IMS
Version 13

Commands, Volume 1:
IMS Commands A - M

IBM
Note
Before you use this information and the product it supports, read the information in "Notices" on page 857.
Contents

About this information vii
Prerequisite knowledge vii
IMS function names used in this information vii
How new and changed information is identified vii
How to read syntax diagrams viii
Accessibility features for IMS Version 13 ix
How to send your comments x

Chapter 1. IMS command language overview 1
How to enter IMS commands 2
IMS MFS 3270 master terminal format 2
Using Multiple Console Support (MCS) consoles 5
Outstanding reply numbers on z/OS consoles 5
Maximum length of command input from z/OS consoles 5
Multisegment command input 6
Commands in a DBCTL environment 7
Commands from an LU 6.2 device 8
Qualifying network LU names and commands 9
Issuing commands to the OM API 9
Batch SPOC format 11
Command responses 12
 Command responses to OM 13
 Responses to LU 6.2 devices 14
Sending messages to the z/OS system console 14
Sending messages to the IMS master terminal 15
IMS terminal command examples 15
TSO SPOC command examples 16
OM API command examples 16
IMS type-1 command format 16
IMS type-2 command format 22
Sending commands to the IMSplex 25
Command processing in an IMSplex 25
Command characteristics 27
Terminal security defaults for IMS type-1 commands 27
Commands recovered during emergency restart 29
Command processing in a dynamic resource definition environment 30
IMS type-1 commands logged to the secondary master terminal 31
IMS type-1 commands supported from an AO application 31
Command security when using OM 37
Commands mirrored on an XRF alternate 37
Commands supported on the XRF alternate 38
Commands and keywords supported on an RSR tracking subsystem 40
IMS-supported terminals in an RSR environment 43
IMS type-1 commands supported from LU 6.2 devices and OTMA 43
Terminal security defaults for LU 6.2 devices and OTMA 44
Commands and keywords supported by the OM API 45

Equivalent IMS type-1 and type-2 commands 48
Equivalent IMS Connect WTOR, z/OS, and type-2 commands 56

Chapter 2. Command keywords and their synonyms 63

Chapter 3. Commands and keywords valid in DBCTL 85

Chapter 4. Commands and keywords valid in DCCTL 87

Chapter 5. List of reserved words 91

Chapter 6. IMS type-1 commands that are valid in ETO 95

Chapter 7. /ACTIVATE command 97

Chapter 8. /ALLOCATE command 99

Chapter 9. /ASSIGN command 101

Chapter 10. /BROADCAST command 121

Chapter 11. /CANCEL command 127

Chapter 12. /CHANGE commands 129
/CHANGE APPC command 129
/CHANGE CCTL command 130
/CHANGE CPLOG command 132
/CHANGE DESC command 132
/CHANGE DIR MFS command 134
/CHANGE FDR command 135
/CHANGE LINK command 136
/CHANGE NODE command 140
/CHANGE SUBSYS command 144
/CHANGE SURV command 145
/CHANGE TRAN command 148
/CHANGE UOR command 149
/CHANGE USER command 151

Chapter 13. /CHECKPOINT command 153

Chapter 14. /CLSDST command 159

Chapter 15. /COMST command 163

Chapter 16. /CQCHKPT command 167
About this information

These topics provide command syntax and usage information for the IMS™ type-1 and type-2 commands /ACTIVATE through /MSVERIFY. The topics also describe the IMS command language and how to send commands to IMS in different environments. Information about all non-type-1 and non-type-2 IMS commands is in IMS Version 13 Commands, Volume 3: IMS Component and z/OS Commands.

This information is available in IBM® Knowledge Center.

Prerequisite knowledge

Before using this information, you should have knowledge of either IMS Database Manager (DB) or IMS Transaction Manager (TM). You should also understand basic z/OS® and IMS concepts, your installation’s IMS system, and have general knowledge of the tasks involved in project planning.

Recommendation: Before using this information, you should be familiar with the following resources:

- IMS Version 13 Operations and Automation
- z/OS JES2 Commands
- z/OS JES3 Commands
- z/OS MVS™ System Commands

You can learn more about z/OS by visiting the “z/OS basic skills” topics in IBM Knowledge Center.

You can gain an understanding of basic IMS concepts by reading An Introduction to IMS, an IBM Press publication.

IBM offers a wide variety of classroom and self-study courses to help you learn IMS. For a complete list of courses available, go to the Resources section of the IMS home page at ibm.com/ims and link to the Training and Certification page.

IMS function names used in this information

In this information, the term HALDB Online Reorganization refers to the integrated HALDB Online Reorganization function that is part of IMS Version 13, unless otherwise indicated.

How new and changed information is identified

New and changed information in most IMS library PDF publications is denoted by a character (revision marker) in the left margin. The first edition (-00) of Release Planning, as well as the Program Directory and Licensed Program Specifications, do not include revision markers.

Revision markers follow these general conventions:

- Only technical changes are marked; style and grammatical changes are not marked.
• If part of an element, such as a paragraph, syntax diagram, list item, task step, or figure is changed, the entire element is marked with revision markers, even though only part of the element might have changed.

• If a topic is changed by more than 50%, the entire topic is marked with revision markers (so it might seem to be a new topic, even though it is not).

Revision markers do not necessarily indicate all the changes made to the information because deleted text and graphics cannot be marked with revision markers.

How to read syntax diagrams

The following rules apply to the syntax diagrams that are used in this information:

• Read the syntax diagrams from left to right, from top to bottom, following the path of the line. The following conventions are used:
 – The >>--- symbol indicates the beginning of a syntax diagram.
 – The ---> symbol indicates that the syntax diagram is continued on the next line.
 – The >--- symbol indicates that a syntax diagram is continued from the previous line.
 – The --->< symbol indicates the end of a syntax diagram.

• Required items appear on the horizontal line (the main path).

```
>>>required_item
```

• Optional items appear below the main path.

```
>>>required_item
  <optional_item>
```

If an optional item appears above the main path, that item has no effect on the execution of the syntax element and is used only for readability.

```
>>>required_item
  <optional_item>
```

• If you can choose from two or more items, they appear vertically, in a stack. If you must choose one of the items, one item of the stack appears on the main path.

```
>>>required_item
  <required_choice1>
  <required_choice2>
```

If choosing one of the items is optional, the entire stack appears below the main path.

```
>>>required_item
  <optional_choice1>
  <optional_choice2>
```

If one of the items is the default, it appears above the main path, and the remaining choices are shown below.
• An arrow returning to the left, above the main line, indicates an item that can be repeated.

If the repeat arrow contains a comma, you must separate repeated items with a comma.

A repeat arrow above a stack indicates that you can repeat the items in the stack.

• Sometimes a diagram must be split into fragments. The syntax fragment is shown separately from the main syntax diagram, but the contents of the fragment should be read as if they are on the main path of the diagram.

• In IMS, a b symbol indicates one blank position.

• Keywords, and their minimum abbreviations if applicable, appear in uppercase. They must be spelled exactly as shown. Variables appear in all lowercase italic letters (for example, column-name). They represent user-supplied names or values.

• Separate keywords and parameters by at least one space if no intervening punctuation is shown in the diagram.

• Enter punctuation marks, parentheses, arithmetic operators, and other symbols, exactly as shown in the diagram.

• Footnotes are shown by a number in parentheses, for example (1).

Accessibility features for IMS Version 13

Accessibility features help a user who has a physical disability, such as restricted mobility or limited vision, to use information technology products successfully.

Accessibility features

The following list includes the major accessibility features in z/OS products, including IMS Version 13. These features support:

• Keyboard-only operation.
• Interfaces that are commonly used by screen readers and screen magnifiers.
• Customization of display attributes such as color, contrast, and font size.

Keyboard navigation

You can access IMS Version 13 ISPF panel functions by using a keyboard or keyboard shortcut keys.

For information about navigating the IMS Version 13 ISPF panels using TSO/E or ISPF, refer to the z/OS TSO/E Primer, the z/OS TSO/E User’s Guide, and the z/OS ISPF User’s Guide Volume 1. These guides describe how to navigate each interface, including the use of keyboard shortcuts or function keys (PF keys). Each guide includes the default settings for the PF keys and explains how to modify their functions.

Related accessibility information

Online documentation for IMS Version 13 is available in IBM Knowledge Center.

IBM and accessibility

See the IBM Human Ability and Accessibility Center at www.ibm.com/able for more information about the commitment that IBM has to accessibility.

How to send your comments

Your feedback is important in helping us provide the most accurate and highest quality information. If you have any comments about this or any other IMS information, you can take one of the following actions:

• Click the Feedback link at the bottom of any IBM Knowledge Center topic.
• Send an email to imspubs@us.ibm.com. Be sure to include the book title and the publication number.
Chapter 1. IMS command language overview

You can use the IMS master terminal, TSO SPOC, or the OM API to receive messages, issue commands, and receive command responses.

IMS supports two types of command formats to manage IMS systems and resources: IMS type-1 commands and IMS type-2 commands.

You can enter IMS type-1 commands through multiple terminal types and applications, and most can be entered through the OM API. IMS type-2 commands can be entered only from the OM API. z/OS commands can be entered only from a z/OS system console, not from an IMS master terminal.

IMS type-1 commands

IMS type-1 commands can be entered from IMS terminals, master terminals, system consoles, EMCS consoles, IMS application programs through CMD calls and ICMD calls, and LU 6.2 and OTMA applications. IMS type-1 commands are in the original or classic IMS command syntax, and are preceded by a command recognition character if the command is issued from one of these interfaces.

Most IMS type-1 commands can also be entered from the OM API, but not all of them. If the command is issued from the OM API, the command recognition character is optional. Use RACF® or an equivalent security product for security checking. IMS type-1 command output from the OM API is in message format within an XML tag structure.

IMS type-2 commands

IMS type-2 commands can be entered only from the OM API, not from a master or remote terminal. Either RACF (or an equivalent security product) or command security can be used for security checking. IMS type-2 command output is in XML tag structure.

Both IMS type-1 commands and type-2 commands can be entered from the OM API (for example, TSO SPOC, IMS Control Center, or user-written programs using OM API).

Subsections:

- “How to enter IMS commands” on page 2
- “Command responses” on page 12
- “Sending messages to the z/OS system console” on page 14
- “Sending messages to the IMS master terminal” on page 15
- “IMS terminal command examples” on page 15
- “TSO SPOC command examples” on page 16
- “OM API command examples” on page 16
- “IMS type-1 command format” on page 16
- “Command processing in an IMSplex” on page 25
- “IMS type-2 command format” on page 22
- “Command characteristics” on page 27
- “Terminal security defaults for IMS type-1 commands” on page 27
- “Commands recovered during emergency restart” on page 29
How to enter IMS commands

These topics describe how to enter various types of IMS commands.

Subsections:
- "IMS MFS 3270 master terminal format"
- "Using Multiple Console Support (MCS) consoles” on page 5
- "Outstanding reply numbers on z/OS consoles” on page 5
- "Maximum length of command input from z/OS consoles” on page 5
- "Multisegment command input” on page 6
- "Commands in a DBCTL environment” on page 7
- "Commands from an LU 6.2 device” on page 8
- "Qualifying network LU names and commands” on page 9
- "Issuing commands to the OM API” on page 9
- "Batch SPOC format” on page 11

Related concepts:
- REXX SPOC API (Operations and Automation)
- Controlling IMS with the TSO SPOC application (Operations and Automation)

IMS MFS 3270 master terminal format

You can use the IMS master terminal for messages, commands, and responses.

The IMS master terminal consists of two components of the IBM 3270 Information Display System:
- A 3270 display screen with 24 lines by 80 columns; a screen size of 1920 characters
- A 3270 printer

All IMS system messages for the master terminal are sent to the display screen.
The format of the display screen is normally divided into five areas:

- System status area (line 1)
- Message area (lines 2-10)
- Display area (lines 12-21)
- Warning message area (line 22)
- User input area (lines 23 and 24)

The following figure shows the format of the master terminal display screen.

![Figure 1. Master terminal format](image1)

The following figure shows the format of the master terminal display screen in an extended recovery facility (XRF) environment.

![Figure 2. Master terminal format in XRF environment](image2)

System status area

This area (line 1) displays the date, time, and IMS identifier:

- **Date** The current date
- **Time** The current time
- **IMS Identifier** IMS system ID

If the system is XRF capable, the following information is also displayed on the status line:

- **RSEname** Recoverable service element name
- **System** ACTIVE or BACKUP (field is completed following the initialization phase)
- **Phase** Blank or one of the following:
 - **Initialization** Active or alternate system is in initialization phase
 - **Synchronization** Alternate system processing SNAPQ checkpoint
Tracking in progress
Alternate system synchronized with active system and in the process of tracking active system

Takeover in progress
Alternate system in the process of taking over from active system

Awaiting I/O prevention
New active system is in I/O toleration mode and is awaiting completion of I/O prevention on the failing system prior to becoming a true active system

Message area
This area (lines 2 through 10) displays IMS system messages, messages from other terminals and programs, and responses to IMS commands, except responses to a /DISPLAY command. If the message area is full and more output needs to be displayed, a warning message is sent. Press the PA1 key to receive more output. New data is displayed on the top line followed by a blank line to separate new data from old messages.

Display area
This area (lines 12 through 21) displays the output from a /DISPLAY command. If the response to the command exceeds the size of the area, a warning message is sent.

Warning message area
This area (line 22) can contain one of the following warning messages:

MASTER LINES WAITING
A message being displayed in the message area has exceeded the available space and is only partially displayed.

MASTER MESSAGE WAITING
The message area is full, and a message from another terminal or program is waiting to be displayed.

DISPLAY LINES WAITING
The output of a /DISPLAY command exceeds the size of the display area.

USER MESSAGE WAITING
A message requiring the screen to be formatted differently is waiting to be displayed.

In all cases, press the PA1 key to receive the waiting output.

The literal PASSWORD is followed by an unprotected field with the nondisplay attribute at the end of line 22.

User input area
This area (lines 23 and 24) is used to enter IMS commands. It consists of two 79-character segments, so you can enter multisegment commands such as /BROADCAST, /CHANGE, /RMxxxxxx, and /SSR. For example, to send a message to all active terminals, enter /BROADCAST ACTIVE on line 23 and enter the message text on line 24. The cursor is initially positioned by IMS to line 23, your first input line.
Using Multiple Console Support (MCS) consoles

You can enter IMS commands from Multiple Console Support (MCS) or Extended Multiple Console Support (E-MCS) consoles.

Use the CMDMCS keyword for the IMS, DBC, or DCC procedures during IMS system definition to enable commands to be entered from MCS or E-MCS consoles.

In a DB/DC environment, if Multiple Console is enabled (CMDMCS other than 'n' specified), IMS commands can be entered from an MCS or E-MCS console by prefixing the command by either the CRC or IMSID. For example, if the CRC is '#', a valid command would be #DIS A. If the IMSID is 'IMSP', a valid command would be IMSPDIS A.

Each segment of an IMS command must begin with one of the following:

- The command-recognition character for the IMS subsystem
- The IMS ID of the IMS subsystem

For multisegment commands, each segment, except the last, must end with the command recognition character or IMS ID followed by the ENTER key. The last segment must end with only the EOM (end-of-message, or ENTER) character.

You can send commands to all the IMS systems in an IMSplex by using an automated operations single-point-of-control (SPOC) application that sends commands and receives the responses to those commands through the Operations Manager (OM) application programming interface (API).

When you are using a Resource Manager (RM) structure in an IMSplex, it is best to issue commands to the Operations Manager (OM) through the TSO SPOC.

Outstanding reply numbers on z/OS consoles

Outstanding reply numbers are used only on z/OS system consoles. They are used to pass input directly to IMS. Terminals defined to IMS do not use outstanding reply numbers.

As an example, IMS might display the following on the z/OS console:

*48 DFS996I *IMS READY*

To communicate with IMS through the z/OS system console, you must reply with the outstanding reply number (in this example, the number is 48). A reply might look like this:

R 48,/START DC

After IMS responds to the command, the next outstanding reply number is displayed with the DFS996I message, as follows:

DFS058I START COMMAND COMPLETED
*49 DFS996I *IMS READY*

Maximum length of command input from z/OS consoles

For single-segment commands that are entered from the z/OS console, the maximum character length (including command recognition characters) is 118.

This limit comes from the implementation of the WTOR macro.
Multisegment command input

Multisegment commands require an EOS (end-of-segment) indicator for all segments preceding the last segment, and an EOM (end-of-message) indicator for the last segment.

The EOS and EOM will vary, depending on the type of terminal entering the command. For example, on the system console, EOS is indicated by the ENTER key and EOM is indicated by entering a period followed by the ENTER key.

The following are multisegment commands:
- /ALLOCATE
- /BROADCAST
- /CHANGE
- /ERESTART
- /LOPTTEST
- /OPNDST
- /RMxxxxxx
- /SSR

The period is used both as a delimiter for comments on IMS commands and as an EOM indicator for some terminal types. The following four examples illustrate the use of the period in both contexts.

If support for special characters is enabled in RACF and the last parameter of the /OPNDST command is a password, you must add a space before the period.

Example 1 for multisegment commands

System console entry:
24,/BRO MASTER. END OF DAY MESSAGE
25,I AM GOING HOME. PLEASE TAKE OVER.

Response on master terminal:
I AM GOING HOME. PLEASE TAKE OVER.

Explanation: The first input segment (reply 24) contains only the command and consists of a comment (END OF DAY MESSAGE) separated from the command itself (BRO MASTER) by a period. The second input segment (reply 25) consists of the data to be broadcast. The first period in segment 2 is part of the data and the second period in segment 2 is the EOM indicator for the system console.

Example 2 for multisegment commands

System console entry:
26,/CHANGE DIRECT
27,ORY MFS. MODIFICATION.

Explanation: MODIFICATION in segment 2 is a comment and is separated from the command by the first period. The second period in segment 2 is the EOM indicator for the system console.

The above 2 segments are combined and the following is input to the command processor:
/CHANGE DIRECTORY MFS. MODIFICATION
Example 3 for multisegment commands

System console entry:
28,/CHANGE LINK 1
29,2 3 FORCSESS.

Explanation: Certain forms of reply to the system console “outstanding reply” can compress out leading blanks from input segments. In example three, the command processed by the /CHANGE command processor would be: /CHANGE LINK 1 2 3 FORCSESS. To obtain the desired command, /CHANGE LINK 1 2 3 FORCSESS, one of the following forms of reply could be used:
R 29,'/CHANGE LINK 1'
R 30,' 2 3 FORCSESS.'
or
29,/CHANGE LINK 1
30, 2 3 FORCSESS

Example 4 for multisegment commands

LU2 or 3270 Display Terminal entry:
/FORMAT DFSM04
/BRO LTERM WTOR (eos)
this is segment 1 (eos)
this is segment 2 (eos)
this is segment 3 (eom)

Explanation: The remote terminal is first formatted by the /FORMAT command, where default format DFSM04 supports the input of 4 segments.

For LU2 and 3270 display terminals, enter a /FORMAT DFSM04 command before entering the multisegment command.

Commands in a DBCTL environment

In a DBCTL environment, there are no outstanding reply numbers for z/OS consoles, and therefore none should be entered. For a command, just enter the command recognition character (slash or other character preceding the verb) or IMS ID, followed by the command. DBCTL does not respond with the DFS996I outstanding reply number.

Examples for DBCTL commands

System console entry for single-segment command:
¢DIS DB PAYROLL

Explanation: ¢ is the command-recognition character for the DBCTL subsystem.
IMS1DIS DB PAYROLL

Explanation: IMS1 is the IMS ID for the DBCTL subsystem.

System console entry for multisegment command:
/RMI DBRC='IC DBD(DED80001) AREA (DD01AR0) ICDSN(FVT31.DEDBDD01.DD01 AR0.IC.DUMMY1) ICDSN2/(FVT31.DEDBDD01.DD01AR0.IC2.DUMMY1) HSSP'
Explanation: The first segment of the /RMI command has the command recognition character at the beginning of the segment and at the end of the segment, to indicate another segment follows. The last segment has the command recognition character at the beginning of the segment only.

Commands from an LU 6.2 device

To enter a command from an LU 6.2 device, allocate a conversation using an IMS command verb as the TPNAME.

The “/” must be included in the command word. The password option is not valid. (The password must be supplied as a part of the LU 6.2 ALLOCATE from the partner.) The normal LU 6.2 security provisions apply for this transaction.

Restriction: The APPC synchronization level of CONFIRM is ignored for commands from LU 6.2 devices.

The following three examples show the sequence of steps used to issue commands by allocating a synchronous conversation on an LU 6.2 device:

Example 1 for commands from an LU 6.2 device

ALLOCATE
 -LUNAME=luname of IMS
 -TPNAME=/DISPLAY
SEND
 -DATA=LTERM VA01 VA02.comments
PREPARE_TO_RECEIVE
RECEIVE
 (Get header)
RECEIVE
 (Get output for LTERM VA01)
RECEIVE
 (Get output for LTERM VA02)
RECEIVE
 (Get time stamp)
RC=DEALLOCATE

Example 2 for commands from an LU 6.2 device

ALLOCATE
 -LUNAME=luname of IMS
 -TPNAME=/CHANGE
SEND
 -DATA=NODE
SEND
 -DATA=VAT02 ASR OFF.comments
PREPARE_TO_RECEIVE
RECEIVE
 (Get DFS058 CHANGE COMMAND COMPLETED)
RC=DEALLOCATE

Example 3 for commands from an LU 6.2 device

ALLOCATE
 -LUNAME=luname of IMS
 -TPNAME=/BROADCAST
SEND
 -DATA=NODE VAT0*
 (1st SEND: the destination)
SEND
 -DATA=HELLO, HOW ARE YOU ALL?
 (Subsequent SENDs: message to broadcast)
PREPARE_TO_RECEIVE
RECEIVE
 (Get DFS058 BROADCAST COMMAND COMPLETED)
RC=DEALLOCATE
Qualifying network LU names and commands

Qualifying LU names gives the system administrator the liberty of using the same name for LUs on different systems by adding the network identifier. This eliminates the necessity to have unique names for every LU on every system in your complex.

A network-qualified LU name consists of a network identifier of the originating system that is 1 to 8 characters long, a period, and then the LU name, which is 1 to 8 characters long. IMS commands that include network-qualified LU names must be enclosed in single quotes. For example: ‘NETID001.LUAPPC02’. No blanks are allowed in a network-qualified LU name.

The parameter ALL for either the network identifier or the LU name cannot be substituted in a command for a network-qualified LU name. ALL cannot represent all of the LU names or all of the networks.

The LU name in the LU 6.2 descriptors can be network-qualified.

The network-qualified LU name is optional on commands that support the LUNAME keyword.

Issuing commands to the OM API

You can issue commands to the OM API and receive responses from the API by using a single point of control (SPOC) application (such as the TSO SPOC, which is shipped with IMS) or the Control Center.

Related concepts:

- CSL OM automated operator program clients (System Programming APIs)
- TSO SPOC format

TSO SPOC format

The TSO SPOC is an IBM-supplied application that can issue operator commands in an IMSplex.

The TSO SPOC application uses an ISPF panel interface and communicates with an Operations Manager (OM) address space. OM then communicates with all of the other address spaces in the IMSplex (for example, IMS) as required for operations. TSO SPOC can issue all type-2 commands and it has a set of panels dedicated to the task of managing resources (also known as issuing DRD-related commands).

There can be more than one TSO SPOC in an IMSplex. However, the TSO SPOC is optional in an IMSplex.

The TSO SPOC provides the following functions to an IMSplex:

- Presents a single system image for an IMSplex by allowing the user to issue commands to all IMS systems in the IMSplex from a single console.
- Displays consolidated command responses from multiple IMS address spaces.
- Sends a message to an IMS terminal connected to any IMS control region in the IMSplex by using the IMS /BROADCAST command.

There are several ways to issue commands in the IMS TSO SPOC application:

- By command line
- By retrieving a command
 - Using the ISPF RETRIEVE command
– Using a command listed in the response area
– Using the Command status panel
• By defining and using command shortcuts

You can use these methods in any combination at any time.

The following figure shows the format of the TSO SPOC screen.

```
Figure 3. TSO SPOC screen format

You can issue both IMS type-1 commands and type-2 commands using the TSO SPOC interface. Enter the command next to the command prompt (Command ==> in the figure above). Enter the IMSplex name in the Plex field. Enter the list of IMS systems to which to route the command, if applicable, in the Route field. After you type the command, press Enter. The command issued is shown in the Response for: field and the actual command response is shown below the Response for: field.

Entering comments from a TSO SPOC

For type-1 IMS commands, a period ends a command and anything after it is a comment. The following example shows a type-1 IMS command with a comment.

/DISPLAY ACT.a  test comment

For type-2 commands, the comment must be enclosed in a slash and asterisk. At the end of the last parameter of the command, type a forward slash followed by an asterisk, then the comment text, followed by an asterisk and slash. The comment text must not have an embedded asterisk slash in it. The following is an example of a command with a comment:

QUERY TRAN NAME(PART) SHOW(QCNT) /*Show queue count for tran part*/

Control Center format

The IMS Control Center, included in the IBM DB2 Universal Database™ Control Center, uses the IMS Single Point of Control (SPOC) functions to enable IMS systems management from a workstation.

You can issue and view IMS type-1 and type-2 commands from the IMS Control Center. There are online wizards that help you build and issue commands. The Control Center command output is similar to the output displayed from the TSO SPOC. The same information is provided, but formatted in a graphical interface based on the Windows system.

For information about installing and using the IMS Control Center, see the IBM Knowledge Center.
Batch SPOC format

The Batch SPOC is a utility program that uses OM services to submit IMS operator commands to an IMSplex. The utility program is not specific to DRD commands; it accepts any commands that are supported by the OM API.

The Batch SPOC utility is invoked by use of standard JCL statements. The following example shows a simple invocation:

```jcl
//SPOCJOB JOB,
// MSGCLASS=H,NOTIFY=&SYSUID,USER=&SYSUID/*
//SPOC EXEC PGM=CSLUSPOC,
// PARM=('IMSPLEX=PLEX1,ROUTE=IMS3,WAIT=30,F=WRAP')
//STEPLIB DD DISP=SHR,DSN=IMS.SDFSRESL
//SYSPRINT DD SYSOUT=**
//SYSIN DD *
QRY IMSPLEX SHOW(JOB,TYPE, +
 STATUS)
QRY TRAN NAME(INV1*) SHOW(ALL) /* inventory appl */
/*EOF
```

The program parameters define the IMSplex environment. The parameter keywords are:

**IMSPLEX**

Required parameter that specifies the 1- to 5-character suffix of the IMSplex name.

F

Optional parameter that specifies the print format of the SPOC output. You can specify one of the following values:

**WRAP**

Wraps to the next line as needed. This is the default.

**BYCOL**

Lines of data are grouped together by the column.

**BYRSC**

Lines of data are grouped together by the resource.

**ROUTE**

Optional parameter that specifies the SYSIDs of IMSplex members that are to execute the command. If ROUTE is not specified, all members of the IMSplex will execute the command. If more than one member is specified, enclose the list in parenthesis and separate the names with commas. For example:

```jcl
// PARM=('IMSPLEX=PLEX1,WAIT=30,ROUTE=(IMSZ,IMSA)')
```

If ROUTE=* is specified, the command is routed to all registered command processing clients in the IMSplex. If ROUTE=% is specified, the command is routed to only one command processing client in the IMSplex that is registered for the command and that has MASTER capability. The Operations Manager chooses the command processing client.

**WAIT**

Optional parameter that specifies the wait time for individual commands. The wait value is in minutes and seconds (MMM:SS) or just seconds (SSSSS). OM will return a single response as soon as a response is received from all of the members of the IMSplex. If the interval expires, OM will return any responses from IMSplex members, plus an indication that some did not reply. The Batch SPOC utility will wait for each command to complete before issuing the next command. The default wait value is five minutes (5:00). The WAIT time
applies to every command in the SYSIN file. The user can specify a wait time of zero seconds; in this case, the batch SPOC issues a command but does not wait for the response.

The SYSIN file is provided by the user and contains the commands that the user wants to run. The commands are run serially. When one command completes, the next command is run until all records from the SYSIN file are processed. Continuation of the SYSIN control statements is specified by a plus sign (+) or a minus sign (-) as the last non-blank character of the line. A plus sign removes the leading spaces from the next line; a minus sign keeps leading spaces. Comments can be included within the SYSIN file and are specified as:

/* this is a comment */

The SYSPRINT file will have the formatted command response. If more than one command is issued, the responses will appear in the same order as the commands appear in the SYSIN file. The default record length is 133. The command response is formatted in a similar format as the TSO SPOC display. If the records are too long, they wrap to the next line. The user may specify DCB information in the JCL or in the data set allocation to allow longer records in the SYSPRINT file.

System Display and Search Facility (SDSF) can be used to view batch job output. The following is an example of batch job output:

```
==
Log for...: QRY IMSPLEX SHOW(MEMBER,TYPE,STATUS)
IMSp1ex: PLEX1
Routing:
Start time: 2006.075 15:36:28.11
Stop time : 2006.075 15:36:29.17
Return code . . . : 00000000
Reason code . . . : 00000000
Command master. .: SYS3
IMSp1ex MbrName CC Member Type Status
CSLPLEX1 OM1 0 SYS3 DBDC ACTIVE
CSLPLEX1 OM1 0 IMS2 DBDC ACTIVE
```

If no wait time, WAIT=0, is specified, the command response is not available and therefore are not printed. The SYSPRINT file will only have short summary information for each command. The following is an example of bath job output with no response:

```
==
Log for...: QRY IMSPLEX SHOW(MEMBER,TYPE,STATUS)
IMSp1ex: PLEX1
Routing:
Start time: 2006.075 15:36:28.11
==
```

Related reference:

- [Issuing Batch SPOC commands (Operations and Automation)]
- [Batch SPOC utility (CSLUSPOC) (System Utilities)]

**Command responses**

With the exception of the /DISPLAY command, /FORMAT command, and type-2 commands returned through the OM API, responses to IMS commands are prefixed by the letters DFSnnn; nnn identifies the message.
A response to an IMS command is an acknowledgment from IMS to the originating terminal that the command has been received. Responses that go to the system console have an IMS ID that identifies the IMS system that issued the message. For example, the response to /DBDUMP DATABASE MSDB would be:

```
DFS058I (time stamp) DBDUMP COMMAND IN PROGRESS (IMS id)
```

At system definition, the TIMESTAMP/NOTIMESTAMP parameter of the COMM macro determines whether the time stamp is present or absent. If the time stamp feature is included, the date and time of the response appear between the response prefix and the text.

The DFS058 COMMAND COMPLETED/IN PROGRESS response indicates whether IMS accepted the command. If some parameters of the command are not accepted, the response includes the EXCEPT phrase and indicates the parameters that were not accepted. If IMS does not have the space for all of the not-accepted parameters, it truncates the EXCEPT phrase and terminates it with ...etc.. Commands that specify the ALL parameter are most likely to be truncated. Truncated EXCEPT phrases on commands are normally caused by:

- Misspelling a parameter
- Specifying an invalid parameter for the command
- Specifying the ALL parameter for resources when some of them are already in the requested state

Related reference:

XML tags returned as CSL OM responses (System Programming APIs)

**Command responses to OM**

When an IMS type-2 command or IMS type-1 command is issued from the Operations Manager (OM) API, OM routes it (through the Structured Call Interface (SCI)) to one or more IMS systems based on the command routing. Each IMS returns the command response to OM. The command responses from each IMS are grouped together by OM and returned to the caller.

For each IMS command that is issued from OM API, the response is encapsulated in XML tags.

The type-2 command responses to OM also include a return code, reason code, and a possible completion code. The return or reason code returned for the command might also indicate an error from a Common Service Layer (CSL) request.

When the following type-1 commands are issued from OM API, the DFS058I COMMAND IN PROGRESS message is not returned. Instead, the messages that result as a part of command processing are returned to OM. Following is the list of commands that do not return the DFS058I COMMAND IN PROGRESS message:

- /DBDUMP DB
- /DBRECOVERY AREA
- /DBRECOVERY DB
- /DBRECOVERY DATAGRP
- /LOCK DB
- /START AREA
- /START DB
- /START DATAGRP
• /STOP ADS
• /STOP AREA
• /STOP DB
• /STOP DATAGRP
• /UNLOCK DB
• /VUNLOAD AREA

Related concepts:

[How to interpret CSL request return and reason codes (System Programming APIs)]

Related reference:

[Return and reason codes for commands to OM (Messages and Codes)]

Responses to LU 6.2 devices

The response to a command from an LU 6.2 device is sent synchronously if the initiating conversation is not deallocated by the remote device. If the conversation is deallocated, the command response is sent asynchronously using the LUNAME of the device and a TPN of DFSCMD. The remote device must allocate separate DFSCMD conversations to receive each asynchronous message.

When the following commands are entered from LU 6.2 devices:
• /DBDUMP DATABASE
• /DBRECOVERY AREA
• /DBRECOVERY DATABASE
• /START AREA
• /START DATABASE
• /START REGION
• /STOP AREA
• /STOP DATABASE
• /STOP REGION

The DFS058 COMMAND COMPLETED message is generated instead of the DFS058 COMMAND IN PROGRESS message. If the LU 6.2 conversation is synchronous (the conversation still exists), the DFS058 COMMAND COMPLETED message is the last message the operator receives. If the LU 6.2 conversation is asynchronous (the conversation is deallocated), the order of delivery of the DFS058 message can vary.

Sending messages to the z/OS system console

Each z/OS system console in the sysplex has a unique LTERM name.

In an XRF environment, the real z/OS system console name is the RSE name specified in the HSB member. For a non-XRF subsystem, the real system console name is the IMS ID. The generic z/OS system console name is always "WTOR". The generic name is translated to the real LTERM name when a message is sent to the z/OS system console.

Because each z/OS system console has a unique LTERM name, a message can be sent to any z/OS system console in the sysplex if the real LTERM name (not the generic name) is used.
Sending messages to the IMS master terminal

Each IMS master terminal (MTO) in the sysplex has a unique LTERM name, and if they are VTAM® terminals they also have unique node names.

Each IMS assigns its primary MTO the default LTERM name “DFSPMTO” as a generic name. Each secondary MTO is assigned “DFSSMTO” as the default generic name. You can override either of these default generic names during IMS system definition by using the DFSDCxxx member of IMS.PROCLIB. The generic name is translated to the real LTERM name when a message is sent to the MTO.

Restriction: If you use the DFSDCxxx member to override a default generic name, you must not specify a statically-defined node name. Also, the node name you specify must have the same physical characteristics as the default node you are overriding. If you change the DFSDCxxx member, you must perform a cold start of IMS.

In a shared-queues environment, because each MTO has a unique LTERM name, a message can be sent to any MTO in the sysplex if you use the real LTERM name (not the generic name).

Related reference:

[DFSDCxxx member of the IMS PROCLIB data set (System Definition)]

IMS terminal command examples

Some command examples show the format of commands entered and received from an IMS terminal—entry terminal (ET), master terminal (MT), or response terminal (RT). One or more examples are given for each command.

The examples show:

Entry ET:

How the command looks as entered from the entering terminal (ET).

Response ET:

The IMS response transmitted to the entering terminal (ET).

Entry MT:

How the command looks as entered from the master terminal (MT).

Many IMS commands reference other terminals. Examples of these commands include:

Response RT:

The IMS response transmitted to the referenced terminal or terminals (RT).

The ET and RT responses might or might not print or display, depending on what type of terminal is referenced and whether the MSGDEL (message delete) option was specified for the terminal at system definition time.
TSO SPOC command examples

Some command examples show the input and output of commands from a TSO SPOC. Both type-2 commands and type-1 commands can be entered from a TSO SPOC. One or more examples are given for each command.

The examples show:

TSO SPOC input:
How the command looks as entered from the TSO SPOC.

TSO SPOC output:
The command response as displayed by the TSO SPOC.

Explanation: An explanation of the command and response.

Some type-2 commands include a section describing the environment of the IMSplex prior to entering the command. A response panel, log panel, or both displays when a command is entered from a TSO SPOC. Output data from the response panels are included in the examples, but output data from the log panels are not. The log panels display the OM return and reason codes for the command.

OM API command examples

Some command examples show the input and output of commands to and from the OM API. Both type-2 commands and type-1 commands can be entered from the OM API. One or more examples are given for each command.

The examples show:

OM API input:
How the string looks as built by the AOP client.

OM API output:
The response with XML tags sent from OM.

Explanation: An explanation of the command and response.

Some type-2 commands include a section describing the environment of the IMSplex prior to entering the command.

IMS type-1 command format

This section describes the general format for an IMS type-1 command.

Subsections:
- “Command recognition character” on page 17
- “Verb” on page 17
- “Keywords” on page 17
- “Parameters” on page 17
- “Null keywords” on page 20
- “Comments” on page 21
- “Passwords” on page 21
Command recognition character

The slash (/) is the command recognition character for IMS commands. In a DBCTL environment, another character can be defined as the command recognition character and would replace the slash.

Verb

The /VERB (such as /STOP) is the first command element and identifies the action to be taken. To abbreviate a verb, use only the slash and the first three characters. Enter the characters using either uppercase or lowercase letters.

Keywords

IMS keywords are reserved words identifying IMS resources that relate to transaction management, databases, or the IMS system. Many commands require one or more keywords.

Table 80 on page 63 is a list of available keywords and their synonyms. The alphabetic list of keywords after Table 80 on page 63 explains the use of the keyword for each IMS command it affects.

Restriction: Keywords and their synonyms are reserved words. Do not use reserved words to name system resources such as transactions, programs, logical terminals, databases, and MFS block names.

Keywords are shown in uppercase. The keyword or an allowable synonym can be entered in uppercase or lowercase.

Parameters

Parameters refer to installation defined or created resources, such as nodes, databases, or physical terminals, or IMS reserved parameters. Parameters in IMS commands must be replaced with parameter values. Reserved parameters have a unique meaning to IMS and refer to system resources or functions.

The format of the parameters that can be entered is determined by the command and keyword with which they are associated. Use the syntax example provided at the beginning of each command description to determine the valid parameter formats for that command.

When commands are entered, parameters are separated from a keyword by a space or an equal sign (=). Multiple parameters are separated by a comma, a blank, or a comma followed by a blank. The last parameter of one keyword is separated from the next keyword either by a space, a comma, or an equal sign.

In the syntax examples, default parameters appear above the syntax line. Optional parameters appear below the syntax line.

In the syntax examples, a repeat-line is shown as follows:

