (Commands)

UPDATE IMSCON TYPE(CLIENT) command

Use the UPDATE IMSCON TYPE(CLIENT) command to terminate communication with a client that uses a specific TCP/IP port.

Subsections:
- “Environment”
- “Syntax”
- “Keywords” on page 987
- “Usage notes” on page 987
- “Equivalent WTO and z/OS commands” on page 989
- “Output fields” on page 988
- “Return, reason, and completion codes” on page 988
- “Examples” on page 990

Environment

The UPDATE IMSCON command is applicable only to IMS Connect. To issue this command, the following conditions must be satisfied:
- IMS Connect must be active and configured to communicate with the Common Service Layer (CSL) Structured Call Interface (SCI).
- A type-2 command environment with Structured Call Interface (SCI) and Operations Manager (OM) must be active.

Syntax

```
UPDATE IMSCON TYPE(CLIENT) NAME(client_name)
```
Keywords

The following keywords are valid for the UPDATE IMSCON TYPE(CLIENT) command.

NAME

Specifies the name of the client.

PORT

Specifies the port that the client is using for the TCP/IP connection with the IMS Connect.

This port number must match the port number defined in the PORT, PORTID, or CICSPORT substatement of the TCPIP configuration statement, or the DRDAPORT substatement of the ODACCESS configuration statement in the HWSCFGxx configuration member.

To filter on the local port used by the IMS TM Resource Adapter, specify PORT(LOCAL). You can also use wildcards in the port number.

The SSL port is displayed with the character “S” appended to the end of the port number. To filter on the SSL port, specify the port number either with or without the character “S” appended to the end of the port number.

The port defined for ODBM use is displayed with the character “D” appended to the end of the port number. To filter on the ODBM port, specify the port number either with or without the character “D” appended to the end of the port number.

The port defined for ISC over TCPIP use (CICSPORT) is displayed with the character “C” appended to the end of the port number. To filter on the CICSPORT, specify the port number either with or without the character “C” appended to the end of the port number.

STOP(COMM)

Stops communication with a client that uses a specific TCP/IP port.

Usage notes

You can issue the UPDATE IMSCON TYPE(CLIENT) command only through the Operations Manager (OM) API.

IMS Connect can process IMS Connect type-2 commands only if the IMSplex from which the commands were issued has a status of ACTIVE.

Modifications that are made to IMS Connect resources by use of this command are not saved across restarts of IMS Connect.

Use the UPDATE IMSCON TYPE(CLIENT) command whenever a client is unable to accept response messages being sent to it, or when a client is waiting for a nonexistent response message (for example, when an error occurred that caused a response message to be lost before it was sent back to the client).
Work currently in progress for that client is ended.

Output fields

Short label
Contains the short label that is generated in the XML output.

Long label
Contains the column heading displayed on the TSO SPOC screen.

Keyword
Identifies the keyword on the command that caused the field to be generated. N/A (not applicable) is displayed for output fields that are always returned. error is displayed for output fields that are returned only in the case of an error.

Meaning
Provides a brief description of the output field.

Table 411. Output fields for the `UPDATE IMSCON TYPE(CLIENT)` command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code that indicates whether IMS Connect was able to process the command for the specified resource. The completion code is always returned. See Table 413 on page 989.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the nonzero completion code. This field is returned only for an error completion code.</td>
</tr>
<tr>
<td>CLID</td>
<td>ClientID</td>
<td>N/A</td>
<td>Name of the client. The client name is always returned.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>Identifier of the IMS Connect that built the output line. The identifier is always returned.</td>
</tr>
<tr>
<td>PORT</td>
<td>Port</td>
<td>N/A</td>
<td>The port number on which the client is active. If one of the following characters is appended to the end of the port number, it indicates that the port is dedicated to a particular purpose:</td>
</tr>
</tbody>
</table>

C	Identifies a CICS port.
D	Identifies an ODBM port.
S	Identifies an SSL port.

If "LOCAL" is displayed instead of a port number, the port is a local port that is used by the IMS TM Resource Adapter.

Return, reason, and completion codes

The return and reason codes that can be returned as a result of the `UPDATE IMSCON TYPE(CLIENT)` command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.
Table 412. Return and reason codes for the UPDATE IMSCON TYPE(CLIENT) command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The UPDATE IMSCON TYPE(CLIENT) command completed successfully. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00030000'</td>
<td>The command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00030004'</td>
<td>The command was not successful for any resource. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C000014'</td>
<td>X'00050008'</td>
<td>The command processor failed to obtain storage via BPEGETM.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

Table 413. Completion codes for the UPDATE IMSCON TYPE(CLIENT) command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The UPDATE IMSCON TYPE(CLIENT) command completed successfully for the resources.</td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>The resource name is unknown to the client that is processing the request. The resource name might have been typed in error or the resource might not be active at this time. If a wildcard was specified in the command, there were no matches for the name. Confirm that the correct spelling of the resource name is specified on the command.</td>
</tr>
</tbody>
</table>

Equivalent WTOR and z/OS commands

The following table lists IMS Connect WTOR (Write to Operator with Reply) and IMS Connect z/OS commands that perform similar functions as the UPDATE IMSCON TYPE(CLIENT) command.

Notes:

- IMS Connect WTOR commands are replies to the outstanding IMS Connect reply message.
- IMS Connect z/OS commands are issued through the z/OS (MVS) interface by using the IMS Connect jobname.

Table 414. WTOR and IMS Connect z/OS equivalents for the UPDATE IMSCON TYPE(CLIENT) command

<table>
<thead>
<tr>
<th>UPDATE IMSCON TYPE(CLIENT) command</th>
<th>Equivalent IMS Connect WTOR command</th>
<th>Equivalent IMS Connect z/OS command</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE IMSCON TYPE(CLIENT) NAME(client_name) PORT(portid) STOP(COMM)</td>
<td>STOPCLNT portid clientid</td>
<td>DELETE PORT NAME(portName) CLIENT(clientName)</td>
</tr>
</tbody>
</table>
Examples

Example 1 for UPDATE IMSCON TYPE(CLIENT) command

TSO SPOC input:

UPD IMSCON TYPE(CLIENT) NAME(CLIENT01) PORT(9999) STOP(COMM)

TSO SPOC output:

<table>
<thead>
<tr>
<th>ClientName</th>
<th>Port</th>
<th>MbrName</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIENT01</td>
<td>9999</td>
<td>HWS1</td>
<td>0</td>
</tr>
</tbody>
</table>

OM API input:

CMD(UPD IMSCON TYPE(CLIENT) NAME(CLIENT01) PORT(9999) STOP(COMM))

OM API output:

```xml
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.5.0</omvsn>
<statime>2010.298 02:09:29.445656</statime>
<stotime>2010.298 02:09:29.446600</stotime>
<staseq>C6C77C43814502A2</staseq>
<rqsttkn1>USRT001 10190929</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
</cmd>
</imsout>
```

Explanation: The communication with client CLIENT01 on port 9999 has been terminated.

Related reference:

- [STOPCLNT command (Commands)](Commands)
- [IMS Connect DELETE CLIENT command (Commands)](Commands)
UPDATE IMSCON TYPE(CONFIG) command

Use the UPDATE IMSCON TYPE(CONFIG) command to terminate IMS Connect with the option QUIESCE or FORCE, to open and close the line trace data set, and to enable and disable features such as ODBM registration, password support, RACF, and z/OS Resource Recovery Services (RRS).

Subsections:
- “Environment”
- “Syntax”
- “Keywords”
- “Usage notes” on page 993
- “Equivalent WTOR and z/OS commands” on page 993
- “Output fields” on page 995
- “Return, reason, and completion codes” on page 995
- “Examples” on page 996

Environment

The UPDATE IMSCON command is applicable only to IMS Connect. To issue this command, the following conditions must be satisfied:
- IMS Connect must be active and configured to communicate with the Common Service Layer (CSL) Structured Call Interface (SCI).
- A type-2 command environment with Structured Call Interface (SCI) and Operations Manager (OM) must be active.

Syntax

```
UPDATE IMSCON TYPE(CONFIG)
  SHUTDOWN(COMM)
  OPTION(QUIESCE)
  OPTION(FORCE)
  START(RECORDER)
  STOP(RECORDER)
  SET(OAUTO(ON/OFF))
  PSWDMC(ON/OFF)
  RACF(ON/OFF)
  RRS(ON/OFF)
  UIDCACHE(ON/OFF)
```

Keywords

The following keywords are valid for the UPDATE IMSCON TYPE(CONFIG) command.

SHUTDOWN(COMM)

Specifies that IMS Connect ends all client and data store connections in a controlled manner.
OPTION

Specifies an option for SHUTDOWN.

QUIESCE

Ends all client and data store connections in a controlled manner. If no parameter is specified for the SHUTDOWN keyword, QUIESCE is used by default.

All work that is in progress, or that is queued for processing, is completed before IMS Connect is stopped. No new work is accepted after this command is entered and accepted.

IMS Connect shuts down in the following sequence:
1. All active units of work for clients and browsers are completed.
2. Communication between IMS Connect and IMS is terminated.
3. IMS Connect terminates.

FORCE

Ends all client and data store connections immediately. This keyword forces any IMS applications that are being run for the connected clients to end abnormally.

SET

Specifies the attribute values to be changed.

OAUTO

Specifies whether IMS Connect automatically connects to ODBM when an instance of ODBM is activated in the IMSplex.

ON IMS Connect will connect to all the future ODBMs that enter the IMSplex. This option can be specified in the ODBMATOCONN= parameter of the IMS Connect configuration member.

OFF IMS Connect will not register with any future ODBMs that enter the IMSplex. After turning off the automatic connection of IMS Connect to ODBM, you can connect to ODBM manually by using the UPDATE IMSCON TYPE(ODBM) START(COMM) or equivalent command to open communication with an instance of ODBM.

PSWDMC

Specifies whether IMS Connect support for mixed-case passwords is to be turned on or off, or if it depends on the mixed-case password specification in RACF.

ON Enables IMS Connect support for mixed-case passwords.

OFF Disables IMS Connect support for mixed-case passwords. If mixed-case password support is disabled, IMS Connect converts any lowercase characters in passwords to uppercase characters.

RCF

Depends on the mixed-case password specification in RACF. If it is off, IMS Connect converts any lowercase characters in passwords to uppercase characters.

RACF

Specifies that the RACF flag is to be turned on or off.

ON Enables the RACF user identification and verification.
OFF
- Disables the RACF user identification and verification.

RRS
- Specifies that z/OS Resource Recovery Services (RRS) is to be turned on or off. RRS is required for two-phase-commit support.

 ON Enables communication between IMS Connect and RRS.
 OFF Disables communication between IMS Connect and RRS.

UIDCACHE
- Specifies whether RACF user ID caching is used when RACF authentication is enabled.

 ON Enables RACF user ID caching when RACF authentication is enabled.
 OFF Disables RACF user ID caching when RACF authentication is enabled.

START(RECORDER)
- Starts the line trace data set for IMS Connect. This keyword is mutually exclusive with **STOP(RECORDER)**.

STOP(RECORDER)
- Stops the line trace data set for IMS Connect. This keyword is mutually exclusive with **START(RECORDER)**.

Usage notes

You can issue the UPDATE IMSCON TYPE(CONFIG) command only through the Operations Manager (OM) API.

IMS Connect can process IMS Connect type-2 commands only if the IMSplex from which the commands were issued has a status of **ACTIVE**.

Modifications that are made to IMS Connect resources by use of this command are not saved across restarts of IMS Connect.

Equivalent WTOR and z/OS commands

The following table lists IMS Connect WTOR (Write to Operator with Reply) and IMS Connect z/OS commands that perform similar functions as the UPDATE IMSCON TYPE(CONFIG) command.

Notes:
- IMS Connect WTOR commands are replies to the outstanding IMS Connect reply message.
- IMS Connect z/OS commands are issued through the z/OS (MVS) interface by using the IMS Connect jobname.

<table>
<thead>
<tr>
<th>UPDATE IMSCON TYPE(CONFIG) command</th>
<th>Equivalent IMS Connect WTOR command</th>
<th>Equivalent IMS Connect z/OS command</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHUTDOWN(COMM)</td>
<td>CLOSEHWS</td>
<td>SHUTDOWN MEMBER</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(CONFIG) command</td>
<td>Equivalent IMS Connect WTOR command</td>
<td>Equivalent IMS Connect z/OS command</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(CONFIG) SHUTDOWN(COMM) OPTION(FORCE)</td>
<td>CLOSEHWS FORCE</td>
<td>SHUTDOWN MEMBER OPTION(FORCE)</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(CONFIG) SHUTDOWN(COMM) OPTION(QUIESCE)</td>
<td>CLOSEHWS QUIESCE</td>
<td>SHUTDOWN MEMBER OPTION(QUIESCE)</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(CONFIG) SET(OAUTO(ON))</td>
<td>SETOAUTO YES</td>
<td>UPDATE MEMBER TYPE(IMSCON) SET(OAUTO(ON))</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(CONFIG) SET(OAUTO(OFF))</td>
<td>SETOAUTO NO</td>
<td>UPDATE MEMBER TYPE(IMSCON) SET(OAUTO(OFF))</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(CONFIG) SET(PSWDMC(ON))</td>
<td>SETPWMC ON</td>
<td>UPDATE MEMBER TYPE(IMSCON) SET(PSWDMC(ON))</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(CONFIG) SET(PSWDMC(OFF))</td>
<td>SETPWMC OFF</td>
<td>UPDATE MEMBER TYPE(IMSCON) SET(PSWDMC(OFF))</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(CONFIG) SET(PSWDMC(RCF))</td>
<td>SETPWMC RCF</td>
<td>UPDATE MEMBER TYPE(IMSCON) SET(PSWDMC(RCF))</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(CONFIG) SET(RACF(ON))</td>
<td>SETRACF ON</td>
<td>UPDATE MEMBER TYPE(IMSCON) SET(RACF(ON))</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(CONFIG) SET(RACF(OFF))</td>
<td>SETRACF OFF</td>
<td>UPDATE MEMBER TYPE(IMSCON) SET(RACF(OFF))</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(CONFIG) SET(RRS(ON))</td>
<td>SETRRS ON</td>
<td>UPDATE MEMBER TYPE(IMSCON) SET(RRS(ON))</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(CONFIG) SET(RRS(OFF))</td>
<td>SETRRS OFF</td>
<td>UPDATE MEMBER TYPE(IMSCON) SET(RRS(OFF))</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(CONFIG) SET(UIDCACHE(ON))</td>
<td>SETUIDC ON</td>
<td>UPDATE MEMBER TYPE(IMSCON) SET(UIDCACHE(ON))</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(CONFIG) SET(UIDCACHE(OFF))</td>
<td>SETUIDC OFF</td>
<td>UPDATE MEMBER TYPE(IMSCON) SET(UIDCACHE(OFF))</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(CONFIG) START(RECORDER)</td>
<td>RECORDER OPEN</td>
<td>UPDATE MEMBER TYPE(IMSCON) START(TRACE)</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(CONFIG) STOP(RECORDER)</td>
<td>RECORDER CLOSE</td>
<td>UPDATE MEMBER TYPE(IMSCON) STOP(TRACE)</td>
</tr>
</tbody>
</table>
Output fields

Short label
Contains the short label that is generated in the XML output.

Long label
Contains the column heading displayed on the TSO SPOC screen.

Keyword
Identifies the keyword on the command that caused the field to be generated. N/A (not applicable) appears for output fields that are always returned. error appears for output fields that are returned only in the case of an error.

Meaning
Provides a brief description of the output field.

Table 416. Output fields for the UPDATE IMSCON TYPE(CONFIG) command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code that indicates whether IMS Connect was able to process the command for the specified resource. The completion code is always returned. See Table 418 on page 996</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the nonzero completion code. This field is returned only for an error completion code.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>Identifier of the IMS Connect that built the output line. The identifier is always returned.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The return and reason codes that can be returned as a result of the UPDATE IMSCON TYPE(CONFIG) command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 417. Return and reason codes for the UPDATE IMSCON TYPE(CONFIG) command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The UPDATE IMSCON TYPE(CONFIG) command completed successfully. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003000'</td>
<td>The command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003004'</td>
<td>The command was not successful for any resource. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.
Table 418. Completion codes for the UPDATE IMSCON TYPE(CONFIG) command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The UPDATE IMSCON TYPE(CONFIG) command completed successfully for the resources.</td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>The resource name is unknown to the client that is processing the request. The resource name might have been typed in error or the resource might not be active at this time. If a wildcard was specified in the command, there were no matches for the name. Confirm that the correct spelling of the resource name is specified on the command.</td>
</tr>
</tbody>
</table>

Examples

Example 1 for UPDATE IMSCON TYPE(CONFIG) command

TSO SPOC input:

UPDATE IMSCON TYPE(CONFIG) SET(RRS(ON))

TSO SPOC output:

MbrName CC
HWS1 0

OM API input:

CMD(UPDATE IMSCON TYPE(CONFIG) SET(RRS(ON)))

OM API output:

<imsout>
<ctl>
<ommname>OM1OM </ommname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20 </xmlvsn>
<statime>2010.298 02:12:57.587305</statime>
<stotime>2010.298 02:12:57.590267</stotime>
<stdseq>C6C77DA01269015</stdseq>
<stdseq>C6C77DA01DFB355</stdseq>
<rqtstknl>USRTOO1 10191257</rqtstknl>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>HWS1 </master>
<userid>USRTOO1 </userid>
<verb>UPD </verb>
<kwd>IMSCON </kwd>
<input>UPD IMSCON TYPE(CONFIG) SET(RRS(ON)) </input>
</cmd>
<cmdrsphdr>
<hdr slbl="MBR" 11bl="MbrName" scope="LCL" sort="a" key="I" scroll="no" len="8" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="CC" 11bl="CC" scope="LCL" sort="n" key="0" scroll="yes" len="4" dtype="INT" align="right" skipb="no" />
<hdr slbl="CCTXT" 11bl="CCText" scope="LCL" sort="n" key="0" scroll="yes" len="32" dtype="CHAR" align="left" skipb="yes" />
</cmdrsphdr>
Explanation: RRS has been enabled for IMS Connect, HWS1.

Example 2 for UPDATE IMSCON TYPE(CONFIG) command

TSO SPOC input:
UPDATE IMSCON TYPE(CONFIG) SHUTDOWN(COMM) OPTION(FORCE)

TSO SPOC output:
MbrName CC
HWS1 0

OM API input:
CMD(UPDATE IMSCON TYPE(CONFIG) SHUTDOWN() OPTION(FORCE))

OM API output:
<imsout>
<ctl>
<omname>OM1OM </omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20 </xmlvsn>
<statime>2010.298 02:14:58.410022</statime>
<stotime>2010.298 02:15:14.132658</stotime>
<brk>00000000</brk>
<brst>00000000</brst>
</ctl>
<cmd>
<master>HWS1 </master>
<userid>USRT001 </userid>
<verb>UPD </verb>
<kwd>IMSCON </kwd>
<input>UPD IMSCON TYPE(CONFIG) SHUTDOWN(COMM) OPTION(FORCE) </input>
</cmd>
</cmdrsphdr>
</cmdrspdata>

Explanation: IMS Connect, HWS1, has been shut down.

Example 3 for UPDATE IMSCON TYPE(CONFIG) command

TSO SPOC input:
UPDATE IMSCON TYPE(CONFIG) START(RECORDER)

TSO SPOC output:
OM API input:
CMD(UPDATE IMSCON TYPE(CONFIG) START(RECORDER))

OM API output:

<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2010.298 02:32:07.499478</statime>
<stotime>2010.298 02:32:07.503090</stotime>
<staseq>C6C78152A56D6F7E</staseq>
<stoseq>C6C78152A64F223E</stoseq>
<rqsttkn1>USRRT001 10193207</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>HWS1</master>
<userid>USRRT001</userid>
<verb>UPD</verb>
<kwd>IMSCON</kwd>
<input>UPD IMSCON TYPE(CONFIG) START(RECORDER)</input>
</cmd>
</cmdrsphdr>
</cmdrspdata>
</imsout>

Explanation: The IMS Connect line trace data set has been opened.

Related reference:
- CLOSEHWS command (Commands)
- SETOAUTO command (Commands)
- SETPWMC command (Commands)
- SETRACF command (Commands)
- SETRRS command (Commands)
- RECORDER command (Commands)

UPDATE IMSCON TYPE(CONVERTER) command

Use the UPDATE IMSCON TYPE(CONVERTER) command to refresh one or more IMS Connect XML converters.

Subsections:
- ”Environment” on page 999
- ”Syntax” on page 999
Environment

The UPDATE IMSCON command is applicable only to IMS Connect. To issue this command, the following conditions must be satisfied:

• IMS Connect must be active and configured to communicate with the Common Service Layer (CSL) Structured Call Interface (SCI).
• A type-2 command environment with Structured Call Interface (SCI) and Operations Manager (OM) must be active.

Syntax

```
UPDATE IMSCON TYPE(CONVERTER) NAME(convertor_name*)
```

Keywords

The following keywords are valid for the UPDATE IMSCON TYPE(CONVERTER) command.

NAME

Specifies one or more XML converters to be refreshed. You can specify a single converter name or a list of converter names separated by commas. Wildcards can be used in the names.

OPTION(REFRESH)

Refreshes the specified XML converters.

Usage notes

You can issue the UPDATE IMSCON TYPE(CONVERTER) command only through the Operations Manager (OM) API.

IMS Connect can process IMS Connect type-2 commands only if the IMSplex from which the commands were issued has a status of ACTIVE.

Modifications that are made to IMS Connect resources by use of this command are not saved across restarts of IMS Connect.
Equivalent WTOR and z/OS commands

The following table lists IMS Connect WTOR (Write to Operator with Reply) and IMS Connect z/OS commands that perform similar functions as the UPDATE IMSCON TYPE(CONVERTER) command.

Notes:
- IMS Connect WTOR commands are replies to the outstanding IMS Connect reply message.
- IMS Connect z/OS commands are issued through the z/OS (MVS) interface by using the IMS Connect jobname.

Table 419. WTOR and IMS Connect z/OS equivalents for the UPDATE IMSCON TYPE(CONVERTER) command

<table>
<thead>
<tr>
<th>UPDATE IMSCON TYPE(CONVERTER) command</th>
<th>Equivalent IMS Connect WTOR command</th>
<th>Equivalent IMS Connect z/OS command</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE IMSCON TYPE(CONVERTER) NAME(converter_name) OPTION(REFRESH)</td>
<td>REFRESH CONVERTER NAME(converter_name)</td>
<td>UPDATE CONVERTER NAME(converter_name) OPTION(REFRESH)</td>
</tr>
</tbody>
</table>

Output fields

Short label
Contains the short label that is generated in the XML output.

Long label
Contains the column heading displayed on the TSO SPOC screen.

Keyword
Identifies the keyword on the command that caused the field to be generated. N/A (not applicable) appears for output fields that are always returned. error appears for output fields that are returned only in the case of an error.

Meaning
Provides a brief description of the output field.

Table 420. Output fields for the UPDATE IMSCON TYPE(CONVERTER) command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code that indicates whether IMS Connect was able to process the command for the specified resource. The completion code is always returned. See Table 422 on page 1001</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the nonzero completion code. This field is returned only for an error completion code.</td>
</tr>
<tr>
<td>CVTR</td>
<td>Converter</td>
<td>N/A</td>
<td>Name of the XML converter. The name is always returned.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>Identifier of the IMS Connect that built the output line. The identifier is always returned.</td>
</tr>
</tbody>
</table>
Return, reason, and completion codes

The return and reason codes that can be returned as a result of the UPDATE IMSCON TYPE(CONVERTER) command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 421. Return and reason codes for the UPDATE IMSCON TYPE(CONVERTER) command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The UPDATE IMSCON TYPE(CONVERTER) command completed successfully. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003000'</td>
<td>The command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003004'</td>
<td>The command was not successful for any resource. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C000014'</td>
<td>X'00005008'</td>
<td>The command processor failed to obtain storage via BPEGETM.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

Table 422. Completion codes for the UPDATE IMSCON TYPE(CONVERTER) command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The UPDATE IMSCON TYPE(CONVERTER) command completed successfully for the resources.</td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>The resource name is unknown to the client that is processing the request. The resource name might have been typed in error or the resource might not be active at this time. If a wildcard was specified in the command, there were no matches for the name. Confirm that the correct spelling of the resource name is specified on the command.</td>
</tr>
</tbody>
</table>

Examples

Example 1 for UPDATE IMSCON TYPE(CONVERTER) command

TSO SPOC input:
UPDATE IMSCON TYPE(CONVERTER) NAME(IMSPHBKD) OPTION(REFRESH)

TSO SPOC output:
Converter MbrName CC
IMSPHBKD HWS1 0
OM API input:

CMD(UPDATE IMSCON TYPE(CONVERTER) NAME(IMSPHBKD) OPTION(REFRESH))

OM API output:

<imsout>
 <ctl>
 <omname>OM1OM</omname>
 <omvsn>1.5.0</omvsn>
 <xmlvsn>20</xmlvsn>
 <statime>2010.298 16:32:25.126708</statime>
 <stotime>2010.298 16:32:25.140495</stotime>
 <staseq>C6C83024A4743A82</staseq>
 <stoseq>C6C83024A470F602</stoseq>
 <rqsttkn1>USRT001 10093225</rqsttkn1>
 <rc>0000000</rc>
 <rsn>0000000</rsn>
 </ctl>
 <cmd>
 <master>HWS1</master>
 <userid>USRT001</userid>
 <verb>UPD</verb>
 <kwIMSCON</kw>
 <input>UPD IMSCON TYPE(CONVERTER) NAME(IMSPHBKD) OPTION(REFRESH)</input>
 </cmd>
 <cmdrsphdr>
 <hdr slbl="CVTR" llbl="Converter" scope="LCL" sort="a" key="1" scroll="no" len="8" dtype="CHAR" align="left" skipb="no"/>
 <hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" key="1" scroll="no" len="8" dtype="CHAR" align="left" skipb="no"/>
 <hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0" scroll="yes" len="4" dtype="INT" align="right" skipb="no"/>
 <hdr slbl="CCTXT" llbl="CCText" scope="LCL" sort="n" key="0" scroll="yes" len="32" dtype="CHAR" align="left" skipb="yes"/>
 </cmdrsphdr>
 <cmdrspdata>
 <rsp>CVTR(IMSPHBKD) MBR(HWS1) CC(0)</rsp>
 </cmdrspdata>
</imsout>

Explanation: The XML converter IMSPHBKD was successfully refreshed.

Related reference:

- [REFRESH CONVERTER command (Commands)](#)
- [IMS Connect UPDATE CONVERTER command (Commands)](#)

UPDATE IMSCON TYPE(DATASTORE) command

Use the UPDATE IMSCON TYPE(DATASTORE) command to start or stop communication between IMS Connect and an IMS OTMA data store, or to change data store attributes.

Subsections:

- [“Environment” on page 1003](#)
- [“Syntax” on page 1003](#)
- [“Keywords” on page 1003](#)
- [“Usage notes” on page 1003](#)
- [“Equivalent WTOR and z/OS commands” on page 1004](#)
- [“Output fields” on page 1004](#)
- [“Return and reason codes” on page 1005](#)
Environment

The UPDATE IMSCON command is applicable only to IMS Connect. To issue this command, the following conditions must be satisfied:

- IMS Connect must be active and configured to communicate with the Common Service Layer (CSL) Structured Call Interface (SCI).
- A type-2 command environment with Structured Call Interface (SCI) and Operations Manager (OM) must be active.

Syntax

```
UPDATE IMSCON TYPE(DATASTORE) NAME(datastore_name*)
```

```
START(COMM) | STOP(COMM)
```

Keywords

The following keywords are valid for the UPDATE IMSCON TYPE(DATASTORE) command.

NAME

Specifies one or more data store names to be updated. You can specify a single data store name or a list of data store names that are separated by commas. Wildcards can be used in the names.

START(COMM) | STOP(COMM)

Mutually exclusive keywords that you use to start or stop communication with the data stores specified.

```
START(COMM)
```

Starts communication with the data stores specified.

```
STOP(COMM)
```

Stops communication with the data stores specified.

Usage notes

You can issue the UPDATE IMSCON TYPE(DATASTORE) command only through the Operations Manager (OM) API.

IMS Connect can process IMS Connect type-2 commands only if the IMSplex from which the commands were issued has a status of ACTIVE.

Updates that are made to IMS Connect resources by use of this command are not saved across restarts of IMS Connect, unless the updates are also made to the corresponding configuration statement in the HWSCFGxx member of the IMS PROCLIB data set before the next restart.
Equivalent WTOR and z/OS commands

The following table lists IMS Connect WTOR (Write to Operator with Reply) and IMS Connect z/OS commands that perform similar functions as the UPDATE IMSCON TYPE(DATASTORE) command.

Notes:

- IMS Connect WTOR commands are replies to the outstanding IMS Connect reply message.
- IMS Connect z/OS commands are issued through the z/OS (MVS) interface by using the IMS Connect jobname.

Table 423. WTOR and IMS Connect z/OS equivalents for the UPDATE IMSCON TYPE(DATASTORE) command.

<table>
<thead>
<tr>
<th>UPDATE IMSCON TYPE(DATASTORE) command</th>
<th>Equivalent IMS Connect WTOR command</th>
<th>Equivalent IMS Connect z/OS command</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE IMSCON</td>
<td>OPENDS datastor_id</td>
<td>UPDATE DATASTORE</td>
</tr>
<tr>
<td>TYPE(DATASTORE) NAME(datastore_name)</td>
<td>STARTDS datastor_id</td>
<td>NAME(datastoreName)</td>
</tr>
<tr>
<td>START(COMM)</td>
<td></td>
<td>START(COMM)</td>
</tr>
<tr>
<td>UPDATE IMSCON</td>
<td>STOPDS datastor_id</td>
<td>UPDATE DATASTORE</td>
</tr>
<tr>
<td>TYPE(DATASTORE) NAME(datastore_name)</td>
<td></td>
<td>NAME(datastoreName)</td>
</tr>
<tr>
<td>STOP(COMM)</td>
<td></td>
<td>STOP(COMM)</td>
</tr>
</tbody>
</table>

Output fields

Short label
Contains the short label that is generated in the XML output.

Long label
Contains the column heading displayed on the TSO SPOC screen.

Keyword
Identifies the keyword on the command that caused the field to be generated. N/A (not applicable) appears for output fields that are always returned. error appears for output fields that are returned only in the case of an error.

Meaning
Provides a brief description of the output field.

Table 424. Output fields for the UPDATE IMSCON TYPE(DATASTORE) command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code that indicates whether IMS Connect was able to process the command for the specified resource. The completion code is always returned. See "Completion codes" on page 1005.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the nonzero completion code. This field is returned only for an error completion code.</td>
</tr>
<tr>
<td>DS</td>
<td>DataStore</td>
<td>N/A</td>
<td>The data store name. The data store name is always returned.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>Identifier of the IMS Connect that built the output line. The identifier is always returned.</td>
</tr>
</tbody>
</table>
Return and reason codes

The return and reason codes that can be returned as a result of the UPDATE IMSCON TYPE(DATASTORE) command are standard for all commands that are entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 425. Return and reason codes for the UPDATE IMSCON TYPE(DATASTORE) command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The UPDATE IMSCON TYPE(DATASTORE) command completed successfully. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003000'</td>
<td>The command was successful for some resources but failed for others. The command output contains a line for each resource, which is accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003004'</td>
<td>The command was not successful for any resource. The command output contains a line for each resource, which is accompanied by its completion code.</td>
</tr>
</tbody>
</table>

Completion codes

Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

Table 426. Completion codes for the UPDATE IMSCON TYPE(DATASTORE) command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The UPDATE IMSCON TYPE(DATASTORE) command completed successfully for the resources.</td>
</tr>
<tr>
<td>10</td>
<td>No resources found</td>
<td>The resource name is unknown to the client that is processing the request. The resource name might have been typed in error or the resource might not be active at this time. If a wildcard was specified in the command, there were no matches for the name. Confirm that the correct spelling of the resource name is specified on the command.</td>
</tr>
<tr>
<td>11</td>
<td>Resource is stopped</td>
<td>During STOP(COMM) processing, IMS Connect could not stop a data store because the datastore is already stopped.</td>
</tr>
<tr>
<td>12</td>
<td>Resource is not stopped</td>
<td>During START(COMM) processing, IMS Connect could not start a data store because the data store is not stopped.</td>
</tr>
</tbody>
</table>
Examples

Example 1 for UPDATE IMSCON TYPE(DATASTORE) command

TSO SPOC input:
UPDATE IMSCON TYPE(DATASTORE) NAME(IMS1) START(COMM)

TSO SPOC output:

DataStore MbrName CC
IMS1 HWS1 0

OM API input:
CMD(UPDATE IMSCON TYPE(DATASTORE) NAME(IMS1) START(COMM))

OM API output:

<imsout>
<ctl>
<omname>OM10M</omname> <omvsn>1.5.0</omvsn>
<xmlvsn>00000000</xmlvsn>
<statime>2010.298 02:34:53.534886</statime>
<stotime>2010.298 02:34:53.536353</stotime>
<staseq>C6C781F0FD6A67A5</staseq>
<rqsttkn>USRT001 10193453</rqsttkn>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>HWS1</master>
<uersid>USRT001</usersid> <verb>UPD</verb>
<kwd>IMSCON</kwd>
<input>UPD IMSCON TYPE(DATASTORE) NAME(IMS1) START(COMM)</input>
</cmd>
<cmdrsphdr>
<hdr slbl="DS" llbl="DataStore" scope="LCL" sort="a" key="1" scroll="no" len="8" dtype="CHAR" align="left" skipb="no"/>
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" key="2" scroll="no" len="8" dtype="CHAR" align="left" skipb="no"/>
<hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0" scroll="yes" len="4" dtype="INT" align="right" skipb="no"/>
<hdr slbl="CCTXT" llbl="CCText" scope="LCL" sort="n" key="0" scroll="yes" len="32" dtype="CHAR" align="left" skipb="yes"/>
</cmdrsphdr>
<rsp>DS(IMS1) MBR(HWS1) CC(0)</rsp>
</cmdrspdata>
</imsout>

Explanation: Communication between IMS Connect, HWS1, and the data store IMS1 has been started.

Related reference:

- OPENDS command (Commands)
- STARTDS command (Commands)
- STOPDS command (Commands)
- IMS Connect UPDATE DATASTORE command (Commands)
UPDATE IMSCON TYPE(IMSPLEX) command

Use the UPDATE IMSCON TYPE(IMSPLEX) command to start or stop communication between IMS Connect and the specified IMSplex.

Subsections:
- “Environment”
- “Syntax”
- “Keywords”
- “Usage notes” on page 1008
- “Equivalent WTOR and z/OS commands” on page 1010
- “Output fields” on page 1009
- “Return, reason, and completion codes” on page 1009
- “Examples” on page 1010

Environment

The UPDATE IMSCON command is applicable only to IMS Connect. To issue this command, the following conditions must be satisfied:
- IMS Connect must be active and configured to communicate with the Common Service Layer (CSL) Structured Call Interface (SCI).
- A type-2 command environment with Structured Call Interface (SCI) and Operations Manager (OM) must be active.

Syntax

```
UPDATE IMSCON TYPE(IMSPLEX) NAME(imsplex_name) START(COMM) STOP(COMM)
```

Keywords

The following keywords are valid for the UPDATE IMSCON TYPE(IMSPLEX) command.

`NAME` Specifies the name of the IMSplex. This name must be defined to the IMS Connect through the configuration member HWSCFGxx. In addition, this name must match the TMEMBER that is defined in the IMSplex configuration statement.

`START(COMM) | STOP(COMM)` Mutually exclusive keywords that you use to start or stop communication with the IMSplex.

`START(COMM)` Starts communication with the IMSplex. Use this command to reestablish communication with the IMSplex that is communicating with OM or ODBM if communication between IMS Connect and the IMSplex fails. For example, use this command to restart communication when all activities for the IMSplex in the IMS Connect are terminated, or after an UPDATE IMSCON TYPE(IMSPLEX) STOP(COMM) command terminated communication with the IMSplex.

Type-2 commands require that communication between IMS Connect and the IMSplex of which OM is a member is already established. Therefore,
the UPDATE IMSCON TYPE(IMSPLEX) START(COMM) command can be used only to start communication between IMS Connect and a different IMSplex. To start communication between IMS Connect and the IMSplex that is used for type-2 command support, use either the WTOR command STARTIP or OPENIP, or the z/OS command UPDATE IMSPLEX START(COMM).

STOP (COMM)

Stops communication with the IMSplex. Work currently in progress for the IMSplex is ended and communication with the IMSplex and its threads are terminated. Commands that are queued for the IMS Control Center are unavailable. This option can also be used for any error situation that requires immediate termination of communication with the IMSplex.

Note: If you stop communication with the IMSplex that is used for type-2 commands, you will not be able to issue further commands to IMS Connect through OM because the connection to SCI is terminated. To restart communication with the IMSplex, use either the WTOR command STARTIP or OPENIP, or the z/OS command UPDATE IMSPLEX START(COMM).

Usage notes

You can issue the UPDATE IMSCON TYPE(IMSPLEX) command only through the Operations Manager (OM) API.

IMS Connect can process IMS Connect type-2 commands only if the IMSplex from which the commands were issued has a status of ACTIVE.

When the UPDATE IMSCON TYPE(IMSPLEX) NAME(imsplexName) STOP(COMM) is issued, work currently in progress for the IMSplex ends and communication with the IMSplex and its threads are terminated. Any messages in progress are rejected and an error message is returned to the requester. Commands that are queued for the Control Center are unavailable. STOPIP can also be used for any error situation that requires immediate termination of communication with the IMSplex.

Use the STOP(COMM) keyword to release IMS Control Center commands that are queued for an unavailable IMSplex or for the IMSplex whose queued work belongs to unavailable Control Center clients. The STOP(COMM) keyword can also be used for any error situation that requires immediate termination of communication with the IMSplex.

If IMS Connect supports ISC TCP/IP links and the STOP(COMM) keyword is used, IMS Connect sends a notification to IMS for each ISC link to inform IMS that all of the ISC parallel sessions are terminated on the ISC link.

If IMS Connect supports MSC IMS-to-IMS TCP/IP connections and the STOP(COMM) keyword is used, IMS Connect sends a notification to IMS for each MSC physical link to inform IMS that all of the MSC logical links are terminated on the physical link.

Use the START(COMM) keyword to start communication with the IMSplex at a later time.
Output fields

Short label
Contains the short label that is generated in the XML output.

Long label
Contains the column heading displayed on the TSO SPOC screen.

Keyword
Identifies the keyword on the command that caused the field to be generated. N/A (not applicable) appears for output fields that are always returned. error appears for output fields that are returned only in the case of an error.

Meaning
Provides a brief description of the output field.

Table 427. Output fields for the UPDATE IMSCON TYPE(IMSPLEX) command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code that indicates whether IMS Connect was able to process the command for the specified resource. The completion code is always returned. See Table 429 on page 1010.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the nonzero completion code. This field is returned only for an error completion code.</td>
</tr>
<tr>
<td>IMSPLX</td>
<td>IMSplex</td>
<td>N/A</td>
<td>The IMSplex name. The IMSplex name is always returned.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>Identifier of the IMS Connect that built the output line. The identifier is always returned.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The return and reason codes that can be returned as a result of the UPDATE IMSCON TYPE(IMSPLEX) command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 428. Return and reason codes for the UPDATE IMSCON TYPE(IMSPLEX) command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The UPDATE IMSCON TYPE(IMSPLEX) command completed successfully. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003000'</td>
<td>The command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003004'</td>
<td>The command was not successful for any resource. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
</tbody>
</table>
Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

Table 429. Completion codes for the UPDATE IMSCON TYPE(IMSPLEX) command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The UPDATE IMSCON TYPE(IMSPLEX) command completed successfully for the resources.</td>
</tr>
<tr>
<td>10</td>
<td>No resources found</td>
<td>The resource name is unknown to the client that is processing the request. The resource name might have been typed in error or the resource might not be active at this time. If a wildcard was specified in the command, there were no matches for the name. Confirm that the correct spelling of the resource name is specified on the command.</td>
</tr>
</tbody>
</table>

Equivalent WTOR and z/OS commands

The following table lists IMS Connect WTOR (Write to Operator with Reply) and IMS Connect z/OS commands that perform similar functions as the UPDATE IMSCON TYPE(IMSPLEX) command.

Notes:

- IMS Connect WTOR commands are replies to the outstanding IMS Connect reply message.
- IMS Connect z/OS commands are issued through the z/OS (MVS) interface by using the IMS Connect jobname.

Table 430. WTOR and IMS Connect z/OS equivalents for the UPDATE IMSCON TYPE(IMSPLEX) command.

<table>
<thead>
<tr>
<th>UPDATE IMSCON TYPE(IMSPLEX) command</th>
<th>Equivalent IMS Connect WTOR command</th>
<th>Equivalent IMS Connect z/OS command</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE IMSCON TYPE(IMSPLEX) NAME(imsplex_name) START(COMM)</td>
<td>OPENIP imsplex_id STARTIP imsplex_id</td>
<td>UPDATE IMSPLEX NAME(imsplex_name) START(COMM)</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(IMSPLEX) NAME(imsplex_name) STOP(COMM)</td>
<td>STOPIP imsplex_id</td>
<td>UPDATE IMSPLEX NAME(imsplex_name) STOP(COMM)</td>
</tr>
</tbody>
</table>

Examples

Example 1 for UPDATE IMSCON TYPE(IMSPLEX) command

TSO SPOC input:
UPDATE IMSCON TYPE(IMSPLEX) NAME(PLEX1) STOP(COMM)

TSO SPOC output:
MbrName IMSplex CC
HWS1 PLEX1 0

OM API input:
CMD(UPDATE IMSCON TYPE(IMSPLEX) NAME(PLEX1) STOP(COMM))
OM API output:

```
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2010.298 02:39:37.778072</statime>
<stotime>2010.298 02:39:37.787961</stotime>
<staseq>C6C7830010B98787</staseq>
<stoseq>C6C7830013239087</stoseq>
<rqsttkn1>USRT00110193937</rqsttkn1>
<rc>02000004</rc>
<rtn>00001014</rtn>
<rsnmsg>CSLN055I</rsnmsg>
<rsntxt>At least one request completed with warning(s).</rsntxt>
</ctl>
<cmderr>
<mbr name="HWS1">
<typ>IMSCON</typ>
<rc>00000000</rc>
<rtn>00000000</rtn>
</mbr>
</cmderr>
<cmd>
<master>HWS1</master>
<uuserid>USRT001</uuserid>
<uverb>UPD</uverb>
<kwd>IMSCON</kwd>
<input>UPD IMSCON TYPE(IMSPLEX) NAME(PLEX1) STOP(COMM) </input>
</cmd>
<cmdrsphdr>
<hdr slbl="IMSPLX" llbl="IMSplex" scope="LCL" sort="a" key="1"
scroll="no" len="8" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" key="2"
scroll="no" len="8" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0"
scroll="yes" len="4" dtype="INT" align="right" skipb="no" />
<hdr slbl="CCTXT" llbl="CCText" scope="LCL" sort="n" key="0"
scroll="yes" len="32" dtype="CHAR" align="left" skipb="yes" />
</cmdrsphdr>
<cmdrspdata>
<rsp>IMSPLX(PLEX1 ) MBR(HWS1 ) CC( 0 )</rsp>
</cmdrspdata>
</imsout>

Explanation: Communication between IMS Connect, HWS1, and the IMSpelix, PLEX1, has been stopped.

Related reference:

- OPENIP command (Commands)
- STARTIP command (Commands)
- STOPIP command (Commands)
- IMS Connect UPDATE IMSPLEX command (Commands)

**UPDATE IMSCON TYPE(ISC) command**

Use the UPDATE IMSCON TYPE(ISC) command to stop or restart communications on an ISC link.

Subsections:

- "Environment" on page 1012
Environment

The UPDATE IMSCON command is applicable only to IMS Connect. To issue this command, the following conditions must be satisfied:

- IMS Connect must be active and configured to communicate with the Common Service Layer (CSL) Structured Call Interface (SCI).
- A type-2 command environment with Structured Call Interface (SCI) and Operations Manager (OM) must be active.

Syntax

```
UPDATE IMSCON
 TYPE(ISC)
 NAME(isc_stmt_id, isc_stmt_id)*
 START(COMM), STOP(COMM)
```

Keywords

The following keywords are valid for the UPDATE IMSCON TYPE(ISC) command.

**NAME**

Specifies the ID of an ISC statement that defines an ISC link. You can specify a single ISC link ID or a list of ISC link IDs separated by commas. Wildcards can be used in the names.

**START(COMM)**

Starts or restarts the ISC communications on the ISC link after it has been terminated. The status of the ISC link is set to “ACTIVE” after the completion of the command. START(COMM) is mutually exclusive with STOP(COMM).

**STOP(COMM)**

Terminates all communications on an ISC link. The status of the ISC link is set to “NOTACTIVE” after the completion of the command. STOP(COMM) is mutually exclusive with START(COMM).

Usage notes

**Recommendation**: Do not issue the UPDATE IMSCON TYPE(ISC) command if any ISC sessions (ISCUSERs) are active on the ISC link. Any active sessions should be shut down from IMS by using the /QUIESCE or /CLSDST command before
issuing this command. If the sessions are terminated in IMS, but still appear active in IMS Connect, you can issue the UPDATE IMSCON TYPE(ISC) command to clean them up.

You can issue the UPDATE IMSCON TYPE(ISC) command only through the Operations Manager (OM) API.

IMS Connect can process IMS Connect type-2 commands only if the IMSplex from which the commands were issued has a status of ACTIVE.

Modifications that are made to IMS Connect resources by use of this command are not saved across restarts of IMS Connect.

When the UPDATE IMSCON TYPE(ISC) STOP(COMM) command is issued, IMS Connect:

- Stops active parallel sessions and prevents further communication on the specified ISC link
- Informs IMS that communication has stopped on the ISC link
- Changes the status of the ISC link to NOT ACTIVE
- Issues message HWSG4005I

**Equivalent WTO and z/OS commands**

The following table lists IMS Connect WTO (Write to Operator with Reply) and IMS Connect z/OS commands that perform similar functions as the UPDATE IMSCON TYPE(ISC) command.

**Notes:**

- IMS Connect WTO commands are replies to the outstanding IMS Connect reply message.
- IMS Connect z/OS commands are issued through the z/OS (MVS) interface by using the IMS Connect *jobname*.

<table>
<thead>
<tr>
<th>UPDATE IMSCON TYPE(ISC) command</th>
<th>Equivalent IMS Connect WTO command</th>
<th>Equivalent IMS Connect z/OS command</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE IMSCON TYPE(ISC) NAME(isc_stmt_id) START(COMM)</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(ISC) NAME(isc_stmt_id) STOP(COMM)</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

**Output fields**

**Short label**
Contains the short label that is generated in the XML output.

**Long label**
Contains the column heading displayed on the TSO SPOC screen.

**Keyword**
Identifies the keyword on the command that caused the field to be generated. N/A (not applicable) appears for output fields that are always returned. *error* appears for output fields that are returned only in the case of an error.
Meaning

Provides a brief description of the output field.

Table 432. Output fields for the UPDATE IMSCON TYPE(ISC) command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code that indicates whether IMS Connect was able to process the command for the specified resource. The completion code is always returned. See Table 434 on page 1015.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the nonzero completion code. This field is returned only for an error completion code.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>Identifier of the IMS Connect that built the output line. The identifier is always returned.</td>
</tr>
<tr>
<td>ISC</td>
<td>ISCName</td>
<td>N/A</td>
<td>The name of the ISC link, as it is defined on the ID keyword of the ISC statement in the IMS Connect configuration member. The ISC name is always returned.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The return and reason codes that can be returned as a result of the UPDATE IMSCON TYPE(ISC) command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 433. Return and reason codes for the UPDATE IMSCON TYPE(ISC) command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The UPDATE IMSCON TYPE(ISC) command completed successfully. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C000008'</td>
<td>X'0002004'</td>
<td>An invalid keyword or keyword parameter was specified.</td>
</tr>
<tr>
<td>X'0C000008'</td>
<td>X'0002014'</td>
<td>An invalid character was specified in the NAME() parameter.</td>
</tr>
<tr>
<td>X'0C000008'</td>
<td>X'0002018'</td>
<td>The NAME keyword was not specified, but is a required keyword for the UPDATE IMSCON TYPE(ISC) command.</td>
</tr>
<tr>
<td>X'0C000008'</td>
<td>X'0002020'</td>
<td>Neither the STOP keyword nor the START keyword was specified. One of these must be specified.</td>
</tr>
<tr>
<td>X'0C000008'</td>
<td>X'0002044'</td>
<td>The STOP and START keywords were both specified in the command. Only one of these may be specified.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'0003000'</td>
<td>The command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
</tbody>
</table>
Table 433. Return and reason codes for the UPDATE IMSCON TYPE(ISC) command (continued)

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0C00000C'</td>
<td>X'00003004'</td>
<td>The command was not successful for any resource. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C000014'</td>
<td>X'00005000'</td>
<td>The command processor failed to obtain storage via BPECBGET.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

Table 434. Completion codes for the UPDATE IMSCON TYPE(ISC) command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The UPDATE IMSCON TYPE(ISC) command completed successfully for the resource.</td>
</tr>
<tr>
<td>8</td>
<td>Command processing error</td>
<td>The command could not start the ISC link because the ISC open/close controller is not active. This error is possible during early IMS Connect initialization or late in IMS Connect termination.</td>
</tr>
<tr>
<td>9</td>
<td>Datastore table create failed</td>
<td>During START(COMM) processing, IMS Connect could not create a datastore table (DST) control block. Refer to the HWSD0212E message that is included in the command reply message for more information.</td>
</tr>
<tr>
<td>A</td>
<td>TRWB creation failed</td>
<td>The command attempted to create a TWU control block for the scheduler controller thread, the transmit thread, or the receive thread for the ISC link, but the BPECBGET request failed. Refer to the HWSD0212E or HWSD0222W message that is included in the command reply message for more information.</td>
</tr>
<tr>
<td>B</td>
<td>Datastore table enqueue failed</td>
<td>During START(COMM) processing, IMS Connect attempted to enqueue a DST control block to the active queue for the ISC link, but the request failed. Refer to the HWSD0212E message that is included in the command reply message for more information.</td>
</tr>
<tr>
<td>C</td>
<td>Create scheduler thread failed</td>
<td>During START(COMM) processing, IMS Connect attempted to create the scheduler controller thread for the ISC link, but the BPETHDCR request failed. Refer to the HWSD0212E message that is included in the command reply message for more information.</td>
</tr>
<tr>
<td>D</td>
<td>Datastore is in shutdown</td>
<td>IMS Connect could not start the ISC link because the ISC link was shutting down. Refer to the HWSD0222W message that is included in the command reply message for more information.</td>
</tr>
<tr>
<td>E</td>
<td>Datastore block create failed</td>
<td>During START(COMM) processing, IMS Connect could not start the ISC link because an attempt to create a DSB control block for either the transmit or receive thread for the ISC link failed. Refer to the HWSD0222W message that is included in the command reply message for more information.</td>
</tr>
</tbody>
</table>
Table 434. Completion codes for the UPDATE IMSCON TYPE(ISC) command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>Create xmit/recv thread failed</td>
<td>During START(COMM) processing, IMS Connect attempted to create either the transmit or receive thread for the ISC link, but the BPETHDCR request failed. Refer to the HWSD0222W message that is included in the command reply message for more information.</td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>The resource name is unknown to the client that is processing the request. The resource name might have been typed in error or the resource might not be active at this time. If a wildcard was specified in the command, there were no matches for the name. Confirm that the correct spelling of the resource name is specified on the command.</td>
</tr>
<tr>
<td>11</td>
<td>Resource is stopped</td>
<td>During STOP(COMM) processing, IMS Connect could not stop an ISC link because the link is already stopped.</td>
</tr>
<tr>
<td>12</td>
<td>Resource is not stopped</td>
<td>During START(COMM) processing, IMS Connect could not start an ISC link because the link is not stopped.</td>
</tr>
<tr>
<td>1A</td>
<td>BPEGETM error</td>
<td>During START(COMM) processing, IMS Connect failed to obtain storage from the BPEGETM service. Refer to the HWSG4230E message that is included in the command reply message for more information.</td>
</tr>
<tr>
<td>1B</td>
<td>IMSPLEX resource is stopped</td>
<td>During START(COMM) processing, IMS Connect was unable to start the ISC resource because the associated IMSplex resource is stopped in IMS Connect. The IMSplex can be started with the IMS Connect WTO command STARTIP or the equivalent IMS Connect z/OS MODIFY or IMS type-2 command. Refer to the HWSG4015E message that is included in the command reply message for more information.</td>
</tr>
</tbody>
</table>

Examples

Example 1 for UPDATE IMSCON TYPE(ISC) command

TSO SPOC input:
UPDATE IMSCON TYPE(ISC) NAME(LU6TCP1) STOP(COMM)

TSO SPOC output:
ISConame MbrName CC
LU6TCP1 HWS1 0

OM API input:
CMD(UPDATE IMSCON TYPE(ISC) NAME(LU6TCP1) STOP(COMM))

OM API output:
<imsout>
<ctl>
<omname>OM1OM </omname>
<omvsn>1.6.0</omvsn>
Explanation: The communication between IMS Connect, HWS1, and ISC LU6TCP1 has been stopped.

Related reference:
- Chapter 7, "/QUIESCE command," on page 645
- “QUERY IMSCON TYPE(RMTCICS) command” on page 225
- “QUERY IMSCON TYPE(ISC) command” on page 165
- “QUERY IMSCON TYPE(ISCUSER) command” on page 175

IC statement (System Definition)
RMTCICS statement (System Definition)
“UPDATE IMSCON TYPE(RMTCICS) command” on page 1044

UPDATE IMSCON TYPE(ISCUSER) command

Use the UPDATE IMSCON TYPE(ISCUSER) command to stop an ISC user session (ISCUSER) that is assigned to an ISC link in IMS Connect.

Subsections:
- “Environment” on page 1018
- “Syntax” on page 1018
- “Keywords” on page 1018
- “Usage notes” on page 1018
- “Equivalent WTOR and z/OS commands” on page 1019
- “Output fields” on page 1019
- “Return, reason, and completion codes” on page 1020
- “Example” on page 1021
Environment

The UPDATE IMSCON command is applicable only to IMS Connect. To issue this command, the following conditions must be satisfied:

- IMS Connect must be active and configured to communicate with the Common Service Layer (CSL) Structured Call Interface (SCI).
- A type-2 command environment with Structured Call Interface (SCI) and Operations Manager (OM) must be active.

Syntax

```
UPDATE IMSCON TYPE(ISCUSER) NAME(isc_user_name*, isc_user_name*)
STOP(COMM) ISC(isc_link_id*, isc_link_id*)
```

Keywords

The following keywords are valid for the UPDATE IMSCON TYPE(ISCUSER) command.

**ISC**

Specifies the ISC link ID defined in the ID parameter of the ISC statement. You can specify a single ISC link ID or a list of ISC link IDs separated by commas. Wildcards can be used in the names.

ISC is an optional keyword. If specified, the command applies only to those user sessions that are associated with the specified link ID. If omitted, then the command applies to user sessions that are associated with any link ID.

**NAME**

Specifies the ISC user session name. You can specify a single ISC user name or a list of ISC user names that are separated by commas. Wildcards can be used in the names.

**STOP(COMM)**

Stops communication for the ISC user.

Usage notes

You can issue the UPDATE IMSCON TYPE(ISCUSER) command only through the Operations Manager (OM) API.

IMS Connect can process IMS Connect type-2 commands only if the IMSplex from which the commands were issued has a status of ACTIVE.

Modifications that are made to IMS Connect resources by use of this command are not saved across restarts of IMS Connect.
Use the `UPDATE IMSCON TYPE(ISCUSER) STOP(COMM)` command to clean up IMS Connect resources that are associated with an ISC user session when the user session was already terminated, but the IMS Connect resources that are associated with the user session were not cleaned up correctly.

**Recommendation:** Use the IMS command `/QUIESCE NODE` to terminate ISC user sessions. Use the `UPDATE IMSCON TYPE(ISCUSER)` command only when the IMS Connect resources that are associated with an ISC user session that was terminated failed to clean up correctly.

When the `UPDATE IMSCON TYPE(ISCUSER) STOP(COMM)` command is issued, IMS Connect:
- Stops communication on the ISC user session
- Informs IMS that communication is stopped on the user session
- Deletes the control blocks associated with the user session and frees the associated storage
- Issues message HWSG4010I

To avoid accidentally stopping a user session that uses the same user session name on another ISC link, limit the command processing to a specific ISC link by specifying the ID of the target ISC link on the **ISC** keyword.

If the `UPDATE IMSCON TYPE(ISCUSER)` command is issued against two or more ISC links, or the `isc_link_id` value is omitted, IMS Connect stops all of the ISC user sessions that match the specified ISC user names on each ISC link.

To display information about the ISC user sessions that are assigned to the ISC links that are defined to an IMS Connect instance, use either of the IMS type-2 commands `QUERY IMSCON TYPE(ISCUSER)` or `QUERY IMSCON TYPE(ISC)`.

### Equivalent WTOR and z/OS commands

The `UPDATE IMSCON TYPE(ISCUSER)` command does not have an equivalent IMS Connect WTOR (Write to Operator with Reply) or IMS Connect z/OS command.

### Output fields

- **Short label**
  - Contains the short label that is generated in the XML output.

- **Long label**
  - Contains the column heading that is displayed on the TSO SPOC screen.

- **Keyword**
  - Identifies the keyword on the command that caused the field to be generated. `N/A` (not applicable) is displayed for output fields that are always returned. `error` is displayed for output fields that are returned only in the case of an error.

- **Meaning**
  - Provides a brief description of the output field.
Table 435. Output fields for the UPDATE IMSCON TYPE(ISCUSER) command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code that indicates whether IMS Connect was able to process the command for the specified resource. The completion code is always returned. See <a href="#">Table 437 on page 1021</a>.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the nonzero completion code. The CCText field is returned only for an error completion code.</td>
</tr>
<tr>
<td>IUSER</td>
<td>ISCUser</td>
<td>N/A</td>
<td>Specifies the ISC user session that was terminated. The identifier is always returned.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>Identifier of the IMS Connect that built the output line. The identifier is always returned.</td>
</tr>
<tr>
<td>ISC</td>
<td>ISCName</td>
<td>N/A</td>
<td>Identifier of the ISC link that is associated with the user session that was terminated. The identifier, which is defined on the ID parameter of the ISC statement, is always returned.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The return and reason codes that can be returned as a result of the UPDATE IMSCON TYPE(ISCUSER) command are standard for all commands that are entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 436. Return and reason codes for the UPDATE IMSCON TYPE(ISCUSER) command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The UPDATE IMSCON TYPE(ISCUSER) command completed successfully. The command output contains a line for each resource, which is accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C000008'</td>
<td>X'00002004'</td>
<td>An invalid keyword or keyword parameter was specified.</td>
</tr>
<tr>
<td>X'0C000008'</td>
<td>X'00002014'</td>
<td>An invalid character was specified in the NAME() parameter.</td>
</tr>
<tr>
<td>X'0C000008'</td>
<td>X'00002018'</td>
<td>The NAME keyword was not specified, but is a required keyword for the UPDATE IMSCON TYPE(ISCUSER) command.</td>
</tr>
<tr>
<td>X'0C000008'</td>
<td>X'00002020'</td>
<td>The STOP keyword must be specified.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003000'</td>
<td>The command was successful for some resources but failed for others. The command output contains a line for each resource, which is accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003004'</td>
<td>The command was not successful for any resource. The command output contains a line for each resource, which is accompanied by its completion code.</td>
</tr>
</tbody>
</table>
Errors unique to the processing of this command are returned as completion codes.
A completion code is returned for each action against an individual resource.

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The UPDATE IMSCON TYPE(ISCUSER) command completed successfully for the resources.</td>
</tr>
<tr>
<td>8</td>
<td>Command processing error</td>
<td>The ISCUSER resource could not be processed because of an internal processing error. Refer to the command return and reason codes for more details.</td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>The resource name is unknown to the client that is processing the request. The resource name might have been typed in error or the resource might not be active currently. If a wildcard was specified in the command, there were no matches for the name. Confirm that the correct spelling of the resource name is specified on the command.</td>
</tr>
</tbody>
</table>

**Example**

In the following example, the command stops the ISC user session, ISCUSER1, which is associated with the ISC link ISCLINK1.

**TSO SPOC input:**

```
UPDATE IMSCON TYPE(ISCUSER) NAME(ISCUSER1) STOP(COMM)
```

**TSO SPOC output:**

```
ISCUser ISCName MbrName CC
ISCUSER1 ISCLINK1 HWS1 0
```

**OM API input:**

```
CMD(UPDATE IMSCON TYPE(ISCUSER) NAME(ISCUSER1) STOP(COMM))
```

**OM API output:**

```
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.6.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2012.335 17:33:09.520770</statime>
<stotime>2012.335 17:33:09.535112</stotime>
<staseq>CABCA13CBF18231A</staseq>
<stoseq>CABCA13CC29B8D9A</stoseq>
<rqtstktn1>USRT001 10093309</rqtstktn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
```
UPDATE IMSCON TYPE(LINK) command

Use the UPDATE IMSCON TYPE(LINK) command to stop communications on an MSC logical link that is assigned to an MSC physical link in IMS Connect.

Subsections:
- "Environment"
- "Syntax" on page 1023
- "Keywords" on page 1023
- "Usage notes" on page 1023
- "Equivalent WTOI and z/OS commands" on page 1024
- "Output fields" on page 1025
- "Return, reason, and completion codes" on page 1025
- "Examples" on page 1026

Environment

The UPDATE IMSCON command is applicable only to IMS Connect. To issue this command, the following conditions must be satisfied:
- IMS Connect must be active and configured to communicate with the Common Service Layer (CSL) Structured Call Interface (SCI).
- A type-2 command environment with Structured Call Interface (SCI) and Operations Manager (OM) must be active.
Syntax

```
UPDATE IMSCON TYPE(LINK) NAME(logical_link_name*, logical_link_name)