```
►► parameter ▼
```

The repeat-line indicates that multiple parameters can be entered. To save time
while entering multiple parameters for the LINE, PTERM, NODE, and LINK keywords, inclusive parameters can be specified in some commands.

**Restriction:** Use of the ALL parameter, generic parameters, or excessive use of multiple or inclusive parameters in the large terminal network can cause some of the following problems:

- “Lock out” of the operator for the duration of the command processing
- Creation of large multisegment output messages
- Command action for only part of the terminal resources intended
- Temporary storage shortages
- Artificially high storage pools within IMS, VTAM, or both

**Reserved words**

The resources you define, such as nodes, physical terminals, and databases, may be referenced as parameter values in IMS commands. Do not use reserved words to name these resources, or IMS might not interpret the command as expected. For example, if you define a node called TKOTRA and issue a `/DISPLAY NODE TKOTRA` command, IMS will list all the nodes that have an attribute of TKOTRA, instead of the specific node named TKOTRA.

**ALL parameter**

Entering the reserved parameter ALL specifies all defined resources related to that keyword. ALL cannot be used with every command.

ALL=NO or ALL=DIS can be specified on the KEYWD macro to prevent use of the ALL parameter. ALL=NO and ALL=DIS can be specified for all keywords. ALL=NO indicates that the ALL parameter is invalid on all the commands for the keyword. ALL=DIS indicates that the ALL parameter is invalid on all the `/DISPLAY` commands for the keyword.

**Inclusive parameters**

Inclusive parameters are used to specify a group of parameters by entering only the first and last parameters of the group. Inclusive parameters can be used for the following resources:

- Line
- Link
- Static node
- PTERM

To use inclusive parameters, enter the first parameter, a hyphen, then the last parameter (parameter1-parameter2).

For the LINE, PTERM, and LINK keywords, the group of parameters specified is assumed to be based on numeric sequence; that is, entering 3-6 specifies parameters 3, 4, 5, and 6. Inclusive parameters are limited to the PTERM keyword when it appears with the LINE keyword in a command. For the NODE keyword, the group of parameters must be static and based on the IMS definition sequence, not numeric or alphabetic sequence.

**Generic parameters**
You can use generic parameters to specify a group of resources whose names match a 1- to 8-character alphanumeric mask. Generic parameters apply to both type-1 and type-2 commands.

A generic parameter can include one or more of the following wildcard characters:

* Matches zero or more characters. When used alone, it matches all the names for the keyword or resource.

% Matches exactly one character.

The following examples illustrate some uses of wildcard characters:

**C0** Matches any string of any length that begins with C0. For instance: C0, C00, C00P

%%S Matches any 3-character string that ends with S. For instance: IMS, XYS

**C0**%%1 Matches any string of 5 or more characters that starts with C0, ends with 1, and has at least 2 characters between C0 and 1. For instance: CONV1, CONV21, CONV221

Specifying an asterisk alone as the generic parameter (such as NAME(*)) is equivalent to specifying ALL (such as NAME(ALL)). However, depending on the installation, other generic parameters can mean ALL. For example, the generic parameter %%% means ALL to an installation whose resource names are all 4 characters long. Some commands support NAME(*) and do not support NAME(ALL) for a wildcard name.

When a generic parameter is used, IMS uses a serial search of all resources to match the generic name. Using a serial search of all resources can have performance implications in larger systems.

**Restriction:** For type-1 commands, if you specify ALL=NO on the KEYWD macro, you cannot use an asterisk (*) or ALL for the keyword. However, if you specify ALL=NO on the KEYWD macro, you can use other generic parameters that are equivalent to ALL. If you are using BASIC EDIT, and you enter a command with a generic parameter containing two asterisks in a row at the end of the command, the command is discarded.

The following table lists some of the type-1 commands and keywords that support generic parameters.

**Table 1. Type-1 commands and keywords that support generic parameters**

<table>
<thead>
<tr>
<th>Command</th>
<th>Keyword supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>/BROADCAST</td>
<td>LTERM, NODE, USER</td>
</tr>
<tr>
<td>/CHANGE</td>
<td>NODE</td>
</tr>
<tr>
<td>/CLSDST</td>
<td>NODE</td>
</tr>
<tr>
<td>/DISPLAY</td>
<td>LTERM, MSNAME, NODE, TRAN, USER</td>
</tr>
<tr>
<td>/DISPLAY ASMT</td>
<td>LTERM, MSNAME, NODE, USER</td>
</tr>
<tr>
<td>/DISPLAY CONV</td>
<td>NODE, USER</td>
</tr>
<tr>
<td>/IDLE</td>
<td>NODE</td>
</tr>
<tr>
<td>/OPNDST</td>
<td>NODE</td>
</tr>
<tr>
<td>/PSTOP</td>
<td>LTERM, TRAN</td>
</tr>
<tr>
<td>/PURGE</td>
<td>LTERM, MSNAME, TRAN</td>
</tr>
</tbody>
</table>
Table 1. Type-1 commands and keywords that support generic parameters (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Keyword supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>/RSTART</td>
<td>NODE, USER</td>
</tr>
<tr>
<td>/START</td>
<td>LTERM, MSNAME, NODE, TRAN, USER</td>
</tr>
<tr>
<td>/STOP</td>
<td>LTERM, MSNAME, NODE, TRAN, USER</td>
</tr>
<tr>
<td>/TRACE</td>
<td>NODE</td>
</tr>
</tbody>
</table>

Restriction: Generic parameters are not supported in NODE, USER, or TRAN CLASS combinations.

Group parameters

A group parameter allows easy specification of a group of resources, where the resources in the group are defined and managed by the installation. Group parameters apply to both type-1 and type-2 command.

Group parameters are supported with the DATAGRP keyword for the /DBRECOVER, /START, /STOP, and UPDATE (type-2) commands. A group name is one to eight characters long. It is associated with a list of databases, DEDB areas, or database data sets.

A database group name and its associated databases or DEDB areas is defined in the DBRC RECON data set using the DBRC INIT:DBDSGRP command with parameters GRPNAME and DBGRP.

A database data set (DBDS) group name and its associated DBDSs is defined in the DBRC RECON data set using the DBRC INIT:DBDSGRP command with parameters GRPNAME and MEMBERS.

- Adding resources to a group
  Use the CHANGE:DBDSGRP command with the GRPNAME and ADDDB parameters to add databases or areas to a database group.
  Use the CHANGE:DBDSGRP command with the GRPNAME and ADDMEM parameters to add DBDSs to a DBDS group.

- Deleting resources from a group
  Use the CHANGE:DBDSGRP command with the GRPNAME and DELDB parameters to delete databases or areas from a database group.
  Use the CHANGE:DBDSGRP command with the GRPNAME and DELMEM parameters to delete DBDSs from a DBDS group.

- Displaying resources in a group
  Use the LIST:DBDSGRP command or the online /RMLIST command to display the databases or areas in a database group, or the DBDSs in a DBDS group.

Groups defined for commands should contain only databases and areas for use with the DATAGROUP keyword.

Null keywords

Null keywords are used to help clarify the syntax of the command being entered but have no effect on the command. Null keywords can be used within IMS.
commands at any time. However, they cannot be used with type-2 commands. Null keywords are reserved words. Do not use them to name system resources. The following are IMS null keywords:

- AFTER
- FOR
- ON
- SECURITY
- TO

Comments

You can add comments or notes to the end of a command. When you add comments, identify the end of the command by entering a period after the last parameter. If you do not enter a period, residual data from a 3270 affects command processing.

Passwords

Depending on the password security arrangement of the defined IMS system and the terminal where the command is entered, a password can be required after the command verb, or after a parameter or a keyword of certain commands.

If a command password is required, it must be entered immediately after /VERB and is normally enclosed in parentheses. No spaces or intervening characters are allowed between the /VERB and the left parenthesis.

When using MFS, if a command password is required, the installation-defined MFS format must contain a defined password field. The password must be entered into the password field defined by the format displayed. If command entry field of the format is defined to accept the command verb only, message DFS1051 is issued when an attempt is made to enter /VERB(password).

None of the IMS-supplied default formats (exception for the master terminal format) have a password field defined.

You must use RACF or an equivalent security product to require a command verb password associated with the user ID signed on to the dynamic terminal.

The /LOCK and /UNLOCK command keywords and parameters support passwords.

The /LOCK and /UNLOCK command parameters also support passwords when defined for users using RACF for static and dynamic resources. The password associated with a signed on user and specified after a command resource parameter will be used to perform a reverification check, if the resource is defined to RACF with ‘REVERIFY’ specified in the APPLDATA field. If the resource passes the RACF authorization check, and RVFY=Y is specified as an IMS startup parameter, IMS will verify that the password following the parameter is the same as the password entered during signon for the user that entered the command. If ‘REVERIFY’ is specified for a resource, but a password is not provided, or the wrong password is provided, the command processing for that resource will be rejected. This is also true for the /SET TRANSACTION and /SET CONVERSATION commands.

The use of passwords is not shown in the examples.
IMS type-2 command format

IMS type-2 commands use a different format from the format used by IMS type-1 commands.

Type-2 commands can be issued only through the Operations Manager (OM) APIs by an automated operator program (AOP). An example of an AOP is the IBM-supplied TSO single point of control (SPOC) application. These commands cannot be entered from the system console, the MTO, an end-user terminal, or an IMS AOI application program. Type-2 commands are not passed to the IMS AOI user exits and are also not logged to the IMS secondary master.

Almost all commands issued through the OM API (including the IMS type-1 commands) do not require a command recognition character (for example, a slash). If one is supplied, the OM API will ignore it. The only exception to this rule is the type-1 /EXIT command, which requires a slash when entered from a TSO SPOC application.

The command format with common keywords is as follows:

```
VERB RESOURCETYPE

KEYWORD (parameter parameter*)
```

Notes:
1. For some commands, KEYWORD is required, not optional.

The following is a list of the parameters with a short description of each.

**VERB** Identifies the action to be taken. The command verb can be abbreviated.

**RESOURCETYPE**
Identifies the type of resource the command acts upon. The following is a list of the resource types:

- **AREA** An area resource in an IMS.
- **DATAGRP** The members of a data group in an IMS.
- **DB** The database in an IMSplex.
- **DBDESC** The databases descriptor in an IMSplex.
- **IMSCON** IMS Connect resources.
- **IMS** Status and attributes of an IMS.
IMSPLEX
A group of IMS systems, CSL (SCI, OM, RM) members and CQSs.

LE Language Environment® runtime parameter definitions.

MEMBER
An IMSplex component (For example, an IMS, OM, RM, or SCI).

MSLINK
Logical links.

MSPLINK
Physical links.

MSNAME
Logical link paths.

ODBM
Open Database Manager (ODBM), a component of the Common Service Layer (CSL).

OLC An online change process.

OLREORG
An online reorganization of a HALDB partition.

OTMADESC
IMS Open Transaction Manager Access (OTMA) destination descriptor.

PGM A program in an IMS.

PGMDESC
A program descriptor in an IMS.

RM Resource Manager (RM) address space.

RTC A Fast Path routing code.

RTCDESC
A Fast Path routing code descriptor.

STRUCTURE
A resource structure managed by RM.

TRAN An IMS resource that is a message destination.

TRANDESC
An IMS descriptor that is a message destination.

KEYWORD()
Optional command elements, depending upon the specific command.

parameter
Identifies an IMS-defined value or an installation-defined or created resource. Most parameters can end with a wildcard (an asterisk - *). Parameters are listed in parentheses and must be replaced with parameter values. Multiple parameters are separated by a comma.

If an optional keyword is specified without any parameters listed within the parentheses, the keyword is assigned a null value and is treated as if the keyword was not specified at all.
Generic parameters

You can use generic parameters to specify a group of resources whose names match a 1- to 8-character alphanumeric mask. Generic parameters apply to both type-1 and type-2 commands.

A generic parameter can include one or more of the following wildcard characters:

* Matches zero or more characters. When used alone, it matches all the names for the keyword or resource.

% Matches exactly one character.

The following examples illustrate some uses of wildcard characters:

CO* Matches any string of any length that begins with CO. For instance: CO, COO, COOP

%%S Matches any 3-character string that ends with S. For instance: IMS, XYS

CO*%%1 Matches any string of 5 or more characters that starts with CO, ends with 1, and has at least 2 characters between CO and 1. For instance: CONV1, CONV21, CONV221, CONV23B1

Specifying an asterisk alone as the generic parameter (such as NAME(*)) is equivalent to specifying ALL (such as NAME(ALL)). However, depending on the installation, other generic parameters can mean ALL. For example, the generic parameter %%%% means ALL to an installation whose resource names are all 4 characters long. Some commands support NAME(*) and do not support NAME(ALL) for a wildcard name.

When a generic parameter is used, IMS uses a serial search of all resources to match the generic name. Using a serial search of all resources can have performance implications in larger systems.

The following table lists some of the type-2 commands and keywords that support generic parameters.

<table>
<thead>
<tr>
<th>Command</th>
<th>Keyword supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>DELETE</td>
<td>NAME with DB, DBDESC, PGM, PGMDESC, RTC, RTCDESC, TRAN, or TRANDESC</td>
</tr>
<tr>
<td>EXPORT</td>
<td>NAME with DB, DBDESC, PGM, PGMDESC, RTC, RTCDESC, TRAN, or TRANDESC</td>
</tr>
<tr>
<td>IMPORT</td>
<td>NAME with DB, DBDESC, PGM, PGMDESC, RTC, RTCDESC, TRAN, or TRANDESC</td>
</tr>
<tr>
<td>QUERY</td>
<td>NAME with AREA, DB, DBDESC, MSLINK, MSNAME, MSPLINK, PGM, PGMDESC, RTC, RTCDESC, TRAN, or TRANDESC</td>
</tr>
<tr>
<td>QUERY LE</td>
<td>LTERM, TRAN, USERID, PROGRAM</td>
</tr>
<tr>
<td>UPDATE</td>
<td>NAME with AREA, DB, DBDESC, MSLINK, MSNAME, MSPLINK, PGM, PGMDESC, RTC, RTCDESC, TRAN, or TRANDESC</td>
</tr>
</tbody>
</table>

Restriction: Generic parameters are not supported in a TRAN CLASS combination.

Related concepts:
Sending commands to the IMSplex

After setting up an IMSplex, you can issue commands using the TSO single point of control (SPOC) interface.

You can also write an automated operator program that can issue the same commands. The TSO SPOC provides integrated online help.

The IMS Application Menu provides a common interface to enable you to start applications such as TSO SPOC, Syntax Checker, IVP, and more.

**Important:** SPOC applications (including the TSO SPOC and the Batch SPOC utility) issue the CSLOMCMDC request. You therefore need to be aware of the parameters and return and reason codes of the CSLOMCMDC request.

If you write automated programs, those programs must include logic to handle the responses from the commands; the automated programs have to parse the XML statements.

Most commands that are issued to an IMSplex are issued to OM. The exceptions are:

- BPE commands, which can be issued directly to CSL members and to CQS.
- The SHUTDOWN command, which can be issued directly to SCI to shut down one or more CSL members.
- Query requests issued by a z/OS master console to the CSL.

In an IMSplex, the format, behavior, and responses to certain IMS commands have changed. Some IMS commands are no longer recoverable; others are not supported in an IMSplex. Some commands are supported only in an IMSplex.

**Related concepts:**

- Other sample applications verified by the IVP (Installation)
- Controlling IMS with the TSO SPOC application (Operations and Automation)
- IMS Application Menu (System Administration)

**Related reference:**

- CSLOMCMDC: command request (System Programming APIs)

Command processing in an IMSplex

In an IMSplex environment, IMS commands issued through OM can behave differently than when those same commands are issued to an individual IMS subsystem.

Type-2 commands can be issued only through the OM API. Type-1 IMS commands can be issued through the OM API or to individual IMS systems through end-user terminals, master terminals, system consoles, or AOI applications. The following sections describe some of the behavioral differences.
**Command routing**

Commands that are issued to OM are, by default, routed to all the IMSplex components that are active and have registered interest in processing those commands. If you want to route a command to one or more specific IMS systems in the IMSplex, use the \ROUTE() parameter on the command request.

OM selects one IMSplex member (that is, IMS or RM) that is registered for the command to be the command master for each command from the OM API. The command master performs global command actions where applicable. An XRF alternate system is not a command master candidate until it takes over.

Type-2 command responses may differ depending on which IMSplex member was the command master. For example, for a \QUERY \TRAN \NAME{\tranname} \QCNT {GT 1} \SHOW{ALL} command, only the command master returns the global queue counts, unless it does not have access to the shared queues (for example, the command master is local queues enabled).

If a command is routed to multiple IMS systems and the command fails on some of those systems as a result of environmental reasons (such as \DBR to an XRF alternate system), the overall OM return code will not reflect the environmental error.

If a command fails on all systems to which it is routed because of environmental reasons, IRC\_LIST and IRSN\_LIST\_NONE are produced. For type-1 commands, any error messages that are associated with the invalid environment errors will also be sent back for display. For type-2 commands, the return and reason code returned by the IMS system are from OM.

**Command behavior and the Resource Manager**

Depending on whether an IMSplex is defined with a Resource Manager (and there is a resource structure available to RM), command behavior can be affected. When a resource structure is not defined, resource status must be maintained on local IMS systems in the IMSplex. In this case, commands have only a local effect.

If RM is defined with a resource structure and STM is enabled in the IMSplex, RM maintains global resource information, including resource status, for nodes, LTERMS, and users. In this scenario, resource status is maintained both globally and locally. Usually, if a user signs off or a client shuts down, resources status is maintained globally but deleted locally. If you do not want TM resources to be updated in RM, you can specify STM=NO in the PROCLIB member, DFSDCxxx.

As an alternative to STM=NO, users can choose to disable resource sharing for static ISC resources only. If this option is set, the command status for static ISC resources is always considered local as if there were no resource structure. Commands processed for a static ISC node or subpool only modify local status. Status is not updated in the resource structure. The purpose of the option is to remove the unique name restriction for static ISC-related resources so that static ISC LTERM and subpool names can be active multiple times concurrently in an IMSplex.

Another behavior that is worth noting is how command processing clients process type-1 commands (related to nodes, LTERMS, and users) that are routed to the entire IMSplex. In general, OM chooses one of the command processing clients in the IMSplex to be the “master” to coordinate the processing of the type-1
commands. Whether the master (or a non-master) IMS will process a type-1 command depends on where the command resource status is kept. If the command resource status is kept in a resource structure, the type-1 command will usually be processed by a non-master client where the command resource is active. If the command resource is not active on any of the command processing clients in the IMSPlex, OM will still route the type-1 command to all clients in the IMSPlex, but only the master client will process the command. If the type-1 command is being routed to all the clients in the IMSPlex, command processing clients where the command resource is not active will reject the type-1 command.

Related reference:
- DFSDCxxx member of the IMS PROCLIB data set (System Definition)
- Initialization exit routine (DFSINTX0) (Exit Routines)

Command characteristics

Command characteristics and operations (the way commands actually work) are affected by terminal security defaults, command recoverability, and whether commands are logged to the secondary master terminal, supported from an AOI application, mirrored on the XRF alternate, supported from the XRF alternate, and supported from LU 6.2 devices.

Terminal security defaults for IMS type-1 commands

When neither RACF (RACF=NONE) nor the command security exit (DFSCCMD0) is used, all type-1 commands are allowed from the master terminal, except those that apply to the terminals from which the commands are issued. Only some commands are allowed from a remote terminal in this case.

The following table shows the terminal security defaults for IMS commands from the master terminal and remote terminals when neither RACF (RACF=NONE) nor the command security exit (DFSCCMD0) is used. Only the commands shown in the table are allowed in these environments.

Table 3. Terminal security defaults for IMS type-1 commands

<table>
<thead>
<tr>
<th>Master terminal</th>
<th>Remote terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>/ACTIVATE</td>
<td></td>
</tr>
<tr>
<td>/ALLOCATE</td>
<td></td>
</tr>
<tr>
<td>/ASSIGN</td>
<td></td>
</tr>
<tr>
<td>/BROADCAST</td>
<td>/BROADCAST</td>
</tr>
<tr>
<td>/CANCEL</td>
<td>/CANCEL</td>
</tr>
<tr>
<td>/CHANGE</td>
<td></td>
</tr>
<tr>
<td>/CHECKPOINT</td>
<td></td>
</tr>
<tr>
<td>/CLSDST</td>
<td></td>
</tr>
<tr>
<td>/COMPT</td>
<td></td>
</tr>
<tr>
<td>/CQCHKP</td>
<td></td>
</tr>
<tr>
<td>/CQUERY</td>
<td></td>
</tr>
<tr>
<td>/CQSET</td>
<td></td>
</tr>
<tr>
<td>/DBDUMP</td>
<td></td>
</tr>
<tr>
<td>/DBRECOVERY</td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Terminal security defaults for IMS type-1 commands (continued)

<table>
<thead>
<tr>
<th>Master terminal</th>
<th>Remote terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>/DELETE</td>
<td></td>
</tr>
<tr>
<td>/DEQUEUE</td>
<td></td>
</tr>
<tr>
<td>/DIAGNOSE</td>
<td>/DIAGNOSE</td>
</tr>
<tr>
<td>/DISPLAY</td>
<td>/END</td>
</tr>
<tr>
<td>/END</td>
<td>/END</td>
</tr>
<tr>
<td>/ERESTART</td>
<td></td>
</tr>
<tr>
<td>/EXCLUSIVE</td>
<td>/EXCLUSIVE</td>
</tr>
<tr>
<td>/EXIT</td>
<td>/EXIT</td>
</tr>
<tr>
<td>/FORMAT</td>
<td>/FORMAT</td>
</tr>
<tr>
<td>/HOLD</td>
<td>/HOLD</td>
</tr>
<tr>
<td>/IDLE</td>
<td></td>
</tr>
<tr>
<td>/INITIATE</td>
<td></td>
</tr>
<tr>
<td>/LOCK</td>
<td>/LOCK</td>
</tr>
<tr>
<td>/LOG</td>
<td>/LOG</td>
</tr>
<tr>
<td>/LOOPTEST</td>
<td>/LOOPTEST</td>
</tr>
<tr>
<td>/MODIFY</td>
<td></td>
</tr>
<tr>
<td>/MONITOR</td>
<td></td>
</tr>
<tr>
<td>/MSASSIGN</td>
<td></td>
</tr>
<tr>
<td>/MSVERIFY</td>
<td></td>
</tr>
<tr>
<td>/NRESTART</td>
<td></td>
</tr>
<tr>
<td>/OPNDST</td>
<td></td>
</tr>
<tr>
<td>/PSTOP</td>
<td></td>
</tr>
<tr>
<td>/PURGE</td>
<td></td>
</tr>
<tr>
<td>/QUIESCE</td>
<td></td>
</tr>
<tr>
<td>/RCLSDST</td>
<td>/RCLSDST</td>
</tr>
<tr>
<td></td>
<td>/RCOMPT</td>
</tr>
<tr>
<td>/RDISPLAY</td>
<td>/RDISPLAY</td>
</tr>
<tr>
<td>/RECOVER</td>
<td></td>
</tr>
<tr>
<td>/RELEASE</td>
<td>/RELEASE</td>
</tr>
<tr>
<td>/RESET</td>
<td>/RESET</td>
</tr>
<tr>
<td>/RMxxxxxxx</td>
<td>/RMLIST</td>
</tr>
<tr>
<td>/RSTART</td>
<td></td>
</tr>
<tr>
<td>/RTAKEOVER</td>
<td></td>
</tr>
<tr>
<td>/SECURE</td>
<td></td>
</tr>
<tr>
<td>/SET</td>
<td>/SET</td>
</tr>
<tr>
<td>/SIGN</td>
<td>/SIGN</td>
</tr>
<tr>
<td>/SMCOPY</td>
<td></td>
</tr>
<tr>
<td>/SSR</td>
<td></td>
</tr>
<tr>
<td>/START</td>
<td></td>
</tr>
<tr>
<td>/STOP</td>
<td></td>
</tr>
</tbody>
</table>
### Table 3. Terminal security defaults for IMS type-1 commands (continued)

<table>
<thead>
<tr>
<th>Master terminal</th>
<th>Remote terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>/SWITCH</td>
<td></td>
</tr>
<tr>
<td>/TERMINATE</td>
<td></td>
</tr>
<tr>
<td>/TEST</td>
<td>/TEST</td>
</tr>
<tr>
<td>/TRACE</td>
<td></td>
</tr>
<tr>
<td>/UNLOCK</td>
<td>/UNLOCK</td>
</tr>
<tr>
<td>/UPDATE</td>
<td></td>
</tr>
<tr>
<td>/VUNLOAD</td>
<td></td>
</tr>
</tbody>
</table>

### Commands recovered during emergency restart

Certain commands that successfully alter IMS resources are written to the system log as X’02’ or X’22’ log records and are reprocessed during emergency restart.

IMS type-1 commands that are recovered during emergency restart write an X’02’ log record. Type-2 commands that are recovered during emergency restart write an X’22’ log record. The following table lists the commands, along with the exceptions, that are recovered during emergency restart.

### Table 4. Commands recovered during emergency restart

<table>
<thead>
<tr>
<th>Command</th>
<th>Exceptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>/ASSIGN</td>
<td></td>
</tr>
<tr>
<td>/CHANGE</td>
<td>/CHANGE DESCRIPTOR</td>
</tr>
<tr>
<td>CREATE</td>
<td></td>
</tr>
<tr>
<td>/DELETE</td>
<td></td>
</tr>
<tr>
<td>DELETE</td>
<td></td>
</tr>
<tr>
<td>/END</td>
<td></td>
</tr>
<tr>
<td>/EXCLUSIVE</td>
<td></td>
</tr>
<tr>
<td>/EXIT</td>
<td></td>
</tr>
<tr>
<td>/HOLD</td>
<td></td>
</tr>
<tr>
<td>/LOCK</td>
<td>/LOCK LTERM, /LOCK NODE, /LOCK PTERM</td>
</tr>
<tr>
<td>/LOG</td>
<td></td>
</tr>
<tr>
<td>/MONITOR</td>
<td></td>
</tr>
<tr>
<td>/MSASSIGN</td>
<td></td>
</tr>
<tr>
<td>/PSTOP</td>
<td>/PSTOP LTERM</td>
</tr>
<tr>
<td>/PURGE</td>
<td>/PURGE APPC, /PURGE LTERM</td>
</tr>
<tr>
<td>/RELEASE</td>
<td></td>
</tr>
<tr>
<td>/RESTART</td>
<td></td>
</tr>
<tr>
<td>/SET</td>
<td>/SET LTERM, /SET TRAN</td>
</tr>
<tr>
<td>/SMCOPY</td>
<td></td>
</tr>
<tr>
<td>/START</td>
<td>/START APPC, /START ISOLOG, /START TRKARCH, /START PROG</td>
</tr>
<tr>
<td>/STOP</td>
<td>/STOP APPC</td>
</tr>
<tr>
<td>/TEST MFS</td>
<td>/TEST LINE, /TEST NODE, /TEST USER</td>
</tr>
</tbody>
</table>

Chapter 1. IMS command language overview 29
Table 4. Commands recovered during emergency restart (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Exceptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>/UNLOCK</td>
<td>/UNLOCK LTERM, /UNLOCK NODE, /UNLOCK PTERM,</td>
</tr>
<tr>
<td></td>
<td>/UNLOCK SYSTEM</td>
</tr>
<tr>
<td>UPDATE DB</td>
<td></td>
</tr>
<tr>
<td>UPDATE MSLINK</td>
<td></td>
</tr>
<tr>
<td>UPDATE MSNAME</td>
<td></td>
</tr>
<tr>
<td>UPDATE MSPLINK</td>
<td></td>
</tr>
<tr>
<td>UPDATE PGM</td>
<td></td>
</tr>
<tr>
<td>UPDATE RTC</td>
<td></td>
</tr>
<tr>
<td>UPDATE TRAN</td>
<td>UPDATE TRAN START(TRACE), UPDATE TRAN STOP(TRACE)</td>
</tr>
</tbody>
</table>

**Restriction:** If an IMS outage (abend, modify, or cancel of IMS) occurs immediately after a command is entered, the command status might not be carried across an emergency restart or XRF takeover.

The command log records are logged asynchronously (no check write or wait write). If there is no other IMS activity that forces the log buffer to be written to the OLDS or WADS data set, the status set by the command, for restart purposes, did not occur.

There are many events in IMS where log records are check-written to the log. Any one of these events subsequent to the command causes the command log record to be written to the OLDS or WADS data set.

Command processing in a dynamic resource definition environment

IMS processes commands differently in a dynamic resource definition (DRD) environment than in a non-DRD environment.

If you are running without DRD enabled, the control blocks that manage the resources (DDIRs, PDIRs, SMBs, and RCTEs) are loaded from the MODBLKS data set at cold start. If a type-1 command is issued to change the attribute of a resource (such as the database access type or the transaction class), the internal control blocks are updated and the changes are recovered across a warm or emergency restart. If you perform a cold start, however, the control blocks are reloaded from the MODBLKS data set, so the updated attributes revert to the original values unless you have updated your MODBLKS data set.

If you are running with DRD enabled, any changes that you make to resource definitions by using type-1 or type-2 commands persist across a warm or emergency restart. These changes also persist across a cold start if the updated resource definitions are exported to either a resource definition data set (RDDS) or the IMSRSC repository, and then imported from the RDDS or the repository during cold start. When you export the resource definitions to an RDDS or the repository, all the current attribute values are exported. If you change the value of one of the attributes by using a type-1 or type-2 command (such as the database access type or the transaction class), the updated attribute is exported. The updated attribute values are then imported during cold start if automatic import is enabled.

Related concepts:
**IMS type-1 commands logged to the secondary master terminal**

The secondary master terminal provides a hardcopy log of system activity, including checkpoint information and error messages.

If the hardcopy logging facility has been selected and not disabled (using the /SMCOPY command), certain IMS commands and responses are logged on the secondary master terminal.

You can select whether only commands issued from the master terminal are logged, only commands entered from other terminals are logged, or both are logged. Only the commands listed in the following table are logged to the secondary master terminal.

*Table 5. IMS type-1 commands logged to the secondary master terminal*

<table>
<thead>
<tr>
<th>Commands</th>
<th>Commands (continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>/ACTIVATE</td>
<td>/QUIESCE</td>
</tr>
<tr>
<td>/ALLOCATE</td>
<td>/RCLSDST</td>
</tr>
<tr>
<td>/ASSIGN</td>
<td>/RCOMPT</td>
</tr>
<tr>
<td>/CHECKPOINT</td>
<td>/RECOVER</td>
</tr>
<tr>
<td>/CLSDST</td>
<td>/RMCHANGE</td>
</tr>
<tr>
<td>/COMPT</td>
<td>/RMDELETE</td>
</tr>
<tr>
<td>/CQCHKPT</td>
<td>/RMGENJCL</td>
</tr>
<tr>
<td>/CQQUERY</td>
<td>/RMINIT</td>
</tr>
<tr>
<td>/CQSET</td>
<td>/RMLIST</td>
</tr>
<tr>
<td>/DBDUMP</td>
<td>/RMNOTIFY</td>
</tr>
<tr>
<td>/DBRECOVERY</td>
<td>/RSTART</td>
</tr>
<tr>
<td>/DELETE</td>
<td>/RTAKEOVER</td>
</tr>
<tr>
<td>/DEQUEUE</td>
<td>/SECURE</td>
</tr>
<tr>
<td>/DIAGNOSE</td>
<td>/START</td>
</tr>
<tr>
<td>/DISPLAY</td>
<td>/STOP</td>
</tr>
<tr>
<td>/IDLE</td>
<td>/SWITCH</td>
</tr>
<tr>
<td>/INITIATE OLREORG</td>
<td>/TERMINATE OLREORG</td>
</tr>
<tr>
<td>/MODIFY</td>
<td>/TRACE</td>
</tr>
<tr>
<td>/MONITOR</td>
<td>/UPDATE MSLINK</td>
</tr>
<tr>
<td>/MSASSIGN</td>
<td>/UPDATE OLREORG</td>
</tr>
<tr>
<td>/OPNDST</td>
<td>/UNLOCK SYSTEM</td>
</tr>
<tr>
<td>/PSTOP</td>
<td>/VUNLOAD</td>
</tr>
<tr>
<td>/PURGE</td>
<td></td>
</tr>
</tbody>
</table>

**IMS type-1 commands supported from an AO application**

Automated operator (AO) applications are application programs that issue IMS operator commands using DL/I calls.

AO applications can use two different DL/I calls to issue commands: CMD and ICMD. This section lists which IMS commands can be issued using each of these calls and describes command security for AO applications.

AO applications using the CMD and ICMD call can use RACF, DFSCCMD0, or both for security.
The TSO SPOC and REXX SPOC API are IMS applications that use OM API and cannot issue commands through DL/I calls.

Issuing IMS type-1 commands by using the CMD call

If you are using the CMD call to issue IMS commands, transactions can be defined as AO applications with AOI= on the TRANSACT system definition macro. AO transactions are invoked in the same way any IMS transaction is invoked. AO transactions run as IMS applications with the authority to issue a planned series of IMS commands. For example, an AO application can be called in by an AO transaction after a normal restart of IMS to start IMS resources. The AO application would consist of those commands regularly used by the master terminal operator (MTO) after IMS is active. Fast Path exclusive transactions cannot be defined as AO transactions.

When RACF (or an equivalent product) is used for type-1 AOI security, the AOI= parameter on the TRANSACT macro defines which transactions can issue commands. RACF (or an equivalent product) defines which commands are allowed for each authorized transaction. These definitions in RACF give control to the authorized user who entered the transaction or to the transaction name or the command name itself. The AOI= parameter on the TRANSACT macro contains the controlling specification.

The following table shows the IMS commands that can be issued in an AO application using the CMD call. Each row includes an IMS command, restrictions, and the application environment (MPP or BMP running under DB/DC, or MPP or BMP running under DCCTL).

<table>
<thead>
<tr>
<th>IMS command</th>
<th>Restrictions</th>
<th>Application environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>/ACTIVATE</td>
<td>simple form (no keywords), SNAPQ, or STATISTICS</td>
<td>MPP or BMP running under DB/DC</td>
</tr>
<tr>
<td>/ALLOCATE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/ASSIGN</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/BROADCAST</td>
<td>simple form (no keywords), SNAPQ, or STATISTICS</td>
<td>MPP or BMP running under DB/DC</td>
</tr>
<tr>
<td>/CHANGE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/CHECKPOINT</td>
<td>simple form (no keywords), SNAPQ, or STATISTICS</td>
<td>MPP or BMP running under DB/DC</td>
</tr>
<tr>
<td>/CLSDST</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/COMPT</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/CQCHKPT</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/CQUERY</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/CQSET</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/DBDUMP</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/DBRECOVERY</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/DELETE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/DEQUEUE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IMS command</td>
<td>Restrictions</td>
<td>Application environment</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MPP or BMP running under</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DB/DC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MPP or BMP running under</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DCCTL</td>
</tr>
<tr>
<td>/DIAGNOSE</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>/DISPLAY</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>/END</td>
<td>with keywords</td>
<td>Yes</td>
</tr>
<tr>
<td>/EXCLUSIVE</td>
<td>with keywords</td>
<td>Yes</td>
</tr>
<tr>
<td>/EXIT</td>
<td>with LINE and NODE keywords</td>
<td>Yes</td>
</tr>
<tr>
<td>/FORMAT</td>
<td>with LTERM key</td>
<td>Yes</td>
</tr>
<tr>
<td>/IDLE</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>/INITIATE</td>
<td>OLREORG</td>
<td>Yes</td>
</tr>
<tr>
<td>/LOCK</td>
<td>without LTERM, NODE, or PT</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>ERM keywords</td>
<td></td>
</tr>
<tr>
<td>/LOG</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>/LOOPTES</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>/MONITOR</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>/MSASSIGN</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>/OPNDST</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>/PSTOP</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>/PURGE</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>/QUIESCE</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>/RDISPLAY</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>/RECOVER</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>/RMCHANGE</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>/RMDELETE</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>/RMGENJCL</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>/RMINIT</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>/RMLIST</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>/RMNOTIFY</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>/RESTART</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>/SECURE</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>/SMCOPY</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>/SSR</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>/START</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>/STOP</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>/SWITCH</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>/TERMINATE</td>
<td>OLREORG</td>
<td>Yes</td>
</tr>
<tr>
<td>/TEST MFS</td>
<td>with LINE/NODE keywords</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Chapter 1. IMS command language overview 33
Table 6. IMS type-1 commands supported from an AO application using CMD (continued)

<table>
<thead>
<tr>
<th>IMS command</th>
<th>Restrictions</th>
<th>Application environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>/TRACE</td>
<td>without LTERM, NODE, PTERM, or SYSTEM keywords</td>
<td>MPP or BMP running under DB/DC</td>
</tr>
<tr>
<td>/UNLOCK</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/VUNLOAD</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

If the 3270 message facility service (MFS) bypass option is selected, the output message specified is MODNAME=DFSEDTN, and the terminal is in preset mode, then the only command recognized by IMS is the /RESET command issued from an unformatted screen. All other commands are passed to the application program.

**Issuing IMS type-1 commands by using the ICMD call**

The following table shows by application program type the commands that can be issued in an AO application using the ICMD call. This includes DRA thread running under DBCTL or DB/DC; BMP running under DBCTL; MPP, BMP, IFP running under DB/DC; and MPP, BMP, or IFP running under DCCTL. Commands that cause the IMS control region to terminate, such as /CHE FREEZE, cannot be issued.

You can secure the commands issued by an ICMD call using RACF (or the equivalent) or the Command Authorization user exit, DFSCCMD0. RACF lets you specify which commands the applications can issue. DFSCCMD0 and RACF let you do authorization checking during ICMD processing. The authorization checking can be controlled either through the transaction name, the command name, or the user ID of the signed on user. The AOI= parameter on the TRANSACT macro allows you to specify which authorization checking is to be used.

Table 7. IMS type-1 commands supported from an AO application using ICMD

<table>
<thead>
<tr>
<th>IMS Command</th>
<th>Application environment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DBRA thread running under DBCTL or DB/DC</td>
</tr>
<tr>
<td>/ACTIVATE</td>
<td>N/A</td>
</tr>
<tr>
<td>/ALLOCATE</td>
<td>N/A</td>
</tr>
<tr>
<td>/ASSIGN</td>
<td>N/A</td>
</tr>
<tr>
<td>/BROADCAST</td>
<td>N/A</td>
</tr>
<tr>
<td>/CANCEL</td>
<td>N/A</td>
</tr>
<tr>
<td>/CHANGE</td>
<td>Yes</td>
</tr>
<tr>
<td>/CHECKPOINT</td>
<td>Yes</td>
</tr>
<tr>
<td>(simple form)</td>
<td></td>
</tr>
<tr>
<td>/CHECKPOINT</td>
<td>N/A</td>
</tr>
<tr>
<td>SNAPQ</td>
<td></td>
</tr>
</tbody>
</table>
## Table 7. IMS type-1 commands supported from an AO application using ICMD (continued)

<table>
<thead>
<tr>
<th>IMS Command</th>
<th>Application environment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DBRA thread running under DBCTL or DB/DC</td>
</tr>
<tr>
<td>/CHECKPOINT</td>
<td>Yes</td>
</tr>
<tr>
<td>/CLSDST</td>
<td>N/A</td>
</tr>
<tr>
<td>/COMPT</td>
<td>N/A</td>
</tr>
<tr>
<td>/CQCHKPT</td>
<td>N/A</td>
</tr>
<tr>
<td>/CQQUERY</td>
<td>N/A</td>
</tr>
<tr>
<td>/CQSET</td>
<td>N/A</td>
</tr>
<tr>
<td>/DBDUMP</td>
<td>Yes</td>
</tr>
<tr>
<td>/DBRECOVER</td>
<td>Yes</td>
</tr>
<tr>
<td>/DELETE</td>
<td>Yes</td>
</tr>
<tr>
<td>/DEQUEUE</td>
<td>Yes</td>
</tr>
<tr>
<td>/DIAGNOSE</td>
<td>Yes</td>
</tr>
<tr>
<td>/DISPLAY</td>
<td>Yes</td>
</tr>
<tr>
<td>/END</td>
<td>N/A</td>
</tr>
<tr>
<td>/ERESTART</td>
<td>No</td>
</tr>
<tr>
<td>/EXCLUSIVE</td>
<td>N/A</td>
</tr>
<tr>
<td>/EXIT</td>
<td>N/A</td>
</tr>
<tr>
<td>/FORMAT</td>
<td>N/A</td>
</tr>
<tr>
<td>/HOLD</td>
<td>N/A</td>
</tr>
<tr>
<td>/IDLE</td>
<td>N/A</td>
</tr>
<tr>
<td>/INITIATE OLREORG</td>
<td>Yes</td>
</tr>
<tr>
<td>/LOCK DB</td>
<td>Yes</td>
</tr>
<tr>
<td>/LOCK PGM</td>
<td>Yes</td>
</tr>
<tr>
<td>/LOCK TRAN</td>
<td>N/A</td>
</tr>
<tr>
<td>/LOG</td>
<td>Yes</td>
</tr>
<tr>
<td>/LOOPTEST</td>
<td>N/A</td>
</tr>
<tr>
<td>/MODIFY</td>
<td>No</td>
</tr>
<tr>
<td>/MONITOR</td>
<td>N/A</td>
</tr>
<tr>
<td>/MSASSIGN</td>
<td>N/A</td>
</tr>
<tr>
<td>/MSVERIFY</td>
<td>N/A</td>
</tr>
<tr>
<td>/NRESTART</td>
<td>No</td>
</tr>
<tr>
<td>/OPNDST</td>
<td>N/A</td>
</tr>
<tr>
<td>/PSTOP</td>
<td>Yes</td>
</tr>
<tr>
<td>/PURGE</td>
<td>N/A</td>
</tr>
<tr>
<td>/QUIESCE</td>
<td>N/A</td>
</tr>
<tr>
<td>/RCLSDST</td>
<td>N/A</td>
</tr>
</tbody>
</table>
### Table 7. IMS type-1 commands supported from an AO application using Icmd (continued)

<table>
<thead>
<tr>
<th>IMS Command</th>
<th>Application environment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DBRA thread running under DBCTL or DB/DC</td>
</tr>
<tr>
<td>/RCOMPT</td>
<td>N/A</td>
</tr>
<tr>
<td>/RDISPLAY</td>
<td>N/A</td>
</tr>
<tr>
<td>/RECOVER</td>
<td>Yes</td>
</tr>
<tr>
<td>/RELEASE</td>
<td>N/A</td>
</tr>
<tr>
<td>/RESET</td>
<td>N/A</td>
</tr>
<tr>
<td>/RMCHANGE</td>
<td>Yes</td>
</tr>
<tr>
<td>/RMDELETE</td>
<td>Yes</td>
</tr>
<tr>
<td>/RMGENJCL</td>
<td>Yes</td>
</tr>
<tr>
<td>/RMINIT</td>
<td>Yes</td>
</tr>
<tr>
<td>/RMLIST</td>
<td>Yes</td>
</tr>
<tr>
<td>/RMNOTIFY</td>
<td>Yes</td>
</tr>
<tr>
<td>/RSTART</td>
<td>N/A</td>
</tr>
<tr>
<td>/RTAKEOVER</td>
<td>No</td>
</tr>
<tr>
<td>/SECURE</td>
<td>N/A</td>
</tr>
<tr>
<td>/SET</td>
<td>N/A</td>
</tr>
<tr>
<td>/SIGN</td>
<td>N/A</td>
</tr>
<tr>
<td>/SMCOPY</td>
<td>N/A</td>
</tr>
<tr>
<td>/SSR</td>
<td>No</td>
</tr>
<tr>
<td>/START</td>
<td>Yes</td>
</tr>
<tr>
<td>/STOP</td>
<td>Yes</td>
</tr>
<tr>
<td>/SWITCH</td>
<td>Yes</td>
</tr>
<tr>
<td>/TERMINATE</td>
<td>Yes</td>
</tr>
<tr>
<td>OLREORG</td>
<td></td>
</tr>
<tr>
<td>/TEST MFS LINE or NODE or USER</td>
<td>N/A</td>
</tr>
<tr>
<td>/TRACE</td>
<td>Yes</td>
</tr>
<tr>
<td>/UNLOCK DB</td>
<td>Yes</td>
</tr>
<tr>
<td>/UNLOCK PGM</td>
<td>Yes</td>
</tr>
<tr>
<td>/UNLOCK TRAN</td>
<td>N/A</td>
</tr>
<tr>
<td>/VUNLOAD</td>
<td>Yes</td>
</tr>
</tbody>
</table>

The following commands and keywords are not permitted:

- /CHECKPOINT keywords ABDUMP, DUMPQ, FREEZE, PURGE, and QUIESCE
- The commands /END, /EXIT, and /EXCLUSIVE if they have no keywords
- /LOCK keywords LTERM, NODE, and PTERM
- /UNLOCK keywords LTERM, NODE, PTERM, and SYSTEM

Related concepts:

- Tools for automated operations (Operations and Automation)
Command security when using OM

For IMS command security, you have your choice of OM command security using RACF or equivalent, or IMS command security.

**Recommendation:** Use OM command security instead of IMS security.

By allowing OM to perform the security checks, commands which fail security authorization are not routed to IMS, reducing processing overhead and network traffic. When IMS command security is used, it is up to the user to ensure that all IMS systems use the same security profiles or user exits. If IMS systems in the same IMSpex use different security rules, the results of command security checking may be unpredictable.

**Related reference:**

[IMS commands, RACF access authorities and resource names table (System Administration)]

Commands mirrored on an XRF alternate

Certain commands that successfully alter IMS resources are written to the system log as X'02' or X'22' log records.

IMS type-1 commands that alter resources write an X'02' log record. Type-2 commands that alter resources write an X'22' log record. In an XRF environment, the X'02' or X'22' log records are read and processed by the alternate system as it tracks the active system. The effect of these commands is mirrored on the alternate system when it takes over and becomes the active system. These commands, along with exceptions, are listed in the following table.

**Table 8. List of IMS commands mirrored on an XRF alternate**

<table>
<thead>
<tr>
<th>Command</th>
<th>Exceptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>/ASSIGN</td>
<td>/ASSIGN is mirrored only if the assignment does not involve the master terminal.</td>
</tr>
<tr>
<td>/CHANGE</td>
<td></td>
</tr>
<tr>
<td>CREATE</td>
<td></td>
</tr>
<tr>
<td>/DELETE</td>
<td></td>
</tr>
<tr>
<td>DELETE</td>
<td></td>
</tr>
<tr>
<td>/END</td>
<td></td>
</tr>
<tr>
<td>/EXCLUSIVE</td>
<td></td>
</tr>
<tr>
<td>/EXIT</td>
<td></td>
</tr>
<tr>
<td>/HOLD</td>
<td></td>
</tr>
<tr>
<td>/LOCK</td>
<td></td>
</tr>
<tr>
<td>/LOG</td>
<td></td>
</tr>
<tr>
<td>/MONITOR</td>
<td></td>
</tr>
<tr>
<td>/MSASSIGN</td>
<td></td>
</tr>
<tr>
<td>/PSTOP</td>
<td>/PSTOP REGION</td>
</tr>
<tr>
<td>/PURGE</td>
<td>/PURGE APPC</td>
</tr>
</tbody>
</table>
### Table 8. List of IMS commands mirrored on an XRF alternate (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Exceptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>/RELEASE</td>
<td></td>
</tr>
<tr>
<td>/RESET</td>
<td></td>
</tr>
<tr>
<td>/RSTART</td>
<td></td>
</tr>
<tr>
<td>/SECURE</td>
<td>/SECURE APPC</td>
</tr>
<tr>
<td>/SET</td>
<td></td>
</tr>
<tr>
<td>/SMCOPY</td>
<td></td>
</tr>
<tr>
<td>/START</td>
<td>/START APPC, /START REGION</td>
</tr>
<tr>
<td>/STOP</td>
<td>/STOP APPC, /STOP REGION</td>
</tr>
<tr>
<td>/TEST</td>
<td>/TEST is usually not mirrored on an XRF alternate system. However, /TEST MFS is mirrored if the alternate system is tracking the state of the terminal that entered the /TEST MFS command.</td>
</tr>
<tr>
<td>/TRACE</td>
<td>/TRACE is usually not mirrored on an XRF alternate system. However, /TRACE SET LINE and /TRACE SET LINK are mirrored for lines and links that can be restarted. /TRACE SET NODE is mirrored for all node types.</td>
</tr>
<tr>
<td>/UNLOCK</td>
<td>/UNLOCK SYSTEM</td>
</tr>
<tr>
<td>UPDATE DB</td>
<td></td>
</tr>
<tr>
<td>UPDATE DBDESC</td>
<td></td>
</tr>
<tr>
<td>UPDATE MSLINK</td>
<td></td>
</tr>
<tr>
<td>UPDATE MSNAME</td>
<td></td>
</tr>
<tr>
<td>UPDATE MSPLINK</td>
<td></td>
</tr>
<tr>
<td>UPDATE PGM</td>
<td></td>
</tr>
<tr>
<td>UPDATE PGMDESC</td>
<td></td>
</tr>
<tr>
<td>UPDATE RTC</td>
<td></td>
</tr>
<tr>
<td>UPDATE RTCDESC</td>
<td></td>
</tr>
<tr>
<td>UPDATE TRAN</td>
<td>UPDATE TRAN START(TRACE), UPDATE TRAN STOP(TRACE)</td>
</tr>
<tr>
<td>UPDATE TRANDESC</td>
<td></td>
</tr>
</tbody>
</table>

### Commands supported on the XRF alternate

The commands that are valid on the XRF alternate, along with the exceptions, are shown in the following table.

### Table 9. List of commands supported on the XRF alternate

<table>
<thead>
<tr>
<th>Command</th>
<th>Exceptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>/ACTIVATE</td>
<td></td>
</tr>
<tr>
<td>/CANCEL</td>
<td></td>
</tr>
<tr>
<td>/CHANGE</td>
<td></td>
</tr>
<tr>
<td>/CLSDST</td>
<td></td>
</tr>
<tr>
<td>/COMPT</td>
<td></td>
</tr>
<tr>
<td>/DISPLAY</td>
<td>/DISPLAY QCNT</td>
</tr>
<tr>
<td>Command</td>
<td>Exceptions</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------------------------------------------</td>
</tr>
<tr>
<td>/END</td>
<td></td>
</tr>
<tr>
<td>/ERESTART</td>
<td></td>
</tr>
<tr>
<td>/FORMAT</td>
<td></td>
</tr>
<tr>
<td>/IDLE</td>
<td></td>
</tr>
<tr>
<td>/NRESTART</td>
<td></td>
</tr>
<tr>
<td>/OPNDST</td>
<td></td>
</tr>
<tr>
<td>/PSTOP REGION</td>
<td></td>
</tr>
<tr>
<td>QUERY AREA</td>
<td></td>
</tr>
<tr>
<td>QUERY DB</td>
<td>QUERY DB SHOW(WORK)</td>
</tr>
<tr>
<td></td>
<td>QUERY DB SHOW(DEFN)</td>
</tr>
<tr>
<td></td>
<td>QUERY DB SHOW(DEFN,IMSID)</td>
</tr>
<tr>
<td></td>
<td>QUERY DB SHOW(DEFN,GLOBAL)</td>
</tr>
<tr>
<td></td>
<td>QUERY DB SHOW(IMSID)</td>
</tr>
<tr>
<td>QUERY DBDESC</td>
<td>QUERY DBDESC SHOW(DEFN)</td>
</tr>
<tr>
<td></td>
<td>QUERY DBDESC SHOW(DEFN,IMSID)</td>
</tr>
<tr>
<td></td>
<td>QUERY DBDESC SHOW(DEFN,GLOBAL)</td>
</tr>
<tr>
<td></td>
<td>QUERY DBDESC SHOW(IMSID)</td>
</tr>
<tr>
<td>QUERY IMS</td>
<td></td>
</tr>
<tr>
<td>QUERY IMSPLEX</td>
<td></td>
</tr>
<tr>
<td>QUERY LTERM</td>
<td>QUERY LTERM SHOW(GLOBAL)</td>
</tr>
<tr>
<td>QUERY MEMBER</td>
<td></td>
</tr>
<tr>
<td>QUERY NODE</td>
<td>QUERY NODE SHOW(GLOBAL)</td>
</tr>
<tr>
<td>QUERY OTMADESC</td>
<td></td>
</tr>
<tr>
<td>QUERY OTMATI</td>
<td></td>
</tr>
<tr>
<td>QUERY PGM</td>
<td>QUERY PGM SHOW(WORK)</td>
</tr>
<tr>
<td></td>
<td>QUERY PGM SHOW(DEFN)</td>
</tr>
<tr>
<td></td>
<td>QUERY PGM SHOW(DEFN,IMSID)</td>
</tr>
<tr>
<td></td>
<td>QUERY PGM SHOW(DEFN,GLOBAL)</td>
</tr>
<tr>
<td></td>
<td>QUERY PGM SHOW(IMSID)</td>
</tr>
<tr>
<td>QUERY PGMDESC</td>
<td>QUERY PGMDESC SHOW(DEFN)</td>
</tr>
<tr>
<td></td>
<td>QUERY PGMDESC SHOW(DEFN,IMSID)</td>
</tr>
<tr>
<td></td>
<td>QUERY PGMDESC SHOW(DEFN,GLOBAL)</td>
</tr>
<tr>
<td></td>
<td>QUERY PGMDESC SHOW(IMSID)</td>
</tr>
<tr>
<td>QUERY RTC</td>
<td>QUERY RTC SHOW(WORK)</td>
</tr>
<tr>
<td></td>
<td>QUERY RTC SHOW(DEFN)</td>
</tr>
<tr>
<td></td>
<td>QUERY RTC SHOW(DEFN,IMSID)</td>
</tr>
<tr>
<td></td>
<td>QUERY RTC SHOW(DEFN,GLOBAL)</td>
</tr>
<tr>
<td></td>
<td>QUERY RTC SHOW(IMSID)</td>
</tr>
<tr>
<td>QUERY RTCDESC</td>
<td>QUERY RTCDESC SHOW(DEFN)</td>
</tr>
<tr>
<td></td>
<td>QUERY RTCDESC SHOW(DEFN,IMSID)</td>
</tr>
<tr>
<td></td>
<td>QUERY RTCDESC SHOW(DEFN,GLOBAL)</td>
</tr>
<tr>
<td></td>
<td>QUERY RTCDESC SHOW(IMSID)</td>
</tr>
<tr>
<td>QUERY TRAN</td>
<td>QUERY TRAN SHOW(WORK)</td>
</tr>
<tr>
<td></td>
<td>QUERY TRAN SHOW(DEFN)</td>
</tr>
<tr>
<td></td>
<td>QUERY TRAN SHOW(DEFN,IMSID)</td>
</tr>
<tr>
<td></td>
<td>QUERY TRAN SHOW(DEFN,GLOBAL)</td>
</tr>
<tr>
<td></td>
<td>QUERY TRAN SHOW(IMSID)</td>
</tr>
</tbody>
</table>
Table 9. List of commands supported on the XRF alternate (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Exceptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUER Y TRANDESC</td>
<td>QUER Y TRANDESC SHOW(DEFN)</td>
</tr>
<tr>
<td></td>
<td>QUER Y TRANDESC SHOW(DEFN, IMSID)</td>
</tr>
<tr>
<td></td>
<td>QUER Y TRANDESC SHOW(DEFN, GLOBAL)</td>
</tr>
<tr>
<td></td>
<td>QUER Y TRANDESC SHOW(IMSID)</td>
</tr>
<tr>
<td>QUER Y USER</td>
<td>QUER Y USER SHOW(GLOBAL)</td>
</tr>
<tr>
<td>/RC1SDST</td>
<td></td>
</tr>
<tr>
<td>/RCOMPT</td>
<td></td>
</tr>
<tr>
<td>/RDISPLAY</td>
<td></td>
</tr>
<tr>
<td>REFRESH USEREXIT</td>
<td></td>
</tr>
<tr>
<td>/RMLIST</td>
<td></td>
</tr>
<tr>
<td>/SECURE</td>
<td></td>
</tr>
<tr>
<td>/SMCOPY</td>
<td></td>
</tr>
<tr>
<td>/START DC</td>
<td></td>
</tr>
<tr>
<td>/START LUNAME</td>
<td></td>
</tr>
<tr>
<td>/START REGION</td>
<td></td>
</tr>
<tr>
<td>/START RTCODE</td>
<td></td>
</tr>
<tr>
<td>/START SURVEILLANCE</td>
<td></td>
</tr>
<tr>
<td>/STOP</td>
<td></td>
</tr>
<tr>
<td>/STOP BACKUP</td>
<td></td>
</tr>
<tr>
<td>/STOP DC</td>
<td></td>
</tr>
<tr>
<td>/STOP LUNAME</td>
<td></td>
</tr>
<tr>
<td>/STOP REGION</td>
<td></td>
</tr>
<tr>
<td>/STOP RTCODE</td>
<td></td>
</tr>
<tr>
<td>/STOP SURVEILLANCE</td>
<td></td>
</tr>
<tr>
<td>/SWITCH</td>
<td></td>
</tr>
<tr>
<td>/TEST</td>
<td></td>
</tr>
<tr>
<td>/TRACE</td>
<td></td>
</tr>
<tr>
<td>UPDATE MSLINK TKOTRC( )</td>
<td></td>
</tr>
<tr>
<td>UPDATE TRAN SET(MAXRGN)</td>
<td></td>
</tr>
<tr>
<td>UPDATE TRA N</td>
<td>START</td>
</tr>
</tbody>
</table>

Commands and keywords supported on an RSR tracking subsystem

Only commands and keywords required to manage RSR tracking are supported on
an RSR tracking subsystem.

For example, commands and keywords relating to transactions are not supported,
because transactions are not allowed on a tracking subsystem. See Table 10 on page
41 for the commands and keywords supported on an IMS DB/DC tracking
subsystem. The subset of commands and keywords relating to databases are the
only ones allowable on a DBCTL tracking subsystem.
Commands entered on an IMS tracking subsystem that are not supported on a tracking subsystem result in message

`DFS136I COMMAND xxxxxxxxxx INVALID FOR TRACKER`

Commands entered on a DCCTL tracking subsystem that are not supported on the tracking subsystem or on DCCTL result in message

`DFS136I COMMAND xxxxxxxxxx INVALID FOR DCCTL`

Keywords entered on an IMS tracking subsystem that are not supported on a tracking subsystem result in message

`DFS110 COMMAND KEYWORD yyyyyyyyyyyyy INVALID FOR TRACKER`

Keywords entered on a DBCTL or DCCTL tracking subsystem that are not supported on a tracking subsystem or with DBCTL or DCCTL result in message

`DFS110 KEYWORD yyyyyyyyyyyyy INVALID FOR DBCTL|DCCTL`

The following table lists the commands and keywords that are allowed on an IMS DB/DC RSR tracking. The table also includes comments.

<table>
<thead>
<tr>
<th>Commands</th>
<th>Keywords</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>/ACTIVATE</td>
<td>NODE</td>
<td></td>
</tr>
<tr>
<td>/ASSIGN</td>
<td>COMPONENT, ICOMPONENT, LINE, LTERM, NODE, PTERM, USER</td>
<td></td>
</tr>
<tr>
<td>/BROADCAST</td>
<td>ACTIVE, LINE, LTERM, NODE, PTERM, USER</td>
<td>Non-VTAM lines are not supported.</td>
</tr>
<tr>
<td>/CANCEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/CHANGE</td>
<td>CPLOG</td>
<td>Specifies the number of system log records between system-generated checkpoints.</td>
</tr>
<tr>
<td>/CHECKPOINT</td>
<td>ABDUMP, DUMPQ, FREEZE, SNAPQ, STATISTICS</td>
<td>Simple checkpoint (that is, with no keywords) is also supported.</td>
</tr>
<tr>
<td>/CLSDST</td>
<td>NODE, USER</td>
<td></td>
</tr>
<tr>
<td>/COMPT</td>
<td>CNS, CRD, NODE, NOTRDY, PCH, PDS, PRT, RDR, READY, TDS, UDS, USER, VID, WPM1, WPM2, WPM3</td>
<td></td>
</tr>
<tr>
<td>/DBRECOVERY</td>
<td>AREA, DATABASE, DATAGROUP, LOCAL, NOFEOV</td>
<td>Command only valid for a DATABASE level tracking system. Keywords only valid for areas and databases tracked at the DATABASE level.</td>
</tr>
<tr>
<td>/DEQUEUE</td>
<td>LINE, LTERM, NODE, PTERM, PURGE, PURGE1, USER</td>
<td></td>
</tr>
<tr>
<td>/DIAGNOSE</td>
<td>ADDRESS, AREA, BLOCK, DB, JOBNAME, LINE, LINK, LTERM, MODULE, NODE, OPTION, PGM, REGION, SET, SHOW, SNAP, TRAN, USER</td>
<td></td>
</tr>
</tbody>
</table>
Table 10. Commands and keywords allowable on an IMS DB/DC RSR tracking subsystem (continued)

<table>
<thead>
<tr>
<th>Commands</th>
<th>Keywords</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>/DISPLAY</td>
<td>ACTIVE, AREA, ASSIGNMENT, DATABASE, DBD, DC, LINE, LTERM, MODE, MODIFY, MONITOR, NODE, OLDS, POOL, PTERM, SHUTDOWN STATUS, TRACE, TRACKING STATUS, USER, XTRC</td>
<td>• For /DISPLAY POOL ALL, only pools needed on the tracking subsystem are displayed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For /DISPLAY POOL pool, some parameters are not supported.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For /DISPLAY STATUS with no keywords, only resources needed on a tracking subsystem are displayed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For /DISPLAY TRACE ALL, only resources needed on a tracking subsystem are displayed.</td>
</tr>
<tr>
<td>/END</td>
<td>LINE, NODE, PTERM, USER</td>
<td></td>
</tr>
<tr>
<td>/ERESTART</td>
<td>BUILDQ, CHECKPOINT, COLDBASE, COLDCOMM, COLDSYS, FORMAT, NOPASSWORD, NOTERMINAL, NOUSER, OVERRIDE, PASSWORD, TERMINAL, USER</td>
<td></td>
</tr>
<tr>
<td>/FORMAT</td>
<td>LTERM</td>
<td></td>
</tr>
<tr>
<td>/IDLE</td>
<td>LINE, NODE, NOSHUT</td>
<td></td>
</tr>
<tr>
<td>/LOG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/MODIFY</td>
<td>ABORT, COMMIT, LTERM, PASSWORD, PREPARE, TERMINAL</td>
<td>The following parameters are supported: ACBLIB, BLDL, FMFLIB, MODLIBS, and RACF.</td>
</tr>
<tr>
<td>/NRESTART</td>
<td>BUILDQ, CHECKPOINT, FORMAT, NOBUILDQ, NOPASSWORD, NOTERMINAL, NOUSER, PASSWORD, TERMINAL, USER</td>
<td></td>
</tr>
<tr>
<td>/OPNDST</td>
<td>ID, LOGOND, MODE, NODE, Q, UDATA, USER, USER</td>
<td></td>
</tr>
<tr>
<td>/PSTOP</td>
<td>LINE, LTERM, PTERM</td>
<td>Non-VTAM lines are not supported.</td>
</tr>
<tr>
<td>/PURGE</td>
<td>LINE, LTERM, PTERM</td>
<td>Non-VTAM lines are not supported.</td>
</tr>
<tr>
<td>QUERY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/RCLSDST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/RCOMPT</td>
<td>CNS, CRD, NODE, NOTRDY, PCH, PDS, PRT, RDR, READY, TDS, UDS, USER, VID, WPM1, WPM2, WPM3</td>
<td></td>
</tr>
<tr>
<td>/RDISPLAY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REFRESH USEREXIT</td>
<td>TYPE, MEMBER</td>
<td>Only applies to tracking subsystem RECON data set.</td>
</tr>
<tr>
<td>/RMxxxxxx</td>
<td>LTERM</td>
<td></td>
</tr>
<tr>
<td>/RSTART</td>
<td>LINE, LOPEN, NODE, PTERM, USER</td>
<td>Non-VTAM lines are not supported.</td>
</tr>
<tr>
<td>/RTAKEOVER</td>
<td>UNPLAN, NOREVERSE</td>
<td></td>
</tr>
<tr>
<td>/SIGN</td>
<td>ON, USERRD</td>
<td></td>
</tr>
</tbody>
</table>

42  Commands, Volume 1: IMS Commands A - M
Table 10. Commands and keywords allowable on an IMS DB/DC RSR tracking subsystem (continued)

<table>
<thead>
<tr>
<th>Commands</th>
<th>Keywords</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>/SMCOPY</td>
<td>ON, TERMINAL</td>
<td>/START AREA, /START DATABASE, and /START DATAGROUP are only valid on a DATABASE level tracking subsystem. Non-VTAM lines are not supported.</td>
</tr>
<tr>
<td>/START</td>
<td>AREA, AUTOARCH, DATABASE, DATAGROUP, DC, ISLOG, LINE, LOCAL, LTERM, NODE, OLDS, PTERM, SERVGRP, USER, WADS</td>
<td>Non-VTAM lines are not supported.</td>
</tr>
<tr>
<td>/STOP</td>
<td>ADS, AUTOARCH, DC, LINE, LTERM, NODE, OLDS, PTERM, SERVGRP, TRKAUTOARCH, USER, WADS</td>
<td></td>
</tr>
<tr>
<td>/SWITCH</td>
<td>CHECKPOINT, OLDS</td>
<td></td>
</tr>
<tr>
<td>/TEST MFS</td>
<td>LINE, NODE, PTERM, USER</td>
<td></td>
</tr>
<tr>
<td>/TRACE</td>
<td>LEVEL, LINE, MODULE, NODE, ON, OPTION, SET, TABLE, UNITYPE, USER, VOLUME</td>
<td>No LUMI, RETR, SCHED, or SUBS TABLE tracing is allowed on a tracking subsystem.</td>
</tr>
<tr>
<td>UPDATE AREA</td>
<td>START(ACCESS), STOP(ACCESS)</td>
<td></td>
</tr>
<tr>
<td>UPDATE DATAGRP</td>
<td>START(ACCESS), STOP(ACCESS)</td>
<td></td>
</tr>
<tr>
<td>UPDATE DB</td>
<td>START(ACCESS), STOP(ACCESS)</td>
<td></td>
</tr>
</tbody>
</table>

**IMS-supported terminals in an RSR environment**

Since IMS-supported terminals are not supported for an RSR tracking subsystem, some type-1 commands are not supported on an RSR tracking subsystem (that is, they will cause a DFS058 COMMAND COMPLETED EXCEPT ... message to be issued).

These type-1 commands are:
- /BROADCAST LINE
- /BROADCAST PTERM
- /PSTOP LINE [PTERM]
- /PURGE LINE [PTERM]
- /RSTART LINE [PTERM]
- /START LINE [PTERM]
- /STOP LINE [PTERM]

If the parameter ALL is used with one of these commands, the IMS-supported terminals affected are simply skipped.

**IMS type-1 commands supported from LU 6.2 devices and OTMA**

Only certain IMS type-1 commands are valid from LU 6.2 devices and OTMA.
The IMS type-1 commands that are supported from LU 6.2 devices and OTMA are listed in the following table:

Table 11. IMS type-1 commands supported from LU 6.2 devices and OTMA

<table>
<thead>
<tr>
<th>Commands</th>
<th>Commands (continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>/ALLOCATE*</td>
<td>/PURGE</td>
</tr>
<tr>
<td>/ASSIGN</td>
<td>/QUIESCE</td>
</tr>
<tr>
<td>/BROADCAST*</td>
<td>/RDISPLAY</td>
</tr>
<tr>
<td>/CHANGE*</td>
<td>/RMCHANGE*</td>
</tr>
<tr>
<td>/CHECKPOINT</td>
<td>/RMDELETE*</td>
</tr>
<tr>
<td>/CLSDST</td>
<td>/RMGENJCL*</td>
</tr>
<tr>
<td>/COMPT</td>
<td>/RMINIT*</td>
</tr>
<tr>
<td>/DBDUMP</td>
<td>/RMLIST*</td>
</tr>
<tr>
<td>/DBRECOVERY</td>
<td>/RMNOTIFY*</td>
</tr>
<tr>
<td>/DELETE</td>
<td>/RESTART</td>
</tr>
<tr>
<td>/DEQUEUE</td>
<td>/SECURE</td>
</tr>
<tr>
<td>/DIAGNOSE</td>
<td>/SMCOPY</td>
</tr>
<tr>
<td>/DISPLAY</td>
<td>/SSR</td>
</tr>
<tr>
<td>/IDLE</td>
<td>/START</td>
</tr>
<tr>
<td>/LOG</td>
<td>/STOP</td>
</tr>
<tr>
<td>/LOCK</td>
<td>/SWITCH</td>
</tr>
<tr>
<td>/MODIFY</td>
<td>/TRACE</td>
</tr>
<tr>
<td>/MONITOR</td>
<td>/UNLOCK</td>
</tr>
<tr>
<td>/MSASSIGN</td>
<td></td>
</tr>
<tr>
<td>/MSVERIFY</td>
<td></td>
</tr>
<tr>
<td>/OPNDST*</td>
<td></td>
</tr>
<tr>
<td>/PSTOP</td>
<td></td>
</tr>
</tbody>
</table>

Note: * Multisegment commands are not supported by OTMA.

Terminal security defaults for LU 6.2 devices and OTMA

Only some IMS type-1 commands from LU 6.2 devices and OTMA are authorized in an environment in which RACF is not used (RACF=NONE) and the command security exit (DFSCCMD0) is also not used.

The following table shows the terminal security defaults for IMS type-1 commands from LU 6.2 devices and OTMA when RACF is not used (RACF=NONE) and the command security exit (DFSCCMD0) is also not used. Only the commands shown in the table will be authorized in these environments.

Table 12. Terminal security defaults for IMS type-1 commands from LU 6.2 devices and OTMA

<table>
<thead>
<tr>
<th>LU 6.2 Devices</th>
<th>OTMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>/BROADCAST</td>
<td>/LOC</td>
</tr>
<tr>
<td>/LOC</td>
<td>/LOG</td>
</tr>
</tbody>
</table>
### Table 12. Terminal security defaults for IMS type-1 commands from LU 6.2 devices and OTMA (continued)

<table>
<thead>
<tr>
<th>LU 6.2 Devices</th>
<th>OTMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>/LOG</td>
<td>/RDISPLAY</td>
</tr>
<tr>
<td>/RDISPLAY</td>
<td></td>
</tr>
<tr>
<td>/RMLIST</td>
<td></td>
</tr>
</tbody>
</table>

### Commands and keywords supported by the OM API

Some IMS commands are supported by the OM API.

The following table is a list of IMS command verbs and primary keywords that can be issued through the Operations Manager (OM) API. The command verb can be specified in the long form or short form, as specified in columns one and two. The primary keyword is the first keyword that follows the command verb, as specified in column three.

**Restriction:** The OM API supports only the short form of the keywords that are described in the following table. For example, the keyword ACTIVE (used on the /BROADCAST command) has a short form of ACT. The OM API supports only the ACT keyword, not ACTIVE.

### Table 13. Commands supported by the OM API

<table>
<thead>
<tr>
<th>Command (long form)</th>
<th>Command (short form)</th>
<th>Primary keywords (short form)</th>
</tr>
</thead>
<tbody>
<tr>
<td>/ACTIVATE</td>
<td>/ACT</td>
<td>LINK, NODE</td>
</tr>
<tr>
<td>/ALLOCATE</td>
<td>/ALL</td>
<td>LU</td>
</tr>
<tr>
<td>/ASSIGN</td>
<td>/ASS</td>
<td>CLASS, CPRI, INPUT, LCT, LPRI, LTERM, NPRI, OUTPUT, PARLIM, PLCT, SEGNO, SEGSZ, TRAN, USER</td>
</tr>
<tr>
<td>/BROADCAST</td>
<td>/BRO</td>
<td>ACT, LINE, LTERM, MASTER, NODE, PTERM, USER</td>
</tr>
<tr>
<td>/CHANGE</td>
<td>/CHA</td>
<td>APPC, CCTL, CPLOG, DESC, DIR, FDR, LINK, NODE, PSWD, SUBSYS, SURV, TRAN, UOR, USER</td>
</tr>
<tr>
<td>/CHECKPOINT</td>
<td>/CHE</td>
<td>DUMPQ, FREEZE, PURGE, STATISTICS</td>
</tr>
<tr>
<td>/CLSDST</td>
<td>/CLS</td>
<td>NODE</td>
</tr>
<tr>
<td>/CQCHKPT</td>
<td>/CQC</td>
<td>SHAREDQ, SYSTEM</td>
</tr>
<tr>
<td>/CQUERY</td>
<td>/CQQ</td>
<td>STATISTICS</td>
</tr>
<tr>
<td>/CQSET</td>
<td>/CQS</td>
<td>SHUTDOWN</td>
</tr>
<tr>
<td>CREATE</td>
<td>CRE</td>
<td>DB, DBDESC, IMSCON, OTMADESC, PG M, PGMDSC, RTC, RTCDESC, TRAN, TRANDESC</td>
</tr>
<tr>
<td>/DBDUMP</td>
<td>/DBD</td>
<td>DB</td>
</tr>
<tr>
<td>Command (long form)</td>
<td>Command (short form)</td>
<td>Primary keywords (short form)</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>/DBRECOVERY</td>
<td>/DBR</td>
<td>AREA, DB, DATAGRP</td>
</tr>
<tr>
<td>/DELETE</td>
<td>/DEL</td>
<td>DB, DBDESC, DEFN, LE, OTMADESC, PGM, PGMDesc, RTC, RTCDESC, TRAN, TRANDESC</td>
</tr>
<tr>
<td>DELETE</td>
<td>DEL</td>
<td>DB, DBDESC, DEFN, LE, OTMADESC, PGM, PGMDesc, RTC, RTCDESC, TRAN, TRANDESC</td>
</tr>
<tr>
<td>/DEQUEUE</td>
<td>/DEQ</td>
<td>AOITKN, LINE, LTERM, LU, MSNAME, NODE, SUSPEND, TMEM, TRAN, USER</td>
</tr>
<tr>
<td>/DISPLAY</td>
<td>/DIS</td>
<td>ACT, AFFIN, AOITKN, APPC, AREA, ASMT, CCTL, CONV, CPLOG, CQS, DB, DBD, DESC, FDR, FPV, HSB, HSSP, LINE, LINK, LTERM, LU, MASTER, MODIFY, MSNAME, NODE, OASN, OLDS, OTMA, OVERFLOWQ, PGM, POOL, PSB, PTERM, Q, QCNT, RECOVERY, RTC, SHUTDOWN, STATUS, STRUC, SUBSYS, SYSID, TIMEOVER, TMEM, TRACE, TRACKING, TRAN, UOR, USER</td>
</tr>
<tr>
<td>/END</td>
<td>/END</td>
<td>LINE, NODE, USER</td>
</tr>
<tr>
<td>/ERESTART</td>
<td>/ERE</td>
<td>BACKUP, COLDBASE, COLDCOMM, COLDSYS, NULL</td>
</tr>
<tr>
<td>/EXCLUSIVE</td>
<td>/EXC</td>
<td>LINE, NODE, USER</td>
</tr>
<tr>
<td>/EXIT</td>
<td>/EXI</td>
<td>CONV</td>
</tr>
<tr>
<td>EXPORT</td>
<td>EXP</td>
<td>DEFN</td>
</tr>
<tr>
<td>/IDLE</td>
<td>/IDL</td>
<td>LINE, LINK, NODE</td>
</tr>
<tr>
<td>IMPORT</td>
<td>IMP</td>
<td>DEFN</td>
</tr>
<tr>
<td>INITIATE</td>
<td>INIT</td>
<td>OLC, OLREORG</td>
</tr>
<tr>
<td>/LOCK</td>
<td>/LOC</td>
<td>DB, PGM, TRAN</td>
</tr>
<tr>
<td>/LOG</td>
<td>/LOG</td>
<td></td>
</tr>
<tr>
<td>/MODIFY</td>
<td>/MOD</td>
<td>ABORT, COMMIT, PREPARE</td>
</tr>
<tr>
<td>/MONITOR</td>
<td>/MON</td>
<td>LINE</td>
</tr>
<tr>
<td>/MSASSIGN</td>
<td>/MSA</td>
<td>LINK, MSNAME, SYSID, TRAN</td>
</tr>
<tr>
<td>/NRESTART</td>
<td>/NRE</td>
<td>CHKPT, NULL</td>
</tr>
<tr>
<td>/OPNDST</td>
<td>/OPN</td>
<td>NODE</td>
</tr>
<tr>
<td>/PSTOP</td>
<td>/PST</td>
<td>LINE, LINK, LTERM, MSPLINK, REGION, TRAN</td>
</tr>
</tbody>
</table>
### Table 13. Commands supported by the OM API (continued)

<table>
<thead>
<tr>
<th>Command (long form)</th>
<th>Command (short form)</th>
<th>Primary keywords (short form)</th>
</tr>
</thead>
<tbody>
<tr>
<td>/PURGE</td>
<td>/PUR</td>
<td>APPC, FPPROG, FPRGN, LINE, LTERM, MSNAME, TRAN</td>
</tr>
<tr>
<td>QUERY</td>
<td>QRY</td>
<td>AREA, DB, DBDESC, IMS, IMSCON, IMSLEX, LE, LTERM, MEMBER, MSLINK, MSNAME, MSPLINK, NODE, ODBM, OLC, OLREORG, OTMADESC, OTMATI, PGM, PGMDESC, POOL, RTC, RTCDESC, STRUCTURE, TRAN, TRANDESC, USER, USEREXIT, USERID</td>
</tr>
<tr>
<td>QUEUE</td>
<td>QUE</td>
<td>LTERM, TRAN</td>
</tr>
<tr>
<td>/QUIESCE</td>
<td>/QUI</td>
<td>NODE</td>
</tr>
<tr>
<td>/RDISPLAY</td>
<td>/RDI</td>
<td>MASTER</td>
</tr>
<tr>
<td>/RECOVER</td>
<td>/REC</td>
<td>ADD, REMOVE, START, STOP, TERMINATE</td>
</tr>
<tr>
<td>REFRESH</td>
<td>—</td>
<td>USEREXIT</td>
</tr>
<tr>
<td>/RMCHANGE</td>
<td>/RMC</td>
<td></td>
</tr>
<tr>
<td>/RMDELETE</td>
<td>/RMD</td>
<td></td>
</tr>
<tr>
<td>/RMGENJCL</td>
<td>/RMG</td>
<td></td>
</tr>
<tr>
<td>/RMINIT</td>
<td>/RMI</td>
<td></td>
</tr>
<tr>
<td>/RMLIST</td>
<td>/RML</td>
<td></td>
</tr>
<tr>
<td>/RMNOTIFY</td>
<td>/RMN</td>
<td></td>
</tr>
<tr>
<td>/RSTART</td>
<td>/RST</td>
<td>LINE, LINK, MSPLINK, NODE, USER</td>
</tr>
<tr>
<td>/RTAKEOVER</td>
<td>/RTA</td>
<td>DUMPQ, FREEZE, UNPLAN</td>
</tr>
<tr>
<td>/SECURE</td>
<td>/SEC</td>
<td>APPC, OTMA</td>
</tr>
<tr>
<td>/SMCOPY</td>
<td>/SMC</td>
<td>MASTER, MSG, TERMINAL</td>
</tr>
<tr>
<td>/START</td>
<td>/STA</td>
<td>APPC, AREA, AUTOARCH, CLASS, DATAGRP, DB, DC, DESC, ISOLOG, LINE, LTERM, LU, MADSIO, MSNAME, NODE, OLDS, OTMA, PGM, REGION, RTC, SB, SERVGRP, SLDREAD, SUBSYS, SURV, THREAD, TMEM, TRAN, TRKARCH, USER, VGR, WADS, XRCTRACK</td>
</tr>
</tbody>
</table>
Table 13. Commands supported by the OM API (continued)

<table>
<thead>
<tr>
<th>Command (long form)</th>
<th>Command (short form)</th>
<th>Primary keywords (short form)</th>
</tr>
</thead>
<tbody>
<tr>
<td>/STOP</td>
<td>/STO</td>
<td>ADS, APPC, AREA, AUTOARCH, BACKUP, CLASS, DATAGRP, DB, DC, LINE, LTERM, LU, MADSINT, MSNAME, NODE, OLDS, OTMA, PGM, REGION, RTC, SB, SERVGRP, SLSREAD, SUBSYS, SURV, THREAD, TMEM, TRAN, USER, VGR, WADS, XRCTRACK</td>
</tr>
<tr>
<td>/SWITCH</td>
<td>/SWI</td>
<td>OLDS, SYSTEM, WADS</td>
</tr>
<tr>
<td>TERMINATE</td>
<td>TERM</td>
<td>OLC, OLRLEOR</td>
</tr>
<tr>
<td>/TEST</td>
<td>/TES</td>
<td>MFS</td>
</tr>
<tr>
<td>/TRACE</td>
<td>/TRA</td>
<td>DB, PGM, SYSTEM, TRAN</td>
</tr>
<tr>
<td>/UNLOCK</td>
<td>/UNL</td>
<td>AREA, DATAGRP, DB, DBDESC, IMS, IMSCLASS, LE, MSLINK, MSNAME, MSPLINK, ODBM, OLRLEORG, OTMADESC, PGM, PGMDesc, POOL, RTC, RTCDESC, TRAN, TRANDESC</td>
</tr>
<tr>
<td>UPDATE</td>
<td>UPD</td>
<td></td>
</tr>
<tr>
<td>/VUNLOAD</td>
<td>/VUN</td>
<td>AREA</td>
</tr>
</tbody>
</table>

Equivalent IMS type-1 and type-2 commands

Certain IMS type-1 commands and type-2 commands perform similar tasks.

The following table shows the different instances of the IMS type-1 commands and type-2 commands that perform similar tasks.

Table 14. Type-2 equivalents for the /ASSIGN command

<table>
<thead>
<tr>
<th>Task</th>
<th>/ASSIGN command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changes the value for the limit count of a transaction.</td>
<td>/ASSIGN LCT new_lmct_number TO TRAN tranname</td>
<td>UPDATE TRAN NAME (tranname) SET(LCT(new_limit_count))</td>
</tr>
<tr>
<td>Changes the value for the limit priority of a transaction.</td>
<td>/ASSIGN LPRI new_lpri_number TO TRAN tranname</td>
<td>UPDATE TRAN NAME(tranname) SET(LPRI(new_limit_priority))</td>
</tr>
<tr>
<td>Changes the value for the normal priority of a transaction.</td>
<td>/ASSIGN NPRI new_npri_number TO TRAN tranname</td>
<td>UPDATE TRAN NAME(tranname) SET(NPRI(new_normal_priority))</td>
</tr>
<tr>
<td>Changes the value for the parallel processing limit count of a transaction.</td>
<td>/ASSIGN PARLIM new_parlim_number TO TRAN tranname</td>
<td>UPDATE TRAN NAME(tranname) SET(PARLIM(new_parallel_limit))</td>
</tr>
<tr>
<td>Changes the value for the processing limit count of a transaction.</td>
<td>/ASSIGN PLCT new_plmct_number TO TRAN tranname</td>
<td>UPDATE TRAN NAME(tranname) SET(PLCT(new_processing_limit))</td>
</tr>
</tbody>
</table>
Table 14. Type-2 equivalents for the /ASSIGN command (continued)

<table>
<thead>
<tr>
<th>Task</th>
<th>/ASSIGN command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changes the limit on the number of application program output segments allowed in message queues for each GU call.</td>
<td>/ASSIGN SEGNO new_segno_number TO TRAN tranname</td>
<td>UPDATE TRAN NAME(tranname) SET(SEGNO(new_segment_number))</td>
</tr>
<tr>
<td>Creates or changes the limit on the size of application program output segments allowed in message queues for each GU call.</td>
<td>/ASSIGN SEGSZ new_segsize_number TO TRAN tranname</td>
<td>UPDATE TRAN NAME(tranname) SET(SEGSZ(new_segment_size))</td>
</tr>
<tr>
<td>Changes the class number of a transaction.</td>
<td>/ASSIGN TRAN tranname TO CLS new_class_number</td>
<td>UPDATE TRAN NAME(tranname) SET(CLASS(new_class_number))</td>
</tr>
</tbody>
</table>

Table 15. Type-2 equivalents for the /DBDUMP command.

<table>
<thead>
<tr>
<th>Task</th>
<th>/DBDUMP command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stops updates to a database.</td>
<td>/DBDUMP DB dbname</td>
<td>UPDATE DB NAME(dbname) STOP(UPDATES) OPTION(FEOV)(^1)</td>
</tr>
</tbody>
</table>

\(^1\) This command does not automatically issue checkpoints unless OPTION(FEOV) is specified.

Table 16. Type-2 equivalents for the /DBRECOVERY command.

<table>
<thead>
<tr>
<th>Task</th>
<th>/DBRECOVERY command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stops the accessing and updating of an area.</td>
<td>/DBRECOVERY AREA areaname</td>
<td>UPDATE AREA NAME(areaname) STOP(ACCESS)</td>
</tr>
<tr>
<td>Stops the accessing and updating of all areas and databases of the data group.</td>
<td>/DBRECOVERY DATAGRP datagrpname</td>
<td>UPDATE DATAGRP NAME(datagrpname) STOP(ACCESS)</td>
</tr>
<tr>
<td>Stops access to the database and take it offline.</td>
<td>/DBRECOVERY DB dbname</td>
<td>UPDATE DB NAME(dbname) STOP(ACCESS) OPTION(FEOV)(^1)</td>
</tr>
</tbody>
</table>

\(^1\) This command does not automatically issue checkpoints unless OPTION(FEOV) is specified.

Table 17. Type-2 equivalents for the /DISPLAY AFFIN command

<table>
<thead>
<tr>
<th>Task</th>
<th>/DISPLAY AFFIN command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays TCP/IP generic resource affinities.</td>
<td>/DISPLAY AFFIN LINK links</td>
<td>QUERY MSLINK NAME(linkname</td>
</tr>
<tr>
<td>Displays VTAM generic resource affinities.</td>
<td>/DISPLAY AFFIN NODE node</td>
<td>QUERY NODE SHOW(AFFIN)</td>
</tr>
</tbody>
</table>

Table 18. Type-2 equivalents for the /DISPLAY AREA command

<table>
<thead>
<tr>
<th>Task</th>
<th>/DISPLAY AREA command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays information about an area.</td>
<td>/DISPLAY AREA</td>
<td>QUERY AREA</td>
</tr>
</tbody>
</table>

Table 19. Type-2 equivalents for the /DISPLAY ASMT command

<table>
<thead>
<tr>
<th>Task</th>
<th>/DISPLAY ASMT command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays input and output components.</td>
<td>/DISPLAY ASMT LTERM ltermname</td>
<td>QUERY LTERM SHOW(COMPARTMENT)</td>
</tr>
<tr>
<td>Displays the node associated with the term.</td>
<td>/DISPLAY ASMT LTERM ltermname</td>
<td>QUERY LTERM SHOW(NODE)</td>
</tr>
</tbody>
</table>
### Table 19. Type-2 equivalents for the `/DISPLAY ASMT` command (continued).

<table>
<thead>
<tr>
<th>Task</th>
<th><code>/DISPLAY ASMT</code> command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays the user associated with the lterm.</td>
<td><code>/DISPLAY ASMT LTERM ltermname</code></td>
<td>QUERY LTERM SHOW(USER)</td>
</tr>
<tr>
<td>Displays the attributes of an MSC logical link</td>
<td><code>/DISPLAY ASMT MSPLINK msplinkname</code></td>
<td>QUERY MSLINK SHOW(ALL)</td>
</tr>
<tr>
<td>Displays the attributes of an MSC physical link</td>
<td><code>/DISPLAY ASMT MSPLINK msplinkname</code></td>
<td>QUERY MSLINK SHOW(ALL)</td>
</tr>
<tr>
<td>Displays assigned lterms.</td>
<td><code>/DISPLAY ASMT NODE node</code></td>
<td>QUERY NODE SHOW(LTERM)</td>
</tr>
<tr>
<td>Displays the user associated with the node.</td>
<td><code>/DISPLAY ASMT NODE node</code></td>
<td>QUERY NODE SHOW(USER)</td>
</tr>
<tr>
<td>Displays the other half-session qualifier ID of the ISC node.</td>
<td><code>/DISPLAY ASMT USER user</code></td>
<td>QUERY USER SHOW(ID)</td>
</tr>
<tr>
<td>Displays assigned lterms.</td>
<td><code>/DISPLAY ASMT USER user</code></td>
<td>QUERY USER SHOW(LTERM)</td>
</tr>
<tr>
<td>Displays the node.</td>
<td><code>/DISPLAY ASMT USER user</code></td>
<td>QUERY USER SHOW(NODE)</td>
</tr>
<tr>
<td>Displays the user ID.</td>
<td><code>/DISPLAY ASMT USER user</code></td>
<td>QUERY USER SHOW(USERID)</td>
</tr>
<tr>
<td>Displays the user.</td>
<td><code>/DISPLAY ASMT USER user</code></td>
<td>QUERY USERID SHOW(USER)</td>
</tr>
</tbody>
</table>

### Table 20. Type-2 equivalents for the `/DISPLAY CONV` command.

<table>
<thead>
<tr>
<th>Task</th>
<th><code>/DISPLAY CONV</code> command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays nodes with active or held conversations.</td>
<td><code>/DISPLAY CONV</code></td>
<td>QUERY NODE STATUS(CONV)</td>
</tr>
<tr>
<td>Displays users with active or held conversations.</td>
<td><code>/DISPLAY CONV</code></td>
<td>QUERY USER STATUS(CONV)</td>
</tr>
<tr>
<td>Displays IMS conversation information for a particular node.</td>
<td><code>/DISPLAY CONV NODE node</code></td>
<td>QUERY NODE SHOW(CONV)</td>
</tr>
<tr>
<td>Displays IMS conversation information for a particular user.</td>
<td><code>/DISPLAY CONV USER user</code></td>
<td>QUERY USER SHOW(CONV)</td>
</tr>
</tbody>
</table>

### Table 21. Type-2 equivalents for the `/DISPLAY DB` command.

<table>
<thead>
<tr>
<th>Task</th>
<th><code>/DISPLAY DB</code> command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays the status of a database.</td>
<td>`/DISPLAY DB dbname1 ...dbname n</td>
<td>ALL</td>
</tr>
</tbody>
</table>

### Table 22. Type-2 equivalents for the `/DISPLAY DBD` command.

<table>
<thead>
<tr>
<th>Task</th>
<th><code>/DISPLAY DBD</code> command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays the programs being accessed by databases.</td>
<td><code>/DISPLAY DBD dbdname</code></td>
<td>QUERY DB NAME(dbname) SHOW(PGM)</td>
</tr>
</tbody>
</table>

### Table 23. Type-2 equivalents for the `/DISPLAY LTERM` command.

<table>
<thead>
<tr>
<th>Task</th>
<th><code>/DISPLAY LTERM</code> command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays logical link path for remote lterms.</td>
<td><code>/DISPLAY LTERM ltermname</code></td>
<td>QUERY LTERM SHOW(MSNAME)</td>
</tr>
<tr>
<td>Displays the lterm message queue count.</td>
<td><code>/DISPLAY LTERM ltermname QCNT</code></td>
<td>QUERY LTERM SHOW(QCNT)</td>
</tr>
</tbody>
</table>
Table 23. Type-2 equivalents for the /DISPLAY LTERM command (continued).

<table>
<thead>
<tr>
<th>Task</th>
<th>/DISPLAY LTERM command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays status of the lterm.</td>
<td>/DISPLAY LTERM ltermname</td>
<td>QUERY LTERM SHOW(STATUS)</td>
</tr>
<tr>
<td>Displays queue count in the EMH queues.</td>
<td>/DISPLAY LTERM ltermname QCNT EMHQ</td>
<td>QUERY LTERM SHOW(EMHQ)</td>
</tr>
</tbody>
</table>

Table 24. Type-2 equivalents for the /DISPLAY MASTER command

<table>
<thead>
<tr>
<th>Task</th>
<th>/DISPLAY MASTER command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays the primary and secondary master terminal.</td>
<td>/DISPLAY MASTER</td>
<td>QUERY LTERM STATUS(MTO,SMT)</td>
</tr>
</tbody>
</table>

Table 25. Type-2 equivalents for the /DISPLAY MODIFY command.

<table>
<thead>
<tr>
<th>Task</th>
<th>/DISPLAY MODIFY command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays work in progress for runtime resource definitions that would cause a DELETE, /MODIFY COMMIT, INITIATE OLC PHASE(COMMIT), or UPDATE command to change resource definitions to fail.</td>
<td>/DISPLAY MODIFY ALL</td>
<td>QUERY DB NAME(dbname) SHOW(WORK)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QUERY PGM NAME(pgmname) SHOW(WORK)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QUERY RTC NAME(rcode) SHOW(WORK)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QUERY TRAN NAME(tranname) SHOW(WORK)</td>
</tr>
</tbody>
</table>

Table 26. Type-2 equivalents for the /DISPLAY NODE command.

<table>
<thead>
<tr>
<th>Task</th>
<th>/DISPLAY NODE command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays VTAM connection identifier (CID).</td>
<td>/DISPLAY NODE node</td>
<td>QUERY NODE SHOW(CID)</td>
</tr>
<tr>
<td>Displays send/receive message counts.</td>
<td>/DISPLAY NODE node</td>
<td>QUERY NODE SHOW(COUNT)</td>
</tr>
<tr>
<td>Displays preset destination.</td>
<td>/DISPLAY NODE node</td>
<td>QUERY NODE SHOW(PRESET)</td>
</tr>
<tr>
<td>Displays queue count.</td>
<td>/DISPLAY NODE node</td>
<td>QUERY NODE SHOW(QCNT)</td>
</tr>
<tr>
<td>Displays status for a particular node.</td>
<td>/DISPLAY NODE node</td>
<td>QUERY NODE SHOW(STATUS)</td>
</tr>
<tr>
<td>Displays terminal type.</td>
<td>/DISPLAY NODE node</td>
<td>QUERY NODE SHOW(TYPE)</td>
</tr>
<tr>
<td>Displays user ID.</td>
<td>/DISPLAY NODE node</td>
<td>QUERY NODE SHOW(USERID)</td>
</tr>
<tr>
<td>Displays user.</td>
<td>/DISPLAY NODE node</td>
<td>QUERY NODE SHOW(USER)</td>
</tr>
<tr>
<td>Displays VTAM mode table names.</td>
<td>/DISPLAY NODE node MODE</td>
<td>QUERY NODE SHOW(MODETBL)</td>
</tr>
<tr>
<td>Displays message queue count in the Expedited Message Handler (EMH) queues.</td>
<td>/DISPLAY NODE node QCNT EMHQ</td>
<td>QUERY NODE SHOW(EMHQ)</td>
</tr>
<tr>
<td>Displays owner IMSID in RM resource structure.</td>
<td>/DISPLAY NODE node RECOVERY</td>
<td>QUERY NODE SHOW(OWNER)</td>
</tr>
<tr>
<td>Displays status recovery information.</td>
<td>/DISPLAY NODE node RECOVERY</td>
<td>QUERY NODE SHOW(RECOVERY)</td>
</tr>
<tr>
<td>Task</td>
<td>/DISPLAY command</td>
<td>Similar IMS type-2 command</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Table 27. Type-2 equivalents for the /DISPLAY PGM command.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Displays information about a program.</td>
<td>/DISPLAY PGM <code>pgmname</code></td>
<td>QRY PGM NAME(<code>pgmname</code>) SHOW(ALL)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QUERY PGM NAME(<code>pgmname</code>) SHOW(TRAN)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Task</th>
<th>/DISPLAY POOL command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays processor storage utilization statistics for OSAM and VSAM database buffer pools.</td>
<td>/DISPLAY POOL <code>DBAS</code></td>
<td>QUERY POOL TYPE(DBAS) SHOW(STATISTICS)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Task</th>
<th>/DISPLAY PSB command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays transactions, routing codes, and databases associated with a PSB.</td>
<td>/DISPLAY PSB <code>psbname</code></td>
<td>QUERY PGM NAME(<code>pgmname</code>) SHOW(DB)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QUERY PGM NAME(<code>pgmname</code>) SHOW(RTC)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QUERY PGM NAME(<code>pgmname</code>) SHOW(TRAN)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Task</th>
<th>/DISPLAY QCNT command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays items with messages that are older than the specified age (shared queues).</td>
<td>/DISPLAY QCNT LTERM <code>MESSAGE x</code></td>
<td>QUERY LTERM MSGAGE(<code>x</code>)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Task</th>
<th>/DISPLAY RTC command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays information about one or more Fast Path routing codes.</td>
<td>/DISPLAY RTC <code>rtcnamel...rtcnamen</code></td>
<td>QUERY RTC NAME(<code>rtcnamel...rtcnamen</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Task</th>
<th>/DISPLAY STATUS command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays information about databases with the specified status.</td>
<td>/DISPLAY STATUS <code>DB</code></td>
<td>QUERY DB STATUS(ALLOCF, ALLOCS,BACKOUT,EEQE, LOCK,NOTINIT,NOTOPEN, OFR,OLR,OPEN,RECALL,RECOV, RNL,STOSCHD,STOUPDS)</td>
</tr>
<tr>
<td>Displays status.</td>
<td>/DISPLAY STATUS <code>LTERM</code></td>
<td>QUERY LTERM SHOW(STATUS)</td>
</tr>
<tr>
<td>Displays logical terminals with specified status.</td>
<td>/DISPLAY STATUS <code>LTERM</code></td>
<td>QUERY LTERM STATUS(<code>status</code>) SHOW(STATUS)</td>
</tr>
<tr>
<td>Displays nodes with specified status.</td>
<td>/DISPLAY STATUS <code>NODE</code></td>
<td>QUERY NODE STATUS(<code>status</code>)</td>
</tr>
<tr>
<td>Displays all programs that have status and what that status is.</td>
<td>/DISPLAY STATUS <code>PGM</code></td>
<td>QUERY PGM STATUS(DB-NOTAVAL, IOPREV,LOCK,NOTINIT, STOSCHD,TRACE)</td>
</tr>
</tbody>
</table>
Table 32. Type-2 equivalents for the /DISPLAY STATUS command (continued)

<table>
<thead>
<tr>
<th>Task</th>
<th>/DISPLAY STATUS command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays all Fast Path routing codes that have status and what that status is.</td>
<td>/DISPLAY STATUS RTC</td>
<td>QUERY RTC STATUS(ACTIVE, NOTINIT, NOTSCHD, STOQ)</td>
</tr>
<tr>
<td>Displays information about transactions with the specified status.</td>
<td>/DISPLAY STATUS TRANSACTION</td>
<td>QUERY TRAN NAME(trannname) STATUS (IOPREV, LCK, QERR, SUSPEND, STOQ, SOSTH, USTO)</td>
</tr>
<tr>
<td>Displays users with specified status.</td>
<td>/DISPLAY STATUS USER</td>
<td>QUERY USER STATUS(status)</td>
</tr>
</tbody>
</table>

Table 33. Type-2 equivalents for the /DISPLAY TRACE command

<table>
<thead>
<tr>
<th>Task</th>
<th>/DISPLAY TRACE command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays nodes with trace status.</td>
<td>/DISPLAY TRACE NODE</td>
<td>QUERY NODE STATUS(TRACE)</td>
</tr>
</tbody>
</table>

Table 34. Type-2 equivalents for the /DISPLAY TRAN command

<table>
<thead>
<tr>
<th>Task</th>
<th>/DISPLAY TRAN command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays information about a transaction.</td>
<td>/DISPLAY TRAN tranname</td>
<td>QUERY TRAN NAME(trannname) SHOW(ALL)</td>
</tr>
<tr>
<td>Displays all of the transactions.</td>
<td>/DISPLAY TRAN ALL</td>
<td>QUERY TRAN SHOW(ALL)</td>
</tr>
<tr>
<td>Displays all of the transactions on the shared queues with a global queue count.</td>
<td>/DISPLAY TRAN tranname QCNT</td>
<td>QUERY TRAN NAME(trannname) SHOW(QCNT)</td>
</tr>
</tbody>
</table>

Table 35. Type-2 equivalents for the /DISPLAY USER command.

<table>
<thead>
<tr>
<th>Task</th>
<th>/DISPLAY USER command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays preset destination.</td>
<td>/DISPLAY USER user</td>
<td>QUERY USER SHOW(PRESET)</td>
</tr>
<tr>
<td>Displays node.</td>
<td>/DISPLAY USER user</td>
<td>QUERY USER SHOW(NODE)</td>
</tr>