STOP(COMM) MSC(lclplk_id*, lclplk_id)
```

Keywords

The following keywords are valid for the UPDATE IMSCON TYPE(LINK) command.

**MSC**

Specifies the MSC physical link ID defined in the LCLPLKID parameter of the MSC statement. You can specify a single MSC physical link name or a list of MSC physical link names separated by commas. Wildcards can be used in the names.

This is an optional keyword. If specified, the command applies only to those logical links that are associated with the specified physical link ID. If omitted, then the command applies to logical links that are associated with any physical link ID.

**NAME**

Specifies the MSC logical link name. You can specify a single MSC logical link name or a list of MSC logical link name separated by commas. Wildcards can be used in the names.

**STOP (COMM)**

Stops logical link communication for the MSC that is associated with the link.

Usage notes

You can issue the UPDATE IMSCON TYPE(LINK) command only through the Operations Manager (OM) API.

IMS Connect can process IMS Connect type-2 commands only if the IMSplex from which the commands were issued has a status of **ACTIVE**.

Modifications that are made to IMS Connect resources by use of this command are not saved across restarts of IMS Connect.

Use the UPDATE IMSCON TYPE(LINK) command to clean up the resources associated with an MSC logical link when the link has already been terminated, but the IMS Connect resources associated with the link were not cleaned up correctly.
**Recommendation:** Use the IMS command `/PSTOP` to terminate MSC logical links. Use the UPDATE IMSCON TYPE(LINK) command only when the IMS Connect resources associated with an MSC logical link that has already been terminated have failed to clean up correctly.

When the UPDATE IMSCON TYPE(LINK) command is issued, IMS Connect:
- Stops communication on the MSC logical link
- Informs IMS that communication has stopped on the logical link
- Deletes the control blocks associated with the logical link and frees the associated storage
- Issues message HWSF3310I

To avoid accidentally stopping a logical link that uses the same logical link name on another physical link, limit the command processing to a specific physical link by specifying the name of the target physical link as the `lclplk_id` value.

If the UPDATE IMSCON TYPE(LINK) command is issued against two or more physical links, or the `lclplk_id` value is omitted, IMS Connect stops communication on all MSC logical links that match the `logical_link_name` specified on the UPDATE IMSCON TYPE(LINK) command.

To display information about the MSC logical links that are assigned to the MSC physical links that are defined to an IMS Connect instance, use any of the following commands:
- In the IMS type-2 command format, either `QUERY IMSCON TYPE(LINK)` or `QUERY IMSCON TYPE(MSC)`
- In the WTOR command format, `VIEWMSC`
- In the z/OS MODIFY command format, `QUERY MSC`

**Equivalent WTOR and z/OS commands**

The following table lists IMS Connect WTOR (Write to Operator with Reply) and IMS Connect z/OS commands that perform similar functions as the UPDATE IMSCON TYPE(LINK) command.

**Notes:**
- IMS Connect WTOR commands are replies to the outstanding IMS Connect reply message.
- IMS Connect z/OS commands are issued through the z/OS (MVS) interface by using the IMS Connect `jobname`.

<table>
<thead>
<tr>
<th>UPDATE IMSCON TYPE(LINK) command</th>
<th>Equivalent IMS Connect WTOR command</th>
<th>Equivalent IMS Connect z/OS command</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE IMSCON TYPE(LINK) NAME(logical_link_name) STOP(COMM)</td>
<td>STOPLINK logical_link_name</td>
<td>DELETE LINK NAME(linkName)</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(LINK) NAME(logical_link_name) MSC(lclplk_id) STOP(COMM)</td>
<td>STOPLINK logical_link_name lclplk_id</td>
<td>DELETE LINK NAME(linkName) LCLPLKID(lclPlkid)</td>
</tr>
</tbody>
</table>
Output fields

Short label
Contains the short label that is generated in the XML output.

Long label
Contains the column heading displayed on the TSO SPOC screen.

Keyword
Identifies the keyword on the command that caused the field to be generated. N/A (not applicable) appears for output fields that are always returned. error appears for output fields that are returned only in the case of an error.

Meaning
Provides a brief description of the output field.

Table 439. Output fields for the UPDATE IMSCON TYPE(LINK) command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code that indicates whether IMS Connect was able to process the command for the specified resource. The completion code is always returned. See <a href="#">Table 441 on page 1026</a>.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the nonzero completion code. This field is returned only for an error completion code.</td>
</tr>
<tr>
<td>LINK</td>
<td>Link</td>
<td>N/A</td>
<td>Specifies the MSC logical link that was terminated. The identifier is always returned.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>Identifier of the IMS Connect that built the output line. The identifier is always returned.</td>
</tr>
<tr>
<td>MSC</td>
<td>MscName</td>
<td>N/A</td>
<td>Identifier of the MSC physical link associated with the logical link that was terminated. The identifier, which is defined on the LCLPLKID parameter, is always returned.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The return and reason codes that can be returned as a result of the UPDATE IMSCON TYPE(LINK) command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 440. Return and reason codes for the UPDATE IMSCON TYPE(LINK) command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The UPDATE IMSCON TYPE(LINK) command completed successfully. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003000'</td>
<td>The command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
</tbody>
</table>
Table 440. Return and reason codes for the UPDATE IMSCON TYPE(LINK) command (continued)

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0C00000C'</td>
<td>X'00003004'</td>
<td>The command was not successful for any resource. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

Table 441. Completion codes for the UPDATE IMSCON TYPE(LINK) command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The UPDATE IMSCON TYPE(LINK) command completed successfully for the resources.</td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>The resource name is unknown to the client that is processing the request. The resource name might have been typed in error or the resource might not be active at this time. If a wildcard was specified in the command, there were no matches for the name. Confirm that the correct spelling of the resource name is specified on the command.</td>
</tr>
</tbody>
</table>

Examples

Example 1 for UPDATE IMSCON TYPE(LINK) command

TSO SPOC input:
UPDATE IMSCON TYPE(LINK) NAME(MSCLINK1) STOP(COMM)

TSO SPOC output:
Link MscName MbrName CC
MSCLINK1 MSC12 HWS1 0

OM API input:
CMD(UPDATE IMSCON TYPE(LINK) NAME(MSCLINK1) STOP(COMM))

OM API output:
<imsout>
<ctl>
<omname>OM10M </omname>
<omvsn>1.5.0 </omvsn>
<xmlvsn>20 </xmlvsn>
<statime>2010.298 02:42:55.240634 </statime>
<stotime>2010.298 02:42:55.245578 </stotime>
<staseq>C6C783BC615BAEFC </staseq>
<stoseq>C6C783BC6290A27C </stoseq>
<rqsttkn1>USRT001 10194255 </rqsttkn1>
<rc>00000000 </rc>
<rsn>00000000 </rsn>
</ctl>
<cmd>
<master>HWS1 </master>
<userid>USRT001 </userid>
<verb>UPD </verb>
<kwd>IMSCON </kwd>
Explanation: The communication for the MSC, MSC12, associated with the logical link MSCLINK1 has been stopped.

Related reference:

- [STOPLINK command](#)
- [IMS Connect DELETE LINK command](#)
- [MSC statement](#)

**UPDATE IMSCON TYPE(MSC) command**

Use the UPDATE IMSCON TYPE(MSC) command to restart the MSC communications after it has been terminated and to terminate all communications to an MSC physical link, including all associated logical links.

Subsections:
- "Environment"
- "Syntax"
- "Keywords" on page 1028
- "Usage notes" on page 1028
- "Equivalent WTO and z/OS commands" on page 1028
- "Output fields" on page 1029
- "Return, reason, and completion codes" on page 1029
- "Examples" on page 1030

**Environment**

The UPDATE IMSCON command is applicable only to IMS Connect. To issue this command, the following conditions must be satisfied:

- IMS Connect must be active and configured to communicate with the Common Service Layer (CSL) Structured Call Interface (SCI).
- A type-2 command environment with Structured Call Interface (SCI) and Operations Manager (OM) must be active.

**Syntax**
Keywords

The following keywords are valid for the UPDATE IMSCON TYPE(MSC) command.

NAME

Specifies the MSC physical link ID defined in the LCLPLKID parameter of the MSC statement. You can specify a single MSC physical link name or a list of MSC physical link name separated by commas. Wildcards can be used in the names.

START(COMM)

Starts or restarts the MSC communications of the MSC physical link after it has been terminated by an UPDATE IMSCON TYPE(MSC) STOP(COMM) command. The status of the MSC communication for the MSC physical link is set to “ACTIVE” after the completion of the command. START(COMM) is mutually exclusive with STOP(COMM).

STOP(COMM)

Terminates all communications to an MSC physical link, including all its logical links. The status of the MSC communication for the MSC physical link is set to “NOTACTIVE” after the completion of the command. STOP(COMM) is mutually exclusive with START(COMM).

Usage notes

You can issue the UPDATE IMSCON TYPE(MSC) command only through the Operations Manager (OM) API.

IMS Connect can process IMS Connect type-2 commands only if the IMSplex from which the commands were issued has a status of ACTIVE.

When the UPDATE IMSCON TYPE(MSC) STOP(COMM) command is issued, IMS Connect:

- Stops communication on the specified MSC physical link, including communications on all the MSC logical links that are assigned to the physical link
- Informs IMS that communication has stopped on the physical link so that IMS can also terminate the physical link and any logical links that are assigned to the physical link
- Changes the status of the MSC physical link and its assigned logical links to NOT ACTIVE
- For TCP/IP generic resources, clears affinity of a physical link to the IMS system
- Issues message HWSF3305I

Equivalent WTOR and z/OS commands

The following table lists IMS Connect WTOR (Write to Operator with Reply) and IMS Connect z/OS commands that perform similar functions as the UPDATE IMSCON TYPE(MSC) command.
Notes:
- IMS Connect WTOR commands are replies to the outstanding IMS Connect reply message.
- IMS Connect z/OS commands are issued through the z/OS (MVS) interface by using the IMS Connect *jobname*.

Table 442. WTOR and IMS Connect z/OS equivalents for the UPDATE IMSCON TYPE(MSC) command

<table>
<thead>
<tr>
<th>UPDATE IMSCON TYPE(MSC) command</th>
<th>Equivalent IMS Connect WTOR command</th>
<th>Equivalent IMS Connect z/OS command</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE IMSCON TYPE(MSC) NAME(lclPlkid) START(COMM)</td>
<td>STARTMSC lclPlkid</td>
<td>UPDATE MSC NAME(lclPlkid) START(COMM)</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(MSC) NAME(lclPlkid) STOP(COMM)</td>
<td>STOPMSC lclPlkid</td>
<td>UPDATE MSC NAME(lclPlkid) STOP(COMM)</td>
</tr>
</tbody>
</table>

Output fields

Short label
Contains the short label that is generated in the XML output.

Long label
Contains the column heading displayed on the TSO SPOC screen.

Keyword
Identifies the keyword on the command that caused the field to be generated. N/A (not applicable) appears for output fields that are always returned. *error* appears for output fields that are returned only in the case of an error.

Meaning
Provides a brief description of the output field.

Table 443. Output fields for the UPDATE IMSCON TYPE(MSC) command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code that indicates whether IMS Connect was able to process the command for the specified resource. The completion code is always returned. See <a href="#">Table 445 on page 1030</a>.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td><em>error</em></td>
<td>Completion code text that briefly explains the meaning of the nonzero completion code. This field is returned only for an error completion code.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>Identifier of the IMS Connect that built the output line. The identifier is always returned.</td>
</tr>
<tr>
<td>MSC</td>
<td>MscName</td>
<td>N/A</td>
<td>The MSC physical link name. The MSC physical link name is always returned.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The return and reason codes that can be returned as a result of the UPDATE IMSCON TYPE(MSC) command are standard for all commands entered through the OM API.
The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

**Table 444. Return and reason codes for the UPDATE IMSCON TYPE(MSC) command**

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The UPDATE IMSCON TYPE(MSC) command completed successfully. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003000'</td>
<td>The command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003004'</td>
<td>The command was not successful for any resource. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

**Table 445. Completion codes for the UPDATE IMSCON TYPE(MSC) command**

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The UPDATE IMSCON TYPE(MSC) command completed successfully for the resources.</td>
</tr>
<tr>
<td>10</td>
<td>No resources found</td>
<td>The resource name is unknown to the client that is processing the request. The resource name might have been typed in error or the resource might not be active at this time. If a wildcard was specified in the command, there were no matches for the name. Confirm that the correct spelling of the resource name is specified on the command.</td>
</tr>
</tbody>
</table>

**Examples**

**Example 1 for UPDATE IMSCON TYPE(MSC) command**

TSO SPOC input:
UPDATE IMSCON TYPE(MSC) NAME(MSC12) STOP(COMM)

TSO SPOC output:
MscName MbrName CC
MSC12 HWS1 0

OM API input:
CMD(UPDATE IMSCON TYPE(MSC) NAME(MSC12) STOP(COMM))

OM API output:
<imsout><ctl><omname>OM1OM</omname><omvsn>1.5.0</omvsn><xmlvsn>20</xmlvsn>
Explanation: The communication between IMS Connect, HWS1, and MSC MSC12 has been stopped.

Related reference:
- STARTMSC command (Commands)
- STOPMSC command (Commands)
- IMS Connect UPDATE MSC command (Commands)

**UPDATE IMSCON TYPE(ODBM) command**

Use the UPDATE IMSCON TYPE(ODBM) command to start and stop communication between the IMS Connect and an IMS Open Database Manager (ODBM).

Use the UPDATE IMSCON TYPE(ODBM) command to reestablish communication with an ODBM after communication fails between the IMS Connect and the ODBM. For example, use this command to restart communication when all activities for the ODBM in the IMS Connect is terminated.

Subsections:
- “Environment” on page 1032
- “Syntax” on page 1032
- “Keywords” on page 1032
- “Usage notes” on page 1032
- “Equivalent WTO and z/OS commands” on page 1033
- “Output fields” on page 1033
- “Return, reason, and completion codes” on page 1034
- “Examples” on page 1034
Environment

The UPDATE IMSCON command is applicable only to IMS Connect. To issue this command, the following conditions must be satisfied:

- IMS Connect must be active and configured to communicate with the Common Service Layer (CSL) Structured Call Interface (SCI).
- A type-2 command environment with Structured Call Interface (SCI) and Operations Manager (OM) must be active.

Syntax

```
UPDATE IMSCON TYPE(ODBM) NAME(odbm_name*)
```

Keywords

The following keywords are valid for the UPDATE IMSCON TYPE(ODBM) command.

**NAME**

Specifies the names of one or more IMS ODBMs to be updated. You can specify a single ODBM name or a list of ODBM names separated by commas. Wildcards can be used in the names.

**START(COMM) | STOP(COMM)**

Specifies to start or stop communication with IMS ODBM.

**START(COMM)**

Starts communication with IMS ODBM. START(COMM) is mutually exclusive with STOP(COMM).

**STOP(COMM)**

Stops communication with IMS ODBM. STOP(COMM) is mutually exclusive with START(COMM).

Usage notes

You can issue the UPDATE IMSCON TYPE(ODBM) command only through the Operations Manager (OM) API.

IMS Connect can process IMS Connect type-2 commands only if the IMSplex from which the commands were issued has a status of ACTIVE.

Use the UPDATE IMSCON TYPE(ODBM) command for any type of error situation that requires immediate termination of communication with an ODBM. Work currently in progress for an ODBM is ended and communications with that ODBM and its threads are terminated.
Equivalent WTOR and z/OS commands

The following table lists IMS Connect WTOR (Write to Operator with Reply) and IMS Connect z/OS commands that perform similar functions as the UPDATE IMSCON TYPE(ODBM) command.

Notes:
- IMS Connect WTOR commands are replies to the outstanding IMS Connect reply message.
- IMS Connect z/OS commands are issued through the z/OS (MVS) interface by using the IMS Connect jobname.

Table 446. WTOR and IMS Connect z/OS equivalents for the UPDATE IMSCON TYPE(ODBM) command

<table>
<thead>
<tr>
<th>UPDATE IMSCON TYPE(ODBM) command</th>
<th>Equivalent IMS Connect WTOR command</th>
<th>Equivalent IMS Connect z/OS command</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE IMSCON TYPE(ODBM) NAME(odbm_name) START(COMM)</td>
<td>STARTOD odbm_name</td>
<td>UPDATE ODBM NAME(odbmName) START(COMM)</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(ODBM) NAME(odbm_name) STOP(COMM)</td>
<td>STOPOD odbm_name</td>
<td>UPDATE ODBM NAME(odbmName) STOP(COMM)</td>
</tr>
</tbody>
</table>

Output fields

Short label
Contains the short label that is generated in the XML output.

Long label
Contains the column heading displayed on the TSO SPOC screen.

Keyword
Identifies the keyword on the command that caused the field to be generated. N/A (not applicable) appears for output fields that are always returned. error appears for output fields that are returned only in the case of an error.

Meaning
Provides a brief description of the output field.

Table 447. Output fields for the UPDATE IMSCON TYPE(ODBM) command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code that indicates whether IMS Connect was able to process the command for the specified resource. The completion code is always returned. See Table 449 on page 1034.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the nonzero completion code. This field is returned only for an error completion code.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>Identifier of the IMS Connect that built the output line. The identifier is always returned.</td>
</tr>
<tr>
<td>ODBM</td>
<td>ODBMName</td>
<td>N/A</td>
<td>Name of the ODBM. The ODBM name is always returned.</td>
</tr>
</tbody>
</table>
Return, reason, and completion codes

The return and reason codes that can be returned as a result of the UPDATE IMSCON TYPE(ODBM) command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 448. Return and reason codes for the UPDATE IMSCON TYPE(ODBM) command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The UPDATE IMSCON TYPE(ODBM) command completed successfully. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003000'</td>
<td>The command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003004'</td>
<td>The command was not successful for any resource. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

Table 449. Completion codes for the UPDATE IMSCON TYPE(ODBM) command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The UPDATE IMSCON TYPE(ODBM) command completed successfully for the resources.</td>
</tr>
<tr>
<td>10</td>
<td>No resources found</td>
<td>The resource name is unknown to the client that is processing the request. The resource name might have been typed in error or the resource might not be active at this time. If a wildcard was specified in the command, there were no matches for the name. Confirm that the correct spelling of the resource name is specified on the command.</td>
</tr>
</tbody>
</table>

Examples

Example 1 for UPDATE IMSCON TYPE(ODBM) command

TSO SPOC input:

```
UPDATE IMSCON TYPE(ODBM) NAME(ODBMA) START(COMM)
```

TSO SPOC output:

```
ODBMName MbrName CC
ODBMA HWS1 0
```

OM API input:

```
CMD(UPDATE IMSCON TYPE(ODBM) NAME(ODBMA) START(COMM))
```

OM API output:
Explanation: The communication between IMS Connect, HWS1, and the IMS ODBM, ODBMA, has been restarted.

Related reference:

- STARTOD command (Commands)
- STOPOD command (Commands)

**UPDATE IMSCON TYPE(PORT) command**

Use the UPDATE IMSCON TYPE(PORT) command to terminate listening on a TCP/IP port or to reestablish a TCP/IP connection to enable listening on a TCP/IP port.

Subsections:

- “Environment” on page 1036
- “Syntax” on page 1036
- “Keywords” on page 1036
- “Usage notes” on page 1037
- “Equivalent WTOR and z/OS commands” on page 1037
- “Output fields” on page 1037
- “Return, reason, and completion codes” on page 1038
- “Examples” on page 1039
Environment

The UPDATE IMSCON command is applicable only to IMS Connect. To issue this command, the following conditions must be satisfied:

- IMS Connect must be active and configured to communicate with the Common Service Layer (CSL) Structured Call Interface (SCI).
- A type-2 command environment with Structured Call Interface (SCI) and Operations Manager (OM) must be active.

Syntax

```
UPDATE IMSCON TYPE(PORT) NAME(port_name*)
```

Keywords

The following keywords are valid for the UPDATE IMSCON TYPE(PORT) command.

**NAME**

Specifies the names of one or more ports. You can specify a single port name or a list of port names separated by commas. Wildcards can be used in the names. The port name must match a port defined to IMS Connect on one of the configuration statements in the IMS Connect PROCLIB member or by using the CREATE IMSCON TYPE(PORT) command.

To update the local port used by the IMS TM Resource Adapter, specify NAME(LOCAL).

An SSL port is displayed with the character “S” appended to the end of the port number. To update the SSL port, specify the port number either with or without the character “S” appended to the end of the port number.

A DRDA port for ODBM use is displayed with the character “D” appended to the end of the port number. To update the DRDA port, specify the port number either with or without the character “D” appended to the end of the port number.

A port defined as a CICSPORT for receiving messages on an ISC link from a CICS subsystem is displayed with the character “C” appended to the end of the port number. To update a CICSPORT port, specify the port number either with or without the character “C” appended to the end of the port number.

**START(COMM) | STOP(COMM)**

Specifies to start or stop communication on the port.

**START(COMM)**

Starts communication on the port. Use the UPDATE IMSCON TYPE(PORT) START(COMM) command when communication stops between the IMS Connect and a TCP/IP port, but the IMS Connect has not terminated.
**STOP (COMM)**  
Stops communication on the port. Work currently in progress can continue for existing clients. Only the listening for new request messages on the port is terminated immediately. When existing work has completed, the port is no longer active.

**Usage notes**

You can issue the UPDATE IMSCON TYPE(PORT) command only through the Operations Manager (OM) API.

IMS Connect can process IMS Connect type-2 commands only if the IMSplex from which the commands were issued has a status of ACTIVE.

Updates that are made to IMS Connect resources by use of this command are not saved across restarts of IMS Connect, unless the updates are also made to the corresponding configuration statement in the HWSCFGxx member of the IMS PROCLIB data set before the next restart.

**Equivalent WTOR and z/OS commands**

The following table lists IMS Connect WTOR (Write to Operator with Reply) and IMS Connect z/OS commands that perform similar functions as the UPDATE IMSCON TYPE(PORT) command.

**Notes:**
- IMS Connect WTOR commands are replies to the outstanding IMS Connect reply message.
- IMS Connect z/OS commands are issued through the z/OS (MVS) interface by using the IMS Connect jobname.

<table>
<thead>
<tr>
<th>UPDATE IMSCON TYPE(PORT) command</th>
<th>Equivalent IMS Connect WTOR command</th>
<th>Equivalent IMS Connect z/OS command</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE IMSCON TYPE(PORT) NAME(port_name) START(COMM)</td>
<td>OPENPORT port_id</td>
<td>UPDATE PORT NAME(port_name) START(COMM)</td>
</tr>
<tr>
<td></td>
<td>STARTPT port_id</td>
<td></td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(PORT) NAME(port_name) STOP(COMM)</td>
<td>STOPPRT port_id</td>
<td>UPDATE PORT NAME(port_name) STOP(COMM)</td>
</tr>
</tbody>
</table>

**Output fields**

**Short label**
Contains the short label that is generated in the XML output.

**Long label**
Contains the column heading displayed on the TSO SPOC screen.

**Keyword**
Identifies the keyword on the command that caused the field to be generated. N/A (not applicable) appears for output fields that are always returned. error appears for output fields that are returned only in the case of an error.
Meaning

Provides a brief description of the output field.

Table 451. Output fields for the UPDATE IMSCON TYPE(PORT) command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code that indicates whether IMS Connect was able to process the command for the specified resource. The completion code is always returned.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the nonzero completion code. This field is returned only for an error completion code.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>Identifier of the IMS Connect that built the output line. The identifier is always returned.</td>
</tr>
</tbody>
</table>
| PORT        | Port       | N/A     | The port number. The port number is always returned. If one of the following characters is appended to the end of the port number, it indicates that the port is dedicated to a particular purpose:  
- C Identifies a CICS port.  
- D Identifies an ODBM port.  
- S Identifies an SSL port.  
If "LOCAL" is displayed instead of a port number, the port is a local port that is used by the IMS TM Resource Adapter. |

Return, reason, and completion codes

The return and reason codes that can be returned as a result of the UPDATE IMSCON TYPE(PORT) command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 452. Return and reason codes for the UPDATE IMSCON TYPE(PORT) command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The UPDATE IMSCON TYPE(PORT) command completed successfully. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003000'</td>
<td>The command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003004'</td>
<td>The command was not successful for any resource. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
</tbody>
</table>
Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

**Table 453. Completion codes for the UPDATE IMSCON TYPE(PORT) command**

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The UPDATE IMSCON TYPE(PORT) command completed successfully for the resources.</td>
</tr>
<tr>
<td>10</td>
<td>No resources found</td>
<td>The resource name is unknown to the client that is processing the request. The resource name might have been typed in error or the resource might not be active at this time. If a wildcard was specified in the command, there were no matches for the name. Confirm that the correct spelling of the resource name is specified on the command.</td>
</tr>
<tr>
<td>11</td>
<td>Resource is stopped</td>
<td>During STOP(COMM) processing, IMS Connect could not stop a port because the port is already stopped.</td>
</tr>
<tr>
<td>12</td>
<td>Resource is not stopped</td>
<td>During START(COMM) processing, IMS Connect could not start a port because it was already started.</td>
</tr>
</tbody>
</table>

**Examples**

**Example 1 for UPDATE IMSCON TYPE(PORT) command**

TSO SPOC input:

UPDATE IMSCON TYPE(PORT) NAME(9999) START(COMM)

TSO SPOC output:

<table>
<thead>
<tr>
<th>Port</th>
<th>MbrName</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>9999</td>
<td>HWS1</td>
<td>0</td>
</tr>
</tbody>
</table>

OM API input:

CMD(UPDATE IMSCON TYPE(PORT) NAME(9999) START(COMM))

OM API output:

```xml
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2010.298 02:49:44.222509</statime>
<stotime>2010.298 02:49:44.225852</stotime>
<staseq>C6C785426A72DABA</staseq>
<stoseq>C6C785426B43C87A</stoseq>
<rqsttkn1>USRT001 10194944</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>HWS1</master>
<userid>USRT001</userid>
<verb>UPD</verb>
<kwd>IMSCON</kwd>
<input>UPD IMSCON TYPE(PORT) NAME(9999) START(COMM)</input>
</cmd>
<cmdrsphdr>
<hdr s1bl="PORT" l1bl="Port" scope="LCL" sort="a" key="1" scroll="no" len="8" dtype="CHAR" align="left" skipb="no"/>
```
Explanation: IMS Connect, HWS1, is now listening on the TCP/IP port 9999.

Related reference:

- OPENPORT command (Commands)
- STARTPT command (Commands)
- STOPPORT command (Commands)
- IMS Connect UPDATE PORT command (Commands)

**UPDATE IMSCON TYPE(RACFUID) command**

Use the UPDATE IMSCON TYPE(RACFUID) command to refresh one or more RACF user IDs in the user ID cache.

Subsections:

* "Environment"
* "Syntax"
* "Keywords" on page 1041
* "Usage notes" on page 1041
* "Equivalent WTO and z/OS commands" on page 1041
* "Output fields" on page 1041
* "Return, reason, and completion codes" on page 1042
* "Examples" on page 1043

**Environment**

The UPDATE IMSCON command is applicable only to IMS Connect. To issue this command, the following conditions must be satisfied:

- IMS Connect must be active and configured to communicate with the Common Service Layer (CSL) Structured Call Interface (SCI).
- A type-2 command environment with Structured Call Interface (SCI) and Operations Manager (OM) must be active.

**Syntax**

```
UPDATE IMSCON TYPE(RACFUID) NAME(userid) OPTION(REFRESH)
```
Keywords

The following keywords are valid for the UPDATE IMSCON TYPE(RACFUID) command.

**NAME**

Specifies one or more RACF user IDs in the user ID cache to be refreshed. You can specify a single RACF user ID, or a list of RACF user IDs separated by commas. Wildcards cannot be used in the names.

**OPTION(REFRESH)**

Refreshes the specified RACF user IDs.

Usage notes

You can issue the UPDATE IMSCON TYPE(RACFUID) command only through the Operations Manager (OM) API.

IMS Connect can process IMS Connect type-2 commands only if the IMSplex from which the commands were issued has a status of **ACTIVE**.

Modifications that are made to IMS Connect resources by use of this command are not saved across restarts of IMS Connect.

Equivalent WTOR and z/OS commands

The following table lists IMS Connect WTOR (Write to Operator with Reply) and IMS Connect z/OS commands that perform similar functions as the UPDATE IMSCON TYPE(RACFUID) command.

**Notes:**

- IMS Connect WTOR commands are replies to the outstanding IMS Connect reply message.
- IMS Connect z/OS commands are issued through the z/OS (MVS) interface by using the IMS Connect `jobname`.

<table>
<thead>
<tr>
<th>UPDATE IMSCON TYPE(RACFUID) command</th>
<th>Equivalent IMS Connect WTOR command</th>
<th>Equivalent IMS Connect z/OS command</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE IMSCON TYPE(RACFUID) NAME(userid) OPTION(REFRESH)</td>
<td>REFRESH RACFUID NAME(userid)</td>
<td>UPDATE RACFUID NAME(userid) OPTION(REFRESH)</td>
</tr>
</tbody>
</table>

Output fields

**Short label**

Contains the short label that is generated in the XML output.

**Long label**

Contains the column heading displayed on the TSO SPOC screen.

**Keyword**

Identifies the keyword on the command that caused the field to be generated. **N/A** (not applicable) appears for output fields that are always returned. **error** appears for output fields that are returned only in the case of an error.
Meaning

Provides a brief description of the output field.

**Table 455. Output fields for the UPDATE IMSCON TYPE(RACFUID) command**

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code that indicates whether IMS Connect was able to process the command for the specified resource. The completion code is always returned. See Table 457.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the nonzero completion code. This field is returned only for an error completion code.</td>
</tr>
<tr>
<td>UID</td>
<td>UserID</td>
<td>N/A</td>
<td>Name of the RACF user ID. The name is always returned.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>Identifier of the IMS Connect that built the output line. The identifier is always returned.</td>
</tr>
</tbody>
</table>

**Return, reason, and completion codes**

The return and reason codes that can be returned as a result of the UPDATE IMSCON TYPE(RACFUID) command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

**Table 456. Return and reason codes for the UPDATE IMSCON TYPE(RACFUID) command**

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The UPDATE IMSCON TYPE(RACFUID) command completed successfully. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003000'</td>
<td>The command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003004'</td>
<td>The command was not successful for any resource. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C000014'</td>
<td>X'00005008'</td>
<td>The command processor failed to obtain storage via BPEGETM.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

**Table 457. Completion codes for the UPDATE IMSCON TYPE(RACFUID) command**

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The UPDATE IMSCON TYPE(RACFUID) command completed successfully for the resources.</td>
</tr>
</tbody>
</table>
Table 457. Completion codes for the UPDATE IMSCON TYPE(RACFUID)
command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>The resource name is unknown to the client that is processing the request. The resource name might have been typed in error or the resource name might not be active at this time. If a wildcard was specified in the command, there were no matches for the name. Confirm that the correct spelling of the resource name is specified on the command.</td>
</tr>
</tbody>
</table>

Examples

Example 1 for UPDATE IMSCON TYPE(RACFUID) command

TSO SPOC input:
UPDATE IMSCON TYPE(RACFUID) NAME(USRT001) OPTION(REFRESH)

TSO SPOC output:

<table>
<thead>
<tr>
<th>UserID</th>
<th>MbrName</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>USRT001</td>
<td>HWS1</td>
<td>0</td>
</tr>
</tbody>
</table>

OM API input:

CMD ( UPDATE IMSCON TYPE(RACFUID) NAME(USRT001) OPTION(REFRESH) )

OM API output:

```xml
<cmd>
 <master>HWS1</master>
 <userid>USRT001</userid>
 <verb>UPD</verb>
 <kwd>IMSCON</kwd>
 <input>UPD IMSCON TYPE(RACFUID) NAME(USRT001) OPTION(REFRESH) </input>
</cmd>
<cmdrsphdr>
 <hdr slbl="UID" llbl="UserID" scope="LCL" sort="a" key="1" scroll="no"
 len="8" dtype="CHAR" align="left" skipb="no" />
 <hdr slbl="MNR" llbl="MbrName" scope="LCL" sort="a" key="1" scroll="no"
 len="8" dtype="CHAR" align="left" skipb="no" />
 <hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0" scroll="yes"
 len="4" dtype="INT" align="right" skipb="no" />
 <hdr slbl="CCTXT" llbl="CCText" scope="LCL" sort="n" key="0"
 scroll="yes" len="32" dtype="CHAR" align="left" skipb="yes" />
</cmdrsphdr>
```
Explanation: The RACF user ID USRT001 was successfully refreshed.

Related reference:

- REFRESH RACFUID command (Commands)
- IMS Connect UPDATE RACFUID command (Commands)

**UPDATE IMSCON TYPE(RMTCICS) command**

Use the UPDATE IMSCON TYPE(RMTCICS) command to stop or restart communication between an IMS Connect instance and a remote CICS subsystem.

**Recommendation:** Before issuing the UPDATE IMSCON TYPE(RMTCICS) command, confirm that there are no active ISC sessions (ISCUSERs) on the connection. Any active sessions should be shut down from IMS by using the /QUIESCE or /CLSDST command. If the sessions are terminated in IMS but still appear active in IMS Connect, the UPDATE IMSCON TYPE(RMTCICS) command cleans them up.

**Subsections:**
- “Environment”
- “Syntax”
- “Keywords” on page 1045
- “Usage notes” on page 1045
- “Equivalent WTOR and z/OS commands” on page 1046
- “Output fields” on page 1046
- “Return, reason, and completion codes” on page 1047
- “Example of the UPDATE IMSCON TYPE(RMTCICS) command” on page 1049

**Environment**

The UPDATE IMSCON command is applicable only to IMS Connect. To issue this command, the following conditions must be satisfied:

- IMS Connect must be active and configured to communicate with the Common Service Layer (CSL) Structured Call Interface (SCI).
- A type-2 command environment with Structured Call Interface (SCI) and Operations Manager (OM) must be active.

**Syntax**

```
UPDATE IMSCON TYPE(RMTCICS) NAME(rmtcics_name*)
```

```
START(COMM)
STOP(COMM)
```
Keywords

The following keywords are valid for the UPDATE IMSCON TYPE(RMTCICS) command.

NAME

Specifies one or more remote CICS connection names to be updated. You can specify a single remote CICS connection name or a list of remote CICS connection names separated by commas. You can use wildcard characters in the names.

START(COMM) | STOP(COMM)

Mutually exclusive keywords that you use to start or stop communications for the remote CICS connection.

START(COMM)

Starts the named remote CICS connection in IMS Connect. After issuing this command, the TCP/IP connection between IMS Connect and the remote CICS is enabled. However, if an ISC link was also stopped by the UPDATE IMSCON TYPE(ISC) STOP(COMM) command, to fully enable communications for ISC, you also need to issue the UPDATE IMSCON TYPE(ISC) START(COMM) command.

STOP(COMM)

Stops communications on the remote CICS connection.

When the UPDATE IMSCON TYPE(RMTCICS) STOP(COMM) command is issued, IMS Connect:

• Stops all communication with a remote CICS instance on the connection specified in the command.
• Informs IMS that the connection to the remote CICS instance has been stopped so that IMS can shut down any affected ISC parallel sessions.
• Terminates existing socket connections and prevents new socket connections until the UPDATE RMTCICS START(COMM) is issued.
• Changes the status of the connection to STOPPED.
• Issues message HWSV4405I.

If IMS Connect receives a message for a connection in the STOPPED state, IMS Connect returns a NAK response to IMS and issues message HWSG4040W. IMS retains the message at the front of the queue.

Usage notes

You can issue the UPDATE IMSCON TYPE(RMTCICS) command only through the Operations Manager (OM) API.

IMS Connect can process IMS Connect type-2 commands only if the IMSplex from which the commands were issued has a status of ACTIVE.

Modifications that are made to IMS Connect resources by use of this command are not saved across restarts of IMS Connect.

When the UPDATE IMSCON TYPE(RMTCICS) START(COMM) command is issued, IMS Connect resumes communications on the specified connection to a remote CICS instance. IMS Connect changes the status of the connection to NOT ACTIVE until new sockets are opened for communications with the remote instance of CICS.
The UPDATE IMSCON TYPE(RMTCICS) START(COMM) command is required only when communication on a connection with a remote CICS instance have been previously stopped by an UPDATE RMTCICS STOP(COMM) command.

For ISC communications, the UPDATE IMSCON TYPE(RMTCICS) START(COMM) command resumes only TCP/IP communications in IMS Connect, and does not change the stopped status of ISC links. If the ISC links have been stopped by an UPDATE IMSCON TYPE(ISC) STOP(COMM) command, after you issue the UPDATE IMSCON TYPE(RMTCICS) START(COMM) command, you also need to restart the ISC links in IMS Connect by issuing the UPDATE IMSCON TYPE(ISC) START(COMM) command.

**Recommendation:** When restarting ISC communications, to prevent IMS from sending ISC messages to IMS Connect before TCP/IP communications have been restarted, always issue the UPDATE IMSCON TYPE(RMTCICS) START(COMM) command before issuing the UPDATE IMSCON TYPE(ISC) START(COMM).

Use the QUERY IMSCON TYPE(RMTCICS) command to display information about the current connections to a remote CICS instance that are defined to the local IMS Connect instance.

### Equivalent WTOR and z/OS commands

The UPDATE IMSCON TYPE(RMTCICS) command does not have an equivalent WTOR or z/OS MODIFY command.

**Notes:**
- IMS Connect WTOR commands are replies to the outstanding IMS Connect reply message.
- IMS Connect z/OS commands are issued through the z/OS (MVS) interface by using the IMS Connect `jobname`.

<table>
<thead>
<tr>
<th>UPDATE IMSCON TYPE(RMTCICS) command</th>
<th>Equivalent IMS Connect WTOR command</th>
<th>Equivalent IMS Connect z/OS command</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE IMSCON TYPE(RMTCICS) NAME(*) START(COMM)</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(RMTCICS) NAME(rmtcics_name) STOP(COMM)</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

### Output fields

**Short label**
Contains the short label that is generated in the XML output.

**Long label**
Contains the column heading displayed on the TSO SPOC screen.

**Keyword**
Identifies the keyword on the command that caused the field to be generated. N/A (not applicable) appears for output fields that are always returned. error appears for output fields that are returned only in the case of an error.
Meaning

Provides a brief description of the output field.

Table 459. Output fields for the UPDATE IMSCON TYPE(RMTCICS) command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code that indicates whether IMS Connect was able to process the command for the specified resource. The completion code is always returned. See Table 461 on page 1048.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the nonzero completion code. This field is returned only for an error completion code.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>Identifier of the IMS Connect that built the output line. The identifier is always returned.</td>
</tr>
<tr>
<td>RCICS</td>
<td>RmtCICS</td>
<td>N/A</td>
<td>Identifier of the remote CICS connection to be acted upon. The identifier is always returned.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The return and reason codes that can be returned as a result of the UPDATE IMSCON TYPE(RMTCICS) command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 460. Return and reason codes for the UPDATE IMSCON TYPE(RMTCICS) command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The UPDATE IMSCON TYPE(RMTCICS) command completed successfully. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C000008'</td>
<td>X'00002004'</td>
<td>An invalid keyword or keyword parameter was specified.</td>
</tr>
<tr>
<td>X'0C000008'</td>
<td>X'00002014'</td>
<td>An invalid character was specified in the NAME() parameter.</td>
</tr>
<tr>
<td>X'0C000008'</td>
<td>X'00002018'</td>
<td>The NAME keyword was not specified, but is a required keyword for the UPDATE IMSCON TYPE(RMTCICS) command.</td>
</tr>
<tr>
<td>X'0C000008'</td>
<td>X'00002020'</td>
<td>Neither the STOP keyword nor the START keyword was specified. One of these must be specified.</td>
</tr>
<tr>
<td>X'0C000008'</td>
<td>X'00002044'</td>
<td>The STOP and START keywords were both specified in the command. Only one of these may be specified.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003000'</td>
<td>The command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
</tbody>
</table>
Table 460. Return and reason codes for the UPDATE IMSCON TYPE(RMTCICS) command (continued)

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0C00000C'</td>
<td>X'00003004'</td>
<td>The command was not successful for any resource. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C000014'</td>
<td>X'00005000'</td>
<td>The command processor failed to obtain storage via BPECBGET.</td>
</tr>
<tr>
<td>X'0C000014'</td>
<td>X'00005050'</td>
<td>The command processor was unable to stop the RMTCICS connection.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

Table 461. Completion codes for the UPDATE IMSCON TYPE(RMTCICS) command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The UPDATE IMSCON TYPE(RMTCICS) command completed successfully for the resources.</td>
</tr>
<tr>
<td>A</td>
<td>TRWB creation failed</td>
<td>The command attempted to create a TWU block for the RMTCICS connection, but the attempt failed. Refer to message HWSV4415W which is included in the command output.</td>
</tr>
<tr>
<td>C</td>
<td>Create scheduler thread failed</td>
<td>The command attempted to create a BPE thread for the RMTCICS scheduler, but the attempt failed. Refer to message HWSV4415W which is included in the command output.</td>
</tr>
<tr>
<td>10</td>
<td>No Resources Found</td>
<td>The resource name is unknown to the client that is processing the request. The resource name might have been typed in error or the resource might not be active at this time. If a wildcard was specified in the command, there were no matches for the name. Confirm that the correct spelling of the resource name is specified on the command.</td>
</tr>
<tr>
<td>11</td>
<td>Resource is stopped</td>
<td>The command could not stop a RMTCICS connection because it was already stopped.</td>
</tr>
<tr>
<td>12</td>
<td>Resource is not stopped</td>
<td>The command could not start a RMTCICS connection because it was not stopped.</td>
</tr>
<tr>
<td>1A</td>
<td>BPEGETM error</td>
<td>The command attempted to obtain storage needed for the RMTCICS connection, but the BPEGETM attempt failed. Refer to message HWSV4630W, which is included in the command output.</td>
</tr>
<tr>
<td>1E</td>
<td>BPEATTCH failed</td>
<td>The command attempted to attach a TCB for the RMTCICS connection, but the BPEATTCH attempt failed. Refer to message HWSV4415W, which is included in the command output.</td>
</tr>
<tr>
<td>1F</td>
<td>BPX1GAI get ipaddr failed</td>
<td>The command attempted to obtain the IP address of the CICS system, but the BPX1GAI call to TCP/IP failed. Refer to message HWSV4600E, which is included in the command output.</td>
</tr>
</tbody>
</table>
Table 461. Completion codes for the **UPDATE IMSCON TYPE(RMTCICS)** command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>BPX1GAI invalid IPv4/6 struct</td>
<td>The command attempted to obtain the IP address of the CICS system, but the BPX1GAI call to TCP/IP returned an invalid IP address structure that was neither IPv4 or IPv6. Refer to message HWSV4600E, which is included in the command output.</td>
</tr>
<tr>
<td>24</td>
<td>BPX1FAI free structure failed</td>
<td>The command attempted to return storage that was returned by TCP/IP in the BPX1GAI call, but the BPX1FAI call to free the storage failed. Refer to message HWSV4600E, which is included in the command output.</td>
</tr>
</tbody>
</table>

Example of the **UPDATE IMSCON TYPE(RMTCICS)** command

In the following example, the **UPDATE IMSCON TYPE(RMTCICS)** command is used to start the remote CICS connection **CONNECT2**.

**TSO SPOC input:**

```
UPD IMSCON TYPE(RMTCICS) NAME(CICS4) START(COMM)
```

**TSO SPOC output:**

```
RmtCICS MbrName CC
CICS4 HWS1 0
```

**OM API input:**

```
CMD (UPD IMSCON TYPE(RMTCICS) NAME(CICS4) START(COMM))
```

**OM API output:**

```
<imsout>
<ctl>
<omname>OM10M </omname>
<omvsn>1.6.0 </omvsn>
<xmlvsn>20 </xmlvsn>
<stotime>2012.230 23:14:00.007729</stotime>
<staseq>CA08E99671795E1A</staseq>
<stoseq>CA08E99673C31A9A</stoseq>
<rqttknl>USR7001 10161359</rqttknl>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>HWS1 </master>
<userid>USR7001 </userid>
<verb>UPD </verb>
<kwd>IMSCON </kwd>
<input>UPD IMSCON TYPE(RMTCICS) NAME(CICS4) START(COMM) </input>
</cmd>
</cmdrshdr>
```

<table>
<thead>
<tr>
<th>hdr sbl</th>
<th>&quot;RCICS&quot; lbl=&quot;RmtCICS&quot; scope=&quot;LCL&quot; sort=&quot;a&quot; key=&quot;2&quot; scroll=&quot;no&quot; len=&quot;8&quot; dtype=&quot;CHAR&quot; align=&quot;left&quot; skipb=&quot;no&quot;</th>
</tr>
</thead>
<tbody>
<tr>
<td>hdr sbl</td>
<td>&quot;MBR&quot; lbl=&quot;MbrName&quot; scope=&quot;LCL&quot; sort=&quot;a&quot; key=&quot;1&quot; scroll=&quot;no&quot; len=&quot;8&quot; dtype=&quot;CHAR&quot; align=&quot;left&quot; skipb=&quot;no&quot;</td>
</tr>
<tr>
<td>hdr sbl</td>
<td>&quot;CC&quot; lbl=&quot;CC&quot; scope=&quot;LCL&quot; sort=&quot;n&quot; key=&quot;0&quot; scroll=&quot;yes&quot; len=&quot;4&quot; dtype=&quot;INT&quot; align=&quot;right&quot; skipb=&quot;no&quot;</td>
</tr>
<tr>
<td>hdr sbl</td>
<td>&quot;CCTXT&quot; lbl=&quot;CCText&quot; scope=&quot;LCL&quot; sort=&quot;n&quot; key=&quot;0&quot;</td>
</tr>
</tbody>
</table>
UPDATE IMSCON TYPE(RMTIMSCON) command

Use the UPDATE IMSCON TYPE(RMTIMSCON) command to enable communications for the remote IMS Connect connection after it has been stopped, or to stop the communications of the remote IMS Connect connection.

Subsections:
- Environment
- Syntax
- Keywords
- Usage notes on page 1051
- Equivalent WTO and z/OS commands on page 1052
- Output fields on page 1053
- Return, reason, and completion codes on page 1053
- Examples on page 1054

Environment

The UPDATE IMSCON command is applicable only to IMS Connect. To issue this command, the following conditions must be satisfied:
- IMS Connect must be active and configured to communicate with the Common Service Layer (CSL) Structured Call Interface (SCI).
- A type-2 command environment with Structured Call Interface (SCI) and Operations Manager (OM) must be active.

Syntax

```
UPDATE IMSCON TYPE(RMTIMSCON) NAME(rmtimscon_name)
```

Keywords

The following keywords are valid for the UPDATE IMSCON TYPE(RMTIMSCON) command.
NAME
Specifies one or more remote IMS Connect connection names to be updated. You can specify a single remote IMS Connect connection name or a list of remote IMS Connect connection names separated by commas. Wildcards can be used in the names.

START(COMM) | STOP(COMM)
Mutually exclusive keywords that you use to start or stop communications for the remote IMS Connect connection.

START(COMM)
Starts communications for the remote IMS Connect connection. After issuing this command, OTMA communications with the remote IMS Connect are enabled. To enable communications for MSC, you might need to additionally issue the UPDATE IMSCON TYPE(MSC) START(COMM) command in order to complete the MSC physical link to the remote IMS Connect if MSC communications were disabled with the UPDATE IMSCON TYPE(MSC) STOP(COMM) command.

STOP(COMM)
Stops communications for the remote IMS Connect connection. When the UPDATE IMSCON TYPE(RMTIMSCON) STOP(COMM) command is issued, IMS Connect:
• Stops all communication with a remote IMS Connect instance on the connection specified in the command.
• Informs IMS that the connection to the remote IMS Connect instance has been stopped so that IMS can shut down any affected MSC logical links.
• Terminates existing socket connections and prevents new socket connections until the UPDATE RMTIMSCON START(COMM) or an equivalent command is issued.
• Changes the status of the connection to STOPPED.
• Issues message HWST3505I.

After the UPDATE IMSCON TYPE(RMTIMSCON) STOP(COMM) command is issued, if IMS Connect receives a message for the connection in the STOPPED state, IMS Connect returns a NAK response to OTMA and issues message HWST3575W. OTMA retains the message at the front of the queue.

Usage notes
You can issue the UPDATE IMSCON TYPE(RMTIMSCON) command only through the Operations Manager (OM) API.

IMS Connect can process IMS Connect type-2 commands only if the IMSplex from which the commands were issued has a status of ACTIVE.

When the UPDATE IMSCON TYPE(RMTIMSCON) START(COMM) command is issued, IMS Connect resumes communications on the specified connection to a remote IMS Connect instance. IMS Connect changes the status of the connection to NOT ACTIVE until new sockets are opened for communications with the remote instance of IMS Connect.

The UPDATE IMSCON TYPE(RMTIMSCON) START(COMM) command is required only when communications on a connection with a remote IMS Connect
instance have been previously stopped by either a STOPRMT command or an UPDATE RMTIMSCON STOP(COMM) command.

If the specified RMTIMSCON connection is defined with AUTOCONN=Y, when the UPDATE IMSCON TYPE(RMTIMSCON) START(COMM) is issued, IMS Connect automatically creates socket connections to the remote IMS Connect. The number of socket connections IMS Connect opens is determined by the RESVSOC parameter.

OTMA communications can resume as soon as IMS Connect executes the UPDATE IMSCON TYPE(RMTIMSCON) START(COMM) command.

For MSC communications, the UPDATE IMSCON TYPE(RMTIMSCON) START(COMM) command resumes only TCP/IP communications in IMS Connect, and does not change the stopped status of MSC links. If the MSC links have been stopped by an UPDATE IMSCON TYPE(MSC) STOP(COMM) command, a WTOR command STOPMSC, or an IMS Connect z/OS command UPDATE MSC STOP(COMM), after you issue the UPDATE IMSCON TYPE(RMTIMSCON) START(COMM) command, you also need to restart the MSC links in IMS Connect by issuing the UPDATE IMSCON TYPE(MSC) START(COMM) command, the STARTMSC command, or the UPDATE MSC START(COMM) command.

Recommendation: When restarting MSC communications, to prevent IMS from sending MSC messages to IMS Connect before TCP/IP communications have been restarted, always issue the UPDATE IMSCON TYPE(RMTIMSCON) START(COMM) command before issuing the UPDATE IMSCON TYPE(MSC) START(COMM) or an equivalent command.

Use the QUERY IMSCON TYPE(RMTIMSCON) command, the VIEWRMT command, or the QUERY RMTIMSCON command to display information about the current connections to a remote IMS Connect instance that are defined to the local IMS Connect instance.

Equivalent WTOR and z/OS commands

The following table lists IMS Connect WTOR (Write to Operator with Reply) and IMS Connect z/OS commands that perform similar functions as the UPDATE IMSCON TYPE(RMTIMSCON) command.

Notes:
- IMS Connect WTOR commands are replies to the outstanding IMS Connect reply message.
- IMS Connect z/OS commands are issued through the z/OS (MVS) interface by using the IMS Connect jobname.

Table 462. WTOR and IMS Connect z/OS equivalents for the UPDATE IMSCON TYPE(RMTIMSCON) command

<table>
<thead>
<tr>
<th>UPDATE IMSCON TYPE(RMTIMSCON) command</th>
<th>Equivalent IMS Connect WTOR command</th>
<th>Equivalent IMS Connect z/OS command</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE IMSCON TYPE(RMTIMSCON) NAME(rmtimscon_name) START(COMM)</td>
<td>STARTRMT rmtimsconName</td>
<td>UPDATE RMTIMSCON NAME(rmtimsconName) START(COMM)</td>
</tr>
</tbody>
</table>
Table 462. WTOR and IMS Connect z/OS equivalents for the UPDATE IMSCON TYPE(RMTIMSCON) command (continued)

<table>
<thead>
<tr>
<th>UPDATE IMSCON TYPE(RMTIMSCON) command</th>
<th>Equivalent IMS Connect WTOR command</th>
<th>Equivalent IMS Connect z/OS command</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE IMSCON TYPE(RMTIMSCON)</td>
<td>STOPRMT</td>
<td>UPDATE RMTIMSCON</td>
</tr>
<tr>
<td>NAME(rmtimscon_name)</td>
<td>rmtimsconName</td>
<td>NAME(rmtimsconName)</td>
</tr>
<tr>
<td>STOP(COMM)</td>
<td></td>
<td>STOP(COMM)</td>
</tr>
</tbody>
</table>

Output fields

**Short label**
Contains the short label that is generated in the XML output.

**Long label**
Contains the column heading displayed on the TSO SPOC screen.

**Keyword**
Identifies the keyword on the command that caused the field to be generated. N/A (not applicable) appears for output fields that are always returned. error appears for output fields that are returned only in the case of an error.

**Meaning**
Provides a brief description of the output field.

Table 463. Output fields for the UPDATE IMSCON TYPE(RMTIMSCON) command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code that indicates whether IMS Connect was able to process the command for the specified resource. The completion code is always returned. See <a href="#">Table 465 on page 1054</a></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CCTXT</th>
<th>CCText</th>
<th>error</th>
<th>Completion code text that briefly explains the meaning of the nonzero completion code. This field is returned only for an error completion code.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>Identifier of the IMS Connect that built the output line. The identifier is always returned.</td>
</tr>
<tr>
<td>RIC</td>
<td>RmtImsCon</td>
<td>N/A</td>
<td>Identifier of the remote IMS Connect connection to be acted upon. The identifier is always returned.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The return and reason codes that can be returned as a result of the UPDATE IMSCON TYPE(RMTIMSCON) command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.
Table 464. Return and reason codes for the UPDATE IMSCON TYPE(RMTIMSCON) command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The UPDATE IMSCON TYPE(RMTIMSCON) command completed successfully. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003000'</td>
<td>The command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003004'</td>
<td>The command was not successful for any resource. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C000014'</td>
<td>X'00005008'</td>
<td>The command processor failed to obtain storage via BPEGETM.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

Table 465. Completion codes for the UPDATE IMSCON TYPE(RMTIMSCON) command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The UPDATE IMSCON TYPE(RMTIMSCON) command completed successfully for the resources.</td>
</tr>
<tr>
<td>10</td>
<td>No resources found</td>
<td>The resource name is unknown to the client that is processing the request. The resource name might have been typed in error or the resource might not be active at this time. If a wildcard was specified in the command, there were no matches for the name. Confirm that the correct spelling of the resource name is specified on the command.</td>
</tr>
</tbody>
</table>

Examples

Example 1 for UPDATE IMSCON TYPE(RMTIMSCON) command

TSO SPOC input:
UPDATE IMSCON TYPE(RMTIMSCON) NAME(CONNECT2) START(COMM)

TSO SPOC output:
RmtImsCon MbrName CC
CONNECT2 HWS1 0

OM API input:
CMD(UPDATE IMSCON TYPE(RMTIMSCON) NAME(CONNECT2) START(COMM))

OM API output:
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2010.298 02:55:46.185267</statime>
Explanation: The remote IMS Connect connection for CONNECT2 has been started.

Related reference:

- [STARTRMT command (Commands)]
- [STOPRMT command (Commands)]
- [IMS Connect UPDATE RMTIMSCON command (Commands)]

**UPDATE IMSCON TYPE(SENDCLNT) command**

Use the UPDATE IMSCON TYPE(SENDCLNT) command to terminate the send socket clients on a specified connection to either a remote IMS Connect instance or a remote CICS subsystem.

Subsections:
- “Environment”
- “Syntax” on page 1056
- “Keywords” on page 1056
- “Usage notes” on page 1056
- “Equivalent WTOR and z/OS commands” on page 1057
- “Output fields” on page 1057
- “Return, reason, and completion codes” on page 1058
- “Examples” on page 1059

**Environment**

The UPDATE IMSCON command is applicable only to IMS Connect. To issue this command, the following conditions must be satisfied:
• IMS Connect must be active and configured to communicate with the Common Service Layer (CSL) Structured Call Interface (SCI).
• A type-2 command environment with Structured Call Interface (SCI) and Operations Manager (OM) must be active.

Syntax

```
UPDATE IMSCON-TYPE(SENDCLNT) NAME(sendclient_name)
UPDATE IMSCON-TYPE(SENDCLNT) NAME(sendclient_name*)
RMTCICS(rmtcics_name) STOP(COMM)
RMTIMSCON(rmtimscon_name) STOP(COMM)
```

Keywords

The following keywords are valid for the UPDATE IMSCON TYPE(SENDCLNT) command.

**NAME**

Specifies the client ID of the send socket to terminate. You can specify a single send client name or a wildcard name.

**RMTCICS**

Specifies the remote CICS connection that the send client is on. Either the RMTCICS keyword or the RMTIMSCON keyword must be specified.

**RMTIMSCON**

Specifies the remote IMS Connect connection that the send client is on. Either the RMTCICS keyword or the RMTIMSCON keyword must be specified.

**STOP(COMM)**

Terminates the send socket clients for a specified remote IMS Connect connection.

Usage notes

You can issue the UPDATE IMSCON TYPE(SENDCLNT) command only through the Operations Manager (OM) API.

IMS Connect can process IMS Connect type-2 commands only if the IMSplex from which the commands were issued has a status of ACTIVE.

Modifications that are made to IMS Connect resources by use of this command are not saved across restarts of IMS Connect.

Use the UPDATE IMSCON TYPE(SENDCLNT) command to terminate send sockets on a connection to either another IMS Connect instance or a remote CICS subsystem.

To identify the IDs of the send sockets that you need to terminate, use the QUERY IMSCON TYPE(SENDCLNT) type-2 command.

If the connection is to another IMS Connect instance, you can optionally use the following IMS Connect commands to identify send client sockets:

• In the WTOR command format, VIEWRMT
• In the z/OS MODIFY command format, QUERY RMTIMSCON
If the socket connections are used for MSC links, do not use the UPDATE IMSCON TYPE(SENDCLNT) command to terminate the sockets. Issuing the UPDATE IMSCON TYPE(SENDCLNT) command breaks MSC links. Instead, stop MSC links by issuing the IMS command /PSTOP LINK from IMS, which automatically terminates the associated send and receive sockets in IMS Connect.

An alternative method of terminating send sockets that are used for MSC messages is by using the IMS Connect WTOR command STOPLINK or the IMS Connect z/OS modify command DELETE LINK. These commands terminate the send sockets and receive sockets that are used by the MSC link. The IMS type-2 command equivalent is UPDATE IMSCON TYPE(LINK).

If a socket connection is used for OTMA messages and the send socket connection is in RECV state when the UPDATE IMSCON TYPE(SENDCLNT) command is issued, IMS Connect issues a NAK to OTMA and then terminates the send socket connection. OTMA reroutes the message to the dead letter queue, HWS$DLQ.

Do not use the UPDATE IMSCON TYPE(SENDCLNT) command to terminate socket connections that are used for ISC links. The UPDATE IMSCON TYPE(SENDCLNT) command breaks ISC links. Instead, stop ISC links by issuing the IMS command /QUIESCE NODE USER from IMS, which automatically terminates the associated send and receive sockets in IMS Connect.

### Equivalent WTOR and z/OS commands

The following table lists IMS Connect WTOR (Write to Operator with Reply) and IMS Connect z/OS commands that perform similar functions as the UPDATE IMSCON TYPE(SENDCLNT) command.

**Notes:**
- IMS Connect WTOR commands are replies to the outstanding IMS Connect reply message.
- IMS Connect z/OS commands are issued through the z/OS (MVS) interface by using the IMS Connect *jobname*.

#### Table 466. WTOR and MS Connect z/OS equivalents for the UPDATE IMSCON TYPE(SENDCLNT) command

<table>
<thead>
<tr>
<th>UPDATE IMSCON TYPE(SENDCLNT) command</th>
<th>Equivalent IMS Connect WTOR command</th>
<th>Equivalent IMS Connect z/OS command</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE IMSCON TYPE(SENDCLNT) NAME(sendclient_name) RMTIMSCON(rmtimscon_name) STOP(COMM)</td>
<td>STOPSCLN rmtimscon sendclient</td>
<td>DELETE RMTIMSCON NAME(rmtmsconname) SENDCLNT(clientid)</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(SENDCLNT) NAME(sendclient_name) RMTCICS(rmtcics_name) STOP(COMM)</td>
<td>STOPSCLN rmtcics sendclient</td>
<td>No equivalent z/OS command</td>
</tr>
</tbody>
</table>

### Output fields

**Short label**
Contains the short label that is generated in the XML output.
Long label
Contains the column heading that is displayed on the TSO SPOC screen.

Keyword
Identifies the keyword on the command that caused the field to be generated. N/A (not applicable) is displayed for output fields that are always returned. error is displayed for output fields that are returned only in the case of an error.

Meaning
Provides a brief description of the output field.

Table 467. Output fields for the UPDATE IMSCON TYPE(SENDCLNT) command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code that indicates whether IMS Connect was able to process the command for the specified resource. The completion code is always returned. See Table 469 on page 1059</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the nonzero completion code. The CCTXT field is returned only for an error completion code.</td>
</tr>
<tr>
<td>RIC</td>
<td>RmtImmsCon</td>
<td>RMTIMSCON</td>
<td>Identifier of the remote IMS Connect connection to be acted upon.</td>
</tr>
<tr>
<td>RCICS</td>
<td>RmtCICS</td>
<td>RMTCICS</td>
<td>Identifier of the remote CICS connection to be acted upon.</td>
</tr>
<tr>
<td>SCL</td>
<td>SendClnt</td>
<td>N/A</td>
<td>Identifier of the client ID of the send socket to be terminated. The SCL field is always returned.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The return and reason codes that can be returned as a result of the UPDATE IMSCON TYPE(SENDCLNT) command are standard for all commands that are entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 468. Return and reason codes for the UPDATE IMSCON TYPE(SENDCLNT) command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The UPDATE IMSCON TYPE(SENDCLNT) command completed successfully. The command output contains a line for each resource, which is accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C000008'</td>
<td>X'00002004'</td>
<td>An invalid keyword or keyword parameter was specified.</td>
</tr>
<tr>
<td>X'0C000008'</td>
<td>X'00002010'</td>
<td>A generic name was specified in the RMTIMSCON or RMTCICS keyword. Only specific names can be specified.</td>
</tr>
<tr>
<td>X'0C000008'</td>
<td>X'00002014'</td>
<td>An invalid character was specified in the NAME() parameter.</td>
</tr>
</tbody>
</table>
Table 468. Return and reason codes for the UPDATE IMSCON TYPE(SENDCLNT) command (continued)

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0C000008'</td>
<td>X'00002018'</td>
<td>The NAME keyword was not specified, but is a required keyword for the UPDATE IMSCON TYPE(SENDCLNT) command.</td>
</tr>
<tr>
<td>X'0C000008'</td>
<td>X'0000201C'</td>
<td>Neither the RMTIMSCON keyword nor the RMTCICS keyword was specified. One of these keywords is required.</td>
</tr>
<tr>
<td>X'0C000008'</td>
<td>X'00002020'</td>
<td>The STOP keyword must be specified.</td>
</tr>
<tr>
<td>X'0C000008'</td>
<td>X'0000202C'</td>
<td>Both the RMTIMSCON and RMTCICS keywords were specified. Only one of these keywords can be specified.</td>
</tr>
<tr>
<td>X'0C000008'</td>
<td>X'00002133'</td>
<td>Multiple names were specified in the RMTIMSCON or RMTCICS keyword. Only one name can be specified.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003000'</td>
<td>The command was successful for some resources but failed for others. The command output contains a line for each resource, which is accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003004'</td>
<td>The command was not successful for any resource. The command output contains a line for each resource, which is accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C000014'</td>
<td>X'00005000'</td>
<td>The command processor failed to obtain storage via BPECBGET.</td>
</tr>
<tr>
<td>X'0C000014'</td>
<td>X'00005050'</td>
<td>The command processor failed because of an internal processing error. Refer to any error messages returned with the command or displayed on the system console for more details.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

Table 469. Completion codes for the UPDATE IMSCON TYPE(SENDCLNT) command

<table>
<thead>
<tr>
<th>Completion code text</th>
<th>Completion code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The UPDATE IMSCON TYPE(SENDCLNT) command completed successfully for the resources.</td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>The resource name is unknown to the client that is processing the request. The resource name might have been typed in error or the resource might not be active now. If a wildcard was specified in the command, there were no matches for the name. Confirm that the correct spelling of the resource name is specified on the command.</td>
</tr>
</tbody>
</table>

Examples

Example of UPDATE IMSCON TYPE(SENDCLNT) RMTIMSCON(rmtimscon) command
In the following example, a send client socket, OTM12345, is stopped. The stopped send socket is on the remote IMS Connect connection, CONNECT2.

**TSO SPOC input:**

```
UPDATE IMSCON TYPE(SENDCLNT) NAME(OTM12345) RMTMSCON(CONNECT2) STOP(COMM)
```

**TSO SPOC output:**

```
SendClient RmtImsCon MbrName CC
OTM12345 CONNECT2 HWS1 0
```

**OM API input:**

```
CMD(UPDATE IMSCON TYPE(SENDCLNT) NAME(OTM12345) RMTMSCON(CONNECT2) STOP(COMM))
```

**OM API output:**

```
<imsout>
<ctl>
<omname>OM1OM </omname>
<omvsn>1.5.0 </omvsn>
<xmlvsn>20 </xmlvsn>
<statime>2010.298 03:01:07.108399</statime>
<stotime>2010.298 03:01:07.112686</stotime>
<staseq>C6C787CDAA2F767</staseq>
<stoseq>C6C787CDA8BEE8C7</stoseq>
<rqsttkn1>USRT001 10200107</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>HWS1 </master>
<userid>USRT001 </userid>
<verb>UPD </verb>
<kwd>IMSCON </kwd>
<input>UPDATE IMSCON TYPE(SENDCLNT) NAME(OTM12345) RMTMSCON(CONNECT2) STOP(COMM) </input>
</cmd>
<cmdrsphdr>
<hdr slbl="SCL" llbl="SendClnt" scope="LCL" sort="n" key="1" scroll="no" len="8" dtype="CHAR" align="lfet" skipb="no" />
<hdr slbl="RIC" llbl="RmtImsCon" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left" skipb="yes" />
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" key="2" scroll="no" len="8" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0" scroll="yes" len="4" dtype="INT" align="right" skipb="no" />
<hdr slbl="CCTXT" llbl="CCText" scope="LCL" sort="n" key="0" scroll="yes" len="32" dtype="CHAR" align="left" skipb="yes" />
</cmdrsphdr>
<cmdrspdata>
<rsp>SCL(OTM12345) RIC(CONNECT2) MBR(HWS1) CC(0) </rsp>
</cmdrspdata>
</imsout>
```

**Example of UPDATE IMSCON TYPE(SENDCLNT) RMTCICS(rmtcics) command**

In the following example, a send client socket, ISC98765, is stopped. The stopped send socket is on the remote CICS connection, CICSA1.

**TSO SPOC input:**

```
UPDATE IMSCON TYPE(SENDCLNT) NAME(ISC98765) RMTMSCON(CICSA1) STOP(COMM)
```

**TSO SPOC output:**
OM API input:
CMD(UPDATE IMSCON TYPE(SENDCLNT) NAME(ISC98765) RMTCICS(CICSA1) STOP(Comm))

OM API output:
<imsout>
  <ctl>
    <omname>OM1OM</omname>
    <omvsn>1.6.0</omvsn>
    <xmlvsn>20</xmlvsn>
    <staseq>CA91F7FFA1530C9C</staseq>
    <stoseq>CA91F7FFA210779C</stoseq>
    <rqsttkn1>USRT001 10152756</rqsttkn1>
    <rc>0</rc>
    <rsn>0</rsn>
  </ctl>
  <cmd>
    <master>HWS1</master>
    <userid>USRT001</userid>
    <verb>UPD</verb>
    <kw>IMSCON</kw>
    <input>UPDATE IMSCON TYPE(SENDCLNT) NAME(ISC98765) RMTCICS(CICSA1) STOP(Comm) </input>
  </cmd>
  <cmdrsphdr>
    <hdr slbl="SCL" llbl="SendClnt" scope="LCL" sort="n" key="1" scroll="no" len="8" dtype="CHAR" align="left"kipb="no" />
    <hdr slbl="RCICS" llbl="RmtCics" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left"kipb="yes" />
    <hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" key="2" scroll="no" len="8" dtype="CHAR" align="left"kipb="no" />
    <hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0" scroll="yes" len="4" dtype="INT" align="right"kipb="no" />
    <hdr slbl="CCTTXT" llbl="CCText" scope="LCL" sort="n" key="0" scroll="yes" len="32" dtype="CHAR" align="left"kipb="yes" />
  </cmdrsphdr>
  <cmdrspdata>
    <rsp>SCL(ISC98765) RCICS(CICSA1 ) MBR(HWS1 ) CC( 0)</rsp>
  </cmdrspdata>
</imsout>

Related reference:
- STOPSCLN command (Commands)
- IMS Connect DELETE SENDCLNT command (Commands)

**UPDATE LE command**

Use the UPDATE LE command to define Language Environment (LE) runtime parameter overrides or to change the system option to enable or disable LE override processing.

The parameters can be filtered by a transaction code, LTERM name, user ID, or program name for MPP and JMP regions. The parameters may be filtered by a program name for IFB, BMP, and JBP regions. Message driven BMP regions can also filter on a transaction code. Any combination of parameters may be used to qualify the application instance to which the runtime parameters are applied. The
first available entry in the table is used. The new entry may be added before or after existing entries, depending on where free space exists in the table.

Subsections:
- “Environment”
- “Syntax”
- “Keywords”
- “Usage notes” on page 1063
- “Output fields” on page 1064
- “Return, reason, and completion codes” on page 1064
- “Examples” on page 1065

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) from which the UPDATE LE command and keywords can be issued.

Table 470. Valid environments for the UPDATE LE command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE LE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LTERM</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PGM</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SET</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TRAN</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>USERID</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
UPDATE-LE
SET(LEOPT(NO,YES))
LTERM(ltermname)
PGM(programname)
TRAN(tranname)
USERID(userid)
```

Keywords

The following keywords are valid for the UPDATE LE command:

**LTERM()**

Specifies the 1-8 character name of the lterm to which the parameters are to be defined.