<tr>
<td>Displays status for a particular user.</td>
<td>/DISPLAY USER user</td>
<td>QUERY USER SHOWSTATUS</td>
</tr>
<tr>
<td>Displays user ID.</td>
<td>/DISPLAY USER user</td>
<td>QUERY USER SHOW(USERID)</td>
</tr>
<tr>
<td>Displays status of a particular user ID.</td>
<td>/DISPLAY USER user</td>
<td>QUERY USERID SHOWSTATUS</td>
</tr>
<tr>
<td>Displays user.</td>
<td>/DISPLAY USER user</td>
<td>QUERY USERID SHOWUSER</td>
</tr>
<tr>
<td>Displays autologon parameters.</td>
<td>/DISPLAY USER user AUTOLOGON</td>
<td>QUERY USER SHOW(AUTOLOGON)</td>
</tr>
<tr>
<td>Displays queue count.</td>
<td>/DISPLAY USER user QCNT</td>
<td>QUERY USER SHOW(QCNT)</td>
</tr>
<tr>
<td>Displays message queue count in the Expedited Message Handler (EMH) queues.</td>
<td>/DISPLAY USER user QCNT EMHQ</td>
<td>QUERY USER SHOW(EMHQ)</td>
</tr>
<tr>
<td>Displays status recovery information.</td>
<td>/DISPLAY USER user RECOVERY</td>
<td>QUERY USER SHOW(RECOVERY)</td>
</tr>
<tr>
<td>Displays owner IMSID in RM resource structure.</td>
<td>/DISPLAY USER user RECOVERY</td>
<td>QUERY USER SHOW(OWNER)</td>
</tr>
</tbody>
</table>
### Table 36. Type-2 equivalents for the `/LOCK` command

<table>
<thead>
<tr>
<th>Task</th>
<th><code>/LOCK</code> command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stops the use of a database.</td>
<td><code>/LOCK DB dbname</code></td>
<td><code>UPDATE DB NAME(dbname)</code> <code>SET(LOCK(ON))</code></td>
</tr>
<tr>
<td>Locks a program.</td>
<td><code>/LOCK PGM pgmname</code></td>
<td><code>UPDATE PGM NAME(pgmname)</code> <code>SET(LOCK(ON))</code></td>
</tr>
<tr>
<td>Locks a transaction.</td>
<td><code>/LOCK TRAN tranname</code></td>
<td><code>UPDATE TRAN NAME(tranname)</code> <code>SET(LOCK(ON))</code></td>
</tr>
</tbody>
</table>

### Table 37. Type-2 equivalents for the `/MSASSIGN` command

<table>
<thead>
<tr>
<th>Task</th>
<th><code>/MSASSIGN</code> command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changes the transaction so that it is local and runs on the local system.</td>
<td><code>/MSASSIGN TRAN tranname TO LOCAL</code></td>
<td><code>UPDATE TRAN NAME(tranname)</code> <code>SET(REMOTE(N))</code></td>
</tr>
<tr>
<td>Changes the transaction so that it is remote, and assign it to a specific logical link path.</td>
<td><code>/MSASSIGN TRAN tranname TO MSNAME msname</code></td>
<td><code>UPDATE TRAN NAME(tranname)</code> <code>SET(MSNAME(name))</code></td>
</tr>
</tbody>
</table>

### Table 38. Type-2 equivalents for the `/PSTOP` command

<table>
<thead>
<tr>
<th>Task</th>
<th><code>/PSTOP</code> command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stops the scheduling of transactions.</td>
<td><code>/PSTOP TRAN tranname</code></td>
<td><code>UPDATE TRAN(tranname)</code> <code>START(Q)</code> <code>STOP(SCHD)</code></td>
</tr>
<tr>
<td>Stops logons to the physical link (only for MSC VTAM links).</td>
<td>`/PSTOP MSPLINK mlinkname</td>
<td>ALL`</td>
</tr>
</tbody>
</table>

### Table 39. Type-2 equivalents for the `/PURGE` command

<table>
<thead>
<tr>
<th>Task</th>
<th><code>/PURGE</code> command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stops input messages for a particular transaction code.</td>
<td><code>/PURGE TRAN tranname</code></td>
<td><code>UPDATE TRAN NAME(tranname)</code> <code>START(SCHD)</code> <code>STOP(Q)</code></td>
</tr>
</tbody>
</table>

### Table 40. Type-2 equivalents for the `/RDISPLAY` command

<table>
<thead>
<tr>
<th>Task</th>
<th><code>/RDISPLAY</code> command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays the primary and secondary master terminal.</td>
<td><code>/RDISPLAY MASTER</code></td>
<td><code>QUERY LTERM STATUS(MTO,SMTO)</code></td>
</tr>
</tbody>
</table>

### Table 41. Type-2 equivalents for the `/RESTART` command

<table>
<thead>
<tr>
<th>Task</th>
<th><code>/RESTART</code> command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resets MSC TCP/IP or VTAM links to enable logons.</td>
<td>`/RESTART MSPLINK mlinkname</td>
<td>ALL`</td>
</tr>
</tbody>
</table>

### Table 42. Type-2 equivalents for the `/START AREA` command

<table>
<thead>
<tr>
<th>Task</th>
<th><code>/START AREA</code> command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starts the area.</td>
<td><code>/START AREA areainame</code></td>
<td><code>UPDATE AREA NAME(areainame)</code> <code>START(ACCESS)</code></td>
</tr>
</tbody>
</table>
### Table 43. Type-2 equivalents for the /START DATAGRP command

<table>
<thead>
<tr>
<th>Task</th>
<th>/START DATAGRP command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starts the data group.</td>
<td>/START DATAGRP <code>datagrpname</code></td>
<td>UPDATE DATAGRP NAME(<code>datagrpname</code>) START(ACCESS)</td>
</tr>
</tbody>
</table>

### Table 44. Type-2 equivalents for the /START DB command

<table>
<thead>
<tr>
<th>Task</th>
<th>/START DB command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starts a database and change access intent of the database.</td>
<td>/START DB ACCESS</td>
<td>UPDATE DB START(ACCESS) SET(ACCTYPE())</td>
</tr>
<tr>
<td>Starts a database.</td>
<td>/START DB <code>dbname</code></td>
<td>UPDATE DB NAME(<code>dbname</code>) START(ACCESS)</td>
</tr>
</tbody>
</table>

### Table 45. Type-2 equivalents for the /START PGM command

<table>
<thead>
<tr>
<th>Task</th>
<th>/START PGM command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starts program scheduling.</td>
<td>/START PGM <code>pgmname</code></td>
<td>UPDATE PGM NAME(<code>pgmname</code>) START(SCHD)</td>
</tr>
</tbody>
</table>

### Table 46. Type-2 equivalents for the /START RTC command

<table>
<thead>
<tr>
<th>Task</th>
<th>/START RTC command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starts queuing to a Fast Path routing code.</td>
<td>/START RTC <code>rtcname</code></td>
<td>UPDATE RTC NAME(<code>rtcname</code>) START(Q)</td>
</tr>
</tbody>
</table>

### Table 47. Type-2 equivalents for the /START TRAN command

<table>
<thead>
<tr>
<th>Task</th>
<th>/START TRAN command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starts a transaction.</td>
<td>/START TRAN</td>
<td>UPDATE TRAN NAME(<code>tranname</code>) START(Q,SCHD,SUSPEND)</td>
</tr>
</tbody>
</table>

### Table 48. Type-2 equivalents for the /STOP AREA command

<table>
<thead>
<tr>
<th>Task</th>
<th>/STOP AREA command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stops an area.</td>
<td>/STOP AREA <code>areaname</code></td>
<td>UPDATE AREA NAME(<code>areaname</code>) STOP(SCHD)</td>
</tr>
</tbody>
</table>

### Table 49. Type-2 equivalents for the /STOP DATAGRP command

<table>
<thead>
<tr>
<th>Task</th>
<th>/STOP DATAGRP command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stops a data group.</td>
<td>/STOP DATAGRP <code>datagrpname</code></td>
<td>UPDATE DATAGRP NAME(<code>datagrpname</code>) STOP(SCHD)</td>
</tr>
</tbody>
</table>

### Table 50. Type-2 equivalents for the /STOP DB command

<table>
<thead>
<tr>
<th>Task</th>
<th>/STOP DB command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stops a database.</td>
<td>/STOP DB <code>dbname</code></td>
<td>UPDATE DB NAME(<code>dbname</code>) STOP(SCHD)</td>
</tr>
</tbody>
</table>

### Table 51. Type-2 equivalents for the /STOP PGM command

<table>
<thead>
<tr>
<th>Task</th>
<th>/STOP PGM command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stops program scheduling.</td>
<td>/STOP PGM <code>pgmname</code></td>
<td>UPDATE PGM NAME(<code>pgmname</code>) STOP(SCHD)</td>
</tr>
</tbody>
</table>
### Table 52. Type-2 equivalents for the /STOP RTC command

<table>
<thead>
<tr>
<th>Task</th>
<th>/STOP RTC command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stops queuing to a Fast Path routing code.</td>
<td>/STOP RTC rtcname</td>
<td>UPDATE RTC NAME(rtcname) STOP(Q)</td>
</tr>
</tbody>
</table>

### Table 53. Type-2 equivalents for the /STOP TRAN command

<table>
<thead>
<tr>
<th>Task</th>
<th>/STOP TRAN command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stops the queuing and scheduling of messages destined for a transaction.</td>
<td>/STOP TRAN tranname</td>
<td>UPDATE TRAN NAME(tranname) STOP(Q,SCHD)</td>
</tr>
</tbody>
</table>

### Table 54. Type-2 equivalents for the /TRACE PGM command

<table>
<thead>
<tr>
<th>Task</th>
<th>/TRACE PGM command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starts the tracing of a program.</td>
<td>/TRACE SET ON PGM pgmname</td>
<td>UPDATE PGM NAME(pgmname) START(TRACE)</td>
</tr>
<tr>
<td>Stops the tracing of a program.</td>
<td>/TRACE SET OFF PGM pgmname</td>
<td>UPDATE PGM NAME(pgmname) STOP(TRACE)</td>
</tr>
</tbody>
</table>

### Table 55. Type-2 equivalents for the /TRACE TRAN command

<table>
<thead>
<tr>
<th>Task</th>
<th>/TRACE TRAN command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starts the tracing of a transaction.</td>
<td>/TRACE SET ON TRAN tranname</td>
<td>UPDATE TRAN NAME(tranname) START(TRACE)</td>
</tr>
<tr>
<td>Stops the tracing of a transaction.</td>
<td>/TRACE SET OFF TRAN tranname</td>
<td>UPDATE TRAN NAME(tranname) STOP(TRACE)</td>
</tr>
</tbody>
</table>

### Table 56. Type-2 equivalents for the /UNLOCK DB command

<table>
<thead>
<tr>
<th>Task</th>
<th>/UNLOCK DB command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unlocks a database.</td>
<td>/UNLOCK DB dbname</td>
<td>UPDATE DB NAME(dbname) SET(LOCK(OFF))</td>
</tr>
</tbody>
</table>

### Table 57. Type-2 equivalents for the /UNLOCK PGM command

<table>
<thead>
<tr>
<th>Task</th>
<th>/UNLOCK PGM command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unlocks a program.</td>
<td>/UNLOCK PGM pgmname</td>
<td>UPDATE PGM NAME(pgmname) SET(LOCK(OFF))</td>
</tr>
</tbody>
</table>

### Table 58. Type-2 equivalents for the /UNLOCK TRAN command

<table>
<thead>
<tr>
<th>Task</th>
<th>/UNLOCK TRAN command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unlocks a transaction.</td>
<td>/UNLOCK TRAN tranname</td>
<td>UPDATE TRAN NAME(tranname) SET(LOCK(OFF))</td>
</tr>
</tbody>
</table>

**Related concepts:**

Commands for IMS operations tasks (Operations and Automation)

**Equivalent IMS Connect WTOR, z/OS, and type-2 commands**

Certain IMS Connect WTOR commands, IMS Connect z/OS commands, and IMS Connect type-2 commands perform similar tasks.
The following table shows the different instances of the IMS Connect WTOR, z/OS, and type-2 commands that perform similar tasks.

Table 59. WTOR and IMS Connect z/OS equivalents for the QUERY IMSCON TYPE(ALIAS) command

<table>
<thead>
<tr>
<th>QUERY IMSCON TYPE(ALIAS) command</th>
<th>Equivalent IMS Connect WTOR command</th>
<th>Equivalent IMS Connect z/OS command</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY IMSCON TYPE(ALIAS) NAME(*) SHOW(ALL</td>
<td>VIEWIA ALL</td>
<td>QUERY ALIAS NAME(*)</td>
</tr>
<tr>
<td>NAME(alias_name) SHOW(ALL</td>
<td>VIEWIA alias_name</td>
<td>QUERY ALIAS NAME(aliasName)</td>
</tr>
<tr>
<td>NAME(alias_name) ODBM(odbm_name) SHOW(ALL</td>
<td>VIEWIA alias_name odbm_name</td>
<td>QUERY ALIAS NAME(aliasName) ODBM(odbmName)</td>
</tr>
</tbody>
</table>

Table 60. WTOR and IMS Connect z/OS equivalents for the QUERY IMSCON TYPE(CONFIG) command

<table>
<thead>
<tr>
<th>QUERY IMSCON TYPE(CONFIG) command</th>
<th>Equivalent IMS Connect WTOR command</th>
<th>Equivalent IMS Connect z/OS command</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY IMSCON TYPE(CONFIG) SHOW(ALL</td>
<td>VIEWHWS</td>
<td>QUERY MEMBER TYPE(IMSCON) SHOW(ALL)</td>
</tr>
</tbody>
</table>

Table 61. WTOR and IMS Connect z/OS equivalents for the QUERY IMSCON TYPE(DATASTORE) command

<table>
<thead>
<tr>
<th>QUERY IMSCON TYPE(DATASTORE) command</th>
<th>Equivalent IMS Connect WTOR command</th>
<th>Equivalent IMS Connect z/OS command</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY IMSCON TYPE(DATASTORE) NAME(*) SHOW(ALL</td>
<td>VIEWDS ALL</td>
<td>QUERY DATASTORE NAME(*) SHOW(ALL)</td>
</tr>
<tr>
<td>NAME(datastore_name) SHOW(ALL</td>
<td>VIEWDS datastore_name</td>
<td>QUERY DATASTORE NAME(datastore_name)</td>
</tr>
</tbody>
</table>

Table 62. WTOR and IMS Connect z/OS equivalents for the QUERY IMSCON TYPE(IMSPLEX) command

<table>
<thead>
<tr>
<th>QUERY IMSCON TYPE(IMSPLEX) command</th>
<th>Equivalent IMS Connect WTOR command</th>
<th>Equivalent IMS Connect z/OS command</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY IMSCON TYPE(IMSPLEX) NAME(*) SHOW(ALL</td>
<td>VIEWIP ALL</td>
<td>QUERY IMSPLEX NAME(*) SHOW(ALL)</td>
</tr>
<tr>
<td>NAME(imsplex_name) SHOW(ALL</td>
<td>VIEWIP imsplex_name</td>
<td>QUERY IMSPLEX NAME(imsplexName) SHOW(ALL)</td>
</tr>
</tbody>
</table>

Table 63. WTOR and IMS Connect z/OS equivalents for the QUERY IMSCON TYPE(MSC) command

<table>
<thead>
<tr>
<th>QUERY IMSCON TYPE(MSC) command</th>
<th>Equivalent IMS Connect WTOR command</th>
<th>Equivalent IMS Connect z/OS command</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY IMSCON TYPE(MSC) NAME(*) SHOW(ALL</td>
<td>VIEWMSC ALL</td>
<td>QUERY MSC NAME(*)</td>
</tr>
</tbody>
</table>
Table 63. WTOR and IMS Connect z/OS equivalents for the QUERY IMSCON TYPE(MSC) command (continued)

<table>
<thead>
<tr>
<th>QUERY IMSCON TYPE(MSC) command</th>
<th>Equivalent IMS Connect WTOR command</th>
<th>Equivalent IMS Connect z/OS command</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY IMSCON TYPE(MSC) NAME(msc_id) SHOW(ALL</td>
<td>VIEWMSC msc_id</td>
<td>QUERY MSC NAME(msc_id)</td>
</tr>
<tr>
<td>show_parm)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 64. WTOR and IMS Connect z/OS equivalents for the QUERY IMSCON TYPE(PORT) command

<table>
<thead>
<tr>
<th>QUERY IMSCON TYPE(PORT) command</th>
<th>Equivalent IMS Connect WTOR command</th>
<th>Equivalent IMS Connect z/OS command</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY IMSCON TYPE(PORT) NAME(*) SHOW(ALL</td>
<td>VIEWPORT ALL</td>
<td>QUERY PORT NAME(*) SHOW(ALL)</td>
</tr>
<tr>
<td>show_parm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QUERY IMSCON TYPE(PORT) NAME(portid) SHOW(ALL</td>
<td>VIEWPORT port_id</td>
<td>QUERY PORT NAME[portid] SHOW(ALL)</td>
</tr>
<tr>
<td>show_parm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QUERY IMSCON TYPE(PORT) NAME(LOCAL) SHOW(ALL</td>
<td>VIEWPORT LOCAL</td>
<td>QUERY PORT NAME(LOCAL) SHOW(ALL)</td>
</tr>
<tr>
<td>show_parm)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 65. WTOR and IMS Connect z/OS equivalents for the QUERY IMSCON TYPE(RMTIMSCON) command

<table>
<thead>
<tr>
<th>QUERY IMSCON TYPE(RMTIMSCON) command</th>
<th>Equivalent IMS Connect WTOR command</th>
<th>Equivalent IMS Connect z/OS command</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY IMSCON TYPE(RMTIMSCON) NAME(*) SHOW(ALL</td>
<td>VIEWRMT ALL</td>
<td>QUERY RMTIMSCON NAME(*)</td>
</tr>
<tr>
<td>show_parm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QUERY IMSCON TYPE(RMTIMSCON) NAME(rmtimscon_name) SHOW(ALL</td>
<td>VIEWRMT rmtimscon_name</td>
<td>QUERY RMTIMSCON NAME(rmtimscon_name)</td>
</tr>
<tr>
<td>show_parm)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 66. WTOR and IMS Connect z/OS equivalents for the QUERY IMSCON TYPE(UOR) command

<table>
<thead>
<tr>
<th>QUERY IMSCON TYPE(UOR) command</th>
<th>Equivalent IMS Connect WTOR command</th>
<th>Equivalent IMS Connect z/OS command</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY IMSCON TYPE(UOR) NAME(*) SHOW(ALL</td>
<td>VIEWUOR ALL</td>
<td>QUERY UOR NAME(*) SHOW(ALL)</td>
</tr>
<tr>
<td>show_parm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QUERY IMSCON TYPE(UOR) NAME(uor_id) SHOW(ALL</td>
<td>VIEWUOR uor_id</td>
<td>QUERY UOR NAME(uor_id) SHOW(ALL)</td>
</tr>
<tr>
<td>show_parm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QUERY IMSCON TYPE(UOR) STATE(state)</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

58 Commands, Volume 1: IMS Commands A - M
| Table 67. WTOR and IMS Connect z/OS equivalents for the UPDATE IMSCON TYPE(ALIAS) command |
|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|
| **UPDATE IMSCON TYPE(ALIAS) command** | **Equivalent IMS Connect WTOR command** | **Equivalent IMS Connect z/OS command** |
| UPDATE IMSCON TYPE(ALIAS) NAME(alias_name) ODBM(odbm_name) START(COMM) | STARTIA alias_name odbm_name | UPDATE ALIAS NAME(aliasName) ODBM(odbmName) START(ROUTE) |
| UPDATE IMSCON TYPE(ALIAS) NAME(alias_name) ODBM(odbm_name) STOP(COMM) | STOPIA alias_name odbm_name | UPDATE ALIAS NAME(aliasName) ODBM(odbmName) STOP(ROUTE) |

| Table 68. WTOR and IMS Connect z/OS equivalents for the UPDATE IMSCON TYPE(CLIENT) command |
|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|
| **UPDATE IMSCON TYPE(CLIENT) command** | **Equivalent IMS Connect WTOR command** | **Equivalent IMS Connect z/OS command** |
| UPDATE IMSCON TYPE(CLIENT) NAME(client_name) PORT(portid) STOP(COMM) | STOPCLNT portid clientid | DELETE PORT NAME(portName) CLIENT(clientName) |

| Table 69. WTOR and IMS Connect z/OS equivalents for the UPDATE IMSCON TYPE(CONFIG) command |
|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|
| **UPDATE IMSCON TYPE(CONFIG) command** | **Equivalent IMS Connect WTOR command** | **Equivalent IMS Connect z/OS command** |
| UPDATE IMSCON TYPE(CONFIG) SHUTDOWN(COMM) | CLOSEHWS | SHUTDOWN MEMBER |
| UPDATE IMSCON TYPE(CONFIG) SHUTDOWN(COMM) OPTION(FORCE) | CLOSEHWS FORCE | SHUTDOWN MEMBER OPTION(FORCE) |
| UPDATE IMSCON TYPE(CONFIG) SHUTDOWN(COMM) OPTION(QUIESCE) | CLOSEHWS QUIESCE | SHUTDOWN MEMBER OPTION(QUIESCE) |
| UPDATE IMSCON TYPE(CONFIG) SET(OAUTO(ON)) | SETAUTO YES | UPDATE MEMBER TYPE(IMSCON) SET(OAUTO(ON)) |
| UPDATE IMSCON TYPE(CONFIG) SET(OAUTO(OFF)) | SETAUTO NO | UPDATE MEMBER TYPE(IMSCON) SET(OAUTO(OFF)) |
| UPDATE IMSCON TYPE(CONFIG) SET(PSWDMC(ON)) | SETPWM ON | UPDATE MEMBER TYPE(IMSCON) SET(PSWDMC(ON)) |
| UPDATE IMSCON TYPE(CONFIG) SET(PSWDMC(OFF)) | SETPWM OFF | UPDATE MEMBER TYPE(IMSCON) SET(PSWDMC(OFF)) |
| UPDATE IMSCON TYPE(CONFIG) SET(PSWDMC(RCF)) | SETPWM RCF | UPDATE MEMBER TYPE(IMSCON) SET(PSWDMC(RCF)) |
| UPDATE IMSCON TYPE(CONFIG) SET(RACF(ON)) | SETRACF ON | UPDATE MEMBER TYPE(IMSCON) SET(RACF(ON)) |
### Table 69. WTOR and IMS Connect z/OS equivalents for the UPDATE IMSCON TYPE(CONFIG) command (continued)

<table>
<thead>
<tr>
<th>UPDATE IMSCON TYPE(CONFIG) command</th>
<th>Equivalent IMS Connect WTOR command</th>
<th>Equivalent IMS Connect z/OS command</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE IMSCON TYPE(CONFIG) SET(RACF(OFF))</td>
<td>SETRACF OFF</td>
<td>UPDATE MEMBER TYPE(IMSCON) SET(RACF(OFF))</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(CONFIG) SET(RRS(ON))</td>
<td>SETRRS ON</td>
<td>UPDATE MEMBER TYPE(IMSCON) SET(RRS(ON))</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(CONFIG) SET(RRS(OFF))</td>
<td>SETRRS OFF</td>
<td>UPDATE MEMBER TYPE(IMSCON) SET(RRS(OFF))</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(CONFIG) SET/UICDCACHE(ON))</td>
<td>SETUIDC ON</td>
<td>UPDATE MEMBER TYPE(IMSCON) SET(UICDCACHE(ON))</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(CONFIG) SET/UICDCACHE(OFF))</td>
<td>SETUIDC OFF</td>
<td>UPDATE MEMBER TYPE(IMSCON) SET(UICDCACHE(OFF))</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(CONFIG) START(RECORDER)</td>
<td>RECORDER OPEN</td>
<td>UPDATE MEMBER TYPE(IMSCON) START(TRACE)</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(CONFIG) STOP(RECORDER)</td>
<td>RECORDER CLOSE</td>
<td>UPDATE MEMBER TYPE(IMSCON) STOP(TRACE)</td>
</tr>
</tbody>
</table>

### Table 70. WTOR and IMS Connect z/OS equivalents for the UPDATE IMSCON TYPE(CONVERTER) command

<table>
<thead>
<tr>
<th>UPDATE IMSCON TYPE(CONVERTER) command</th>
<th>Equivalent IMS Connect WTOR command</th>
<th>Equivalent IMS Connect z/OS command</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE IMSCON TYPE(CONVERTER) NAME(converter_name) OPTION(REFRESH)</td>
<td>REFRESH CONVERTER NAME(converter_name) OPTION(REFRESH)</td>
<td>UPDATE CONVERTER NAME(converter_name) OPTION(REFRESH)</td>
</tr>
</tbody>
</table>

### Table 71. WTOR and IMS Connect z/OS equivalents for the UPDATE IMSCON TYPE(DATASTORE) command

<table>
<thead>
<tr>
<th>UPDATE IMSCON TYPE(DATASTORE) command</th>
<th>Equivalent IMS Connect WTOR command</th>
<th>Equivalent IMS Connect z/OS command</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE IMSCON TYPE(DATASTORE) NAME(datastore_name) START(COMM)</td>
<td>OPENDS datastore_id STARTDS datastore_id</td>
<td>UPDATE DATASTORE NAME(datastoreName) START(COMM)</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(DATASTORE) NAME(datastore_name) STOP(COMM)</td>
<td>STOPDS datastore_id</td>
<td>UPDATE DATASTORE NAME(datastoreName) STOP(COMM)</td>
</tr>
</tbody>
</table>
### Table 72. WTOR and IMS Connect z/OS equivalents for the UPDATE IMSCON TYPE(IMSPLEX) command.

<table>
<thead>
<tr>
<th>UPDATE IMSCON TYPE(IMSPLEX) command</th>
<th>Equivalent IMS Connect WTOR command</th>
<th>Equivalent IMS Connect z/OS command</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE IMSCON TYPE(IMSPLEX) NAME(imsplex_name) START(COMM)</td>
<td>OPENIP imsplex_id STARTIP imsplex_id</td>
<td>UPDATE IMSPLEX NAME(imsplex_name) START(COMM)</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(IMSPLEX) NAME(imsplex_name) STOP(COMM)</td>
<td>STOPIP imsplex_id</td>
<td>UPDATE IMSPLEX NAME(imsplex_name) STOP(COMM)</td>
</tr>
</tbody>
</table>

### Table 73. WTOR and IMS Connect z/OS equivalents for the UPDATE IMSCON TYPE(LINK) command

<table>
<thead>
<tr>
<th>UPDATE IMSCON TYPE(LINK) command</th>
<th>Equivalent IMS Connect WTOR command</th>
<th>Equivalent IMS Connect z/OS command</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE IMSCON TYPE(LINK) NAME(logical_link_name) STOP(COMM)</td>
<td>STOPLINK logical_link_name</td>
<td>DELETE LINK NAME(linkName)</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(LINK) NAME(logical_link_name) MSC(lclPlkid) STOP(COMM)</td>
<td>STOPLINK logical_link_name lclPlkid LCLPLKID(lclPlkid)</td>
<td>DELETE LINK NAME(linkName) LCLPLKID(lclPlkid)</td>
</tr>
</tbody>
</table>

### Table 74. WTOR and IMS Connect z/OS equivalents for the UPDATE IMSCON TYPE(MSC) command

<table>
<thead>
<tr>
<th>UPDATE IMSCON TYPE(MSC) command</th>
<th>Equivalent IMS Connect WTOR command</th>
<th>Equivalent IMS Connect z/OS command</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE IMSCON TYPE(MSC) NAME(lclPlkid) START(COMM)</td>
<td>STARTMSC lclPlkid</td>
<td>UPDATE MSC NAME(lclPlkid) START(COMM)</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(MSC) NAME(lclPlkid) STOP(COMM)</td>
<td>STOPMSC lclPlkid</td>
<td>UPDATE MSC NAME(lclPlkid) STOP(COMM)</td>
</tr>
</tbody>
</table>

### Table 75. WTOR and IMS Connect z/OS equivalents for the UPDATE IMSCON TYPE(ODBM) command

<table>
<thead>
<tr>
<th>UPDATE IMSCON TYPE(ODBM) command</th>
<th>Equivalent IMS Connect WTOR command</th>
<th>Equivalent IMS Connect z/OS command</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE IMSCON TYPE(ODBM) NAME(odbm_name) START(COMM)</td>
<td>STARTOD odbm_name</td>
<td>UPDATE ODBM NAME(odbmName) START(COMM)</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(ODBM) NAME(odbm_name) STOP(COMM)</td>
<td>STOPOD odbm_name</td>
<td>UPDATE ODBM NAME(odbmName) STOP(COMM)</td>
</tr>
</tbody>
</table>

### Table 76. WTOR and IMS Connect z/OS equivalents for the UPDATE IMSCON TYPE(PORT) command.

<table>
<thead>
<tr>
<th>UPDATE IMSCON TYPE(PORT) command</th>
<th>Equivalent IMS Connect WTOR command</th>
<th>Equivalent IMS Connect z/OS command</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE IMSCON TYPE(PORT) NAME(port_name) START(COMM)</td>
<td>OPENPORT port_id STARTPT port_id</td>
<td>UPDATE PORT NAME(port_name) START(COMM)</td>
</tr>
</tbody>
</table>
Table 76. WTOR and IMS Connect z/OS equivalents for the UPDATE IMSCON TYPE(PORT) command (continued).

<table>
<thead>
<tr>
<th>UPDATE IMSCON TYPE(PORT) command</th>
<th>Equivalent IMS Connect WTOR command</th>
<th>Equivalent IMS Connect z/OS command</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE IMSCON TYPE(PORT) NAME(port_name) STOP(COMM)</td>
<td>STOPPORT port_id</td>
<td>UPDATE PORT NAME(port_name) STOP(COMM)</td>
</tr>
</tbody>
</table>

Table 77. WTOR and IMS Connect z/OS equivalents for the UPDATE IMSCON TYPE(RACFUID) command

<table>
<thead>
<tr>
<th>UPDATE IMSCON TYPE(RACFUID) command</th>
<th>Equivalent IMS Connect WTOR command</th>
<th>Equivalent IMS Connect z/OS command</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE IMSCON TYPE(RACFUID) NAME(userid) OPTION(REFRESH)</td>
<td>REFRESH RACFUID NAME(userid)</td>
<td>UPDATE RACFUID NAME(userid) OPTION(REFRESH)</td>
</tr>
</tbody>
</table>

Table 78. WTOR and IMS Connect z/OS equivalents for the UPDATE IMSCON TYPE(RMTIMSCON) command

<table>
<thead>
<tr>
<th>UPDATE IMSCON TYPE(RMTIMSCON) command</th>
<th>Equivalent IMS Connect WTOR command</th>
<th>Equivalent IMS Connect z/OS command</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE IMSCON TYPE(RMTIMSCON) NAME(rmtimsccon_name) START(COMM)</td>
<td>STARTRMT rmtimscconName</td>
<td>UPDATE RMTIMSCON NAME(rmtimscconName) START(COMM)</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(RMTIMSCON) NAME(rmtimsccon_name) STOP(COMM)</td>
<td>STOPRMT rmtimscconName</td>
<td>UPDATE RMTIMSCON NAME(rmtimscconName) STOP(COMM)</td>
</tr>
</tbody>
</table>

Table 79. WTOR and IMS Connect z/OS equivalents for the UPDATE IMSCON TYPE(SENDCLNT) command

<table>
<thead>
<tr>
<th>UPDATE IMSCON TYPE(SENDCLNT) command</th>
<th>Equivalent IMS Connect WTOR command</th>
<th>Equivalent IMS Connect z/OS command</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE IMSCON TYPE(SENDCLNT) NAME(sendclient_name) RMTIMSCON(rmtimsccon_name) STOP(COMM)</td>
<td>STOPSCLN rmtimsccon sendclient</td>
<td>DELETE RMTIMSCON NAME(rmtimscconName) SENDCLNT(clientid)</td>
</tr>
<tr>
<td>UPDATE IMSCON TYPE(SENDCLNT) NAME(sendclient_name) RMTCICS(rmtcics_name) STOP(COMM)</td>
<td>STOPSCLN rmtcics sendclient</td>
<td>No equivalent z/OS command</td>
</tr>
</tbody>
</table>
Chapter 2. Command keywords and their synonyms

All IMS command keywords and their synonyms, as well as keywords supported by the OM API, are listed. The list covers command keywords for the OM command processing clients such as IMS, ODBM, IMSCON, and RM.

IMS ignores misspelled keywords, and issues an error message when it encounters an invalid keyword. In an IMSplex, invalid or misspelled keywords will result in an UNKNOWN POSITIONAL PARAMETER message.

You can modify type-1 command keywords by using the IMS Command Language Modification Facility (DFSCKWD0) with the KEYWD macro.

You can specify ALL=NO or ALL=DIS on the KEYWD macro to prevent the use of the ALL parameter.
• You can specify ALL=NO for all the type-1 command keywords that support the ALL parameter. ALL=NO indicates that the ALL parameter is invalid on all the IMS commands that apply to the keyword being changed.
• You can specify ALL=DIS for all the type-1 /DISPLAY command keywords that support the ALL parameter. ALL=DIS indicates that the ALL parameter is invalid on all the /DISPLAY commands that apply to the keyword being changed.

You can prevent the use of the NAME(*) parameter on type-2 commands by using the CSL OM input user exit routine.

In the following table, the IMS keyword column is for the OM command processing clients such as IMS, ODBM, IMSCON, and RM. A keyword listed in the OM keyword column indicates that it is the only accepted form supported by the OM API. If no keyword is listed in the OM keyword column, then the IMS keyword or its synonym is acceptable. If no synonyms are listed, none are permitted.

Table 80. Command keywords and their synonyms

<table>
<thead>
<tr>
<th>IMS keyword</th>
<th>Synonym</th>
<th>OM keyword</th>
<th>Commands that support this keyword</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABDUMP</td>
<td></td>
<td>/CHECKPOINT</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>/STOP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>/SWITCH</td>
<td></td>
</tr>
<tr>
<td>ABORT</td>
<td></td>
<td>/MODIFY</td>
<td></td>
</tr>
<tr>
<td>ACBLIB</td>
<td></td>
<td>INITIATE OLC</td>
<td></td>
</tr>
<tr>
<td>ACCESS</td>
<td></td>
<td>/START</td>
<td></td>
</tr>
<tr>
<td>ACTIVE</td>
<td>A, ACT</td>
<td>ACT</td>
<td>/BROADCAST</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/DISPLAY</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/SWITCH</td>
</tr>
<tr>
<td>ADAPTER</td>
<td></td>
<td>QUERY OTMADESC</td>
<td></td>
</tr>
<tr>
<td>ADD</td>
<td></td>
<td>/RECOVER</td>
<td></td>
</tr>
<tr>
<td>ADDRESS</td>
<td></td>
<td>/DIAGNOSE</td>
<td></td>
</tr>
<tr>
<td>ADS</td>
<td></td>
<td>/STOP</td>
<td></td>
</tr>
<tr>
<td>IMS keyword</td>
<td>Synonym</td>
<td>OM keyword</td>
<td>Commands that support this keyword</td>
</tr>
<tr>
<td>----------------</td>
<td>----------</td>
<td>------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>AFFINITY</td>
<td>AFFIN, AFF</td>
<td>AFFIN</td>
<td>/DISPLAY</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/START</td>
</tr>
<tr>
<td>ALIAS</td>
<td></td>
<td></td>
<td>QUERY ODBM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UPDATE ODBM</td>
</tr>
<tr>
<td>ALLENTRIES</td>
<td>ALLENT</td>
<td></td>
<td>/RECOVER</td>
</tr>
<tr>
<td>AOITOKEN</td>
<td>AOITKN</td>
<td>AOITKN</td>
<td>/DEQUEUE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/DISPLAY</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/PSTOP</td>
</tr>
<tr>
<td>APDB</td>
<td></td>
<td></td>
<td>/TRACE MONITOR</td>
</tr>
<tr>
<td>APMQ</td>
<td></td>
<td></td>
<td>/TRACE MONITOR</td>
</tr>
<tr>
<td>APPC</td>
<td></td>
<td></td>
<td>/DISPLAY</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/PURGE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/SECURE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/START</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/STOP</td>
</tr>
<tr>
<td>AREA</td>
<td></td>
<td></td>
<td>/DBRECOVERY</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/DIAGNOSE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/DISPLAY</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/RECOVER</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/START</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/STOP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/VUNLOAD</td>
</tr>
<tr>
<td>ASR</td>
<td></td>
<td></td>
<td>QUERY MSLINK</td>
</tr>
<tr>
<td>ASSIGNMENT</td>
<td>ASMT</td>
<td>ASMT</td>
<td>/DISPLAY</td>
</tr>
<tr>
<td>ATTRIB</td>
<td></td>
<td></td>
<td>QUERY MEMBER</td>
</tr>
<tr>
<td>AUTO</td>
<td></td>
<td></td>
<td>/TRACE</td>
</tr>
<tr>
<td>AUTOARCH</td>
<td>ARCHIVE, AUTOARCH</td>
<td>AUTOARCH</td>
<td>/START</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/STOP</td>
</tr>
<tr>
<td>AUTOLOGON</td>
<td>AUTLGN</td>
<td></td>
<td>/DISPLAY</td>
</tr>
<tr>
<td>BACKUP</td>
<td>BU</td>
<td>BACKUP</td>
<td>/ERESTART</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/STOP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/SWITCH</td>
</tr>
<tr>
<td>BALGRP</td>
<td>BALG</td>
<td></td>
<td>/DISPLAY</td>
</tr>
<tr>
<td>BANDWIDTH</td>
<td></td>
<td></td>
<td>QUERY MSLINK</td>
</tr>
<tr>
<td>BKERR</td>
<td></td>
<td></td>
<td>/DISPLAY</td>
</tr>
<tr>
<td>BLDL</td>
<td></td>
<td></td>
<td>INITIATE OLC</td>
</tr>
<tr>
<td>BLOCK</td>
<td></td>
<td></td>
<td>/DIAGNOSE</td>
</tr>
<tr>
<td>BUILDQ</td>
<td>BLDQ, BLDQS, BUILDQS</td>
<td></td>
<td>/ERESTART</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/NRESTART</td>
</tr>
<tr>
<td>CAGROUP</td>
<td>CAGRP</td>
<td></td>
<td>/RECOVER</td>
</tr>
<tr>
<td>CANCEL</td>
<td></td>
<td></td>
<td>/STOP</td>
</tr>
<tr>
<td>CCTL</td>
<td>CC</td>
<td>CCTL</td>
<td>/DISPLAY</td>
</tr>
<tr>
<td>CHECKPOINT</td>
<td>CHECKPT, CHKPOINT, CHKPT</td>
<td>CHKPT</td>
<td>/ERESTART</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/NRESTART</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/SWITCH</td>
</tr>
</tbody>
</table>
Table 80. Command keywords and their synonyms (continued)

<table>
<thead>
<tr>
<th>IMS keyword</th>
<th>Synonym</th>
<th>OM keyword</th>
<th>Commands that support this keyword</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLASS</td>
<td>CLS</td>
<td>CLASS</td>
<td>/ASSIGN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CREATE TRAN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CREATE TRANDESC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/DISPLAY</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/PSTOP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/PURGE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>QUERY TRAN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/START</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/STOP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UPDATE TRAN</td>
</tr>
<tr>
<td>CMDAUTH</td>
<td></td>
<td></td>
<td>/ERESTART</td>
</tr>
<tr>
<td>CMDAUTHE</td>
<td></td>
<td></td>
<td>/NRESTART</td>
</tr>
<tr>
<td>CMTMODE</td>
<td></td>
<td></td>
<td>CREATE TRAN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CREATE TRANDESC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>QUERY OTMA</td>
</tr>
<tr>
<td>CNS</td>
<td></td>
<td></td>
<td>/COMPT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/BCOMPT</td>
</tr>
<tr>
<td>COLDBASE</td>
<td>COLDB</td>
<td>COLDBASE</td>
<td>/ERESTART</td>
</tr>
<tr>
<td>COLDCOMM</td>
<td>COLDC</td>
<td>COLDCOMM</td>
<td>/ERESTART</td>
</tr>
<tr>
<td>COLDSESS</td>
<td></td>
<td></td>
<td>/CHANGE NODE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UPDATE MSLINK</td>
</tr>
<tr>
<td>COLDSYS</td>
<td>COLDS</td>
<td>COLDSYS</td>
<td>/ERESTART</td>
</tr>
<tr>
<td>COMMIT</td>
<td></td>
<td></td>
<td>/MODIFY</td>
</tr>
<tr>
<td>COMP</td>
<td></td>
<td></td>
<td>/TRACE</td>
</tr>
<tr>
<td>COMPONENT</td>
<td>COMPT</td>
<td></td>
<td>/ASSIGN</td>
</tr>
<tr>
<td>CONTINUOUS</td>
<td>CONT</td>
<td></td>
<td>/RSTART</td>
</tr>
<tr>
<td>CONVERSATION</td>
<td>CONV</td>
<td>CONV</td>
<td>CREATE TRAN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CREATE TRANDESC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/DISPLAY</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/EXIT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/RELEASE</td>
</tr>
<tr>
<td>CONVRTR</td>
<td></td>
<td></td>
<td>/SET</td>
</tr>
<tr>
<td>CPLOG</td>
<td></td>
<td></td>
<td>QUERY OTMADESC</td>
</tr>
<tr>
<td>CPRI</td>
<td></td>
<td></td>
<td>/CHANGE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/DISPLAY</td>
</tr>
<tr>
<td>CQS</td>
<td></td>
<td></td>
<td>/ASSIGN</td>
</tr>
<tr>
<td>CRD</td>
<td></td>
<td></td>
<td>/COMPT</td>
</tr>
<tr>
<td>DATA</td>
<td></td>
<td></td>
<td>QUEUE LTERM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>QUEUE TRAN</td>
</tr>
<tr>
<td>IMS keyword</td>
<td>Synonym</td>
<td>OM keyword</td>
<td>Commands that support this keyword</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------------</td>
<td>------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>DATABASE</td>
<td>DATABASES, DB, DBS</td>
<td>DB</td>
<td>/DBDUMP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/DBRECOVERY</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/DIAGNOSE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/DISPLAY</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/LOCK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/RECOVER</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/START</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/STOP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/UNLOCK</td>
</tr>
<tr>
<td>DATAGROUP</td>
<td>DATAGRP</td>
<td>DATAGRP</td>
<td>/DBRECOVERY</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/START</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/STOP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UPDATE</td>
</tr>
<tr>
<td>DATASTORE</td>
<td></td>
<td></td>
<td>QUERY ODBM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UPDATE ODBM</td>
</tr>
<tr>
<td>DBALLOC</td>
<td></td>
<td></td>
<td>/START</td>
</tr>
<tr>
<td>DBD</td>
<td></td>
<td></td>
<td>/DISPLAY</td>
</tr>
<tr>
<td>DBDS</td>
<td></td>
<td></td>
<td>/RECOVER</td>
</tr>
<tr>
<td>DBDSGRP</td>
<td></td>
<td></td>
<td>/RECOVER</td>
</tr>
<tr>
<td>DBS</td>
<td></td>
<td></td>
<td>/DISPLAY MODIFY</td>
</tr>
<tr>
<td>DC</td>
<td></td>
<td></td>
<td>/DISPLAY</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/START</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/STOP</td>
</tr>
<tr>
<td>DCLWA</td>
<td></td>
<td></td>
<td>CREATE TRAN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CREATE TRANDESC</td>
</tr>
<tr>
<td>DEFAULT</td>
<td></td>
<td></td>
<td>CREATE DBDESC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CREATE PGMDESC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CREATE TRANDESC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>QUERY DBDESC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>QUERY PGMDESC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>QUERY RTCDESC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>QUERY TRANDESC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UPDATE DBDESC</td>
</tr>
<tr>
<td>DEFN</td>
<td></td>
<td></td>
<td>DELETE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EXPORT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IMPORT</td>
</tr>
<tr>
<td>DESCRIPTOR</td>
<td>DESC, L62DESC</td>
<td>DESC</td>
<td>/CHANGE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/DELETE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/DISPLAY</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/START</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/STOP</td>