**PGM()**

Specifies the 1-8 character name of the program to which the parameters are to be defined.

**SET()**

Specifies the updates to attributes or parameters.
**LEOPT0**

Specifies whether LE runtime parameters can be overridden dynamically for all active IMS systems in the IMSPlex. YES indicates that the IMS systems enable overrides which enables the DL/I INQY call to retrieve runtime parameters. NO indicates that the IMS systems do not enable dynamic overrides to the parameters.

This option allows the user to override the LEOPT=Y|N option that is specified in the DFSCGxxx PROCLIB member without having to bring down the IMS system.

When runtime overrides are disabled (IMS is started with LEOPT=N or the UPD LE SET(LEOPT(NO)) command is issued) the runtime parameter table continues to be updated as UPD LE SET(LERUNOPTS()) or DEL LE commands are issued. If the UPD LE SET(LEOPT(YES)) command is then specified, all changes that were made during the time overrides were disabled are available.

This command is automatically routed to all IMS systems that are active in the IMSPlex. The user can not override the OM routing to route to a single IMS.

**LERUNOPTS0**

Specifies the LE dynamic runtime parameters. If an existing set of parameters is found for the specified TRAN, LTERM, USERID, or PGM, the new parameter string completely replaces the existing parameter string. The parameters are not appended to the existing string. The string is only replaced when the specified filters are an exact match for the existing entry.

If there is no existing entry, then the first unused entry that is large enough to contain the parameters is used for the update. An unused entry is one that was previously deleted by the DEL LE command. If there are no unused entries or none that are large enough, storage is allocated for a new entry and the entry is added to the top of the table.

The UPDATE LE SET(LERUNOPTS()) command is processed regardless of the LEOPT system option. This means that IMS continues to build the runtime parameter table entries even though they will not be retrieved through the DL/I INQY call.

This command is automatically routed to all IMS systems that are active in the IMSPlex. The user cannot override the parameters on a single IMS.

**TRAN0**

Specifies the 1-8 character name of the transaction to which the parameters are to be defined.

**USERID0**

Specifies the 1-8 character name of the user ID to which the parameters are to be defined.

**Usage notes**

This command may be specified only through the Operations Manager API. The command syntax for this command is defined in XML and is available to automation programs that communicate with OM.
OM overrides the routing on the command and routes the command to all IMS systems in the IMSplex. The user specified route list is ignored.

At least one of the resource filters (TRAN, LTERM, USERID, or PGM) must be specified.

**Output fields**

The following table shows the UPDATE LE output fields. The columns in the table are as follows:

**Short label**
Contains the short label generated in the XML output.

**Keyword**
Identifies the keyword on the command that caused the field to be generated. N/A appears for output fields that are always returned. ERR appears for output fields that are returned only in case of an error.

**Meaning**
Provides a brief description of the output field.

<table>
<thead>
<tr>
<th>Short label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>N/A</td>
<td>Completion code for the line of output. Completion code is always returned.</td>
</tr>
<tr>
<td>MBR</td>
<td>N/A</td>
<td>IMSplex member (IMS identifier) that built the output line. Member name is always returned.</td>
</tr>
</tbody>
</table>

**Return, reason, and completion codes**

The OM return and reason codes that may be returned as a result of this command are standard for all commands entered through the OM API. An IMS return and reason code is returned to OM by the UPDATE LE command.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The UPDATE LE command completed successfully.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00000208'</td>
<td>No keywords were specified on the command. At least one keyword is required. When SET(LEUNOPTS()) is specified, at least one resource name must be specified.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00000210'</td>
<td>An asterisk or percentage sign was specified in the filter name. Wildcards are not supported on the command.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00000214'</td>
<td>An invalid character was specified in the filter name.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00000240'</td>
<td>An invalid filter was specified on the command. When SET(LEOPT()) is specified, no other resource names can be specified.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004040'</td>
<td>The parameter override header has not been initialized. Retry the command after restart is complete.</td>
</tr>
</tbody>
</table>
Return code | Reason code | Meaning
--- | --- | ---
X'00000014' | X'00005000' | Unable to get storage from IMODULE GETSTOR.
X'00000014' | X'00005010' | Unable to obtain latch.
X'00000014' | X'00005FFF' | Internal IMS error - should not occur.

The following table contains the completion code that can be returned on a UPDATE LE command.

**Table 472. Completion code for the UPDATE LE command**

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The UPDATE LE command completed successfully for the specified resource.</td>
</tr>
</tbody>
</table>

**Examples**

The following are examples of the UPDATE LE command.

**Example 1 for UPDATE LE command**

Assume the following filters and parameters are specified on UPD LE SET(LERUNOPTS()) commands that are processed in the order listed.

1. TRAN(PART) LTERM(TERM2) SET(LERUNOPTS(hhhh))
2. TRAN(PART) LTERM(TERM2) SET(LERUNOPTS(iiii))
3. LTERM(TERM2) USERID(BETTY) SET(LERUNOPTS(gggg))
4. TRAN(PART) LTERM(TERM1) USERID(BOB) SET(LERUNOPTS(ffff))
5. TRAN(PART) LTERM(TERM1) USERID(BARBARA) SET(LERUNOPTS(eeee))
6. PGM(DFSSAM02) SET(LERUNOPTS(dddd))
7. TRAN(PART) LTERM(TERM1) SET(LERUNOPTS(cccc))
8. TRAN(PART) USERID(BETTY) SET(LERUNOPTS(bbbb))
9. TRAN(PART) PGM(DFSSAM02) SET(LERUNOPTS(aaaa))

Rules for matching an entry which results in an update of an existing entry:

- The number of filters defined on the UPDATE LE must match the number of filters defined in the entry.
- The filter values defined on the UPDATE LE must be an exact match for those defined in the entry.

The following table is a logical representation of the parameter override table entries at the end of the command processing. The table includes the transaction name, LTERM, USERID, Program, and LERUNOPTS for each entry.

**Table 473. Parameter override table entries for UPDATE LE example 1**

<table>
<thead>
<tr>
<th>Entry#</th>
<th>TRAN</th>
<th>LTERM</th>
<th>USERID</th>
<th>PROGRAM</th>
<th>LERUNOPTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PART</td>
<td>DFSSAM02</td>
<td>aaaa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>PART</td>
<td>BETTY</td>
<td>bbbb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>PART</td>
<td>TERM1</td>
<td>cccc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>DFSSAM02</td>
<td>dddd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PART</td>
<td>TERM1</td>
<td>BARBARA</td>
<td>eeee</td>
<td></td>
</tr>
</tbody>
</table>
Table 473. Parameter override table entries for UPDATE LE example 1 (continued)

<table>
<thead>
<tr>
<th>Entry#</th>
<th>TRAN</th>
<th>LTERM</th>
<th>USERID</th>
<th>PROGRAM</th>
<th>LERUNOPTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>PART</td>
<td>TERM1</td>
<td>BOB</td>
<td></td>
<td>ffffffff</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>TERM2</td>
<td>BETTY</td>
<td></td>
<td>ggggggggg</td>
</tr>
<tr>
<td>8</td>
<td>PART</td>
<td>TERM2</td>
<td></td>
<td></td>
<td>iiiiiiiii</td>
</tr>
</tbody>
</table>

Example 2 for UPDATE LE command

TSO SPOC input:
UPD LE TRAN(IAPMDI26) USERID(USRT001)
SET(LERUNOPTS(RPTOPTS=((ON),NOOVR),RPTSTG=((OFF),NOOVR)))

TSO SPOC output:
MbrName  CC
SYS3  0

OM API input:
CMD(UPD LE TRAN(IAPMDI26) USERID(USRT001)
SET(LERUNOPTS(RPTOPTS=((ON),NOOVR),RPTSTG=((OFF),NOOVR))))

OM API output:
<imsout>
<ctl>
<omname>OM10M </omname>
<omvsn>1.1.0</omvsn>
<brsp>MBR(SYS3 ) CC( 0) </brsp>
</ctl>
</imsout>

Explanation: The UPDATE LE command adds an entry to the LE runtime options table. The entry added by this command defines two filters: user ID and transaction. The transaction is set to IAPMDI26 and the user ID is set to USRT001. The runtime options string for this table entry is RPTOPTS=((ON),NOOVR),RPTSTG=((OFF),NOOVR). The output shows that IMS
member SYS3 processed the command with a return code of 0.

Related concepts:

- How to interpret CSL request return and reason codes (System Programming APIs)

Related reference:

- Command keywords and their synonyms (Commands)
- “QUERY LE command” on page 273

**UPDATE MSLINK command**

Use the UPDATE MSLINK command to set or change the MSC logical link attributes or to change the status of specified logical links.

The UPDATE MSLINK command can be either a type-1 or type-2 command.

Subsections:

- “Environment”
- “Syntax”
- “Keywords” on page 1069
- “Usage notes” on page 1073
- “Output fields” on page 1074
- “Return, reason, and completion codes” on page 1075
- “Examples” on page 1077

**Environment**

The following table lists the environments (DB/DC, DBCTL, and DCCTL) from which the UPDATE MSLINK command and keywords can be issued.

<table>
<thead>
<tr>
<th>Command / keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE MSLINK</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SET</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>START</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>STOP</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OPTION</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

**Syntax**

**Type-1 command syntax**

```
/UPDATE MSLINK NAME(linkname) SET BANDWIDTH(ON) OFF
```
Type-2 command syntax

A:

```
SET(ASR(ON)OFF BANDWIDTH(ON)OFF BUFSIZE(new_bufsize)MODETBL(modetablename)
MSLINK(new_linkname)MSPLINK(msplinkname)PARTNER(partner_id)SYNCOPT(FORCSESS)
SYNCSSESCOLDSESS)
```

B:

```
START(COMMTRACETKOTRCSTATISTICS)
```

C:

```
STOP(COMMTRACETKOTRC)
```

D:

```
OPTION(CHKPTNORESETRESETFORCE)
```
Keywords

The following keywords are valid for the UPDATE MSLINK command:

**NAME()**
- Specifies the 1- to 8-character name of the MSC logical links to be processed.
- You can specify wildcard parameters (*) for the NAME keyword. The logical link names are processed if they match the wildcard name. NAME(*) and NAME(abc*) are examples of valid names.

**SET()**
- Specifies the updates to attributes or parameters. You cannot specify both the SET() parameter and the STOP(COMM) parameter.

**ASR()**
- The Automatic Session Restart (ASR) designation of a VTAM link changes when the Session Outage Notification facility of VTAM is used. The ASR parameter allows you to override the system definition option that is defined for the automatic session restart designation of a link.
- You cannot change the designation of ASR for non-VTAM MSC links.
- Stop the logical link before you change the ASR designation.
- **ON** Specifies that the logical link uses automatic session restart. Automatic session restart is not necessarily activated for a link if a status of ASR is displayed for that link. You must also specify SONSCIP=YES on the APPL definition statement for VTAM when defining the network to VTAM. ASR works only if both sides of the link are using the ASR option.
- **OFF** Specifies that the logical link does not use automatic session restart.

**BANDWIDTH()**
- Specifies whether the logical link uses bandwidth mode.
- The BANDWIDTH keyword does not apply to logical links assigned to a TCP/IP-type physical link. TCP/IP physical links always operate in bandwidth mode. If SET(BANDWIDTH(OFF)) is specified for a TCP/IP physical link, the command is rejected.
- There is no system definition option to enable bandwidth mode. By default, logical links are initialized with bandwidth mode off.
- To change the bandwidth mode, first stop the logical link. The link must not display a status ERE.
- **ON** Specifies that the logical link uses bandwidth mode.
- **OFF** Specifies that the logical link does not use bandwidth mode.

**BUFSIZE()**
- Changes the input and output buffer sizes for the logical link. The minimum buffer size is 1024, and the maximum buffer size is 65536.
- The logical link must be stopped before changing the BUFSIZE value.
- Buffer sizes for logical links follow the same specification requirements as buffer sizes specified on the MSPLINK macro by using the BUFSIZE= keyword.

**MODETBL()**
- The default mode table name of a link changes if you specify the
MODETBL() parameter without the START(COMM) parameter. This default is usually established by system definition. To reset this field to its null state (as if a mode table name was not specified at system definition), specify MODETBL().

If you specify both the START(COMM) parameter with the MODETBL() parameter, then the specified mode table name is used only for the START(COMM) session. When the session is terminated, the link mode table name reverts to the default mode table name.

The mode table name determines the mode table entries to be used when activating a VTAM MSC session. You cannot use the MODETBL keyword with non-VTAM sessions.

The logical link must be stopped before changing the MODETBL value.

MSLINK()

Specifies the 1- to 8-alphanumeric new link name for the specified logical link. If you specify the MSLINK parameter, you can specify only one NAME parameter. The new link name cannot already exist as a logical link name. If the command is successful, the link name specified on the NAME keyword is no longer valid.

The logical link must be stopped before changing the MSLINK name.

MSPLINK()

Enter the 1- to 8-character name of the MSC physical link to which you want to assign this logical link. You assign the logical link to the physical link for input and output purposes. The physical link name specified must already exist.

The logical link must be stopped before changing the MSPLINK. If the logical link is being assigned to either a TCP/IP physical link or a VTAM physical link, then the physical link must also be stopped. TCP/IP and VTAM physical links can be stopped by issuing the UPD MSPLINK NAME(plnkname) STOP(LOGON). If the TCP/IP physical link is used for TCP/IP generic resources, the physical link can be stopped with the UPD MSPLINK NAME(plnkname) STOP(GENLOGON) command.

If the logical link is being assigned to a TCP/IP physical link, bandwidth mode is turned on for the logical link. Bandwidth mode is always on for TCP/IP physical links and cannot be turned off.

If the logical link is being assigned to a CTC or MTM link, then the logical link that is currently assigned to the target physical link must also be stopped.

PARTNER()

Specifies the 2-character alphabetic partner identification. This partner identification ensures that the two related logical links in two systems are always logically and physically connected. Both systems must have logical links with the same partner ID. The new partner ID specified must not already exist.

Only one logical link can be specified in the NAME keyword to change the PARTNER keyword.

The logical link must be stopped before changing the PARTNER keyword.

SYNCOPT()

Specifies the system definition option to be overridden for the named logical link. This keyword allows the user to override the system definition
option defined for forcing resynchronization until the next UPDATE MSLINK command is issued or IMS is cold started.

SYNCOPT() is valid only for TCP/IP and VTAM links.

The logical link must be stopped before changing SYNCOPT.

FORCSESS
Specifies that the session initiation is to be completed regardless of the agreement between session restart modes and the message sequence numbers. Use of the FORCSESS parameter could cause messages to be lost or duplicated.

SYNCSESS
Specifies that the session initiation is to be completed only when the session restart modes and message sequence numbers agree.

COLDSESS
Resets the session restart mode to COLD by resetting all the MSLINK dynamic flags and fields to zero, which allows cold session initiation of the link. Use the COLDSESS parameter when attempts to warm start the session fail.

Use of the COLDSESS parameter could cause messages to be lost or duplicated.

Before issuing the command with the COLDSESS option, stop the link first. When COLDSESS is specified, it should be used on both sides of the link.

The COLDSESS parameter does not override the current setting of SYNCSSESS or FORCSESS.

START()
Starts the specified MSC logical links, or starts tracing of the specified logical links.

COMM
Starts the specified MSC logical links and allows IMS to start sending and receiving messages.

Communication between IMS systems does not begin until an UPDATE MSLINK command is entered in both systems for CTC or MTM links, or in one of the systems for either a TCP/IP or a VTAM link.

The COMM parameter cannot be specified in both START() and STOP(). The logical link must be stopped and idle, and the assigned physical link must be open, as shown in the QUERY command output.

TRACE
Turns on the tracing of internal IMS events that are related to the specified logical links. Unlike the equivalent type-1 /TRACE command, the trace level cannot be specified on the UPDATE command. Instead, IMS uses the default level of 4. The status and options of the current IMS traces can be displayed with the QUERY MSLINK command. TRACE cannot be specified in both START() and STOP().

Note: The type-2 command UPDATE MSLINK NAME(linkname) START(TRACE) uses the same level and module settings that were used the last time the /TRACE SET (ON) LINK command was issued. If a /TRACE SET (ON) LINK command has not been issued since the last cold start, this command defaults to MODULE=ALL and LEVEL=4.
TKOTRC
Enables tracing during takeover. This tracing is separate from regular tracing. This keyword applies only in an XRF environment. TRACE and TKOTRC cannot both be specified under START(). TKOTRC cannot be specified in both START() and STOP().

STATISTICS
Provides statistics support to MSC logical links. These statistics can be used to determine the link performance, adjust the link and message queue buffer sizes to optimum sizes, and increase the link performance. Each logical link (MSLINK) has a work area where statistics are kept.

STOP()
Stops the specified MSC logical links or stops tracing of the specified logical links.

COMM
Stops the specified MSC logical links, and allows IMS to stop sending and receiving messages. The partner link in another IMS system stops itself. COMM cannot be specified in both START() and STOP(). You cannot specify both STOP(COMM) and SET() together.

TRACE
Turns off the tracing of internal IMS events that are related to the specified logical links. The status and options of the current IMS traces can be displayed with the QUERY MSLINK command. TRACE cannot be specified in both START() and STOP().

TKOTRC()
Disables tracing during takeover. This tracing is separate from regular tracing. This keyword applies only in an XRF environment. TKOTRC cannot be specified in both START() and STOP().

OPTION()
Specifies options for the UPDATE MSLINK command. OPTION is valid only with START(STATISTICS) or STOP(COMM).

FORCE
Can be specified only with STOP(COMM) for CTC, TCP/IP, and VTAM links. Use the FORCE parameter when an MSC link does not clean up and assume a PSTOP IDLE status in IMS after normal UPDATE STOP(COMM) processing, even though the session has been terminated.

After using the FORCE parameter, issue the UPDATE MSLINK command with the NAME(linkname | *) START(COMM) options to restart the link.

For TCP/IP links, the FORCE option is useful for shutting down an MSC TCP/IP link that did not shut down normally after the link was shut down in the partner IMS system. You are not required to shut down a link normally before using the FORCE option.

FORCE also notifies the local IMS Connect instance to clean up sessions for TCP/IP links and VTAM to clean up sessions for VTAM links.

IMS performs the following actions when processing the FORCE option for a TCP/IP link:
• Shuts down the link in the IMS where the command is issued
• Notifies the local IMS Connect instance to clean up the send socket
• Issues an error message
• Places the link in ERE IDLE status
For VTAM links, you can use the FORCE parameter with some network commands to clean up the VTAM link within IMS.

**RESET | NORESET**

Issuing the UPDATE MSLINK() START(STATISTICS) OPTION(RESET) command will reset the link statistics and set the start time to the current time. The logical link does not need to be stopped and idle to reset the statistics values, or the reset mode, as is the case for changing many of the link characteristics, such as buffer size and bandwidth mode.

OPTION(RESET), OPTION(CHKPT,RESET), and OPTION(CHKPT, NORESET) can be specified with START(STATISTICS).

**RESET**

When specified without CHKPT, this indicates that statistics for the specified logical link should be reset immediately. When specified with CHKPT, this indicates that statistics for the specified logical link should be reset at every system checkpoint. This only applies to statistics reported on the QUERY MSLINK command. Statistics reported in the log records during system checkpoints are cumulative over the life of IMS, and are not reset by the UPDATE MSLINK command.

**NORESET**

When specified with CHKPT, this indicates that statistics for the specified logical link should not be reset at any system checkpoint. This only applies to statistics reported on the QUERY MSLINK command. Statistics reported in the log records during system checkpoints are cumulative over the life of IMS, and are not reset by the UPDATE MSLINK command.

**CHKPT**

When specified with RESET, this indicates that statistics for the specified logical link should be reset at every system checkpoint. When specified with NORESET, this indicates that statistics for the specified logical link should not be reset at any system checkpoint. This only applies to statistics reported on the QUERY MSLINK command. Statistics reported in the log records during system checkpoints are cumulative over the life of IMS, and are not reset by the UPDATE MSLINK command.

OPTION(CHKPT,RESET) and OPTION(CHKPT, NORESET) can be specified with START(STATISTICS).

**Usage notes**

You can issue the type-2 UPDATE MSLINK command only through the Operations Manager (OM) API. This command applies to DB/DC and DCCTL systems.

The syntax for the UPDATE MSLINK command is defined in XML and the syntax is available to automation programs that communicate with OM.

*The UPDATE MSLINK command compared to other commands*

The following table shows variations of the UPDATE MSLINK command and the type-1 IMS commands that perform similar functions.
<table>
<thead>
<tr>
<th>UPDATE MSLINK command</th>
<th>Similar IMS command</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE MSLINK NAME(linkname</td>
<td>linkname*</td>
</tr>
<tr>
<td>UPDATE MSLINK NAME(linkname</td>
<td>linkname*</td>
</tr>
<tr>
<td>UPDATE MSLINK NAME(linkname) SET(MSLINK(linkname))</td>
<td>No similar type-1 IMS command exists.</td>
</tr>
<tr>
<td>UPDATE MSLINK NAME(linkname</td>
<td>linkname*</td>
</tr>
</tbody>
</table>

**Output fields**

**Short label**
Contains the short label that is generated in the XML output.

**Keyword**
Identifies the keyword on the command that caused the field to be generated. *error* appears for output fields that can appear for a non-zero completion code. N/A (not applicable) appears for output fields that are always returned.

**Meaning**
Provides a brief description of the output field.
Table 476. Output field descriptions for the UPDATe MSLINK command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>N/A</td>
<td>Completion code.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>err</td>
<td>Completion code text that briefly explains the meaning of the non-zero completion code.</td>
</tr>
<tr>
<td>LINKN</td>
<td>N/A</td>
<td>Logical link number.</td>
</tr>
<tr>
<td>MBR</td>
<td>N/A</td>
<td>IMSplex member that built the output line.</td>
</tr>
<tr>
<td>MSL</td>
<td>N/A</td>
<td>Logical link name.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The return and reason codes that can be returned as a result of the UPDATE MSLINK command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 477. Return and reason codes for the UPDATe MSLINK command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The UPDATe MSLINK command completed successfully.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000200C'</td>
<td>No resources to be updated were found. The resource names specified might be invalid or no resources match the specified filter.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002040'</td>
<td>More than one filter value is specified on the UPDATe MSLINK command.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002044'</td>
<td>The UPDATe MSLINK command is not processed because the same attribute value was specified for the START and STOP parameters.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002048'</td>
<td>Invalid SET attribute is specified.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002133'</td>
<td>The UPDATe MSLINK command is not processed because multiple logical link names were specified, which is invalid for the SET filters specified in the command.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002134'</td>
<td>The UPDATe MSLINK command specified SET(MSPLINK(msplinkname)), but msplinkname does not exist.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003000'</td>
<td>Command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code. See the following table for details on completion codes.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>Command was not successful for any of the resources. The command output contains a line for each resource, accompanied by its completion code. See the following table for details on completion codes.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004000'</td>
<td>Command is not valid during IMS restart.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000400C'</td>
<td>Command is not valid on the XRF alternate.</td>
</tr>
</tbody>
</table>
Table 477. Return and reason codes for the UPDATE MSLINK command (continued)

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>Command is not valid on the RSR tracker.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000402C'</td>
<td>Command is not valid on the non-MSC-capable system.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005004'</td>
<td>The UPDATE MSLINK command processing terminated as a DFSOCMD response buffer could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005008'</td>
<td>DFSPOOL storage could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005010'</td>
<td>A latch could not be obtained.</td>
</tr>
</tbody>
</table>

Errors that are unique to the processing of the UPDATE MSLINK command are returned as completion codes. A completion code is returned for each action against an individual resource.

If the UPDATE MSLINK command is entered as a type-2 command, a message that contains the completion codes will be issued. The codes listed in the following table are for a type-1 UPDATE MSLINK command.

Table 478. Completion codes for the UPDATE MSLINK command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The UPDATE MSLINK command completed successfully for the resource.</td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>MSLINK name is invalid, or the specified wildcard parameter does not match any resource names.</td>
</tr>
<tr>
<td>11</td>
<td>RESOURCE ALREADY EXISTS</td>
<td>The linkname specified in SET(MSLINK(linkname)) already exists as a logical link.</td>
</tr>
<tr>
<td>62</td>
<td>HIOP STORAGE ERROR</td>
<td>IMS was unable to obtain storage from the HIOP pool.</td>
</tr>
<tr>
<td>8D</td>
<td>RESOURCE IS NOT STOPPED</td>
<td>The logical link is not stopped. The link must be stopped for the updates specified.</td>
</tr>
<tr>
<td>100</td>
<td>INV SET KEYWORD FOR LINK TYPE</td>
<td>A keyword specified in SET() is invalid for the corresponding physical link type.</td>
</tr>
<tr>
<td>101</td>
<td>TARGET MSPLINK NOT STOPPED</td>
<td>The target physical link specified in SET(MSPLINK()) is not stopped.</td>
</tr>
<tr>
<td>102</td>
<td>TARGET MSLINK NOT STOPPED</td>
<td>The logical link that is currently assigned to the target physical link specified in SET(MSPLINK()) is not stopped.</td>
</tr>
<tr>
<td>103</td>
<td>NEW PARTNER ID ALREADY EXISTS</td>
<td>The new partner ID specified in SET(PARTNER()) already exists.</td>
</tr>
<tr>
<td>104</td>
<td>MSLINK NOT ASSIGNED TO MSPLINK</td>
<td>The update cannot be performed because the logical link is not assigned to a physical link.</td>
</tr>
<tr>
<td>105</td>
<td>MSPLINK NOT OPEN</td>
<td>The update cannot be performed because the assigned physical link is not open.</td>
</tr>
</tbody>
</table>
Table 478. Completion codes for the UPDATE MSLINK command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>106</td>
<td>INVALID OPTION FOR LINK</td>
<td>A keyword specified in OPTION() is invalid for the corresponding physical</td>
</tr>
<tr>
<td></td>
<td>TYPE</td>
<td>link type.</td>
</tr>
<tr>
<td>107</td>
<td>OPTION=FORCE ALREADY</td>
<td>OPTION(FORCE) has already been</td>
</tr>
<tr>
<td></td>
<td>IN EFFECT</td>
<td>invoked for the logical link.</td>
</tr>
</tbody>
</table>

Examples

The following are examples of the UPDATE MSLINK command:

**Example 1 for UPDATE MSLINK command**

TSO SPOC input:

```
UPDATE MSLINK NAME(STAR1L, STAR2L, STAR3L*) SET(SYNCOPT(FORCSESS), ASR(OFF), MODETBL(), MSPLINK(STAR1)) START(COMM, TRACE)
```

TSO SPOC output:

```
MSLink MbrName LinkNum CC CCText
STAR1L IMSA 12 0
STAR2L IMSA 10 NOT FOUND
STAR3L IMSA 5 0
STAR3L1 IMSA 6 0
STAR3L2 IMSA 7 0
```

**Explanation:** This UPDATE MSLINK command is issued to do the following:

1. Override the system definition option for the named logical links: STAR1L and logical links matching STAR3L* (STAR3L, STAR3L1, and STAR3L2). STAR2L is unknown.
2. Change the automatic session restart designation to OFF for the specified logical links.
3. Reset the mode table name of the specified logical links to NONE.
4. Assign the specified logical links to the physical link: STAR1.
5. Allow IMS to start sending and receiving messages on the specified links.
6. Enable tracing of control block trace information.

**Example 2 for UPDATE MSLINK command**

TSO SPOC input:

```
UPDATE MSLINK NAME(LNK12V02) SET(BANDWIDTH(ON), BUFSIZE(4096))
```

TSO SPOC output:

```
MSLink MSLink# MbrName CC
LNK12V02 10 IMS1 0
```

**Explanation:** This command changes the buffer size to 4096 and turns on the bandwidth.

**Related concepts:**

- [How to interpret CSL request return and reason codes (System Programming APIs)](How%20to%20interpret%20CSL%20request%20return%20and%20reason%20codes%20(System%20Programming%20APIs))

**Related tasks:**
UPDATING MSNAME command

Use the UPDATE MSNAME command to set or change the MSC logical link path attributes or to change the status of specified logical link paths.

Subsections:
- “Environment”
- “Syntax”
- “Keywords” on page 1079
- “Usage notes” on page 1081
- “Equivalent IMS type-1 commands” on page 1081
- “Output fields” on page 1081
- “Return, reason, and completion codes” on page 1082
- “Examples” on page 1084

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) from which the UPDATE MSNAME command and keywords can be issued.

<table>
<thead>
<tr>
<th>Command / keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE MSNAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SET</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>START</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>STOP</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
UPDATE MSNAME NAME (msname) |
```

A:
Keywords

The following keywords are valid for the UPDATE MSNAME command:

NAME()
Specifies the 1- to 8-character name of the MSC logical link path to be processed. You can specify wildcards (*) for the NAME keyword. NAME(*) and NAME(abc*) are examples of valid names.

SET()
Specifies the updates to attributes or parameters. You can only change attributes for statically-defined MSNAMEs. Dynamic MSNAMEs cannot be changed.

MSLINK()
Assigns the specified logical link path to the logical link for input and output purposes. Enter the 1- to 8-character name of the MSC logical link to which you want to assign this logical link path. The logical link name specified must already exist.

Both the source logical link (where the MSNAME is currently assigned) and the target logical link (where the MSNAME is being assigned to) must be stopped.

SIDL()
Specifies the system identification of a local system in a multiple system configuration. The specified value must be a number from 1 to 2036. The new specified value must be currently undefined or already defined as a local SID on this system. The SID cannot already be defined as remote.

You can change the SIDL value for only one logical link path on a command. Therefore, if you specify the SIDL parameter, you can specify only one NAME parameter.

The logical link and logical link path must be stopped to change the SIDL. To change the SIDR or SIDL value of a logical link path:
1. Verify the existing SID values of the logical link path of either /DIS ASMT MSNAME or QUERY MSNAME SHOW(SYSID).
   For SIDL verification only, the operator must verify that the current SIDL value is not the lowest SIDL value in the system. If it is the lowest SIDL value in the system, and there are no other logical link paths in the system with the same SID, then the SIDL cannot be changed because the lowest SIDL in the system cannot change.

2. Verify there are no transactions with the existing SID values of either /DIS SYSID TRAN or QUERY TRAN SHOW(MSNAME).

3. If any transactions were found in step 2, assign the transactions to a new valid system of either /MSASSIGN TRAN TO MSNAME, UPDATE TRAN SET(MSNAME()) or UPDATE TRAN SET(SIDR(),SIDL()).

4. Change the SIDs values of the logical link path using UPDATE MSNAME SET(SIDR(),SIDL()). However, this is not allowed if the new SIDL value is lower than the current lowest SIDL in the system. The lowest SIDL in the system cannot change, and must remain the lowest SIDL in the system.

**SIDR()**
Specifies the system identification of a remote system in a multiple system configuration. The value specified must be a number from 1 to 2036. The new value specified must be currently undefined on this system (it cannot be already defined as remote or local).

You can change the SIDR value for only one logical link path on a command. Therefore, if you specify the SIDR parameter, you can specify only one NAME parameter.

The logical link and logical link path must be stopped to change the SIDR.

To change the SIDR or SIDL value of a logical link path:
1. Verify the existing SID values of the logical link path of either /DIS ASMT MSNAME or QUERY MSNAME SHOW(SYSID).
2. Verify there are no transactions with the existing SID values of either /DIS SYSID TRAN or QUERY TRAN SHOW(MSNAME).
3. If any transactions were found in step 2, assign the transactions to a new valid system of either /MSASSIGN TRAN TO MSNAME, UPDATE TRAN SET(MSNAME()) or UPDATE TRAN SET(SIDR(),SIDL()).
4. Change the SIDs values of the logical link path using UPDATE MSNAME SET(SIDR(),SIDL()).

**START()**
Specifies the attributes to start. You cannot specify the START and STOP parameters with the same attributes.

Q Starts the queuing to the logical link path and starts input for the specified logical link path.

**SEND**
Starts the sending of messages to the specified logical link path.

**STOP()**
Specifies the attributes to stop. You cannot specify the START and STOP parameters with the same attributes.
Q  Stops the queuing to the logical link path and stops input for the specified logical link path.

SEND  Stops the sending of messages to the specified logical link path.

Usage notes

You can issue this command only through the Operations Manager (OM) API. This command applies to DB/DC and DCCTL systems.

The syntax for this command is defined in XML and is available to automation programs that communicate with OM.

Equivalent IMS type-1 commands

The following table shows variations of the UPDATE MSNAME command and the type-1 IMS commands that perform similar functions.

Table 480. Type-1 equivalents for the UPDATE MSNAME command

<table>
<thead>
<tr>
<th>UPDATE MSNAME command</th>
<th>Similar IMS type-1 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE MSNAME NAME(msname) SET(MSLINK(linkname))</td>
<td>/MSASSIGN MSNAME msname TO LINK link #</td>
</tr>
<tr>
<td>UPDATE MSNAME NAME(msname) SET(SIDR(remote_sysid))</td>
<td>No similar type-1 IMS command exists.</td>
</tr>
<tr>
<td>UPDATE MSNAME NAME(msname) SET(SIDL(local_sysid))</td>
<td>No similar type-1 IMS command exists.</td>
</tr>
<tr>
<td>UPDATE MSNAME NAME(msname</td>
<td>msname*</td>
</tr>
<tr>
<td>UPDATE MSNAME NAME(msname</td>
<td>msname*</td>
</tr>
<tr>
<td>UPDATE MSNAME NAME(msname</td>
<td>msname*</td>
</tr>
</tbody>
</table>

Output fields

Short label
Contains the short label that is generated in the XML output.

Keyword
Identifies the keyword on the command that caused the field to be generated. error appears for output fields that can appear for a non-zero completion code. N/A (not applicable) appears for output fields that are always returned.

Meaning
Provides a brief description of the output field.

Table 481. Output field descriptions for the UPDATE MSNAME command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>N/A</td>
<td>Completion code.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the non-zero completion code.</td>
</tr>
</tbody>
</table>
### Table 481. Output field descriptions for the UPDATE MSNAME command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBR</td>
<td>N/A</td>
<td>IMSplex member that built the output line.</td>
</tr>
<tr>
<td>MSN</td>
<td>N/A</td>
<td>Logical link path name.</td>
</tr>
</tbody>
</table>

### Return, reason, and completion codes

The return and reason codes that can be returned as a result of the UPDATE MSNAME command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

### Table 482. Return and reason codes for the UPDATE MSNAME command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The UPDATE MSNAME command completed successfully.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002000C'</td>
<td>No resources to be updated were found. The resource names specified might be invalid or no resources match the specified filter.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002040'</td>
<td>More than one filter value is specified on the UPDATE MSNAME command.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002044'</td>
<td>The UPDATE MSNAME command is not processed because the same attribute value was specified for the START and STOP parameters.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002126'</td>
<td>The value of SIDL() is invalid. Valid values are 1-2036.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002128'</td>
<td>The value of SIDR() is invalid. Valid values are 1-2036.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002136'</td>
<td>The name specified in MSLINK() is not a valid logical link name.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003000'</td>
<td>Command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code. See the following table for details on completion codes.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>Command was not successful for any of the resources. The command output contains a line for each resource, accompanied by its completion code. See the following table for details on completion codes.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004000'</td>
<td>Command is not valid during IMS restart.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004000C'</td>
<td>Command is not valid on the XRF alternate.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>Command is not valid on the RSR tracker.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000402C'</td>
<td>Command is not valid on the non-MSC-capable system.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005004'</td>
<td>The UPDATE MSNAME command processing terminated because a DFSOCMD response buffer could not be obtained.</td>
</tr>
</tbody>
</table>
Errors that are unique to the processing of the UPDATE MSNAME command are
returned as completion codes. A completion code is returned for each action
against an individual resource.

### Table 483. Completion codes for the UPDATE MSNAME command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>NO RESOURCES FOUND</td>
<td>The value specified in SIDR() is invalid. The value must be currently undefined or local in this system.</td>
</tr>
<tr>
<td>45</td>
<td>INVALID SIDR VALUE</td>
<td>The value specified in SIDR() is invalid. The value must be currently undefined in this system.</td>
</tr>
<tr>
<td>83</td>
<td>INVALID SIDL VALUE</td>
<td>The value specified in SIDL() is invalid. The value must be currently undefined or local in this system.</td>
</tr>
<tr>
<td>87</td>
<td>USE MANAGER ERROR</td>
<td>IMS encountered an internal error using the USE manager.</td>
</tr>
<tr>
<td>102</td>
<td>TARGET MSLINK NOT STOPPED</td>
<td>The update cannot complete because the link specified in MSLINK() is not stopped.</td>
</tr>
<tr>
<td>109</td>
<td>INVALID FOR DYNAMIC MSNAME</td>
<td>The update cannot complete because the logical link path specified in NAME() is dynamic. The update is not valid for dynamic logical link paths that are built in a shared queues system, which represent logical link paths defined only on other IMS systems in the shared queues group.</td>
</tr>
<tr>
<td>10A</td>
<td>SOURCE MSLINK NOT STOPPED</td>
<td>The update cannot complete because the logical link to which the specified logical link path is assigned is not stopped.</td>
</tr>
<tr>
<td>10B</td>
<td>MSC RESOURCE IS IN USE</td>
<td>The update cannot complete because there is in-doubt message activity for a remote transaction or lterm related to the logical link path.</td>
</tr>
<tr>
<td>10D</td>
<td>INVALID SIDL, LESS THAN LOW SIDL</td>
<td>The value specified in SIDL() is invalid. The value cannot be lower than the current lowest local SID in this system.</td>
</tr>
<tr>
<td>10E</td>
<td>LAST MSNAME FOR LOW SIDL</td>
<td>The current local SIDL value cannot be changed for this logical link path because the current SIDL value is the lowest local SIDL value, and this is the only logical link path that has this local SIDL value.</td>
</tr>
</tbody>
</table>
Table 483. Completion codes for the UPDATE MSNAME command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>10F</td>
<td>SIDL STILL LOCAL IN REMOTE TRAN</td>
<td>The current local SIDL value cannot be changed for this logical link path because there are remote transactions defined with this local SIDL value, and this the only logical link path that has this local SIDL value.</td>
</tr>
<tr>
<td>110</td>
<td>SIDR STILL LOCAL IN REMOTE TRAN</td>
<td>The current remote SIDR value cannot be changed for this logical link path because there are remote transactions defined with this remote SIDR value.</td>
</tr>
</tbody>
</table>

**Examples**

The following are examples of the UPDATE MSNAME command:

*Example 1 for UPDATE MSNAME command*

TSO SPOC input: UPD MSNAME NAME(STAR1N1,STAR2N1) STOP(Q,SEND)

TSO SPOC output:

```
MSName MbrName CC
STAR1N1 IMSA 0
STAR2N1 IMSA 0
```

**Explanation:** This UPDATE MSNAME command is issued to stop queuing and the sending of messages to the named logical link paths. This allows the attributes to be changed by another UPD MSNAME command.

*Example 2 for UPDATE MSNAME command*

TSO SPOC input: UPD MSNAME NAME(STAR1N1) SET(SIDR(10),SIDL(20))

TSO SPOC output:

```
MSName MbrName CC
STAR1N1 IMSA 0
```

**Explanation:** This UPDATE MSNAME command is issued to do the following:
- Identify the remote system that is represented by SIDR(10).
- Identify the local system as SIDL(20) for routing messages back to this system.

*Example 3 for UPDATE MSNAME command*

TSO SPOC input: UPD MSNAME NAME(STAR1N1) SET(MSLINK(STAR3L))

TSO SPOC output:

```
MSName MbrName CC
STAR1N1 IMSA 0
```

**Explanation:** This UPDATE MSNAME command is issued to assign the specified logical link path STAR1N1 to STAR3L.
UPDATE MSPLINK command

Use the UPDATE MSPLINK command to set or change the MSC physical link attributes or to change the status of the specified physical links.

Subsections:
- “Environment”
- “Syntax”
- “Keywords” on page 1086
- “Usage notes” on page 1089
- “Equivalent IMS type-1 commands” on page 1089
- “Output fields” on page 1090
- “Return, reason, and completion codes” on page 1090
- “Examples” on page 1091

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) from which the UPDATE MSPLINK command and keywords can be issued.

Table 484. Valid environments for the UPDATE MSPLINK command and keywords

<table>
<thead>
<tr>
<th>Command / keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE MSPLINK</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SET</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>START</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>STOP</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax
Keywords

The following keywords are valid for the UPDATE MSPLINK command:

**NAME()**

Specifies the 1- to 8-character name of the MSC physical link that is processed. You can specify wildcards (*) in the name. NAME(*) and NAME(abc*) are examples of valid names.

**SET()**

Specifies the attribute values to be updated or sets the resource state.

ASR(), MODETBL() and NODE() are VTAM link specific parameters.

**ASR()**

The Automatic Session Restart (ASR) designation for each logical link assigned to the specified VTAM physical link changes when the Session Outage Notification facility of VTAM is used. The ASR parameter allows you to override the system definition option that is defined for the automatic session restart designation of a link.

You cannot change the designation of ASR for non-VTAM MSC links.

Stop the physical link and each assigned logical link before you change the ASR designation.

**ON**

Specifies that the logical link uses automatic session restart. Automatic session restart is not necessarily activated for a link if a status of ASR is displayed for that link. SONSCIP=YES must also be specified on the APPL definition statement for VTAM when defining the network to VTAM. ASR works only if both sides of the link use the ASR option.

**OFF**

Specifies that the logical link does not use automatic session restart.

**ICONPLKID()**

For TCP/IP physical links, defines a 1- to 8-character alphanumeric ID by which IMS Connect knows the MSC physical link. This ID must match the ID defined to IMS Connect on the LCLPLKID parameter of the MSC configuration statement that defines the physical link to IMS Connect.
You can use the ICONPLKID key word to modify the MSC physical link to reference a different IMS Connect MSC configuration statement.

This ID can also be specified on the LCLPLKID key word of the MSPLINK macro.

**IMSCON()**
For TCP/IP physical links, specifies the IMSplex name of the local IMS Connect instance that manages the TCP/IP connections for this physical link. IMSCON accepts a 1- to 8- alphanumeric value.

You can use the IMSCON keyword to switch the IMS Connect instance that an MSC physical link uses.

**MODETBL()**
Changes the name of the default VTAM logon mode table entry (logon mode table) for this physical link. This changes the name for each logical link currently assigned to this physical link. This name is usually established by system definition. To reset this field to its null state (as if no mode table name was specified at system definition), specify MODETBL().

You cannot use the SET(MODETBL) parameter for a non-VTAM MSC link.

The physical link and each assigned logical link must be stopped before changing the MODETBL.

**MSPLINK()**
Specifies the 1- to 8-alphanumeric new physical link name for this physical link. This keyword also allows you to change the name of a reserved link to a real name and activate it. The name specified in MSPLINK() must be unique. If the command is successful, the old physical link name specified on the NAME keyword is no longer valid.

Only one NAME parameter can be specified to change the MSPLINK name.

The physical link must be stopped before changing the MSPLINK.

**NODE()**
Specifies a 1- to 8-alphanumeric name for the remote VTAM node (APPLID) name for the VTAM line. This node is the VTAM node name of the remote IMS system at the other end of the link. This node is the label on the VTAM APPL statement for the remote IMS system. For an MSC VTAM link communicating with an XRF complex, the node name must be the VTAM USERVAR that is associated with the partner XRF complex.

The physical link and each assigned logical link must be stopped before changing the NODE.

**RMTIMS()**
For TCP/IP physical links, defines the remote IMS system that this physical link connects to. Enter the 1- to 8- alphanumeric IMSID of the remote IMS system.

You can use the RMTIMS keyword to change the remote IMS system that an MSC physical link references.

**START()**
Specifies the attributes to start.

**GENLOGON**
For IMS systems that participate in a TCP/IP generic resource group,
enables the IMS systems that process this command to resume accepting logical link connection requests to the generic resource group on the specified physical link.

START(GENLOGON) is independent of LOGON, which is used for links that do not use the TCP/IP generic resource group. If STOP(LOGON) has been previously issued, you must issue START(GENLOGON), either separately or with the GENLOGON parameter, before the IMS system can resume starting and accepting logical links that do not use TCP/IP generic resources.

LOGON
For MSC TCP/IP and VTAM physical link types only. For TCP/IP-type links, START(LOGON) allows the starting of the logical links assigned to the physical link. For VTAM-type links, START(LOGON) enables logical links to logon to the physical link. START(LOGON) and STOP(LOGON) are mutually exclusive.

START(LOGON) is independent of GENLOGON, which is used for links that use a TCP/IP generic resource group. If STOP(GENLOGON) has been previously issued, you must issue START(GENLOGON), either separately or with the LOGON parameter, before the IMS system can resume starting and accepting logical links that use TCP/IP generic resources.

STOP()
Specifies the attributes to stop.

GENLOGON
For IMS systems that participate in a TCP/IP generic resource group, prevents the IMS systems that process this command from either starting or accepting the specified TCP/IP physical link.

The STOP(GENLOGON) keyword is applicable only to TCP/IP-type physical links that are defined in IMS systems that participate in a TCP/IP generic resource group.

The STOP(GENLOGON) does not affect links that are already in session.

Use STOP(GENLOGON) to control where the restart message from a remote link restart is accepted within the local IMSplex. Issue STOP(GENLOGON) against every IMS system in the TCP/IP generic resource group, except the IMS system with which you need to establish link affinity.

After an UPDATE MSPLINK NAME(plnkname) STOP(GENLOGON) command is issued, the QUERY MSPLINK command displays a local status of STOGENLN.

STOP(GENLOGON) does not prevent the IMS system from accepting links that do not use the generic resource group. GENLOGON is independent of LOGON and both can be specified together on the STOP() keyword to prevent the IMS system from starting or accepting all links, regardless of whether they use TCP/IP generic resources.

LOGON
For MSC TCP/IP and VTAM physical link types only.

For TCP/IP links, STOP(LOGON) prevents the IMS systems that process this command from starting of the physical link or accepting start requests for the physical link from a link partner. The LOGON keyword does not affect TCP/IP physical links that are used for TCP/IP generic resources.
The LOGON keyword is independent of the GENLOGON keyword that is used for physical links that are used with TCP/IP generic resources. Both keywords can be specified together on the STOP() keyword to prevent the IMS system from starting or accepting all links, regardless of whether they use TCP/IP generic resources.

For VTAM links, STOP(LOGON) prevents logons to the physical link. START(LOGON) and STOP(LOGON) are mutually exclusive.

After an UPDATE MSPLINK NAME(plinkname) STOP(LOGON) command is issued, the QUERY MSPLINK command displays a local status of STOLGN.

The STOP(LOGON) does not affect links that are already in session.

Usage notes

You can issue this command only through the Operations Manager (OM) API. This command applies to DB/DC and DCCTL systems.

The syntax for this command is defined in XML and is available to automation programs that communicate with OM.

Equivalent IMS type-1 commands

The following table shows variations of the UPDATE MSPLINK command and the type-1 IMS commands that perform similar functions.

<table>
<thead>
<tr>
<th>UPDATE MSPLINK command</th>
<th>Similar IMS type-1 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE MSPLINK NAME(msplinkname) SET(ASR(ON</td>
<td>OFF))</td>
</tr>
<tr>
<td>UPDATE MSPLINK NAME(msplinkname) SET(CONPLKID(iconplkid))</td>
<td>No similar type-1 IMS command exists.</td>
</tr>
<tr>
<td>UPDATE MSPLINK NAME(msplinkname) SET(IMS_CON(name))</td>
<td>No similar type-1 IMS command exists.</td>
</tr>
<tr>
<td>UPDATE MSPLINK NAME(msplinkname) SET(MODE_TBL(name))</td>
<td>No similar type-1 IMS command exists.</td>
</tr>
<tr>
<td>UPDATE MSPLINK NAME(msplinkname) SET(MSPLINK(new_msplinkname))</td>
<td>No similar type-1 IMS command exists.</td>
</tr>
<tr>
<td>UPDATE MSPLINK NAME(msplinkname) SET(NODE(VTAM_node_name))</td>
<td>No similar type-1 IMS command exists.</td>
</tr>
<tr>
<td>UPDATE MSPLINK NAME(msplinkname) SET(RMTIMS(rmtims))</td>
<td>No similar type-1 IMS command exists.</td>
</tr>
<tr>
<td>UPDATE MSPLINK NAME(msplinkname</td>
<td>*) /RSTART MSPLINK msplinkname</td>
</tr>
<tr>
<td>UPDATE MSPLINK NAME(msplinkname</td>
<td>*) /PSTOP MSPLINK msplinkname</td>
</tr>
<tr>
<td>UPDATE MSPLINK NAME(msplinkname</td>
<td>*) START(GENLOGON)</td>
</tr>
<tr>
<td>UPDATE MSPLINK NAME(msplinkname</td>
<td>*) STOP(GENLOGON)</td>
</tr>
</tbody>
</table>
**Output fields**

**Short label**
Contains the short label that is generated in the XML output.

**Keyword**
Identifies keyword on the command that caused the field to be generated. `error` appears for output fields that can appear for a non-zero completion code. N/A (not applicable) appears for output fields that are always returned.

**Meaning**
Provides a brief description of the output field.

<table>
<thead>
<tr>
<th>Short label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>N/A</td>
<td>Completion code.</td>
</tr>
<tr>
<td>CCTXT</td>
<td><code>error</code></td>
<td>Completion code text that briefly explains the meaning of the non-zero completion code.</td>
</tr>
<tr>
<td>MBR</td>
<td>N/A</td>
<td>IMSplex member that built the output line.</td>
</tr>
<tr>
<td>MSPL</td>
<td>N/A</td>
<td>Physical link name.</td>
</tr>
</tbody>
</table>

**Return, reason, and completion codes**

The return and reason codes that can be returned as a result of the UPDATE MSPLINK command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The UPDATE MSPLINK command completed successfully.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002040'</td>
<td>More than 1 filter value is specified on the UPDATE MSPLINK command.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003000'</td>
<td>Command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code. See the following table for details on completion codes.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>Command was not successful for any of the resources. The command output contains a line for each resource, accompanied by its completion code. See the following table for details on completion codes.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000400C'</td>
<td>Command is not valid on the XRF alternate.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>Command is not valid on the RSR tracker.</td>
</tr>
</tbody>
</table>
Errors that are unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

**Table 488. Completion codes for the UPDATE MSPLINK command**

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The UPDATE MSPLINK command completed successfully for the resource.</td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>MSPLINK name is invalid, or the specified wildcard parameter does not match any resource names.</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>The link name specified in MSPLINK() already exists as a physical link.</td>
</tr>
<tr>
<td>8D</td>
<td></td>
<td>The physical link is not stopped. The link must be stopped for the updates specified.</td>
</tr>
<tr>
<td>100</td>
<td>INV SET KEYWORD FOR LINK TYPE</td>
<td>A keyword specified in SET() is invalid for the corresponding physical link type.</td>
</tr>
<tr>
<td>10C</td>
<td>INVALID START/STOP FOR LINK TYPE</td>
<td>A keyword specified in START() or STOP() is invalid for the corresponding physical link type.</td>
</tr>
</tbody>
</table>

**Examples**

The following are examples of the UPDATE MSPLINK command:

**Example 1 for UPDATE MSPLINK command**

TSO SPOC input:

```
UPD MSPLINK NAME(STAR1) SET(MODETBL(LOGON12B), NODE(APPL12B), ASR(ON))
```

TSO SPOC output:

```
MSName MbrName CC
STAR1 IMSA 0
```

**Explanation:** This UPDATE MSPLINK command is issued to do the following:

1. Change the VTAM logon mode table entry to LOGON12B.
2. Change the VTAM node name of the remote system at the other end of the link to APPL12B.
3. Override the automatic session restart definitions established by system definition.

**Example 2 for UPDATE MSPLINK command**

TSO SPOC input:
**Example 3 for UPDATE MSPLINK command**

**Example 4 for UPDATE MSPLINK command**

In the example above each link is a different MSC physical link type:
- PLNK12C is a CTC link
- PLNK12M is an MTM link
- PLNK12TA is a TCPIP link
- PLNK12V is a VTAM link

The command is rejected for the CTC and MTM link types, because they do not support the LOGON and GENLOGON command options. After the command is processed, only the TCPIP and VTAM type links have the STOGENLGN and
STOLGN status, as shown in the following example output of the QUERY MSPLINK NAME(*) SHOW(STATUS) command:

```
MSPLink MbrName CC LcLSstat
PLNK12C IMS1 0
PLNK12M IMS1 0
PLNK12TA IMS1 0 STOGENLGN
PLNK12V IMS1 0 STOLGN
```

Related concepts:

- How to interpret CSL request return and reason codes (System Programming APIs)

Related reference:

- Command keywords and their synonyms (Commands)
- List of commands with similar functions for multiple resources (Operations and Automation)

### UPDATE ODBM commands

Use the UPDATE ODBM commands to change Open Database Manager (ODBM) settings.

Subsections:

- “UPDATE ODBM START(CONNECTION) command”
- “UPDATE ODBM START(TRACE) command” on page 1096
- “UPDATE ODBM STOP(CONNECTION) command” on page 1099
- “UPDATE ODBM STOP(TRACE) command” on page 1102
- “UPDATE ODBM TYPE(CONFIG) command” on page 1105

### UPDATE ODBM START(CONNECTION) command

Use the UPDATE ODBM START(CONNECTION) command to start connections to data stores and aliases for Open Database Manager (ODBM).

Subsections:

- “Environment”
- “Syntax”
- “Keywords” on page 1094
- “Usage notes” on page 1094
- “Output fields” on page 1094
- “Return, reason, and completion codes” on page 1095
- “Examples” on page 1096

**Environment**

The UPDATE ODBM command is applicable only to the CSL Open Database Manager (ODBM). To issue this command, a CSL type-2 command environment must be enabled and an ODBM instance must be active.

**Syntax**
Keywords

The following keywords are valid for the UPDATE ODBM START(CONNECTION) command.

**ALIAS()**

- Specifies the 1–4 character alias name. Wildcards can be specified for the alias name. You can specify more than one alias name.
- There is no default for ALIAS(). Specifying the ALIAS keyword will start ODBM connections to all the aliases specified with `alias_name`. ALIAS() and DATASTORE() are mutually exclusive.

**DATASTORE()**

- Specifies the 1–4 character data store name. Wildcards can be specified for the data store name. You can specify more than one data store names.
- There is no default for DATASTORE(). Specifying the DATASTORE keyword will start ODBM connections to all the data stores specified with `datastore_name` as well as their associated aliases. DATASTORE() and ALIAS() are mutually exclusive.

Usage notes

You can issue this command only through the Operations Manager (OM) API.

The syntax for this command is defined in XML and is available to automation programs that communicate with OM.

Output fields

**Short label**

- Contains the short label that is generated in the XML output.

**Keyword**

- Identifies keyword on the command that caused the field to be generated.
- `error` appears for output fields that can appear for a non-zero completion code.
- N/A (not applicable) appears for output fields that are always returned.

**Meaning**

- Provides a brief description of the output field.
Table 489. Output field descriptions for the UPDATE ODBM START(CONNECTION) command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALIAS</td>
<td>ALIAS</td>
<td>The 1–4 character alias name that is associated with an IMS data store connection.</td>
</tr>
<tr>
<td>CC</td>
<td>N/A</td>
<td>Completion code.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the non-zero completion code.</td>
</tr>
<tr>
<td>DSTR</td>
<td>N/A</td>
<td>Data store name.</td>
</tr>
<tr>
<td>MBR</td>
<td>N/A</td>
<td>Name of the ODBM member that processed the command.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The return and reason codes that can be returned as a result of the UPDATE ODBM START(CONNECTION) command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 490. Return and reason codes for the UPDATE ODBM START(CONNECTION) command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The UPD ODBM START(CONNECTION) command completed successfully.</td>
</tr>
<tr>
<td>X'04000008'</td>
<td>X'00002004'</td>
<td>Invalid command keyword or invalid command keyword combination.</td>
</tr>
<tr>
<td>X'04000008'</td>
<td>X'00002008'</td>
<td>Insufficient number of keywords.</td>
</tr>
<tr>
<td>X'04000008'</td>
<td>X'00002014'</td>
<td>Invalid character in resource name.</td>
</tr>
<tr>
<td>X'04000008'</td>
<td>X'0000203C'</td>
<td>Invalid parameter specified.</td>
</tr>
<tr>
<td>X'0400000B'</td>
<td>X'00003000'</td>
<td>At least one request was successful.</td>
</tr>
<tr>
<td>X'0400000C'</td>
<td>X'00003004'</td>
<td>No requests were successful.</td>
</tr>
<tr>
<td>X'04000014'</td>
<td>X'00005034'</td>
<td>An OM response buffer request failed.</td>
</tr>
<tr>
<td>X'04000014'</td>
<td>X'00005038'</td>
<td>A CSLDCMD0 GETBUF request failed to get a command buffer.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

Table 491. Completion codes for the UPDATE ODBM START(CONNECTION) command

<table>
<thead>
<tr>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The UPDATE ODBM START(CONNECTION) command completed successfully.</td>
</tr>
<tr>
<td>1</td>
<td>INVALID CHARACTER, RESOURCE NAME</td>
</tr>
</tbody>
</table>

The resource name in the command input has invalid characters.
Table 491. Completion codes for the UPDATE ODBM START(CONNECTION) command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>DATASTORE NOT AVAILABLE</td>
<td>An attempt to start a data store connection failed. The data store is unavailable.</td>
</tr>
<tr>
<td>4</td>
<td>DATASTORE CONNECTION FAILED</td>
<td>An attempt to start a data store connection failed. Message CSL4006W accompanies this completion code and explains the AIB return code, AIB reason code, and AIB error extension. (See note)</td>
</tr>
<tr>
<td>5</td>
<td>DATASTORE NOT RRS CAPABLE</td>
<td>An attempt to start a data store connection failed. The data store is not RRS capable.</td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>No resources were found.</td>
</tr>
</tbody>
</table>

Note: The command response is encapsulated in <rsp> and </rsp> tags. Message CSL4006W is returned within <msg> and </msg> tags.

Examples

Example 1 for UPDATE ODBM START(CONNECTION) command

TSO SPOC input:
UPD ODBM START(CONNECTION) DATASTORE(+)  

TSO SPOC output:

<table>
<thead>
<tr>
<th>MbrName</th>
<th>DatastoreName</th>
<th>CC</th>
<th>DatastoreName</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODBM01OD</td>
<td>IMS1</td>
<td>0</td>
<td>IMS</td>
</tr>
<tr>
<td>ODBM01OD</td>
<td>IMS2</td>
<td>0</td>
<td>IMS</td>
</tr>
<tr>
<td>ODBM02OD</td>
<td>IMS3</td>
<td>0</td>
<td>IMS</td>
</tr>
</tbody>
</table>

Explanation: The UPDATE command will start connections with all data stores that are known to ODBM.

Example 2 for UPDATE ODBM START(CONNECTION) command

TSO SPOC input:
UPD ODBM START(CONNECTION) ALIAS(IO1A,IO1B)  

TSO SPOC output:

<table>
<thead>
<tr>
<th>MbrName</th>
<th>AliasName</th>
<th>CC</th>
<th>DatastoreName</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODBM01OD</td>
<td>IO1A</td>
<td>0</td>
<td>IMS</td>
</tr>
<tr>
<td>ODBM01OD</td>
<td>IO1B</td>
<td>0</td>
<td>IMS</td>
</tr>
</tbody>
</table>

Explanation: The UPDATE command will start ODBM connections with the ODBM members whose alias names are either IO1A or IO1B.

UPDATE ODBM START(TRACE) command

Use the UPDATE ODBM START(TRACE) command to request that ODBM traces be started.

Subsections:
Environment

The UPDATE ODBM command is applicable only to the CSL Open Database Manager (ODBM). To issue this command, a CSL type-2 command environment must be enabled and an ODBM instance must be active.

Syntax

```
UPDATE ODBM START(TRACE)
```

Keywords

The following keywords are valid for the UPDATE ODBM START(TRACE) command.

```
DATASTORE()
```

Specifies the 1–4 character data store name. Wildcards can be specified for the data store name. The `datastore_name` is a repeatable parameter. The default is `DATASTORE(*)`, which applies to all data store names that are known to ODBM.

Usage notes

You can issue this command only through the Operations Manager (OM) API.

The syntax for this command is defined in XML and is available to automation programs that communicate with OM.

Output fields

**Short label**

Contains the short label that is generated in the XML output.

**Keyword**

Identifies keyword on the command that caused the field to be generated. `error` appears for output fields that can appear for a non-zero completion code. N/A (not applicable) appears for output fields that are always returned.

**Meaning**

Provides a brief description of the output field.
Table 492. Output field descriptions for the UPDATE ODBM START(TRACE) command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALIAS</td>
<td>N/A</td>
<td>Alias name.</td>
</tr>
<tr>
<td>CC</td>
<td>N/A</td>
<td>Completion code.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the non-zero completion code.</td>
</tr>
<tr>
<td>DSTR</td>
<td>N/A</td>
<td>Data store name.</td>
</tr>
<tr>
<td>MBR</td>
<td>N/A</td>
<td>Name of the ODBM member that processed the command.</td>
</tr>
</tbody>
</table>

**Return, reason, and completion codes**

The return and reason codes that can be returned as a result of the UPDATE ODBM START(TRACE) command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 493. Return and reason codes for the UPDATE ODBM START(TRACE) command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The UPDATE ODBM START(TRACE) command completed successfully.</td>
</tr>
<tr>
<td>X'04000008'</td>
<td>X'00002004'</td>
<td>Invalid command keyword or invalid command keyword combination.</td>
</tr>
<tr>
<td>X'04000008'</td>
<td>X'00002008'</td>
<td>Insufficient number of keywords.</td>
</tr>
<tr>
<td>X'04000008'</td>
<td>X'00002014'</td>
<td>Invalid character in resource name.</td>
</tr>
<tr>
<td>X'04000008'</td>
<td>X'0000203C'</td>
<td>Invalid parameter specified.</td>
</tr>
<tr>
<td>X'0400000C'</td>
<td>X'00003000'</td>
<td>At least one request was successful.</td>
</tr>
<tr>
<td>X'0400000C'</td>
<td>X'00003004'</td>
<td>No requests were successful.</td>
</tr>
<tr>
<td>X'04000014'</td>
<td>X'00005034'</td>
<td>An OM response buffer request failed.</td>
</tr>
<tr>
<td>X'04000014'</td>
<td>X'00005038'</td>
<td>A CSLDCMD0 GETBUF request failed to get a command buffer.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

Table 494. Completion codes for the UPDATE ODBM START(TRACE) command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The UPDATE ODBM START(TRACE) command completed successfully.</td>
</tr>
<tr>
<td>1</td>
<td>INVALID CHARACTER, RESOURCE NAME</td>
<td>The resource name in the command input has invalid characters.</td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>No resources were found.</td>
</tr>
</tbody>
</table>
Examples

Example 1 for UPDATE ODBM START(TRACE) command

TSO SPOC input:
UPD ODBM START(TRACE) DATASTORE(IMS1, IMS2)

TSO SPOC output:

<table>
<thead>
<tr>
<th>MemberName</th>
<th>DatastoreName</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODBM01OD</td>
<td>IMS1</td>
<td>0</td>
</tr>
<tr>
<td>ODBM01OD</td>
<td>IMS2</td>
<td>0</td>
</tr>
</tbody>
</table>

Explanation: The UPDATE command will start ODBM traces for data stores IMS1 and IMS2.

Example 2 for UPDATE ODBM START(TRACE) command

TSO SPOC input:
UPD ODBM START(TRACE) DATASTORE(*)

TSO SPOC output:

<table>
<thead>
<tr>
<th>MemberName</th>
<th>DatastoreName</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODBM01OD</td>
<td>IMS1</td>
<td>0</td>
</tr>
<tr>
<td>ODBM01OD</td>
<td>IMS2</td>
<td>0</td>
</tr>
<tr>
<td>ODBM02OD</td>
<td>IMS3</td>
<td>0</td>
</tr>
</tbody>
</table>

Explanation: The UPDATE command will start ODBM traces for all data stores that are known to ODBM.

UPDATE ODBM STOP(CONNECTION) command

Use the UPDATE ODBM STOP(CONNECTION) command to stop connections to data stores and aliases for Open Database Manager (ODBM).

Subsections:
- “Environment”
- “Syntax”
- “Keywords” on page 1100
- “Usage notes” on page 1100
- “Output fields” on page 1100
- “Return, reason, and completion codes” on page 1101
- “Examples” on page 1102

Environment

The UPDATE ODBM command is applicable only to the CSL Open Database Manager (ODBM). To issue this command, a CSL type-2 command environment must be enabled and an ODBM instance must be active.

Syntax

```plaintext
UPDATE ODBM STOP(CONNECTION)
```
Keywords

The following keywords are valid for the UPDATE ODBM STOP(CONNECTION) command.

**ALIAS()**

Specifies the 1–4 character alias name. Wildcards can be specified for the alias name. You can specify more than one aliases.

There is no default for ALIAS(). Specifying the ALIAS keyword will stop ODBM connections to all the aliases specified with alias_name. ALIAS() and DATASTORE() are mutually exclusive.

**DATASTORE()**

Specifies the 1–4 character data store name. Wildcards can be specified for the data store name. You can specify more than one data store.

There is no default for DATASTORE(). Specifying the DATASTORE keyword will stop ODBM connections to all the data stores specified with datastore_name as well as their associated aliases. DATASTORE() and ALIAS() are mutually exclusive.

To start connections to the data stores, you must issue an UPDATE ODBM START(CONNECTION) DATASTORE() command. Even if the actual data store subsystems are recycled after the UPDATE ODBM STOP(CONNECTION) DATASTORE() command, ODBM will not attempt to connect to the data stores until an UPDATE ODBM START(CONNECTION) DATASTORE() command is issued.

Usage notes

You can issue this command only through the Operations Manager (OM) API.

The syntax for this command is defined in XML and is available to automation programs that communicate with OM.

Output fields

**Short label**

Contains the short label that is generated in the XML output.

**Keyword**

Identifies keyword on the command that caused the field to be generated. error appears for output fields that can appear for a non-zero completion code. N/A (not applicable) appears for output fields that are always returned.

**Meaning**

Provides a brief description of the output field.
Table 495. Output field descriptions for the UPDATE ODBM STOP(CONNECTION) command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALIAS</td>
<td>ALIAS</td>
<td>The 1–4 character alias name that is associated with an IMS data store connection.</td>
</tr>
<tr>
<td>CC</td>
<td>N/A</td>
<td>Completion code.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the non-zero completion code.</td>
</tr>
<tr>
<td>DSTR</td>
<td>N/A</td>
<td>Data store name.</td>
</tr>
<tr>
<td>MBR</td>
<td>N/A</td>
<td>Name of the ODBM member that processed the command.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The return and reason codes that can be returned as a result of the UPDATE ODBM STOP(CONNECTION) command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 496. Return and reason codes for the UPDATE ODBM STOP(CONNECTION) command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The UPDATE ODBM STOP(CONNECTION) command completed successfully.</td>
</tr>
<tr>
<td>X'04000008'</td>
<td>X'00002004'</td>
<td>Invalid command keyword or invalid command keyword combination.</td>
</tr>
<tr>
<td>X'04000008'</td>
<td>X'00002008'</td>
<td>Insufficient number of keywords.</td>
</tr>
<tr>
<td>X'04000008'</td>
<td>X'00002014'</td>
<td>Invalid character in resource name.</td>
</tr>
<tr>
<td>X'04000008'</td>
<td>X'0000203C'</td>
<td>Invalid parameter specified.</td>
</tr>
<tr>
<td>X'0400000C'</td>
<td>X'00003000'</td>
<td>At least one request was successful.</td>
</tr>
<tr>
<td>X'0400000C'</td>
<td>X'00003004'</td>
<td>No requests were successful.</td>
</tr>
<tr>
<td>X'04000014'</td>
<td>X'00005034'</td>
<td>An OM response buffer request failed.</td>
</tr>
<tr>
<td>X'04000014'</td>
<td>X'00005038'</td>
<td>A CSLDCMD0 GETBUF request failed to get a command buffer.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

Table 497. Completion codes for the UPDATE ODBM STOP(CONNECTION) command

<table>
<thead>
<tr>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The UPDATE ODBM STOP(CONNECTION) command completed successfully.</td>
</tr>
<tr>
<td>1</td>
<td>INVALID CHARACTER, RESOURCE NAME</td>
</tr>
</tbody>
</table>
Table 497. Completion codes for the UPDATE ODBM STOP(CONNECTION) command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>DATASTORE DISCONNECT FAILED</td>
<td>An attempt to stop a data store connection failed. Message CSL4007W accompanies this completion code and explains the AIB return code, AIB reason code, and AIB error text. (See note)</td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>No resources were found.</td>
</tr>
</tbody>
</table>

Note: The command response is encapsulated in <rsp> and </rsp> tags. Message CSL4007W is returned within <msg> and </msg> tags.

Examples

Example 1 for UPDATE ODBM STOP(CONNECTION) command

TSO SPOC input:

UPD ODBM STOP(CONNECTION) DATASTORE(IMS*)

TSO SPOC output:

<table>
<thead>
<tr>
<th>MbrName</th>
<th>DatastoreName</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODBM01OD</td>
<td>IMS1</td>
<td>0</td>
</tr>
<tr>
<td>ODBM01OD</td>
<td>IMS2</td>
<td>0</td>
</tr>
<tr>
<td>ODBM02OD</td>
<td>IMS3</td>
<td>0</td>
</tr>
</tbody>
</table>

Explanation: The UPDATE command will stop connections with all data stores whose name begin with “IMS”.

Example 2 for UPDATE ODBM STOP(CONNECTION) command

TSO SPOC input:

UPD ODBM STOP(CONNECTION) ALIAS(IO*)

TSO SPOC output:

<table>
<thead>
<tr>
<th>MbrName</th>
<th>AliasName</th>
<th>CC</th>
<th>DatastoreName</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODBM01OD</td>
<td>I01A</td>
<td>0</td>
<td>IMS1</td>
</tr>
<tr>
<td>ODBM01OD</td>
<td>I01B</td>
<td>0</td>
<td>IMS1</td>
</tr>
<tr>
<td>ODBM01OD</td>
<td>I02A</td>
<td>0</td>
<td>IMS2</td>
</tr>
<tr>
<td>ODBM01OD</td>
<td>I02B</td>
<td>0</td>
<td>IMS2</td>
</tr>
<tr>
<td>ODBM02OD</td>
<td>I03A</td>
<td>0</td>
<td>IMS3</td>
</tr>
<tr>
<td>ODBM02OD</td>
<td>I03B</td>
<td>0</td>
<td>IMS3</td>
</tr>
</tbody>
</table>

Explanation: The UPDATE command will stop ODBM connections with the ODBM members whose alias names begin with “IO”.

UPDATE ODBM STOP(TRACE) command

Use the UPDATE ODBM STOP(TRACE) command to request that ODBM traces be stopped.

Subsections:
- “Environment” on page 1103
- “Syntax” on page 1103
- “Keywords” on page 1103
Environment

The UPDATE ODBM command is applicable only to the CSL Open Database Manager (ODBM). To issue this command, a CSL type-2 command environment must be enabled and an ODBM instance must be active.

Syntax

```
UPDATE ODBM STOP(TRACE)
```

Keywords

The following keywords are valid for the UPDATE ODBM STOP(TRACE) command.

**DATASTORE()**

Specifies the 1–4 character data store name. Wildcards can be specified for the data store name. The `datastore_name` is a repeatable parameter. The default is `DATASTORE(*)`, which applies to all data store names that are known to ODBM.

Usage notes

You can issue this command only through the Operations Manager (OM) API.

The syntax for this command is defined in XML and is available to automation programs that communicate with OM.

Output fields

**Short label**

Contains the short label that is generated in the XML output.

**Keyword**

Identifies keyword on the command that caused the field to be generated. `error` appears for output fields that can appear for a non-zero completion code. N/A (not applicable) appears for output fields that are always returned.

**Meaning**

Provides a brief description of the output field.

<table>
<thead>
<tr>
<th>Short label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALIAS</td>
<td>N/A</td>
<td>Alias name.</td>
</tr>
<tr>
<td>CC</td>
<td>N/A</td>
<td>Completion code.</td>
</tr>
</tbody>
</table>

Table 498. Output field descriptions for the UPDATE ODBM STOP(TRACE) command
Table 498. Output field descriptions for the UPDATE ODBM STOP(TRACE) command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCTXT</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the non-zero completion code.</td>
</tr>
<tr>
<td>DSTR</td>
<td>N/A</td>
<td>Data store name.</td>
</tr>
<tr>
<td>MBR</td>
<td>N/A</td>
<td>Name of the ODBM member that processed the command.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The return and reason codes that can be returned as a result of the UPDATE ODBM STOP(TRACE) command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 499. Return and reason codes for the UPDATE ODBM STOP(TRACE) command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The UPDATE ODBM STOP(TRACE) command completed successfully.</td>
</tr>
<tr>
<td>X'04000008'</td>
<td>X'00002004'</td>
<td>Invalid command keyword or invalid command keyword combination.</td>
</tr>
<tr>
<td>X'04000008'</td>
<td>X'00002008'</td>
<td>Insufficient number of keywords.</td>
</tr>
<tr>
<td>X'04000008'</td>
<td>X'00002014'</td>
<td>Invalid character in resource name.</td>
</tr>
<tr>
<td>X'04000008'</td>
<td>X'0000203C'</td>
<td>Invalid parameter specified.</td>
</tr>
<tr>
<td>X'0400000C'</td>
<td>X'00003000'</td>
<td>At least one request was successful.</td>
</tr>
<tr>
<td>X'0400000C'</td>
<td>X'00003004'</td>
<td>No requests were successful.</td>
</tr>
<tr>
<td>X'04000014'</td>
<td>X'00005034'</td>
<td>An OM response buffer request failed.</td>
</tr>
<tr>
<td>X'04000014'</td>
<td>X'00005038'</td>
<td>A CSLDCMD0 GETBUF request failed to get a command buffer.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

Table 500. Completion codes for the UPDATE ODBM STOP(TRACE) command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The UPDATE ODBM STOP(TRACE) command completed successfully.</td>
</tr>
<tr>
<td>1</td>
<td>INVALID CHARACTER, RESOURCE NAME</td>
<td>The resource name in the command input has invalid characters.</td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>No resources were found.</td>
</tr>
</tbody>
</table>
Examples

Example 1 for UPDATE ODBM STOP(TRACE) command

TSO SPOC input:

\text{UPD ODBM STOP(TRACE) DATASTORE(\star)}

TSO SPOC output:

\begin{tabular}{llr}
MbrName & DatastoreName & CC \\
\text{ODBM01OD} & \text{IMS1} & 0 \\
\text{ODBM01OD} & \text{IMS2} & 0 \\
\text{ODBM02OD} & \text{IMS3} & 0 \\
\end{tabular}

Explanation: The UPDATE command will stop ODBM traces for all data stores that are known to ODBM.

**UPDATE ODBM TYPE(CONFIG) command**

Use the UPDATE ODBM TYPE(CONFIG) command to update active ODBM configuration.

Subsections:
- “Environment”
- “Syntax”
- “Keywords”
- “Usage notes” on page 1106
- “Output fields” on page 1106
- “Return, reason, and completion codes” on page 1107
- “Examples” on page 1108

**Environment**

The UPDATE ODBM command is applicable only to the CSL Open Database Manager (ODBM). To issue this command, a CSL type-2 command environment must be enabled and an ODBM instance must be active.

**Syntax**

\begin{equation}
\text{UPDATE ODBM TYPE(CONFIG) MEMBER(mambername)}
\end{equation}

\begin{equation}
\text{OPTION(CONNECT)}
\end{equation}

\begin{equation}
\text{OPTION(NOCONNECT)}
\end{equation}

**Keywords**

The following keywords are valid for the UPDATE ODBM TYPE(CONFIG) command.

\text{MEMBER()} 

Specifies a 3–character CSLDCxxx suffix that identifies which ODBM configuration PROCLIB member is used to update the active ODBM configuration. The default is the current CSLDCxxx member.
Note: If a new CSLDCxxx member is used to update the active ODBM configuration, the new member becomes the current ODBM configuration PROCLIB member. Also, when restarting ODBM, the ODBMCFG= parameter on the EXEC statement or within the CSLDxxx initialization PROCLIB member will be used to configure ODBM.

OPTION()
Specifies whether you want connections with the data stores to be attempted after the active ODBM configuration has been updated.

CONNECT
Specifies that after updating the active ODBM configuration, all data stores within the new configuration will be connected and all aliases associated with the data stores will be made available for use. CONNECT is the default.

NOCONNECT
Specifies that after updating the active ODBM configuration, no connections will be attempted. To start connections to the data stores, you must issue an UPDATE ODBM START(CONNECTION) DATASTORE() command. Even if the actual data store subsystems are started or recycled after the UPDATE ODBM TYPE(CONFIG) OPTION(NOCONNECT) command, ODBM will not attempt to connect to the data stores until an UPDATE ODBM START(CONNECTION) DATASTORE() command is issued.

TYPE(CONFIG)
Specifies to update the active ODBM configuration.

Usage notes

You can issue this command only through the Operations Manager (OM) API.

The syntax for this command is defined in XML and is available to automation programs that communicate with OM.

The UPDATE ODBM TYPE(CONFIG) command allows the user to update the active ODBM configuration by loading an updated copy of the current or an alternate CSLDCxxx ODBM configuration PROCLIB member.

Before processing the UPD ODBM TYPE(CONFIG) command, all data store connections must be stopped on all ODBMs to which the command will be routed.

Output fields

The following table shows the UPDATE ODBM output fields. The columns in the table are as follows:

Short label
Contains the short label that is generated in the XML output.

Keyword
Identifies keyword on the command that caused the field to be generated. error appears for output fields that can appear for a non-zero completion code. N/A (not applicable) appears for output fields that are always returned.

Meaning
Provides a brief description of the output field.
Table 501. Output field descriptions for the UPDATE ODBM TYPE(CONFIG) command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>N/A</td>
<td>Completion code.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the non-zero completion code.</td>
</tr>
<tr>
<td>CFG</td>
<td>N/A</td>
<td>ODBM configuration PROCLIB member (CSLDCxxx) used to establish the new active configuration.</td>
</tr>
<tr>
<td>MBR</td>
<td>N/A</td>
<td>IMSplex member that built the output line. The ODBM identifier of the ODBM that built the output line.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The return and reason codes that can be returned as a result of the UPDATE ODBM TYPE(CONFIG) command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 502. Return and reason codes for the UPDATE ODBM TYPE(CONFIG) command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The UPDATE ODBM TYPE(CONFIG) command completed successfully.</td>
</tr>
<tr>
<td>X'04000008'</td>
<td>X'00002004'</td>
<td>Invalid command keyword or invalid command keyword combination.</td>
</tr>
<tr>
<td>X'04000008'</td>
<td>X'00002008'</td>
<td>Insufficient number of keywords.</td>
</tr>
<tr>
<td>X'04000008'</td>
<td>X'00002014'</td>
<td>Invalid character in resource name.</td>
</tr>
<tr>
<td>X'04000008'</td>
<td>X'0000203C'</td>
<td>Invalid parameter specified.</td>
</tr>
<tr>
<td>X'0400000C'</td>
<td>X'00003000'</td>
<td>At least one request was successful.</td>
</tr>
<tr>
<td>X'0400000C'</td>
<td>X'00003004'</td>
<td>No requests were successful.</td>
</tr>
<tr>
<td>X'04000014'</td>
<td>X'00005000'</td>
<td>CSLDALCB allocation failed.</td>
</tr>
<tr>
<td>X'04000014'</td>
<td>X'0000500C'</td>
<td>CSLDDSCB allocation failed.</td>
</tr>
<tr>
<td>X'04000014'</td>
<td>X'00005010'</td>
<td>BPEGETM failed to acquire a parse work area.</td>
</tr>
<tr>
<td>X'04000014'</td>
<td>X'00005028'</td>
<td>BPEPARSE internal error.</td>
</tr>
<tr>
<td>X'04000014'</td>
<td>X'00005034'</td>
<td>An OM response buffer request failed.</td>
</tr>
<tr>
<td>X'04000014'</td>
<td>X'00005038'</td>
<td>A CSLDCMD0 GETBUF request failed to get a command buffer.</td>
</tr>
<tr>
<td>X'04000014'</td>
<td>X'00005088'</td>
<td>CSLDPRP allocation failed.</td>
</tr>
<tr>
<td>X'04000014'</td>
<td>X'0000508C'</td>
<td>BPERDPDS internal failure.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.
<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The UPDATE ODBM TYPE(CONFIG) command completed successfully for the resource.</td>
</tr>
<tr>
<td>1</td>
<td>INVALID CHARACTER, RESOURCE NAME</td>
<td>The resource name in the command input has invalid characters.</td>
</tr>
<tr>
<td>3</td>
<td>DATASTORE NOT AVAILABLE</td>
<td>An attempt to start a data store connection failed. The data store is unavailable.</td>
</tr>
<tr>
<td>4</td>
<td>DATASTORE CONNECTION FAILED</td>
<td>An attempt to start a data store connection failed. Message CSL4006W accompanies this completion code and explains the AIB return code, AIB reason code, and AIB error text.</td>
</tr>
<tr>
<td>5</td>
<td>DATASTORE NOT RRS CAPABLE</td>
<td>An attempt to start a data store connection failed. The data store is not RRS capable.</td>
</tr>
<tr>
<td>8</td>
<td>CONFIGURATION FILE NOT FOUND</td>
<td>The CSLDCxxx IMS PROCLIB member could not be located.</td>
</tr>
<tr>
<td>9</td>
<td>THIS ODBM NOT DEFINED</td>
<td>The current ODBM definition could not be located in the CSLDCxxx IMS PROCLIB member.</td>
</tr>
<tr>
<td>A</td>
<td>DUPLICATE ODBM DEFINED</td>
<td>Multiple ODBM definitions were found for the current ODBM.</td>
</tr>
<tr>
<td>B</td>
<td>DATASTORES NOT_DEFINED</td>
<td>The current ODBM definition has no data stores defined.</td>
</tr>
<tr>
<td>C</td>
<td>DUPLICATE DATASTORES DEFINED</td>
<td>Duplicate data store names were found within the current ODBM definition.</td>
</tr>
<tr>
<td>D</td>
<td>DATASTORE NAME INVALID</td>
<td>A data store name within the current ODBM definition contains invalid characters.</td>
</tr>
<tr>
<td>E</td>
<td>DUPLICATE ALIAS DEFINED</td>
<td>A data store definition within the current ODBM definition contains duplicate alias names.</td>
</tr>
<tr>
<td>F</td>
<td>ALIAS NAME INVALID</td>
<td>An alias name defined within the current ODBM definition contains invalid characters.</td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>No resources were found.</td>
</tr>
<tr>
<td>11</td>
<td>BPEPARSE ERROR</td>
<td>BPEPARSE failed while parsing the CSLDCxxx IMS PROCLIB member. BPE0003E accompanies this completion code.</td>
</tr>
<tr>
<td>12</td>
<td>DATASTORES NOT STOPPED</td>
<td>Data store connections to the current ODBM have not been stopped before issuing the UPDATE ODBM TYPE(CONFIG) command.</td>
</tr>
</tbody>
</table>

**Examples**

*Example 1 for UPDATE ODBM TYPE(CONFIG) command*

TSO SPOC input:
```
UPDATE ODBM TYPE(CONFIG) MEMBER(009) OPTION(NOCONNECT)
```

TSO SPOC output:
MbrName    CC   ConfigName
ODBM01OD    0   CSLDC009
ODBM01OD    0   CSLDC009
ODBM02OD    0   CSLDC009

Explanation: The MEMBER(009) keyword indicates that CSLDC009 will be used to configure both ODBM01 and ODBM02. To allow this to occur, both ODBM configurations must be specified in the CSLDC009 PROCLIB member. When using the NAME() keyword, routing of this command requires caution to insure the intended results are achieved.

Example 2 for UPDATE ODBM TYPE(CONFIG) command

TSO SPOC input:
UPD ODBM TYPE(CONFIG)

TSO SPOC output:
MbrName    CC   ConfigName
ODBM01OD    0   CSLDC001
ODBM01OD    0   CSLDC001
ODBM02OD    0   CSLDC002

Explanation: This example shows that the current configuration members were, and remain to be, CSLDC001 for ODBM1 and CSLDC002 for ODBM2, respectively.

UPDATE OLREORG command

Use the UPDATE OLREORG command to change the rate, the DEL or NODEL data set disposition flag, or the REL or NOREL release OLR ownership disposition flag of an owned HALDB Online Reorganization (OLR).

If you issue this command as a type-1 command, the command response is returned as a DFS0725I pre-edit message.

Subsections:
- “Environment”
- “Syntax” on page 1110
- “Keywords” on page 1110
- “Usage notes” on page 1112
- “Command responses for /UPDATE OLREORG” on page 1112
- “Output fields” on page 1112
- “Return, reason, and completion codes” on page 1113
- “Examples” on page 1113

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) from which the UPDATE OLREORG command and keywords can be issued.

Table 504. Valid environments for the UPDATE OLREORG command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE OLREORG</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 30. UPDATE commands 1109
Table 504. Valid environments for the UPDATE OLREORG command and keywords (continued)

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>SET</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OPTION</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Syntax

```
UPDATE OLREORG NAME (partname)
```

```
SET(RATE(rate))
```

Keywords

The following keywords are valid for the UPDATE OLREORG command:

**NAME()**

Specifies one or more PHDAM or PHIDAM HALDB partitions to be updated.

For the type-1 version of the command, you can specify only one partition name.

A parameter with the wildcard character (*) is not allowed, except as NAME(*) for all HALDB partitions.

**SET(RATE)**

Specifies the rate at which the HALDB OLR is run.

*rate*

You can specify a value of 1 to 100 for the rate value.

You can use the RATE parameter to control the intensity at which the reorganization runs. This can affect both the reorganization's speed and its impact on the rest of the system. The value you specify for rate is the percentage of elapsed time to be devoted to copying records. The remaining time is to be an intentionally introduced delay in the copying process that minimizes the reorganization's impact on other IMS work and on the whole system.

An online reorganization's impact on the system is affected by the available system resources, by total system utilization (including other online reorganizations), by total logging volume, by log contention, and by the intensity at which this reorganization was requested to run. These same factors also affect the speed at which the reorganization runs.
A rate value of 50 specifies that 50% of the elapsed time be spent copying records and the remaining 50% be spent in a delay. This causes the reorganization to run approximately twice as long as it would have run with a rate value of 100.

**OPTION()**

Allows the specification of the DEL, NODEL, REL, or NOREL options.

**DEL | NODEL**

Specifies whether the deletion of the inactive data sets is to be attempted when the online reorganization completes. DEL and NODEL are mutually exclusive keywords.

**DEL**

The deletion of the inactive data sets is to be attempted when the online reorganization completes. The attempted deletion occurs regardless of who created the data sets or when the data sets were created.

**NODEL**

The deletion of the inactive data sets is not to be attempted when the online reorganization completes.

If the partition is tracked at an RSR tracker site, the OPTION (DEL | NODEL) value in effect at the completion of the HALDB OLR also determines whether the inactive data sets for the shadow partition are deleted at the completion of the tracking of the reorganization.

If the HALDB Online Reorganization is stopped before completion, the DEL or NODEL keyword is not remembered and will need to be specified on the INITIATE OLREORG command that is issued to resume the stopped HALDB OLR.

**REL | NOREL**

Specifies whether the IMS system retains or releases control of the reorganization when it shuts down or terminates. REL and NOREL are mutually exclusive keywords.

**REL**

Specifies that the IMS system releases ownership of the OLR if it terminates before the online reorganization is completed. Specifying this keyword allows another IMS system to take control of the suspended reorganization.

The Partition Database record in the RECON data set is updated to show that the owning IMS (OLRIMSID=ssid) allows the OLR to be resumed if it terminates the online reorganization process or abnormally terminates itself. RELEASE OLR OWNERSHIP appears in a listing of the Partition Database record.

When OLR is active and running on an IMS and the IMS terminates abnormally, and if release OLR ownership is requested, the LIST.DB command will show OLRIMSID=ssid (instead of OLRIMSID=NULL) and RELEASE OLR OWNERSHIP because IMS was unable to request OLR ownership release.

**Requesting release OLR ownership in an XRF environment:** In an XRF environment, if release OLR ownership is requested while OLR is running on an active IMS, then OLR will not automatically resume on
the new active IMS after an XRF takeover occurs. You must issue the
INIT OLREORG command again on the new active IMS.

**NOREL**
Specifies that the IMS system retains control of the reorganization
when it shuts down or terminates.

**Usage notes**

If an online reorganization is started with the ALTER option to modify the
structure of the database, IMS reorganizes all of the partitions in the database. In
this case, if you need to update the online reorganizations of all of the partitions in
the database, specify an asterisk in the NAME keyword, for example UPDATE
OLREORG NAME(*) SET(RATE(rate)). You cannot specify the name of the HALDB
master database. You can use either the type-1 or type-2 format of the UPDATE
OLREORG command to update alter processing; however, if the altered database is
shared, only the type-2 command can be routed to all of the IMS systems that
share the database.

**Command responses for /UPDATE OLREORG**

When the /UPDATE OLREORG command is entered as a type-1 command, the
command response is returned in a message format.

When the command completes successfully message DFS0725I is returned to the
system console and master terminal with a completion code of 0. If the command
results in an error, a nonzero completion code or an error message is returned to
the master terminal and system console.

[Example Command Response]

```
DFS0725I INITIATE|UPDATE|TERMINATE OLREORG COMMAND FOR DB dbnamexx COMPLETE.
CC= nn
```

where: dbnamexx is the HALDB partition name entered on the command
nn is the completion code

**Output fields**

This section describes the responses from the OM API for the UPDATE OLREORG
command. The following table shows the UPDATE OLREORG output fields. The
columns in the table are as follows:

**Short label**
Contains the short label that is generated in the XML output.

**Keyword**
Identifies the command keyword that caused the field to be generated.

**N/A** appears for output fields that are always returned.

**Meaning**
Provides a brief description of the output field.

*Table 505. Output fields for UPDATE OLREORG command*

<table>
<thead>
<tr>
<th>Short label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>PART</td>
<td>N/A</td>
<td>Partition name.</td>
</tr>
<tr>
<td>MBR</td>
<td>N/A</td>
<td>The IMS that built the command response line.</td>
</tr>
<tr>
<td>CC</td>
<td>N/A</td>
<td>Completion code.</td>
</tr>
</tbody>
</table>
Return, reason, and completion codes

The OM return and reason codes that might be returned as a result of the UPDATE OLREORG command are standard for all commands that are entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 506. Return and reason codes for the UPDATE OLREORG command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The UPDATE OLREORG command completed successfully.</td>
</tr>
<tr>
<td>X'00000004'</td>
<td>X'00001010'</td>
<td>No matches found for filter.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002008'</td>
<td>Insufficient number of keywords specified.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002040'</td>
<td>No filter, an invalid filter, or an insufficient number of filters was specified.</td>
</tr>
<tr>
<td>X'000000C'</td>
<td>X'00003000'</td>
<td>At least one request was successful.</td>
</tr>
<tr>
<td>X'000000C'</td>
<td>X'00003004'</td>
<td>None of the requests was successful.</td>
</tr>
<tr>
<td>X'0000010'</td>
<td>X'00004000'</td>
<td>Command issued on an XRF alternate.</td>
</tr>
<tr>
<td>X'0000010'</td>
<td>X'00004014'</td>
<td>Command issued on an RSR tracker.</td>
</tr>
<tr>
<td>X'0000014'</td>
<td>X'00005000'</td>
<td>A GETMAIN error occurred.</td>
</tr>
</tbody>
</table>

The following table includes an explanation of the completion codes. Errors unique to the processing of UPDATE OLREORG command are returned as completion codes. A completion code is returned for each action attempted on a HALDB partition.

Table 507. Completion codes for the UPDATE OLREORG command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The UPDATE OLREORG command completed successfully for the partition.</td>
</tr>
<tr>
<td>10</td>
<td>Resource name is invalid.</td>
</tr>
<tr>
<td>14</td>
<td>Resource is not a partition name.</td>
</tr>
<tr>
<td>1C</td>
<td>Resource is a partitioned secondary index.</td>
</tr>
<tr>
<td>24</td>
<td>No HALDB OLR is in progress.</td>
</tr>
<tr>
<td>CF</td>
<td>Parameter value conflict, or invalid parameter value.</td>
</tr>
<tr>
<td>1E0</td>
<td>DBRC OLRREL ‖ OLRNOREL failed.</td>
</tr>
</tbody>
</table>

Examples

The following are examples of the UPDATE OLREORG command:

Example 1 for /UPDATE OLREORG

Entry ET:
/UPD OLREORG NAME(PHDOKA) SET(RATE(25))
Response ET:
DFS0725I UPDATE OLREORG COMMAND FOR DB PDHDOKA COMPLETE. CC= 0

Explanation: The UPDATE OLREORG command is issued for partition PDHDOKA to change the OLR rate to 25. The command is successful as indicated in the message DFS0725 command response.

Example 2 for UPDATE OLREORG

TSO SPOC input:
UPD OLREORG NAME(PDHDOKA,PDHDOKB) SET(RATE(25))

TSO SPOC output:

<table>
<thead>
<tr>
<th>Partition</th>
<th>MbrName</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDHDOKA</td>
<td>IMSA</td>
<td>0</td>
</tr>
<tr>
<td>PDHDOKA</td>
<td>IMS1</td>
<td>24</td>
</tr>
<tr>
<td>PDHDOKB</td>
<td>IMSA</td>
<td>0</td>
</tr>
<tr>
<td>PDHDOKB</td>
<td>IMS1</td>
<td>24</td>
</tr>
</tbody>
</table>

OM API input:
CMD (UPD OLREORG NAME(PDHDOKA,PDHDOKB) SET(RATE(25)))

OM API output:

```xml
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.2.0</omvsn>
/xmlvsn>
<staseq>B996297E02942007</staseq>
<stoseq>B996297E02942007</stoseq>
<rqtgtkn1>USRT005 10141757</rqtgtkn1>
<rc>02000000</rc>
<rsn>00003000</rsn>
</ctl>
<cmderr>
<mbr name="IMS1">
<typ>IMS</typ>
<styp>DBDC</styp>
<rc>0000000C</rc>
<rsn>00003004</rsn>
<rsntext>No requests were successful</rsntext>
</mbr>
</cmderr>
<cmd>
<master>IMSA</master>
<userid>USRT005</userid>
<verb>UPD</verb>
<kwd>OLREORG</kwd>
<input>UPD OLREORG NAME(PDHDOKA,PDHDOKB) SET(RATE(25))</input>
</cmd>
</cmdrsphdr>
```
Explanation: The UPDATE OLREORG command is issued for partitions PDHDOKA and PDHDOKB to update the OLR rate to 25. The command is successful at IMSA, where OLR is in progress and is not successful at IMS1, where no OLR is in progress. A completion code of 24 is returned in the IMS1 response.

Related concepts:
- How to interpret CSL request return and reason codes (System Programming APIs)

Related reference:
- Command keywords and their synonyms (Commands)

**UPDATE OTMADESC command**

Use the UPDATE OTMADESC command to update an existing OTMA destination descriptor without restarting IMS.

Subsections:
- “Environment”
- “Syntax”
- “Keywords” on page 1117
- “Usage notes” on page 1120
- “Output fields” on page 1121
- “Return, reason, and completion codes” on page 1121
- “Examples” on page 1123

**Environment**

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

*Table 508. Valid environments for the UPDATE OTMADESC command and keywords*

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE OTMADESC</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SET</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

**Syntax**

```
UPDATE OTMADESC NAME(destname*) SET(A B C)
```
Keywords

The following keywords are valid for the UPDATE OTMADESC command:

NAME(destname*)
A required keyword whose value cannot be modified.

SET()
Specifies to update the descriptors with at least one of the following keywords. The update applies to each of the descriptor names specified in the NAME keyword. If an asterisk is appended to the descriptor name, the update will not be applied to the group of names it is trying to mask.

ADAPTER(adaptername)
An optional parameter for TYPE(IMSCON) that identifies the IMS Connect adapter. adaptername is a 1- to 8-character adapter name. To clear the value of this keyword, specify the keyword with no value, for example, ADAPTER(). If the ADAPTER keyword is deleted, the CONVRTR keyword is also deleted. ADAPTER and TYPE(NONOTMA) are mutually exclusive.

CONVRTR(convertername)
A required parameter only if the ADAPTER keyword is specified. convertername is a 1- to 8-character converter name used by the adapter. The value of this keyword will be automatically deleted if the value of the ADAPTER keyword is being deleted. Coding this keyword without the ADAPTER keyword or with TYPE(NONOTMA) is not valid.

EXIT(N|Y)
When TYPE=IMSTRAN, this is an optional parameter used to indicate whether the IMS user exit (DFSCMUX0) can override the descriptor routing information for late messages.

For other descriptor types, this is an optional parameter used to specify whether the OTMA routing exits (DFSYPRX0 and DFYDRU0) can override the descriptor switch destination from ALT IOPCB.

LTERMOMVR(ltermname)
When TYPE=IMSTRAN, this is an optional parameter used to specify a logical terminal name that overrides the name specified in the application I/O PCB. If an override name is also specified in the AIBRSNM2 field of the AIB, that name is used instead of the name in the descriptor. If an override name is not specified in the descriptor or the AIB, the IMS application terminal symbolic (PSTSYMBO) is used as the default logical terminal name for the target transaction.

MQAPPLID(mqmd_appidentitydata)
When TYPE=MQSERIES, this is an optional parameter that specifies a 1- to 32-character value for the MQMD_APPLIDENTITYDATA field. This field is used to pass data to the receiving IBM MQ application. The default is 32 blanks.

MQCOPYMD(Y | N)
When TYPE=MQSERIES, this is an optional parameter that specifies whether the original input values of the MQMD data structure from the MQ IMS Bridge are copied to the output message.
MQCORREL(*mqmd_correlid)*
When TYPE=MQSERIES, this is an optional parameter that specifies a 1- to 24-character value for the MQMD_CORRELID field. This value is passed directly to the receiving IBM MQ application if the value of the MQREPORT parameter is PASSCORR. The default is 0.

MQFORMAT(*mqmd_format)*
When TYPE=MQSERIES, this is an optional parameter that specifies value for the MQMD_FORMAT field. The default value is MQIMSVS.

MQMSGID(*mqmd_msgid)*
When TYPE=MQSERIES, this is an optional parameter that specifies a 1- to 24-character value for the MQMD_MSGID field. This value is passed directly to the receiving IBM MQ application if the value of the MQREPORT parameter is PASSMSG1.

MQPERST(*n | y)*
When TYPE=MQSERIES, this is an optional parameter that specifies whether messages that use this descriptor are persistent on a SYNC TPIPE. Setting this parameter to Y is analogous to setting X'40' for the output flag value of the DFSYDRU0 exit routine.

MQREPORT(*copymtoc | newmsgid | passmsgid | passcorr | none)*
When TYPE=MQSERIES, this is an optional parameter that specifies the MQMD_REPORT field value for messages that use the descriptor. The default value is COPYMTOC. Each supported value corresponds to an equivalent value in the MQMD data structure:

<table>
<thead>
<tr>
<th>Parameter value</th>
<th>Equivalent MQMD structure value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEWMSGID</td>
<td>MQRO_NEW_MSG_ID</td>
</tr>
<tr>
<td>PASSMSGID</td>
<td>MQRO_PASS_MSG_ID</td>
</tr>
<tr>
<td>COPYMTOC</td>
<td>MQRO_COPY_MSG_ID_TO_CORREL_ID</td>
</tr>
<tr>
<td>PASSCORR</td>
<td>MQRO_PASS_CORREL_ID</td>
</tr>
<tr>
<td>PASSMSCO</td>
<td>MQRO_PASS_MSG_ID and MQRO_PASS_CORREL_ID</td>
</tr>
<tr>
<td>NONE</td>
<td>MQRO_NONE</td>
</tr>
</tbody>
</table>

MQRTF(*mqmd_replytoformat)*
When TYPE=MQSERIES, this is a 1- to 8-character value for the MQMD_REPLYTOFORMAT field. The default is 0.

MQRTQ(*mqmd_replytoqueue manifolde name)*
When TYPE=MQSERIES, this is a required parameter that specifies a 1- to 48-character value for the MQMD_REPLYTOQ field.

MQRTQMG(*mqmd_replytoqueue manager name)*
When TYPE=MQSERIES, this is an optional parameter that specifies a 1- to 48-character value for the MQMD_REPLYTOQMG field. If this parameter is not specified, MQSeries® will use the local queue manager.
**REPLYCHK(Y|N)**

Specifies whether an IMS application replies to the IOPCB for a synchronous program switch request. When REPLYCHK=YES and the ICAL target application does not reply to the IOPCB or switch to another transaction, IMS gives the error return code X'0100', with reason code X'0110', and extended reason code X'0014' instead of a timeout to the ICAL call. The default is Y.

**RMTIMS**

An optional 1- to 8-character name of a remote, destination IMS system for ALTPCB output messages. The RMTIMS value must match the value specified on the ID parameter of a DATASTORE statement in the configuration member of the remote IMS Connect instance specified on the RMTIMSCON parameter. This parameter is valid only when TYPE(IMSCON) is specified. To clear the value of this parameter, specify the parameter with no value, for example, RMTIMS(). Clearing the value of RMTIMS also clears the value of RMTIMSCON.

**RMTIMSCON**

An optional 1- to 8-character name of a connection to the remote IMS Connect instance that manages TCP/IP communications for the remote IMS system that is named on the RMTIMS parameter. This value must match the value specified on the ID parameter of the RMTIMSCON statement in the configuration file of the local IMS Connect instance that is managing TCP/IP communications for the IMS system in which the OTMA ALTPCB output messages are originating. This parameter is valid only when TYPE(IMSCON) is specified. To clear the value of this parameter, specify the parameter with no value, for example, RMTIMSCON(). Clearing the value of RMTIMSCON also clears the value of RMTIMS.

**RMTTRAN**

An optional 1- to 8-character name of the transaction name to use at the remote, destination IMS system named on the RMTIMS parameter. When this parameter is specified with RMTIMSCON and RMTIMS parameters, IMS OTMA sends the ALTPCB output messages to the remote IMS system for transaction processing. This parameter is valid only when TYPE(IMSCON) is specified. To clear the value of this parameter, specify the parameter with no value, for example, RMTTRAN().

**SMEM(N | Y)**

An optional parameter that can either be a Y or N value to indicate whether the TMEMBER name specified in the TMEMBER parameter is a super member. To clear the value of this keyword, specify the keyword with no value, for example, SMEM(). Deleting SMEM() will default to SMEM(N). If the TMEMBER name is a super member, the length of the TMEMBER name has a maximum of 4 characters. SMEM and TYPE(NONOTMA) are mutually exclusive.

**SYNCTP(N | Y)**

When TYPE=MQSERIES, this parameter specifies whether a SYNC TPIPE must be created for messages that use this descriptor. Setting this parameter to Y is analogous to setting X'80' for the output flag value of the DFSYDRU0 exit routine.

**SYNTIMER(syntimer)**

An optional parameter used for synchronous callout processing. In synchronous callout processing, a request is canceled if an ACK/NAK or response is not received by OTMA from the client within the time
specified. This value is expressed in hundredths of a second or milliseconds. The value can be numeric with a maximum length of six digits. The value has a range of 0 through 999999 and when zero is specified, it will default to 10 seconds or 1000 hundredths of a second. If you specify SYNTIMER() or SYNTIMER( ), the timeout value will be reset as if no timeout value has been specified.

If TYPE(IMSTRAN) is specified, this parameter is the timeout value for synchronous program switch ICAL calls. If a timeout value is also specified in the AIB interface, IMS will compare the timeout values and use the lower value.

**TMEMBER(tmem)**
A required parameter for TYPE(IMSCON). If the TYPE of the descriptor is being changed from IMSCON to NONOTMA, the value of this keyword will be deleted. If the TYPE of the descriptor is being changed from NONOTMA to IMSCON, then the TMEMBER keyword must be coded. tmem is a 16-character OTMA TMEMBER name or a 4-character super member. TMEMBER and TYPE(NONOTMA) are mutually exclusive.

An optional parameter for TYPE(IMSTRAN). The tmem value is a 1- to 16-character OTMA TMEMBER name. IMS queues late responses from a synchronous program switch to this OTMA TMEMBER. The destination name is used as the default OTMA TPIPE name if the TPIPE parameter is not specified in the descriptor.

**TPIPE(tpipename)**
An optional parameter that is a 1- to 8-character TPIPE name when TYPE(IMSCON) is specified. To delete the value of this keyword, specify the keyword with no value, for example, TPIPE(). If this keyword is not specified, the TPIPE name is the destination name specified in the NAME keyword. TPIPE and TYPE(NONOTMA) are mutually exclusive.

An optional parameter for TYPE(IMSTRAN) that specifies a 1- to 8-character TPIPE name. This parameter defaults to the destination name. IMS queues late responses from a synchronous program switch to this OTMA TPIPE. A value for the TMEMBER parameter is required when TPIPE is specified.

**USERID**
For TYPE=IMSCON, this is an optional 1- to 8-character RACF user ID. When this parameter is specified with RMTIMSCON, RMTTRAN, and RMTIMS parameters, a remote, destination IMS system uses the USERID value to perform transaction authorization. The value of USERID specified in the OTMA destination descriptor overrides the user ID provided by the IMS application program that issued the ISR call to the OTMA ALTPCB. This parameter is valid only when TYPE(IMSCON) is specified.

For TYPE=MQSERIES, this is a 1- to 8-character user ID that corresponds with the MQMD_USERIDENTIFIER field in the MQMD data structure. This field allows the OTMA descriptor to override the default user ID in the MQMD structure. Specify the value *USERID* to use the IMS user ID value from the PST.

**Usage notes**
The UPDATE OTMADESC command is used to modify existing destination routing descriptors that were either included in DFSYDtx or added by using the CREATE OTMADESC command. A log record will be written to track changes and
to persist from one IMS restart to another. The log record will also be used to track
the currency of updates to an XRF alternate and to an RSR tracking environment.
The checkpoint record is X4035 and the log record for the CREATE, UPDATE, and
DELETE commands is X221B.

The UPDATE OTMADESC command cannot change the TYPE value for a
destination descriptor. If you want to change the type for a descriptor, you must
create a new descriptor with the CREATE OTMADESC command or by modifying
the DFSYDTx member of the IMS.PROCLIB data set. You can then delete the
existing descriptor.

**Output fields**

The following table shows the UPDATE OTMADESC output fields. The columns in
the table are:

**Short label**
Contains the short label generated in the XML output.

**Long label**
Contains the column heading for the output field in the formatted output.

**Keyword**
Identifies the keyword on the command that caused the field to be
generated. N/A appears for output fields that are always returned. error
appears for output fields that are returned only in case of an error.

**Meaning**
Provides a brief description of the output field.

<table>
<thead>
<tr>
<th>Table 509. Output fields for the UPDATE OTMADESC command</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Short label</strong></td>
</tr>
<tr>
<td>CC</td>
</tr>
<tr>
<td>CCTXT</td>
</tr>
<tr>
<td>DEST</td>
</tr>
<tr>
<td>MBR</td>
</tr>
</tbody>
</table>

**Return, reason, and completion codes**

An IMS return and reason code is returned to OM by the UPDATE OTMADESC
command. The OM return and reason codes that might be returned as a result of
the UPDATE OTMADESC command are standard for all commands entered
through the OM API.

The following table includes the return and reason codes and a brief explanation of
the codes. The return or reason code returned for the command might also indicate
an error from a CSL request.
Table 510. Return and reason codes for the UPDATE OTMADESC command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>Command completed successfully. The command output contains a line for each resource, accompanied by its completion code. See Table 511 for details.</td>
</tr>
<tr>
<td>X'02000008'</td>
<td>X'00002000'</td>
<td>The command contains an invalid verb or no client is registered for the verb.</td>
</tr>
<tr>
<td>X'02000008'</td>
<td>X'00002004'</td>
<td>The command contains an invalid primary keyword or no client is registered for the keyword.</td>
</tr>
<tr>
<td>X'02000008'</td>
<td>X'00002028'</td>
<td>The command contains an invalid keyword.</td>
</tr>
<tr>
<td>X'02000008'</td>
<td>X'0000202C'</td>
<td>The command contains an unknown positional parameter.</td>
</tr>
<tr>
<td>X'02000008'</td>
<td>X'00002034'</td>
<td>The command contains an incomplete keyword parameter.</td>
</tr>
<tr>
<td>X'02000008'</td>
<td>X'00002038'</td>
<td>The command is missing a required parameter.</td>
</tr>
<tr>
<td>X'02000008'</td>
<td>X'0000203C'</td>
<td>The command contains an invalid keyword parameter value.</td>
</tr>
</tbody>
</table>

The following table includes an explanation of the completion codes. Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

Table 511. Completion codes for the UPDATE OTMADESC command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command completed successfully</td>
<td>The UPDATE OTMADESC command completed successfully for the resource.</td>
</tr>
<tr>
<td>151</td>
<td>Descriptor not found</td>
<td>The descriptor name does not exist.</td>
</tr>
<tr>
<td>153</td>
<td>Adapter blank, Convtr not blank</td>
<td>The value of the ADAPTER keyword is blank and the value of the CONVRTR keyword is not blank. Either both keywords must be blank or both keywords must contain a valid name.</td>
</tr>
<tr>
<td>154</td>
<td>Adapter not blank, Convtr blank</td>
<td>The value of the ADAPTER keyword is not blank and the value of the CONVRTR keyword is not blank. Either both keywords must be blank or both keywords must contain a valid name.</td>
</tr>
<tr>
<td>156</td>
<td>SMEM=Y, super mbr name GT 4 char</td>
<td>The super member name in the TMEMBER keyword must have a maximum length of 4 characters.</td>
</tr>
<tr>
<td>159</td>
<td>TMEMBER is required for IMSCON</td>
<td>The type is being changed from NONOTMA to IMSCON, but the value of TMEMBER is blank.</td>
</tr>
<tr>
<td>162</td>
<td>Descriptor not available for upd</td>
<td>During update processing, the descriptor was deleted by another user.</td>
</tr>
</tbody>
</table>
Table 511. Completion codes for the UPDATE OTMADESC command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>167</td>
<td>SYNTIMER must have numeric value</td>
<td>The timeout value must have a value expressed in numbers within parenthesis.</td>
</tr>
<tr>
<td>169</td>
<td>SYNTIMER has nonnumeric value</td>
<td>The value must not contain alphabetic characters or any character that is not numeric.</td>
</tr>
</tbody>
</table>

Examples

The following are examples of the UPDATE OTMADESC command:

Example 1 for UPDATE OTMADESC command

TSO SPOC input:
UPDATE OTMADESC NAME(OTMACL*,OTMACL99) SET(TYPE(NONOTMA))

TSO SPOC output:
DestName MbrName CC
OTMACL99 IMSA 0
OTMACL* IMSA 0

Explanation: This UPDATE command changes the output type to NONOTMA. This keyword will delete any other keywords (such as TMEM or TPIPE), because no other keywords are relevant for TYPE(NONOTMA).

Example 2 for UPDATE OTMADESC command

TSO SPOC input:
UPDATE OTMADESC NAME(OTMACL*,OTMACL99) SET(TPIPE(HWS1TP02))

TSO SPOC output:
DestName MbrName CC
OTMACL99 IMSA 0
OTMACL* IMSA 0

Explanation: This UPDATE command changes the TPIPE name to HWS1TP02. The TPIPE name will be changed from HWS1TP01 to HWS1TP02 for OTMACL99 and the TPIPE for OTMACL* will be set to HWS1TP02.

Example 3 for UPDATE OTMADESC command

TSO SPOC input:
UPDATE OTMADESC NAME(OTMACL*) SET(TPIPE())

TSO SPOC output:
DestName MbrName CC
OTMACL* IMSA 0

Explanation: This UPDATE command for descriptor OTMACL* will delete the TPIPE name by coding TPIPE(). An asterisk in the UPDATE command does not
update the group of names the asterisk is masking. It updates only the OTMACL* entry in the table of destination routing descriptors. It does not update OTMACL99.

**Example 4 for UPDATE OTMADESC command**

TSO SPOC input:

```plaintext
UPDATE OTMADESC NAME(OTMACL01) SET(RMTIMS(IMS3) RMTTRAN(TRAN03))
```

TSO SPOC output:

<table>
<thead>
<tr>
<th>DestName</th>
<th>MbrName</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTMACL01</td>
<td>IMS1</td>
<td>0</td>
</tr>
</tbody>
</table>

**Explanation:** When the UPDATE OTMADESC command is issued to IMS1, the command changes the name of the destination remote IMS system to IMS3 and the transaction to be scheduled for processing messages on IMS3 to TRAN03.

**Related concepts:**

- How to interpret CSL request return and reason codes (System Programming APIs)

**Related reference:**

- Command keywords and their synonyms (Commands)

**UPDATE PGM command**

Use the UPDATE PGM command to update program resources.

A program resource defines the resource requirements for application programs that run under the control of the DB/TM environment, as well as for application programs that access databases through DBCTL. Program resources combined with transactions define the scheduling and resource requirements for an application program.

Subsections:

- “Environment”
- “Syntax” on page 1125
- “Keywords” on page 1125
- “Usage notes” on page 1131
- “Output fields” on page 1131
- “Return, reason, and completion codes” on page 1132
- “Examples” on page 1136

**Environment**

The following table lists the environments (DB/BC, DBCTL, and DCCTL) in which you can use the commands and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE PGM</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>OPTION</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Table 512. Valid environments for the UPDATE PGM command and keywords (continued)

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>SET</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>START</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>STOP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
UPDATE PGM NAME(name)
START(SCHD, TRACE)
STOP(SCHD, TRACE)
START(SCHD) STOP(SCHD)
SET(BMPTYPE(Y)
DOPT(N)
FP(Y)
GPSB(N)
LANG(ASSEM)
COBOL
JAVA
PASCAL
PLI
LOCK(ON)
OFF
RESIDENT(N)
Y
SCHDTYPE(PARALLEL)
SERIAL
TRANSTAT(N)
Y
```

Keywords

The following keywords are valid for the UPDATE PGM command:

**NAME**

Specifies the 1-8 character name of the program. Wildcards can be specified in the name. The name is a repeatable parameter. If the NAME parameter
specified is a specific or wildcard name, command responses are returned for all the resource names that are processed. For NAME(*), command responses are returned only for the resource names that resulted in an error. 

OPTION(ALLRSP) can be specified with NAME(*) to obtain the command responses for all the resource names that are processed.

**OPTION**

Specifies functions to be performed along with the command.

**ALLRSP**

Indicates that the response lines are to be returned for all resources that are processed on the command. The default action is to return response lines only for the resources that resulted in an error. It is only valid with NAME(*). ALLRSP is ignored for other NAME values.

**SET**

Specifies the attribute values to be changed.

**BMPTYPE**

BMP type option. Specifies whether the program runs in a BMP type region (Y) or not (N). A BMP type region can be a BMP region or a JBP region. Updating this attribute stops the program from scheduling during command processing.

When a program is updated to BMPTYPE(Y), the scheduling priority of the transactions that reference the program must be set to zero, and the parallel processing limit must be set to 65535. All transactions that reference the program must be updated to set CPRI, LPRI, and NPRI to 0 and PARLIM to 65535.

For any programs that have been modified from BMPTYPE(N) to BMPTYPE(Y), the following sequence of commands can be issued to locate and update all transactions that reference those programs:

1. Issue the QUERY PGM NAME(pgmname) SHOW(TRAN) command to find all of the transactions that reference the program.
2. For each transaction found that references the program, issue the QUERY TRAN NAME(tranname) SHOW(CPRI, NPRI, LPRI, PARLIM) command to determine the current CPRI, NPRI, LPRI, and PARLIM values.
3. For any transactions that have CPRI, NPRI, or LPRI values that are not set to zero or a PARLIM value that is not 65535, issue an UPDATE TRAN NAME(tranname) SET(CPRI(0),NPRI(0),LPRI(0),PARLIM(65535)) command to correct the values.

PSBs scheduled by DB2 stored procedures, by programs running under WebSphere Application Server, and by other users of the ODBA interface might be defined with BMPTYPE Y or N.

**Y** The program runs in a BMP type region. It might run in an IMS BMP region or a JBP region. Any associated transactions are assigned normal and limit priority values of zero.

**N** The program does not run in a BMP type region. It might run in an IMS TM MPP, JMP, or IFP region or it might use either the ODBA or DRA interface. This specification should be used for programs running in IMS TM MPP, JMP, and IFP regions, or PSBs scheduled by CICS programs using DBCTL and other users of the DRA interface. This is the default.

Keyword combination rules include the following:
• FP(E) and BMPTYPE(Y) are mutually exclusive.

**DOPT**
Specifies the dynamic option.

**N** The PSB associated with this program is not located dynamically. The PSB must exist in ACBLIB, otherwise the program is set to a NOTINIT status, and cannot be scheduled.

**Y** The PSB associated with this program is located dynamically. Each time the program associated with this PSB is scheduled, the latest copy of the PSB is loaded from ACBLIB. The PSB does not need to be in any data set defined for ACBLIB until it is actually required to process a transaction. A new version of the PSB can be genmed in ACBLIB and is picked up the next time the PSB is scheduled. DOPT PSBs referencing DBDs that are missing from ACBLIB cannot be scheduled. When the program terminates, the PSB is deleted from the PSB pool.

Updating this attribute stops the program from scheduling for the duration of command processing.

Keyword combination rules include the following:
• DOPT(Y) and GPSB(Y) are mutually exclusive.
• DOPT(Y) and LANG(JAVA) is a valid combination.
• LANG is invalid with GPSB(N), except if DOPT(Y) and LANG(JAVA).
• LANG(JAVA), DOPT(Y), and GPSB(N) is a valid combination.
• RESIDENT(Y) and DOPT(Y) are mutually exclusive.
• SCHDTYPE(PARALLEL) and DOPT(Y) are mutually exclusive.

**FP**
Specifies the Fast Path option.

**E** The program is a Fast Path-exclusive application program. This implicitly defines a wait-for-input (WFI) application program. Either a transaction or a routing code that can be assigned by the user Input Edit/Routing exit routine must be defined for the Fast Path-exclusive application, in order for this program to be usable.

**N** The program is not a Fast Path-exclusive application program. When FP(N) is specified, any attempt to use Fast Path resources or commands might yield unpredictable results.

Updating this attribute is rejected if any routing codes or transactions that reference this program have conflicting attributes. To update this attribute, you might need to delete the routing codes and transactions that reference it. Updating this attribute stops the program from scheduling for the duration of command processing.

Keyword combination rules include the following:
• FP(E) requires Fast Path to be defined.
• LANG(JAVA) and FP(E) are mutually exclusive.
• BMPTYPE(Y) and FP(E) are mutually exclusive.

**GPSB**
Specifies the generated PSB option.

**N** The PSB associated with the program is not generated by IMS. The PSB must exist in ACBLIB, otherwise the program is set to a NOTINIT status, and cannot be scheduled.
The PSB associated with the program is generated by IMS. It is not loaded from ACBLIB. The scheduling process of all environments generates a PSB containing an I/O PCB and an alternate modifiable PCB. You do not need to perform the PSBGEN and ACBGEN, thus eliminating I/O to the ACBLIB.

The generated PSB contains an I/O PCB named IOPCBbbb and a modifiable, alternate PCB named TPPCB1bb. With an alternate modifiable PCB, an application can use the CHNG call to change the output destination and send output to a destination other than the input destination.

Updating this attribute stops the program from scheduling for the duration of command processing.

Keyword combination rules include the following:
- DOPT(Y) and GPSB(Y) are mutually exclusive.
- DOPT(Y) and LANG(JAVA) is a valid combination.
- GPSB(Y) requires LANG.
- LANG is invalid with GPSB(N), except if DOPT(Y) and LANG(JAVA).
- LANG(JAVA), DOPT(Y), and GPSB(N) is a valid combination.
- RESIDENT(Y) and GPSB(Y) are mutually exclusive.

**LANG**

Specifies the language interface of the program for a GPSB, or defines a DOPT(Y) program as using the Java language.

In order to define a DOPT program using the Java language, the program must be defined with DOPT(Y) and LANG(JAVA). DOPT PSBs are not loaded at IMS restart; they are loaded every time the program is scheduled. When the program is scheduled for the first time, IMS does not know the language until after the program is scheduled in a region and the PSB is loaded. Unless LANG(JAVA) is defined for the DOPT(Y) program, the program is incorrectly scheduled in a non-Java region.

The LANG parameters and their meanings are identified in the following table.

<table>
<thead>
<tr>
<th>LANG parameter</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSEM</td>
<td>Assembly language</td>
</tr>
<tr>
<td>COBOL</td>
<td>COBOL</td>
</tr>
<tr>
<td>JAVA</td>
<td>Java</td>
</tr>
<tr>
<td>PASCAL</td>
<td>Pascal</td>
</tr>
<tr>
<td>PLI</td>
<td>PL/I</td>
</tr>
</tbody>
</table>

Updating this attribute stops the program from scheduling for the duration of command processing.

Keyword combination rules include the following:
- LANG is invalid with GPSB(N), except if DOPT(Y) and LANG(JAVA).
- DOPT(Y) and LANG(JAVA) is a valid combination.
- LANG(JAVA), DOPT(Y), and GPSB(N) is a valid combination.
- FP(E) and LANG(JAVA) are mutually exclusive.
LOCK
Specifies that the LOCK status is to be set on or off. SET(LOCK(ON | OFF)) cannot be specified with any other SET attribute. SET(LOCK(ON | OFF)) can be specified with the START or STOP keyword.

ON  Locks the program and prevents it from being scheduled.
OFF  Unlocks the program and allows it to be scheduled.

RESIDENT
Specifies the resident option. The RESIDENT(N) option takes effect immediately. The RESIDENT(Y) option takes effect at the next restart, unless an error is encountered such as no ACB for the PSB for the program, or if the program was updated as RESIDENT(Y) after the checkpoint from which this IMS is performing emergency restart.

N  The PSB associated with the program is not resident in storage. The PSB is loaded at scheduling time.
Y  The PSB associated with the program is made resident in storage at IMS cold start or restart. IMS loads the PSB and initializes it. A resident PSB is accessed in local storage, which avoids I/O to retrieve the ACB.

Updating this attribute stops the program from scheduling for the duration of command processing.

Keyword combination rules include the following:
• DOPT(Y) and RESIDENT(Y) are mutually exclusive.
• GPSB(Y) and RESIDENT(Y) are mutually exclusive.

SCHDTYPE
Specifies whether this application program can be scheduled into more than one message region or batch message region simultaneously.

PARALLEL  The application program can be scheduled in multiple regions simultaneously.

SERIAL  The application program can be scheduled in only one region at a time.

Updating this attribute to SCHDTYPE(SERIAL) is rejected if a transaction that references this program is defined with a parallel limit count other than 65535.

Updating this attribute stops the program from scheduling for the duration of command processing.

Keyword combination rules include the following:
• DOPT(Y) and SCHDTYPE(PARALLEL) are mutually exclusive.

TRANSTAT
Specifies whether transaction level statistics should be logged. The value specified has meaning only if the program is a JBP or a non-message driven BMP. If Y is specified, transaction level statistics are written to the log in an 'X'56FA' log record.

N  Transaction level statistics should not be logged.
Transaction level statistics should be logged.

The TRANSTAT keyword on the UPDATE PGM or UPDATE PGMDESC command gives the user the ability to override the system default or the current value of the TRANSTAT parameter. If the TRANSTAT keyword is omitted on the UPDATE PGM command, the current transaction level statistics setting is unchanged for the program.

START
Specifies attributes that are to be started.

SCHD
Starts scheduling of the application program. Or, resets the NOTINIT status if set because of an invalid database or DMB, in case the database or DMB has been created since the scheduling failure. If the database or DMB is still invalid when the program is next scheduled, the program will be marked with a status of NOTINIT again.

TRACE
Starts the tracing of the DL/I portion of Data Communications (DC) for the application program. Each DL/I call to a TPPCB, issued by the user application program, is traced on entry to and exit from the DC call handler DFSDLA30. On entry to DFSDLA30 a type 6701-LA3A record is written, on exit from DFSDLA30 a type 6701-LA3B record is written.

Each record contains the following items if applicable:
- TPPCB
- Up to 64 bytes of the I/O area
- SMB
- PST

If the batch message program (BMP) being traced is the IBM IMS Queue Control Facility for z/OS (5697-E99), a 6701-MRQB record is logged by the IMS Queue Control Facility module DFSQMQR0. The default program name for the IMS Queue Control Facility BMP is MRQPSB, and can be overridden on the MSGQUEUE system definition macro.

Items logged in the 6701-MRQB record, if applicable, are:
- TPPCB
- AIB
- I/O area
- PST
- QTPDST
- QSAPWKAD
- QMBA
- PSTDCA
- REG14-12

STOP
Specifies attributes that are to be stopped.

SCHD
Stops scheduling of the application program.

TRACE
Stops the tracing of the DL/I portion of Data Communications (DC) for the application program.
Usage notes

Resources exist for the life of the IMS unless they are deleted by using a DELETE command. Resources are recoverable across an IMS warm start or emergency restart. Resources are lost if IMS is cold started, unless cold start imports definitions that were exported while IMS was up.

The UPDATE PGM command can be issued only through the OM API. This command applies to DB/DC, DBCTL and DCCTL systems. This command is not valid on the XRF alternate, RSR tracker, or FDBR region. The UPDATE PGM command specified with SET() is not valid if online change for MODBLKS is enabled (DFSDFx0 or DFSCGxxx defined with MODBLKS=OLC, or MODBLKS not defined), except for SET(LOCK()) and SET(TRANSTAT()). This command is recoverable.

The UPDATE commands are not allowed for IMS-defined resources, except with keywords START, STOP, SET(LOCK(ON|OFF)), and SET(TRANSTAT(Y|N)). For the UPDATE PGM command, this means Fast Path utility program DBF#FPU0.

The UPDATE PGM command changes a MODBLKS program to a dynamic program with a definition type of UPDATE, if the BMPTYPE, DOPT, FP, GPSB, LANG, RESIDENT, SCHDTYPE, or TRANSTAT value is changed.

Each program is updated individually, unlike the online change process where either all programs are updated or no programs are updated. Most runtime resource definition values for a program can be updated only if the program is not in use. If the program is in use, the update fails.

You can update the status of a program (LOCK, START, STOP) while the program is in use.

If all the attributes specified by the UPDATE command are already defined for the resource, no update is actually made, no resources are quiesced, no log record is created, and a completion code of zero is returned. This avoids unnecessary processor usage when no action needs to be taken.

The following program attributes cannot be updated if online change for MODBLKS is enabled: BMPTYPE, DOPT, FP, GPSB, LANG, RESIDENT, SCHDTYPE.

Output fields

The following table shows the UPDATE PGM output fields. The columns in the table are as follows:

<table>
<thead>
<tr>
<th>Short label</th>
<th>Contains the short label generated in the XML output.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long label</td>
<td>Contains the long label generated in the XML output.</td>
</tr>
<tr>
<td>Keyword</td>
<td>Identifies keyword on the command that caused the field to be generated. N/A appears for output fields that are always returned. error appears for output fields that are returned only in case of an error.</td>
</tr>
<tr>
<td>Meaning</td>
<td>Provides a brief description of the output field.</td>
</tr>
<tr>
<td>Short label</td>
<td>Long label</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>CC</td>
<td>CC</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
</tr>
<tr>
<td>ERRT</td>
<td>ErrorText</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
</tr>
<tr>
<td>PGM</td>
<td>PgmName</td>
</tr>
</tbody>
</table>

### Return, reason, and completion codes

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>Command completed successfully. The command output contains a line for each resource, accompanied by its completion code. If NAME(*) is specified without OPTION(ALLRSP), no output lines are returned. See the completion code table for details.</td>
</tr>
<tr>
<td>X'00000004'</td>
<td>X'00002008'</td>
<td>Invalid number of keywords. Either a SET, START, or STOP keyword is required.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002040'</td>
<td>More than one filter value is specified on the UPDATE PGM command. Confirm that only one of SET or START</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002044'</td>
<td>The UPDATE PGM command is not processed because the same attribute value was specified for the START and STOP filters. The attributes SCHD and TRACE can be specified only with the START or STOP keyword, not both. Confirm that only one START</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002048'</td>
<td>Invalid SET attribute.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002106'</td>
<td>DOPT(Y) is mutually exclusive with RESIDENT(Y).</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002107'</td>
<td>DOPT(Y) is mutually exclusive with SCHDTYPE(PARALLEL).</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002108'</td>
<td>FP(E) is mutually exclusive with BMPTYPE(Y).</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002109'</td>
<td>FP(E) is mutually exclusive with LANG(JAVA).</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002113'</td>
<td>GPSB(Y) is mutually exclusive with DOPT(Y).</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002114'</td>
<td>GPSB(N) is mutually exclusive with LANG.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002115'</td>
<td>GPSB(Y) is mutually exclusive with RESIDENT(Y).</td>
</tr>
</tbody>
</table>
Table 514. Return and reason codes for the UPDATE PGM command (continued)

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000008'</td>
<td>X'00002132'</td>
<td>DOPT(Y) not supported with LANG except for LANG(JAVA).</td>
</tr>
<tr>
<td>X'000000C'</td>
<td>X'00003000'</td>
<td>Command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code. If NAME(*) is specified without OPTION(ALLRSP), only resources with nonzero completion codes are returned. See the completion code table for details.</td>
</tr>
<tr>
<td>X'000000C'</td>
<td>X'00003004'</td>
<td>Command was not successful for any of the resources. The command output contains a line for each resource, accompanied by its completion code. See the completion code table for details.</td>
</tr>
<tr>
<td>X'0000010'</td>
<td>X'0000400C'</td>
<td>Command is not valid on the XRF alternate.</td>
</tr>
<tr>
<td>X'0000010'</td>
<td>X'00004014'</td>
<td>Command is not valid on the RSR tracker.</td>
</tr>
<tr>
<td>X'0000010'</td>
<td>X'00004024'</td>
<td>No Fast Path defined, FP(E) is invalid.</td>
</tr>
<tr>
<td>X'0000010'</td>
<td>X'00004120'</td>
<td>Online change phase is in progress.</td>
</tr>
<tr>
<td>X'0000010'</td>
<td>X'00004300'</td>
<td>Command is not allowed because online change for MODBLKS is enabled (DFSDFxxx or DFSCGxxx defined with MODBLKS=OLC, or MODBLKS not defined).</td>
</tr>
<tr>
<td>X'0000014'</td>
<td>X'00005004'</td>
<td>DFSOCMD response buffer could not be obtained.</td>
</tr>
<tr>
<td>X'0000014'</td>
<td>X'00005008'</td>
<td>DFSPOOL storage could not be obtained.</td>
</tr>
<tr>
<td>X'0000014'</td>
<td>X'0000500C'</td>
<td>AWE could not be obtained.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. The following table includes an explanation of the completion codes.