</tr>
<tr>
<td>DIRECTORY</td>
<td>DIR</td>
<td>DIR</td>
<td>/CHANGE</td>
</tr>
<tr>
<td>DIRROUTE</td>
<td></td>
<td></td>
<td>CREATE TRAN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CREATE TRANDESC</td>
</tr>
<tr>
<td>DOPT</td>
<td></td>
<td></td>
<td>CREATE PGM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CREATE PGMDESC</td>
</tr>
<tr>
<td>DUMPQ</td>
<td>DUMPS</td>
<td>DUMPQ</td>
<td>/CHECKPOINT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/RTAKEOVER</td>
</tr>
<tr>
<td>EDITRTRN</td>
<td></td>
<td></td>
<td>CREATE TRAN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CREATE TRANDESC</td>
</tr>
</tbody>
</table>
### Table 80. Command keywords and their synonyms (continued)

<table>
<thead>
<tr>
<th>IMS keyword</th>
<th>Synonym</th>
<th>OM keyword</th>
<th>Commands that support this keyword</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDITUC</td>
<td></td>
<td>CREATE TRAN</td>
<td>CREATE TRANDESC</td>
</tr>
<tr>
<td>EMHBSZ</td>
<td></td>
<td>CREATE TRAN</td>
<td>CREATE TRANDESC</td>
</tr>
<tr>
<td>EMHQ</td>
<td></td>
<td>/DISPLAY</td>
<td></td>
</tr>
<tr>
<td>ENDTIME</td>
<td></td>
<td>EXPORT</td>
<td></td>
</tr>
<tr>
<td>ERRORABORT</td>
<td></td>
<td>/RECOVER</td>
<td></td>
</tr>
<tr>
<td>ERRORCONT</td>
<td></td>
<td>/RECOVER</td>
<td></td>
</tr>
<tr>
<td>EXIT</td>
<td></td>
<td>/DISPLAY</td>
<td>/TRACE</td>
</tr>
<tr>
<td>FDR</td>
<td></td>
<td>/CHANGE</td>
<td>/DISPLAY</td>
</tr>
<tr>
<td>FMTLIB</td>
<td></td>
<td>INITIATE OLC</td>
<td></td>
</tr>
<tr>
<td>FORCE</td>
<td></td>
<td>/CLSDST</td>
<td>/PSTOP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>/SWITCH</td>
<td></td>
</tr>
<tr>
<td>FORCSESS</td>
<td>FORC</td>
<td>/CHANGE</td>
<td></td>
</tr>
<tr>
<td>FORMAT</td>
<td>FMT</td>
<td>/ERESTART</td>
<td>/NRESTART</td>
</tr>
<tr>
<td>FP</td>
<td></td>
<td>CREATE PGM</td>
<td>CREATE PGMDESC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CREATE TRAN</td>
<td>CREATE TRANDESC</td>
</tr>
<tr>
<td>FPPROG</td>
<td></td>
<td>/PURGE</td>
<td></td>
</tr>
<tr>
<td>FPREGION</td>
<td>FPRGN</td>
<td>FPRGN</td>
<td>/PURGE</td>
</tr>
<tr>
<td>FPVIRTUAL</td>
<td>FPV</td>
<td>FPV</td>
<td>/DISPLAY</td>
</tr>
<tr>
<td>FRCABND</td>
<td></td>
<td>INITIATE OLC</td>
<td></td>
</tr>
<tr>
<td>FRCNRML</td>
<td></td>
<td>INITIATE OLC</td>
<td></td>
</tr>
<tr>
<td>FREEZE</td>
<td></td>
<td>/CHECKPOINT</td>
<td>/RTAKEOVER</td>
</tr>
<tr>
<td>GLOBAL</td>
<td></td>
<td>/DBDUMP</td>
<td>/DBRECOVERY</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QUERY TRAN</td>
<td>/START</td>
</tr>
<tr>
<td></td>
<td></td>
<td>/STOP</td>
<td></td>
</tr>
<tr>
<td>GPSB</td>
<td></td>
<td>CREATE PGM</td>
<td>CREATE PGMDESC</td>
</tr>
<tr>
<td>GRPNAME</td>
<td></td>
<td>QUERY OTMATI</td>
<td></td>
</tr>
<tr>
<td>GRSNAME</td>
<td>GRSN, GR5</td>
<td>/START</td>
<td></td>
</tr>
<tr>
<td>HSB</td>
<td>HOTSTANDBY</td>
<td>HSB</td>
<td>/DISPLAY</td>
</tr>
<tr>
<td>HSSP</td>
<td></td>
<td>/DISPLAY</td>
<td></td>
</tr>
<tr>
<td>ICOMPONENT</td>
<td>ICOMPT</td>
<td>/ASSIGN</td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td></td>
<td>/CHANGE</td>
<td>/OPNDST</td>
</tr>
<tr>
<td>IMS keyword</td>
<td>Synonym</td>
<td>OM keyword</td>
<td>Commands that support this keyword</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>IMSCON</td>
<td>IMSCON</td>
<td>IMSCON</td>
<td>CREATE QUERY UPDATE</td>
</tr>
<tr>
<td>INDOUBT</td>
<td>IND</td>
<td>/DISPLAY</td>
<td>/ASSIGN /DISPLAY /START /STOP /TRACE</td>
</tr>
<tr>
<td>INPUT</td>
<td></td>
<td>/ASSIGN /DISPLAY /START /STOP /TRACE</td>
<td></td>
</tr>
<tr>
<td>INQ</td>
<td></td>
<td>CREATE RTC CREATE RTCDESC CREATE TRAN CREATE TRANDESC</td>
<td></td>
</tr>
<tr>
<td>INTERVAL</td>
<td>INT, INTV</td>
<td>/CHANGE /TRACE MONITOR</td>
<td></td>
</tr>
<tr>
<td>ISOLOG</td>
<td></td>
<td>/START</td>
<td>/START /STOP</td>
</tr>
<tr>
<td>JOBNAME</td>
<td>JBN, JOBN</td>
<td>/PSTOP /START /STOP</td>
<td></td>
</tr>
<tr>
<td>LA</td>
<td></td>
<td>/TRACE MONITOR</td>
<td></td>
</tr>
<tr>
<td>LANG</td>
<td></td>
<td>CREATE PGM CREATE PGMDESC</td>
<td></td>
</tr>
<tr>
<td>LCT</td>
<td></td>
<td>CREATE TRAN CREATE TRANDESC</td>
<td></td>
</tr>
<tr>
<td>LE</td>
<td></td>
<td>DELETE UPDATE QUERY</td>
<td></td>
</tr>
<tr>
<td>LEAVEGR</td>
<td></td>
<td>/CHECKPOINT</td>
<td></td>
</tr>
<tr>
<td>LEAVEPLEX</td>
<td></td>
<td>/CHECKPOINT</td>
<td></td>
</tr>
<tr>
<td>LEVEL</td>
<td></td>
<td>/TRACE</td>
<td></td>
</tr>
<tr>
<td>LIBRARY</td>
<td></td>
<td>QUERY OLC</td>
<td></td>
</tr>
<tr>
<td>LIKE</td>
<td></td>
<td>CREATE DB CREATE DBDESC CREATE IMSCON CREATE IMSCON CREATE PGM CREATE PGMDESC CREATE TRAN CREATE TRANDESC</td>
<td></td>
</tr>
<tr>
<td>IMS keyword</td>
<td>Synonym</td>
<td>OM keyword</td>
<td>Commands that support this keyword</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>LINE</td>
<td>LINES</td>
<td>LINE</td>
<td>/ASSIGN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/BROADCAST</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/DEQUEUE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/DIAGNOSE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/DISPLAY</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/END</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/EXCLUSIVE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/EXIT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/IDLE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/LOOPTEST</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/MONITOR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/PSTOP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/PURGE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/RSTART</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/START</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/STOP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/TEST</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/TRACE</td>
</tr>
<tr>
<td>LINK</td>
<td></td>
<td></td>
<td>/ACTIVATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/CHANGE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/DIAGNOSE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/DISPLAY</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/IDLE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/MSASSIGN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/PSTOP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/RSTART</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/START</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/STOP</td>
</tr>
<tr>
<td>LMCT</td>
<td>LCT</td>
<td>LCT</td>
<td>/ASSIGN</td>
</tr>
<tr>
<td>LOCAL</td>
<td></td>
<td></td>
<td>/DBDUMP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/DBRECOVERY</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/MSASSIGN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/START</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/STOP</td>
</tr>
<tr>
<td>LOGOND</td>
<td>LGND</td>
<td></td>
<td>/CHANGE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/OPNDST</td>
</tr>
<tr>
<td>LOPEN</td>
<td></td>
<td></td>
<td>/RSTART</td>
</tr>
<tr>
<td>LPRI</td>
<td></td>
<td></td>
<td>/ASSIGN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CREATE TRAN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CREATE TRANDESC</td>
</tr>
</tbody>
</table>
Table 80. Command keywords and their synonyms (continued)

<table>
<thead>
<tr>
<th>IMS keyword</th>
<th>Synonym</th>
<th>OM keyword</th>
<th>Commands that support this keyword</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTERM</td>
<td>LTERMS</td>
<td>LTERM</td>
<td>/ASSIGN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/BROADCAST</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DELETE LE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/DEQUEUE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/DIAGNOSE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/DISPLAY</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/FORMAT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/LOCK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/MODIFY</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/PSTOP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/PURGE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>QUERY LE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>QUERY OTMATI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/RMxxxxxx</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/SET</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/START</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/STOP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/UNLOCK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UPDATE LE</td>
</tr>
<tr>
<td>LUNAME</td>
<td>LU, LUN</td>
<td>LU</td>
<td>/ALLOCATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/CHANGE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/DEQUEUE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/DISPLAY</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/EXIT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/START</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/STOP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/TRACE</td>
</tr>
<tr>
<td>MADIOTOT</td>
<td></td>
<td></td>
<td>/START</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/STOP</td>
</tr>
<tr>
<td>MASTER</td>
<td></td>
<td></td>
<td>/BROADCAST</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/DISPLAY</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/RDISPLAY</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/SMCOPY</td>
</tr>
<tr>
<td>MAXRGN</td>
<td></td>
<td></td>
<td>/CHANGE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CREATE TRTRAN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CREATE TRTRANDESC</td>
</tr>
<tr>
<td>MEMBER</td>
<td></td>
<td></td>
<td>UPDATE ODBM</td>
</tr>
<tr>
<td>MODLKS</td>
<td></td>
<td></td>
<td>INITIATE OLC</td>
</tr>
<tr>
<td>MODE</td>
<td>MODETABLE, MODETBL</td>
<td></td>
<td>/ALLOCATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/CHANGE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/DISPLAY</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/OPNDST</td>
</tr>
<tr>
<td>MODIFY</td>
<td></td>
<td></td>
<td>/DISPLAY</td>
</tr>
<tr>
<td>MODNAME</td>
<td></td>
<td></td>
<td>QUERY OTMATI</td>
</tr>
<tr>
<td>MODULE</td>
<td></td>
<td></td>
<td>/DIAGNOSE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/TRACE</td>
</tr>
<tr>
<td>MONITOR</td>
<td>MON</td>
<td></td>
<td>/DISPLAY</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/TRACE</td>
</tr>
<tr>
<td>MSDBLOAD</td>
<td></td>
<td></td>
<td>/NRESTART</td>
</tr>
<tr>
<td>MSG</td>
<td>MESSAGE</td>
<td></td>
<td>/SMCOPY</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/TRACE</td>
</tr>
</tbody>
</table>
Table 80. Command keywords and their synonyms (continued)

<table>
<thead>
<tr>
<th>IMS keyword</th>
<th>Synonym</th>
<th>OM keyword</th>
<th>Commands that support this keyword</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSGAGE</td>
<td></td>
<td>/DISPLAY</td>
<td>QUERY LTERM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>QUERY OTMATI</td>
</tr>
<tr>
<td>MSGTYPE</td>
<td></td>
<td>CREATE</td>
<td></td>
</tr>
<tr>
<td>MSLINK</td>
<td></td>
<td>QUERY</td>
<td>UPDATE</td>
</tr>
<tr>
<td>MSNAME</td>
<td></td>
<td>/BROADCAST</td>
<td>CREATE TRAN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CREATE TRANDESC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/DEQUEUE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/DIAGNOSE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/DISPLAY</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/MSASSIGN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/MSVERIFY</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/PURGE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/START</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/STOP</td>
</tr>
<tr>
<td>MSPLINK</td>
<td></td>
<td>/DISPLAY</td>
<td>/MSASSIGN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/PSTOP</td>
</tr>
<tr>
<td>MULTSIGN</td>
<td></td>
<td>/ERESTART</td>
<td>/NRESTART</td>
</tr>
<tr>
<td>IMS keyword</td>
<td>Synonym</td>
<td>OM keyword</td>
<td>Commands that support this keyword</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------------</td>
<td>------------</td>
<td>-----------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>NAME</td>
<td></td>
<td></td>
<td>CREATE DB, CREATE DBDESC, CREATE IMSCON, CREATE OTMADESC, CREATE PGM, CREATE PGMDESC, CREATE RTC,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CREATE RTCDESC, DELETE DB, DELETE DBDESC, DELETE OTMADESC, DELETE PGM, DELETE PGMDESC, DELETE RTC,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DELETE RTCDESC, DELETE TRAN, DELETE TRANDESC, EXPORT, IMPORT, INITIATE OLREORG, QUERY AREA, QUERY</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DB, QUERY DBDESC, QUERY IMSCON, QUERY IMSPLEX, QUERY LTERM, QUERY MSLINK, QUERY MSNAME, QUERY</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSPLINK, QUERY NODE, QUERY ODBM, QUERY OTMADESC, QUERY PGM, QUERY PGMDESC, QUERY OLREORG, QUERY</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RTC, QUERY RTCDESC, QUERY STRUCTURE, QUERY TRAN, QUERY TRANDESC, QUERY USER, QUERY USERID, QUEUE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LTERM, QUEUE TRAN, TERMINATE OLREORG, UPDATE AREA, UPDATE DATAGRP, UPDATE DB, UPDATE DBDESC, UPDATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IMSCON, UPDATE MSLINK, UPDATE MSNAME, UPDATE MSPLINK, UPDATE OLREORG, UPDATE OTMADESC, UPDATE PGM,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UPDATE PGMDESC, UPDATE RTC, UPDATE RTCDESC, UPDATE TRAN, UPDATE TRANDESC</td>
</tr>
<tr>
<td>NOBACKOUT</td>
<td>NOBKO</td>
<td>/START</td>
<td></td>
</tr>
<tr>
<td>NOBMP</td>
<td></td>
<td>/ERESTART</td>
<td></td>
</tr>
<tr>
<td>NOBUILDQ</td>
<td>NBLDQ, NOBLDQ</td>
<td>/NRESTART</td>
<td></td>
</tr>
<tr>
<td>NOCHECK</td>
<td></td>
<td>/RECOVER</td>
<td></td>
</tr>
<tr>
<td>NOCMDAUTH</td>
<td></td>
<td>/ERESTART</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>/NRESTART</td>
<td></td>
</tr>
<tr>
<td>NOCMDAUTHE</td>
<td></td>
<td>/ERESTART</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>/NRESTART</td>
<td></td>
</tr>
<tr>
<td>NOCOMP</td>
<td></td>
<td>/TRACE</td>
<td></td>
</tr>
<tr>
<td>NOCQS5SHUT</td>
<td></td>
<td>/CHECKPOINT</td>
<td></td>
</tr>
<tr>
<td>NODBALLOC</td>
<td></td>
<td>/START</td>
<td></td>
</tr>
<tr>
<td>IMS keyword</td>
<td>Synonym</td>
<td>OM keyword</td>
<td>Commands that support this keyword</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>NODE</td>
<td></td>
<td>/ACTIVATE</td>
<td>/ACTIVATE, /ASSIGN, /BROADCAST, /CHANGE, /CLSDST, /COMPT, /DEQUEUE, /DIAGNOSE, /DISPLAY, /END, /EXCLUSIVE, /EXIT, /IDLE, /LOCK, /OPNDST, /QUIESCE, /START, /STOP, /TEST, /TRACE, /UNLOCK</td>
</tr>
<tr>
<td>NOFEOV</td>
<td></td>
<td>/DBDUMP</td>
<td>/DBDUMP, /DBRECOVER</td>
</tr>
<tr>
<td>NOOPEN</td>
<td></td>
<td>/START</td>
<td>/START</td>
</tr>
<tr>
<td>NOPFA</td>
<td></td>
<td>/DBDUMP</td>
<td>/DBDUMP, /DBRECOVERY, /STOP</td>
</tr>
<tr>
<td>NOREVERSE</td>
<td></td>
<td>/RTAKEOVER</td>
<td>/RTAKEOVER</td>
</tr>
<tr>
<td>NOSAVE</td>
<td></td>
<td>/ASSIGN</td>
<td>/ASSIGN</td>
</tr>
<tr>
<td>NOSHUT</td>
<td>NOS</td>
<td>/IDLE</td>
<td>/IDLE</td>
</tr>
<tr>
<td>NOTRANAUTH</td>
<td></td>
<td>/ERESTART</td>
<td>/ERESTART, /NRESTART</td>
</tr>
<tr>
<td>NOTRDY</td>
<td></td>
<td>/COMPT</td>
<td>/COMPT, /RECOMPT</td>
</tr>
<tr>
<td>NOUSER</td>
<td></td>
<td>/ERESTART</td>
<td>/ERESTART, /NRESTART</td>
</tr>
<tr>
<td>NPRI</td>
<td></td>
<td>/ASSIGN</td>
<td>/ASSIGN, CREATE TRAN, CREATE TRANDESC</td>
</tr>
<tr>
<td>OASN</td>
<td></td>
<td>/CHANGE</td>
<td>/CHANGE, /DISPLAY</td>
</tr>
<tr>
<td>ODBM</td>
<td></td>
<td>QUERY</td>
<td>QUERY, UPDATE</td>
</tr>
<tr>
<td>OFFLINE</td>
<td></td>
<td>/RECOVER</td>
<td>/RECOVER</td>
</tr>
<tr>
<td>OLC</td>
<td></td>
<td>INITIATE</td>
<td>INITIATE, QUERY, TERMINATE</td>
</tr>
</tbody>
</table>

Chapter 2. Command keywords and their synonyms 73
### Table 80. Command keywords and their synonyms (continued)

<table>
<thead>
<tr>
<th>IMS keyword</th>
<th>Synonym</th>
<th>OM keyword</th>
<th>Commands that support this keyword</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLDS</td>
<td></td>
<td>/DISPLAY</td>
<td>/START</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/STOP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/SWITCH</td>
</tr>
<tr>
<td>OLREORG</td>
<td>OLREORG</td>
<td>INITIATE</td>
<td>/INITIATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QUERY</td>
<td>/QUERY</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TERMINATE</td>
<td>/TERMINATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UPDATE</td>
<td>/UPDATE</td>
</tr>
<tr>
<td>OPEN</td>
<td></td>
<td>/START</td>
<td></td>
</tr>
<tr>
<td>OPTION</td>
<td>OPTION</td>
<td>DELETE DB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DELETE DBDESC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DELETE OTMADESC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DELETE PGM</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DELETE PGMDESC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DELETE RTC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DELETE RTCDESC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DELETE TRAN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DELETE TRANDESC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>/DIAGNOSE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EXPORT</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IMPORT</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>INITIATE OLC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>INITIATE OLREORG</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>QUERY AREA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>QUERY LTERM</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>QUERY OTMADESC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>QUEUE LTERM</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>QUEUE TRAN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TERMINATE OLREORG</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>/TRACE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UPDATE AREA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UPDATE DATAGRP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UPDATE DB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UPDATE DBDESC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UPDATE IMS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UPDATE MSLINK</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UPDATE ODBM</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UPDATE OLREORG</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UPDATE PGM</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UPDATE PGMDESC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UPDATE RTC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UPDATE RTCDESC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UPDATE TRAN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UPDATE TRANDESC</td>
<td></td>
</tr>
<tr>
<td>OSAMGTF</td>
<td></td>
<td>/DISPLAY</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>/TRACE</td>
<td></td>
</tr>
<tr>
<td>OTMA</td>
<td></td>
<td>/DISPLAY</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>/SECURE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>/START</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>/STOP</td>
<td></td>
</tr>
</tbody>
</table>
Table 80. Command keywords and their synonyms (continued)

<table>
<thead>
<tr>
<th>IMS keyword</th>
<th>Synonym</th>
<th>OM keyword</th>
<th>Commands that support this keyword</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTMADESC</td>
<td></td>
<td></td>
<td>CREATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DELETE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>QUERY</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UPDATE</td>
</tr>
<tr>
<td>OUTBND</td>
<td>OUTBOUND</td>
<td></td>
<td>/CHANGE</td>
</tr>
<tr>
<td>OUTPUT</td>
<td></td>
<td></td>
<td>/ASSIGN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/DISPLAY</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/START</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/STOP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/TRACE</td>
</tr>
<tr>
<td>OVERFLOWQ</td>
<td>OFLWQ</td>
<td>OVERFLOWQ</td>
<td>/DISPLAY</td>
</tr>
<tr>
<td>OVERRIDE</td>
<td>OVER</td>
<td></td>
<td>/ERESTART</td>
</tr>
<tr>
<td>PARLIM</td>
<td></td>
<td></td>
<td>/ASSIGN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CREATE TRAN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CREATE TRANDESC</td>
</tr>
<tr>
<td>PASSWORD</td>
<td>PASSWORDS, PSWD, PSWDS</td>
<td>PSWD</td>
<td>/CHANGE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/DELETE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/MODIFY PREPARE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/NRESTART</td>
</tr>
<tr>
<td>PCH</td>
<td></td>
<td></td>
<td>/COMPT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/RCOMPT</td>
</tr>
<tr>
<td>PDS</td>
<td></td>
<td></td>
<td>/COMPT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/RCOMPT</td>
</tr>
<tr>
<td>PGMTYPE</td>
<td></td>
<td></td>
<td>CREATE PGM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CREATE PGMDESC</td>
</tr>
<tr>
<td>PHASE</td>
<td></td>
<td></td>
<td>INITIATE OLC</td>
</tr>
<tr>
<td>PI</td>
<td></td>
<td></td>
<td>/DISPLAY</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/TRACE</td>
</tr>
<tr>
<td>Pitr</td>
<td></td>
<td></td>
<td>/RECOVER</td>
</tr>
<tr>
<td>PLCT</td>
<td></td>
<td></td>
<td>CREATE TRAN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CREATE TRANDESC</td>
</tr>
<tr>
<td>PLCTTIME</td>
<td></td>
<td></td>
<td>CREATE TRAN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CREATE TRANDESC</td>
</tr>
<tr>
<td>PLEXPARM</td>
<td></td>
<td></td>
<td>UPDATE IMS</td>
</tr>
<tr>
<td>PLMCT</td>
<td>PLCT</td>
<td>PLCT</td>
<td>/ASSIGN</td>
</tr>
<tr>
<td>POOL</td>
<td></td>
<td></td>
<td>/DISPLAY</td>
</tr>
<tr>
<td>PREPARE</td>
<td></td>
<td></td>
<td>/MODIFY</td>
</tr>
<tr>
<td>PRIORITY</td>
<td>PRTY</td>
<td></td>
<td>/DISPLAY</td>
</tr>
<tr>
<td>IMS keyword</td>
<td>Synonym</td>
<td>OM keyword</td>
<td>Commands that support this keyword</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>PROGRAM</td>
<td>PGM, PGMS, PROG, PROGRAMS, PROGS</td>
<td>PGM</td>
<td>CREATE PGM, CREATE PGMDESC, CREATE TRAN, CREATE TRANDESC, DELETE LE, DELETE PGM, DELETE PGMDESC, /DIAGNOSE, DISPLAY, /LOCK, QUERY LE, QUERY PGM, QUERY PGMDESC, /START, /STOP, /TRACE, /UNLOCK, UPDATE LE, UPDATE PGM, UPDATE PGMDESC</td>
</tr>
<tr>
<td>PRT</td>
<td></td>
<td></td>
<td>/COMPT, /RCOMPT</td>
</tr>
<tr>
<td>PRTKN</td>
<td>PRK</td>
<td></td>
<td>/CHANGE CCTL</td>
</tr>
<tr>
<td>PSB</td>
<td></td>
<td></td>
<td>/DISPLAY, QUERY ODBM, /TRACE</td>
</tr>
<tr>
<td>PSWD</td>
<td></td>
<td></td>
<td>INITIATE OLC</td>
</tr>
<tr>
<td>PTERM</td>
<td>PTERMS</td>
<td>PTERM</td>
<td>/ASSIGN, /BROADCAST, /DEQUEUE, /DISPLAY, /END, /EXCLUSIVE, /EXIT, /LOCK, /LOOPTEST, /MONITOR, /PSTOP, /PURGE, /START, /STOP, /TEST, /UNLOCK</td>
</tr>
<tr>
<td>PURGE</td>
<td></td>
<td></td>
<td>/CHECKPOINT, /DEQUEUE, /PSTOP</td>
</tr>
<tr>
<td>PURGE1</td>
<td>FIRST, SINGLE, SNGL</td>
<td></td>
<td>/DEQUEUE</td>
</tr>
<tr>
<td>Q</td>
<td>QS, QUEUE, QUEUES</td>
<td>Q</td>
<td>/DISPLAY, /OPNDST</td>
</tr>
<tr>
<td>IMS keyword</td>
<td>Synonym</td>
<td>OM keyword</td>
<td>Commands that support this keyword</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------</td>
<td>------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>QCNT</td>
<td></td>
<td>/DISPLAY</td>
<td>QUERY LITERM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>QUERY MSNAME</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>QUERY TRAN</td>
</tr>
<tr>
<td>QMGR</td>
<td></td>
<td>/TRACE</td>
<td>TABLE</td>
</tr>
<tr>
<td>QUIESCE</td>
<td></td>
<td>/CHECKPOINT</td>
<td></td>
</tr>
<tr>
<td>RCVTIME</td>
<td></td>
<td>/RECOVER</td>
<td></td>
</tr>
<tr>
<td>RCVTOKEN</td>
<td></td>
<td>/RECOVER</td>
<td></td>
</tr>
<tr>
<td>RDDSDSN</td>
<td></td>
<td>EXPORT</td>
<td></td>
</tr>
<tr>
<td>RDR</td>
<td></td>
<td>/COMPT</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>/RCOMP</td>
<td></td>
</tr>
<tr>
<td>READNUM</td>
<td></td>
<td>/RECOVER</td>
<td></td>
</tr>
<tr>
<td>READY</td>
<td></td>
<td>/COMPT</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>/RCOMP</td>
<td></td>
</tr>
<tr>
<td>RECOVER</td>
<td></td>
<td>CREATE</td>
<td>TRAN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CREATE</td>
<td>TRANDESC</td>
</tr>
<tr>
<td>RECOVERY</td>
<td>REC</td>
<td>RECOVERY</td>
<td>/DISPLAY</td>
</tr>
<tr>
<td>RECOVGRP</td>
<td>RCVGRP</td>
<td>/RECOVER</td>
<td></td>
</tr>
<tr>
<td>REGION</td>
<td>REGIONS, REG,</td>
<td>REGION</td>
<td>/ASSIGN</td>
</tr>
<tr>
<td></td>
<td>REGS, MSGREG,</td>
<td></td>
<td>/DIAGNOSE</td>
</tr>
<tr>
<td></td>
<td>MSGREGS,</td>
<td></td>
<td>/DISPLAY</td>
</tr>
<tr>
<td></td>
<td>MSGREGION,</td>
<td></td>
<td>/PSTOP</td>
</tr>
<tr>
<td></td>
<td>MSREGIONS,</td>
<td></td>
<td>/START</td>
</tr>
<tr>
<td></td>
<td>THREAD</td>
<td></td>
<td>/STOP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/TRACE MONITOR</td>
</tr>
<tr>
<td>REMOTE</td>
<td></td>
<td>CREATE</td>
<td>TRAN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CREATE</td>
<td>TRANDESC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>/DISPLAY</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UPDATE</td>
<td>DBDESC</td>
</tr>
<tr>
<td>REMOVE</td>
<td>REM</td>
<td>REMOVE</td>
<td>/RECOVER</td>
</tr>
<tr>
<td>RESET</td>
<td></td>
<td>/CHANGE</td>
<td></td>
</tr>
<tr>
<td>RESIDENT</td>
<td></td>
<td>CREATE</td>
<td>DB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CREATE</td>
<td>DBDESC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CREATE</td>
<td>PGM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CREATE</td>
<td>PGMDESC</td>
</tr>
<tr>
<td>RESP</td>
<td></td>
<td>CREATE</td>
<td>TRAN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CREATE</td>
<td>TRANDESC</td>
</tr>
<tr>
<td>RTCODE</td>
<td>RTC</td>
<td>RTC</td>
<td>/DISPLAY</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/START</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/STOP</td>
</tr>
<tr>
<td>SAVE</td>
<td></td>
<td>/ASSIGN</td>
<td></td>
</tr>
<tr>
<td>SB</td>
<td></td>
<td>/START</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>/STOP</td>
<td></td>
</tr>
<tr>
<td>SCOPE</td>
<td></td>
<td>IMPORT</td>
<td>UPDATE AREA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UPDATE</td>
<td>AREA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UPDATE</td>
<td>DATAGRUP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UPDATE</td>
<td>DB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UPDATE</td>
<td>TRAN</td>
</tr>
<tr>
<td>IMS keyword</td>
<td>Synonym</td>
<td>OM keyword</td>
<td>Commands that support this keyword</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
<td>------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>SCHD</td>
<td></td>
<td>/TRACE</td>
<td>MONITOR</td>
</tr>
<tr>
<td>SCHDTYPE</td>
<td></td>
<td>CREATE PGM</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CREATE PGMDESC</td>
<td></td>
</tr>
<tr>
<td>SCIMEMBER</td>
<td></td>
<td>QUERY ODBM</td>
<td></td>
</tr>
<tr>
<td>SEGNO</td>
<td></td>
<td>/ASSIGN</td>
<td>CREATE TRAN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CREATE TRANDESC</td>
<td></td>
</tr>
<tr>
<td>SEGSIZE</td>
<td>SEGSZ</td>
<td>SEGSZ</td>
<td>/ASSIGN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CREATE TRAN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CREATE TRANDESC</td>
<td></td>
</tr>
<tr>
<td>SERIAL</td>
<td>SG</td>
<td>SERVGRP</td>
<td>/START</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/STOP</td>
</tr>
<tr>
<td>SET</td>
<td></td>
<td>CREATE DB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CREATE DBDESC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CREATE IMSCON</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CREATE OTMADESC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CREATE PGM</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CREATE PGMDESC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CREATE RTC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CREATE RTCDESC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CREATE TRAN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CREATE TRANDESC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>/DIAGNOSE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EXPORT</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>INITIATE OLRORG</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>/TRACE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UPDATE DB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UPDATE DBDESC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UPDATE IMSCON, UPDATE LE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UPDATE MSLINK</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UPDATE MSNAME</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UPDATE MSPLINK</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UPDATE OLREORG</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UPDATE OTMADESC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UPDATE PGM</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UPDATE PGMDESC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UPDATE RTC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UPDATE RTCDESC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UPDATE TRAN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UPDATE TRANDESC</td>
<td></td>
</tr>
<tr>
<td>SHAREDQ</td>
<td>SHRQ</td>
<td>SHAREDQ</td>
<td>/CQCHKPT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/CQSET</td>
</tr>
<tr>
<td>IMS keyword</td>
<td>Synonym</td>
<td>OM keyword</td>
<td>Commands that support this keyword</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>SHOW</td>
<td>/DIAGNOSE</td>
<td>QUERY AREA</td>
<td>QUERY DB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QUERY IMS</td>
<td>QUERY IMSPLINK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QUERY LE</td>
<td>QUERY LTERM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QUERY MEMBER</td>
<td>QUERY MEMBER</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QUERY MSLINK</td>
<td>QUERY MSLINK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QUERY MSNAME</td>
<td>QUERY MSNAME</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QUERY MSPLINK</td>
<td>QUERY MSPLINK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QUERY NODE</td>
<td>QUERY NODE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QUERY ODBM</td>
<td>QUERY ODBM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QUERY OLM</td>
<td>QUERY OLM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QUERY OLREORG</td>
<td>QUERY OLREORG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QUERY RTC</td>
<td>QUERY RTC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QUERY RTCDESC</td>
<td>QUERY RTCDESC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QUERY STRUCTURE</td>
<td>QUERY STRUCTURE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QUERY TRAN</td>
<td>QUERY TRAN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QUERY TRANDESC</td>
<td>QUERY TRANDESC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QUERY TRANDESC</td>
<td>QUERY TRANDESC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QUERY USER</td>
<td>QUERY USER</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QUERY USERID</td>
<td>QUERY USERID</td>
</tr>
<tr>
<td>SHUTDOWN</td>
<td>/CQSET</td>
<td>/DISPLAY</td>
<td>/DISPLAY</td>
</tr>
<tr>
<td>SIDE</td>
<td>/CHANGE</td>
<td>/CHANGE</td>
<td>/CHANGE</td>
</tr>
<tr>
<td>SIDL</td>
<td>CREATE TRAN</td>
<td>CREATE TRAN</td>
<td>CREATE TRAN</td>
</tr>
<tr>
<td>SIDR</td>
<td>CREATE TRAN</td>
<td>CREATE TRAN</td>
<td>CREATE TRAN</td>
</tr>
<tr>
<td>SLDREAD</td>
<td>/START</td>
<td>/STOP</td>
<td>/STOP</td>
</tr>
<tr>
<td>SMEM</td>
<td>QUERY OTMADESC</td>
<td>QUERY OTMADESC</td>
<td>QUERY OTMADESC</td>
</tr>
<tr>
<td>SMSOPTS</td>
<td>/RECOVER</td>
<td>/RECOVER</td>
<td>/RECOVER</td>
</tr>
<tr>
<td>SNAP</td>
<td>/DIAGNOSE</td>
<td>/DIAGNOSE</td>
<td>/DIAGNOSE</td>
</tr>
<tr>
<td>SNAPQ</td>
<td>/CHECKPOINT</td>
<td>/CHECKPOINT</td>
<td>/CHECKPOINT</td>
</tr>
<tr>
<td>SNGLSIGN</td>
<td>/ERESTART</td>
<td>/ERESTART</td>
<td>/ERESTART</td>
</tr>
<tr>
<td>SOURCE</td>
<td>IMPORT</td>
<td>IMPORT</td>
<td>IMPORT</td>
</tr>
<tr>
<td>SPASZ</td>
<td>CREATE TRAN</td>
<td>CREATE TRAN</td>
<td>CREATE TRAN</td>
</tr>
<tr>
<td>SPATRUNC</td>
<td>CREATE TRAN</td>
<td>CREATE TRAN</td>
<td>CREATE TRAN</td>
</tr>
<tr>
<td>SQTT</td>
<td>/TRACE TABLE</td>
<td>/TRACE TABLE</td>
<td>/TRACE TABLE</td>
</tr>
<tr>
<td>SSM</td>
<td>/START</td>
<td>/START</td>
<td>/START</td>
</tr>
<tr>
<td>IMS keyword</td>
<td>Synonym</td>
<td>OM keyword</td>
<td>Commands that support this keyword</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>------------</td>
<td>---------------------------------------------------------</td>
</tr>
<tr>
<td>STAGLOBAL</td>
<td></td>
<td></td>
<td>/RECOVER</td>
</tr>
<tr>
<td>STALOCAL</td>
<td></td>
<td></td>
<td>/RECOVER</td>
</tr>
<tr>
<td>START</td>
<td>STA</td>
<td>START</td>
<td>/RECOVER, UPDATE AREA, UPDATE DATAGRP, UPDATE DB, UPDATE MSLINK, UPDATE MSNAME, UPDATE MSPLINK, UPDATE ODBM, UPDATE PGM, UPDATE RTC, UPDATE TRAN</td>
</tr>
<tr>
<td>STARTTIME</td>
<td></td>
<td></td>
<td>EXPORT</td>
</tr>
<tr>
<td>STATISTICS</td>
<td></td>
<td></td>
<td>/CHECKPOINT, /CQUERY, QUERY STRUCTURE</td>
</tr>
<tr>
<td>STATUS</td>
<td></td>
<td></td>
<td>/DISPLAY, QUERY AREA, QUERY DB, QUERY IMSPLEX, QUERY LTERM, QUERY MEMBER, QUERY MSLINK, QUERY MSNAME, QUERY MSPLINK, QUERY NODE, QUERY ODBM, QUERY PGM, QUERY OLREORG, QUERY RTC, QUERY TRAN, QUERY USER</td>
</tr>
<tr>
<td>STOP</td>
<td>STO</td>
<td>STOP</td>
<td>/RECOVER, UPDATE AREA, UPDATE DATAGRP, UPDATE DB, UPDATE MSLINK, UPDATE MSNAME, UPDATE MSPLINK, UPDATE ODBM, UPDATE PGM, UPDATE RTC, UPDATE TRAN</td>
</tr>
<tr>
<td>STRUCTURE</td>
<td>STRUC</td>
<td>STRUCTURE</td>
<td>/CQCHKPT, /CQUERY, /CQSET, /DIAGNOSE, /DISPLAY</td>
</tr>
<tr>
<td>SUBSYS</td>
<td>SUBSYSTEM, SUBSYSTEMS</td>
<td>SUBSYS</td>
<td>/CHANGE, /DISPLAY, /START, /STOP</td>
</tr>
<tr>
<td>IMS keyword</td>
<td>Synonym</td>
<td>OM keyword</td>
<td>Commands that support this keyword</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>SURVEILLANCE</td>
<td>SUR, SURV, SURVEIL</td>
<td>SURV</td>
<td>/CHANGE /START /STOP</td>
</tr>
<tr>
<td>SUSPEND</td>
<td></td>
<td></td>
<td>/DEQUEUE</td>
</tr>
<tr>
<td>SYNCLEVEL</td>
<td>SYNCLV</td>
<td></td>
<td>/CHANGE QUERY OTMATI</td>
</tr>
<tr>
<td>SYNCSESS</td>
<td>SYNC</td>
<td></td>
<td>/CHANGE</td>
</tr>
<tr>
<td>SYSID</td>
<td></td>
<td></td>
<td>/BROADCAST /DISPLAY /MSASSIGN /MSVERIFY</td>
</tr>
<tr>
<td>SYSTEM</td>
<td></td>
<td></td>
<td>/CQCHKPT /SWITCH /UNLOCK</td>
</tr>
<tr>
<td>TABLE</td>
<td></td>
<td></td>
<td>/DISPLAY /TRACE</td>
</tr>
<tr>
<td>TAKEOVER</td>
<td>TKO, TKOVR</td>
<td></td>
<td>/TRACE</td>
</tr>
<tr>
<td>TARGET</td>
<td></td>
<td></td>
<td>EXPORT</td>
</tr>
<tr>
<td>TCO</td>
<td></td>
<td></td>
<td>/DISPLAY /TRACE</td>
</tr>
<tr>
<td>TDS</td>
<td></td>
<td></td>
<td>/COMPT /RCOMPT</td>
</tr>
<tr>
<td>TERMINAL</td>
<td>TER, TERM, TERMINALS, TERMS, TERS</td>
<td>TERMINAL</td>
<td>INITIATE OLC /SMCOPY</td>
</tr>
<tr>
<td>THREAD</td>
<td></td>
<td></td>
<td>/START /STOP</td>
</tr>
<tr>
<td>TIMEOUT</td>
<td>TIMO</td>
<td></td>
<td>/CHANGE /DISPLAY /TRACE</td>
</tr>
<tr>
<td>TIMEOVER</td>
<td></td>
<td></td>
<td>/DISPLAY</td>
</tr>
<tr>
<td>TMEMBER</td>
<td>TMEM</td>
<td>TMEM</td>
<td>/DEQUEUE /DISPLAY /EXIT QUERY OTMADESC QUERY OTMATI /START /STOP /TRACE</td>
</tr>
<tr>
<td>TPIPE</td>
<td>TPI</td>
<td></td>
<td>/DEQUEUE /DISPLAY QUERY OTMADESC QUERY OTMATI /START /STOP /TRACE</td>
</tr>
<tr>
<td>IMS keyword</td>
<td>Synonym</td>
<td>OM keyword</td>
<td>Commands that support this keyword</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>TPNAME</td>
<td>TP, TPN</td>
<td></td>
<td>/ALLOCATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/CHANGE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/DEQUEUE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/DISPLAY</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/START</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/STOP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/TRACE</td>
</tr>
<tr>
<td>TRACE</td>
<td></td>
<td></td>
<td>/DISPLAY</td>
</tr>
<tr>
<td>TRACKING</td>
<td></td>
<td></td>
<td>/DISPLAY</td>
</tr>
<tr>
<td>TRACKING STATUS</td>
<td></td>
<td></td>
<td>/DISPLAY</td>
</tr>
<tr>
<td>TRANAUTH</td>
<td></td>
<td></td>
<td>/ERESTART</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/NRESTART</td>
</tr>
<tr>
<td>TRANCMDS</td>
<td></td>
<td></td>
<td>INITIATE OLC</td>
</tr>
<tr>
<td>TRANSACTION</td>
<td>TRANS, TRAN, TRANSACTIONS, TRANCODE, TRANCODES, TRS</td>
<td>TRAN</td>