Table 515. Completion codes for the UPDATE PGM command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
<th>Error text</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>Command completed successfully for program.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>Program name is invalid, or the wildcard parameter specified does not match any program names.</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>ANOTHER CMD IN PROGRESS</td>
<td>Another command (such as DELETE or UPDATE) is in progress for this program. This could also mean this command, if the program is specified by more than one specific or wildcard parameter.</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>DOPT=Y/RESIDENT=Y CONFLICT</td>
<td>Program update failed because dynamic DOPT(Y) option conflicts with resident RESIDENT(Y) option.</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 30. UPDATE commands
<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
<th>Error text</th>
</tr>
</thead>
<tbody>
<tr>
<td>2A</td>
<td>DOPT=Y/PARALLEL</td>
<td>Program update failed because dynamic DOPT(Y) option conflicts with parallel schedule SCHDTYPE(PARALLEL) option.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CONFLICT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2F</td>
<td>FP=E/BMPTYPE=Y</td>
<td>Program update failed because Fast Path exclusive FP(E) option conflicts with BMP type BMPTYPE(Y).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CONFLICT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>RTC/FP=N PGM</td>
<td>Program update failed because non-Fast Path option FP(N) conflicts with Fast Path exclusive transaction that references this program.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CONFLICT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>FP=E/LANG=JAVA</td>
<td>Program update failed because Fast Path exclusive FP(E) option conflicts with Java language LANG(JAVA).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CONFLICT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3E</td>
<td>FP=N/FP=E PGM</td>
<td>Program update failed because Fast Path exclusive FP(E) option conflicts with non-Fast Path transaction that references this program.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CONFLICT</td>
<td></td>
<td>tranname (8 chars)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3F</td>
<td>FP=P/BMPTYPE=Y</td>
<td>Program update failed because BMP type program conflicts with Fast Path potential transaction that references this program.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CONFLICT</td>
<td></td>
<td>tranname (8 chars)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>PARLIM/</td>
<td>The SCHDTYPE value cannot be changed to SERIAL because a transaction that references the program has a PARLIM value that is something other than 65535. The program definition is not updated.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SCHDTYPE=SERIAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CONFLICT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>GPSB=Y/DOPT=Y</td>
<td>Program updated failed because generated PSB GPSB(Y) option conflicts with dynamic DOPT(Y) option.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CONFLICT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>GPSB=N/LANG</td>
<td>Generated PSB option N (GPSB(N)) conflicts with the language option (LANG()). The program definition is not updated.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CONFLICT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Completion code</td>
<td>Completion code text</td>
<td>Meaning</td>
<td>Error text</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>47</td>
<td>GPSB=Y/RESIDENT=Y</td>
<td>Program update failed because generated PSB GPSB(Y) option conflicts with the resident RESIDENT(Y) option.</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>NOT ALLOWED FOR IMS RESOURCE</td>
<td>The specified UPDATE command is not allowed for the IMS-defined resource. DBF#FPU0 is an example of an IMS-defined program.</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>PROGRAM SCHEDULED</td>
<td>Program is scheduled.</td>
<td></td>
</tr>
<tr>
<td>7A</td>
<td>RTC/FP=N PGM CONFLICT</td>
<td>Program to be updated as FP(N) conflicts with a routing that references the program. The routing code name is returned as error text.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Suggested actions: Issue DELETE RTC command or DELETE TRAN (if associated with FP exclusive transaction) to delete the routing code. Or Issue UPDATE RTC command to update the program to another name.</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>DOPT=Y/LANG CONFLICT</td>
<td>Program update failed because dynamic option DOPT(Y) conflicts with LANG specified. DOPT(Y) is only supported with LANG(JAVA).</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>NOT INITIALIZED</td>
<td>Update program failed because the program was not successfully initialized. You can use the QRY PGM SHOW(STATUS) command to return additional information regarding the reason for the NOTINIT status.</td>
<td></td>
</tr>
<tr>
<td>B9</td>
<td>REQUIRES LANG</td>
<td>Program update failed because the DOPT(Y) or GPSB(Y) option specified requires language LANG to be specified or already defined.</td>
<td></td>
</tr>
</tbody>
</table>
Table 515. Completion codes for the UPDATE PGM command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
<th>Error text</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA</td>
<td>NOT ALLOWED FOR MRQ PSB</td>
<td>UPDATE command failed for MRQ PSB because an attribute was specified that is not supported for the MRQ PSB: BMPTYPE(N), DOPT(Y), GPSB(Y), FP(E), RESIDENT(Y), SCHDTYPE(SERIAL).</td>
<td></td>
</tr>
<tr>
<td>1D7</td>
<td>IMPORT CHANGE LIST ERROR</td>
<td>The resource is in the process of being imported from the change list in the IMSRSC repository or was not successfully imported from the change list. The resource cannot be updated until it is successfully imported from the repository.</td>
<td></td>
</tr>
</tbody>
</table>

Examples

The following are examples of the UPDATE PGM command:

Example 1 for UPDATE PGM command

TSO SPOC input:

UPDATE PGM NAME(BADNAME,AUTPSB2,CDEBS,BMP011,BAD*) SET(SCHDTYPE(PARALLEL))

TSO SPOC output:

Response for: UPDATE PGM NAME(BADNAME,AUTPSB2,CDEBS,BMP011,BAD*) SET(SCHDTYPE(PARALLEL))

<table>
<thead>
<tr>
<th>PgmName</th>
<th>MbrName</th>
<th>CC CText</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTPSB2</td>
<td>IMS1</td>
<td>0</td>
</tr>
<tr>
<td>BAD*</td>
<td>IMS1</td>
<td>10 NO RESOURCES FOUND</td>
</tr>
<tr>
<td>BADNAME</td>
<td>IMS1</td>
<td>10 NO RESOURCES FOUND</td>
</tr>
<tr>
<td>BMP011</td>
<td>IMS1</td>
<td>2A DOPT=Y/PARALLEL CONFLICT</td>
</tr>
<tr>
<td>CDEBS</td>
<td>IMS1</td>
<td>0</td>
</tr>
</tbody>
</table>

OM API input:

CMD(UPDATE PGM NAME(BADNAME,AUTPSB2,CDEBS,BMP011,BAD*) SET(SCHDTYPE(PARALLEL)))

OM API output:

<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.3.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2006.311 00:55:21.981467</statime>
<stotime>2006.311 00:55:21.981970</stotime>
<staseq>BFAADF0EA2A1B548</staseq>
<stoseq>BFAADF0EA2C12E48</stoseq>
<rqtstknl1>USR7011 10165521</rqtstknl1>
<rc>02000000</rc>
<rtn>00003008</rtn>
<rsnmsg>CSLN054I</rsnmsg>
<rsntxt>None of the clients were successful.</rsntxt>

1136  Commands, Volume 2: IMS Commands N - V
Explanation: Update some programs so that they can be scheduled in multiple regions simultaneously. The update completed successfully for programs AUTPSB2 and CDEBS, as shown by the completion code 0. The update failed for program BMP011 with completion code 2A, indicating that the SCHDTYPE(PARALLEL) attribute conflicts with the DOPT(Y) attribute already defined for program BMP011. The update fails for program BADNAME and for parameter BAD* with completion code 10, since program BADNAME does not exist and no program name starts with BAD.

Related concepts:
- How to interpret CSL request return and reason codes (System Programming APIs)
- Diagnosing problems in the Queue Control Facility Message Requeueur (Diagnosis)

Related tasks:
- Updating runtime application program resource and descriptor definitions with the UPDATE command (System Definition)

Related reference:
- /LOCK command (Commands)
- Command keywords and their synonyms (Commands)
UPDATA PGMDESC command

Use the UPDATA PGMDESC command to update program descriptors. A descriptor is a model that can be used to create descriptors or resources.

Updating a descriptor changes only the attributes explicitly specified on the UPDATA command. Attributes not specified retain their existing values. Any program resource or descriptor can be created using this descriptor as a model, by specifying the CREATE LIKE(DESC(descriptor_name)) command. Any descriptor or resource that was already created using this descriptor is not updated.

Subsections:
- “Environment”
- “Syntax”
- “Keywords” on page 1139
- “Usage notes” on page 1142
- “Output fields” on page 1143
- “Return, reason, and completion codes” on page 1143
- “Examples” on page 1146

Environment

The following table lists the environments (DB/BC, DBCTL, and DCCTL) in which you can use the commands and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATA PGMDESC</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>OPTION</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SET</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
UPDATE PGMDESC NAME(name)
```
Keywords

The following keywords are valid for the UPDATE PGMDESC command:

NAME
Specifies the 1-8 character name of the program descriptor. Wildcards can be specified in the name. The name is a repeatable parameter. If the NAME parameter specified is a specific or wildcard name, command responses are returned for all the descriptor names that are processed. For NAME(*), command responses are returned only for the descriptor names that resulted in an error. OPTION(ALLRSP) can be specified with NAME(*) to obtain the command responses for all the descriptor names that are processed.

OPTION
Specifies additional functions to be performed along with the command.

ALLRSP
Indicates that the response lines are to be returned for all descriptors that are processed on the command. The default action is to return response lines only for the descriptors that resulted in an error. It is only valid with NAME(*). ALLRSP is ignored for other NAME values.

SET
Specifies the attribute values to be changed.

BMPTYPE
BMP type option. Specifies whether the program executes in a BMP type region or not. A BMP type region can be a BMP region or a JBP region.

PSBs scheduled by DB2 stored procedures, by programs running under WebSphere Application Server, and by other users of the ODBA interface may be defined with BMPTYPE Y or N.

Y  The program executes in a BMP type region. It can execute in an IMS BMP region or a JBP region. Any associated transactions are assigned normal and limit priority values of zero.

N  The program does not execute in a BMP type region. It may execute in
an IMS TM MPP, JMP, or IFP region, or it may use either the ODBA or DRA interface. This specification should be used for programs running in IMS TM MPP, JMP, and IFP regions, or PSBs scheduled by CICS programs using DBCTL and other users of the DRA interface. This is the default.

Keyword combination rules include the following:

- BMPTYPE(Y) and FP(E) are mutually exclusive.

**DEFAULT(Y)**

Specifies this descriptor as the default, which resets the existing default descriptor to DEFAULT(N). When a descriptor or resource is created without the LIKE keyword, any attribute not specified on the CREATE command takes the value defined in the default descriptor. Only one descriptor can be defined as the default for a resource type. IMS defines a program descriptor called DFSDSPG1, where all attributes are defined with the default value. Defining a user-defined descriptor to be the default overrides the current default descriptor. Since only one program descriptor can be the default at one time, only one descriptor name can be specified with DEFAULT(Y).

**DOPT**

Specifies the dynamic option.

- N The PSB associated with this program is not located dynamically. The PSB must exist in ACBLIB, otherwise the program is set to a NOTINIT status, and cannot be scheduled.

- Y The PSB associated with this program is located dynamically. Each time the program associated with this PSB is scheduled, the latest copy of the PSB is loaded from ACBLIB. The PSB does not need to be in any data set defined for ACBLIB until it is actually required to process a transaction. A new version of the PSB can be generated in ACBLIB and is picked up the next time the PSB is scheduled. DOPT PSBs referencing DBDs that are missing from ACBLIB cannot be scheduled. When the program terminates, the PSB is deleted from the PSB pool.

Keyword combination rules include the following:

- DOPT(Y) and GPSB(Y) are mutually exclusive.
- DOPT(Y) and LANG(JAVA) is a valid combination.
- LANG is invalid with GPSB(N), except if DOPT(Y) and LANG(JAVA).
- LANG(JAVA), DOPT(Y), and GPSB(N) is a valid combination.
- RESIDENT(Y) and DOPT(Y) are mutually exclusive.
- SCHDTYPE(PARALLEL) and DOPT(Y) are mutually exclusive.

**FP**

Specifies the Fast Path option.

- E The program is a Fast Path-exclusive application program. This implicitly defines a wait-for-input (WFI) application program. Either a transaction or a routing code that can be assigned by the user Input Edit/Routing exit routine must be defined for the Fast Path-exclusive application, in order for this program to be usable.

- N The program is not a Fast Path-exclusive application program. When FP(N) is specified, any attempt to use Fast Path resources or commands will yield unpredictable results.

Keyword combination rules include the following:
• FP(E) requires Fast Path to be defined.
• LANG(JAVA) and FP(E) are mutually exclusive.
• BMPTYPE(Y) and FP(E) are mutually exclusive.

**GPSB**
Specifies the generated PSB option.

**N** The PSB associated with the program is not generated by IMS. The PSB must exist in ACBLIB; otherwise the program is set to a NOTINIT status and cannot be scheduled.

**Y** The PSB associated with the program is generated by IMS. It is not loaded from ACBLIB. The scheduling process of all environments generates a PSB containing an I/O PCB and an alternate modifiable PCB. You do not need to perform the PSBGEN and ACBGEN, thus eliminating I/O to the ACBLIB.

The generated PSB contains an I/O PCB named IOPCBbbb and a modifiable, alternate PCB named TPPCB1bb. With an alternate modifiable PCB, an application can use the CHNG call to change the output destination and send output to a destination other than the input destination.

Keyword combination rules include the following:
• DOPT(Y) and GPSB(Y) are mutually exclusive.
• DOPT(Y) and LANG(JAVA) is a valid combination.
• GPSB(Y) requires LANG.
• LANG is invalid with GPSB(N), except if DOPT(Y) and LANG(JAVA).
• LANG(JAVA), DOPT(Y), and GPSB(N) is a valid combination.
• RESIDENT(Y) and GPSB(Y) are mutually exclusive.

**LANG**
Specifies the language interface of the application program for a GPSB.

The LANG parameters and their meanings are identified in the following table.

<table>
<thead>
<tr>
<th>LANG Parameter</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSEM</td>
<td>Assembler</td>
</tr>
<tr>
<td>COBOL</td>
<td>COBOL</td>
</tr>
<tr>
<td>JAVA</td>
<td>Java</td>
</tr>
<tr>
<td>PASCAL</td>
<td>Pascal</td>
</tr>
<tr>
<td>PLI</td>
<td>PL/I</td>
</tr>
</tbody>
</table>

Keyword combination rules include the following:
• LANG is invalid with GPSB(N), except if DOPT(Y) and LANG(JAVA).
• DOPT(Y) and LANG(JAVA) is a valid combination.
• LANG(JAVA), DOPT(Y), and GPSB(N) is a valid combination.
• FP(E) and LANG(JAVA) are mutually exclusive.

**RESIDENT**
Specifies the resident option.

**N** The PSB associated with the program is made to be not resident in storage. The PSB is loaded at scheduling time.
Y The PSB associated with the program is made to be resident in storage immediately. IMS loads the PSB and initializes it. The PSB is removed from the PSB pool, if applicable. A resident PSB is accessed in local storage, which eliminates I/O to retrieve the ACB.

Keyword combination rules include the following:
• DOPT(Y) and RESIDENT(Y) are mutually exclusive.
• GPSB(Y) and RESIDENT(Y) are mutually exclusive.

SCHDTYPE
Specifies whether this application program can be scheduled into more than one message region or batch message region simultaneously.

PARALLEL
The application program can be scheduled in multiple regions simultaneously.

SERIAL
The application program can be scheduled in only one region at a time.

Updating this attribute to SCHDTYPE(SERIAL) is rejected if a transaction referencing this program is defined with a parallel limit count other than 65535.

Keyword combination rules include the following:
• DOPT(Y) and SCHDTYPE(PARALLEL) are mutually exclusive.

TRANSTAT
Specifies whether transaction level statistics should be logged. The value specified has meaning only if the program is a JBP or a non-message driven BMP. If Y is specified, transaction level statistics are written to the log in a ‘X’56FA’ log record.

N Transaction level statistics should not be logged.

Y Transaction level statistics should be logged.

The TRANSTAT keyword on the UPDATE PGMDESC command gives the user the ability to override the system default or the current value of the TRANSTAT parameter. If the TRANSTAT keyword is omitted on the UPDATE PGMDESC command, the current transaction level statistics setting is unchanged for the program.

Usage notes
If all the attributes specified by the UPDATE command are already defined for the descriptor, no update is actually made, no descriptors are quiesced, no log record is created, and a completion code of zero is returned. This avoids unnecessary overhead when no action needs to be taken.

Descriptors exist for the life of the IMS unless they are deleted using a DELETE command. Descriptors are recoverable across an IMS warm start or emergency restart. Descriptors are lost if IMS is cold started, unless cold start imports definitions that were exported while IMS was up.

The UPDATE PGMDESC command can be issued only through the OM API. This command applies to DB/DC, DBCTL and DCCTL systems. This command is not
valid on the XRF alternate, RSR tracker, or FDBR region. The UPDATE PGMDesc commands are not valid if online change for MODBLKS is enabled (DFSDFxxxx or DFSCGxxxx defined with MODBLKS=OLC, or MODBLKS not defined). This command is recoverable.

If the descriptor is the IMS-defined program descriptor (DFSDSPG1) the only attributes that can be updated are the DEFAULT (SET(DEFAULT(Y))) and the TRANSTAT (SET(TRANSTAT(Y | N |))) attributes.

Each descriptor is updated individually. Individual updating does not work like online change where either all descriptors are updated or no descriptors are updated.

Output fields

The following table shows the UPDATE PGMDesc output fields. The columns in the table are as follows:

<table>
<thead>
<tr>
<th>Short label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>N/A</td>
<td>Completion code</td>
</tr>
<tr>
<td>CCTXT</td>
<td>error</td>
<td>Completion code text that briefly explains the nonzero completion code.</td>
</tr>
<tr>
<td>DESC</td>
<td>PGMDesc</td>
<td>Program descriptor name.</td>
</tr>
<tr>
<td>ERRT</td>
<td>error</td>
<td>Error text with diagnostic information. Error text can be returned for a nonzero completion code and contains information that further explains the completion code.</td>
</tr>
<tr>
<td>MBR</td>
<td>N/A</td>
<td>IMSplex member that built the output line.</td>
</tr>
<tr>
<td>OLDDEF</td>
<td>PGMDesc</td>
<td>Old default descriptor name, if this descriptor is updated to be the default by specifying DEFAULT(Y). The old default descriptor is no longer the default.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.
Table 518. Return and reason codes for the UPDATE PGMDESC command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>Command completed successfully. The command output contains a line for each descriptor, accompanied by its completion code. If NAME(*) is specified without OPTION(ALLRSP), no output lines are returned. See the completion code table for details.</td>
</tr>
<tr>
<td>X'00000004'</td>
<td>X'00002008'</td>
<td>Invalid number of keywords. A SET keyword is required.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002048'</td>
<td>Invalid SET attribute.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002106'</td>
<td>DOPT(Y) mutually exclusive with RESIDENT(Y).</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002107'</td>
<td>DOPT(Y) mutually exclusive with SCHDTYPE(PARALLEL).</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000210B'</td>
<td>FP(E) mutually exclusive with BMPTYPE(Y).</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000210D'</td>
<td>FP(E) mutually exclusive with LANG(JAVA).</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002113'</td>
<td>GPSB(Y) mutually exclusive with DOPT(Y).</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002114'</td>
<td>GPSB(N) is mutually exclusive with LANG.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002115'</td>
<td>GPSB(Y) mutually exclusive with RESIDENT(Y).</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002132'</td>
<td>DOPT(Y) not supported with LANG except for LANG(JAVA).</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002133'</td>
<td>Multiple name parameters were specified with DEFAULT(Y). Only one descriptor can be the default at a time.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003000'</td>
<td>Command was successful for some descriptors but failed for others. The command output contains a line for each descriptor, accompanied by its completion code. If NAME(*) is specified without OPTION(ALLRSP), only descriptors with non-zero completion codes are returned. See the completion code table for details.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>DFSOCMD response buffer could not be obtained.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003008'</td>
<td>DFSPOOL storage could not be obtained.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'0000300C'</td>
<td>AWE could not be obtained.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. The following table includes an explanation of the completion codes.
<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command completed successfully for program descriptor.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>Program descriptor name is invalid, or the wildcard parameter specified does not match any descriptor names.</td>
</tr>
<tr>
<td>17</td>
<td>ANOTHER CMD IN PROGRESS</td>
<td>Another command (such as DELETE or UPDATE) is in progress for this program descriptor. This could also mean this command, if the descriptor is specified by more than one specific or wildcard parameter.</td>
</tr>
<tr>
<td>29</td>
<td>DOPT=Y/RESIDENT=Y CONFLICT</td>
<td>Program descriptor update failed because dynamic DOPT(Y) option conflicts with resident RESIDENT(Y) option.</td>
</tr>
<tr>
<td>2A</td>
<td>DOPT=Y/PARALLEL CONFLICT</td>
<td>Program descriptor update failed because dynamic DOPT(Y) option conflicts with parallel schedule SCHDTYPE(PARALLEL) option.</td>
</tr>
<tr>
<td>2F</td>
<td>FP=E/BMPTYPE=Y CONFLICT</td>
<td>Program descriptor update failed because Fast Path exclusive FP(E) option conflicts with BMP type BMPTYPE(Y).</td>
</tr>
<tr>
<td>37</td>
<td>FP=E/LANG=JAVA CONFLICT</td>
<td>Program descriptor update failed because Fast Path exclusive FP(E) option conflicts with Java language LANG(JAVA).</td>
</tr>
<tr>
<td>40</td>
<td>PARLIM/SCHDTYPE=SERIAL CONFLICT</td>
<td>The SCHDTYPE value cannot be changed to SERIAL because a transaction that references the program has a PARLIM value that is something other than 65535. The program definition is not updated.</td>
</tr>
<tr>
<td>43</td>
<td>GPSB=Y/DOPT=Y CONFLICT</td>
<td>Program descriptor updated failed because generated PSB GPSB(Y) option conflicts with dynamic DOPT(Y) option.</td>
</tr>
<tr>
<td>46</td>
<td>GPSB=N/LANG CONFLICT</td>
<td>Generated PSB option N (GPSB(N)) conflicts with the language option (LANG()). The program definition is not updated.</td>
</tr>
<tr>
<td>47</td>
<td>GPSB=Y/RESIDENT=Y CONFLICT</td>
<td>Program descriptor update failed because generated PSB GPSB(Y) option conflicts with the resident RESIDENT(Y) option.</td>
</tr>
<tr>
<td>48</td>
<td>NOT ALLOWED FOR IMS RESOURCE</td>
<td>The specified UPDATE command is not allowed for the IMS descriptor or resource. DFSDSPG1 is an example of an IMS descriptor. The only IMS descriptor attribute you can update is DEFAULT(Y).</td>
</tr>
<tr>
<td>8A</td>
<td>WILDCARD PARAMETER NOT SUPPORTED</td>
<td>A wildcard parameter was specified with DEFAULT(Y). Only one descriptor can be the default at a time.</td>
</tr>
<tr>
<td>97</td>
<td>DOPT=Y/LANG CONFLICT</td>
<td>Program descriptor update failed because dynamic option DOPT(Y) conflicts with LANG specified. DOPT(Y) is only supported with LANG(JAVA).</td>
</tr>
</tbody>
</table>
Table 519. Completion codes for the UPDATE PGMDESC command  (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1D7</td>
<td>IMPORT CHANGE LIST ERROR</td>
<td>The descriptor is in the process of being imported from the change list in the IMSRSC repository or was not successfully imported from the change list. The descriptor cannot be updated until it is successfully imported from the repository.</td>
</tr>
</tbody>
</table>

Examples

The following are examples of the UPDATE PGMDESC command:

Example 1 for UPDATE PGMDESC command

TSO SPOC input:

UPDATE PGMDESC NAME(*) SET(BMPTYPE(Y)) OPTION(ALLRSP)

TSO SPOC output:

Response for: UPDATE PGMDESC NAME(*) SET(BMPTYPE(Y)) OPTION(ALLRSP)

<table>
<thead>
<tr>
<th>DescName</th>
<th>MbrName</th>
<th>CC</th>
<th>CCText</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESC001</td>
<td>IMS1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>DESC002</td>
<td>IMS1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>DESC003</td>
<td>IMS1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>DESC004</td>
<td>IMS1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>DESC005</td>
<td>IMS1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>DFSDSPG1</td>
<td>IMS1</td>
<td>48</td>
<td>NOT ALLOWED FOR IMS RESOURCE</td>
</tr>
<tr>
<td>DPTDESC</td>
<td>IMS1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>FPEDESC</td>
<td>IMS1</td>
<td>2F</td>
<td>FP=E/BMPTYPE=Y CONFLICT</td>
</tr>
<tr>
<td>GPSBDESC</td>
<td>IMS1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PARLDESC</td>
<td>IMS1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>RESDESC</td>
<td>IMS1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>TLSDESC</td>
<td>IMS1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

OM API input:

CMD(UPDATE PGMDESC NAME(*) SET(BMPTYPE(Y)) OPTION(ALLRSP))

OM API output:

<imsout>
<ctl>
<omname>OM1OM </omname>
<omvsn>1.3.0</omvsn>
<xmlvsn>20 </xmlvsn>
<statime>2006.312 23:30:46.559300</statime>
<stotime>2006.312 23:30:46.559923</stotime>
<staseq>BFAD4FE141E44D08</staseq>
<stoseq>BFAD4FE1420B3F48</stoseq>
<rqsttkn1>USRT011 10153046</rqsttkn1>
<rc>0200000C</rc>
<rsn>00003008</rsn>
<rsntxt>CSLN054I</rsntxt>
</ctl>
<cmderr>
<mbr name="IMS1 ">  
<typ>IMS </typ>
<styp>DBDC </styp>
<rc>0000000C</rc>
<rsn>00003000</rsn>
</cmderr>

1146 Commands, Volume 2: IMS Commands N - V
At least one request successful

Explanation: Update all program descriptors to be BMPTYPE(Y). The update completed successfully for most program descriptors, as shown by completion code 0. The update failed for IMS-defined descriptor DFSDDSPG1 with completion code 48, because the only attribute that can be updated for DFSDDSPG1 is DEFAULT(Y). The update failed for program descriptor FPEDESC with completion code 2F, because the BMPTYPE(Y) attribute conflicts with the Fast Path exclusive FP(E) attribute already defined for program descriptor FPEDESC.

Related concepts:
- [How to interpret CSL request return and reason codes (System Programming APIs)](chapter)

Related reference:
- [Command keywords and their synonyms (Commands)]

**UPDATE POOL command**

Use the UPDATE POOL command to dynamically add, update, or delete OSAM or VSAM subpools, or to specify values associated with storage used by the Fast Path 64-bit buffer manager.

Subsections:
- ["Environment" on page 1148]
Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 520. Valid environments for the UPDATE POOL command and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE POOL</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MEMBER</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SECTION</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SET</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TYPE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Restriction: The dynamic database buffer pools function is not supported in a DBCTL warm standby environment.

Syntax

```
UPDATE POOL

TYPE(DBAS)
MEMBER(xxx)
SECTION(OSAMxxx)
VSAMxxx
OSAMxxx,VSAMxxx

TYPE(FPBP64)
SET(LIMIT(xxxxx))
```

Keywords

The following keywords are valid for the UPDATE POOL command:

**TYPE()**
This required keyword specifies which type of UPDATE POOL command to issue.

**DBAS**
This option specifies that the command dynamically adds, updates, or deletes OSAM or VSAM subpools. TYPE(DBAS) is mutually exclusive with other options on the TYPE() keyword. The command is rejected with a syntax error if multiple options are specified.

The UPDATE POOL TYPE(DBAS) command is not valid for DCCTL environments.

**FPBP64**
This option specifies that the command sets or changes values for storage
used by the Fast Path 64-bit buffer manager. TYPE(FPBP64) is mutually exclusive with other options on the TYPE() keyword. The command is rejected with a syntax error if multiple options are specified.

**SET()**
Specifies the attribute values to be changed. This keyword is valid only if TYPE(FPBP64) is specified.

**LIMIT**
Specifies the maximum amount of 64-bit storage used by the Fast Path 64-bit buffer manager.

`xxxxx`
You can specify the value in bytes, kilobytes, or megabytes, as follows:
- `xxxxx` - Value in bytes. The maximum value is 2,147,483,647 bytes.
- `xxxxxK` - Value in kilobytes. The maximum value is 2,097,151 KB.
- `xxxxxM` - Value in megabytes. The maximum value is 2,047 MB.

The valid range is between 2GB-1 megabytes and the initial size of the buffer pool at IMS startup.

You can also set this value at IMS startup by specifying the parameter FPBP64M on the DFSDFxxx member of the IMS PROCLIB data set.

**MEMBER(xxx)**
This keyword is valid only if TYPE(DBAS) is specified. It is optional. The `xxx` on the MEMBER keyword specifies a 1- to 3-alphanumeric character value that represents the suffix to a DFSDFxxx member name. The identified DFSDFxxx member is read in and parsed for OSAM and VSAM subpool definitions. If the keyword is not specified, the DFSDFxxx member specified by the DBA on system initialization is used as the default. The DFSDFxxx member specified on system initialization can be determined from message DFS1929I on the system console or log. The command fails if the MEMBER keyword is specified with an invalid `xxx` value or if the DFSDFxxx member is not found.

**Note:** This keyword is optional and by default the command will always refer to the DFSDFxxx member specified on system initialization. Normally the DFSDFxxx member specified on system initialization should be the only one available. The purpose of this keyword is to allow the capability to have the command point to an alternate DFSDFxxx member (different from the system default) for test purposes. In other cases, the MEMBER keyword is expected to be omitted.

**SECTION()**
This keyword is valid only if TYPE(DBAS) is specified. It is required if TYPE(DBAS) is specified. This keyword specifies the section names in the DFSDFxxx member to read in for subpool definitions. It must be followed with a valid section name. One or both of the following section name types can be specified with this keyword:

- **OSAMxxx**
  Specifies the OSAM section in the DFSDFxxx member to read and process. The `xxx` value is the 1- to 3-alphanumeric character suffix of the OSAM section name. The indicated OSAM section must exist in the DFSDFxxx member and must contain valid OSAM subpool definition statements. Only one OSAM section name can be specified on the command.

- **VSAMxxx**
  Specifies the VSAM section in the DFSDFxxx member to read and process.
The xxx value is the 1- to 3-alphanumeric character suffix of the VSAM section name. The indicated VSAM section must exist in the DFSDFxxx member and must contain valid VSAM subpool definition statements. Only one VSAM section name can be specified on the command.

If you are reassigning the DBD association (for example, changing a database data set association from one subpool to another subpool), you must stop and restart the database. The reason for the stop and restart is that the subpool assignment is done during data set open time.

Usage notes for UPDATE POOL TYPE(FPBP64)

The value that can be changed by the UPDATE POOL TYPE(FPBP64) SET(LIMIT(xxxxx)) command is not recoverable.

Enter the UPDATE POOL TYPE(FPBP64) SET(LIMIT(xxxxx)) command after an IMS restart, if needed. Because this command updates the value set by FPBP64M in the DFSDFxxx member, you might want to update FPBP64M with a new value before IMS cold restart.

Usage notes for UPDATE POOL TYPE(DBAS)

Determination of success, failure, or partial success of the command

There can be multiple change requests in the OSAMxxx or VSAMxxx sections of the DFSDFxxx member of the IMS PROCLIB data set. The UPDATE POOL TYPE(DBAS) command processes the change requests serially. When the UPDATE POOL TYPE(DBAS) command is completed, the results can be success, failure, or partial success.

The UPDATE POOL TYPE(DBAS) command cannot be canceled or aborted after it is issued.

The command can complete either before or after the TSO SPOC timeout occurs:
- If it completes before the TSO SPOC timeout occurs, the results are shown in the TSO SPOC with completion codes next to each requested change indicating success, failure, or partial success of the request.
- If it completes after the TSO SPOC timeout occurs, the command continues to run in the background. The TSO SPOC is no longer available to display the completion codes for each change requested by the command.

A series of targeted QUERY POOL TYPE(DBAS) commands can be issued to determine the success or failure of the requested changes.

You can also use the QUERY POOL TYPE(DBAS) command after an emergency restart to determine the success or failure of the requested changes.

It is also possible to use the Operations Manager (OM) audit trail to determine which changes succeed, which changes fail, and which changes succeed partially. The token rqsttkn1 can be used to associate the commands in the OM audit trail to the command responses.

Command completion if storage is unavailable

There are circumstances where the storage requested by the UPDATE POOL TYPE(DBAS) command cannot be satisfied. Because IMS cannot cancel or abort the
command, it attempts to find the next best solution to satisfy the command, which means the command might result in less storage being allocated for the requested subpool change.

When the storage requested by the UPDATE POOL TYPE(DBAS) command cannot be satisfied, both OSAM and VSAM make a sequence of attempts to find a smaller amount of storage.

If a reduced amount of buffer pool storage is allocated as a result of the UPDATE POOL TYPE(DBAS) command, an X'EC' completion code is displayed to indicate the condition.

The minimum number of buffers for a VSAM buffer pool is 3. If a VSAM pool cannot allocate this minimum number of buffers, the databases that are using this pool are left without a buffer assignment. An internal /DBRECOVERY command is issued for all these databases. The UPD POOL command must be issued again to create the buffer pools. A subsequent /STA DB command must be issued to reestablish the buffer pool connection.

**Effect of long-running BMPs on the command**

For VSAM, a long-running batch message processing (BMP) program that does not take any checkpoint can affect the ability of the command to complete, since the command cannot be canceled or aborted. Either the subpool is eventually freed up by the BMP and the command can complete, or the subpool is not freed up by the BMP and the command waits indefinitely for the subpool to become available for the change. This effect applies to any subpool in the same VSAM local shared resource pool (that is, under the same POOLID statement).

OSAM and VSAM have different mechanisms for freeing up the target subpool. In general, OSAM waits for the target subpool to become unowned, while VSAM waits for DL/I activity for the target subpool to reach commit points. Since there is no timeout for this command, all partition specification tables (PSTs) with subpools affected by this command wait until the command completes.

Spreading database data sets across many subpools tends to lessen the impact of a change to any one of these subpools.

**Buffer pool statistics and database data set reassignment**

Buffer pool statistics are handled differently for VSAM and for OSAM following an UPDATE POOL TYPE(DBAS) command. For VSAM, the buffer pool statistics are reset and the old statistics are not carried over. It is advisable to issue a QUERY POOL command for the VSAM buffer pool statistics before issuing the command. The OSAM statistics are carried over and are not reset with the command.

When a database data set is reassigned from one buffer pool to a different buffer pool, the database data set must be closed and reopened. For OSAM, the closing and reopening of the database data set must be done explicitly. In other words, it is not performed as part of the command. For VSAM, the database data set must also be closed and reopened. However, if there is a corresponding change to the target buffer pool along with the reassignment of the database data set (for example, an increase in buffers), then the closing and opening of the database data set is done implicitly by the command.
Output fields

The following table shows the UPDATE POOL output fields. The columns in the table are as follows:

- **Short label**: Contains the short label generated in the XML output.
- **Long label**: Contains the column heading for the output field in the formatted output.
- **SHOW parameter**: Identifies the parameter on the SHOW keyword that caused the field to be generated. N/A appears for output fields that are always returned. *Error* appears for output fields that are returned only in case of an error.
- **Meaning**: Provides a brief description of the output field.

Table 521. Output fields for the UPDATE POOL command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>SHOW parameter</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUFS</td>
<td>BufSize</td>
<td><em>Error</em></td>
<td>Buffer size</td>
</tr>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code. The completion code indicates whether IMS was able to process the command for the specified resource. The completion code is always returned.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td><em>Error</em></td>
<td>Completion code text that briefly explains the nonzero completion code. This field is returned only for an error completion code.</td>
</tr>
<tr>
<td>ERRT</td>
<td>ErrorText</td>
<td><em>Error</em></td>
<td>Error text with diagnostic information. Error text can be returned for a nonzero completion code and contains information that further explains the completion code.</td>
</tr>
<tr>
<td>ID</td>
<td>PoolId</td>
<td><em>Error</em></td>
<td>OSAM subpool or VSAM shared pool ID</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>The IMSplex member that built the output line. The IMS identifier of the IMS for which the database information is displayed. The IMS identifier is always returned.</td>
</tr>
<tr>
<td>SEC</td>
<td>Section</td>
<td><em>Error</em></td>
<td>Section of the DFSDFxxx member that is processed</td>
</tr>
<tr>
<td>STMT</td>
<td>Stmt</td>
<td><em>Error</em></td>
<td>OSAM or VSAM definition statement</td>
</tr>
</tbody>
</table>

The following are examples of the output headers for the UPDATE POOL TYPE(DBAS) command:

- **Output headers for a successful UPDATE POOL TYPE(DBAS) command**:
  
  ```
 Section MbrName CC
 -------- ------ ------
  ```

- **Output headers for the UPDATE POOL TYPE(DBAS) command with errors**:

  ```
 Section MbrName CC CCText Stmt BufSize PoolId ErrorText
 -------- ------ ------ ------ ------ ------ ------ ------ ------
  ```
Return, reason, and completion codes

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 522. Return and reason codes for the UPDATE POOL command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The command completed successfully. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002004'</td>
<td>Invalid command keyword or invalid command keyword combination</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002014'</td>
<td>Invalid character in the member name.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002040'</td>
<td>Invalid option was specified.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002122'</td>
<td>Invalid PDS member name. The specified DFSDFxxx member was not found.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000212B'</td>
<td>Invalid section name.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000212C'</td>
<td>There was a read error on the PDS member.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003000'</td>
<td>At least one request was successful.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>No requests were successful.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004000'</td>
<td>IMS restart in progress.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000400C'</td>
<td>The command failed, because it is not valid on an XRF alternate IMS.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>The command failed, because it is not valid on an RSR tracking IMS.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004016'</td>
<td>The command failed, because it is not valid in a DCCTL environment.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000401C'</td>
<td>The command failed, because it is not valid on the FDR region.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004024'</td>
<td>The command failed, because FP=N is in the startup parameter.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004404'</td>
<td>A smaller storage usage limit than what is currently in use was specified on the command. The storage usage limit is not changed.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005000'</td>
<td>IMODULE GETSTOR error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005004'</td>
<td>DFSOCMD0 GETBUF error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005FFF'</td>
<td>Unexpected internal error while initializing environment.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. The following table includes an explanation of the completion codes.

Table 523. Completion codes for the UPDATE POOL command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The command completed successfully.</td>
</tr>
</tbody>
</table>
Table 523. Completion codes for the UPDATE POOL command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>COMMAND COMPLETE FOR SOME</td>
<td>The command completed successfully. Duplicate parameters are ignored.</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>A smaller storage usage limit than what is currently in use was specified on the UPDATE POOL TYPE(FPBIP64) SET(LIMIT(******)) command. The storage usage limit is not changed.</td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>The specified resource (subpool, DBD, or DCB) is not found or not defined.</td>
</tr>
<tr>
<td>11</td>
<td>DUPLICATE RESOURCE ALREADY EXISTS</td>
<td>Duplicate IOBF or POOLID statements specified. The duplicates are ignored.</td>
</tr>
<tr>
<td>4A</td>
<td>IN USE</td>
<td>The specified subpool is currently in use.</td>
</tr>
<tr>
<td>60</td>
<td>GETMAIN STORAGE ERROR</td>
<td>Failed on a GETMAIN call for the subpool ID table.</td>
</tr>
<tr>
<td>64</td>
<td>GETSTOR STORAGE ERROR</td>
<td>Failed on a GETSTOR call for buffers, subpool, or coupling facility.</td>
</tr>
<tr>
<td>B2</td>
<td>IMS STATE ERROR</td>
<td>IMS is not in a state to perform an IMS shutdown.</td>
</tr>
<tr>
<td>EA</td>
<td>DYNAMIC BUFFER POOL FAILURE</td>
<td>The hiperspace specified for the buffer size is less than 4 KB. The DSNUM value on the DBD statement is invalid. This resulted in one of the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Locked buffers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Excess locked buffers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Reduced buffer allocation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Subpool or buffer page fix error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• CF error of invalid buffer size</td>
</tr>
<tr>
<td>EB</td>
<td>RESOURCE UNABLE TO BE QUIESCED</td>
<td>Activity against a resource was unable to be quiesced by the command. The resource can be a buffer or a subpool.</td>
</tr>
<tr>
<td>EC</td>
<td>REDUCED BUFFER ALLOCATION</td>
<td>Unable to allocate the number of buffers specified. A reduced number of buffers is used.</td>
</tr>
<tr>
<td>ED</td>
<td>MINIMUM BUFFER ALLOCATION</td>
<td>Unable to allocate the number of buffers specified. The minimum number of buffers is used.</td>
</tr>
<tr>
<td>1C0</td>
<td>POOLID ERROR IN DFSDF MEMBER</td>
<td>Unable to process the POOLID statement in the DFSDFxxx member of the IMS PROCLIB data set. Refer to the ErrorText column in the command output for further information on the error.</td>
</tr>
<tr>
<td>1C1</td>
<td>DBD ERROR IN DFSDF MEMBER</td>
<td>Unable to process the DBD statement in the DFSDFxxx member of the IMS PROCLIB data set. Refer to the ErrorText column in the command output for further information on the error.</td>
</tr>
</tbody>
</table>
Examples

The following are examples of the UPDATE POOL command:

Example 1 for UPDATE POOL command

TSO SPOC input:
UPD POOL TYPE(FPBP64) SET(LIMIT(1000M))

TSO SPOC output:

<table>
<thead>
<tr>
<th>Pool Type</th>
<th>MbrName</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPBP64</td>
<td>SYS3</td>
<td>0</td>
</tr>
</tbody>
</table>

OM API input:

CMD(UPD POOL TYPE(FPBP64) SET(LIMIT(1000M)))

OM API output:

```xml
<imsout>
<ctl>
<omname>OM1OM</omname>
<xmlvsn>20</xmlvsn>
<statime>2008.318 21:54:49.340430</statime>
<stotime>2008.318 21:54:49.340724</stotime>
<staseq>C34A9721FEEOEC72</staseq>
<rqsstkn1>USRTO04 10135449</rqsstkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>SYS3</master>
<userid>USRTO04</userid>
<verb>UPD</verb>
<kwd>POOL</kwd>
<input>UPD POOL TYPE(FPBP64) SET(LIMIT(1000M))</input>
</cmd>
<cmdrsphdr>
<hdr slbl="BTYP" llbl="Pool Type" scope="LCL" sort="a" key="1"
scroll="no" len="8" dtype="CHAR" align="left"/>
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" key="1"
scroll="yes" len="8" dtype="CHAR" align="left"/>
<hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0"
scroll="no" len="4" dtype="CHAR" align="right"/>
<hdr slbl="CCTXT" llbl="CCText" scope="LCL" sort="n" key="0"
scroll="yes" len="*" dtype="CHAR" skipb="yes" align="left"/>
</cmdrsphdr>
<cmdrspdata>
<rsp>btyp(FPBP64) MBR(SYS3) CC(0)</rsp>
</cmdrspdata>
</imsout>
```

Explanation: The buffer usage limit for the Fast Path 64-bit buffer manager was changed to 1000M (1 GB) and the command ended successfully.

Example 2 for UPDATE POOL command

TSO SPOC input:
UPDATE POOL TYPE(DBAS) MEMBER(001) SECTION(OSAM001,VSAMTUE)

TSO SPOC output:
Explanation: This is an example of a successful invocation of the UPDATE POOL command to dynamically reconfigure OSAM and VSAM subpools using the OSAM001 and VSAMTUE sections of the DFSDFxxx member.

**Example 3 for UPDATE POOL command**

TSO SPOC input:
UPDATE POOL TYPE(DBAS) MEMBER(001) SECTION(OSAM001, VSAMTUE)

TSO SPOC output:

<table>
<thead>
<tr>
<th>Section</th>
<th>MbrName</th>
<th>CC</th>
<th>CCText</th>
<th>Stmt</th>
<th>BufSize</th>
<th>PoolID</th>
<th>ErrorTxt</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSAM001</td>
<td>IMS1</td>
<td>0</td>
<td>COMMAND COMPLETE FOR SOME</td>
<td></td>
<td>1024</td>
<td>OSM2</td>
<td>PARSED ENTRY INV</td>
</tr>
</tbody>
</table>

Explanation: This is an example of a partially successful invocation of the UPDATE POOL command to dynamically reconfigure OSAM and VSAM subpools using the OSAM001 and VSAMTUE sections of the DFSDFxxx member. Some (but not all) of the definitions within the OSAM001 section were successfully implemented.

**Example 4 for UPDATE POOL command**

TSO SPOC input:
UPDATE POOL TYPE(DBAS) MEMBER(001) SECTION(OSAM123, VSAM123)

TSO SPOC output:

<table>
<thead>
<tr>
<th>Section</th>
<th>MbrName</th>
<th>CC</th>
<th>CCText</th>
<th>Stmt</th>
<th>BufSize</th>
<th>PoolID</th>
<th>ErrorTxt</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSAM123</td>
<td>IMS1</td>
<td>0</td>
<td>COMMAND COMPLETE FOR NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSAM123</td>
<td>IMS1</td>
<td>1C</td>
<td>POOLID ERROR IN DFSDF MEMBER</td>
<td>POOLID 4096 V810 DLET POOLL 0 INV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSAM123</td>
<td>IMS1</td>
<td>1C</td>
<td>POOLID ERROR IN DFSDF MEMBER</td>
<td>POOLID 8192 V810 DLET POOLL 0 INV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSAM123</td>
<td>IMS1</td>
<td>1C</td>
<td>POOLID ERROR IN DFSDF MEMBER</td>
<td>POOLID 1024 V811 DLET POOLL 0 INV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSAM123</td>
<td>IMS1</td>
<td>1C</td>
<td>POOLID ERROR IN DFSDF MEMBER</td>
<td>POOLID 8192 V811 DLET POOLL 0 INV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSAM123</td>
<td>IMS1</td>
<td>1C</td>
<td>POOLID ERROR IN DFSDF MEMBER</td>
<td>POOLID 2048 V812 DLET POOLL 0 INV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSAM123</td>
<td>IMS1</td>
<td>1C</td>
<td>POOLID ERROR IN DFSDF MEMBER</td>
<td>POOLID 16384 V812 DLET POOLL 0 INV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSAM123</td>
<td>IMS1</td>
<td>1C</td>
<td>POOLID ERROR IN DFSDF MEMBER</td>
<td>POOLID 32768 V812 DLET POOLL 0 INV</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Explanation: This is an example of a failed invocation of the UPDATE POOL command to dynamically reconfigure OSAM and VSAM subpools using the OSAM123 and VSAM123 sections of the DFSDFxxx member. None of the definitions within the VSAM123 section were successfully implemented.

**Example 5 for UPDATE POOL command**

TSO SPOC input:
UPDATE POOL TYPE(DBAS) MEMBER(001) SECTION(OSAMFEB, VSAMTUE)

TSO SPOC output:

Log for . . : UPDATE POOL TYPE(DBAS) MEMBER(001) SECTION(OSAMFEB, VSAMFEB)

IMSpelix . . . . : PLEX1
Routing . . . . . : 1
Return code . . . : 0200000C
Reason code . . . : 00003004
Reason text . . . : No requests were successful.
Command master. . : IMS1

<table>
<thead>
<tr>
<th>MbrName</th>
<th>Return</th>
<th>Reason</th>
<th>Reason text</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMS1</td>
<td>00000008</td>
<td>0000212B</td>
<td>Invalid section</td>
</tr>
</tbody>
</table>

**Explanation:** This is an example of a failed invocation of the UPDATE POOL command to dynamically reconfigure OSAM and VSAM subpools using the OSAM123 and VSAMTUE sections of the DFSDFxxx member. A failure occurred because invalid section names were specified when issuing the UPDATE POOL command.

**Example 6 for UPDATE POOL command**

TSO SPOC input:

```
UPDATE POOL TYPE(DBAS) MEMBER(001) SECTION(OSAM001,VSAMTUE)
```

TSO SPOC output:

```
Log for . . . : UPDATE POOL TYPE(DBAS) MEMBER(001) SECTION(OSAM001,VSAMTUE)

IMSpelix : PLEX1
Routing :
Return code . . . : 0200000C
Reason code . . . : 00003008
Reason text . . . : None of the clients were successful.
Command master. . : IMS1

<table>
<thead>
<tr>
<th>MbrName</th>
<th>Return</th>
<th>Reason</th>
<th>Reason text</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMS1</td>
<td>00000008</td>
<td>0000212C</td>
<td>PDS member read error</td>
</tr>
</tbody>
</table>

Explanation: This is an example of a failed invocation of the UPDATE POOL command to dynamically reconfigure OSAM and VSAM subpools using the OSAM001 and VSAMTUE sections of the DFSDFxxx member. A parsing error occurred while reading the DFSDFxxx member.

Example 7 for UPDATE POOL command

TSO SPOC input:

```
UPDATE POOL TYPE(DBAS) SECTION(OSAM123) MEMBER(001)
```

TSO SPOC output:

```
Log for . . . : UPDATE POOL TYPE(DBAS) SECTION(OSAM123) MEMBER(0... 

IMSpelix . . . . : PLEX1
Routing . . . . . :
```

Chapter 30. UPDATE commands 1157
Explaination: This is an example of a failed invocation of the UPDATE POOL command to dynamically reconfigure OSAM subpools using the OSAM123 section of the DFSDFxxy member. A write error occurred on the restart data set (RDS).

Example 8 for UPDATE POOL command

TSO SPOC input:
UPDATE POOL TYPE(DBAS) SECTION(VSAM003)

TSO SPOC output:

<table>
<thead>
<tr>
<th>Section</th>
<th>MbrName</th>
<th>CC</th>
<th>CText</th>
<th>Stmt</th>
<th>BufSize</th>
<th>PoolId</th>
<th>ErrorText</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSAM003</td>
<td>IMS1</td>
<td>8</td>
<td>COMMAND COMPLETE FOR SOME</td>
<td>VSAM003 IMS1 8 COMMAND COMPLETE FOR SOME</td>
<td>1024</td>
<td>VSM2</td>
<td>DUP</td>
</tr>
</tbody>
</table>

Explaination: This is an example of a successful invocation of the UPDATE POOL command to dynamically reconfigure VSAM subpools using the VSAM003 section of the DFSDFxxy member. IMS received condition code 8 for one of the POOLID statements for VSM2, because a duplicate VSRBF was specified under the same POOLID. The rest of the statements are still processed. Condition code 8 is treated as a warning message in this situation.

Example 9 for UPDATE POOL command

Specification in DFSDFxxy member:

```
<SECTION=OSAM001>
IOBF=(512,100,N,N)
IOBF=(1024,1000,N,Z,OSM1,Y)
IOBF=(2048,5000,Y,Y,OSM2,A)
IOBF=(4096,5000,N,Y,OSM3,N)
IOBF=(32K,32767,N,N,OSM9,N)
```

TSO SPOC input:
UPDATE POOL TYPE(DBAS) SECTION(OSAM001) MEMBER(XYZ)

TSO SPOC output:

Log for ... : UPDATE POOL TYPE(DBAS) SECTION(OSAM001) MEMBER(XYZ) More: >

IMSplex . . . : PLEX1
Routing :
Return code . . . : 02000008
Reason code . . . : 00002004
Reason text . . . : Invalid command keyword or invalid command keyword combination
Command master . . . :

MbrName Messages
--------- ---------------------------
IMS1 BPE0003E AN ERROR OCCURRED PARSING PROCLIB MEMBER DFSDFXYZ
Explanation: In this example, the OSAM001 section in the DFSDFXYZ member is parsed on invocation of the UPDATE POOL command. An invalid option of “Z” is specified for the second IOBF statement in the DFSDFXYZ member.

Related concepts:
- How to interpret CSL request return and reason codes (System Programming APIs)
- VSAM subpool definition (System Definition)
- Specifying VSAM and OSAM subpools (System Definition)
- OSAM subpool definition (System Definition)
- Adjusting OSAM and VSAM database buffers (Database Administration)
- Monitoring VSAM buffers (Database Administration)
- Overview of dynamic database buffer pools (Database Administration)

Related tasks:
- OSAM buffers (Database Administration)

Related reference:
- Command keywords and their synonyms (Commands)
- DFSDFxxx member of the IMS PROCLIB data set (System Definition)
- “QUERY POOL command” on page 465

UPDATE RM command

Use the UPDATE RM command to enable or disable Resource Manager (RM) to use the IMSRSC repository dynamically.

Subsections:
- “Environment”
- “Syntax”
- “Keywords” on page 1160
- “Usage notes” on page 1162
- “Output fields” on page 1162
- “Return, reason, and completion codes” on page 1163
- “Examples” on page 1166

Environment

The UPDATE RM command is processed by the Common Service Layer (CSL) RM address space.

Syntax

```
UPDATE RM TYPE(REPO)—REPOTYPE(IMSRSC)
```
The following keywords are valid for the UPDATE RM command:

TYPE
Specifies the resource type to be updated. The only valid value is REPO.

REPOTYPE
Specifies the repository type to be updated. The only valid value is IMSRSC.

SET
Specifies the parameters to be modified.

AUDITACCESS
Specifies the repository audit access level for the specified repository. It can be specified with REPO(Y) to set a different AUDITACCESS value than the default or to change the AUDITACCESS level for the IMSplex.

If the SET(AUDITACCESS()) keyword is specified with REPO(Y) and the Repository Server (RS) does not have AUDIT LOG defined (AUDIT=YES is not specified in the FRPCFG PROCLIB member), the AUDITACCESS(x) value specified is ignored and the AUDITACCESS at RM is set to NOAUDIT. If the SET(AUDITACCESS()) keyword is specified without REPO(Y) and the RS does not have AUDIT LOG defined, the command results in an error reason code.

If the RS is defined with AUDIT LOG (AUDIT=YES), the specified AUDITACCESS value overrides the default audit access level set by the AUDIT_DEFAULT= keyword in the FRPCFG member of the IMS PROCLIB data set. The values that can be specified are:

DEFAULT
Sets the audit access level to the value specified with the AUDIT_DEFAULT parameter in the FRPCFG member.

NOAUDIT
No auditing of member access.

SECURITY
Audit security failures only.

UPDATE
Audit member access with update intent.
READ
Audit member access with read or update intent. Under an audit access rule of READ, system read requests do not cause a read audit record to be generated.

SYSTEMREAD
Audit member access with system-level read, read, or update intent. A read of the resource definition by the system before the update request is identified as a system read request. Under an audit access rule of SYSTEMREAD, all read requests, including system read requests, are audited.

REPO
Specifies the repository attribute to be modified.

Y Updates RM to use the repository for the specified repository type.

The RM initialization PROCLIB member (CSLRIxxx), which is used during RM initialization and specified by the RM startup parameter RMINIT=, is to be reread to obtain the REPOSITORY= specifications for the TYPE(IMSRSC) repository.

The REPOSITORY section in the CSLRIxxx member, which is specified on the RM startup parameter RMINIT=, must be updated with any changes before the UPDATE RM command is issued.

The command master RM rereads the REPOSITORY section in the CSLRIxxx member for the TYPE(IMSRSC) repository. During command processing, RM registers to the Repository Server (RS) if RM is not already registered. RM connects to the repository whose name is specified in the REPOSITORY section of the CSLRIxxx member.

If the command is successful at the command master RM, the command master RM communicates the changes to other active RMs in the IMSplex. All RMs in the IMSplex will have the same repository settings.

CSL25xxx messages are displayed on the system console at both the command master and the non-master RMs. Any error messages such as CSL2510E or CSL2511E are also sent to the OM API that issued the UPDATE RM command.

If RM is defined to use the resource structure, the command master RM updates the resource structure with the repository name and repository type that it is connected to. Subsequent RMs that are restarted after the change ensure that they are connected to the same repository name and repository type as read from the resource structure.

N Updates RM to not use the repository for the specified repository type. RM disconnects from the repository specified for the repository type.

If the command is successful at the command master RM, the command master RM communicates the changes to other active RMs in the IMSplex. All RMs in the IMSplex will have the same repository settings.

CSL25xxx messages are displayed on the system console at both the command master and the non-master RMs. Any error messages such as CSL2510E or CSL2511E are also sent to the OM API that issued the UPDATE RM command.
If RM is defined to use the resource structure, the command master RM updates the resource structure to remove the repository name and repository type. If RM is not connected to any repository, it deregisters from the Repository Server.

The RMINIT parameter or the CSLRIxxx member is not read during the UPDATE RM SET(REPO(N)) processing.

You must modify the CSLRIxxx member to remove the REPOSITORY= statement for the repository type before, or right after, the UPDATE RM SET(REPO(N)) command is issued. If the REPOSITORY= statement is not removed and an RM is started after the UPDATE RM SET(REPO(N)) command is issued, all RMs in the IMSplex will be reconnected to the repository during the RM startup.

Usage notes

The UPDATE RM command can be specified only through the Operations Manager (OM) API.

The UPDATE RM command is defined as ROUTE=ANY to OM. The command is processed by the command master RM that receives the command. The command specifies that the specified section within a PROCLIB member be reread and reprocessed.

Output fields

The following table shows the UPDATE RM output fields. The columns in the table are as follows:

- **Short label**
 - Contains the short label generated in the XML output.

- **Long label**
 - Contains the long label generated in the XML output.

- **Keyword**
 - Identifies the keyword on the command that caused the field to be generated. N/A appears for output fields that are always returned.

- **Meaning**
 - Provides a brief description of the output field.

<table>
<thead>
<tr>
<th>Table 524. Output fields for UPDATE RM command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short label</td>
</tr>
<tr>
<td>CC</td>
</tr>
<tr>
<td>CCTXT</td>
</tr>
<tr>
<td>MBR</td>
</tr>
<tr>
<td>RepositoryName</td>
</tr>
<tr>
<td>RepositoryType</td>
</tr>
</tbody>
</table>
Return, reason, and completion codes

An IMS return and reason code is returned to OM by the UPDATE RM command. The OM return and reason codes that might be returned as a result of the UPDATE RM command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 525. Return and reason codes for the UPDATE RM command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The UPDATE RM command completed successfully. The command output contains a line for each resource, accompanied by its completion code. For details, see Table 526.</td>
</tr>
<tr>
<td>X'03000004'</td>
<td>X'00001004'</td>
<td>The UPDATE RM command is processed only by the command master; it is ignored by any other system.</td>
</tr>
<tr>
<td>X'03000008'</td>
<td>X'0000203C'</td>
<td>An invalid keyword parameter was specified on the UPDATE RM command.</td>
</tr>
<tr>
<td>X'03000008'</td>
<td>X'00002522'</td>
<td>The RM is unable to process the UPDATE RM command because audit log is not defined for RS, SET(AUDITACCESS(x)) is specified, and no REPO(Y) is specified.</td>
</tr>
<tr>
<td>X'0300000C'</td>
<td>X'00003000'</td>
<td>The UPDATE RM command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code. For details, see Table 526.</td>
</tr>
<tr>
<td>X'0300000C'</td>
<td>X'00003004'</td>
<td>The UPDATE RM command was not successful for any resource. The command output contains a line for each resource, accompanied by its completion code. For details, see Table 526.</td>
</tr>
<tr>
<td>X'03000010'</td>
<td>X'00004504'</td>
<td>RM is unable to process the UPDATE RM command because the repository is not defined to RM.</td>
</tr>
<tr>
<td>X'03000014'</td>
<td>X'00005030'</td>
<td>Storage for the command response could not be obtained.</td>
</tr>
<tr>
<td>X'03000014'</td>
<td>X'00005108'</td>
<td>CQSBRWSE buffer allocation failed.</td>
</tr>
</tbody>
</table>

The following table includes an explanation of the completion code.

Table 526. Completion code for the UPDATE RM command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The UPDATE RM command completed successfully for the resources.</td>
</tr>
<tr>
<td>38</td>
<td>CQS UNEXPECTED ERROR</td>
<td>For SET(REPO(Y)), the query call to CQS failed for the query of CSLRPGBL. A CSL2050E message with more details on the CQS error is included in the command output.</td>
</tr>
<tr>
<td>60</td>
<td>REPOSITORY ALREADY CONNECTED</td>
<td>For SET(REPO(Y)), the repository is already connected.</td>
</tr>
<tr>
<td>Completion code</td>
<td>Completion code text</td>
<td>Meaning</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>61</td>
<td>CONFIGURATION FILE NOT FOUND</td>
<td>For SET(REPO(Y)), the CSLR\textit{I}xxx configuration file was not found.</td>
</tr>
<tr>
<td>62</td>
<td>REPOSITORY SECTION NOT FOUND</td>
<td>For SET(REPO(Y)), there was no REPOSITORY section defined in CSLR\textit{I}xxx.</td>
</tr>
<tr>
<td>63</td>
<td>PARSE ERROR IN CONFIGURATION</td>
<td>For SET(REPO(Y)), the BPE parser returned an error when parsing the REPOSITORY section in CSLR\textit{I}xxx.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A BPE\text{\texttt{0003E}} message with more details on the parse error is included in the command output.</td>
</tr>
<tr>
<td>64</td>
<td>DUPLICATE REPOSITORY DEFINED</td>
<td>For SET(REPO(Y)), the repository type specified in the command was defined multiple times in CSLR\textit{I}xxx.</td>
</tr>
<tr>
<td>65</td>
<td>INVALID CHARACTERS IN REPO NAME</td>
<td>For SET(REPO(Y)), the repository name specified in the repository definition in CSLR\textit{I}xxx included invalid characters.</td>
</tr>
<tr>
<td>66</td>
<td>INVALID REPOSITORY NAME</td>
<td>For SET(REPO(Y)), an invalid repository name ("CATALOG") was specified in the repository definition in CSLR\textit{I}xxx.</td>
</tr>
<tr>
<td>67</td>
<td>INVALID CHARACTERS IN GROUP NAME</td>
<td>For SET(REPO(Y)), the XCF group name specified in the repository definition in CSLR\textit{I}xxx included invalid characters.</td>
</tr>
<tr>
<td>68</td>
<td>REPOSITORY DEFINITION NOT FOUND</td>
<td>For SET(REPO(Y)), the repository type specified in the command is not found in CSLR\textit{I}xxx or CSLRPGBL.</td>
</tr>
<tr>
<td>69</td>
<td>GROUP NAME MISMATCH IN REPO DEFN</td>
<td>For SET(REPO(Y)), the XCF group name specified in the repository definition in CSLR\textit{I}xxx did not match the XCF group name in CSLRPGBL.</td>
</tr>
<tr>
<td>6A</td>
<td>REGISTER TO REPO SERVER FAILED</td>
<td>For SET(REPO(Y)), RM attempted to register to the repository server, but the registration attempt failed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A CSL\text{\texttt{2510E}} message with more details on the registration failure is included in the command output.</td>
</tr>
<tr>
<td>6B</td>
<td>CONNECT TO REPOSITORY FAILED</td>
<td>For SET(REPO(Y)), RM attempted to connect to the repository, but the attempt failed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A CSL\text{\texttt{2511E}} message with more details on the connection failure is included in the command output.</td>
</tr>
<tr>
<td>6C</td>
<td>UPDATE OF CSLRPGBL FAILED</td>
<td>For SET(REPO(Y)), RM successfully connected to the repository, but the attempt to update the CSLRPGBL resource in the resource structure failed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The operator must determine the status of CQS and the resource structure and reenter the command to complete the connection process.</td>
</tr>
<tr>
<td>Completion code</td>
<td>Completion code text</td>
<td>Meaning</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>6D</td>
<td>REPOSITORY NOT CONNECTED</td>
<td>For SET(REPO(N)), RM is not connected to the repository. Either the repository has never been connected, or it has been previously disconnected.</td>
</tr>
<tr>
<td>6E</td>
<td>DISCONN FROM REPOSITORY FAILED</td>
<td>For SET(REPO(N)), RM attempted to disconnect from the repository, but the attempt failed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A CSL2511E message with more details on the disconnect failure is included in the command output.</td>
</tr>
<tr>
<td>6F</td>
<td>DEREGISTER REPOSITORY SERVER FAILED</td>
<td>For SET(REPO(N)), RM attempted to deregister from the Repository Server, but the deregistration attempt failed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A CSL2510E message with more details on the deregistration failure is included in the command output.</td>
</tr>
<tr>
<td>70</td>
<td>REMOVE FROM CSLRPGBK FAILED</td>
<td>For SET(REPO(N)), RM successfully disconnected from the repository, but the attempt to update the CSLRPGBK resource in the resource structure failed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The operator must determine the status of CQS and the resource structure and reenter the command to complete the disconnect process.</td>
</tr>
<tr>
<td>71</td>
<td>READ OF PROCLIB MEMBER FAILED</td>
<td>BPERDPDS failed to read the CSLRIxxx PROCLIB member.</td>
</tr>
<tr>
<td>72</td>
<td>UNABLE TO GET PSAN LATCH</td>
<td>The command processor was unable to obtain the PSAN latch.</td>
</tr>
<tr>
<td>73</td>
<td>UNABLE TO GET PCAN LATCH</td>
<td>The command processor was unable to obtain the PCAN latch.</td>
</tr>
<tr>
<td>74</td>
<td>UNABLE TO LOAD MODULES</td>
<td>BPELOAD failed to load modules needed for the specified repository.</td>
</tr>
<tr>
<td>75</td>
<td>AUDIT ACCESS UPDATE FAILED</td>
<td>For SET(AUDITACCESS()), RM attempted to update the audit access value in the repository, but the update attempt failed.</td>
</tr>
<tr>
<td>76</td>
<td>REFRESH OF CSLRPGBK FAILED</td>
<td>For SET(AUDITACCESS()), RM successfully updated the audit access value in the repository, but the attempt to refresh the CSLRPGBK resource in the resource structure failed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The operator must determine the status of CQS and the resource structure, and reenter the command to complete the refresh process.</td>
</tr>
<tr>
<td>77</td>
<td>DOWNLEVEL RM IN IMSPLEX</td>
<td>For SET(REPO(Y)), RM detected an IMS Version 11 or earlier RM in the IMSplex, and is unable to connect to the repository. All RM systems in the IMSplex must be IMS Version 12 or later systems.</td>
</tr>
</tbody>
</table>
Table 526. Completion code for the UPDATE RM command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>78</td>
<td>NO SCI ADDRESS SPACE</td>
<td>For SET(REPO(Y)), RM attempted to query SCI to obtain IMSplex status, but SCI was not available.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A CSL2050E message with more details on the SCI error is included in the command output.</td>
</tr>
<tr>
<td>79</td>
<td>UNEXPECTED SCI ERROR</td>
<td>For SET(REPO(Y)), RM attempted to query SCI to obtain IMSplex status, but the query failed with an unexpected return code.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A CSL2050E message with more details on the SCI error is included in the command output.</td>
</tr>
</tbody>
</table>

Examples

The following are examples of the UPDATE RM command:

Example 1 for UPDATE RM command

TSO SPOC input:
UPDATE RM TYPE(REPO) REPOTYPE(IMSRSC) SET(REPO(Y))

TSO SPOC output:
RepositoryType MbrName CC RepositoryName
IMSRSC RM3RM 0 IMSRC_REPOSITORY

OM API input:
CMD(UPDATE RM TYPE(REPO) REPOTYPE(IMSRSC) SET(REPO(Y)))

OM API output:
<imsout>
<ctl>
<omname>OM1OM </omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2011.187 16:55:47.880310</statime>
<staseq>C8079C197D976B1A</staseq>
<stoseq>C8079C19CF1383C8</stoseq>
<rqsttkn1>USRTO005 10095547</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
</cmderr>
 <mbr name="RM2RM ">
 <typ>RM</typ>
 <styp>MULTRM</styp>
 <rc>02000004</rc>
 <rsn>00001008</rsn>
 <rsntxt>Command not routed to this command processing client. Client is not master.</rsntxt>
 </mbr>
 <mbr name="RM1RM ">
 <typ>RM</typ>
 <styp>MULTRM</styp>
 <rc>02000004</rc>
 </mbr>
EXPLANATION: The UPDATE RM SET(REPO(Y)) command for the repository is processed by the command master RM RM3. The command response indicates that the repository is enabled successfully at the command master RM. Additionally, because RM is using the resource structure, the command response indicates that the resource structure is updated to indicate that the repository is enabled in the IMSplex and that a directive was sent to RM1 and RM2, the other RMs in the IMSplex, to have them enable the repository. You can issue the QUERY RM command to ensure that the repository is enabled at all RMs in the IMSplex.

Example 2 for UPDATE RM command

TSO SPOC input:
UPDATE RM TYPE(REPO) REPOTYPE(IMSRSRC) SET(AUDITACCESS(UPDATE))

TSO SPOC output:
RepositoryType MbrName CC RepositoryName
IMSRSC RM3RM 0 IMSRSRC_REPOSITORY

OM API input:
CMD(UPDATE RM TYPE(REPO) REPOTYPE(IMSRSRC) SET(AUDITACCESS(UPDATE)))

OM API output:
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2011.187 17:01:05.705662</statime>
<stotime>2011.187 17:01:05.773423</stotime>
<staseq>C807904897ABED80</staseq>
<stoseq>C8079048AB367F50</stoseq>
<rqsttkn1>USRT005 10001005</rqsttkn1>
</ctl>
Explanation: The UPDATE RM SET(AUDITACCESS()) command is processed by the command master RM RM3. The command response indicates that the auditaccess value was updated in the repository to be used for subsequent audit requests. Additionally, because RM is using the resource structure, the command response indicates that the audit access value was updated in the resource structure and that a directive was sent by RM3 to RM1 and RM2, the other active RMs in the IMSplex, to update their audit access values.

Example 3 for UPDATE RM command

TSO SPOC input:

 UPD RM TYPE(REPO) REPOTYPE(IMSRSC) SET(REPO(N))

TSO SPOC output:

 RepositoryType MbrName CC RepositoryName
 IMSRC RM3RM 0 IMSRC_REPOSITORY
OM API input:
CMD(UPD RM TYPE(REPO) REPOTYPE(IMSRSC) SET(REPO(N)))

OM API output:

<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2011.187 16:36:18.44602</statime>
<stotime>2011.187 16:36:18.542958</stotime>
<staseq>C80797B3AD3A85E</staseq>
<stoseq>C80797BE5206D15</stoseq>
<rqsttkn1>USRRT005 10093618</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmderr>
<mbr name="RM2RM">
<typ>RM</typ>
<styp>MULTRM</styp>
<rc>02000004</rc>
<rsn>00001008</rsn>
<rsntxt>Command not routed to this command processing client. Client is not master.</rsntxt>
</mbr>
<mbr name="RM1RM">
<typ>RM</typ>
<styp>MULTRM</styp>
<rc>02000004</rc>
<rsn>00001008</rsn>
<rsntxt>Command not routed to this command processing client. Client is not master.</rsntxt>
</mbr>
</cmderr>
<cmd>
<master>RM3RM</master>
<userid>USRRT005</userid>
<verb>UPD</verb>
</cmd>
</imsout>

Explanation: The UPDATE RM SET(REPO(N)) command for the repository is processed by the command master RM RM3. The command response indicates that the repository is no longer enabled at the command master RM. Additionally, because RM is using the resource structure, the command response indicates that the resource structure is updated to indicate that the repository is not enabled in Chapter 30. UPDATE commands
the IMSplex and that a directive was sent to the other RMs to have them disable their usage of the repository.

Related concepts:

- How to interpret CSL request return and reason codes (System Programming APIs)
- CSL RM initialization with the IMSRSC repository (System Administration)
- CSL RM management of the IMSRSC repository (System Administration)

Related reference:

- Command keywords and their synonyms (Commands)

UPDATE RTC command

Use the UPDATE RTC command to update Fast Path routing codes. A Fast Path routing code can be used by the Fast Path Input Edit/Routing Exit Routine (DBFHAGU0) to route a transaction to a different application program for processing.

Subsections:

- "Environment"
- "Syntax"
- "Keywords” on page 1171
- "Usage notes” on page 1172
- "Output fields” on page 1172
- "Return, reason, and completion codes” on page 1173
- "Examples” on page 1175

Environment

The following table lists the environments (DB/BC, DBCTL, and DCCTL) in which you can use the commands and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/BC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE RTC</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OPTION</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SET</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>START</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>STOP</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Syntax
Keywords

The following keywords are valid for the UPDATE RTC command:

NAME

Specifies the 1-8 character name of the routing code. Wildcards can be specified in the name. The name is a repeatable parameter. If the NAME parameter specified is a specific or wildcard name, command responses are returned for all the resource names that are processed. For NAME(*), command responses are returned only for the resource names that resulted in an error. OPTION(ALLRSP) can be specified with NAME(*) to obtain the command responses for all the resource names that are processed.

OPTION

Specifies additional functions to be performed along with the command.

ALLRSP

Indicates that the response lines are to be returned for all resources that are processed on the command. The default action is to return response lines only for the resources that resulted in an error. It is only valid with NAME(*). ALLRSP is ignored for other NAME values.

SET

Specifies the attribute values to be changed.

INQ

Specifies the inquiry option.

N This is not an inquiry routing code.

Y This is an inquiry routing code. Any message associated with the routing code is an inquiry transaction. This option should be specified only for programs that do not cause a change to a database. Programs are prohibited from issuing Insert, Delete, or Replace calls to a database when processing an inquiry transaction.

Updating this attribute quiesces the routing code for the duration of command processing.

PGM

The name of the application program associated with the routing code. The program must exist and be defined with a BMPTYPE of N.

Updating this attribute quiesces the routing code for the duration of command processing.
Specifies attributes that are to be started.

Q Starts queuing of messages.

Starts queuing of messages.

Usage notes

Resources exist for the life of the IMS unless they are deleted using a DELETE command. Resources are recoverable across an IMS warm start or emergency restart. Resources are lost if IMS is cold started, unless cold start imports definitions that were exported while IMS was up.

The UPDATE RTC command can be issued only through the OM API. Fast Path must be installed on the system. This command applies to DB/DC and DCCTL systems. This command is not valid on the XRF alternate, RSR tracker, or FDBR region. The UPDATE RTC commands specified with SET() are not valid if online change for MODBLKS is enabled (DFPSDFxxx or DFSCGxxx defined with MODBLKS=OLC, or MODBLKS not defined). This command is recoverable.

The UPDATE RTC command changes a MODBLKS routing code to dynamic, if the INQ or PGM attribute is changed.

Each routing code is updated individually, unlike the online change process where either all routing codes are updated or no routing codes are updated. The runtime resource definition for a routing code can be updated only if the routing code is not in use. If the routing code is in use, the update fails. An exception to this rule is status. You can update the status of a routing code while it is in use. In a sysplex environment, the update might succeed on some IMS systems and fail on others. In order to maximize the likelihood that the update will succeed, perform the following steps before attempting the update:

- Check for work in progress with a QRY RTC SHOW(WORK) command and either wait for the work to finish or address the work in progress. See the output fields for the QUERY RTC command for examples of work that might cause the delete to fail. Examples of work include a command in progress for the routing code or the routing code is active.
- The routing code cannot be updated if the program is scheduled. If the program is scheduled, you must stop the region before you issue the UPDATE RTC command.

Runtime resource definition attributes include the following: INQ and PGM. If all the attributes specified by the UPDATE command are already defined for the resource, no update is actually made, no resources are quiesced, no log record is created, and a completion code of zero is returned.

The following routing code attributes cannot be updated if online change for MODBLKS is enabled: INQ, PGM.

Output fields

The following table shows the UPDATE RTC output fields. The columns in the table are as follows:
Short label
Contains the short label generated in the XML output.

Keyword
Identifies keyword on the command that caused the field to be generated. N/A appears for output fields that are always returned. error appears for output fields that are returned only in case of an error.

Meaning
Provides a brief description of the output field.

Table 528. Output fields for the UPDATE RTC command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>N/A</td>
<td>Completion code.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>error</td>
<td>Completion code text that briefly explains the non-zero completion code.</td>
</tr>
<tr>
<td>ERRT</td>
<td>error</td>
<td>Error text with diagnostic information. Error text can be returned for a non-zero completion code and contains information that further explains the completion code.</td>
</tr>
<tr>
<td>MBR</td>
<td>N/A</td>
<td>IMSplex member that built the output line.</td>
</tr>
<tr>
<td>RTC</td>
<td>RTC</td>
<td>Routing code name.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 529. Return and reason codes for the UPDATE RTC command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>Command completed successfully. The command output contains a line for each resource, accompanied by its completion code. If NAME(*) is specified without OPTION(ALLRSP), no output lines are returned. See the completion code table for details.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002008'</td>
<td>Required keywords were not specified.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002123'</td>
<td>Invalid program name.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002048'</td>
<td>Invalid SET attribute.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003000'</td>
<td>Command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code. If NAME(*) is specified without OPTION(ALLRSP), only resources with non-zero completion codes are returned. See the completion code table for details.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00003004'</td>
<td>Command was not successful for any of the resources. The command output contains a line for each resource, accompanied by its completion code. See the completion code table for details.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000400C'</td>
<td>Command is not valid on the XRF alternate.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>Command is not valid on the RSR tracker.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004024'</td>
<td>No Fast Path defined.</td>
</tr>
</tbody>
</table>
Table 529. Return and reason codes for the UPDATE RTC command (continued)

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X’00000010’</td>
<td>X’00004120’</td>
<td>Online change phase is in progress.</td>
</tr>
<tr>
<td>X’00000010’</td>
<td>X’00004300’</td>
<td>Command is not allowed because online change for MODBLKS is enabled (DFSDFxxx or DFSCGxxx defined with MODBLKS=OLC, or MODBLKS not defined).</td>
</tr>
<tr>
<td>X’00000010’</td>
<td>X’0000431C’</td>
<td>Program is quiesced. Cannot quiesce program.</td>
</tr>
<tr>
<td>X’00000014’</td>
<td>X’00005004’</td>
<td>DFSOCMD response buffer could not be obtained.</td>
</tr>
<tr>
<td>X’00000014’</td>
<td>X’00005008’</td>
<td>DFSPOOL storage could not be obtained.</td>
</tr>
<tr>
<td>X’00000014’</td>
<td>X’0000500C’</td>
<td>AWE could not be obtained.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. The following table includes an explanation of the completion codes.

Table 530. Completion codes for the UPDATE RTC command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command completed successfully for routing code.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>Routing code name is invalid, or the wildcard parameter specified does not match any resource names.</td>
</tr>
<tr>
<td>17</td>
<td>ANOTHER CMD IN PROGRESS</td>
<td>Another command (such as DELETE or UPDATE) is in progress for this routing code. This could also mean this command, if the resource is specified by more than one specific or wildcard parameter. Or, the routing code is updating the program name and another command is in progress for the program.</td>
</tr>
<tr>
<td>39</td>
<td>FP=E TRAN FOR RTC EXISTS</td>
<td>The routing code was created by IMS for a Fast Path exclusive transaction and cannot be updated with the UPDATE RTC command. The attributes of the routing code can be updated only with the UPDATE TRAN command for the Fast Path exclusive transaction.</td>
</tr>
<tr>
<td>61</td>
<td>DFSBCB STORAGE ERROR</td>
<td>DFSBCB storage error. Could not get storage for RCTE control block.</td>
</tr>
<tr>
<td>73</td>
<td>PROGRAM SCHEDULED</td>
<td>Program is scheduled.</td>
</tr>
<tr>
<td>7A</td>
<td>RTC/FP=N PGM CONFLICT</td>
<td>Program specified is not Fast Path exclusive.</td>
</tr>
<tr>
<td>90</td>
<td>INTERNAL ERROR</td>
<td>Internal error.</td>
</tr>
</tbody>
</table>
Table 530. Completion codes for the UPDATE RTC command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>99</td>
<td>NOT INITIALIZED</td>
<td>Routing code update failed because the routing code is not initialized. Query RTC STATUS(NOTINIT) displays the reason why the routing code is not initialized, for example, the associated program is not defined. Correct the definition error and issue the UPD RTC START(Q) command to initialize the routing code.</td>
</tr>
<tr>
<td>1D7</td>
<td>IMPORT CHANGE LIST ERROR</td>
<td>The resource is in the process of being imported from the change list in the IMSRSC repository or was not successfully imported from the change list. The resource cannot be updated until it is successfully imported from the repository.</td>
</tr>
</tbody>
</table>

Examples

The following are examples of the UPDATE RTC command:

Example 1 for UPDATE RTC command

TSO SPOC input:

```
UPD RTC NAME(BADNAME,FPTRN02,SMQFP7*,BAD*) SET(PGM(DBFSAMP3))
```

TSO SPOC output:

```
Response for: UPD RTC NAME(BADNAME,FPTRN02,SMQFP7*,BAD*) SET(PGM(DBFSAMP3))
RtcName  MbrName  CC  CCText
BAD*     IMS1      0   NO RESOURCES FOUND
BADNAME  IMS1      0   NO RESOURCES FOUND
FPTRN02  IMS1      0   
SMQFP7A  IMS1      0   
SMQFP7B  IMS1      0   
SMQFP7C  IMS1      0   
SMQFP71  IMS1      0   
SMQFP72  IMS1      0   
SMQFP73  IMS1      0   
```

OM API input:

```
CMD(UPDATE RTC NAME(BADNAME,FPTRN02,SMQFP7*,BAD*) SET(PGM(DBFSAMP3)))
```

OM API output:

```
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.3.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2006.311 23:50:02.663055</statime>
<stotime>2006.311 23:50:02.663790</stotime>
<staseq>BFAC125257C8FB80</staseq>
<stoseq>BFAC125257F6E500</stoseq>
<rqsttkn>USRRT011 10155002</rqsttkn>
<rc>0200000C</rc>
```
None of the clients were successful.

At least one request successful

The UPDATE RTC command is issued to update the program for several routing codes. The update completed successfully for most of the routing codes, as shown by completion code 0. The update fails for routing code BADNAME and for parameter BAD* with completion code 10 because routing code BADNAME does not exist and no routing code name starts with BAD.

Related concepts:

- How to interpret CSL request return and reason codes (System Programming APIs)

Related reference:

- Command keywords and their synonyms (Commands)

- "START RTC command" on page 761
- "STOP RTC command" on page 813

UPDATE RTCDESC command

Use the UPDATE RTCDESC command to update Fast Path routing code descriptors.
A descriptor is a model that can be used to create descriptors or resources. Updating a descriptor changes only the attributes explicitly specified on the UPDATE command. Attributes not specified retain their existing values. Any routing code resource or descriptor can be created using this descriptor as a model, by specifying the CREATE LIKE(DESC(descriptor_name)) command. Any descriptor or resource that was already created using this descriptor is not updated.

Subsections:
- “Environment”
- “Syntax”
- “Keywords”
- “Usage notes” on page 1178
- “Output fields” on page 1179
- “Return, reason, and completion codes” on page 1179
- “Examples” on page 1181

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE RTCDESC</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OPTION</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SET</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

Keywords

The following keywords are valid for the UPDATE RTCDESC command:

NAME

Specifies the 1-8 character name of the routing code descriptor. Wildcards can be specified in the name. The name is a repeatable parameter. If the NAME parameter specified is a specific or wildcard name, command responses are returned for all the descriptor names that are processed. For NAME(*), command responses are returned only for the descriptor names that resulted in

Chapter 30. UPDATE commands 1177
an error. OPTION(ALLRSP) can be specified with NAME(*) to obtain the command responses for all the descriptor names that are processed.

OPTION

Specifies additional functions to be performed along with the command.

ALLRSP

Indicates that the response lines are to be returned for all descriptors that are processed on the command. The default action is to return response lines only for the descriptors that resulted in an error. It is valid with NAME(*) only. ALLRSP is ignored for other NAME values.

SET

Specifies the attribute values to be changed.

DEFAULT(Y)

Specifies this descriptor as the default, which resets the existing default descriptor to DEFAULT(N). When a descriptor or resource is created without the LIKE keyword, any attribute not specified on the CREATE command takes the value defined in the default descriptor. Only one descriptor can be defined as the default for a resource type. IMS defines a routing code descriptor called DBFDSRT1, where all attributes are defined with the default value. Defining a user-defined descriptor to be the default overrides the current default descriptor. Because only one routing code descriptor can be the default at one time, only one routing code descriptor name can be specified with DEFAULT(Y).

INQ

Specifies the inquiry option.

N This is not an inquiry routing code.

Y This is an inquiry routing code. Any message associated with the routing code is an inquiry transaction. This should be specified only for programs that do not cause a change to a database. Programs are prohibited from issuing Insert, Delete, or Replace calls to a database when processing an inquiry transaction.

PGM

The name of the application program associated with the routing code. The program must exist and be defined with a BMPTYPE of N.

Usage notes

If all the attributes specified by the UPDATE command are already defined for the descriptor, no update is actually made, no descriptors are quiesced, no log record is created, and a completion code of zero is returned. This avoids unnecessary overhead when no action needs to be taken.

Descriptors exist for the life of the IMS unless they are deleted using a DELETE command. The descriptors are recoverable across an IMS warm start or emergency restart. Descriptors are lost if IMS is cold started, unless cold start imports definitions that were exported while IMS was up.

The UPDATE RTCDESC command can be issued only through the OM API. Fast Path must be installed on the system. This command applies to DB/DC and DCCTL systems. This command is not valid on the XRF alternate, RSR tracker, or FDBR region. The UPDATE RTCDESC commands are not valid if online change for
MODBLKS is enabled (DFSDFxxx or DFSCGxxx defined with MODBLKS=OLC, or MODBLKS not defined). These commands are recoverable.

If the descriptor is the IMS-defined routing code descriptor (DBFDSR1), the only attribute that can be updated is the DEFAULT attribute.

Each descriptor is updated individually. Individual updating does not work like online change where either all descriptors are updated or no descriptors are updated.

Output fields

The following table shows the UPDATE RTCDESC output fields. The columns in the table are as follows:

Short label
Contains the short label generated in the XML output.

Keyword
Identifies keyword on the command that caused the field to be generated. N/A appears for output fields that are always returned. error appears for output fields that are returned only in case of an error.

Meaning
Provides a brief description of the output field.

<table>
<thead>
<tr>
<th>Short label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>N/A</td>
<td>Completion code.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>error</td>
<td>Completion code text that briefly explains the nonzero completion code.</td>
</tr>
<tr>
<td>DESC</td>
<td>RTCDESC</td>
<td>Routing code descriptor name.</td>
</tr>
<tr>
<td>ERRT</td>
<td>error</td>
<td>Error text with diagnostic information. Error text can be returned for a nonzero completion code and contains information that further explains the completion code.</td>
</tr>
<tr>
<td>MBR</td>
<td>N/A</td>
<td>IMSplex member that built the output line.</td>
</tr>
<tr>
<td>OLDDEF</td>
<td>RTCDESC</td>
<td>Old default descriptor name, if this descriptor is updated to be the default by specifying DEFAULT(Y). The old default descriptor is no longer the default.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>Command completed successfully. The command output contains a line for each descriptor, accompanied by its completion code. If NAME(*) is specified without OPTION(ALLRSP), no output lines are returned. See the completion code table for details.</td>
</tr>
</tbody>
</table>
Table 533. Return and reason codes for the UPDATE RTCDESC command (continued)

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000008'</td>
<td>X'00002008'</td>
<td>Required keywords were not specified.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002123'</td>
<td>Invalid program name.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002048'</td>
<td>Invalid SET attribute.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002133'</td>
<td>Multiple name parameters were specified with DEFAULT(Y). Only one descriptor can be the default at one time.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003000'</td>
<td>Command was successful for some descriptors but failed for others. The command output contains a line for each descriptor, accompanied by its completion code. If NAME(*) is specified without OPTION(ALLRSP), only descriptors with nonzero completion codes are returned. See the completion code table for details.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00003004'</td>
<td>Command was not successful for any of the descriptors. The command output contains a line for each descriptor, accompanied by its completion code. See the completion code table for details.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000400C'</td>
<td>Command is not valid on the XRF alternate.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>Command is not valid on the RSR tracker.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004024'</td>
<td>No Fast Path defined.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004120'</td>
<td>Online change phase is in progress.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004300'</td>
<td>Command is not allowed because online change for MODBLKS is enabled (DFSDFxxy or DFSCGxx defined with MODBLKS=OLC, or MODBLKS not defined).</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000431C'</td>
<td>Program is quiesced. Cannot quiesce program.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005004'</td>
<td>DFSOCMD response buffer could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005008'</td>
<td>DFSPOOL storage could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'0000500C'</td>
<td>AWE could not be obtained.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. The following table includes an explanation of the completion codes.

Table 534. Completion codes for the UPDATE RTCDESC command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>Command completed successfully for routing code descriptor.</td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>Routing code descriptor name is invalid, or the wildcard parameter specified does not match any descriptor names.</td>
</tr>
<tr>
<td>17</td>
<td>ANOTHER CMD IN PROGRESS</td>
<td>Another command (such as DELETE or UPDATE) is in progress for this routing code descriptor. This could also mean this command, if the resource is specified by more than one specific or wildcard parameter.</td>
</tr>
</tbody>
</table>
Table 534. Completion codes for the UPDATE RTCDESC command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>NOT ALLOWED FOR IMS RESOURCE</td>
<td>The specified UPDATE command is not allowed for the IMS descriptor or resource. DBFDSRT1 is an example of an IMS descriptor. The only IMS descriptor attribute you can update is DEFAULT(Y).</td>
</tr>
<tr>
<td>61</td>
<td>DFSBCB STORAGE ERROR</td>
<td>DFSBCB storage error. Could not get storage for RCTE control block.</td>
</tr>
<tr>
<td>7A</td>
<td>RTC/FP=N PGM CONFLICT</td>
<td>Program specified is not Fast Path exclusive.</td>
</tr>
<tr>
<td>8A</td>
<td>WILDCARD PARAMETER NOT SUPPORTED</td>
<td>A wildcard parameter was specified with DEFAULT(Y). Only one descriptor can be the default at one time.</td>
</tr>
<tr>
<td>90</td>
<td>INTERNAL ERROR</td>
<td>Internal error.</td>
</tr>
<tr>
<td>1D7</td>
<td>IMPORT CHANGE LIST ERROR</td>
<td>The descriptor is in the process of being imported from the change list in the IMSRSC repository or was not successfully imported from the change list. The descriptor cannot be updated until it is successfully imported from the repository.</td>
</tr>
</tbody>
</table>

Examples

The following are examples of the UPDATE RTCDESC command:

Example 1 for UPDATE RTCDESC command

TSO SPOC input:

```
UPD RTCDESC NAME(*) SET(PGM(BMPFPE01)) OPTION(ALLRSP)
```

TSO SPOC output:

```
Response for: UPD RTCDESC NAME(*) SET(PGM(BMPFPE01)) OPTION(ALLRSP)
DescName MbrName CC CCText
DBFDSRT1 IMS1 7A RTC/FP=N PGM CONFLICT
DESC001 IMS1 7A RTC/FP=N PGM CONFLICT
DESC002 IMS1 7A RTC/FP=N PGM CONFLICT
DESC003 IMS1 7A RTC/FP=N PGM CONFLICT
DESC004 IMS1 7A RTC/FP=N PGM CONFLICT
DESC005 IMS1 7A RTC/FP=N PGM CONFLICT
RTCDESC1 IMS1 7A RTC/FP=N PGM CONFLICT
```

OM API input:

```
CMD(UPDATE RTCDESC NAME(*) SET(PGM(BMPFPE01)) OPTION(ALLRSP))
```

OM API output:

```
<imsout>
<ctl>
<omname>OM10M </omname>
<omvsn>1.3.0</omvsn>
<xmlvsn>20 </xmlvsn>
<statime>2006.312 00:04:22.046943</statime>
```
Explanation: The UPDATE RTCDESC command is issued to update all routing code descriptors to reference program BMPFPE01. The update fails for all routing codes with completion code 7A because a routing code cannot be associated with a non-Fast Path program.

Related concepts:

- How to interpret CSL request return and reason codes (System Programming APIs)

Related reference:

- Command keywords and their synonyms (Commands)
UPDATE TRAN command

Use the UPDATE TRAN command to update transaction resources.

Subsections:
- “Environment”
- “Syntax”
- “Keywords” on page 1186
- “Usage notes” on page 1205
- “Equivalent IMS type-1 commands” on page 1206
- “Output fields” on page 1207
- “Return, reason, and completion codes” on page 1208
- “Examples” on page 1215

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) from which the UPDATE TRAN command and keywords can be issued.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE TRAN</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CLASS</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NAME</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>OPTION</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SCOPE</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SET</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>START</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>STOP</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax
A:

START(Q)

SCHD
SUSPEND
TRACE

B:

STOP(Q)

SCHD
TRACE

C:
Chapter 30. UPDATE commands
Keywords

The following keywords are valid for the UPDATE TRAN command:

CLASS()
Selects the transactions associated with the specified class or classes to be updated.

NAME(tranname)
Specifies the 1-8 character name of the transaction. Wildcards can be specified for the tranname. The tranname is a repeatable parameter. If the NAME parameter specified is a specific or wildcard name, command responses are returned for all the resource names that are processed. For NAME(*) command responses are returned only for the resource names that resulted in an error. OPTION(ALLRSP) can be specified with NAME(*) to obtain the command responses for all the resource names that are processed.

OPTION()
Specifies the additional functions to be performed. Following is a list of additional functions:

AFFIN
AFFIN is valid with START(SCHD) or STOP(SCHD).

When used with START(SCHD), OPTION(AFFIN) indicates that the command should issue an inform for the transaction with affinity to the local IMSID. This option is used to start a local affinity transaction queue in a shared-queues environment.

When used with STOP(SCHD), OPTION(AFFIN) indicates that the command should unregister a transaction for local affinity processing.

The UPDATE TRAN START(SCHD) OPTION(AFFIN) command does not support generic transaction names or ALL in the NAME() filter.

You can use the UPDATE TRAN NAME(tranname) START(SCHD) OPTION(AFFIN) command to start a local affinity transaction queue in a shared-queues environment. Starting a local affinity transaction queue in a shared-queues environment causes this IMS to be notified when transactions with an affinity name of this IMS's IMSID or RENAME (XRF) appended to the transaction name, are on the shared queues for processing. This affinity registration is in addition to the normal transaction registration (that is, registration with the transaction name appended with blanks). When a transaction is started with affinity, then affinity registration status cannot be removed and the QUERY TRAN NAME(tranname) SHOW(ALL) command will always show the AFFIN status. The following UPDATE TRAN NAME(tranname) STOP(SCHD) command will therefore stop both normal and affinity registration.

Note: Because there is no OPTION(AFFIN) keyword for STOP(SCHD), subsequent UPDATE TRAN START(SCHD) commands, with or without the OPTION(AFFIN) keyword, will perform both normal and affinity registration.

The AFFIN status is lost across IMS cold starts. If the DFSMSCE0 user message routing exit is used to set local affinity for an input transaction message in a shared-queues (SQ) environment and the IMS control region is stopped, and subsequently cold started, you will need to issue the
UPDATE TRAN NAME(transname) START(SCHD) OPTION(AFFIN) command for the transaction to be registered with affinity status so the messages will be scheduled.

At the end of cold start processing, when shared-queues informs are completed, the inform for the transaction is done without affinity to the local IMSID because local affinity is set by the exit. Because the inform for the transaction is not part of the transaction definition, it is not maintained across a cold start. As a result, the message with local affinity cannot be scheduled. The UPDATE TRAN START(SCHD) OPTION(AFFIN) command corrects this situation by issuing an inform for the transaction with affinity to the local IMSID.

ALLRSP

Indicates that the response lines are to be returned for all resources that are processed on the command. The default action is to return response lines only for the resources that resulted in an error. It is only valid with NAME(*). ALLRSP is ignored for other NAME values.

SCOPE()

Specifies where IMS should apply the change. The default is ALL.

ALL

Changes are applied to the active IMS systems to which the command is routed. If you specify that global area status is to be maintained, changes are also applied globally by updating the value maintained by RM. The RM status is updated only by the command master IMS. If global area status is not maintained, the command action is same as the SCOPE(ACTIVE) command.

ACTIVE

Changes are applied to the active IMS systems to which the command is routed.

RM maintains global status information for some transactions. IMS updates that information in RM based on commands. When SCOPE(ALL) is specified, every IMS system that processes the command updates information in its local control blocks. Only the IMS command master calls RM to update the information globally.

SET()

Specifies the attribute values to be changed. A transaction must have the same characteristics in all systems where it is defined when it is shared. These characteristics include:

- Nonconversational or conversational
- SPA size if conversational
- Single-segment or multisegment messages
- Non-inquiry or inquiry
- Recoverable or nonrecoverable

AOCMD

Specifies the AOI option that you want to change, which indicates whether the transaction can issue the type-1 AOI CMD call or the type-2 AOI ICMD call. If AOCMD is defined as CMD, TRAN, or Y, and the AOI1 execute parameter is defined as AOI1=N, no authorization checking is done and the transaction is permitted to issue CMD and ICMD calls.

CMD

Indicates that the transaction is permitted to issue type-1 AOI CMD
calls and type-2 AOI ICMD calls. If the AOI1 execute parameter is defined as C, R, or A, authorization checking is based on which transactions can issue a particular command. In this case, the commands (or the first three characters of the commands) need to be defined to RACF or an equivalent product as a user. The type-1 AOI transactions must be defined as profiles under the TIMS class, and for each transaction, the commands it can issue must be specified. Defining AOCMD(CMD) requires you to create fewer user IDs than you need to create for the AOCMD(TRAN) definition. However, defining AOCMD(CMD) requires you to create or modify a larger number of resource profiles.

N Indicates that the transaction is not permitted to issue type-1 AOI CMD calls. The transaction is permitted to issue type-2 AOI ICMD calls.

TRAN Indicates that the transaction is permitted to issue type-1 AOI CMD calls and type-2 AOI ICMD calls. If the AOI1 execute parameter is defined as C, R, or A, the transaction code is used for authorization. The first authorization check results in the accessor environment element (ACEE) being built. This environment is kept for use by future authorization checks. The type-1 AOI transaction needs to be defined to RACF or an equivalent product as a user. The transactions will then be specified on RACF PERMIT statements for each command they are allowed to issue from a type-1 AOI transaction. Specifying AOI transactions as users to RACF might conflict with the name of a user already defined to RACF. If this occurs, then either the transaction name or the existing user name needs to be changed.

Y Indicates that the transaction is permitted to issue type-1 AOI CMD calls and type-2 AOI ICMD calls. If the AOI1 execute parameter is defined as C, R, or A, the user ID or the program name is used for authorization. For some environments, if a Get Unique call has not yet occurred, the program name is used for authorization. Updating this attribute stops messages from being queued to the transaction while the command is in progress. Any attempt to queue a message to the transaction is rejected. Updating this attribute also stops the transaction from being scheduled while the command is in progress. There must be no work in progress and no messages queued (non-shared queues) for the command to complete successfully.

CLASS Specifies the transaction class, which is an attribute used to select a transaction for scheduling. A transaction can be scheduled if there is a message processing region available for that class. The value can be a number from 1 to 999. This value must not exceed the value given (by specification or default) on the MAXCLAS= keyword of the IMSCTRL macro.

Define CPI-C transactions with a different message class from that used for non-CPI-C transactions. IMS handles all CPI-C transactions as priority zero within the transaction class.

CMTMODE Specifies when database updates and non-express output messages are committed. This operand affects emergency restart.
MULT

Database updates and non-express output messages are committed only when the application program terminates normally, when the processing limit count has been reached, or, in the case of a pseudo-WFI dependent region, when there are no more messages on the queue. For example, if five transactions are processed during a single schedule of a program, all five are committed only when the fifth one is completed and the program terminates. Until a transaction has been committed, locks for updated database records are not released and non-express output messages are not queued for output. If an application ends abnormally before committing its messages, emergency restart requeues all the messages that were processed within the commit scope and makes them available for reprocessing.

If the transaction results in the application calling an external subsystem, such as DB2, the Commit Verify exit provided by the external subsystem can determine whether CMTMODE(MULT) is supported. See documentation under the Commit Verify exit routine in IMS Version 13 Exit Routines.

SNGL

Database updates and non-express output messages are committed when the application program completes processing each transaction. IMS invokes commit processing either when the application program requests the next message (issues a GU to the IO-PCB), or when the application program terminates. If an application ends abnormally before committing its messages, emergency restart requeues all the messages that were processed within the commit scope and makes them available for reprocessing. If an application ends abnormally before committing its message, emergency restart requeues the message that was in process before the abend and makes it available for reprocessing.

Keyword combination rules include the following:

- CONV(Y) and CMTMODE(MULT) are mutually exclusive.
- WFI(Y) and CMTMODE(MULT) are mutually exclusive.

Updating this attribute stops messages from being queued to the transaction while the command is in progress. Any attempt to queue a message to the transaction is rejected. Updating this attribute also stops the transaction from being scheduled while the command is in progress. There must be no work in progress and no messages queued (non-shared queues) for the command to complete successfully.

CONV

Specifies the conversation option.

N The transaction is not conversational.

Y The transaction is conversational. The transaction message is destined for a conversational program. A conversational program processes transactions made up of several steps. A conversational program receives a message from a terminal, replies to the terminal, but saves the data from the transaction in a scratchpad area (SPA). When the person at the terminal enters more data, the program has the data it saved from the last message in the SPA, so it can continue processing the request without the person at the terminal having to enter the data again.
Updating this attribute stops messages from being queued to the transaction while the command is in progress. Any attempt to queue a message to the transaction is rejected. Updating this attribute also stops the transaction from being scheduled while the command is in progress. There must be no work in progress and no messages queued (non-shared queues) for the command to complete successfully.

Keyword combination rules include the following:
- CONV(Y) requires SPASZ and SPATRUNC.
- CMTMODE(MULT) and CONV(Y) are mutually exclusive.
- FP(E) and CONV(Y) are mutually exclusive.
- RECOVER(N) and CONV(Y) are mutually exclusive.
- SPASZ and CONV(N) are mutually exclusive.
- SPATRUNC and CONV(N) are mutually exclusive.

CPRI
Defines a new value for the current priority of a transaction. The CPRI keyword is not allowed for BMP transactions, because BMP transactions should always have a priority of 0. The new CPRI value takes effect the next time the transaction is scheduled. Valid CPRI parameters are numeric values from 0 to 14.

DCLWA
Specifies the log write-ahead option.
- **N** IMS should not perform log write-ahead. Specify N if input message integrity and the consistency of output messages with associated database updates is not required. DCLWA does not apply to response mode or Fast Path input processing, and is ignored during IMS execution.
- **Y** IMS should perform log write-ahead for recoverable, nonresponse input messages and transaction output messages. This ensures the following:
 - A nonresponse input transaction is made recoverable across IMS failures, prior to IMS acknowledging receipt of the input.
 - Database changes are made recoverable prior to IMS sending associated output reply messages.
 - Information in the log buffers is written to the IMS log, before the associated input acknowledgment or output reply is sent to the terminal.

 Define DCLWA(Y) for all VTAM terminal types.

Updating this attribute stops messages from being queued to the transaction while the command is in progress. Any attempt to queue a message to the transaction is rejected. Updating this attribute also stops the transaction from being scheduled while the command is in progress. There must be no work in progress and no messages queued (non-shared queues) for the command to complete successfully.

DIRROUTE
Specifies the MSC directed routing option.
- **N** The application program processing a transaction is not informed of the system which originated the transaction. The name of the originating LTERM is placed in the I/O PCB.
The application program processing a transaction is informed of the system which originated the transaction, if MSC directed routing is used in a multiple IMS system configuration. An MSNAME corresponding to a logical path back to the originating system is placed in the I/O PCB.

Updating this attribute stops messages from being queued to the transaction while the command is in progress. Any attempt to queue a message to the transaction is rejected. Updating this attribute also stops the transaction from being scheduled while the command is in progress. There must be no work in progress and no messages queued (non-shared queues) for the command to complete successfully.

EDITRTN

Specifies the 1- to 8-character name of your transaction input edit routine that edits messages before the program receives the message. This name must begin with an alphabetic character. The specified edit routine (load module) must reside on the USERLIB data set before IMS system definition stage 2 execution. This routine cannot be the same one defined by the system definition TYPE EDIT= parameter.

EDITRTN is used for a Fast Path potential transaction when the transaction is routed to IMS.

For input from LU 6.2 devices, the user edit exit routine DFSLUEE0 is called instead of the transaction input edit routine specified in EDIT.

Updating this attribute stops messages from being queued to the transaction while the command is in progress. Any attempt to queue a message to the transaction is rejected. Updating this attribute also stops the transaction from being scheduled while the command is in progress. There must be no work in progress and no messages queued (non-shared queues) for the command to complete successfully.

To remove an edit routine name from a transaction definition, specify EDITRTN(0).

FP(E) and EDITRTN are mutually exclusive.

EDITUC

Specifies the edit to uppercase option.

N The input data is not translated to uppercase. It can consist of uppercase and lowercase characters as entered from the terminal.

Y The input data is to be translated to uppercase before it is presented to the processing program. If FP(E) or FP(P), the transaction is to be translated to uppercase before being presented to the edit/routing exit routine.

Specifying EDITUC(Y) for VTAM terminals prevents the transmission of embedded device control characters.

Updating this attribute stops messages from being queued to the transaction while the command is in progress. Any attempt to queue a message to the transaction is rejected. Updating this attribute also stops the transaction from being scheduled while the command is in progress. There must be no work in progress and no messages queued (non-shared queues) for the command to complete successfully.
EMHBSZ

Specifies the EMH buffer size required to run the Fast Path transaction. This overrides the EMHL execution parameter. If EMHBSZ is not specified, the EMHL execution parameter value is used. The value can be a number from 0 to 30 720.

Updating this attribute stops messages from being queued to the transaction while the command is in progress. Any attempt to queue a message to the transaction is rejected. Updating this attribute also stops the transaction from being scheduled while the command is in progress. There must be no work in progress and no messages queued (non-shared queues) for the command to complete successfully.

Keyword combination rules include the following:
- EMHBSZ > 0 requires Fast Path to be defined.
- FP(N) and EMHBSZ > 0 are mutually exclusive.

EXPRTIME

Specifies the elapsed time in seconds that IMS can use to cancel the input transaction. After a transaction is submitted to IMS, the transaction could be delayed for processing because of a stopped transaction or a potential system slow down. In that case, the user or client application could time out before the transaction is processed. When IMS eventually schedules and processes the transaction, the response message is no longer wanted. With the elapsed time specified for the transaction, IMS can flag the input transaction as expired so that the system does not waste CPU cycles to process the unwanted transaction.

The value can be a number, in seconds, which can range from 0 to 65535. The default is 0, which means that no expiration time is set for this transaction. The transaction expiration attribute is supported by all of the IMS TM interfaces.

Restriction: The transaction expiration checking is not performed at the GU time for Fast Path transactions, IMS conversational transactions, and program-to-program switch transactions.

FP

Specifies the Fast Path option.

- **E** The transaction is processed exclusively as Fast Path. The program must be defined as Fast Path exclusive.

- **N** The transaction is not a candidate for Fast Path processing. The program must be defined as not Fast Path. When FP(N) is specified, any attempt to use Fast Path resources or commands might yield unpredictable results.

- **P** The transaction is a potential candidate for Fast Path processing. Fast Path-potential transactions must be able to run under two applications: a Fast Path exclusive application and a non-Fast Path application. A Fast Path exclusive application should be defined to which this transaction can be routed. Fast Path–potential transactions must be processed by a user edit/routing exit to determine whether the transaction is actually to be processed by IMS Fast Path. If it is to be processed by IMS Fast Path, the edit/routing exit routine associates the transaction with a routing code. This routing code identifies which Fast Path application program is to process the transaction.
The program defined by PGM() must not be defined as Fast Path exclusive.

Updating this attribute stops messages from being queued to the transaction while the command is in progress. Any attempt to queue a message to the transaction is rejected. Updating this attribute also stops the transaction from being scheduled while the command is in progress. There must be no work in progress and no messages queued (non-shared queues) for the command to complete successfully.

In order to update a transaction from FP(E) to FP(N) or from FP(N) to FP(E) you must also update the transaction to point to a program that has the same FP() attribute. If you do not update the program attribute, the command will fail because of a program conflict.

If a Fast Path exclusive FP(E) transaction is being updated to Fast Path potential FP(P) or non-Fast Path FP(N) transaction and no limit count is specified, a limit count of 65535 is set.

Keyword combination rules include the following:
- CONV(Y) and FP(E) are mutually exclusive.
- EDITRTN and FP(E) are mutually exclusive.
- EMHBSZ>0 and FP(N) are mutually exclusive.
- FP(E) and FP(P) require Fast Path to be defined.
- MSGTYPE(MULTSEG) and FP(E) are mutually exclusive.
- MSGTYPE(MULTSEG) and FP(P) are mutually exclusive.
- MSNAME and FP(E) are mutually exclusive.
- RECOVER(N) and FP(E) are mutually exclusive.
- RECOVER(N) and FP(P) are mutually exclusive.
- RESP(N) and FP(E) are mutually exclusive.
- RESP(N) and FP(P) are mutually exclusive.
- SIDL and FP(E) are mutually exclusive.
- SIDR and FP(E) are mutually exclusive.

INQ

Specifies the inquiry option.

- **N** This is not an inquiry transaction.
- **Y** This is an inquiry transaction. If INQ(Y) is specified, you can also specify whether this transaction should be recovered during an IMS emergency or normal restart using the RECOVER() parameter.

This should be specified only for those transactions that, when entered, do not cause a change in any database. Programs are prohibited from issuing ISRT, DLET, or REPL calls to a database when scheduled to process a transaction defined as INQ(Y).

An application program cannot do an SQL INSERT, DELETE, or UPDATE when the IMS transaction is defined with INQ(Y).

Updating this attribute stops messages from being queued to the transaction while the command is in progress. Any attempt to queue a message to the transaction is rejected. Updating this attribute also stops the transaction from being scheduled while the command is in progress. There
must be no work in progress and no messages queued (non-shared queues) for the command to complete successfully.

Keyword combination rules include the following:

- RECOVER(N) and INQ(N) are mutually exclusive.

LCT

Specifies the limit count. This is the number that, when compared to the number of input transactions queued and waiting to be processed, determines whether the normal or limit priority value is assigned to this transaction. The value can be a number from 1 to 65535. The default is 65535.

The limit count value is ignored for a transaction processed by a BMP.

The limit count value is ignored in a shared-queues environment.

The limit count value does not apply to FP exclusive transactions and is ignored.

LOCK

Specifies that the LOCK status is to be set on or off. SET(LOCK(ON | OFF)) cannot be specified with any other SET attribute. SET(LOCK(ON | OFF)) can be specified with the START or STOP keyword.

- **ON** Locks the transaction and prevents it from being scheduled.
 - LOCK(ON) cannot be specified for Fast Path exclusive transactions, but can be specified for Fast Path potential transactions. LOCK(ON) cannot be specified for transactions for CPI Communications driven programs.

- **OFF** Unlocks the transaction and allows it to be scheduled.

LPRI

Specifies the limit priority. This is the scheduling priority to which this transaction is raised when the number of input transactions enqueued and waiting to be processed is equal to or greater than the limit count value. The scheduling priority is an attribute used to select a transaction for scheduling. A transaction of higher priority is scheduled before a lower priority one, if they are defined with the same class. The value can be a number from 0 through 14.

When the limit priority is used and the scheduling priority is raised to the limit priority, the priority is not reduced to the normal priority until all messages enqueued for this transaction name are processed. If you do not want the limit priority for this transaction, define equal values for the normal priority and limit priority, and a limit count of 65535.

When a transaction is processed exclusively by a batch message program (BMP), define the limit priority as 0. If the program specified by PGM() is defined with a program type of batch, the current priority is forced to be 0. However, a batch message processing region (BMP) can process transactions with current scheduling priorities other than 0.

This priority also controls the priority of messages created by this transaction and sent to a destination in a remote system. See also the discussion on MSC priorities under the NPRI definition.

The limit priority value is ignored for a transaction processed by a BMP.

The limit priority value is ignored in a shared-queues environment.
MAXRGN

Specifies a new value for the maximum number of regions that can be simultaneously scheduled for a given transaction. The transaction must be eligible for parallel scheduling (load balancing). The value of the MAXRGN parameter must be between 0 and the number specified on the MAXPST=control region parameter.

The keyword limits the number of message processing program (MPP) regions that can be concurrently scheduled to process a transaction. When the number of MPP regions is not limited, one transaction might monopolize all available regions. The value can be a number from 0 to the value specified on the MAXPST= control region parameter. MAXRGN(0) means that no limit is imposed.

If you define the application program with a scheduling type of SERIAL, omit the MAXRGN keyword or define it as 0.

The following keyword combinations are mutually exclusive:

- PARLIM(65535) and MAXRGN value greater than 0
- SERIAL(Y) and MAXRGN value greater than 0

MSGTYPE

Specifies the message type (single segment or multiple segment). It specifies the time at which an incoming message is considered complete and available to be routed to an application program for subsequent processing.

If MSC-directed routing is used in a multiple IMS system configuration, IMS does not ensure that both the message and the transaction destined to process that message are either single segment or multiple segments.

MULTSEG

- The incoming message can be more than one segment in length. It is not eligible for scheduling to an application program until an end-of-message indication is received, or a complete message is created by MFS.

SNGLSEG

- The incoming message is one segment in length. It becomes eligible for scheduling when the terminal operator indicates end-of-segment.

Updating this attribute stops messages from being queued to the transaction while the command is in progress. Any attempt to queue a message to the transaction is rejected. Updating this attribute also stops the transaction from being scheduled while the command is in progress. There must be no work in progress and no messages queued (non-shared queues) for the command to complete successfully.

Keyword combination rules include the following:

- FP(E) and MSGTYPE(MULTSEG) are mutually exclusive.
- FP(P) and MSGTYPE(MULTSEG) are mutually exclusive.

MSNAME

Specifies the one- to eight-character name of the logical link path in a multiple IMS system configuration (MSC). A logical link path is a path between any two IMS systems. The IMS systems are identified by the remote system ID and the local system ID associated with the logical link path. The remote system ID identifies the system in which messages using
this path are to be processed. The local system ID identifies this system. For an UPDATE TRAN command that is changing a transaction to a remote transaction, or changing the MSC path, the new MSNAME must already be defined.

Updating this attribute stops messages from being queued to the transaction while the command is in progress. Any attempt to queue a message to the transaction is rejected. Updating this attribute also stops the transaction from being scheduled while the command is in progress. There must be no work in progress and no messages queued (non-shared queues) for the command to complete successfully.

Keyword combination rules include the following:
• FP(E) and MSNAME are mutually exclusive.
• SIDL and MSNAME are mutually exclusive.
• SIDR and MSNAME are mutually exclusive.

NPRI
Specifies the normal scheduling priority. The scheduling priority is an attribute used to select a transaction for scheduling. A transaction of higher priority is scheduled before a lower priority one, if they are defined with the same class. The normal priority is assigned to the transaction as the scheduling priority when the number of input transactions enqueued and waiting to be processed is less than the limit count value. The value can be a number from 0 through 14. The default is 1.

This priority also controls the priority of messages created by this transaction and sent to a destination in a remote system.

When a transaction is processed exclusively by a batch message program (BMP), code the normal priority as 0.

When a transaction is processed exclusively by a batch message program (BMP), define the limit priority as 0. If the application program specified by PGM() is defined with a program type of batch, the current priority is forced to be 0. However, a batch message processing region (BMP) can process transactions with current scheduling priorities other than 0.

For remote transactions, the priority used to send the transaction to the processing system, which is termed the MSC link message priority. The three MSC link message priority groups are:
• Low
• Medium
• High

The low priority group consists of primary requests in the input terminal system. This group is assigned remote transaction priorities from 0 to 6. The medium group consists of secondary requests, responses, primary requests in an intermediate system, and primary requests in the input terminal system. This group is assigned a remote transaction priority of 7. The high group consists of primary requests in the input terminal system. Messages in this group are assigned remote transaction priorities from 8 to 14. Within each group, messages have a priority based on the current priority value of the transaction or remote transaction in the input terminal system for primary requests, and on the latest processing system for secondary requests and responses.
In an MSC configuration, the transaction priority determines the priority used to send messages inserted by this transaction across an MSC link. If the transaction inserts multiple messages to the same destination (for example, pages to a printer) and these messages must be sent in the order inserted, the normal and limit priority values should be the same. If the normal and limit priority values are not identical, messages inserted at a higher priority than previously inserted messages could arrive at their destination first. (This restriction does not apply to multiple segments of the same message.)

The normal priority value is ignored for a transaction processed by a BMP.

PARLIM

Specifies the parallel processing limit count. This is the maximum number of messages that can currently be queued, but not yet processed, by each active message region currently scheduled for this transaction. This is the threshold value to be used when the associated application is defined with a scheduling type of parallel. An additional region is scheduled whenever the current transaction enqueue count exceeds the PARLIM value multiplied by the number of regions currently scheduled for this transaction.

The value can be a number from 0 to 32767 or 65535. PARLIM(0) indicates that any input message can cause a new region to be scheduled because the scheduling condition is always met (the number of messages is greater than zero). If you specify PARLIM(0), you should specify a MAXRGN value to limit the number of regions that can be scheduled to process a particular transaction. PARLIM(65535) means that parallel processing is disabled and IMS allows the transaction to be scheduled in only one region at a time.

The value specified for PARLIM applies to message processing programs (MPPs) only; it is not supported for batch message processing programs (BMPs).

If you define the application as SERIAL or the scheduling type as SERIAL, define PARLIM(65535).

In a shared-queues environment (when the scheduling type is PARALLEL), any PARLIM value other than 65535 causes a new region to be scheduled whenever the successful consecutive GU count exceeds the PARLIM value multiplied by the number of regions currently scheduled for this transaction. For shared-queues environments, the successful consecutive GU count is used instead of the queue count. New regions continue to be scheduled up to the maximum number of regions specified on MAXRGN.

Note: In a shared-queues environment, the PARLIM value behaves differently than it does in a non-shared-queues environment. In a non-shared-queues environment, the queue depth (the number of messages that are currently enqueued) for the transaction is used as the value that is compared with the PARLIM value to determine when to schedule another region. IMS responds to a growing queue of input transactions by scheduling more regions as the queue grows.

In a shared-queues environment, each individual IMS does not know the depth of the queue, because the queue is in the shared-queues coupling facility structure that is managed by Common Queue Server (CQS). The transaction queue might be added to by many different IMS systems. IMS
is notified only when the first message is put in a queue (that is, when the queue becomes not empty). IMS is not notified for every subsequent message that is placed on the queue after that first message. In a shared-queues environment, the PARLIM comparison is done against a counter that each IMS keeps of the number of successful consecutive GU calls for the transaction by that IMS, rather than queue depth. IMS schedules more regions when it consistently gets messages from CQS when it asks for them. Thus, in a shared-queues environment, IMS infers the depth of the queue of messages based on processing activity, but it does not know the actual depth of the queue.

A PARLIM value of 0 in a shared-queues environment is the most responsive setting. PARLIM(0) ensures that message regions are scheduled until all messages are processed from the transaction queue, or until the maximum region value (MAXRGN) limit is reached. PARLIM(0) might, however, result in many unnecessary schedules (or false schedules). A false schedule occurs when a message region is scheduled and finds no more messages on the queue. This occurs particularly with PARLIM(0) because after each successful get unique (GU), IMS must always schedule an additional region to try to read the queue to see if there are more messages. This process continues for each successful GU until the queue becomes empty, at which time the successive GU count is reset to 0. This is a consequence of IMS not knowing how many messages are queued on the transaction queue.

Setting the PARLIM to a value greater than 0 can reduce the number of false schedules, because IMS then schedules a new message region only after a number of messages have been obtained consecutively without the queue becoming empty. Setting the PARLIM to a value of 2 or greater is useful for reducing false schedules for transactions that are low-volume and that run relatively quickly (such that the queue depth is typically 1), because it avoids scheduling a second region until the first region has obtained at least two messages in a row. However, be aware that while a PARLIM value greater than 0 can reduce unnecessary schedules, it is also less responsive. If a transaction is long running, or if its processing is delayed (for example, because of locking contention), the consecutive GU count does not change while the transaction is executing, and no additional message regions are scheduled. This can result in delayed processing of other messages for this same transaction until a currently-scheduled message completes. This delay can occur even if message regions are available to process the transaction.

Keyword combination rules include the following:
• MAXRGN>0 and PARLIM(65535) are mutually exclusive.
• SERIAL(Y) and PARLIM between 0 and 32767 are mutually exclusive.

PGM

Specifies the name of the application program associated with the transaction. The program must exist unless the transaction is defined as REMOTE(Y).

Updating this attribute stops messages from being queued to the transaction while the command is in progress. Any attempt to queue a message to the transaction is rejected. Updating this attribute also stops the transaction from being scheduled while the command is in progress. There
must be no work in progress and no messages queued (non-shared queues) for the command to complete successfully.

PLCT

Specifies the processing limit count. This is maximum number of messages sent to the application program by the IMS for processing without reloading the application program. The value must be a number from 0 through 65535. PLCT(0) means the maximum number of messages sent to the application is one and the application program is reloaded before receiving a subsequent message. PLCT(65535) means that no limit is to be placed upon the number of messages processed at a single program load. Values 1 through 65535 are eligible for quick reschedule processing.

The value is used to determine how many messages an application program is allowed to process in a single scheduling cycle. When the application program requests, and receives, the number of messages indicated, any subsequent requests result in one of two things.

1. IMS indicates “no more messages exist” if any of the following conditions is true.
 - The region is not an MPP.
 - The currently scheduled mode is not CMTMODE(SNGL).
 - Equal or higher priority transactions are enqueued for the region.

IMS might, in fact, have other messages enqueued for the application program. It is the responsibility of the application program to terminate when it receives an indicator that no more messages are available. Termination of the application program makes the region it occupied available for rescheduling. This feature makes it possible for IMS to enable scheduling of higher priority transactions that entered the system while the previous transactions were in process. In addition, if any equal-priority transactions are enqueued, they become eligible for scheduling on a first-in, first-out (FIFO) basis.

2. The region goes through quick reschedule and returns the next message to the application of all of the following conditions are true.
 - The region is an MPP.
 - The transaction is CMTMODE(SNGL).
 - No equal or higher transactions are enqueued.
 - Messages are still enqueued for the application.

PLCTTIME

Specifies the processing limit count time. This is the amount of time (in hundredths of seconds) allowable to process a single transaction (or message). The number specifies the maximum CPU time allowed for each message to be processed in the message processing region.

Batch Message Programs (BMPs) are not affected by this setting.

The value can be a number, in hundredths of seconds, that can range from 1 to 6553500. A value of 6553500 means no time limit is placed on the application program.

If Fast Path is used, this keyword specifies, for a given transaction name, the amount of time (in hundredths of seconds) the program is allowed to process a single transaction message. The time represents real time that elapses during transaction processing (not accumulated task time). Real
time is used because the input terminal is in response mode and cannot enter another transaction until the response is sent. In this case PLCT() is ignored.

The value controls application program looping. You are not required to optimize the value for program-transaction execution time. However, the time value assigned should not be less than the expected per-transaction execution time. If the scheduled application program exceeds the product of PLCTTIME() and PLCT(), the application program ends abnormally. If an IMS STIMER value of 2 is specified on the DFSMPR procedure, the region does not abend until completion of the DL/I call.

Important: The application program must not use STIMER timer services. IMS uses STIMER timer services to time the execution of transactions. If an application program issues an MVS STIMER macro, it cancels the STIMER timer services set by IMS. Use the STIMERM macro instead for application program timer requests.

RECOVER

Specifies the recovery option.

N The transaction should not be recovered.

Y The transaction should be recovered during an IMS emergency or normal restart.

Updating this attribute stops messages from being queued to the transaction while the command is in progress. Any attempt to queue a message to the transaction is rejected. Updating this attribute also stops the transaction from being scheduled while the command is in progress. There must be no work in progress and no messages queued (non-shared queues) for the command to complete successfully.

Keyword combination rules include the following:

- CONV(Y) and RECOVER(N) are mutually exclusive.
- FP(E) and RECOVER(N) are mutually exclusive.
- FP(P) and RECOVER(N) are mutually exclusive.
- INQ(N) and RECOVER(N) are mutually exclusive.

REMOTE

Specifies the remote option.

N The transaction is not remote. The transaction is local and runs on the local system.

Y The transaction is remote. The transaction runs on a remote system.

Updating this attribute stops messages from being queued to the transaction while the command is in progress. Any attempt to queue a message to the transaction is rejected. Updating this attribute also stops the transaction from being scheduled while the command is in progress. There must be no work in progress and no messages queued (non-shared queues) for the command to complete successfully.

Local transactions must have the SIDR value set equal to the SIDL value. When updating a transaction from remote to local, the SIDR and SIDL keywords must be specified, along with REMOTE(N), to set the remote SYSID equal to the local SYSID.

Keyword combination rules include the following:
REMOTE(Y) requires MSNAME or SIDR and SIDL.

RESP

Specifies the response mode option.

- **N** The transaction is not response mode. For terminals specifying or accepting a default of OPTIONS=TRANRESP, input should not stop after this transaction is entered.
- **Y** The transaction is response mode. The terminal from which the transaction is entered is held and prevents further input until a response is received. For terminals specifying or accepting a default of OPTIONS=TRANRESP, no additional messages are to be allowed after this transaction is entered until this transaction sends a response message back to the terminal. Response mode can be forced or negated by individual terminal definition. RESP(Y) is ignored during online processing for all terminals that do not operate in response mode.

Updating this attribute stops messages from being queued to the transaction while the command is in progress. Any attempt to queue a message to the transaction is rejected. Updating this attribute also stops the transaction from being scheduled while the command is in progress. There must be no work in progress and no messages queued (non-shared queues) for the command to complete successfully.

Keyword combination rules include the following:

- FP(E) and RESP(N) are mutually exclusive.
- FP(P) and RESP(N) are mutually exclusive.

SEGNO

Specifies the segment number. This is the maximum number of application program output segments that are allowed into the message queues per Get Unique (GU) call from the application program. The value can be a number from 0 through 65535. If SEGNO(0) is defined, the number of segments is not checked by the online system at execution time.

SEGNO cannot be specified for CPI Communications driven transactions.

SEGSZ

Specifies the segment size. This is the maximum number of bytes allowed in any one output segment. The value can be a number from 0 through 65535. If SEGSZ(0) is defined, the segment size is not checked by the online system at execution time.

The maximum output message segment to an LU 6.2 device is 32767. If a transaction is expected to send output to an LU 6.2 device, the SEGSIZE parameter should be no greater than 32767. However, this is not enforced during processing of the command, because IMS cannot determine the device type for the message destination until output time.

SEGSZ cannot be specified for CPI Communications driven transactions.

SERIAL

Specifies the serial option.

- **N** Messages for the transaction are not processed serially. Message processing can be processed in parallel. Messages are placed on the suspend queue after a U3303 pseudoabend. Scheduling continues until repeated failures result in the transaction being stopped with a USTOP.
- **Y** Messages for the transaction are processed serially. U3303
pseudoabends do not cause the message to be placed on the suspend queue but rather on the front of the transaction message queue, and the transaction is stopped with a USTOP. The USTOP of the transaction is removed when the transaction or the class is started with a /START or UPD TRAN command.

Updating this attribute stops messages from being queued to the transaction while the command is in progress. Any attempt to queue a message to the transaction is rejected. Updating this attribute also stops the transaction from being scheduled while the command is in progress. There must be no work in progress and no messages queued (non-shared queues) for the command to complete successfully.

Keyword combination rules include the following:

- MAXRGN>0 and SERIAL(Y) are mutually exclusive.
- PARLIM value 0 - 32767 and SERIAL(Y) are mutually exclusive.

SIDL

Specifies the system identification (SYSID) of the local system in a multiple-IMS system (MSC) configuration. The local system is the originating system to which responses are returned. The value can be a number from 1 to 2036, if MSC is enabled, or 0, if MSC is not enabled. The local SYSID can be defined in any or all of the MSNAMEs or transactions.

The SIDL parameter is independent of the link type (CTC, MTM, TCP/IP, VTAM) specified on the TYPE= keyword of the MSPLINK macro statement.

Updating this attribute stops messages from being queued to the transaction while the command is in progress. Any attempt to queue a message to the transaction is rejected. Updating this attribute also stops the transaction from being scheduled while the command is in progress. There must be no work in progress and no messages queued (non-shared queues) for the command to complete successfully.

Keyword combination rules include the following:

- FP(E) and SIDL are mutually exclusive, unless SIDL and SIDR are specified as a pair and are equal to the local system ID of this IMS.
- MSNAME and SIDL are mutually exclusive.
- SIDL value must be defined to this IMS.

SIDR

Specifies the system identification (SYSID) of the remote system in a multiple-IMS system (MSC) configuration. The remote system is the system on which the application program executes. The value can be a number from 1 to 2036, if MSC is enabled, or 0, if MSC is not enabled. The remote SYSID specified must also be defined for an MSNAME.

The SIDR parameter is independent of the link type (CTC, MTM, TCP/IP, VTAM) specified on the TYPE= keyword of the MSPLINK macro statement.

Local transactions must have the SIDR value set equal to the SIDL value. When updating a transaction from remote to local, the remote SYSID must be set to the local SYSID.

Updating this attribute stops messages from being queued to the transaction while the command is in progress. Any attempt to queue a
message to the transaction is rejected. Updating this attribute also stops the transaction from being scheduled while the command is in progress. There must be no work in progress and no messages queued (non-shared queues) for the command to complete successfully.

Keyword combination rules include the following:
• FP(E) and SIDR are mutually exclusive, unless SIDL and SIDR are specified as a pair and are equal to the local system ID of this IMS.
• MSNAME and SIDR are mutually exclusive.
• SIDR value must be defined to this IMS.

SPASZ

Specifies the scratchpad area (SPA) size, in bytes, for a conversational transaction. The value can be a number from 16 and 32767.

Updating this attribute stops messages from being queued to the transaction while the command is in progress. Any attempt to queue a message to the transaction is rejected. Updating this attribute also stops the transaction from being scheduled while the command is in progress. There must be no work in progress and no messages queued (non-shared queues) for the command to complete successfully.

Keyword combination rules include the following:
• CONV(N) and SPASZ are mutually exclusive.
• FP(E) and SPASZ are mutually exclusive.

SPATRUNC

Specifies the scratchpad area (SPA) truncation option of a conversational transaction. This defines whether the SPA data should be truncated or preserved across a program switch to a transaction that is defined with a smaller SPA.

When a conversation initially starts, and when a program is switched, the SPATRUNC option is checked and set or reset as specified. When the option is set, it remains set for the life of the conversation, or until a program switch occurs to a transaction that specifies the option is to be reset.

When a program switch occurs, the truncated data option for the new transaction is first checked, and that specification is set for the conversation and is used for the SPA inserted into the output message. If the option is not specified for the new transaction, the option currently in effect for the conversation is used.

S IMS preserves all of the data in the SPA, even when a program switch is made to a transaction that is defined with a smaller SPA. The transaction with the smaller SPA does not see the truncated data, but when the transaction switches to a transaction with a larger SPA, the truncated data is used.

R The truncated data is not preserved.

Updating this attribute stops messages from being queued to the transaction while the command is in progress. Any attempt to queue a message to the transaction is rejected. Updating this attribute also stops the transaction from being scheduled while the command is in progress. There must be no work in progress and no messages queued (non-shared queues) for the command to complete successfully.
Keyword combination rules include the following:

- CONV(N) and SPATRUNC are mutually exclusive.
- FP(E) and SPATRUNC are mutually exclusive.

TRANSTAT

Specifies whether transaction level statistics should be logged for message driven programs. If Y is specified, transaction level statistics are written to the log in a X'56FA' log record.

- **N** Transaction level statistics should not be logged.
- **Y** Transaction level statistics should be logged.

The TRANSTAT keyword on the UPDATE TRAN command gives the user the ability to override the system default or the current value of the TRANSTAT parameter. If the TRANSTAT keyword is omitted on the UPDATE TRAN command, the current transaction level statistics setting is unchanged.