<td>/ASSIGN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/CHANGE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CREATE TRAN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CREATE TRANDESC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DELETE LE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DELETE TRAN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DELETE TRANDESC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/DEQUEUE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/DIAGNOSE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/DISPLAY</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/LOCK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/MSASSIGN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/PSTOP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/PURGE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>QUERY LE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>QUERY OMTA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>QUERY TRAN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>QUERY TRANDESC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/SET</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/START</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/STOP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/TRACE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/UNLOCK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UPDATE LE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UPDATE TRAN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UPDATE TRANDESC</td>
</tr>
<tr>
<td>TRANSTAT</td>
<td></td>
<td></td>
<td>CREATE PGM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CREATE PGMDESC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CREATE TRAN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CREATE TRANDESC</td>
</tr>
<tr>
<td>TRAP</td>
<td></td>
<td></td>
<td>/DISPLAY</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/TRACE</td>
</tr>
<tr>
<td>TRKAUTOARCH</td>
<td>TRKARCH</td>
<td>TRKARCH</td>
<td>/START</td>
</tr>
<tr>
<td>TRS</td>
<td></td>
<td></td>
<td>/DISPLAY MODIFY</td>
</tr>
</tbody>
</table>
Table 80. Command keywords and their synonyms (continued)

<table>
<thead>
<tr>
<th>IMS keyword</th>
<th>Synonym</th>
<th>OM keyword</th>
<th>Commands that support this keyword</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE</td>
<td></td>
<td>/CHANGE</td>
<td>CREATE IMSCON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EXPORT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IMPORT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>INITIATE OLC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>QUERY DB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>QUERY IMS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>QUERY IMSCON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>QUERY IMSPLEX</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>QUERY MEMBER</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>QUERY MSPLINK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>QUERY ODBM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>QUERY OTMADESC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>QUERY POOL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>QUERY STRUCTURE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UPDATE IMSCON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UPDATE ODBM</td>
</tr>
<tr>
<td>UDATA</td>
<td></td>
<td>/OPNDST</td>
<td></td>
</tr>
<tr>
<td>UDS</td>
<td></td>
<td>/COMPT</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>/RCOMPT</td>
<td></td>
</tr>
<tr>
<td>UNITYPE</td>
<td></td>
<td>/TRACE</td>
<td></td>
</tr>
<tr>
<td>UNPLAN</td>
<td></td>
<td>/RTAKEOVER</td>
<td></td>
</tr>
<tr>
<td>UOR</td>
<td></td>
<td>/CHANGE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>/DISPLAY</td>
<td></td>
</tr>
<tr>
<td>USEDDBDS</td>
<td>USEAREA</td>
<td></td>
<td>/RECOVER</td>
</tr>
<tr>
<td>USER</td>
<td>SUBPOOL</td>
<td>USER</td>
<td>/ASSIGN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/BROADCAST</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/CHANGE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/CLSDST</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/COMPT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/DEQUEUE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/DIAGNOSE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/DISPLAY</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/END</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/ERESTART</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/EXCLUSIVE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/EXIT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/NRESTART</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/OPNDST</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/QUIESCE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/START</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/STOP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/TEST</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/TRACE</td>
</tr>
<tr>
<td>USERD</td>
<td>USRD</td>
<td></td>
<td>/OPNDST</td>
</tr>
<tr>
<td>USERID</td>
<td></td>
<td>DELETE LE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>QUERY LE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>QUERY OTMATHI</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UPDATE LE</td>
<td></td>
</tr>
<tr>
<td>VERIFY</td>
<td></td>
<td></td>
<td>/RECOVER</td>
</tr>
<tr>
<td>VGRS</td>
<td>VGR</td>
<td>VGR</td>
<td>/STOP</td>
</tr>
</tbody>
</table>
Table 80. Command keywords and their synonyms (continued)

<table>
<thead>
<tr>
<th>IMS keyword</th>
<th>Synonym</th>
<th>OM keyword</th>
<th>Commands that support this keyword</th>
</tr>
</thead>
<tbody>
<tr>
<td>VID</td>
<td>/COMPT</td>
<td>/RCOMPT</td>
<td></td>
</tr>
<tr>
<td>VOLUME</td>
<td></td>
<td>/TRACE</td>
<td></td>
</tr>
<tr>
<td>VTAMPOOL</td>
<td>VPL</td>
<td>/ASSIGN</td>
<td></td>
</tr>
<tr>
<td>WADS</td>
<td></td>
<td>/STOP</td>
<td>/SWITCH</td>
</tr>
<tr>
<td>WFI</td>
<td></td>
<td>CREATE</td>
<td>TRAN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CREATE</td>
<td>TRANDESC</td>
</tr>
<tr>
<td>WPM1</td>
<td></td>
<td>/COMPT</td>
<td></td>
</tr>
<tr>
<td>WPM2</td>
<td></td>
<td>/COMPT</td>
<td></td>
</tr>
<tr>
<td>WPM3</td>
<td></td>
<td>/COMPT</td>
<td></td>
</tr>
<tr>
<td>XRCTRACK</td>
<td></td>
<td>/START</td>
<td>/STOP</td>
</tr>
<tr>
<td>XTRC</td>
<td>XTRACE, EXTRACE</td>
<td>/DISPLAY TRACE</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1 ISOLOG and TRKAUTOARCH are valid only for an RSR tracking subsystem.

Related reference:

[IMS Command Language Modification facility (DFSCKWD0) (Exit Routines)]
Chapter 3. Commands and keywords valid in DBCTL

Commands and keywords that are valid in the Database Control (DBCTL) environment are listed.

The following table lists commands and keywords valid in the Database Control (DBCTL) environment. All commands and keywords are valid in a DB/DC environment.

Table 81. Commands and keywords valid in DBCTL

<table>
<thead>
<tr>
<th>Commands</th>
<th>Keywords</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>/CHANGE</td>
<td>ABORT, AUTOLOGON, CCTL, COMMIT, FDR, OASN, PASSWORD, PRTKN, RESET, SUBSYS, TIMEOUT</td>
<td>Chapter 12, “/CHANGE commands,” on page 129</td>
</tr>
<tr>
<td>/CHECKPOINT</td>
<td>ABDUMP, FREEZE, PURGE, STATISTICS</td>
<td>Chapter 13, “/CHECKPOINT command,” on page 153</td>
</tr>
<tr>
<td>CREATE</td>
<td>PGMDESC, PGM</td>
<td>Chapter 19, “CREATE commands,” on page 175</td>
</tr>
<tr>
<td>/DBDUMP</td>
<td>DB, GLOBAL, LOCAL, NOFEOV, NOPFA</td>
<td>Chapter 20, “/DBDUMP command,” on page 293</td>
</tr>
<tr>
<td>/DBRECOVERY</td>
<td>AREA, DB, DATAGRP, GLOBAL, LOCAL, NOFEOV, NOPFA</td>
<td>Chapter 21, “/DBRECOVERY command,” on page 299</td>
</tr>
<tr>
<td>/DELETE</td>
<td>DB, PASSWORD, PGM</td>
<td>Chapter 22, “/DELETE command,” on page 309</td>
</tr>
<tr>
<td>DELETE</td>
<td>DB, DBDESC, DEFN, LE, PGM, PGMDESC</td>
<td>Chapter 23, “DELETE commands,” on page 311</td>
</tr>
<tr>
<td>/DEQUEUE</td>
<td>AOITOKEN</td>
<td>Chapter 24, “/DEQUEUE command,” on page 383</td>
</tr>
<tr>
<td>/DIAGNOSE</td>
<td>AREA, ADDRESS, BLOCK, DB, JOBNAME, MODULE, OPTION, PGM, REGION, SET, SHOW, SNAP</td>
<td>Chapter 25, “/DIAGNOSE commands,” on page 391</td>
</tr>
<tr>
<td>/DISPLAY</td>
<td>ACTIVE, AOITOKEN, AREA, BKERR, CCTL, CPLOG, DB, DBD, FDR, FPVIRTUAL, HSSP, INDOUBT, MADSIOT, MODIFY, MONITOR, OASN, OIDS, OSAMGTF, PI, POOL, PGM, PSB, RECOVERY, REGION, SHUTDOWN, STATUS, SUBSYS, TABLE, TCO, TRACE, TRACKING STATUS, XTRC</td>
<td>Chapter 26, “/DISPLAY commands,” on page 433</td>
</tr>
<tr>
<td>/ERESTART</td>
<td>CHECKPOINT, COLDBASE, COLDSYS, FORMAT, NOBMP, OVERRIDE</td>
<td>Chapter 28, “/ERESTART command,” on page 679</td>
</tr>
<tr>
<td>EXPORT</td>
<td>DEFN, ENDTIME, NAME, OPTION, RDDSDSN, SET, STARTTIME, TARGET, TYPE</td>
<td>Chapter 31, “EXPORT command,” on page 697</td>
</tr>
<tr>
<td>IMPORT</td>
<td>DEFN, NAME, OPTION, RDDSDSN, SCOPE, SOURCE, TYPE</td>
<td>Chapter 35, “IMPORT command,” on page 737</td>
</tr>
<tr>
<td>INITIATE</td>
<td>OLC, OLREORG</td>
<td>Chapter 36, “INITIATE commands,” on page 775</td>
</tr>
<tr>
<td>/LOCK</td>
<td>DB, PGM</td>
<td>Chapter 37, “/LOCK command,” on page 831</td>
</tr>
<tr>
<td>/LOG</td>
<td></td>
<td>Chapter 38, “/LOG command,” on page 837</td>
</tr>
<tr>
<td>/MODIFY</td>
<td>ABORT, COMMIT, PASSWORD, PREPARE</td>
<td>Chapter 40, “/MODIFY command,” on page 841</td>
</tr>
<tr>
<td>Commands</td>
<td>Keywords</td>
<td>Topic</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------------------------------------</td>
<td>--------------------------------------------</td>
</tr>
<tr>
<td>/NRESTART</td>
<td>CHECKPOINT, FORMAT</td>
<td>/NRESTART command (Commands)</td>
</tr>
<tr>
<td>/PSTOP</td>
<td>AOITOKEN, JOBNAME, REGION</td>
<td>/PSTOP command (Commands)</td>
</tr>
<tr>
<td>QUERY</td>
<td>AREA, DB, DBDESC, IMS, LE, MEMBER, ODBM, OLC,</td>
<td>QUERY commands (Commands)</td>
</tr>
<tr>
<td></td>
<td>OLREORG, PGM, PGMDESC, POOL, USEREXIT</td>
<td></td>
</tr>
<tr>
<td>/RECOVER</td>
<td>ALLENTRIES, AREA, CAGROUP, DB, DBDS, DBDSGRP,</td>
<td>/RECOVER commands (Commands)</td>
</tr>
<tr>
<td></td>
<td>ERRORABORT, ERRORCONT, NOCHECK, OFFLINE, PITR,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RCVTIME, RCVTOKEN, READNUM, RECOVGRP, REMOVE,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SMSOPTS, STAGLOBAL, STALOCA, START, STOP, USEAREA,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>USEDBDS, VERIFY</td>
<td></td>
</tr>
<tr>
<td>REFRESH</td>
<td>USEREXIT</td>
<td>REFRESH USEREXIT command (Commands)</td>
</tr>
<tr>
<td>/RMxxxxxx</td>
<td></td>
<td>/RMxxxxxx commands (Commands)</td>
</tr>
<tr>
<td>/RTAKEOVER</td>
<td>DUMPQ, FREEZE, NOREVERSE, UNPLAN</td>
<td>/RTAKEOVER command (Commands)</td>
</tr>
<tr>
<td>/SSR</td>
<td></td>
<td>/SSR command (Commands)</td>
</tr>
<tr>
<td>/START</td>
<td>ACCESS, AREA, AUTOARCH, DB, DATAGRP, DBALLOC,</td>
<td>/START commands (Commands)</td>
</tr>
<tr>
<td></td>
<td>GLOBAL, ISOLOG, JOBNAME, LOCAL, MADSiot, NOBACKOUT,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NODBALLOC, NOOPEN, OLDS, OPEN, PGM, REGION, SB,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SERVGRP, SLDSREAD, SSM, SUBSYS, THREAD, TRKAUTOARCH,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WADS, XRCTRACK</td>
<td></td>
</tr>
<tr>
<td>/STOP</td>
<td>ABDUMP, ADS, AREA, AUTOARCH, CANCEL, DB, DATAGRP,</td>
<td>/STOP commands (Commands)</td>
</tr>
<tr>
<td></td>
<td>DATAGRP, GLOBAL, JOBNAME, LOCAL, MADSiot,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOPFA, OLDS, PGM, REGION, SB, SERVGRP,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SLDSREAD, SUBSYS, WADS, XRCTRACK</td>
<td></td>
</tr>
<tr>
<td>/SWITCH</td>
<td>CHECKPOINT, OLDS, WADS</td>
<td>/SWITCH command (Commands)</td>
</tr>
<tr>
<td>TERMINATE</td>
<td>OLC, OLREORG</td>
<td>TERMINATE OLC command (Commands)</td>
</tr>
<tr>
<td>/TRACE</td>
<td>COMP, MONITOR, NOCOMP, OPTION, OSAMGTF, PI, PGM,</td>
<td>/TRACE commands (Commands)</td>
</tr>
<tr>
<td></td>
<td>PSB, SET, TABLE, TCO, VOLUME</td>
<td></td>
</tr>
<tr>
<td>/UNLOCK</td>
<td>DB, PGM</td>
<td>/UNLOCK commands (Commands)</td>
</tr>
<tr>
<td>UPDATE</td>
<td>AREA, DB, DBDESC, DATAGRP, IMS, LE, ODBM, OLREORG,</td>
<td>/UPDATE commands (Commands)</td>
</tr>
<tr>
<td></td>
<td>PGM, PGMDESC, POOL</td>
<td></td>
</tr>
<tr>
<td>/VUNLOAD</td>
<td>AREA</td>
<td>/VUNLOAD command (Commands)</td>
</tr>
</tbody>
</table>
Chapter 4. Commands and keywords valid in DCCTL

Commands and keywords that are valid in a Data Communications Control (DCCTL) environment are listed.

The following table lists commands and keywords valid in a Data Communications Control (DCCTL) environment. All commands and keywords are valid in a DB/DC environment.

Table 82. Commands and keywords valid in DCCTL

<table>
<thead>
<tr>
<th>Commands</th>
<th>Keywords</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>/ACTIVATE</td>
<td>LINK, NODE</td>
<td>Chapter 7, “/ACTIVATE command,” on page 97</td>
</tr>
<tr>
<td>/ALLOCATE</td>
<td>LUNAME, MODE, TPNAME</td>
<td>Chapter 8, “/ALLOCATE command,” on page 99</td>
</tr>
<tr>
<td>/ASSIGN</td>
<td>CLASS, COMPONENT, CPRI, COMPONENT, INPUT,</td>
<td>Chapter 9, “/ASSIGN command,” on page 101</td>
</tr>
<tr>
<td></td>
<td>LINE, LCT, LPRI, LITERM, NODE, NOSAVE, NPRI,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OUTPUT, PARLIM, PLCT, PTERM, REGION, SAVE,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEGNO, SEGSIZE, TRANSACTION, USER, VTAMPOOL</td>
<td></td>
</tr>
<tr>
<td>/BROADCAST</td>
<td>ACTIVE, LINE, LTERM, MASTER, MSNAME, NODE,</td>
<td>Chapter 10, “/BROADCAST command,” on page 121</td>
</tr>
<tr>
<td></td>
<td>PTERM, SYSID</td>
<td></td>
</tr>
<tr>
<td>/CANCEL</td>
<td></td>
<td>Chapter 11, “/CANCEL command,” on page 127</td>
</tr>
<tr>
<td>/CHANGE</td>
<td>APPC, ASR, AUTOLOGON, COLDSESS, CPLOG,</td>
<td>Chapter 12, “/CHANGE commands,” on page 129</td>
</tr>
<tr>
<td></td>
<td>DESCRIPTOR, DIRECTORY, FORCSESS, ID, INTERVAL,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LINK, LOGOND, LUNAME, MAXRGN, MODE, NODE,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOSAVE, OASN, OUTBND, PASSWORD, RESET, SAVE,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SIDE, SUBSYS, SURVEILLANCE, SYNCLEVEL,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SYNCSSESS, TIMEOUT, TPNAME, TRANSACTION, USER,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TYPE, UOR, USER</td>
<td></td>
</tr>
<tr>
<td>/CHECKPOINT</td>
<td>ABDUMP, DUMPQ, FREEZE, LEAVEPLEX, NOCQSSHUT,</td>
<td>Chapter 13, “/CHECKPOINT command,” on page 153</td>
</tr>
<tr>
<td></td>
<td>PURGE, QUIESC, SNAPQ, STATISTICS</td>
<td></td>
</tr>
<tr>
<td>/CLSDST</td>
<td>FORCE, NODE, USER</td>
<td>Chapter 14, “/CLSDST command,” on page 159</td>
</tr>
<tr>
<td>/COMPT</td>
<td>CNS, CRD, NODE, NOTRDY, PCH, PDS, PRT, RDR,</td>
<td>Chapter 15, “/COMPT command,” on page 163</td>
</tr>
<tr>
<td></td>
<td>READY, TDS, UDS, USER, VID, WPM1, WPM2, WPM3</td>
<td></td>
</tr>
<tr>
<td>/CQCHKPT</td>
<td>SHAREDQ, STRUCTURE, SYSTEM</td>
<td>Chapter 16, “/CQCHKPT command,” on page 167</td>
</tr>
<tr>
<td>/CQUERY</td>
<td>STATISTICS, STRUCTURE</td>
<td>Chapter 17, “/CQUERY command,” on page 169</td>
</tr>
<tr>
<td>/CQSET</td>
<td>SHAREDQ, SHUTDOWN, STRUCTURE</td>
<td>Chapter 18, “/CQSET command,” on page 173</td>
</tr>
<tr>
<td>CREATE</td>
<td>OTMADESC, PGM, PGMDESC, RTC, RTCDESC, TRAN,</td>
<td>Chapter 19, “CREATE commands,” on page 175</td>
</tr>
<tr>
<td></td>
<td>TRANDESC</td>
<td></td>
</tr>
<tr>
<td>/DELETE</td>
<td>LINE, LTERM, NODE, PASSWORD, PGM, PTERM,</td>
<td>Chapter 22, “/DELETE command,” on page 309</td>
</tr>
<tr>
<td></td>
<td>TERMINAL, TRANSACTION</td>
<td></td>
</tr>
<tr>
<td>DELETE</td>
<td>LE, OTMADESC, PGM, PGMDESC, RTC, RTCDESC,</td>
<td>Chapter 23, “DELETE commands,” on page 311</td>
</tr>
<tr>
<td></td>
<td>TRAN, TRANDESC</td>
<td></td>
</tr>
<tr>
<td>Commands</td>
<td>Keywords</td>
<td>Topic</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------------------------------------------------------------</td>
<td>----------------------------------------------------------------------</td>
</tr>
<tr>
<td>/DEQUEUE</td>
<td>AOITOKEN, LINE, LTERM, LUNAME, MSNAME, NODE, PTERM, PURGE, PURGE1, SUSPEND, TMEMBER, TPIPE, TPNAME, TRANSACTION, USER</td>
<td>Chapter 24, “/DEQUEUE command,” on page 383</td>
</tr>
<tr>
<td>/DIAGNOSE</td>
<td>ADDRESS, AOSLOG, BLOCK, JOBNAME, LINE, LINK, LTERM, MODULE, MSNAME, NODE, OPTION, PGM, REGION, RM, SET, SHOW, SNAP, STRUCTURE, TRAN, USER</td>
<td>Chapter 25, “/DIAGNOSE commands,” on page 391</td>
</tr>
<tr>
<td>/DISPLAY</td>
<td>ACT, AFFIN, AOITKN, APPC, ASMT, AUTOLOGON, BALGRP, CLASS, CONVERSATION, CLOG, CQS, DC, DESCRIPTOR, EMHQ, EXIT, HSB, INPUT, LINE, LINK, LTERM, LUNAME, MASTER, MODE, MODIFY, MONITOR, MSGAGE, MSNAME, MSPLINK, NODE, OASN, OLDSD, OTMA, OUTPUT, OVERFLOWQ, PGM, POOL, PRIORITY, PGM, PSB, PTERM, Q, QCNT, REGION, REMOTE, RTCODE, SHUTDOWN, STATUS, STRUCTURE, SUBSYS, SYSID, TABLE, TCO, TIMEOUT, TIMEOVER, TMEMBER, TPIPE, TPNAME, TRACE, TRACKING STATUS, TRANSACTION, TRAP, UOR, USER, XTRC</td>
<td>Chapter 26, “/DISPLAY commands,” on page 433</td>
</tr>
<tr>
<td>/END</td>
<td>LINE, NODE, PTERM, USER</td>
<td>Chapter 27, “/END command,” on page 677</td>
</tr>
<tr>
<td>/ERESTART</td>
<td>BACKUP, BUILDQ, CHECKPOINT, CMDAUTH, CMDAUTHE, COLDCOMM, COLDSYS, FORMAT, MULTSIGN, NOBMP, NOCMDAUTH, NOCMDAUthe, NOPASSWORD, NOTERMINAL, NOTRUNAUTH, NOTRCMDSDS, NOUSER, OVERRIDE, PASSWORD, SNGLSIGN, TERMINAL, TRANAUTH, TRANCMDSD, USER</td>
<td>Chapter 28, “/ERESTART command,” on page 679</td>
</tr>
<tr>
<td>/EXCLUSIVE</td>
<td>LINE, NODE, PTERM, USER</td>
<td>Chapter 29, “/EXCLUSIVE command,” on page 691</td>
</tr>
<tr>
<td>/EXIT</td>
<td>CONVERSATION, LINE, NODE, PTERM, USER</td>
<td>Chapter 30, “/EXIT command,” on page 693</td>
</tr>
<tr>
<td>/FORMAT</td>
<td>LTERM</td>
<td>Chapter 32, “/FORMAT command,” on page 729</td>
</tr>
<tr>
<td>/HOLD</td>
<td></td>
<td>Chapter 33, “/HOLD command,” on page 731</td>
</tr>
<tr>
<td>/IDLE</td>
<td>LINE, LINK, NODE, NOSHUT</td>
<td>Chapter 34, “/IDLE command,” on page 733</td>
</tr>
<tr>
<td>IMPORT</td>
<td>DEFN, NAME, OPTION, RDDSDSN, SOURCE, TYPE</td>
<td>Chapter 35, “IMPORT command,” on page 737</td>
</tr>
<tr>
<td>INITIATE</td>
<td>OLC, OLREORG</td>
<td>Chapter 36, “INITIATE commands,” on page 775</td>
</tr>
<tr>
<td>/LOCK</td>
<td>LTERM, NODE, PGM, PTERM, TRANSACTION</td>
<td>Chapter 37, “/LOCK command,” on page 831</td>
</tr>
<tr>
<td>/LOG</td>
<td></td>
<td>Chapter 38, “/LOG command,” on page 837</td>
</tr>
<tr>
<td>/LOOPTEST</td>
<td>LINE, PTERM</td>
<td>Chapter 39, “/LOOPTEST command,” on page 839</td>
</tr>
<tr>
<td>/MODIFY</td>
<td>ABORT, COMMIT, LTERM, PASSWORD, PREPARE, TERMINAL, TRANCMDS</td>
<td>Chapter 40, “/MODIFY command,” on page 841</td>
</tr>
</tbody>
</table>
Table 82. Commands and keywords valid in DCCTL (continued)

<table>
<thead>
<tr>
<th>Commands</th>
<th>Keywords</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>/MONITOR</td>
<td>LINE, PTERM</td>
<td>Chapter 41, “/MONITOR command,” on page 847</td>
</tr>
<tr>
<td>/MSASSIGN</td>
<td>LINK, LOCAL, MSNAME, MSPLINK, SYSID, TRANSACTION</td>
<td>Chapter 42, “/MSASSIGN command,” on page 849</td>
</tr>
<tr>
<td>/MSVERIFY</td>
<td>MSNAME, SYSID</td>
<td>Chapter 43, “/MSVERIFY command,” on page 853</td>
</tr>
<tr>
<td>/NRESTART</td>
<td>BUILDQ, CHECKPOINT, CMDAUTH, CMDAUTHE, FORMAT, MULTSIGN, NOBUILDQ, NOCMDAUTH, NOCMDAUTH, NOPASSWORD, NOTERMINAL, NOTRANAUTH, NOTRANCMDS, NOUSER, PASSWORD, SNGLSIGN, TERMINAL, TRANAUTH, TRANCMDS, USER</td>
<td>/NRESTART command (Commands)</td>
</tr>
<tr>
<td>/OPNDST</td>
<td>ID, LOGOND, MODE, NODE, Q, UDATA, USER, USERD</td>
<td>/OPNDST command (Commands)</td>
</tr>
<tr>
<td>/PSTOP</td>
<td>AOITOKEN, CLASS, FORCE, JOBNAME, LINE, LTERM, MSPLINK, PTERM, PURGE, REGION, TRANSACTION</td>
<td>/PSTOP command (Commands)</td>
</tr>
<tr>
<td>/PURGE</td>
<td>APPC, CLASS, FPPROG, FREGION, LINE, LTERM, MSNAME, PTERM, TRANSACTION</td>
<td>/PURGE command (Commands)</td>
</tr>
<tr>
<td>QUERY</td>
<td>IMS, LE, LTERM, MEMBER, MSLINK, MSNAME, MSPLINK, NODE, OLC, OTMADESC, OTMATI, PGM, PGMDESC, RTC, RTCDESC, TRAN, TRANDESC, USER, USEREXIT, USERID</td>
<td>QUERY commands (Commands)</td>
</tr>
<tr>
<td>QUEUE</td>
<td>LTERM, TRAN</td>
<td>QUEUE commands (Commands)</td>
</tr>
<tr>
<td>/QUIESCE</td>
<td>NODE, USER</td>
<td>/QUIESCE command (Commands)</td>
</tr>
<tr>
<td>/RCLSDST</td>
<td></td>
<td>/RCLSDST command (Commands)</td>
</tr>
<tr>
<td>/RCOMPT</td>
<td>CNS, NOTRDY, PCH, PDS, PRT, RDR, READY, TDS, UDS, VID</td>
<td>/RCOMPT command (Commands)</td>
</tr>
<tr>
<td>/RDISPLAY</td>
<td>MASTER</td>
<td>/RDISPLAY command (Commands)</td>
</tr>
<tr>
<td>REFRESH</td>
<td>USEREXIT</td>
<td>REFRESH USEREXIT command (Commands)</td>
</tr>
<tr>
<td>/RELEASE</td>
<td>CONVERSATION</td>
<td>/RELEASE command (Commands)</td>
</tr>
<tr>
<td>/RESET</td>
<td></td>
<td>/RESET command (Commands)</td>
</tr>
<tr>
<td>/RMxxxxxxx</td>
<td>LTERM</td>
<td>/RMxxxxxxx commands (Commands)</td>
</tr>
<tr>
<td>/RSTART</td>
<td>CONTINUOUS, LINE, LINK, LOPEN, MODE, MSPLINK, NODE, PTERM, USER</td>
<td>/RSTART command (Commands)</td>
</tr>
<tr>
<td>/RTAKEOVER</td>
<td>DUMPQ, FREEZE, NOVERSE, UNPLAN</td>
<td>/RTAKEOVER command (Commands)</td>
</tr>
<tr>
<td>/SECURE</td>
<td>APPC, OTMA</td>
<td>/SECURE command (Commands)</td>
</tr>
<tr>
<td>/SET</td>
<td>CONVERSATION, LTERM, TRANSACTION</td>
<td>/SET command (Commands)</td>
</tr>
<tr>
<td>/SIGN</td>
<td>CONVERSATION, LTERM</td>
<td>/SIGN command (Commands)</td>
</tr>
<tr>
<td>/SMCOPY</td>
<td>MASTER, TERMINAL</td>
<td>/SMCOPY command (Commands)</td>
</tr>
<tr>
<td>/SSR</td>
<td></td>
<td>/SSR command (Commands)</td>
</tr>
<tr>
<td>Commands</td>
<td>Keywords</td>
<td>Topic</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>/START</td>
<td>AFFINITY, APPC, AUTOARCH, CLASS, DC, DESC, GRSNAME, INPUT, ISOLOG, JOBNAME, LINE, LTERM, LUNAME, MSNAME, NODE, OLDS, OTMA, OUTPUT, PGM, PTERM, REGION, RTCODE, SERVGRP, SLDSREAD, SSM, SUBSYS, SURVEILLANCE, TMEMBER, TPIPE, TPNAME, TRANSACTION, TRKAUTOARCH, USER, VGR, WADS, XRCTRACK</td>
<td>/START commands (Commands)</td>
</tr>
<tr>
<td>/STOP</td>
<td>ABDUMP, APPC, AUTOARCH, BACKUP, CANCEL, CLASS, DESC, DC, INPUT, JOBNAME, LINE, LTERM, LUNAME, MSNAME, NODE, OLDS, OTMA, OUTPUT, PGM, PTERM, REGION, RTCODE, SERVGRP, SLDSREAD, SUBSYS, SURVEILLANCE, THREAD, TMEMBER, TPIPE, TPNAME, TRANSACTION, USER, VGR, WADS, XRCTRACK</td>
<td>/STOP commands (Commands)</td>
</tr>
<tr>
<td>/SWITCH</td>
<td>ABDUMP, ACTIVE, BACKUP, CHECKPOINT, FORCE, OLDS, SYSTEM, WADS</td>
<td>/SWITCH command (Commands)</td>
</tr>
<tr>
<td>TERMINATE</td>
<td>OLC</td>
<td>TERMINATE OLC command (Commands)</td>
</tr>
<tr>
<td>/TEST</td>
<td>LINE, NODE, PTERM, USER</td>
<td>/TEST command (Commands)</td>
</tr>
<tr>
<td>/TRACE</td>
<td>AUTO, EXIT, INPUT, LEVEL, LINE, LINK, LUNAME, MODULE, MONITOR, MSG, NODE, OPTION, OUTPUT, PGM, SET, TABLE, TAKEOVER, TCO, TIMEOUT, TMEMBER, TPIPE, TPNAME, TRANSACTION, TRAP, UNITYPE, USER, VOLUME</td>
<td>/TRACE commands (Commands)</td>
</tr>
<tr>
<td>/UNLOCK</td>
<td>LTERM, NODE, PGM, PTERM, SYSTEM, TRANSACTION</td>
<td>/UNLOCK commands (Commands)</td>
</tr>
<tr>
<td>UPDATE</td>
<td>IMS, LE, MSLINK, MSNAME, MSPLINK, OTMADESC, PGM, PGMDESC, POOL, RTC, RTCDESC, TRAN, TRANDESC</td>
<td>UPDATE commands (Commands)</td>
</tr>
</tbody>
</table>
Chapter 5. List of reserved words

Some words are used and reserved only for IMS commands.

The following table is a list of words that cannot be used to name resources such as transactions or databases. The words listed in this table are used and reserved only for IMS commands.

Table 83. Words used and reserved only for IMS commands

<table>
<thead>
<tr>
<th>A</th>
<th>ABDUMP</th>
<th>ABORT</th>
<th>ACCESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT</td>
<td>ACTIV</td>
<td>ACTIVATE</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>ADDS</td>
<td>ADS</td>
<td>AFF</td>
<td>AFFIN</td>
</tr>
<tr>
<td>AFFINITY</td>
<td>AFTER</td>
<td>AOITKN</td>
<td>APDB</td>
</tr>
<tr>
<td>APMQ</td>
<td>AOITOKEN</td>
<td>ALL</td>
<td>ALLENTRIES</td>
</tr>
<tr>
<td>ALLENT</td>
<td>ALLOC</td>
<td>ALLOCATE</td>
<td>ALLOCF</td>
</tr>
<tr>
<td>ALLOCS</td>
<td>APPC</td>
<td>ARCHIVE</td>
<td>AREA</td>
</tr>
<tr>
<td>ASMT</td>
<td>ASR</td>
<td>ASSIGN</td>
<td>ASSIGNMENT</td>
</tr>
<tr>
<td>AUTO</td>
<td>AUTOARC</td>
<td>AUTOARCH</td>
<td>AUTOLOGON</td>
</tr>
<tr>
<td>AUTOLGN</td>
<td>AUTOSR</td>
<td>BACKOUT</td>
<td>BACKUP</td>
</tr>
<tr>
<td>BALG</td>
<td>BALGRP</td>
<td>BKERR</td>
<td>BLDQ</td>
</tr>
<tr>
<td>BLDQS</td>
<td>BROADCAST</td>
<td>BU</td>
<td>BULDQ</td>
</tr>
<tr>
<td>BUILDQS</td>
<td>C1INOP</td>
<td>C2INOP</td>
<td>C3INOP</td>
</tr>
<tr>
<td>C4INOP</td>
<td>CAGROUP</td>
<td>CAGRP</td>
<td>CANCEL</td>
</tr>
<tr>
<td>CC</td>
<td>CCTL</td>
<td>CHANGE</td>
<td>CHECKPOINT</td>
</tr>
<tr>
<td>CHECKPT</td>
<td>CHKPOINT</td>
<td>CHKPT</td>
<td>CHNGS</td>
</tr>
<tr>
<td>CLASS</td>
<td>CLS</td>
<td>CLSDST</td>
<td>CMDAUTH</td>
</tr>
<tr>
<td>CMDAUTHE</td>
<td>CNS</td>
<td>COLDB</td>
<td>COLDBASE</td>
</tr>
<tr>
<td>COLDC</td>
<td>COLDCOMM</td>
<td>COLDS</td>
<td>COLDSESS</td>
</tr>
<tr>
<td>COLDSYS</td>
<td>COMMIT</td>
<td>COMP</td>
<td>COMPINOP</td>
</tr>
<tr>
<td>COMPONENT</td>
<td>COMPT</td>
<td>CON</td>
<td>CONT</td>
</tr>
<tr>
<td>CONTINUOUS</td>
<td>CONV</td>
<td>CONVACT</td>
<td>CONVERSATION</td>
</tr>
<tr>
<td>CONVHL</td>
<td>CPR1</td>
<td>CQCHKPT</td>
<td>CQUERY</td>
</tr>
<tr>
<td>CPLG</td>
<td>CQC</td>
<td>CQQ</td>
<td>CQS</td>
</tr>
<tr>
<td>CQSET</td>
<td>CRD</td>
<td>DATABASE</td>
<td>DATABASES</td>
</tr>
<tr>
<td>DATAGROUP</td>
<td>DATAGRP</td>
<td>DB</td>
<td>DBALLOC</td>
</tr>
<tr>
<td>DBD</td>
<td>DBDS</td>
<td>DBDSGRP</td>
<td>DBDUMP</td>
</tr>
<tr>
<td>DBR</td>
<td>DBRECOVERY</td>
<td>DBS</td>
<td>DC</td>
</tr>
<tr>
<td>DEACT</td>
<td>DEADQ</td>
<td>DELETE</td>
<td>DELS</td>
</tr>
<tr>
<td>DEQUEUE</td>
<td>DESC</td>
<td>DESCRIPTOR</td>
<td>DL/I</td>
</tr>
<tr>
<td>DLOG</td>
<td>DIS</td>
<td>DISP</td>
<td>DISPLAY</td>
</tr>
<tr>
<td>DIR</td>
<td>DIRECTORY</td>
<td>DMS</td>
<td>DONE</td>
</tr>
<tr>
<td>DUMPQ</td>
<td>DUMPS</td>
<td>EEQE</td>
<td>EMHQ</td>
</tr>
<tr>
<td>END</td>
<td>ERESTART</td>
<td>ERRORCONT</td>
<td>EXCL</td>
</tr>
<tr>
<td>EXCLUSIVE</td>
<td>EXIT</td>
<td>EXTRACE</td>
<td>FAST</td>
</tr>
<tr>
<td>FDR</td>
<td>FIRST</td>
<td>FMS</td>
<td>FMT</td>
</tr>
<tr>
<td>FOR</td>
<td>FORC</td>
<td>FORCE</td>
<td>FORCES</td>
</tr>
<tr>
<td>FORCSESS</td>
<td>FORMAT</td>
<td>FPREGION</td>
<td>FPREGION</td>
</tr>
<tr>
<td>FPRGN</td>
<td>FPV</td>
<td>FPPROG</td>
<td>FREEZE</td>
</tr>
<tr>
<td>GLOBAL</td>
<td>GRS</td>
<td>FPVIRTUAL</td>
<td>GRSNAME</td>
</tr>
<tr>
<td>HOLD</td>
<td>HOTSTANDBY</td>
<td>HSB</td>
<td>HSSP</td>
</tr>
<tr>
<td>IAM</td>
<td>IC</td>
<td>ICOMPONENT</td>
<td>ICOMPTE</td>
</tr>
<tr>
<td>ID</td>
<td>IDCO</td>
<td>IDLE</td>
<td>IND</td>
</tr>
<tr>
<td>INDOUBT</td>
<td>INOP</td>
<td>INPUT</td>
<td>INQONLY</td>
</tr>
<tr>
<td>Word</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INT</td>
<td>INTERVAL</td>
<td>INTV</td>
<td>IOVF</td>
</tr>
<tr>
<td>ISLOG</td>
<td>JOB</td>
<td>JOBNAME</td>
<td></td>
</tr>
<tr>
<td>KEY</td>
<td>LATC</td>
<td>LCT</td>
<td>LINE</td>
</tr>
<tr>
<td>LEAVEGR</td>
<td>LEVEL</td>
<td>LGND</td>
<td>LOG</td>
</tr>
<tr>
<td>LINES</td>
<td>LMCT</td>
<td>LOGOND</td>
<td>LPRI</td>
</tr>
<tr>
<td>LOCAL</td>
<td>LUN</td>
<td>LU</td>
<td>MADSIOT</td>
</tr>
<tr>
<td>LOOPTEST</td>
<td>LTERM</td>
<td>LUNAME</td>
<td>LINE</td>
</tr>
<tr>
<td>LRTT</td>
<td>LUNAME</td>
<td>LINE</td>
<td>LOGOND</td>
</tr>
<tr>
<td>LUMI</td>
<td>MESSAGE</td>
<td>LTERM</td>
<td></td>
</tr>
<tr>
<td>MASTER</td>
<td>MODTABLE</td>
<td>LTERMS</td>
<td>LPRI</td>
</tr>
<tr>
<td>MFSTEST</td>
<td>MODULE</td>
<td>LTERMS</td>
<td>LPRI</td>
</tr>
<tr>
<td>MODIFY</td>
<td>MSREGION</td>
<td>LPRI</td>
<td>LU</td>
</tr>
<tr>
<td>MONITOR</td>
<td>MSGREG</td>
<td>LPRI</td>
<td>LU</td>
</tr>
<tr>
<td>MSG</td>
<td>MSGREG</td>
<td>LPRI</td>
<td>LU</td>
</tr>
<tr>
<td>MSGREGIONS</td>
<td>MSGNAME</td>
<td>LPRI</td>
<td>LU</td>
</tr>
<tr>
<td>MSVERIFY</td>
<td>NBLDQ</td>
<td>LPRI</td>
<td>LU</td>
</tr>
<tr>
<td>NOBKO</td>
<td>NOBMP</td>
<td>LPRI</td>
<td>LU</td>
</tr>
<tr>
<td>NOCHECK</td>
<td>NOCMDAUTH</td>
<td>LPRI</td>
<td>LU</td>
</tr>
<tr>
<td>NODBALLOC</td>
<td>NODE</td>
<td>LPRI</td>
<td>LU</td>
</tr>
<tr>
<td>NONE</td>
<td>NOUNIT</td>
<td>LPRI</td>
<td>LU</td>
</tr>
<tr>
<td>NOPSWD</td>
<td>NOQUEUE</td>
<td>LPRI</td>
<td>LU</td>
</tr>
<tr>
<td>NOSAVE</td>
<td>NOSHUT</td>
<td>LPRI</td>
<td>LU</td>
</tr>
<tr>
<td>NOTERMINAL</td>
<td>NOTOPEN</td>
<td>LPRI</td>
<td>LU</td>
</tr>
<tr>
<td>NOTRANCMDs</td>
<td>NOUSER</td>
<td>LPRI</td>
<td>LU</td>
</tr>
<tr>
<td>NRESTART</td>
<td>OFF</td>
<td>LPRI</td>
<td>LU</td>
</tr>
<tr>
<td>OFR</td>
<td>OLDS</td>
<td>LPRI</td>
<td>LU</td>
</tr>
<tr>
<td>OPNDST</td>
<td>OPTION</td>
<td>LPRI</td>
<td>LU</td>
</tr>
<tr>
<td>OTMT</td>
<td>OUTPUT</td>
<td>LPRI</td>
<td>LU</td>
</tr>
<tr>
<td>OVERRIDE</td>
<td>OVRFLWQ</td>
<td>LPRI</td>
<td>LU</td>
</tr>
<tr>
<td>PASSWORD</td>
<td>PASSWORDS</td>
<td>LPRI</td>
<td>LU</td>
</tr>
<tr>
<td>PGM</td>
<td>PGMS</td>
<td>LPRI</td>
<td>LU</td>
</tr>
<tr>
<td>PLCB</td>
<td>PLMCT</td>
<td>LPRI</td>
<td>LU</td>
</tr>
<tr>
<td>PREO</td>
<td>PREPARE</td>
<td>LPRI</td>
<td>LU</td>
</tr>
<tr>
<td>PRIORITY</td>
<td>PRK</td>
<td>LPRI</td>
<td>LU</td>
</tr>
<tr>
<td>PROGRAMS</td>
<td>PROGS</td>
<td>LPRI</td>
<td>LU</td>
</tr>
<tr>
<td>PRTKN</td>
<td>PRTY</td>
<td>LPRI</td>
<td>LU</td>
</tr>
<tr>
<td>PSTOP</td>
<td>PSTOPPED</td>
<td>LPRI</td>
<td>LU</td>
</tr>
<tr>
<td>PTERM</td>
<td>PTERMS</td>
<td>LPRI</td>
<td>LU</td>
</tr>
<tr>
<td>PURGE1</td>
<td>Q</td>
<td>LPRI</td>
<td>LU</td>
</tr>
<tr>
<td>QRTT</td>
<td>QS</td>
<td>LPRI</td>
<td>LU</td>
</tr>
<tr>
<td>QUI</td>
<td>QUEUE</td>
<td>LPRI</td>
<td>LU</td>
</tr>
<tr>
<td>RCS</td>
<td>RCVTIME</td>
<td>LPRI</td>
<td>LU</td>
</tr>
<tr>
<td>RDR</td>
<td>REGION</td>
<td>LPRI</td>
<td>LU</td>
</tr>
<tr>
<td>RECOVGRP</td>
<td>REG</td>
<td>LPRI</td>
<td>LU</td>
</tr>
<tr>
<td>REGS</td>
<td>RELEASE</td>
<td>LPRI</td>
<td>LU</td>
</tr>
<tr>
<td>REG</td>
<td>REG</td>
<td>LPRI</td>
<td>LU</td>
</tr>
<tr>
<td>REMOVE</td>
<td>RES</td>
<td>LPRI</td>
<td>LU</td>
</tr>
<tr>
<td>RESYNC</td>
<td>RETR</td>
<td>LPRI</td>
<td>LU</td>
</tr>
<tr>
<td>RMGENJCL</td>
<td>RMINIT</td>
<td>LPRI</td>
<td>LU</td>
</tr>
<tr>
<td>RSTART</td>
<td>RTAKEOVER</td>
<td>LPRI</td>
<td>LU</td>
</tr>
<tr>
<td>SAVE</td>
<td>SB</td>
<td>LPRI</td>
<td>LU</td>
</tr>
<tr>
<td>SECURE</td>
<td>SECURITY</td>
<td>LPRI</td>
<td>LU</td>
</tr>
<tr>
<td>SEGZ</td>
<td>SERVGRP</td>
<td>LPRI</td>
<td>LU</td>
</tr>
<tr>
<td>SHAREDQ</td>
<td>SHRQ</td>
<td>LPRI</td>
<td>LU</td>
</tr>
<tr>
<td>SIDE</td>
<td>SIGN</td>
<td>LPRI</td>
<td>LU</td>
</tr>
<tr>
<td>SMCOPY</td>
<td>SNAPQ</td>
<td>LPRI</td>
<td>LU</td>
</tr>
</tbody>
</table>

Table 83. Words used and reserved only for IMS commands (continued)
### Table 83. Words used and reserved only for IMS commands (continued)

<table>
<thead>
<tr>
<th>SQTT</th>
<th>SSM</th>
<th>SSR</th>
<th>STAGLOBAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>STA</td>
<td>STATUS</td>
<td>START</td>
<td>STATIC</td>
</tr>
<tr>
<td>STOPPED</td>
<td>STRG</td>
<td>STO</td>
<td>STOP</td>
</tr>
<tr>
<td>SUB</td>
<td>SUBS</td>
<td>SUBPOOL</td>
<td>STRUCTURE</td>
</tr>
<tr>
<td>SUBSYSTEM</td>
<td>SUBSYSTEMS</td>
<td>SUR</td>
<td>SUBSYS</td>
</tr>
<tr>
<td>SURVEIL</td>
<td>SURVEILLANCE</td>
<td>SUSPEND</td>
<td>SUSPEND</td>
</tr>
<tr>
<td>SYNCS</td>
<td>SYST</td>
<td>SYSTEM</td>
<td>SYNCLV</td>
</tr>
<tr>
<td>TAKEOVER</td>
<td>TCO</td>
<td>TERMINALS</td>
<td>TABLE</td>
</tr>
<tr>
<td>TERM</td>
<td>TERMINAL</td>
<td>TERMINATE</td>
<td>TER</td>
</tr>
<tr>
<td>TERMS</td>
<td>TERS</td>
<td>TEST</td>
<td>THREAD</td>
</tr>
<tr>
<td>TIMEOUT</td>
<td>TIMEOVER</td>
<td>TIMO</td>
<td>TKO</td>
</tr>
<tr>
<td>TCO</td>
<td>TMEM</td>
<td>TMEMBER</td>
<td>TPIPE</td>
</tr>
<tr>
<td>TKOTRA</td>
<td>TKOVER</td>
<td>TRA</td>
<td>TRACE</td>
</tr>
<tr>
<td>TRACKING</td>
<td>TP</td>
<td>TRAN</td>
<td>TRANARCH</td>
</tr>
<tr>
<td>TRACKING</td>
<td>TPNAME</td>
<td>TRACKING STATUS</td>
<td>TRANAUTH</td>
</tr>
<tr>
<td>TRANCMDS</td>
<td>TRancode</td>
<td>TRANCODE</td>
<td>TRANS</td>
</tr>
<tr>
<td>TRANSACTION</td>
<td>TRACTIONS</td>
<td>TRANCODES</td>
<td>TRKARCH</td>
</tr>
<tr>
<td>TRAKEOARCH</td>
<td>TR</td>
<td>TRAP</td>
<td>TYPE</td>
</tr>
<tr>
<td>UDS</td>
<td>UNITYPE</td>
<td>UNL</td>
<td>UNLOCK</td>
</tr>
<tr>
<td>UNPLAN</td>
<td>UOR</td>
<td>USDBDS</td>
<td>USER</td>
</tr>
<tr>
<td>USERID</td>
<td>USRD</td>
<td>VERIFY</td>
<td>VGR</td>
</tr>
<tr>
<td>VGRS</td>
<td>VID</td>
<td>VIR</td>
<td>VOLUME</td>
</tr>
<tr>
<td>VPL</td>
<td>VTAMPOOL</td>
<td>VUNLOAD</td>
<td>WADS</td>
</tr>
<tr>
<td>WPM1</td>
<td>WPM2</td>
<td>WPM3</td>
<td>XKEY</td>
</tr>
<tr>
<td>XTRC</td>
<td>XTRACE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chapter 6. IMS type-1 commands that are valid in ETO

The commands that are valid for lterms, nodes, and users in ETO are listed.

The following table lists the type-1 commands that are valid for lterms, nodes, and users in ETO.

Table 84. IMS type-1 commands valid in ETO

<table>
<thead>
<tr>
<th>Commands</th>
<th>Dynamic lterms that are valid</th>
<th>Dynamic nodes that are valid</th>
<th>Dynamic users that are valid</th>
</tr>
</thead>
<tbody>
<tr>
<td>/ACTIVATE</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/ASSIGN</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>/BROADCAST</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>/CHANGE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>/CLSDST</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>/COMPT</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>/DEQUEUE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>/DISPLAY</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>/END</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>/EXCLUSIVE</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>/EXIT</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>/FORMAT</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/IDLE</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>/LOCK</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>/MODIFY</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/OPNDST</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>/PSTOP</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/PURGE</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>/QUIESCE</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>/RMxxxxxx</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/RSTART</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>/SET</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/SIGN</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>/START</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>/STOP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>/TEST</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>/TRACE</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/UNLOCK</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Only valid for /ASSIGN LTERM USER.
2. Only valid for /ASSIGN USER.
Chapter 7. /ACTIVATE command

The /ACTIVATE command is used to activate VTAM nodes or MSC links with a VTAM "VARY NET, ACTIVE" command.

The /ACTIVATE command can also be used to undo the conditions set by the /IDLE command.

Subsections:
- "Environment"
- "Syntax"
- "Keywords"
- "Usage notes"
- "Examples" on page 98

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

Table 85. Valid environments for the /ACTIVATE command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/ACTIVATE</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LINK</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

Keywords

The following keywords apply to the /ACTIVATE command:

LINK
- Specifies the MSC links to be activated.

NODE
- Specifies the VTAM nodes to be activated.

Usage notes

The /ACTIVATE command is used with the IMS VTAM I/O Timeout Detection Facility.
This command can be issued to an IMSplex using the Batch SPOC utility.

**Examples**

The following are examples of the `/ACTIVATE` command:

*Example 1 for `/ACTIVATE` command*

Entry ET:
```
/ACTIVATE LINK 1
```

Response ET:
```
DFS058I ACTIVATE COMMAND COMPLETED
```

Explanation: Link 1 has been activated.

*Example 2 for `/ACTIVATE` command*

Entry ET:
```
/ACTIVATE NODE ABC
```

Response ET:
```
DFS058I ACTIVATE COMMAND COMPLETED
```

Explanation: Node ABC has been activated.
Chapter 8. /ALLOCATE command

Use the /ALLOCATE command for delivering asynchronous output when the LU 6.2 device is available. The command can be originated by the remote LU 6.2 device for this purpose.

/ALLOCATE is a multisegment command similar to the /OPNDST command for VTAM terminals. It causes IMS to allocate a conversation to the specified LUNAME and TPNAME if any output is queued in IMS for that destination. If no such output exists, the command has no effect and (in a non-shared-queues environment) an error message is issued.

Subsections:
- “Environment”
- “Syntax”
- “Keywords”
- “Usage notes” on page 100

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/ALLOCATE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LUNAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MODE</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>TPNAME</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
/ALLOCATE /ALL LUNAME luname TPNAME tpname MODE modename
```