WFI

Specifies the wait-for input option. This attribute does not apply to Fast Path transactions, which always behave as wait-for-input transactions.

- **N** This is not a wait-for-input transaction.
- **Y** This is a wait-for-input transaction. A message processing or batch processing application program that processes WFI transactions are scheduled and invoked normally. If the transaction to be processed is defined as WFI, the program is allowed to remain in main storage after it has processed the available input messages. The QC status code (no more messages) is returned to the program if the PROCLIM count (PLCT) is reached; a command is entered to change the status of the scheduled transaction, database, program, or class; commands relating to the databases used by the transaction are entered, or IMS is terminated with a checkpoint shutdown.

Updating this attribute stops messages from being queued to the transaction while the command is in progress. Any attempt to queue a message to the transaction is rejected. Updating this attribute also stops the transaction from being scheduled while the command is in progress. There must be no work in progress and no messages queued (non-shared queues) for the command to complete successfully.

Keyword combination rules include the following:

- MODE(MULT) and WFI(Y) are mutually exclusive.

START()

Specifies the attributes to be started.

- **Q** Updates local and global status to start queuing transactions. This change applies to transactions that are entered either from a network or terminal, or using the QUEUE TRAN command, to DB/DC or DCCTL environments.

SCHD

Updates local and global status to start transactions from being scheduled. This change applies to transactions scheduled in DB/DC or DCCTL environments.
In a shared-queues environment, the UPD TRAN START(SCHD) command will result in IMS registering interest for the transaction, which indicates that the transaction can be scheduled at that IMS. An UPDATE TRAN NAME(*) START(SCHD) command does not register transactions that are already registered to CQS.

SUSPEND

If the transaction has messages on the suspend queue, that suspend queue is automatically transferred to the ready queue.

TRACE

Starts the transaction trace, which captures the DL/I portion of Data Communications (DC) for the specified transaction. The information is written as a 6701 log record to the IMS log.

STOP()

Specifies the attributes to be stopped.

Q Updates local and global status to stop transactions from being queued. This change applies to transactions that are entered either from a network or terminal, or using the QUEUE TRAN command, to DB/DC or DCCTL environments.

SCHD

Updates local and global status to stop transactions from being scheduled. This change applies to transactions scheduled in DB/DC or DCCTL environments.

The UPDATE TRAN STOP(SCHD) command stops the scheduling of transactions; however, the transactions will continue to be processed until the limit count is reached. If the limit count is large, the processing interval will be long.

In a shared-queues environment, the UPD TRAN STOP(SCHD) command results in IMS deregistering interest for the transaction, which indicates that the transaction cannot be scheduled at the IMS.

TRACE

Stops the transaction trace.

Usage notes

Resources exist for the life of the IMS unless they are deleted using a DELETE command. Resources are recoverable across an IMS warm start or emergency restart. Resources are lost if IMS is cold started, unless cold start imports definitions that were exported while IMS was up.

The UPDATE TRAN command is recoverable across an IMS warm start or emergency restart, except for START(TRACE) and STOP(TRACE). Updates to the definitional attributes of a transaction are lost if IMS is cold started, unless the transaction definitions are exported to an RDDS and then imported from the RDDS at the cold start.

The UPDATE TRAN command can be issued only through the OM API. This command applies to DB/DC and DCCTL systems. This command is not valid on the XRF alternate, RSR tracker, or FDBR region.

The UPDATE TRAN command changes a MODBLKS transaction to dynamic, if the AOCMD, CMTMODE, CONV, DCLWA, DIRROUTE, EDITRTN, EDITUC,
EMHBSZ, FP, INQ, MSGTYPE, MSNAME, PLCTTIME, PGM, RECOVER,
REMOTE, RESP, SERIAL, SPASZ, SPATRUNC, TRANSTAT, or WFI value is
changed.

Each transaction is updated individually, unlike the online change process where
either all transactions are updated or no transactions are updated. Some runtime
resource definition values for a transaction can be updated only if the transaction
is not in use.

You can update the status of a transaction (LOCK, START, STOP) while the
transaction is in use.

The following transaction attributes cannot be updated if online change for
MODBLKS is enabled: AOCMD, CMTMODE, CONV, DCLWA, DEFAULT,
DIRROUTE, EDITRTN, EDITUC, EMHBSZ, FP, INQ, MSGTYPE, MSNAME, PGM,
PLCTTIME, RECOVER, REMOTE, RESP, SERIAL, SIDL, SIDR, SPASZ, SPATRUNC,
WFI.

If all the attributes specified by the UPDATE command are already defined for the
resource, no update is actually made, no resources are quiesced, no log record is
created, and a completion code of zero is returned. This avoids unnecessary
overhead when no action needs to be taken.

In a shared message queues environment, the UPDATE TRAN command updates
the transaction even if there are messages on the shared messages queues for the
transaction. If the messages were placed on the shared message queues using
conversation, Fast Path, response mode, or serial transaction attributes that differ
from the transaction being updated on this IMS, this IMS will not be able to access
the messages on the shared message queues.

The UPDATE TRAN NAME(tranname)
SET(REMOTE(N),SIDR(localsysid),SIDL(localsysid)) command sets the remote
system ID to be the same as the local system ID. It is equivalent to the command
/MSASSIGN TRAN tranname TO LOCAL. The UPDATE TRAN NAME(tranname)
SET(REMOTE(N)) command specified without SIDR/SIDL or MSNAME does not
change the local and remote system IDs, therefore it is not equivalent to the
/MSASSIGN TRAN tranname TO LOCAL command.

Equivalent IMS type-1 commands

The following table shows variations of the UPDATE TRAN command and the
type-1 IMS commands that perform similar functions.

<table>
<thead>
<tr>
<th>UPDATE command</th>
<th>Similar IMS type-1 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE TRAN(name) START(Q) STOP(SCHD)</td>
<td>/PSTOP TRAN name</td>
</tr>
<tr>
<td>UPDATE TRAN NAME(name) START(SCHD) STOP(Q)</td>
<td>/PURGE TRAN name</td>
</tr>
<tr>
<td>UPDATE TRAN NAME(name) START(Q,SCHD,SUSPEND)</td>
<td>/START TRAN name</td>
</tr>
<tr>
<td>UPDATE TRAN NAME(name) STOP(Q,SCHD)</td>
<td>/STOP TRAN name</td>
</tr>
</tbody>
</table>
Table 536. Type-1 equivalents for the UPDATE TRAN command (continued)

<table>
<thead>
<tr>
<th>UPDATE command</th>
<th>Similar IMS type-1 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE TRAN NAME(name) START(TRACE)</td>
<td>/TRACE SET ON TRAN name</td>
</tr>
<tr>
<td>UPDATE TRAN NAME(name) STOP(TRACE)</td>
<td>/TRACE SET OFF TRAN name</td>
</tr>
<tr>
<td>UPDATE TRAN NAME(name) SET(CLASS(new_class_number))</td>
<td>/ASSIGN TRAN name TO CLS new_class_number</td>
</tr>
<tr>
<td>UPDATE TRAN NAME(name) SET(CPRI(new_current_priority))</td>
<td>/ASSIGN CPRI new_current_priority TO TRAN name</td>
</tr>
<tr>
<td>UPDATE TRAN NAME(name) SET(LCT(new_limit_count))</td>
<td>/ASSIGN LCT new_lmct_number TO TRAN name</td>
</tr>
<tr>
<td>UPDATE TRAN NAME(name) SET(LPRI(new_limit_priority))</td>
<td>/ASSIGN LPRI new_lpri_number TO TRAN name</td>
</tr>
<tr>
<td>UPDATE TRAN NAME(name) SET(NPRI(new_normal_priority))</td>
<td>/ASSIGN NPRI new_npri_number TO TRAN name</td>
</tr>
<tr>
<td>UPDATE TRAN NAME(name) SET(PARLIM(new_parallel_limit))</td>
<td>/ASSIGN PARLIM new_parlim_number TO TRAN name</td>
</tr>
<tr>
<td>UPDATE TRAN NAME(name) SET(PLCT(new_processing_limit))</td>
<td>/ASSIGN PLCT new_plmct_number TO TRAN name</td>
</tr>
<tr>
<td>UPDATE TRAN NAME(name) SET(SEGNO(new_segment_number))</td>
<td>/ASSIGN SEGNO new_segno_number TO TRAN name</td>
</tr>
<tr>
<td>UPDATE TRAN NAME(name) SET(SEGSZ(new_segment_size))</td>
<td>/ASSIGN SEGSZ new_segsize_number TO TRAN name</td>
</tr>
<tr>
<td>UPDATE TRAN NAME(name) SET(MAXRG(new_max_regions))</td>
<td>/CHANGE TRAN name MAXRGN new_maxrgn_number</td>
</tr>
</tbody>
</table>

Output fields

The following table shows the UPDATE TRAN output fields. The columns in the table are as follows:

Short label
Contains the short label generated in the XML output.

Keyword
Identifies the keyword on the command that caused the field to be generated. N/A appears for output fields that are always returned. error appears for output fields that are returned only in case of an error.

Meaning
Provides a brief description of the output field.

Table 537. Output fields for the UPDATE TRAN command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>N/A</td>
<td>Completion code.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the nonzero completion code.</td>
</tr>
</tbody>
</table>
Table 537. Output fields for the UPDATE TRAN command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONVID</td>
<td>TRAN</td>
<td>Conversation ID of conversation associated with transaction that caused the update to fail with a completion code of C'1A'. This information can be used to exit the conversation, before attempting the update again.</td>
</tr>
<tr>
<td>ERRT</td>
<td>error</td>
<td>Error text with diagnostic information. Error text can be returned for a nonzero completion code and contains information that further explains the completion code.</td>
</tr>
<tr>
<td>GBL</td>
<td>SCOPE(ALL)</td>
<td>Indicates that the response line is for the global update.</td>
</tr>
<tr>
<td>LU</td>
<td>TRAN</td>
<td>APPC LU name associated with the transaction conversation that caused the update to fail with a completion code of C'1A'. This information can be used to exit the conversation, before attempting the update again.</td>
</tr>
<tr>
<td>MBR</td>
<td>N/A</td>
<td>The IMSplex member that built the output line. The IMS identifier of the IMS for which the transaction information is displayed. The IMS identifier is always returned.</td>
</tr>
<tr>
<td>NODE</td>
<td>TRAN</td>
<td>Node name of static node associated with the transaction conversation that caused the update to fail with a completion code of C'1A'. This information can be used to exit the conversation, before attempting the update again.</td>
</tr>
<tr>
<td>TMEM</td>
<td>TRAN</td>
<td>OTMA tmember name associated with the transaction conversation that caused the update to fail with a completion code of C'1A'. This information can be used to exit the conversation, before attempting the update again.</td>
</tr>
<tr>
<td>TPIP</td>
<td>TRAN</td>
<td>OTMA tpipe name associated with the transaction conversation that caused the update to fail with a completion code of C'1A'. This information can be used to exit the conversation, before attempting the update again.</td>
</tr>
<tr>
<td>TRAN</td>
<td>N/A</td>
<td>The transaction name. The transaction name is always displayed.</td>
</tr>
<tr>
<td>USER</td>
<td>TRAN</td>
<td>User name of dynamic user associated with the transaction conversation that caused the update to fail with a completion code of C'1A'. This information can be used to exit the conversation, before attempting the update again.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.
Table 538. Return and reason codes for the UPDATE TRAN command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>Command completed successfully. The command output contains a line for each resource, accompanied by its completion code. If NAME(*) is specified without OPTION(ALLRSP), no output lines are returned. See Table 539 on page 1211 for details.</td>
</tr>
<tr>
<td>X'00000004'</td>
<td>X'00002008'</td>
<td>Invalid number of keywords. Either a SET, START, or STOP keyword is required.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000200C'</td>
<td>No resources were found to be updated. The resource names specified might be invalid or there were no resources that match the filter specified. Confirm that the UPDATE TRAN command is issued with valid resources.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002040'</td>
<td>More than one filter value is specified on the UPDATE TRAN command. Confirm that only one of SET or START</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002044'</td>
<td>The UPDATE TRAN command is not processed because the same attribute value was specified for the START and STOP filters. The attribute "Q,SCHD" can be specified only on START or STOP but not both. For example, UPDATE TRAN START(Q) STOP(Q) is not valid but UPDATE TRAN START(Q) STOP(SCHD) is valid. Confirm that only one START</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002048'</td>
<td>The UPDATE TRAN command is not processed because an invalid SET attribute is specified. Confirm that the correct SET attribute is specified on the command.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000204C'</td>
<td>The UPDATE TRAN command is not processed because a CLASS value specified is invalid. Confirm that the correct CLASS value is specified on the command.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002050'</td>
<td>The UPDATE TRAN command is not processed because the CPRI value specified is invalid. Confirm that the correct CPRI value is specified on the command.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002054'</td>
<td>The UPDATE TRAN command is not processed because the LCT (limit count) value specified is invalid. Confirm that the correct LCT value is specified on the command.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002058'</td>
<td>The UPDATE TRAN command is not processed because the LPRI value specified is invalid. Confirm that the correct LPRI value is specified on the command.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000205C'</td>
<td>The UPDATE TRAN command is not processed because the MAXGN value specified is invalid. Confirm the correct MAXRGN value is specified on the command.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002060'</td>
<td>The UPDATE TRAN command is not processed because the NPRI value specified is invalid. Confirm that the correct NPRI value is specified on the command.</td>
</tr>
<tr>
<td>Return code</td>
<td>Reason code</td>
<td>Meaning</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002064'</td>
<td>The UPDATE TRAN command is not processed because the PARLIM value is invalid. Confirm that the PARLIM value is specified on the command.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002068'</td>
<td>The UPDATE TRAN command is not processed because the PLCT value is invalid. Confirm that the correct PLCT value is specified on the command.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002100'</td>
<td>CMTMODE(MULT) mutually exclusive with WF(Y).</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002101'</td>
<td>CONV(Y) mutually exclusive with CMTMODE(MULT).</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002103'</td>
<td>CONV(N) mutually exclusive with SPASZ>0 and SPATRUNC.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002104'</td>
<td>CONV(Y) mutually exclusive with RECOVER(N).</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002105'</td>
<td>CONV(Y) requires SPASZ and SPATRUNC.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002108'</td>
<td>Invalid EDITRTN name.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000210A'</td>
<td>Invalid EMHSZ. One of the following situations occurred:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The EMHB size specified is either greater than the maximum size, which is 30720</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The EMHB size specified plus the length of the X'5901' log record prefix is greater than the log buffer size</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000210C'</td>
<td>FP(E) mutually exclusive with EDITRTN.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000210E'</td>
<td>FP(E) or FP(P) mutually exclusive with MSC keyword MSNAME or SIDL and SIDL.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000210F'</td>
<td>FP(E) or FP(P) mutually exclusive with MSGTYPE(MULISEG).</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002110'</td>
<td>FP(N) mutually exclusive with EMHSZ > 0.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002111'</td>
<td>FP(E) or FP(P) mutually exclusive with RECOVER(N).</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002112'</td>
<td>FP(E) or FP(P) mutually exclusive with RESP(N).</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002116'</td>
<td>INQ(N) mutually exclusive with RECOVER(N).</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002119'</td>
<td>MSC keyword MSNAME or SIDL/SIDR mutually exclusive with application program defined as Fast Path exclusive (FP(E)) associated with this transaction.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000211A'</td>
<td>Invalid MSNAME name.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000211B'</td>
<td>MSNAME mutually exclusive with SIDL and SIDL.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000211D'</td>
<td>MAXRGN>0 mutually exclusive with PARLIM(65535).</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000211E'</td>
<td>MAXRGN>0 mutually exclusive with SERIAL(Y).</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002121'</td>
<td>PARLIM value mutually exclusive with SERIAL(Y).</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002125'</td>
<td>If REMOTE(Y) is specified, the SIDR value must be a remote SYSID and the SIDL value must be a local SYSID. If neither the MSNAME keyword nor the SIDR and SIDL keywords are specified explicitly, the SIDR and SIDL values from the existing transaction definition are used. If REMOTE(N) is specified, the SIDR value must be equal to the SIDL value. If the SIDR and SIDL values are not specified explicitly, the values from the existing transaction definition are used. The MSNAME keyword cannot be specified with REMOTE(N).</td>
</tr>
</tbody>
</table>
Table 538. Return and reason codes for the UPDATE TRAN command (continued)

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000008'</td>
<td>X'00002126'</td>
<td>Invalid SIDL value.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002127'</td>
<td>SIDL/SIDR must be specified as a pair. Either SIDL was specified alone or SIDR was specified alone.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002128'</td>
<td>Invalid SIDR value.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003000'</td>
<td>Command was successful for some of the resources. The command output contains a line for each resource, accompanied by its completion code. If NAME(*) is specified without OPTION(ALLRSP), output lines are only returned for resources with nonzero completion codes. See Table 539 for details.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>Command was not successful for any of the resources. The command output contains a line for each resource, accompanied by its completion code. See Table 539 for details.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000400C'</td>
<td>Command is not valid on the XRF alternate.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>Command is not valid on the RSR tracker.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004024'</td>
<td>No Fast Path defined, FP(E), FP(P), or EMHBSZ >0 invalid.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004120'</td>
<td>Online change phase is in progress.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004300'</td>
<td>Command is not allowed because online change for MODBLKS is enabled (DFSDFxxx or DFSCGxxx defined with MODBLKS=OLC, or MODBLKS not defined).</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004310'</td>
<td>Storage could not be obtained for the Transaction Input edit routine table. A cold start is required to fix this error.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004314'</td>
<td>The Transaction Input edit routine could not be loaded.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004318'</td>
<td>A new Transaction Input edit routine could not be added. The maximum of 255 routines has already been reached.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005004'</td>
<td>DFSOCMD response buffer could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005008'</td>
<td>DFSPOOL storage could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'0000500C'</td>
<td>AWE could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005010'</td>
<td>Latch could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'000050FF'</td>
<td>The UPDATE TRAN or UPDATE TRANDESC command processing terminated because of an internal error.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of the UPDATE TRAN command are returned as a completion code. A completion code is returned for each action against an individual resource. The completion codes in the following table might be returned on the UPDATE TRAN command.

Table 539. Completion codes for the UPDATE TRAN command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>Command completed successfully for transaction.</td>
</tr>
<tr>
<td>Completion code</td>
<td>Completion code text</td>
<td>Meaning</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>Transaction name is invalid, or the wildcard parameter specified does not match any resource names.</td>
</tr>
<tr>
<td>17</td>
<td>ANOTHER CMD IN PROGRESS</td>
<td>Another command (such as DELETE or UPDATE) is in progress for this transaction. This could also mean this command, if the resource is specified by more than one specific or wildcard parameter. Or, the transaction is updating the program name and another command is in progress for that program.</td>
</tr>
<tr>
<td>19</td>
<td>CMTMODE=MULT/ WFI=Y CONFLICT</td>
<td>Transaction update failed because commit mode multiple CMTMODE(MULT) option conflicts with the wait-for-input WFI(Y) option.</td>
</tr>
<tr>
<td>1A</td>
<td>IN CONVERSATION</td>
<td>Transaction is in conversation. The conversation ID and terminal in conversation are returned separately. The terminal can be a static node, node and user, dynamic user, APPC luname, or OTMA tmember and tpipe.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Suggested actions: Terminate the conversation.</td>
</tr>
<tr>
<td>1B</td>
<td>CONV=Y/ CMTMODE=MULT CONFLICT</td>
<td>Transaction update failed because the conversation CONV(Y) option conflicts with the commit mode multiple CMTMODE(MULT) option.</td>
</tr>
<tr>
<td>1E</td>
<td>CONV=N/SPAZ/ SPATRUNC CONFLICT</td>
<td>Transaction update failed because the non-coverage CONV(N) option conflicts with the SPA size or SPA truncation option.</td>
</tr>
<tr>
<td>1F</td>
<td>CONV=Y/RECOVER=N CONFLICT</td>
<td>Transaction update failed because the conversation CONV(Y) option conflicts with the nonrecoverable RECOVER(N) option.</td>
</tr>
<tr>
<td>2F</td>
<td>FP=E/BMPTYPE=Y CONFLICT</td>
<td>Transaction update failed because Fast Path exclusive FP(E) option conflicts with program defined as batch BMPTYPE(Y).</td>
</tr>
<tr>
<td>30</td>
<td>QUEUE-ONLY TRANSACTION</td>
<td>The UPDATE TRAN command is invalid for the resource because the transaction is a queue-only transaction.</td>
</tr>
<tr>
<td>34</td>
<td>NOT ALLOWED FOR A CPIC TRAN</td>
<td>The UPDATE TRAN command is invalid for the resource because the transaction is a CPIC transaction.</td>
</tr>
<tr>
<td>35</td>
<td>FP=E/EDITRTN CONFLICT</td>
<td>Transaction update failed because Fast Path exclusive FP(E) option conflicts with the edit routine EDITRTN.</td>
</tr>
<tr>
<td>36</td>
<td>FP=E/FP=N PGM CONFLICT</td>
<td>Transaction update failed because Fast Path exclusive FP(E) option conflicts with program defined as non-Fast Path FP(N).</td>
</tr>
<tr>
<td>38</td>
<td>NOT ALLOWED FOR A BMP</td>
<td>The UPDATE TRAN command is invalid for the resource because the PSB associated with the transaction is a BMP.</td>
</tr>
</tbody>
</table>
Table 539. Completion codes for the UPDATE TRAN command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>3A</td>
<td>FP=E OR P/MSC KEYWORD CONFLICT</td>
<td>Transaction update failed because Fast Path exclusive FP(E) or Fast Path potential FP(P) option conflicts with the MSC MSNAME, SIDR/SIDL option.</td>
</tr>
<tr>
<td>3B</td>
<td>FP/MSGTYPE=MULTSEG CONFLICT</td>
<td>Transaction update failed because Fast Path exclusive FP(E) or Fast Path potential FP(P) option conflicts with message type multiple segment MSGTYPE(MULTSEG) option.</td>
</tr>
<tr>
<td>3C</td>
<td>MAXRGN/PARLIM=65535 CONFLICT</td>
<td>Transaction update failed because maximum region count MAXRGN value conflicts with the parallel limit count PARLIM value 65535, which means parallel scheduling is disabled. MAXRGN > 0 is not allowed with PARLIM(65535).</td>
</tr>
<tr>
<td>3E</td>
<td>FP=N/FP=E PGM CONFLICT</td>
<td>Transaction update failed because non-Fast Path FP(N) option conflicts with program defined as Fast Path exclusive FP(E).</td>
</tr>
<tr>
<td>3F</td>
<td>FP=P/BMPTYPE=Y CONFLICT</td>
<td>Transaction update failed because Fast Path potential program FP(P) conflicts with the program defined as batch BMPTYPE(Y).</td>
</tr>
<tr>
<td>40</td>
<td>PARLIM/SCHDTYPE=SERIAL CONFLICT</td>
<td>The PARLIM cannot be changed for the resource because the PSB associated with the transaction is defined as does not have parallel scheduling.</td>
</tr>
<tr>
<td>41</td>
<td>FP=E OR P/RECOVER=N CONFLICT</td>
<td>Transaction update failed because Fast Path exclusive FP(E) or Fast Path potential FP(P) option conflicts with nonrecoverable RECOVER(N) option.</td>
</tr>
<tr>
<td>42</td>
<td>FP=E OR P/RESP=N CONFLICT</td>
<td>Transaction update failed because Fast Path exclusive FP(E) or Fast Path potential FP(P) option conflicts with response mode RESP(N) option.</td>
</tr>
<tr>
<td>44</td>
<td>TRANSACTION BUSY</td>
<td>The UPDATE TRAN command cannot be processed for the resource because the transaction is currently being scheduled.</td>
</tr>
<tr>
<td>45</td>
<td>INVALID SIDR VALUE</td>
<td>The UPDATE TRAN command could not be completed for the resource because the SID number is invalid.</td>
</tr>
<tr>
<td>49</td>
<td>INQ=N/RECOVER=N CONFLICT</td>
<td>Transaction update failed because non-inquiry INQ(N) option conflicts with nonrecoverable RECOVER(N) option.</td>
</tr>
<tr>
<td>4A</td>
<td>IN USE</td>
<td>Transaction is in use. Queuing is in progress, either terminal input or a program-to-program switch.</td>
</tr>
<tr>
<td>4F</td>
<td>INVALID MAXRGN VALUE</td>
<td>Maximum region MAXRGN value is invalid.</td>
</tr>
<tr>
<td>Completion code</td>
<td>Completion code text</td>
<td>Meaning</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>5E</td>
<td>MAXRGN GT 0/SERIAL=Y</td>
<td>Transaction update failed because non-zero maximum region value conflicts with serial SERIAL(Y) option.</td>
</tr>
<tr>
<td></td>
<td>CONFLICT</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>DFSBCB STORAGE ERROR</td>
<td>DFSBCB storage could not be obtained.</td>
</tr>
<tr>
<td>6A</td>
<td>FP=P/FP=E PGM CONFLICT</td>
<td>Transaction to be updated as Fast Path potential FP(P) conflicts with program already defined as Fast Path exclusive FP(E).</td>
</tr>
<tr>
<td>6B</td>
<td>PARLIM/SERIAL=Y CONFLICT</td>
<td>Transaction update failed because the parallel limit PARLIM value conflicts with the serial SERIAL(Y) option.</td>
</tr>
<tr>
<td>6D</td>
<td>INVALID PROGRAM NAME</td>
<td>Program name specified is invalid.</td>
</tr>
<tr>
<td>73</td>
<td>PROGRAM SCHEDULED</td>
<td>Program is scheduled.</td>
</tr>
<tr>
<td>79</td>
<td>REMOTE/SIDR/SIDL/MSNAME CONFLICT</td>
<td>Transaction update failed because there is a conflict between the REMOTE value and the MSNAME keyword or the SIDR and SIDL values.</td>
</tr>
<tr>
<td>85</td>
<td>SUSPENDED</td>
<td>Transaction is on the suspend queue.</td>
</tr>
<tr>
<td>87</td>
<td>TRAN QUEUEING</td>
<td>Transaction has messages queued (non-shared-queues environment).</td>
</tr>
<tr>
<td>89</td>
<td>TRAN SCHEDULED</td>
<td>Transaction is scheduled.</td>
</tr>
<tr>
<td>90</td>
<td>NOT INITIALIZED</td>
<td>Transaction update failed because the transaction was not successfully initialized. QUERY TRAN STATUS(NOTINIT) displays the reason the transaction is not initialized, for example the program does not exist. Correct this problem and issue an UPDATE TRAN START(SCHD,Q) command to initialize the transaction.</td>
</tr>
<tr>
<td>99</td>
<td>FASTPATH TRAN NOT SUPPORTED</td>
<td>Transaction update failed because the transaction is Fast Path exclusive FP(E).</td>
</tr>
<tr>
<td>9B</td>
<td>TRAELIGIBLE FOR SCHEDULING</td>
<td>Transaction is eligible for scheduling and cannot be updated. You might need to stop the transaction with the UPDATE TRAN STOP(Q,SCHD) command before attempting the UPDATE again.</td>
</tr>
<tr>
<td>95</td>
<td>ROUTING CODE ALREADY EXISTS</td>
<td>Transaction update failed because Fast Path exclusive FP(E) option conflicts with routing code that already exists by that transaction name.</td>
</tr>
<tr>
<td>9F</td>
<td>FP=E/CONV KEYWORD CONFLICT</td>
<td>Fast Path exclusive FP(E) is mutually exclusive with any conversation keyword, including CONV(Y), SPASZ, and SPATRUNC. An FP exclusive transaction cannot be defined as conversational.</td>
</tr>
</tbody>
</table>
Table 539. Completion codes for the UPDATE TRAN command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>145</td>
<td>MESSAGE IN PROGRESS ACROSS LINK</td>
<td>Transaction update failed because a message for the transaction is in progress across the MSC link.</td>
</tr>
<tr>
<td>1D7</td>
<td>IMPORT CHANGE LIST ERROR</td>
<td>The resource is in the process of being imported from the change list in the IMSRSC repository or was not successfully imported from the change list. The resource cannot be updated until it is successfully imported from the repository.</td>
</tr>
</tbody>
</table>

Examples

The following are examples of the UPDATE TRAN command:

Example 1 for UPDATE TRAN command

TSO SPOC input:

```
UPDATE TRAN NAME(BADNAME,AOBMP,APOL17,CPI%,BAD*) SET(WFI(Y))
```

TSO SPOC output:

```
Response for: UPDATE TRAN NAME(BADNAME,AOBMP,APOL17,CPI%,BAD*)
Trancode MbrName CC CCText
AOBMP IMS1 0
APOL17 IMS1 19 CMTMODE=MULT/WFI=Y CONFLICT
BAD* IMS1 10 NO RESOURCES FOUND
BADNAME IMS1 10 NO RESOURCES FOUND
CPI1 IMS1 0
CPI2 IMS1 0
CPI3 IMS1 0
CPI4 IMS1 0
```

OM API input:

```
CMD(UPDATE TRAN NAME(BADNAME,AOBMP,APOL17,CPI%,BAD*) SET(WFI(Y)))
```

OM API output:

```
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.3.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2006.312 00:07:49.667460</statime>
<stotime>2006.312 00:07:49.668362</stotime>
<staseq>BFAE1AEB846C0</staseq>
<stosseq>BFAC64EBEB2A400</stosseq>
<rqsttkn1>USRO001 01600749</rqsttkn1>
<rc>0200000C</rc>
<rtnum>00003008</rtnum>
<rsmtn>CSLN054I</rsmtn>
<rntxt>None of the clients were successful.</rntxt>
<cmderr>
<mbr name="IMS1">
<typ>IMS</typ>
<styp>DBDC</styp>
<rc>0000000C</rc>
<rtnum>00003000</rtnum>
```
At least one request successful

Explanation: Update several transactions to be wait-for-input. The update succeeded for several transactions, as shown by the completion code 0. The update failed for transaction APOL17 with completion code 19, since the WFI(Y) attribute conflicts with the CMTMODE(MULT) attribute already defined for APOL17. The update fails for transaction BADNAME and for parameter BAD* with completion code 10, since transaction BADNAME does not exist and no transaction name starts with BAD.

Example 2 for UPDATE TRAN command

TSO SPOC input:
UPDATE TRAN NAME(APOL12) START(SCHD) OPTION(AFFIN)

TSO SPOC output:
Explanation: Transaction APOL12 is started with affinity.

Related concepts:
- How to interpret CSL request return and reason codes (System Programming APIs)

Related tasks:
- Updating runtime transaction resource and descriptor definitions with the UPDATE command (System Definition)

Related reference:
- /LOCK command (Commands)
- Command keywords and their synonyms (Commands)
- Chapter 3, “/PSTOP command,” on page 19
- “/START TRAN command” on page 771
- “/STOP TRAN command” on page 823
- “/TRACE TRAN command” on page 889
- “/UNLOCK TRAN command” on page 903
- Commit Verify exit routine (Exit Routines)

UPDATE TRANDESC command

Use the UPDATE TRANDESC command to update transaction descriptors. A descriptor is a model that can be used to create descriptors or resources.

Updating a descriptor changes only those attributes explicitly specified on the UPDATE command. Attributes not specified retain their existing values. Any transaction resource or descriptor can be created using this descriptor as a model, by specifying the CREATE LIKE(DESC(descriptor_name)) command. Any descriptor or resource that was already created using this descriptor is not updated.

Subsections:
- “Environment”
- “Syntax” on page 1218
- “Keywords” on page 1220
- “Usage notes” on page 1233
- “Output fields” on page 1234
- “Return, reason, and completion codes” on page 1234
- “Examples” on page 1238

Environment

The following table lists the environments (DB/BC, DBCTL, and DCCTL) in which you can use the commands and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE TRANDESC</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Chapter 30. UPDATE commands 1217
Table 540. Valid environments for the UPDATE TRANDESC command and keywords (continued)

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OPTION</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SET</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
UPDATE TRANDESC NAME(name) SET A, B
OPTION(ALLRSP)
```

A:
AOCMD
- **CMD:** N
- **TRAN:** Y

CLASS(class)

CMTMODE
- **MULT:** N
- **SNGL:** Y

CONV
- **N:** Y

DCLWA
- **N:** Y

DEFAULT(Y)

DIRROUTE
- **N:** Y

EDITRTN(name)

EDITUC
- **N:** Y

EMHBSZ(size)

EXPRTIME(seconds)

FP(E)
- **N:** P

INQ
- **N:** Y

LCT(value)

LPRI(value)

MAXRGN(number)

MSGTYPE
- **MULTSEG:** N
- **SNGLSEG:** Y

MSNAME(name)

NPRI(value)

PARLIM(value)

PGM(name)

PLCT(value)

PLCTTIME(hundredths of seconds)

RECOVER
- **N:** Y

B:

REMOTE
- **N:** Y

RESP
- **N:** Y

SEGNO(number)

SEGSZ(size)

SERIAL
- **N:** Y

SIDL(localsysid)

SIDR(remotesysid)

SPASZ(size)

SPATRUNC(R)
- **S:** Y

TRANSTAT
- **N:** Y

WFI
- **N:** Y
Keywords

The following keywords are valid for the UPDATE TRANDESC command:

NAME
Specifies the 1-8 character name of the transaction descriptor. Wildcards can be specified in the name. The name is a repeatable parameter. If the NAME parameter specified is a specific or wildcard name, command responses are returned for all the descriptor names that are processed. For NAME(*), command responses are returned only for the descriptor names that resulted in an error. OPTION(ALLRSP) can be specified with NAME(*) to obtain the command responses for all the descriptor names that are processed.

OPTION
Specifies additional functions to be performed along with the command.

ALLRSP
Indicates that the response lines are to be returned for all descriptors that are processed on the command. The default action is to return response lines only for the descriptors that resulted in an error. It is only valid with NAME(*). ALLRSP is ignored for other NAME values.

SET
Specifies the attribute values to be changed. A transaction must have the same characteristics in all systems where it is defined when it is shared. These characteristics include:
- Nonconversational or conversational
- SPA size if conversational
- Single-segment or multi-segment messages
- Non-inquiry or inquiry
- Recoverable or nonrecoverable

AOCMD
Specifies that the AOI option indicating whether the transaction can issue the type-1 AOI CMD call or the type-2 AOI ICMD call. If AOCMD is defined as CMD, TRAN, or Y, and the AOI execute parameter is defined as AOI1=N, no authorization checking is done, and the transaction is permitted to issue CMD and ICMD calls.

CMD
Indicates that the transaction is permitted to issue type-1 AOI CMD calls and type-2 AOI ICMD calls. If the AOI execute parameter is defined as C, R, or A, authorization checking is based on which transactions can issue a particular command. In this case, the commands (or first three characters of the commands) need to be defined to RACF or equivalent product as a user. The type-1 AOI transactions must be defined as profiles under the TIMS class, and for each transaction, the commands it can issue must be specified. Defining AOCMD(CMD) requires you to create fewer user IDs than you need to create for the AOCMD(TRAN) definition. However, defining AOCMD(CMD) requires you to create or modify a larger number of resource profiles.

N
Indicates that the transaction is not permitted to issue AOI type-1 CMD calls. The transaction is permitted to issue AOI type-2 ICMD calls.

TRAN
Indicates that the transaction is permitted to issue type-1 AOI CMD calls.
calls and type-2 AOI ICMD calls. If the AOI1 execute parameter is defined as C, R, or A, the transaction code is used for authorization. The first authorization check results in the accessor environment element (ACEE) being built. This environment is kept for use by future authorization checks. The type-1 AOI transaction needs to be defined to RACF or equivalent product as a user. The transactions will then be specified on RACF PERMIT statements for each command they are allowed to issue from a type-1 AOI transaction. Specifying AOI transactions as users to RACF might conflict with the name of a user already defined to RACF. If this occurs, then either the transaction name or the existing user name needs to be changed.

Y Indicates that the transaction is permitted to issue type-1 AOI CMD calls and type-2 AOI ICMD calls. If the AOI1 execute parameter is defined as C, R, or A, the user ID or program name is used for authorization. For some environments, if a Get Unique call has not yet happened, then the program name is used for authorization. If a Get Unique call has not yet happened, then the program name is used for authorization.

CLASS

Specifies the transaction class, which is an attribute used to select a transaction for scheduling. A transaction can be scheduled if there is a message processing region available for that class. The value can be a number from 1 to 999. This value must not exceed the value given (by specification or default) on the MAXCLAS= keyword of the IMSCTRL macro.

Define CPI-C transactions with a different message class from that used for non-CPI-C transactions. IMS handles all CPI-C transactions as priority zero within the transaction class.

CMTMODE

Specifies when database updates and non-express output messages are committed. This operand affects emergency restart.

MULT

Database updates and non-express output messages are committed only when the application program terminates normally, when the processing limit count has been reached, or, in the case of a pseudo-WFI dependent region, when there are no more messages on the queue. For example, if five transactions are processed during a single schedule of a program, all five are committed only when the fifth one is completed and the program terminates. Until a transaction has been committed, locks for updated database records are not released and non-express output messages are not queued for output. If an application ends abnormally before committing its messages, emergency restart requeues all the messages that were processed within the commit scope and makes them available for reprocessing.

If the transaction results in the application calling an external subsystem, such as DB2, the Commit Verify exit provided by the external subsystem can determine whether CMTMODE(MULT) is supported. See documentation under the Commit Verify exit routine in IMS Version 13 Exit Routines.

SNGL

Database updates and non-express output messages are committed when the application program completes processing each transaction. IMS invokes commit processing either when the application program
requests the next message (issues a GU to the IO-PCB), or when the application program terminates. If an application ends abnormally before committing its messages, emergency restart requeues all the messages that were processed within the commit scope and makes them available for reprocessing. If an application ends abnormally before committing its message, emergency restart requeues the message that was in process before the abend and makes it available for reprocessing.

Keyword combination rules include the following:

- CONV(Y) and CMTMODE(MULT) are mutually exclusive.
- WFI(Y) and CMTMODE(MULT) are mutually exclusive.

CONV

Specifies the conversation option.

- **N** The transaction is not conversational.
- **Y** The transaction is conversational. The transaction message is destined for a conversational program. A conversational program processes transactions made up of several steps. A conversational program receives a message from a terminal, replies to the terminal, but saves the data from the transaction in a scratchpad area (SPA). When the person at the terminal enters more data, the program has the data it saved from the last message in the SPA, so it can continue processing the request without the person at the terminal having to enter the data again.

Keyword combination rules include the following:

- CONV(Y) requires SPASZ and SPATRUNC.
- CMTMODE(MULT) and CONV(Y) are mutually exclusive.
- INQ(Y) and CONV(Y) are mutually exclusive.
- RECOVER(N) and CONV(Y) are mutually exclusive.
- SPASZ and CONV(N) are mutually exclusive.
- SPATRUNC and CONV(N) are mutually exclusive.

DCLWA

Specifies the log write-ahead option.

- **N** If N is specified, IMS does not perform log write-ahead. Specify N if input message integrity and the consistency of output messages with associated database updates is not required. DCLWA does not apply to response mode or Fast Path input processing, and is ignored during IMS execution.

- **Y** If Y is specified, IMS performs log write-ahead for recoverable, nonresponse input messages and transaction output messages. This ensures the following:
 - A nonresponse input transaction is made recoverable across IMS failures, before IMS acknowledges receipt of the input.
 - Database changes are made recoverable before IMS sends associated output reply messages.
 - Information in the log buffers is written to the IMS log, before the associated input acknowledgment or output reply is sent to the terminal.

Define DCLWA(Y) for all VTAM terminal types.
DEFAULT(Y)
Specifies this descriptor as the default, which resets the existing default descriptor to DEFAULT(N). When a descriptor is created without the LIKE keyword, any attribute not specified on the CREATE command takes the value defined in the default descriptor. Only one descriptor can be defined as the default for a resource type. IMS defines transaction descriptor called DFSDEST1, where all attributes are defined with the default value. Defining a user-defined descriptor to be the default overrides the current default descriptor. Since only one transaction descriptor can be the default at one time, only one transaction descriptor name can be specified with DEFAULT(Y).

DIRROUTE
Specifies the MSC directed routing option.

N The application program processing a transaction is not informed of the system which originated the transaction. The name of the originating LTERM is placed in the I/O PCB.

Y The application program processing a transaction is informed of the system which originated the transaction, if MSC directed routing is used in a multiple IMS system configuration. An MSNAME corresponding to a logical path back to the originating system is placed in the I/O PCB.

EDITRTN
Specifies the 1- to 8-character name of your transaction input edit routine that edits messages before the program receives the message. This name must be alphanumeric (A through Z, 0 through 9, #, $, and @). It must begin with an alphabetic character (A through Z, #, $, @). It cannot include a blank, comma, period, hyphen, or equal. It cannot include wildcard characters * or %.

The specified edit routine can either be an edit routine defined during the system definition process with the EDIT= parameter on the TRANSACT macro or it can be a new routine. If the routine is a new routine, the routine must reside in one of the RESLIB concatenated data sets. A maximum of 255 input edit routines are supported.

If the edit routine specified on the command is new to IMS, IMS attempts to load the routine from RESLIB. If the load fails, the command is rejected. If the edit routine specified is already defined to IMS, a decision is made whether to load a new copy of the routine or to use the existing copy. If the routine was generated into the system, but there are no transactions referencing the routine, IMS first attempts to load a new copy of the module from RESLIB. If the load is successful, the dynamic copy of the edit routine is used. The generated copy cannot be used again unless IMS is cold started. If the load of the dynamic routine fails, the generated copy is used. If the edit routine was generated into the system and other transactions reference it, the generated copy of the module is used.

EDITRTN is used for a Fast Path potential transaction when the transaction is routed to IMS.

For input from LU 6.2 devices, the user edit exit routine DFSLUEE0 is called instead of the transaction input edit routine specified in EDITRTN.

FP(E) and EDITRTN are mutually exclusive.
A zero value can be specified for the EDITRTN() parm (EDITRTN(0)) to remove an edit routine name from a transaction definition.

EDITUC

Specifies the edit to uppercase option.

- **N** The input data is not translated to uppercase. It can consist of uppercase and lowercase characters as entered from the terminal.
- **Y** The input data is to be translated to uppercase before it is presented to the processing program. If FP(E) or FP(P), the transaction is to be translated to uppercase before being presented to the edit/routing exit routine.

Specifying EDITUC(Y) for VTAM terminals prevents the transmission of embedded device control characters.

EMHBSZ

Specifies the EMH buffer size required to run the Fast Path transaction. This overrides the EMHL execution parameter. If EMHBSZ is not specified, the EMHL execution parameter value is used. The value can be a number from 12 to 30720.

Keyword combination rules include the following:

- EMHBSZ > 0 requires Fast Path to be defined.
- FP(N) and EMHBSZ > 0 are mutually exclusive.

EXPRTIME

Specifies the elapsed time in seconds that IMS can use to cancel the input transaction. After a transaction is submitted to IMS, the transaction could be delayed for processing because of a stopped transaction or a potential system slow down. In that case, the user or client application could time out before the transaction is processed. When IMS eventually schedules and processes the transaction, the response message is no longer wanted. With the elapsed time specified for the transaction, IMS can flag the input transaction as expired so that the system does not waste CPU cycles to process the unwanted transaction.

The value can be a number, in seconds, which can range from 0 to 65535. The default is 0, which means that no expiration time is set for this transaction. The transaction expiration attribute is supported by all of the IMS TM interfaces.

Restriction: The transaction expiration checking is not performed at the GU time for Fast Path transactions, IMS conversational transactions, and program-to-program switch transactions.

FP

Specifies the Fast Path option.

- **E** The transaction is processed exclusively as Fast Path. The program must be defined as Fast Path exclusive.
- **N** The transaction is not a candidate for Fast Path processing. The program must be defined as not Fast Path. When FP(N) is specified, any attempt to use Fast Path resources or commands might yield unpredictable results.
- **P** The transaction is a potential candidate for Fast Path processing. Fast Path-potential transactions must be able to run under two applications: a Fast Path exclusive application and a non-Fast Path application. A Fast Path exclusive application should be defined to which this
transaction can be routed. Fast Path—potential transactions must be processed by a user edit/routing exit to determine whether the transaction is actually to be processed by IMS Fast Path. If it is to be processed by IMS Fast Path, the edit/routing exit routine associates the transaction with a routing code. This routing code identifies which Fast Path application program is to process the transaction.

The program defined by PGM() must not be defined as Fast Path exclusive.

In order to update a transaction from FP(E) to FP(N) or from FP(N) to FP(E) you must also update the transaction to point to a program that has the same FP() attribute. If you do not update the program attribute, the command fails because of a program conflict.

Keyword combination rules include the following:

- EDITRTN and FP(E) are mutually exclusive.
- EMHBSZ>0 and FP(N) are mutually exclusive.
- FP(E) and FP(P) require Fast Path to be defined.
- MSGTYPE(MULTSEG) and FP(E) are mutually exclusive.
- MSGTYPE(MULTSEG) and FP(P) are mutually exclusive.
- MSNAME and FP(E) are mutually exclusive.
- RECOVER(N) and FP(E) are mutually exclusive.
- RECOVER(N) and FP(P) are mutually exclusive.
- RESP(N) and FP(E) are mutually exclusive.
- RESP(N) and FP(P) are mutually exclusive.
- SIDL and FP(E) are mutually exclusive.
- SIDR and FP(E) are mutually exclusive.

INQ

Specifies the inquiry option.

N This is not an inquiry transaction.

Y This is an inquiry transaction. If INQ(Y) is specified, you can also specify whether this transaction should be recovered during an IMS emergency or normal restart using the RECOVER() parameter.

This option should be specified only for those transactions that, when entered, do not cause a change in any database. Programs are prohibited from issuing ISRT, DLET, or REPL calls to a database when scheduled to process a transaction defined as INQ(Y).

An application program cannot do an SQL INSERT, DELETE, or UPDATE when the IMS transaction is defined with INQ(Y).

Keyword combination rules include the following:

- CONV(Y) and INQ(Y) are mutually exclusive.
- RECOVER(N) and INQ(N) are mutually exclusive.

LCT

Specifies the limit count. This is the number that, when compared to the number of input transactions queued and waiting to be processed, determines whether the normal or limit priority value is assigned to this transaction. The value can be a number from 1 to 65535. The default is 65535.
The limit count value is ignored for a transaction processed by a BMP.
The limit count value is ignored in a shared queues environment.

LPRI

Specifies the limit priority. This is the scheduling priority to which this transaction is raised when the number of input transactions enqueued and waiting to be processed is equal to or greater than the limit count value. The scheduling priority is an attribute used to select a transaction for scheduling. A transaction of higher priority is scheduled before a lower priority one, if they are defined with the same class. The value can be a number from 0 through 14.

When the limit priority is used and the scheduling priority is raised to the limit priority, the priority is not reduced to the normal priority until all messages enqueued for this transaction name are processed. If you do not want the limit priority for this transaction, define equal values for the normal priority and limit priority, and a limit count of 65535.

When a transaction is processed exclusively by a batch message program (BMP), define the limit priority as 0. If the program specified by PGM() is defined with a program type of batch, the current priority is forced to be 0. However, a batch message processing region (BMP) can process transactions with current scheduling priorities other than 0.

This priority also controls the priority of messages created by this transaction and sent to a destination in a remote system. See also the discussion on MSC priorities under the NPRI definition.

The limit priority value is ignored for a transaction processed by a BMP.
The limit priority value is ignored in a shared-queues environment.

MAXRGN

Specifies the maximum region count. This limits the number of message processing program (MPP) regions that can be concurrently scheduled to process a transaction. When the number of MPP regions is not limited, one transaction might monopolize all available regions. The value can be a number from 0 to the value specified on the MAXPST= control region parameter. MAXRGN(0) means that no limit is imposed.

If you define the application program with a scheduling type of SERIAL, omit the MAXRGN keyword or define it as 0.

The following keyword combinations are mutually exclusive:
- PARLIM(65535) and MAXRGN value greater than 0
- SERIAL(Y) and MAXRGN value greater than 0

MSGTYPE

Specifies the message type (single segment or multiple segment). It specifies the time at which an incoming message is considered complete and available to be routed to an application program for subsequent processing.

If MSC-directed routing is used in a multiple IMS system configuration, IMS does not ensure that both the message and the transaction destined to process that message are either single segment or multiple segments.

MULTSEG

The incoming message can be more than one segment in length. It is
not eligible for scheduling to an application program until an end-of-message indication is received, or a complete message is created by MFS.

SNGLSEG

The incoming message is one segment in length. It becomes eligible for scheduling when the terminal operator indicates end-of-segment.

Keyword combination rules include the following:

- FP(E) and MSGTYPE(MULTSEG) are mutually exclusive.
- FP(P) and MSGTYPE(MULTSEG) are mutually exclusive.
- RESP(Y) and MSGTYPE(MULTSEG) are mutually exclusive.

MSNAME

Specifies the one- to eight-character name of the logical link path in a multiple IMS system configuration (MSC). A logical link path is a path between any two IMS systems. The IMS systems are identified by the remote system ID and the local system ID associated with the logical link path. The remote system ID identifies the system in which messages using this path are to be processed. The local system ID identifies this system.

For an UPDATE TRAN command that is changing a transaction to a remote transaction, or changing the MSC path, the new MSNAME must already be defined.

Keyword combination rules include the following:

- FP(E) and MSNAME are mutually exclusive.
- SIDL and MSNAME are mutually exclusive.
- SIDR and MSNAME are mutually exclusive.

NPRI

Specifies the normal scheduling priority. The scheduling priority is an attribute used to select a transaction for scheduling. A transaction of higher priority is scheduled before a lower priority one, if they are defined with the same class. The normal priority is assigned to the transaction as the scheduling priority when the number of input transactions enqueued and waiting to be processed is less than the limit count value. The value can be a number from 0 through 14. The default is 1.

This priority also controls the priority of messages created by this transaction and sent to a destination in a remote system.

When a transaction is processed exclusively by a batch message program (BMP), code the normal priority as 0.

When a transaction is processed exclusively by a batch message program (BMP), define the limit priority as 0. If the application program specified by PGM() is defined with a program type of batch, the current priority is forced to be 0. However, a batch message processing region (BMP) can process transactions with current scheduling priorities other than 0.

For remote transactions, the priority used to send the transaction to the processing system, which is termed the **MSC link message priority**. The three MSC link message priority groups are:

- Low
- Medium
- High
The low priority group consists of primary requests in the input terminal system. This group is assigned remote transaction priorities from 0 to 6. The medium group consists of secondary requests, responses, primary requests in an intermediate system, and primary requests in the input terminal system. This group is assigned a remote transaction priority of 7. The high group consists of primary requests in the input terminal system. Messages in this group are assigned remote transaction priorities from 8 to 14. Within each group, messages have a priority based on the current priority value of the transaction or remote transaction in the input terminal system for primary requests, and on the latest processing system for secondary requests and responses.

In an MSC configuration, the transaction priority determines the priority used to send messages inserted by this transaction across an MSC link. If the transaction inserts multiple messages to the same destination (for example, pages to a printer) and these messages must be sent in the order inserted, the normal and limit priority values should be the same. If the normal and limit priority values are not identical, messages inserted at a higher priority than previously inserted messages could arrive at their destination first. (This restriction does not apply to multiple segments of the same message.)

The normal priority value is ignored for a transaction processed by a BMP.

PARLIM

Specifies the parallel processing limit count. This is the maximum number of messages that can currently be queued, but not yet processed, by each active message region currently scheduled for this transaction. This is the threshold value to be used when the associated application is defined with a scheduling type of parallel. An additional region is scheduled whenever the current transaction enqueue count exceeds the PARLIM value multiplied by the number of regions currently scheduled for this transaction.

The value can be a number from 0 to 32767 or 65535. PARLIM(0) indicates that any input message can cause a new region to be scheduled because the scheduling condition is always met (the number of messages is greater than zero). If you specify PARLIM(0), you should specify a MAXRGN value to limit the number of regions that can be scheduled to process a particular transaction. PARLIM(65535) means that parallel processing is disabled and IMS allows the transaction to be scheduled in only one region at a time.

The value specified for PARLIM applies to message processing programs (MPPs) only; it is not supported for batch message processing programs (BMPs).

If you define the application as SERIAL or the scheduling type as SERIAL, define PARLIM(65535).

In a shared-queues environment (when the scheduling type is PARALLEL), any PARLIM value other than 65535 causes a new region to be scheduled whenever the successful consecutive GU count exceeds the PARLIM value multiplied by the number of regions currently scheduled for this transaction. For shared queues environments, the successful consecutive GU count is used instead of the queue count. New regions continue to be scheduled up to the maximum number of regions specified on MAXRGN.

Keyword combination rules include the following:
• MAXRGN>0 and PARLIM(65535) are mutually exclusive.
• SERIAL(Y) and PARLIM value 0 - 32767 are mutually exclusive.

PGM

Specifies the name of the application program associated with the transaction. The program must exist unless the transaction is defined as REMOTE(Y).

PLCT

Specifies the processing limit count. This is maximum number of messages sent to the application program by the IMS for processing without reloading the application program. The value must be a number from 0 through 65535. PLCT(0) means the maximum number of messages sent to the application is one and the application program is reloaded before receiving a subsequent message. PLCT(65535) means that no limit is to be placed upon the number of messages processed at a single program load. Values 1 through 65535 are eligible for quick reschedule processing.

The value is used to determine how many messages an application program is allowed to process in a single scheduling cycle. When the application program requests, and receives, the number of messages indicated, any subsequent requests result in one of two things.

1. IMS indicates “no more messages exist” if any of the following conditions is true
 • The region is not an MPP.
 • The currently scheduled mode is not CMTMODE(SNGL).
 • Equal or higher priority transactions are enqueued for the region.

IMS might, in fact, have other messages enqueued for the application program. It is the responsibility of the application program to terminate when it receives an indicator that no more messages are available. Termination of the application program makes the region it occupied available for rescheduling. This feature makes it possible for IMS to enable scheduling of higher priority transactions that entered the system while the previous transactions were in process. In addition, if any equal-priority transactions are enqueued, they become eligible for scheduling on a first-in, first-out (FIFO) basis.

2. The region goes through quick reschedule and returns the next message to the application of all of the following conditions are true.
 • The region is an MPP.
 • The transaction is CMTMODE(SNGL).
 • No equal or higher transactions are enqueued.
 • Messages are still enqueued for the application.

PLCTTIME

Specifies the processing limit count time. This is the amount of time (in hundredths of seconds) allowable to process a single transaction (or message). The number specifies the maximum CPU time allowed for each message to be processed in the message processing region.

Batch Message Programs (BMPs) are not affected by this setting.

The value can be a number, in hundredths of seconds, that can range from 1 to 6553500. A value of 6553500 means no time limit is placed on the application program.
If Fast Path is used this specifies, for a given transaction name, the amount of time (in hundredths of seconds) the program is allowed to process a single transaction message. The time represents real time that elapses during transaction processing (not accumulated task time). Real time is used because the input terminal is in response mode and cannot enter another transaction until the response is sent. In this case PLCT() is ignored.

The value controls application program looping. You are not required to optimize the value for program-transaction execution time. However, the time value assigned should not be less than the expected per-transaction execution time. If the scheduled application program exceeds the product of PLCTTIME() and PLCT(), the application program ends abnormally. If an IMS STIMER value of 2 is specified on the DFSMPR procedure, the region does not end abnormally until completion of the DL/I call.

The application program must not use STIMER timer services. IMS uses STIMER timer services to time the execution of transactions. If an application program issues an MVS STIMER macro, it cancels the STIMER timer services set by IMS. Use the STIMERM macro instead for application program timer requests.

RECOVER

Specifies the recovery option.

- **N** The transaction should not be recovered.
- **Y** The transaction should be recovered during an IMS emergency or normal restart.

Keyword combination rules include the following:
- CONV(Y) and RECOVER(N) are mutually exclusive.
- FP(E) and RECOVER(N) are mutually exclusive.
- FP(P) and RECOVER(N) are mutually exclusive.
- INQ(N) and RECOVER(N) are mutually exclusive.

REMOTE

Specifies the remote option.

- **N** The transaction is not remote. The transaction is local and runs on the local system.
- **Y** The transaction is remote. The transaction runs on a remote system.

REMOTE(Y) requires MSNAME or SIDR and SIDL.

RESP

Specifies the response mode option.

- **N** The transaction is not response mode. For terminals specifying or accepting a default of OPTIONS=TRANRESP, input should not stop after this transaction is entered.
- **Y** The transaction is response mode. The terminal from which the transaction is entered is held and prevents further input until a response is received. For terminals specifying or accepting a default of OPTIONS=TRANRESP, no additional messages are to be allowed after this transaction is entered until this transaction sends a response message back to the terminal. Response mode can be forced or negated
by individual terminal definition. RESP(Y) is ignored during online processing for all terminals that do not operate in response mode.

Keyword combination rules include the following:
• FP(E) and RESP(N) are mutually exclusive.
• FP(P) and RESP(N) are mutually exclusive.
• MSGTYPE(MULTISEG) and RESP(Y) are mutually exclusive.

SEGNO
Specifies the segment number. This is the maximum number of application program output segments that are allowed into the message queues per Get Unique (GU) call from the application program. The value can be a number from 0 through 65535. If SEGNO(0) is defined, the number of segments is not checked by the online system at execution time.

SEGSZ
Specifies the segment size. This is the maximum number of bytes allowed in any one output segment. The value can be a number from 0 through 65535. If SEGSZ(0) is defined, the segment size is not checked by the online system at execution time.

The maximum output message segment to an LU 6.2 device is 32767. If a transaction is expected to send output to an LU 6.2 device, the SEGSIZE parameter should be no greater than 32767. However, this is not enforced during processing of the command, because IMS cannot determine the device type for the message destination until output time.

SERIAL
Specifies the serial option.

N Messages for the transaction are not processed serially. Message processing can be processed in parallel. Messages are placed on the suspend queue after a U3303 pseudoabend. Scheduling continues until repeated failures result in the transaction being stopped with a USTOP.

Y Messages for the transaction are processed serially. U3303 pseudoabends do not cause the message to be placed on the suspend queue but rather on the front of the transaction message queue, and the transaction is stopped with a USTOP. The USTOP of the transaction is removed when the transaction or the class is started with a /START or UPD TRAN command.

Keyword combination rules include the following:
• MAXRGN>0 and SERIAL(Y) are mutually exclusive.
• PARLIM value 0 - 32767 and SERIAL(Y) are mutually exclusive.

SIDL
Specifies the system identification (SYSID) of the local system in a multiple-IMS system (MSC) configuration. The local system is the originating system to which responses are returned. The value can be a number from 1 to 2036. The local SYSID can be defined in any or all of the MSNAMEs or transactions.

The SIDL parameter is independent of the link type (CTC, MTM, TCP/IP, VTAM) specified on the TYPE= keyword of the MSPLINK macro statement.

Keyword combination rules include the following:
• FP(E) and SIDL are mutually exclusive, unless SIDL and SIDR are specified as a pair and are equal to the local system ID of this IMS.
• MSNAME and SIDL are mutually exclusive.
• SIDL value must be defined to this IMS.

SIDR

Specifies the system identification (SYSID) of the remote system in a multiple-IMS system (MSC) configuration. The remote system is the system on which the application program executes. The value can be a number from 1 to 2036. The remote SYSID specified must also be defined for an MSNAME.

The SIDR parameter is independent of the link type (CTC, MTM, TCP/IP, VTAM) specified on the TYPE= keyword of the MSPLINK macro statement.

Keyword combination rules include the following:
• FP(E) and SIDR are mutually exclusive, unless SIDL and SIDR are specified as a pair and are equal to the local system ID of this IMS.
• MSNAME and SIDR are mutually exclusive.
• SIDR value must be defined to this IMS.

SPASZ

Specifies the scratchpad area (SPA) size, in bytes, for a conversational transaction. The value can be a number from 16 and 32767.

Keyword combination rules include the following:
• CONV(N) and SPASZ are mutually exclusive.

SPATRUNC

Specifies the scratchpad area (SPA) truncation option of a conversational transaction. This defines whether the SPA data should be truncated or preserved across a program switch to a transaction that is defined with a smaller SPA.

When a conversation initially starts, and when a program is switched, the SPATRUNC option is checked and set or reset as specified. When the option is set, it remains set for the life of the conversation, or until a program switch occurs to a transaction that specifies the option is to be Reset.

When a program switch occurs, the truncated data option for the new transaction is first checked, and that specification is set for the conversation and is used for the SPA inserted into the output message. If the option is not specified for the new transaction, the option currently in effect for the conversation is used.

S IMS preserves all of the data in the SPA, even when a program switch is made to a transaction that is defined with a smaller SPA. The transaction with the smaller SPA does not see the truncated data, but when the transaction switches to a transaction with a larger SPA, the truncated data is used.

R The truncated data is not preserved.

Keyword combination rules include the following:
• CONV(N) and SPATRUNC are mutually exclusive.
TRANSTAT

Specifies whether transaction level statistics should be logged for message driven programs. If Y is specified, transaction level statistics are written to the log in a X'56FA' log record.

N Transaction level statistics should not be logged.
Y Transaction level statistics should be logged.

The TRANSTAT keyword on the UPDATE TRAN or UPDATE TRANDESC command gives the user the ability to override the system default or the current value of the TRANSTAT parameter. If the TRANSTAT keyword is omitted on the UPDATE TRAN or UPDATE TRANDESC command, the current transaction level statistics setting is unchanged.

WFI

Specifies the wait-for input option. This attribute does not apply to Fast Path transactions, which always behave as wait-for-input transactions.

N This is not a wait-for-input transaction.
Y This is a wait-for-input transaction. A message processing or batch processing application program that processes WFI transactions are scheduled and invoked normally. If the transaction to be processed is defined as WFI, the program is allowed to remain in main storage after it has processed the available input messages. The QC status code (no more messages) is returned to the program if the PROCLIM count (PLCT) is reached; a command is entered to change the status of the scheduled transaction, database, program, or class; commands relating to the databases used by the transaction are entered, or IMS is terminated with a checkpoint shutdown.

Keyword combination rules include the following:
- MODE(MULT) and WFI(Y) are mutually exclusive.

Usage notes

If all the attributes specified by the UPDATE command are already defined for the descriptor, no update is actually made, no descriptors are quiesced, no log record is created, and a completion code of zero is returned. This avoids unnecessary overhead when no action needs to be taken.

Descriptors exist for the life of the IMS unless they are deleted using a DELETE command. The descriptors are recoverable across an IMS warm start or emergency restart. Descriptors are lost if IMS is cold started, unless cold start imports definitions that were exported while IMS was up. Each descriptor is updated individually. Individual updating does not work like online change where either all descriptors are updated or no descriptors are updated.

The UPDATE TRANDESC command can be issued only through the OM API. This command applies to DB/DC and DCCTL systems. This command is not valid on the XRF alternate, RSR tracker, or FDBR region. The UPDATE TRANDESC commands are not valid if online change for MODBLKS is enabled (DFSDFxxx or DFSCGxxx defined with MODBLKS=OLC, or MODBLKS not defined). This command is recoverable. If the descriptor being updated is the IMS-defined transaction descriptor (DFSDSTR1) the only attribute that can be changed is the DEFAULT attribute.
Output fields

The following table shows the UPDATE TRANDESC output fields. The columns in the table are as follows:

Short label
Contains the short label generated in the XML output.

Keyword
Identifies keyword on the command that caused the field to be generated. N/A appears for output fields that are always returned. Error appears for output fields that are returned only in case of an error.

Meaning
Provides a brief description of the output field.

<table>
<thead>
<tr>
<th>Short label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>N/A</td>
<td>Completion code.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the non-zero completion code.</td>
</tr>
<tr>
<td>DESC</td>
<td>TRANDESC</td>
<td>Transaction descriptor name.</td>
</tr>
<tr>
<td>ERRT</td>
<td>error</td>
<td>Error text with diagnostic information. Error text can be returned for a non-zero completion code and contains information that further explains the completion code.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>Command completed successfully. The command output contains a line for each descriptor, accompanied by its completion code. If NAME(*) is specified without OPTION(ALLRSP), no output lines are returned. See the completion code table for details.</td>
</tr>
<tr>
<td>X'00000004'</td>
<td>X'00002008'</td>
<td>Invalid number of keywords. A SET keyword is required.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002100'</td>
<td>CMTMODE(MULT) mutually exclusive with WFI(Y).</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002101'</td>
<td>CONV(Y) mutually exclusive with CMTMODE(MULT).</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002102'</td>
<td>CONV(Y) mutually exclusive with INQ(Y).</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002103'</td>
<td>CONV(N) mutually exclusive with SPASZ>0 and SPATRUNC.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002104'</td>
<td>CONV(Y) mutually exclusive with RECOVER(N).</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002105'</td>
<td>CONV(Y) requires SPASZ and SPATRUNC.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002108'</td>
<td>Invalid EDITRTN name.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000210C'</td>
<td>FP(E) mutually exclusive with EDITRTN.</td>
</tr>
</tbody>
</table>
Table 542. Return and reason codes for the UPDATE TRANDESC command (continued)

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000008'</td>
<td>X'0000210E'</td>
<td>FP(E) or FP(P) mutually exclusive with MSC keyword MSNAME or SIDR and SIDL.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000210F'</td>
<td>FP(E) or FP(P) mutually exclusive with MSGTYPE(MULTSEG).</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002110'</td>
<td>FP(N) mutually exclusive with EMHBSZ > 0.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002111'</td>
<td>FP(E) or FP(P) mutually exclusive with RECOVER(N).</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002112'</td>
<td>FP(E) or FP(P) mutually exclusive with RESP(N).</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002116'</td>
<td>INQ(N) mutually exclusive with RECOVER(N).</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002117'</td>
<td>MSC keyword MSNAME or SIDL/SIDR mutually exclusive with application program defined as Fast Path exclusive (FP(E)) associated with this transaction.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000211A'</td>
<td>Invalid MSNAME name.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000211B'</td>
<td>MSNAME mutually exclusive with SIDL and SIDL.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000211D'</td>
<td>MAXRGN>0 mutually exclusive with PARLIM(65535).</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000211E'</td>
<td>MAXRGN>0 mutually exclusive with SERIAL(Y).</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002121'</td>
<td>PARLIM value mutually exclusive with SERIAL(Y).</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002125'</td>
<td>REMOTE(Y) requires MSC keyword MSNAME or SIDL and SIDL.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002126'</td>
<td>Invalid SIDL value.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002127'</td>
<td>SIDL/SIDR must be specified as a pair. Either SIDL was specified alone or SIDR was specified alone.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002128'</td>
<td>Invalid SIDL value.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002133'</td>
<td>Multiple name parameters were specified with DEFAULT(Y). Only one descriptor can be the default at one time.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003000'</td>
<td>Command was successful for some of the descriptors. The command output contains a line for each descriptor, accompanied by its completion code. If NAME(*) is specified without OPTION(ALLRSP), output lines are only returned for descriptors with non-zero completion codes. See the completion code table for details.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>Command was not successful for any of the descriptors. The command output contains a line for each descriptor, accompanied by its completion code. See the completion code table for details.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000400C'</td>
<td>Command is not valid on the XRF alternate.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>Command is not valid on the RSR tracker.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004024'</td>
<td>No Fast Path defined, FP(E), FP(P), or EMHBSZ > 0 invalid.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004120'</td>
<td>Online change phase is in progress.</td>
</tr>
</tbody>
</table>
Table 542. Return and reason codes for the UPDATE TRANDESC command (continued)

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000010'</td>
<td>X'00004300'</td>
<td>Command is not allowed because online change for MODBLKS is enabled (DFSDFxxx or DFSCGxxx defined with MODBLKS=OLC, or MODBLKS not defined).</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004310'</td>
<td>Storage could not be obtained for the Transaction Input edit routine table. A cold start is required to fix this error.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004314'</td>
<td>The Transaction Input edit routine could not be loaded.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005004'</td>
<td>DFSOCMD response buffer could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005008'</td>
<td>DFSPOOL storage could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'0000500C'</td>
<td>AWE could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005010'</td>
<td>Latch could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'000050FF'</td>
<td>The UPDATE TRANDESC command processing terminated because of an internal error.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. The following table includes an explanation of the completion codes.

Table 543. Completion codes for the UPDATE TRANDESC command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>Command completed successfully for transaction descriptor.</td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>Transaction descriptor name is invalid, or the wildcard parameter specified does not match any descriptor names.</td>
</tr>
<tr>
<td>17</td>
<td>ANOTHER CMD IN PROGRESS</td>
<td>Another command (such as DELETE or UPDATE) is in progress for this transaction descriptor. This could also mean this command, if the descriptor is specified by more than one specific or wildcard parameter.</td>
</tr>
<tr>
<td>19</td>
<td>CMTMODE=MULT/WFI=Y CONFLICT</td>
<td>Transaction descriptor update failed because commit mode multiple CMTMODE(MULT) option conflicts with the wait-for-input WFI(Y) option.</td>
</tr>
<tr>
<td>1B</td>
<td>CONV=Y/ CMTMODE=MULT CONFLICT</td>
<td>Transaction descriptor update failed because the conversation CONV(Y) option conflicts with the commit mode multiple CMTMODE(MULT) option.</td>
</tr>
<tr>
<td>1E</td>
<td>CONV=N/SPAZ/SPATRUNC CONFLICT</td>
<td>Transaction descriptor update failed because the CONV(N) option conflicts with the SPA size or SPA truncation option.</td>
</tr>
<tr>
<td>1F</td>
<td>CONV=Y/RECOVER=N CONFLICT</td>
<td>Transaction descriptor update failed because the conversation CONV(Y) option conflicts with the nonrecoverable RECOVER(N) option.</td>
</tr>
</tbody>
</table>
Table 543. Completion codes for the UPDATE TRANDESC command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>NOT ALLOWED FOR DEFAULT DESCRIPTOR</td>
<td>Transaction descriptor update failed because the default descriptor cannot update any runtime resource definition attribute.</td>
</tr>
<tr>
<td>2F</td>
<td>FP=E/BMPTYPE=Y CONFLICT</td>
<td>Transaction descriptor update failed, because Fast Path exclusive FP(E) option conflicts with program defined as batch BMPTYPE(Y).</td>
</tr>
<tr>
<td>35</td>
<td>FP=E/EDITRTN CONFLICT</td>
<td>Transaction descriptor update failed because Fast Path exclusive FP(E) option conflicts with the edit routine EDITRTN.</td>
</tr>
<tr>
<td>36</td>
<td>FP=E/FP=N PGM CONFLICT</td>
<td>Transaction descriptor update failed because Fast Path exclusive FP(E) option conflicts with program defined as non-Fast Path FP(N).</td>
</tr>
<tr>
<td>38</td>
<td>NOT ALLOWED FOR A BMP</td>
<td>The UPDATE TRAN command is invalid for the resource because the PSB associated with the transaction descriptor is a BMP.</td>
</tr>
<tr>
<td>3A</td>
<td>FP=E OR P/MSC KEYWORD CONFLICT</td>
<td>Transaction descriptor update failed because Fast Path exclusive FP(E) or Fast Path potential FP(P) option conflicts with the MSC MSNAME, SIDR/SIDL option.</td>
</tr>
<tr>
<td>3B</td>
<td>FP/ MSGTYPE=MULTSEG CONFLICT</td>
<td>Transaction descriptor update failed because Fast Path exclusive FP(E) or Fast Path potential FP(P) option conflicts with message type multiple segment MSGTYPE(MULTSEG) option.</td>
</tr>
<tr>
<td>3C</td>
<td>MAXRGN / PARLIM=65535 CONFLICT</td>
<td>Transaction descriptor update failed because maximum region count MAXRGN value conflicts with the parallel limit count PARLIM value 65535, which means parallel scheduling is disabled. MAXRGN > 0 is not allowed with PARLIM(65535).</td>
</tr>
<tr>
<td>3E</td>
<td>FP=N/FP=E PGM CONFLICT</td>
<td>Transaction descriptor update failed because non-Fast Path FP(N) option conflicts with program defined as Fast Path exclusive FP(E).</td>
</tr>
<tr>
<td>3F</td>
<td>FP=P/BMPTYPE=Y CONFLICT</td>
<td>Transaction descriptor update failed because Fast Path potential program FP(P) conflicts with the program defined as batch BMPTYPE(Y).</td>
</tr>
<tr>
<td>40</td>
<td>PARLIM / SCHDTYPE=SERIAL CONFLICT</td>
<td>The PARLIM cannot be changed for the resource because the PSB associated with the transaction is defined as does not have parallel scheduling.</td>
</tr>
<tr>
<td>41</td>
<td>FP=E OR P/RECOVER=N CONFLICT</td>
<td>Transaction descriptor update failed because Fast Path exclusive FP(E) or Fast Path potential FP(P) option conflicts with nonrecoverable RECOVER(N) option.</td>
</tr>
<tr>
<td>42</td>
<td>FP=E OR P/RESP=N CONFLICT</td>
<td>Transaction descriptor update failed because Fast Path exclusive FP(E) or Fast Path potential FP(P) option conflicts with response mode RESP(N) option.</td>
</tr>
</tbody>
</table>
Table 543. Completion codes for the UPDATE TRANDESC command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>NOT ALLOWED FOR IMS RESOURCE</td>
<td>The specified UPDATE command is not allowed for the IMS descriptor or resource. DFSDSTR1 is an example of an IMS descriptor. The only IMS descriptor attribute you can update is DEFAULT(Y).</td>
</tr>
<tr>
<td>49</td>
<td>INQ=N/RECOVER=N</td>
<td>Transaction descriptor update failed because non-inquiry INQ(N) option conflicts with nonrecoverable RECOVER(N) option.</td>
</tr>
<tr>
<td>4F</td>
<td>INVALID MAXRGN VALUE</td>
<td>Maximum region MAXRGN value is invalid.</td>
</tr>
<tr>
<td>5E</td>
<td>MAXRGN GT 0/SERIAL=Y</td>
<td>Transaction descriptor update failed because non-zero maximum region value conflicts with serial SERIAL(Y) option.</td>
</tr>
<tr>
<td>61</td>
<td>DFSBCB STORAGE ERROR.</td>
<td>DFSBCB storage could not be obtained.</td>
</tr>
<tr>
<td>6B</td>
<td>PARLIM/ SERIAL=Y</td>
<td>Transaction descriptor update failed because the parallel limit PARLIM value conflicts with the serial SERIAL(Y) option.</td>
</tr>
<tr>
<td>6D</td>
<td>INVALID PROGRAM NAME</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>REMOTE/SIDR/SIDL/MSNAME</td>
<td>Transaction descriptor update failed because remote REMOTE(Y) option requires MSC keyword such as MSNAME or SIDR/SIDL.</td>
</tr>
<tr>
<td>8A</td>
<td>WILDCARD PARAMETER NOT SUPPORTED</td>
<td>A wildcard parameter was specified with DEFAULT(Y). Only one descriptor can be the default at one time.</td>
</tr>
<tr>
<td>1D7</td>
<td>IMPORT CHANGE LIST ERROR</td>
<td>The descriptor is in the process of being imported from the change list in the IMSRSC repository or was not successfully imported from the change list. The descriptor cannot be updated until it is successfully imported from the repository.</td>
</tr>
</tbody>
</table>

Examples

The following are examples of the UPDATE TRANDESC command:

Example 1 for UPDATE TRANDESC command

TSO SPOC input:

UPD TRANDESC NAME(*) SET(FP(E)) OPTION(ALLRSP)

TSO SPOC output:

Response for: UPD TRANDESC NAME(*) SET(FP(E)) OPTION(ALLRSP)

<table>
<thead>
<tr>
<th>DescName</th>
<th>MbrName</th>
<th>CC</th>
<th>CCText</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONVDESC</td>
<td>IMS1</td>
<td>3B</td>
<td>FP/MSGTYPE=MULTSEG CONFLICT</td>
</tr>
<tr>
<td>DESC001</td>
<td>IMS1</td>
<td>3B</td>
<td>FP/MSGTYPE=MULTSEG CONFLICT</td>
</tr>
<tr>
<td>DESC002</td>
<td>IMS1</td>
<td>3B</td>
<td>FP/MSGTYPE=MULTSEG CONFLICT</td>
</tr>
<tr>
<td>DESC003</td>
<td>IMS1</td>
<td>3B</td>
<td>FP/MSGTYPE=MULTSEG CONFLICT</td>
</tr>
<tr>
<td>DESC004</td>
<td>IMS1</td>
<td>3B</td>
<td>FP/MSGTYPE=MULTSEG CONFLICT</td>
</tr>
<tr>
<td>DESC005</td>
<td>IMS1</td>
<td>3B</td>
<td>FP/MSGTYPE=MULTSEG CONFLICT</td>
</tr>
<tr>
<td>DESC101</td>
<td>IMS1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 30. UPDATE commands

OM API input:
COMMAND(UPDATE TRANDESC NAME(*) SET(OPTION(ALLRSP)))

OM API output:
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.3.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2006.312 22:26:57.314733</statime>
<stotime>2006.312 22:26:57.315449</stotime>
<staseq>BFAD4196D7ADB8C</staseq>
<stosseq>BFAD4196D79DB3C</stosseq>
<rqsttkn1>USRT011 10145267</rqsttkn1>
<rc>0200000C</rc>
<rsn>00003008</rsn>
<rsntxt>None of the clients were successful.</rsntxt>
</ctl>
</cmderr>
<cmd>
<mbr name="IMS1">
<typ>IMS</typ>
<styp>DBDC</styp>
<rc>0000000C</rc>
<rsn>00003000</rsn>
<rntxt>At least one request successful</rntxt>
</mbr>
</cmderr>
<cmd>
<mast>IMS1</mast>
<userid>USRT011</userid>
<verb>UPD</verb>
<input>UPD TRANDESC NAME(*) SET(FP(E)) OPTION(ALLRSP) </input>
</cmd>
<cmdrsphdr>
<hdr slbl="DESC" llbl="DescName" scope="LCL" sort="a" key="1"
scroll="no" len="8" dtype="CHAR" align="left"/>
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" key="2"
scroll="no" len="8" dtype="CHAR" align="left"/>
<hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0"
scroll="4" dtype="INT" align="right" skipb="no"/>
<hdr slbl="CCTXT" llbl="CCText" scope="LCL" sort="n" key="0"
scroll="yes" len="*" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="GBL" llbl="Global" scope="LCL" sort="d" key="2"
scroll="yes" len="1" dtype="CHAR" align="left" skipb="y"/>
<hdr slbl="ERRT" llbl="ErrorText" scope="LCL" sort="n" key="0"
scroll="yes" len="*" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="CONVID" llbl="ConvID" scope="LCL" sort="n" key="0"
scroll="yes" len="8" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="NODE" llbl="nodeName" scope="LCL" sort="n" key="0"
scroll="yes" len="8” dtype="CHAR” align="left” skipb="yes””/>
Explanation: The UPDATE TRANDESC command is issued to update all transaction descriptors to be Fast Path exclusive. The update succeeded for some transaction descriptors and failed for others. The update succeeded for some transaction descriptors as shown by the completion code 0. The update failed for transaction descriptor FPPDESC with completion code 36, which indicates that the FP(E) attribute conflicts with the FP(N) attribute defined for the program referenced by FPPDESC. The update failed for transaction descriptor MSCDESC with completion code 3A, which indicates that the FP(E) attribute conflicts with the MSC settings already defined for descriptor MSCDESC. The update failed for some transaction descriptors with completion code 3B, which indicates that the FP(E) attribute conflicts with the MSGTYPE(MULTSEG) already defined for the transaction.

Related concepts:

How to interpret CSL request return and reason codes (System Programming APIs)

Related reference:

Command keywords and their synonyms (Commands)

Commit Verify exit routine (Exit Routines)
Chapter 31. /VUNLOAD command

The /VUNLOAD AREA command removes the specified areas from the z/OS data space or coupling facility.

All of the updated CIs for the area are written to DASD. All subsequent I/O for the area is from DASD. /VUNLOAD processing occurs concurrently with application processing.

Subsections:
- "Environment"
- "Syntax"
- "Usage notes"
- "Example" on page 1242

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keyword can be issued.

<table>
<thead>
<tr>
<th>Command / Keyword</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/VUNLOAD</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>AREA</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Syntax

Usage notes

In a data-sharing environment, in order to maintain data integrity, IMS requests IRLM to lock the first control interval (CI) in exclusive mode before IMS unloads the area from the coupling facility. This lock causes those IMS subsystems sharing the area to complete any synchronization point processing. When all sharing subsystems are no longer using the area, IMS requests IRLM to release the CI locks and IMS unloads the area. All subsequent I/O for the area is from DASD.

The /VUNLOAD command does not change any of the VSO options set in the RECON data set. Therefore, at the next IMS restart or /START AREA command, the VSO options again take effect. Any changes to VSO definitions must be made through DBRC commands. For Shared VSO areas however, the /VUNLOAD command is persistent across IMS restarts and can be reset only by a /START AREA command. This is true for shared VSO areas for consistency across all sharing partners. This prevents one system from accessing data from DASD while others are accessing from the coupling facility.
For multiple VSO DEDB areas that share a single coupling facility structure, when the /VUNLOAD AREA command is issued, one of the following actions may occur:

- If there is only one area in the structure (either a single-area structure or a multi-area structure with one area), the area is taken out of VSO and the structure is deleted. The IMS issuing the /VUNLOAD AREA command notifies the other IMS systems sharing the area to disconnect from the structure.
- If there are multiple areas in the structure, when one area is taken out of VSO, the area is disassociated and its CIs are deleted in the structure. The IMS issuing the /VUNLOAD AREA notifies the other IMS systems sharing the area to either disassociate or disconnect from the structure depending on if the IMS is still sharing or not sharing other areas in the structure.

The /VUNLOAD command is not valid for an RSR tracking subsystem.

This command can be issued to an IMSplex using the Batch SPOC utility.

Example

Entry ET:

/VUNLOAD

Response ET:

<table>
<thead>
<tr>
<th>Code</th>
<th>Message</th>
<th>Time</th>
<th>Area</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC0000000</td>
<td>Reply to 14;/VUNLOAD</td>
<td>09:58:03.52</td>
<td>DD01AR0</td>
<td>R 14;/VUNLOAD DD01AR0</td>
</tr>
<tr>
<td>NR8400000</td>
<td>MSG 03070 09:58:03.52 01 DD01AR0</td>
<td>00000099</td>
<td>IE600I</td>
<td>REPLY TO 14 IS;/VUNLOAD DD01AR0</td>
</tr>
<tr>
<td>N 8400000</td>
<td>MSG 03070 09:58:03.53 Job00116 00000090</td>
<td>DF05081</td>
<td>09:58:03 VUNLOAD COMMAND IN PROGRESS SYS3</td>
<td></td>
</tr>
<tr>
<td>W 8400000</td>
<td>MSG 03070 09:58:03.53 Job00116 00000090</td>
<td>DFS996I</td>
<td>09:58:03 IMS READY SYS3</td>
<td></td>
</tr>
<tr>
<td>N 8400000</td>
<td>MSG 03070 09:58:04.42 Job00116 00000090</td>
<td>DFS0488I</td>
<td>VUNLOAD COMMAND COMPLETED. AREA= DD01AR0 RC= 0 SYS3</td>
<td></td>
</tr>
</tbody>
</table>

DISCONNECT FROM STR: DD01AR0STR1 SUCCESSFUL SYS3

N 8400000 | MSG 03070 09:58:04.42 Job00116 00000090 | DFS0488I | VUNLOAD COMMAND COMPLETED. AREA= DD01AR0 RC= 0 SYS3
Notices

This information was developed for products and services offered in the US. This material might be available from IBM in other languages. However, you may be required to own a copy of the product or product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to actual people or business enterprises is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be liable for any damages arising out of your use of the sample programs.

© (your company name) (year).
Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Terms and conditions for product documentation

Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the IBM website.

Personal use

You may reproduce these publications for your personal, noncommercial use provided that all proprietary notices are preserved. You may not distribute, display or make derivative work of these publications, or any portion thereof, without the express consent of IBM.

Commercial use

You may reproduce, distribute and display these publications solely within your enterprise provided that all proprietary notices are preserved. You may not make derivative works of these publications, or reproduce, distribute or display these publications or any portion thereof outside your enterprise, without the express consent of IBM.
Rights

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either express or implied, to the publications or any information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement

IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies or other technologies to collect product usage information, to help improve the end user experience, to tailor interactions with the end user or for other purposes. In many cases no personally identifiable information is collected by the Software Offerings. Some of our Software Offerings can help enable you to collect personally identifiable information. If this Software Offering uses cookies to collect personally identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect personally identifiable information from end users via cookies and other technologies, you should seek your own legal advice about any laws applicable to such data collection, including any requirements for notice and consent.

This bibliography lists all of the publications in the IMS Version 13 library, supplemental publications, publication collections, and accessibility titles cited in the IMS Version 13 library.

<table>
<thead>
<tr>
<th>Title</th>
<th>Acronym</th>
<th>Order number</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMS Version 13 Application Programming</td>
<td>APG</td>
<td>SC19-3646</td>
</tr>
<tr>
<td>IMS Version 13 Application Programming APIs</td>
<td>APR</td>
<td>SC19-3647</td>
</tr>
<tr>
<td>IMS Version 13 Commands, Volume 1: IMS Commands A-M</td>
<td>CR1</td>
<td>SC19-3648</td>
</tr>
<tr>
<td>IMS Version 13 Commands, Volume 3: IMS Component and z/OS Commands</td>
<td>CR3</td>
<td>SC19-3650</td>
</tr>
<tr>
<td>IMS Version 13 Communications and Connections</td>
<td>CCG</td>
<td>SC19-3651</td>
</tr>
<tr>
<td>IMS Version 13 Database Administration</td>
<td>DAG</td>
<td>SC19-3652</td>
</tr>
<tr>
<td>IMS Version 13 Database Utilities</td>
<td>DUR</td>
<td>SC19-3653</td>
</tr>
<tr>
<td>IMS Version 13 Diagnosis</td>
<td>DGR</td>
<td>GC19-3654</td>
</tr>
<tr>
<td>IMS Version 13 Exit Routines</td>
<td>ERR</td>
<td>SC19-3655</td>
</tr>
<tr>
<td>IMS Version 13 Installation</td>
<td>INS</td>
<td>GC19-3656</td>
</tr>
<tr>
<td>IMS Version 13 Licensed Program Specifications</td>
<td>LPS</td>
<td>GC19-3663</td>
</tr>
<tr>
<td>IMS Version 13 Messages and Codes, Volume 1: DFS Messages</td>
<td>MC1</td>
<td>GC19-4240</td>
</tr>
<tr>
<td>IMS Version 13 Messages and Codes, Volume 2: Non-DFS Messages</td>
<td>MC2</td>
<td>GC19-4241</td>
</tr>
<tr>
<td>IMS Version 13 Messages and Codes, Volume 3: IMS Abend Codes</td>
<td>MC3</td>
<td>GC19-4242</td>
</tr>
<tr>
<td>IMS Version 13 Messages and Codes, Volume 4: IMS Component Codes</td>
<td>MC4</td>
<td>GC19-4243</td>
</tr>
<tr>
<td>IMS Version 13 Operations and Automation</td>
<td>OAG</td>
<td>SC19-3657</td>
</tr>
<tr>
<td>IMS Version 13 Release Planning</td>
<td>RPG</td>
<td>GC19-3658</td>
</tr>
<tr>
<td>IMS Version 13 System Administration</td>
<td>SAG</td>
<td>SC19-3659</td>
</tr>
<tr>
<td>IMS Version 13 System Definition</td>
<td>SDG</td>
<td>GC19-3660</td>
</tr>
<tr>
<td>IMS Version 13 System Programming APIs</td>
<td>SPR</td>
<td>SC19-3661</td>
</tr>
<tr>
<td>IMS Version 13 System Utilities</td>
<td>SUR</td>
<td>SC19-3662</td>
</tr>
</tbody>
</table>

Supplementary publications

<table>
<thead>
<tr>
<th>Title</th>
<th>Order number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program Directory for Information Management System Transaction and Database Servers V13.0</td>
<td>GI10-8914</td>
</tr>
<tr>
<td>Program Directory for Information Management System Transaction and Database Servers V13.0 Database Value Unit Edition V13R1</td>
<td>GI10-8966</td>
</tr>
<tr>
<td>Program Directory for Information Management System Transaction and Database Servers V13.0 Transaction Manager Value Unit Edition V13R1</td>
<td>GI10-9001</td>
</tr>
<tr>
<td>IRLM Messages and Codes</td>
<td>GC19-2666</td>
</tr>
</tbody>
</table>
Publication collections

<table>
<thead>
<tr>
<th>Title</th>
<th>Format</th>
<th>Order number</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMS Version 13 Product Kit</td>
<td>CD</td>
<td>SK5T-8864</td>
</tr>
</tbody>
</table>

Accessibility titles cited in the IMS Version 13 library

<table>
<thead>
<tr>
<th>Title</th>
<th>Order number</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS TSO/E Primer</td>
<td>SA22-7787</td>
</tr>
<tr>
<td>z/OS TSO/E User’s Guide</td>
<td>SA22-7794</td>
</tr>
<tr>
<td>z/OS ISPF User’s Guide Volume 1</td>
<td>SC34-4822</td>
</tr>
</tbody>
</table>
Index

Special characters
/NRESTART command 1
 description 1
 environment 1
 examples 8
 keywords 3
 syntax 1
 usage notes 6
/OPNDST command 11
 description 11
 environment 11
 examples 16
 keywords 12
 syntax 11
 usage notes 15
/PSTOP command 19
 description 19
 environment 19
 examples 24
 keywords 20
 syntax 19
 usage notes 23
/PURGE command 31
 description 31
 environment 31
 examples 34
 keywords 32
 syntax 31
 usage notes 33
/QUIESCE command 645, 646
 description 645
 environment 645
 example 646
 keywords 645
 syntax 645
/RCLSDST command 647
 description 647
 environment 647
 example 648
 syntax 647
/RCOMPT command 649
 description 649
 environment 649
 example 650
 syntax 649
 usage notes 650
/RDISPLAY command 651
 description 651
 environment 651
 examples 652
 keywords 651
 syntax 651
 usage notes 651
/RECOVER command 653
 ADD keyword
 RCVTOKEN 655
 USEAREA 655
 START
 ERRORABORT keyword 664
 RELEASE command (continued)
 example 682
 keywords 681
 syntax 681
 usage notes 681
/RESET command 683
 description 683
 environment 683
 example 683
 syntax 683
/RMCHANGE command 686
 usage notes 686
/RMDELETE command 686
 usage notes 686
/RMGENJCL command 686
 usage notes 686
/RMINIT command 688
 usage notes 688
/RMLIST command 688
 usage notes 688
/RMNOTIFY command 688
 usage notes 688
/RMxxxxxx command 688
 DBRC modifiers 688
 description 685
 environment 685
 examples 688
 keywords 686
 LTERM keyword 686
 parameters passed to DBRC 686
 syntax 686
 usage notes 688
/RSTART command 697
 description 697
 environment 697
 examples 700
 keywords 698
 syntax 697
/RTAKEOVER command 703
 description 703
 environments 703
 examples 705
 syntax 703
 usage notes 703
/SECURE command 707
 description 707
 environment 707
 examples 709
 keywords 708
 syntax 707
/SET command 711
 description 711
 environment 711
 examples 713
 keywords 711
 syntax 711
 usage notes 712
/SIGN command 715
 description 715
 environment 715
 examples 720
/SIGN command (continued)
 keywords 715
 syntax 715
 usage notes 719
/SMCOPY command 723
 description 723
 environment 723
 example 724
 keywords 723
 syntax 723
 usage notes 724
/SSR command 725
 description 725
 environment 725
 example 725
 syntax 725
 usage notes 725
/START command 728
 APPC keyword
 description 728
 environment 728
 syntax 728
 AREA keyword
 description 728
 environment 728
 examples 731
 keywords 729
 syntax 729
 usage notes 730
 AUTARCH keyword
 environment 732
 AUTOARCH keyword
 description 732
 examples 732
 syntax 732
 CLASS keyword
 description 733
 environment 733
 examples 733
 syntax 733
 DATAGRPH keyword
 description 733
 environment 734
 keywords 734
 syntax 734
 usage notes 736
 DB keyword
 description 737
 environment 737
 examples 744
 keywords 738
 syntax 737
 usage notes 741
 DC keyword
 description 745
 environment 746
 syntax 746
 DESC keyword
 description 746
 environment 746
 syntax 746

© Copyright IBM Corp. 1974, 2016
/START command (continued)

ISOLOG keyword
description 747
environment 747
syntax 747
LINE keyword
description 747
environment 748
examples 749
syntax 748
usage notes 748
LTERM keyword
description 750
environment 750
examples 750
syntax 750
usage notes 750
LUNAME keyword
description 751
environment 751
syntax 751
usage notes 751
MADSIOT keyword
description 752
environment 752
syntax 752
usage notes 752
MSNAME keyword
description 753
environment 753
examples 753
syntax 753
NODE keyword
description 754
environment 754
examples 755
usage notes 754
OLDS keyword
description 756
environment 756
examples 756
syntax 756
OTMA keyword
description 756
environment 757
examples 757
syntax 757
usage notes 757
PGM keyword
description 757
environment 758
examples 758
syntax 758
usage notes 758
REGION keyword
description 759
environment 759
examples 760
syntax 759
usage notes 759
RTC keyword
description 761
environment 761
examples 762
syntax 762
RTC command (continued)

usage notes 762
SB keyword
description 762
environment 763
examples 763
syntax 763
usage notes 764
SLDSREAD keyword
description 765
environment 765
syntax 765
SUBSYS keyword
description 765
environment 765
examples 766
keywords 766
syntax 766
usage notes 766
SURV keyword
description 767
environment 767
syntax 767
usage notes 767
THREAD keyword
description 767
environment 768
syntax 768
usage notes 768
TMEM keyword
description 768
environment 768
examples 771
keywords 769
syntax 769
TRAN keyword
description 771
environment 771
examples 773
syntax 772
usage notes 772
TRKARCH keyword
description 774
environment 774
syntax 774
TRKASRCH keyword
description 774
USER keyword
description 775
environment 775
examples 776
syntax 775
usage notes 775
VGR keyword
description 776
environment 777
keywords 777
syntax 777
WADS keyword
description 777
environment 777
syntax 778
XRCTRACK keyword
description 778
environment 778
syntax 778
/STOP command
ADS keyword
description 780
environment 780
examples 782
syntax 782
usage notes 784
AUTOARCH keyword
description 785
environment 785
examples 785
syntax 785
BACKUP keyword
description 785
environment 786
syntax 786
CLASS keyword
description 786
environment 786
examples 787
syntax 787
usage notes 786
DATAGRPI keyword
description 787
environment 787
syntax 788
usage notes 788
DB keyword
description 788
environment 788
examples 791
syntax 789
usage notes 789
DC keyword
description 792
environment 793
syntax 793
usage notes 793
DESC keyword
description 793
environment 793
syntax 794
LINE keyword
description 794
environment 794
examples 795
syntax 794
usage notes 794
/TRACE command (continued)

PSB keyword
description 879
environment 879
examples 880
keywords 880
syntax 880
usage notes 880

TABLE keyword
description 880
environment 881
examples 885
keywords 881
syntax 881
usage notes 884

TAKEOVER keyword 863, 865, 872

TCO keyword
description 886
environment 886
syntax 886

TIMEOUT keyword
description 886
environment 886
keywords 887
syntax 887
usage notes 887

T MEMBER keyword
description 888
environment 888
examples 889
keywords 888
syntax 888
usage notes 889

TP/IP keyword 888

TRAN keyword
description 889
environment 889
keywords 889
syntax 890
usage notes 890

TRAP keyword
description 891
environment 891
syntax 891

UNITYPE keyword
description 892
environment 892
keywords 892
syntax 892
usage notes 893

/UNLOCK command (continued)

DB keyword
description 895
environment 896
examples 897
syntax 896
usage notes 896

LTERM keyword
description 897
environment 897
syntax 898
usage notes 898

NODE keyword
description 898
environment 898
syntax 898

/UNLOCK command (continued)

PGM keyword
description 899
environment 899
examples 899
syntax 899

PTERM keyword
description 900
environment 900
examples 900
syntax 900

SYSTEM keyword
description 901
environment 901
examples 901
syntax 901
usage notes 901

TRAN keyword
description 903
environment 903
examples 903
syntax 903
usage notes 903

/VUNLOAD command
description 1241
environment 1241
syntax 1241
usage notes 1241

B

ABDUMP keyword
SWITCH command 832

ACCESS keyword
START command 734, 738
accessibility features ix
keyboard shortcuts ix

ACTIVE keyword
SWITCH command 832
active system
master terminal display screen 834

ALLENTIES keyword
RECOVER command
REMOVE keyword 660
STOP keyword 668
alternate system
master terminal display screen 833

AOI application programs
UNLOCK DB command 897
UNLOCK PGM command 899
UNLOCK TRAN command 903

APPC keyword
PURGE command 32
SECURE command 708

APIP keyword
SIGN command 718

AREA keyword
RECOVER command 656
REMOVE keyword 660
STOP keyword 668

BISYNC link
resetting continuous mode 20

BUILDQ keyword
NRESTART command 3

C

CAGROUP keyword
RECOVER command
ADD 656
REMOVE keyword 660
STOP keyword 668

CANCEL keyword
STOP command 781, 807

CHECK parameter
SECURE command 708, 709

CHECKPOINT keyword
NRESTART command 4

CMDAUTH keyword
NRESTART command 4

CMDAUTHET keyword
NRESTART command 4

command
NRESTART 1
OPN D ST command 11
PSTOP command 19
PURGE 31

QUIESCE command 645
RCLSDST command 647
RCOMPT command 649

RDISPLAY command 651

RECOVER 653
RELEASE command 681
RES E T command 683

RMCHANGE command 685
RMDELETE command 685
RMGENJCL command 685
RM IN T command 685
RMLIST command 685
RMNOTIFY command 685
RMxxxxxx command 685
RSTART command 697
RTAKEOVER 703

SECURE 707
SET command 711
SIGN 715
SMCOPY command 723
SSR command 725

START command 727
STOP command 779
SWITCH command 831
TEST command 855
"TRACE 859
UNLOCK command 895
UPDATE 905

VUNLOAD 1241

commands
prerequisite knowledge vii
REFRESH USEREXIT 673
control block
trace information 862, 864, 871, 892
module 862, 865, 872, 893

CONVERSATION keyword
RELEASE command 681
SET command 711
CTC (channel-to-channel) link
 RSTART command 698

D
data sharing
 NRESTART command 4
 database recovery control (DBRC) 685
 DATAGROUP keyword
 RECOVER command
 REMOVE keyword 660
 DB keyword
 RECOVER command
 ADD 656
 REMOVE keyword 660
 STOP keyword 668
 DBALLOC keyword
 START command 735, 739
 DBDS keyword
 RECOVER command
 ADD 656
 REMOVE keyword 660
 STOP keyword 669
 DBDSGRP keyword
 RECOVER command
 ADD 656
 REMOVE keyword 660
 STOP keyword 669
 DBRC (database recovery control) modifiers
 RMxxxxxx command 686
 RCHANGE command 685, 688
 RDELETE command 688
 RGENJCL command 688
 RMINIT command 688
 RMLIST command 688
 RMNOTIFY command 688
 RMxxxxxx command 685
 DFSMSRSE keyword
 /TRACE command 860
display screen
 active system 834
 alternate system 833
 EEQE (extended error queue element) 902
 I/O toleration 901
 UNLOCK SYSTEM 902
dynamic database buffer pools
 QUERY POOL command 465
 UPDATE POOL command 1147

E
EEQE (extended error queue element)
 display screen 902
 ERRORABORT keyword
 RECOVER command
 START 664
 ERRORCONT keyword
 RECOVER command
 START 664
example
 OM API
 TERMINATE OLREORG 853
examples
 /TRACE command 863
 QUERY STRUCTURE command 525
 QUERY TRAN command 560
 TERMINATE OLREORG command 853

F
Fast Path
 exclusive transactions
 PSTOP command 23
 message-driven programs
 PURGE command 32
 potential transactions
 PSTOP command 23
 region
 STOP REGION command 806
 reset terminal response mode 698
 RSTART command 698
 START command 754
 FORCE keyword
 PSTOP command 20
 SWITCH command 832
 FORMAT keyword
 NRESTART command 4
 FPPROG keyword
 PURGE command 33
 FPRGN keyword
 PURGE command 33
 FULL parameter
 SECURE command 708, 709

G
GLOBAL keyword
 START command 729, 740
 STOP command 782
GROUP keyword
 NEWPW command 718
 SIGN command 718

H
HALDB (High Availability Large Database)
 UPDATE OLREORG
 updating OLR when the ALTER option is specified 1112
HIDAM database
 starting 742
High Availability Large Database (HALDB)
 UPDATE OLREORG
 updating OLR when the ALTER option is specified 1112

I
I/O toleration
display screen 901
ID keyword
 OPNDST command 12

IMS Connect
 clients
 displaying 126
 QUERY IMSCON TYPE(CLIENT) 126
 ISC
 QUERY IMSCON command 165
 ISCUSER
 QUERY IMSCON command 175
 QUERY IMSCON command ISC 165
 ISCUSER 175
 UPDATE IMSCON TYPE(CONFIG) 991
IMS keyword 970
ISC
 QUERY IMSCON command ISCUSER 175
 ISC (Intersystem Communication)
 node
 shutdown and deallocation 646
 RCOMPT command
 valid parameters 650
 STOP NODE USER command 800

J
JOIN parameter
 SECURE parameter 709

K
keyboard shortcuts ix

L
legal notices
 notices 1243
 trademarks 1243, 1245
LEVEL keyword
 /TRACE command 862, 864, 871, 892
LINE keyword
 PSTOP command 20
 PURGE command 33
 RSTART command 698
 TEST command 856
LINK keyword
 PSTOP command 20
 RSTART command 698
LOCAL keyword
 START command 730, 735, 740
 STOP command 783
LOGOND keyword
 OPNDST command 13
LOPEN keyword
 RSTART command 698
LTERM keyword
 PSTOP command 22
 PURGE command 33
 RMxxxxxx command 686
 SET command 712
LU 6.2 device
 releasing a conversation 681
M

MASTER parameter
RDISPLAY command 651
SMCOPY command 723
master terminal
UNLOCK DB command 897
UNLOCK PGM command 899
UNLOCK TRAN command 903
MFS keyword
TEST command 855
MFTEST mode
TEST command 856
MODE keyword
OPNDST command 13
RSTART command 699
MODULE keyword
/TRACE command 862, 865, 872, 893
MONITOR keyword
/TRACE command
parameter environments table 869
MPP (message processing program)
stopping processing within a specified region 807
MRQ (Message Requerier program)
default MRQ BMP program name 877
NRESTART BUILDQ command fails 3
MSDB (main storage database)
checkpoint data set 5
NRESTART command 5
STOP DATABASE command 789
MSDBLOAD keyword
NRESTART command 5
MSNAME keyword
PURGE command 33
MSPLINK keyword
PSTOP command 22
RSTART command 699
MTM link
RSTART command 698
MULTSIGN keyword
NRESTART command 5
MVS/ESA
STOP JES2 CANCEL command 807
STOP MVS/ESA CANCEL command 807

N

NOBACKOUT keyword
START command 740
NOBUILDQ keyword
NRESTART command 3
NOCHECK keyword
RECOVER command
START 664
NOCMDAUTH keyword
NRESTART command 5
NOCMDAUTH keyword
NRESTART command 5
NODBALLOCC keyword
START command 735, 739

NODE keyword
OPNDST command 13
QUIESCE command 645
RSTART command 699
TEST command 856
NONE parameter
SECURE command 708, 709
NOPFA keyword
STOP command 783
NOTRANAUTH keyword
NRESTART command 5
Nouser keyword
NRESTART command 5
npassphr keyword
SIGN command 718, 719
NRESTART command
BUILDQ keyword 3
CHECKPOINT keyword 4
CMDAUTH keyword 4
CMDAUTH keyword 4
description 1
environment 1
examples 8
FORMAT keyword 4
dkeywords 3
MSDBLOAD keyword 5
MULTSIGN keyword 5
NOBUILDQ keyword 3
NOCMDAUTH keyword 5
NOCMDAUTH keyword 5
NOTRANAUTH keyword 5
USER keyword 5
restart
security definition 6
SNGLSIGN keyword 5
syntax 1
TRANAUTH keyword 6
usage notes 6
USER keyword 6
with data sharing 4
nuserpw keyword
SIGN command 718, 719
OPNDST command (continued)
syntax 11
UDATA keyword 14
usage notes 15
USER keyword 15
USERD keyword 15
OTMA keyword
SECURE command 709

P

parameters
system initialization, displayed 6, 727
passphr keyword
SIGN command 719
PassTicket keyword
SIGN command 719
performance
generating data with /TRACE 876
PGMDESC keyword 450
PITR keyword
RECOVER command
START 664
preset mode
RCLSDST command 647
resetting 712
SET command 712
START command 754
PROCLIB library
STOP SUBSYS command 817
PROFILE parameter
SECURE command 709
PSTOP command
description 19
environment 19
equivalent IMS type-2 commands 24
examples 24
FORCE keyword 20
keywords 20
LINE keyword 20
LINK keyword 20
LTERM keyword 22
MSPLINK keyword 22
PURGE keyword 20
REGION keyword 22
syntax 19
TRAN keyword 23
usage notes 23
PTERM keyword
TEST command 856
PURGE command
APPC keyword 32
description 31
environment 31
equivalent IMS type-2 commands 33
examples 34
FPFROG keyword 33
FPGRN keyword 33
keywords 32
LINE keyword 33
LTERM keyword 33
MSNAME keyword 33
syntax 31
TRAN keyword 33
usage notes 33
QUERY command (continued)

ODBM TYPE(CONFIG) keyword (continued)
- return codes 372
- syntax 370
- usage notes 371

ODBM TYPE(DATASTORE) keyword
- completion codes 376
- description 373
- environment 374
- example 377
- keywords 374
- output fields 375
- reason codes 376
- return codes 376
- syntax 374
- usage notes 375

ODBM TYPE(SCIMEMBER) keyword
- completion codes 379
- description 378
- environment 378
- example 380
- keywords 378
- output fields 379
- reason codes 379
- return codes 379
- syntax 378
- usage notes 379

ODBM TYPE(THREAD) keyword
- completion codes 385
- description 381
- environment 381
- example 386
- keywords 382
- output fields 384
- reason codes 385
- return codes 385
- syntax 381
- usage notes 384

ODBM TYPE(TRACE) keyword
- completion codes 390
- description 388
- environment 389
- example 391
- keywords 389
- output fields 389
- reason codes 390
- return codes 390
- syntax 389
- usage notes 389

OLC keyword
- completion codes 395
- description 391
- environment 391
- examples 396
- keywords 392
- output fields 393
- reason codes 395
- return codes 395
- syntax 391
- usage notes 392

OLREORG keyword
- completion codes 404
- description 400
- environment 400
- examples 405
- keywords 401

OLREORG keyword (continued)
- completion codes 403
- description 415
- environment 407
- examples 416
- keywords 409
- output fields 415
- reason codes 415
- return codes 415
- syntax 407
- usage notes 414

OTMA keyword
- completion codes 425
- description 420
- environment 426
- examples 426
- keywords 421
- output fields 424
- reason codes 425
- return codes 425
- syntax 420
- usage notes 423

PGM keyword
- completion codes 441
- description 427
- environment 428
- examples 443
- keywords 429
- output fields 434
- reason codes 441
- return codes 441
- syntax 428
- usage notes 433

PGMDesc keyword
- completion codes 459
- description 450
- environment 450
- examples 461
- keywords 451
- output fields 454
- reason codes 459
- return codes 459
- usage notes 454

POOL keyword
- completion codes 475
- description 465
- environment 466
- examples 476
- keywords 467
- output fields 468
- reason codes 475
- return codes 475
- syntax 466
- usage notes 468

RM keyword
- completion codes 490
- description 486
- environment 487
- examples 490
- keywords 487

RTC keyword
- completion codes 503
- description 494
- environment 494
- examples 505
- keywords 495
- output fields 499
- reason codes 503
- return codes 503
- syntax 495
- usage notes 499

RTCDesc keyword
- completion codes 516
- description 510
- environment 511
- examples 518
- keywords 511
- output fields 514
- reason codes 516
- return codes 516
- syntax 511
- usage notes 514

STRUCTURE keyword
- completion codes 523
- description 521
- environment 522
- keywords 522
- output fields 523
- reason codes 523
- return codes 523
- syntax 522
- usage notes 522

TRAN keyword
- completion codes 557
- description 526
- environment 526
- output 540
- reason codes 557
- return codes 557
- similar to other IMS commands 539
- syntax 527
- usage notes 539

TRANDesc keyword
- completion codes 592
- description 571
- environment 571
- examples 593
- keywords 573
- output fields 579
- reason codes 592
- return codes 592
- usage notes 579

USER keyword
- command comparison 605
- completion codes 611
- description 599
- environment 599
- examples 613
- keywords 600
QUERY command (continued)
USER keyword (continued)
 output fields 605
 reason codes 611
 return codes 611
 similar to IMS commands 605
 status 610
 syntax 599
 usage notes 604
USEREXIT keyword
 completion codes 620
 description 617
 environment 617
 examples 621
 keywords 617
 output fields 619
 reason codes 620
 return codes 620
 syntax 617
 usage notes 619
USERID keyword
 command comparison 626
 completion codes 628
 description 623
 environment 623
 examples 630
 keywords 624
 output fields 626
 reason codes 628
 return codes 628
 similar to IMS commands 626
 status 628
 syntax 623
 usage notes 625
QUERY DB command
 parameters 52
QUERY LE command
 keywords 274
QUERY MEMBER command
 attributes 300
 status conditions 301
QUERY OLC command
 parameters 393
QUERY OLREORG command
 parameters 401
QUERY POOL command
 dynamic database buffer pools, monitoring 465
QUERY STRUCTURE command
 examples 525
QUERY TRAN command
 examples 560
 parameters 528
QUEUE command
 LTERM keyword
 completion codes 636
 description 633, 634
 environment 633
 examples 637
 output fields 635
 reason codes 636
 syntax 633
 usage notes 635
 TRAN keyword
 completion codes 641
 description 638
QUEUE command (continued)
TRAN keyword (continued)
 environment 638
 example 643
 keywords 639
 output fields 641
 reason codes 641
 return codes 641
 syntax 639
 usage notes 640
QUIESCE command
 description 645, 646
 environment 645
 example 646
 keywords 645
 NODE keyword 645
 syntax 645
 USER keyword 645

R

RACF (Resource Access Control facility)
SIGN ON command 716
RACF= parameter
 overriding with NRESTART
 COLDSYS command 6
RCLSDST command
 description 647
 environment 647
 example 648
 syntax 647
RCOMPT command
 description 649
 environment 649
 example 650
 syntax 649
 usage notes 650
RCVTIME keyword
RECOVER command
 START 664
RCVTOKEN keyword
/RECOVER command
 ADD 655
 RECOVER command
 REMOVE keyword 659
 START 663
RDISPLAY command
 environment 651
 equivalent IMS type-2 commands 651
 example 652
 keywords 651
 MASTER parameter 651
 syntax 651
 usage notes 651
READNUM keyword
RECOVER command
 START 664
RECOVER command 653
ADD keyword
 AREA 656
 CAGROUP 656
 DB 656
 DBDS keyword 656
 DBDSGRP keyword 656
 description 653
 environment 653
RECOVER command (continued)
ADD keyword (continued)
 examples 657
 keywords 654
 OFFLINE 654
 RCVTOKEN 655
 RECOVGRP keyword 656
 STAGLOBAL keyword 655
 STALOCAL keyword 655
 syntax 654
 usage notes 657
 USEAREA 655
 USEDBDS keyword 655
REMOVE keyword
 ALLENTRIES keyword 660
 AREA keyword 660
 CAGROUP keyword 660
 DATAGROUP keyword 660
 DB keyword 660
 DBDS keyword 660
 DBDSGRP keyword 660
 description 658
 environment 658
 examples 661
 keywords 659
 RCVTOKEN keyword 659
 RECOVGRP keyword 660
 syntax 659
 usage notes 661
START keyword
 description 662
 environment 663
 ERRORABORT 664
 ERRORCONT 664
 examples 665
 keywords 663
 NOCHECK keyword 664
 OFFLINE keyword 664
 PITTER keyword 664
 RCVTIME 664
 RCVTOKEN 663
 READNUM 664
 STAGLOBAL 664
 STALOCAL 664
 syntax 663
 usage notes 665
STOP keyword
 ALLENTRIES keyword 668
 AREA keyword 668
 CAGROUP keyword 668
 DB keyword 668
 DBDS keyword 669
 DBDSGRP keyword 669
 description 667
 environment 667
 examples 669
 keywords 668
 RECOVGRP keyword 669
 SAVE keyword 668
 syntax 668
 usage notes 669
TERMINATE keyword
 description 670
 environment 670
 examples 671
 syntax 670
 usage notes 671
RECOVGRP keyword
RECOVER command
ADD keyword 656
REMOVE keyword 660
STOP keyword 669
REFRESH command
USEREXIT keyword
keywords 673
REFRESH USEREXIT command
completion codes 676
description 673
environment 673
examples 678
output fields 676
reason codes 676
return codes 676
syntax 673
usage notes 675
reg# parameter
/STOP command
REGION keyword 806
reg#-reg parameter
/STOP command
REGION keyword 806
REGION keyword
/STOP command
reg# parameter 806
reg#-reg parameter 806
PSTOP command 22
RELEASE command
CONVERSATION keyword 681
description 681
environment 681
example 682
keywords 681
LU 6.2 device 681
syntax 681
usage notes 681
RESET command
description 683
environment 683
example 683
syntax 683
RMxxxxxx command
description 685
keywords 686
syntax 686
RS parameter
NRESTART command 4
RSTART command
description 697, 700
environment 697
equivalent IMS type-2 commands 700
examples 700
keywords 698
LINE keyword 698
LINK keyword 698
LOPEN keyword 698
MODE keyword 699
MSPLINK keyword 699
NODE keyword 699
syntax 697
USER keyword 699
RTAKEOVER command
active subsystem 704
description 703
RTAKEOVER command (continued)
environments 703
examples 705
syntax 703
tracking subsystem 704
usage notes 703
SAVE keyword
RECOVER command
STOP keyword 668
SECURE command 710
APPC keyword 708
CHECK parameter 708, 709
description 707
environment 707
examples 709
FULL parameter 708, 709
JOIN parameter 709
keywords 708
NONE parameter 708, 709
OTMA keyword 709
PROFILE parameter 709
syntax 707
security
definition
at cold start 6
SET command
CONVERSATION keyword 711
description 711
environment 711
examples 713
keywords 711
LTERM keyword 712
syntax 711
TRANSACTION keyword 712
usage notes 712
SGN= parameter
overriding with NRESTART
COLD_SYS command 6
SIGN command
APPL keyword 718
description 715
environment 715
examples 720
GROUP keyword 718
keywords 715
NEWPW keyword 718
keywords 718
PASSPHR keyword 718, 719
USERPW keyword 718, 719
OFF keyword 717
ON parameter 716
PASSPHR keyword 719
PassTicket keyword 719
syntax 715
usage notes 719
USERD keyword 718
USERPW keyword 718
VERIFY keyword 719
signon
RACF 716
terminals requiring commands accepted 716
SMCOPY command
description 723
environment 723
SMCOPY command (continued)
examples 724
keywords 723
MASTER parameter 723
syntax 723
TERMINAL keyword 724
usage notes 724
SGNLKEY keyword
NRESTART command 5
SSM keyword
START command 766
SR command
description 725
environment 725
example 725
syntax 725
usage notes 725
STAGLOBAL keyword
RECOVER command
ADD keyword 655
START 664
STALOCAL keyword
RECOVER command
ADD keyword 655
START 664
START command
ACCESS keyword 734, 738
APPC keyword
description 728
environment 728
syntax 728
AREA keyword
description 728
environment 728
equivalent IMS type-2 commands 731
examples 731
keywords 729
syntax 729
usage notes 730
AUTARCH keyword
environment 732
AUTOARCH keyword
description 732
examples 732
keywords 732
syntax 732
CLASS keyword
description 733
environment 733
examples 733
syntax 733
DATABASE keyword
DBALLOC keyword 735
LOCAL keyword 735
NODBALLOC keyword 735
DATAGRPL keyword
description 733
environment 734
equivalent IMS type-2 commands 736
keywords 734
syntax 734
usage notes 736
DB keyw ____
START command (continued)

DB keyword (continued)
- environment: 737
- equivalent IMS type-2 commands: 743
- examples: 744
- keywords: 738
- NOOBALLOC keyword: 739
- syntax: 737
- usage notes: 741

DC keyword
- description: 745
- environment: 746
- syntax: 746

DESC keyword
- description: 746
- environment: 746
- syntax: 746
- description: 727

GLOBAL keyword
- 729, 740

ISOLOG keyword
- description: 747
- environment: 747
- syntax: 747

LINE keyword
- description: 747
- environment: 748
- examples: 749
- syntax: 748
- usage notes: 748

LOCAL keyword
- 730, 740

LTERM keyword
- description: 750
- environment: 750
- examples: 750
- syntax: 750
- usage notes: 750

LUNAME keyword
- description: 751
- environment: 751
- keywords: 751
- syntax: 751
- usage notes: 751

MADSIOT keyword
- description: 752
- environment: 752
- syntax: 752
- usage notes: 752

MSNAME keyword
- description: 753
- environment: 753
- examples: 753
- syntax: 753

NOBACKOUT keyword
- 740

NODE keyword
- description: 754
- environment: 754
- examples: 755
- syntax: 754
- usage notes: 754

OLDS keyword
- description: 756
- environment: 756
- examples: 756
- syntax: 756
- OTMA keyword: 756

START command (continued)

OTMA keyword (continued)
- environment: 757
- examples: 757
- syntax: 757
- usage notes: 757

PGM keyword
- description: 757
- environment: 758
- equivalent IMS type-2 commands: 758
- examples: 758
- syntax: 758
- usage notes: 758

REGION keyword
- description: 759
- environment: 759
- examples: 760
- syntax: 759
- usage notes: 759

RTC keyword
- description: 761
- environment: 761
- equivalent IMS type-2 commands: 762
- examples: 762
- syntax: 762
- usage notes: 762

SB keyword
- description: 762
- environment: 763
- examples: 763
- syntax: 763

SERVGRP keyword
- description: 763
- environment: 764
- examples: 764
- syntax: 764
- usage notes: 764

SLDSREAD keyword
- description: 765
- environment: 765
- syntax: 765

SSM keyword
- 766

SUBSYS keyword
- description: 765
- environment: 765
- examples: 766
- keywords: 766
- syntax: 766
- usage notes: 766

SURV keyword
- description: 767
- environment: 767
- syntax: 767
- usage notes: 767

THREAD keyword
- description: 767
- environment: 768
- syntax: 768
- usage notes: 768

TMEM keyword
- description: 768
- environment: 768
- examples: 771
- keywords: 769
- syntax: 769

START command (continued)

TPipe keyword
- 770

TRAN keyword
- description: 771
- environment: 771
- equivalent IMS type-2 commands: 773
- examples: 773
- syntax: 772
- usage notes: 772

TRKARCH keyword
- description: 774
- environment: 774
- syntax: 774

USER keyword
- description: 775
- environment: 775
- examples: 776
- syntax: 775
- usage notes: 775

VGR keyword
- description: 776
- environment: 777
- keywords: 777
- syntax: 777

WADS keyword
- description: 777
- environment: 778
- syntax: 778

XRCTRACK keyword
- description: 778
- environment: 778
- syntax: 778

STOP command

ADS keyword
- description: 780
- environment: 780
- syntax: 780
- usage notes: 780

APPC keyword
- description: 780
- environment: 781
- keywords: 781
- syntax: 781
- usage notes: 781

AREA keyword
- description: 781
- environment: 782
- equivalent IMS type-2 commands: 784
- examples: 784
- keywords: 782
- syntax: 782
- usage notes: 784

AUTOARCH keyword
- description: 785
- environment: 785
- examples: 785
- syntax: 785

BACKUP keyword
- description: 785
- environment: 786
- syntax: 786

CANCEL keyword
- 781, 807

CLASS keyword
- description: 786
- environment: 786
Commands, Volume 2: IMS Commands N - V

T

TAKEOVER keyword
/TRACE command 863, 865, 872
TCP/IP
clients
QUERY IMSCON
 TYPE(CLIENTS) 126
IMS Connect
QUERY IMSCON
 TYPE(CLIENTS) 126
link
RSTART command 698
TERMINAL keyword
SMCOPY command 724
TERMINATE command 837, 849
OLC keyword
 completion codes 841
description 837
environment 837
equivalent IMS type-1 commands 62
example 847
output fields 840
reason codes 841
return codes 852
usage notes 850
TERMINATE OLC command
error handling 838
output fields 840
TERMINATE OLEORG command
environments 849
equivalent IMS type-2 commands 62
examples 853
TEST command 855
description 855
environment 855
equivalent IMS type-1 commands 62
examples 857
keywords 855
LINE keyword 856
MFS keyword 855
NODE keyword 856
PTERM keyword 856
usage notes 856
USER keyword 856
TPIPE keyword
/TRACE command 888
START command 770
STOP command 822
TRACE command
description 859
DFSMSCDEO keyword 860
equivalent IMS type-2 commands 62
examples 863
EXIT keyword
description 860
environment 860
keywords 860
taxonomy 860
usage notes 860
LEVEL keyword 862, 864, 871, 892
LINE keyword
description 861
TRACE command (continued)
LINE keyword (continued)
environment 861
equivalent IMS type-2 commands 62
examples 863
keywords 862
taxonomy 861
LINK keyword
description 863
environment 863
equivalent IMS type-2 commands 62
examples 865
keywords 864
taxonomy 864
LUNAME keyword
description 866
environment 866
taxonomy 866
usage notes 866
MODULE keyword 862, 865, 872, 893
MONITOR keyword
description 867
environment 867
equivalent IMS type-2 commands 62
examples 870
keywords 868
parameter environments table 869
taxonomy 867
usage notes 869
NODE keyword
description 870
environment 870
equivalent IMS type-2 commands 62
examples 873
keywords 871
taxonomy 871
usage notes 872
OSAMGTF keyword
description 874
environment 874
taxonomy 875
PGM keyword
description 877
environment 877
equivalent IMS type-2 commands 62
examples 877
keywords 877
usage notes 877
PI keyword
description 875
environment 875
equivalent IMS type-1 commands 62
examples 877
keywords 875
usage notes 876
PSB keyword
description 879
environment 879
equivalent IMS type-2 commands 62
examples 880
keywords 880
taxonomy 880
usage notes 880
TABLE keyword
description 880
environment 881
equivalent IMS type-2 commands 62
examples 885
keywords 881
taxonomy 881
usage notes 884
TAKEOVER keyword 863, 865, 872
TRACE command (continued)
TCO keyword
description 886
environment 886
taxonomy 886
TIMEOUT keyword
description 886
environment 886
equivalent IMS type-2 commands 62
keywords 887
taxonomy 887
usage notes 887
TMEMBER keyword
description 890
environment 890
equivalent IMS type-2 commands 62
examples 891
keywords 891
taxonomy 891
usage notes 890
TRAP keyword
description 891
environment 891
taxonomy 891
UNITYPE keyword
description 892
environment 892
equivalent IMS type-2 commands 62
keywords 892
taxonomy 892
usage notes 893
trademarks 1243, 1245
TRAN keyword
PSTOP command 23
PURGE command 33
TRANAUTH keyword
NRESTART command 6
TRANDESC keyword 572
transaction authorization
 terminals requiring signon 716
TRANSACTION keyword
SET command 712
TRN= parameter
 overriding with NRESTART
COLDSYS command 6
type-1 commands
/TERMINATE OLEORG command
 response 851
equivalent IMS type-2 commands 62
examples 852
 type-1 commands
QUERY 37
QUEUE 633
TERMINATE 837
UPDATE 905

U

UDATA keyword
OPNDST command 14
UPDATE command

DB keyword
- description 895
- environment 896
- equivalent IMS type-2 commands 897
- examples 897
- syntax 896
- usage notes 896
- entered from AOI application programs 897, 899, 903
- entered from master terminal 895
- entered from system console 895

TERM keyword
- description 897
- environment 897
- syntax 898
- usage notes 898

NODE keyword
- description 898
- environment 898
- syntax 898

PGM keyword
- description 899
- environment 899
- equivalent IMS type-2 commands 899
- examples 899
- syntax 899

PTERM keyword
- description 900
- environment 900
- examples 900
- syntax 900

SYSTEM keyword
- description 901
- display screen format 902
- environment 901
- examples 901
- syntax 901
- usage notes 901

TRAN keyword
- description 903
- environment 903
- equivalent IMS type-2 commands 903
- examples 903
- syntax 903
- usage notes 903

UPDATE AREA command
- parameters 907
- similar IMS commands 911

UPDATE command 970

AREA keyword
- completion codes 912, 914
- description 905
- environment 906
- examples 916
- keywords 907
- output fields 911
- reason codes 912
- return and reason codes 912
- return codes 912
- similar IMS commands 911
- syntax 906
- usage notes 911

DATAGRP keyword
- completion codes 925
- description 919
- environment 919
- examples 933
- keywords 920
- output fields 924, 925
- reason codes 925
- return codes 925
- similar IMS commands 924
- syntax 920
- usage notes 924

DB keyword
- completion codes 949, 951
- description 936
- environment 936
- equivalent IMS commands 948
- examples 959
- keywords 938
- output fields 948
- reason codes 949
- return and reason codes 949
- return codes 949
- syntax 937
- usage notes 946

DBDESC keyword
- completion codes 966
- description 963
- environment 963
- examples 968
- keywords 964
- output fields 966
- reason codes 966
- return codes 966
- syntax 963

IM keyword
- completion codes 976
- description 969
- environment 970
- examples 978
- keywords 970
- output fields 975
- reason codes 976
- return codes 976
- usage notes 974

IMSCON TYPE(ALIAS) keyword
- completion codes 984
- description 982
- environment 982
- equivalent WTOR and z/OS commands 983
- example 985
- keywords 982
- output fields 984
- reason codes 984
- return codes 984
- syntax 982
- usage notes 983

IMSCON TYPE(CLIENT) keyword
- completion codes 988
- description 986
- environment 986
- equivalent WTOR and z/OS commands 989
- example 990
- keywords 987
- return codes 988
- reason codes 988
- syntax 986
- usage notes 987

IMSCON TYPE(CONFIG) keyword
- completion codes 995
- description 991
- environment 991
- equivalent WTOR and z/OS commands 993
- example 996
- keywords 991
- output fields 995
- reason codes 995
- return codes 995
- syntax 991
- usage notes 993

IMSCON TYPE(CONVERTER) keyword
- completion codes 1001
- description 998
- environment 999
- equivalent WTOR and z/OS commands 1000
- example 1001
- keywords 999
- output fields 1000
- reason codes 1001
- return codes 1001
- syntax 998
- usage notes 999

IMSCON TYPE(DATASTORE) keyword
- completion codes 1005
- description 1002
- environment 1003
- equivalent WTOR and z/OS commands 1004
- example 1006
- keywords 1003
- output fields 1004
- reason codes 1005
- return codes 1005
- syntax 1002
- usage notes 1003

IMSCON TYPE(IMSplex) keyword
- completion codes 1009
- description 1007
- environment 1007
- equivalent WTOR and z/OS commands 1010
- example 1010
- keywords 1007
- output fields 1009
- reason codes 1009
- return codes 1009
- syntax 1007
- usage notes 1008

IMSCON TYPE(ISC) keyword
- completion codes 1014
- description 1011
- environment 1012
UPDATE command (continued)
O DBM START(TRACE) keyword
(continued)
syntax 1097
usage notes 1097
O DBM STOP(CONNECTION) keyword
completion codes 1101
description 1099
environment 1099
example 1102
keywords 1100
output fields 1100
reason codes 1101
return codes 1101
syntax 1099
usage notes 1100
O DBM STOP(TRACE) keyword
completion codes 1104
description 1102
environment 1103
example 1105
keywords 1105
output fields 1103
reason codes 1104
return codes 1104
syntax 1103
usage notes 1103
O DBM TYPE(CONFIG) keyword
completion codes 1107
description 1105
environment 1105
example 1108
keywords 1105
output fields 1106
reason codes 1107
return codes 1107
syntax 1105
usage notes 1106
OLREORG keyword
command responses 1112
completion codes 1113
description 1109
environment 1109
examples 1113
keywords 1110
output fields 1112
reason codes 1113
return codes 1113
syntax 1110
usage notes 1112
OTMADESC keyword
completion codes 1121
description 1115
environment 1115
examples 1123
keywords 1117
output fields 1121
reason codes 1121
return codes 1121
syntax 1115
usage notes 1120
PGM keyword
completion codes 1132
description 1124
environment 1124
examples 1136
PGM keyword (continued)
keywords 1125
output fields 1131
reason codes 1132
return codes 1132
syntax 1125
usage notes 1131
PGMDESC keyword
completion codes 1143
description 1138
environment 1138
examples 1146
keywords 1139
output fields 1143
reason codes 1143
return codes 1143
syntax 1138
usage notes 1142
POOL keyword
completion codes 1153
description 1147
environment 1148
examples 1155
keywords 1148
output fields 1152
reason codes 1153
return codes 1153
syntax 1148
usage notes 1150
RM keyword
completion codes 1163
description 1159
environment 1159
examples 1166
keywords 1160
output fields 1162
reason codes 1163
return codes 1163
syntax 1159
usage notes 1162
RTC keyword
completion codes 1173
description 1170
environment 1170
examples 1175
keywords 1171
output fields 1172
reason codes 1173
return codes 1173
syntax 1170
usage notes 1172
RTCDESC keyword
completion codes 1179
description 1177
environment 1177
examples 1181
keywords 1177
output fields 1179
reason codes 1179
return codes 1179
syntax 1177
usage notes 1178
TRAN keyword
completion codes 1208, 1211
description 1183
environment 1183
TRAN keyword (continued)
equivalent IMS commands 1206
examples 1215
keywords 1186
output fields 1207
reason codes 1208
return codes 1208
syntax 1183
usage notes 816, 1205
TRANDESC keyword
completion codes 1234
description 1217
environment 1217
examples 1238
keywords 1220
output fields 1234
reason codes 1234
return codes 1234
syntax 1218
usage notes 1233
type-2 905
UPDATE DATAGRP command
similar IMS commands 924
UPDATE DB command
equivalent IMS commands 948
parameters 938
UPDATE LE command
parameters 1062
UPDATE OLREORG command
examples 1114
UPDATE POOL command
dynamic database buffer pools, monitoring 1147
UPDATE TRAN command
equivalent IMS commands 1206
parameters 1186
USEAREA keyword
/RECOVER command
ADD 655
USEBDKS keyword
RECOVER command
ADD keyword 655
USER keyword
NRESTART command 6
OPNDST command 15
QUIESCE command 645
RSTART command 699
TEST command 856
USERD keyword
OPNDST command 15
SIGN command 718
userpw keyword
SIGN command 718
V
VTAM (Virtual Telecommunications
Access Method)
link
RSTART command 698
MSC links
PSTOP MSPLINK command 22
terminal
disconnecting 647
initiating a session 15
ready/not ready state 650
VUNLOAD command
 description 1241
 entry format 1241
 environment 1241
 syntax 1241
 usage notes 1241

W
 WAD6 keyword
 SWITCH command 832
 wait-for-input mode
 stopping message processing 807

X
 XRF (Extended Recovery Facility)
 alternate system
 START REGION command 760
Product Number: 5635-A04
5655-DSM
5655-TM2

Printed in USA