Keywords

The following keywords apply to the ALLOCATE command:

**LUNAME**

Specifies the LU name of the LU 6.2 application program that is to be allocated. A network-qualified LU name is optional for the LUNAME keyword.

**MODE**

Identifies the LOGON MODE table entry that VTAM uses to determine the session operating characteristics. NONE, which can be used as a MODE keyword parameter, resets the MODE field to its null state.
**TPNAME**

Specifies the TP name of the LU 6.2 application program that is to be allocated.

**Usage notes**

/ALLOCATE requires an end-of-message (EOM) indicator. An end-of-segment (EOS) indicator must be included for all segments preceding the last segment.

After the syntax checking of the /ALLOCATE command is successfully completed, the DFS058 ALLOCATE COMMAND COMPLETED message is issued and processing of the command continues asynchronously.

This command can be issued to an IMSplex using the Batch SPOC utility.

**Related reference:**

Chapter 2, “Command keywords and their synonyms,” on page 63
Chapter 9. /ASSIGN command

The /ASSIGN command alters the relationships between various IMS resources and resets certain values specified during IMS system definition.

Subsections:
- “Environment”
- “Syntax” on page 102
- “Keywords” on page 103
- “Usage notes” on page 111
- “/ASSIGN in an IMSplex” on page 112
- “Equivalent IMS type-2 commands” on page 114
- “Examples” on page 114

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

Table 87. Valid environments for the /ASSIGN command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/ASSIGN</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CLASS</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>COMPONENT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CPRI</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>ICOMPONENT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>INPUT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LINE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LCT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LPRI</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LTERM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NODE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NOSAVE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NPRI</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OUTPUT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PARLIM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PLCT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PTERM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>REGION</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SAVE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SEGNO</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SEGSZ</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TRAN</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
### Table 87. Valid environments for the /ASSIGN command and keywords (continued)

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>USER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>VTAMPOOL</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

### Syntax

```
/ASSIGN
CLASS cls# TO REGION reg#
CPRI cpri# TO TRAN tranname
INPUT LTERM ltermname TO CPRI cpri#
LCT lct# TO TRAN tranname
LPRI lpri# TO TRAN tranname
VTAMPOOL

A:
LINE line# PTERM pterm# ICOMPONENT icompt#

B:
```

---

102  Commands, Volume 1: IMS Commands A - M
Keywords

The following keywords can be specified for the /ASSIGN command:

CLASS
   Specifies either the classes of transactions that a message processing region can schedule or the message processing class of a transaction.

The /ASSIGN CLASS cls# (TO) REGION reg# command can include up to four class parameters and replaces the class values that existed previously. Valid class parameters are numeric values from 1 to 999.

For static transactions, the CLASS parameter (cls#) is initially set by system definition using the TRANSACT macro statement. For CPI communications driven transactions, the initial value is obtained from the TP profile.

COMPONENT
   Allows output for a logical terminal to be directed to a specific component of a physical terminal. The COMPONENT parameter, which can have values 1, 2, 3 or 4, indicates the terminal component that should receive the output.

Parameter values other than 1 are valid for the 3275 and SLU 1 terminals, as well as type 1 and type P secondary logical units. When assigning a COMPONENT value from a terminal with components to a terminal without components, give the compt# a value of 1.
The following table shows the relationships between COMPONENT values and terminals. The first column lists the terminal, the second and third columns list the COMPONENT parameters that can have values of 1, 2, 3, or 4.

Table 88. Relationships between COMPONENT/ICOMPONENT values and terminals

<table>
<thead>
<tr>
<th>Terminal</th>
<th>1</th>
<th>2/3/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>3275</td>
<td>Video</td>
<td>Printer</td>
</tr>
<tr>
<td>3770</td>
<td>Console/Printer</td>
<td>Defined in TERMINAL macro on logon descriptor during system definition.</td>
</tr>
<tr>
<td>SLU 1</td>
<td>Defined in TERMINAL macro on logon descriptor during system definition.</td>
<td></td>
</tr>
<tr>
<td>SLU P terminal</td>
<td>Defined in TERMINAL macro on logon descriptor during system definition.</td>
<td></td>
</tr>
<tr>
<td>SLU 4</td>
<td>Defined in TERMINAL macro during system definition.</td>
<td></td>
</tr>
</tbody>
</table>

**CPRI**

Specifies a new value for the current priority of a transaction. The CPRI keyword is not allowed for BMP transactions, since BMP transactions should always have a priority of 0. The new CPRI value takes effect the next time the transaction is scheduled. Valid CPRI parameters are numeric values from 0 to 14.

**ICOMPONENT**

Specifies the input component of a logical terminal to be directed to a specific component of a physical terminal. The ICOMPONENT parameter, which can have values 1, 2, 3, or 4, indicates the terminal component that should receive the input. Parameter values other than 1 are valid for the 3275 and SLU 1 terminals, as well as type 1 and type P secondary logical units. When assigning from a terminal with components to a terminal without components, give icompt# a value of 1. See Table 88 for relationships between ICOMPONENT values and terminal components.

**INPUT**

Specifies that the input capability of a logical terminal is to be assigned to a given nonswitched physical terminal without affecting the output assignment. More than one physical terminal can be assigned as input for a logical terminal, but the logical terminal used must be the first logical terminal in a “chain.”

**LINE**

Specifies the non-VTAM devices to which the input or output capabilities (or both) of a logical terminal are to be assigned. The physical terminal must not be on a switched line, in conversational, response, or preset destination modes.

**LCT**

Specifies a new value for the limit count of a transaction. The new LCT value takes effect during execution of the transaction. Valid LCT parameters are numeric values from 1 to 65535.

**LPRI**

 Specifies a new value for the limit priority of a transaction. The LPRI keyword is not allowed for BMP transactions, since BMP transactions should always have a priority of 0. The new LPRI value takes effect the next time the transaction is scheduled. Valid LPRI parameters are numeric values from 0 to 14.
LTERM

LTERM assigns the input and output capabilities of a local logical terminal to the given non-switched physical terminal or terminals. The /ASSIGN LTERM command does not apply to Multiple Systems Coupling (MSC) remote logical terminals.

- If you specify /ASSIGN LTERM with LINE/PTERM selected, the first physical terminal (LINE/PTERM specification) is the input assignment. The second physical terminal (LINE/PTERM specification) is the output assignment. If there is no second physical terminal specification, then the first physical terminal specification is also the output assignment.
- If you specify /ASSIGN LTERM [TO] NODE, the node specification is the input and output assignment.

No response is sent to a terminal referenced in an /ASSIGN command. The logical terminal must not be an inquiry logical terminal and must not have queuing or dequeuing of messages in progress.

LTERMs created dynamically can be assigned to dynamically created users. Static logical terminals can be assigned to other static terminals. Dynamic logical terminals cannot be assigned to lines, static nodes, dynamic nodes, or static users. Static logical terminals cannot be assigned to dynamic nodes or users. /ASSIGN commands that split the logical terminal so that the input LTERM is associated with one node and the output is associated with another node are not allowed for any ACF/VTAM terminals.

Physical terminal considerations: The physical terminal named in the command or indirectly referred to by being associated with a logical terminal in the command must not be on a switched line, in conversational, response, or preset destination modes. If a user logical terminal is specified, no logical terminal in the subpool can be currently signed on, and the line and physical terminal for input and output must be the same. If message processing programs are dependent upon a particular LTERM-to-component assignment, this relationship must be maintained by the operator.

MSGDEL processing for an LTERM is based on how the MSGDEL option was defined:

- For static LTERMs defined during system definition as part of the VTAMPOOL for ISC support and for dynamic LTERMs, the MSGDEL options of the users must match when moving LTERMs between the users.
- For all other static LTERMs, the MSGDEL option is defined in the TERMINAL macro for the associated physical terminal.
- If a terminal’s MSGDEL capabilities are defined in the TERMINAL macro as MSGDEL=NONIOPCB, assignment of an LTERM can take place only if the LTERM’s message queues are empty, except when the LTERM is assigned to a terminal also defined as MSGDEL=NONIOPCB.
- If a terminal’s MSGDEL capabilities are defined as MSGDEL=SYSINFO or NOTERM, assignment of an LTERM can take place only if the LTERM’s system message queue is empty, except when the LTERM is assigned to a terminal defined as MSGDEL=SYSINFO or NOTERM, or MSGDEL=NONIOPCB.

Master terminal considerations: The primary and secondary master terminals cannot be assigned to a user, an input-only or output-only device, a terminal in response mode, an unattended type 1 secondary logical unit terminal, an ISC node, or NTO terminal, or dynamic node. The LINE/PTERM or NODE to
which the master terminal is to be assigned must be started and in an operable state. The line and physical terminal for input and output must be the same.

When a 3270 is designated as the master terminal during IMS system definition, two master logical terminals are generated. One, referred to as the primary master terminal, must be assigned to a 3270 display (3275/3276/3278/3279) for all input and output messages. The other, referred to as the secondary master terminal, must be assigned to a 3270 printer (3284/3286/3287/3288/3289) for certain IMS-selected output messages.

To move a single master logical terminal from one physical terminal to another physical terminal (for example, the secondary master from one 3284 to another 3284, or the primary master from one 3277 to another 3277) without moving the other, use the formats of /ASSIGN LTERM command with one LINE/PTERM or NODE, and specify the LTERM name of the master terminal.

You can use either of the following commands:

- `/ASSIGN LTERM ltermname (TO) NODE nodename`
- `/ASSIGN LTERM ltermname (TO). LINE line# PTERM pterm#`

**PRIMARY parameter:** The reserved parameter PRIMARY can be used with the LTERM keyword to change both the primary and secondary master terminals assignments to other physical terminals concurrently. The command formats used with the PRIMARY parameter are:

- `/ASSIGN LTERM PRIMARY (TO) LINE line#1 PTERM pterm#1/NODE nodename1`

This command format assigns both the input and output of the primary master terminal to LINE line#1 PTERM pterm#1, and both the input and output of the secondary master terminal to NODE nodename.

- `/ASSIGN LTERM PRIMARY (TO) (LINE line#1 PTERM pterm#1/NODE nodename1)(LINE line#2 PTERM pterm#2/NODE nodename2)`

This command format assigns the input and output of the primary master terminal to the LINE line#1 PTERM pterm#1/NODE nodename #1 and assigns the input and output of the secondary terminal to LINE line#2 PTERM#2/NODE nodename#2.

These two formats can reassign:

- The 3270 primary and 3270 secondary master terminals to different 3270 physical terminals, where pterm#1 or nodename1 is a 3270 display and pterm#2 or nodename2 is a 3270 printer.
- A non-3270 master terminal to a 3270 display and 3270 printer, where pterm#1 or nodename1 is a 3270 display and pterm#2 or nodename2 is a 3270 printer.

The first LINE/PTERM or NODE specifies the display device to which the primary master logical terminal is to be assigned. The second LINE/PTERM or NODE specifies the printer device to which both the input and output capabilities of the secondary are to be assigned. If only one LINE/PTERM or NODE is specified, then the input and output capabilities of the primary master logical terminal and the secondary master logical terminal are assigned to the same LINE/PTERM or NODE.
**Data considerations:** IMS does not edit data destined for a logical terminal when an /ASSIGN LTERM or /ASSIGN USER command is executed that affects physical terminal to logical terminal relationships. Ensure that data that is to be sent to a given physical terminal is suitable for transmission to a different physical terminal. If the Message Format Service (MFS) is used and the FMT definition included the second device, the change of physical terminal from one MFS-supported device to another MFS-supported device will produce correct output.

The command format used with the /ASSIGN LTERM ltermname command is:

- `/ASSIGN LTERM ltermname [TO] LINE line#1 PTERM pterm#1`

This command format assigns the input and output capabilities of the logical terminal to LINE line#1 PTERM pterm#1. This command is not valid if the LTERM is dynamic.

- `/ASSIGN LTERM ltermname [TO] LINE line#1 PTERM pterm#1 LINE line#2 PTERM pterm#2`

This command format assigns the input capability of the logical terminal to the first LINE/PTERM pair and assigns the output capability of the logical terminal to the second LINE/PTERM pair. This command is not valid if the LTERM is dynamic.

- `/ASSIGN LTERM ltermname [TO] NODE nodenamez`

This command format assigns the input and output capabilities of the logical terminal to NODE nodename. This command is not valid if the LTERM or NODE is dynamic.

- `/ASSIGN LTERM ltermname1 [TO] LTERM ltermname2`

This command format allows an input chain to be moved to a symbolic location, rather than to a specific line and physical terminal. The [TO] line and terminal are determined by the current assignment of the specified [TO] logical terminal. With this format, the output assignment is not affected. This form of the /ASSIGN command is invalid for ISC nodes defined for parallel sessions, and it is not supported for LTERMs associated with VTAM terminals.

- `/ASSIGN LTERM ltermname [TO] USER username`

This command format assigns the logical terminal to the given user. When moving logical terminals between users, the MSGDEL options of the users as defined during system definition or on user descriptor must match. The user related to LTERM ltermname must not be signed on in conversation, in response mode, or in preset mode. For 3600/FINANCE, SLU P, and ISC, the user (username) can remain allocated because of terminal message resynchronization requirements. However, the user cannot be signed on because the associated terminal session must be stopped and idle. The user can be allocated, but, if allocated, must be associated with a session that is stopped and idle. This command will turn off the DEADQ status for the user associated with LTERM ltermname.
NODE
Specifies the VTAM terminal to which the input and output capabilities of a logical terminal are to be assigned. The node must not be dynamic, or in conversational, response, or preset destination modes. If a session with a VTAM terminal is terminated after a message is sent but before the response has been received, message resynchronization is necessary for this terminal. The output message for which no response was received must remain associated with this terminal until message resynchronization determines when the terminal received the message. If you use the /ASSIGN command to move the message to a different terminal, message resynchronization is no longer possible.

NOSAVE
Indicates that the assignment changes specified by the /ASSIGN command are lost when control blocks are deleted by the system when they are no longer needed. Omitting SAVE and NOSAVE causes the system-wide default to be used, as specified by the ASSNCHANGE parameter in the DFSDCxxx PROCLIB member.

NPRI
Specifies a new value for the normal priority of a transaction. The NPRI keyword is not allowed for BMP transactions, because BMP transactions should always have a priority of 0. The new NPRI value takes effect the next time the transaction is scheduled. Valid NPRI parameters are numeric values from 0 to 14.

OUTPUT
Specifies that the output capability of a logical terminal is to be assigned to a given nonswitched physical terminal, without affecting the input assignment. OUTPUT is invalid for ISC nodes defined for parallel sessions.

PARLIM
Specifies a new value for the parallel processing limit count of a transaction. parlim# is the maximum number of messages that can currently be queued, but not yet processed, by each active message region currently scheduled for this transaction. An additional region will be scheduled whenever the transaction queue count (for shared-queues environments, the successful consecutive GU count is used instead of the queue count) exceeds the PARLIM value multiplied by the number of regions currently scheduled for this transaction. Valid PARLIM parameters are numeric values from 0 to 32767 and 65535, where 65535 disables transaction load balancing.

A PARLIM of 65535 is the only valid value allowed for a transaction that is shown as eligible for load balancing but has an application program defined as SCHDTYPE=SERIAL. For example, if you dynamically change a parallel transaction to a serial transaction through online change, the only valid value for PARLIM is 65535.

/ASSIGN PARLIM is not valid for CPI Communications driven transactions.

Note: In a shared-queues environment, the PARLIM value behaves differently than it does in a non-shared-queues environment. In a non-shared-queues environment, the queue depth (the number of messages that are currently enqueued) for the transaction is used as the value that is compared with the PARLIM value to determine when to schedule another region. IMS responds to a growing queue of input transactions by scheduling more regions as the queue grows.
In a shared-queues environment, each individual IMS does not know the depth of the queue, because the queue is in the shared-queues coupling facility structure that is managed by Common Queue Server (CQS). The transaction queue might be added to by many different IMS systems. IMS is notified only when the first message is put in a queue (that is, when the queue becomes not empty). IMS is not notified for every subsequent message that is placed on the queue after that first message. In a shared-queues environment, the PARLIM comparison is done against a counter that each IMS keeps of the number of successful consecutive GU calls for the transaction by that IMS, rather than queue depth. IMS schedules more regions when it consistently gets messages from CQS when it asks for them. Thus, in a shared-queues environment, IMS infers the depth of the queue of messages based on processing activity, but it does not know the actual depth of the queue.

A PARLIM value of 0 in a shared-queues environment is the most responsive setting. PARLIM(0) ensures that message regions are scheduled until all messages are processed from the transaction queue, or until the maximum region value (MAXRGN) limit is reached. PARLIM(0) might, however, result in many unnecessary schedules (or false schedules). A false schedule occurs when a message region is scheduled and finds no more messages on the queue. This occurs particularly with PARLIM(0) because after each successful get unique (GU), IMS must always schedule an additional region to try to read the queue to see if there are more messages. This process continues for each successful GU until the queue becomes empty, at which time the successive GU count is reset to 0. This is a consequence of IMS not knowing how many messages are queued on the transaction queue.

Setting the PARLIM to a value greater than 0 can reduce the number of false schedules, because IMS then schedules a new message region only after a number of messages have been obtained consecutively without the queue becoming empty. Setting the PARLIM to a value of 2 or greater is useful for reducing false schedules for transactions that are low-volume and that run relatively quickly (such that the queue depth is typically 1), because it avoids scheduling a second region until the first region has obtained at least two messages in a row. However, be aware that while a PARLIM value greater than 0 can reduce unnecessary schedules, it is also less responsive. If a transaction is long running, or if its processing is delayed (for example, because of locking contention), the consecutive GU count does not change while the transaction is executing, and no additional message regions are scheduled. This can result in delayed processing of other messages for this same transaction until a currently-scheduled message completes. This delay can occur even if message regions are available to process the transaction.

**PLCT**

Specifies a new value for the processing limit count of a transaction. The PLCT is the number of messages of this transaction code that a program can process in a single scheduling. The new PLCT values take effect the next time the transaction is scheduled. Valid PLCT parameters are numeric values from 0 to 65535.

/ASSIGN PLCT is not valid for CPI Communications driven transaction programs.
PTERM
Specifies the non-VTAM device to which the input or output capabilities (or both) of a logical terminal are to be assigned.

REGION
Specifies the message processing region being assigned new classes of transactions that the region can schedule.

SAVE
Prevents deletion of user and LTERM control blocks across session and IMS restarts. Control blocks will be retained until the NOSAVE keyword is used with the /ASSIGN command. Omitting SAVE and NOSAVE causes the system-wide default to be used, as specified by the ASSNCHANGE parameter in the DFSDCxxx PROCLIB member.

SEGNO
Creates or changes the limit on the number of application program output segments allowed in message queues for each GU call. Segment limits will be established by transaction code, thereby allowing specification of more than one value for each application program. The new SEGNO value takes effect during execution of the transaction. Valid SEGNO parameters are numeric values from 0 to 65535.

The /ASSIGN SEGNO command is not valid for CPI Communications driven transaction programs.

SEGSZ
Creates or changes the limit on the size of application program output segments allowed in message queues for each GU call. The new SEGSZ value takes effect during execution of the transaction. Valid SEGSZ parameters are numeric values from 0 to 65535.

The /ASSIGN SEGSZ command is not valid for CPI Communications driven transaction programs.

TRAN
Specifies the transaction being assigned to a message processing class or being assigned a value. The new class takes effect the next time the transaction is scheduled.

USER
Assigns logical terminals to ISC half-sessions or to dynamic users. When moving logical terminals between users, the MSGDEL options of the users must match. The MSGDEL option for the static ISC users is defined in the SUBPOOL macro during system definition. The MSGDEL option for dynamic terminals is defined in the OPTIONS keyword of the ETO USER descriptor. /ASSIGN USER to VTAMPOLL is not valid if USER is not ISC.

/ASSIGN LTERM ltermname (TO) USER username assigns the logical terminal to another USER. The user associated with LTERM ltermname must not be allocated. The USER username can be allocated, but it must be associated with a session that is stopped and idle, if allocated.

Note: Assigning an LTERM is not a permanent action. When the destination structure is deleted (for example, with /SIGN OFF) IMS discards information about the assignment. When the original dynamic user who owned that dynamic LTERM signs on again or gets a message switch, the dynamic LTERM is recreated for the original dynamic user.
If SAVE is specified, the dynamic user is not deleted unless another 
/ASSIGN command with the NOSAVE keyword is issued.

/ASSIGN USER username1 (TO) USER username2 assigns a string of logical 
terminals to another USER. The first user (username1) in the command 
must contain at least one logical terminal and must not be signed on, in 
conversation, in response mode, or in preset mode. For 3600/FINANCE, 
SLU P, and ISC, the second user (username2) can remain allocated due to 
terminal message resynchronization requirements. However, the user 
cannot be signed on and associated terminal sessions must be stopped and 
ilde. This command turns off the DEADQ status for USER username1.

In addition to the ISC rules and restrictions, following dynamic terminal 
restrictions also apply. The /ASSIGN USER to USER and /ASSIGN LTERM to 
USER commands are rejected if the source or destination dynamic user is in 
conversation mode, response mode, or preset mode. The second USER can 
be allocated, but it must be associated with a session that is stopped and 
ilde, if allocated.

When existing dynamic LTERMs or dynamic users are assigned to a 
destination user that does not exist, the destination user is created unless it 
is rejected by the DFSINSX0 user exit.

**VTAMPOOL**

Is valid only for VTAM ISC sessions. It is used to force a cold start of an 
ISC session that cannot perform a successful restart.

/ASSIGN VTAMPOOL deallocates an entire string of logical terminals 
allocated to a given USER. The user must not be signed on, in conversation 
mode, response mode, or preset mode, and the terminal must be stopped 
and idle. This command is valid for static and dynamic ISC users.

**Usage notes**

Most changes made by the /ASSIGN command remain in effect until changed 
with another /ASSIGN command, or an IMS cold start (/NRESTART CHECKPOINT 0) 
is performed.

This command can be issued to an IMSplex using the Batch SPOC utility.

When dynamic LTERMs are assigned to dynamic users with the /ASSIGN LTERM 
TO USER command, or dynamic users are assigned to dynamic users with the 
/ASSIGN USER TO USER command, changes remain in effect only if the following 
conditions are true:

- The SAVE keyword is used.
- SAVE and NOSAVE keywords are omitted, but ASSNCHANGE=SAVE is 
specified in the DFSDCxxy PROCLIB member.

Otherwise, changes are lost when the destination user is deleted during user 
sign-off or IMS checkpoint.

Changes that affect regions, such as CLASS, are only in effect until the region 
terminates.

**Recommendation:** Use the /ASSIGN command consistently on all IMS subsystems 
that are members of a VTAM generic resources group or share IMS queues. For
example, assign an LTERM to a specific node for all IMS subsystems; assigning one LTERM to different nodes on different IMS subsystems could cause unpredictable results.

The /ASSIGN command is mirrored on an XRF alternate environment unless the assignment involves the primary or secondary master terminal, or the assignment of a CLASS to a REGION.

/ASSIGN commands attempting to assign LTERMs or users between static and dynamic terminals receive a unique error message. An error message is issued if /ASSIGN attempts any of the following:

- To assign a dynamic LTERM to a static USER.
- To assign a static USER to a dynamic USER.
- To assign a dynamic USER to a static USER.
- To assign a dynamic LTERM to a LINE or NODE.
- To assign a static LTERM to a dynamic USER.

**Restriction:** You cannot use the /ASSIGN command to assign a user structure to a node that does not exist. Use the /OPN NODE nodename USER username command instead.

**/ASSIGN in an IMSplex**

In an IMSplex, the /ASSIGN LTERM and /ASSIGN USER commands alter the relationships between one or more logical terminals and a physical terminal or user.

**Static terminals**

For static terminals in an IMSplex, the control blocks should exist in all the IMS systems where a user could possibly log on to that terminal. If /ASSIGN LTERM TO NODE is specified in an IMSplex, it should be issued from the Single Point Of Control (SPOC) application. If ROUTE is specified, it should be specified as ROUTE(*). Otherwise, the /ASSIGN command may not be processed consistently across the IMSplex and could cause unpredictable results. If one of the /ASSIGN commands fails, that IMS will send back a completion code to the Operations Manager (OM) indicating failure. It will be up to the IMS installation to correct that problem.

/ASSIGN LTERM TO NODE assigns the input and output capabilities of a logical terminal to a static VTAM node. The logical terminal may not be in conversational, response, or preset destination mode. The source and destination terminals do not need to be stopped or logged off.

If global resource information is not kept in the Resource Manager (RM) and the node exists locally, this command applies locally. If global resource information is kept in RM, this command applies globally, if the control blocks exist in RM. However, the assignment changes are not considered significant, and if the resource is deleted, the assignment changes are deleted as well. An LTERM that exists in the RM could be deleted if the static node to which it is assigned does not exist in the RM. If NODEA and LTERMA exist in the RM because the node is in exclusive mode, but static NODEB is not in RM, an /ASSIGN LTERM LTERMA NODE NODEB command would result in LTERMA being deleted in RM.
The IMS where the LTERM and node are active, or the command master if the resources are not active, will make the changes in the RM. In this case, "active" includes the case where the terminal is logged off, but has an RM affinity to a particular IMS. For /ASSIGN LTERM TO NODE, the LTERM and node might not be active in different IMS systems.

When the log on of a static node attempts to write its LTERM names to the RM, but one or more of the LTERM names are already in use, IMS will reject the log on. This error should occur only if there are inconsistent definitions, or there have been inconsistent /ASSIGN commands issued in the IMSplex.

**Dynamic terminals**

/ASSIGN LTERM TO USER assigns the input and output capabilities of an ETO logical terminal to an ETO user or a static ISC logical terminal to a static ISC subpool. The logical terminal may not be in conversational, response, or preset destination mode. The source user associated with the ETO LTERM might not be signed on. The destination ETO user does not have to be stopped. If global resource information is not kept in RM and the user exists locally, this command applies locally. If global resource information is kept in RM, this command applies globally (if the control blocks exist in RM). However, the assignment changes are not considered significant, and if the resource is deleted, the assignment changes are deleted as well. The IMS where the LTERM and node are active, or the command master if the resources are not active, will make the changes in the RM.

Use /ASSIGN LTERM TO USER with the SAVE keyword in an RM environment, to cause the assignment to persist and to apply the change to future IMS systems that join the IMSplex. The SAVE keyword is valid only for dynamic terminals, so this persistence function is not available for static terminals. Use /ASSIGN LTERM TO USER with the NOSAVE keyword in an RM environment, to stop applying the change to future IMS systems that join the IMSplex.

/ASSIGN USER TO USER assigns all the logical terminals associated with the source user to the destination user. The destination user, if dynamic, does not have to be stopped. If global resource information is not kept in RM and the user exists locally, this command applies locally. If global resource information is kept in RM, this command applies globally. Use /ASSIGN USER TO USER with the SAVE keyword in an RM environment to cause the assignment to persist and to apply the change to future IMS systems that join the IMSplex. The SAVE keyword is valid only for dynamic terminals, so this persistence function is not available for static terminals. Use /ASSIGN USER TO USER with the NOSAVE keyword in an RM environment to stop applying the change to future IMS systems that join the IMSplex.

The /ASSIGN command is allowed when the destination user does not exist. However, when resource information is being kept in RM, unless the SAVE keyword is used, this command will not be allowed. Assignments are not considered significant without the SAVE keyword, and if the user does not already exist because of some other significant status, there is no reason to create the user.

IMS will dynamically create the source LTERM or user (if it does not exist) to enable the /ASSIGN command. If the destination also does not exist, the SAVE keyword must be specified on the /ASSIGN command. Otherwise, the SAVE keyword is optional.

**Non-VTAM devices and VTAM**
IMS supports the assignment of an LTERM between non-VTAM devices and VTAM terminals. However, IMS will not save any non-VTAM status. For example, if an LTERM is assigned from VTAM to a non-VTAM device, the LTERM will be deleted from the RM, and any status that might have been associated with that LTERM will no longer be recoverable.

**Equivalent IMS type-2 commands**

The following table shows variations of the /ASSIGN command and the IMS type-2 commands that perform similar functions.

<table>
<thead>
<tr>
<th>Task</th>
<th>/ASSIGN command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changes the value for the limit count of</td>
<td>/ASSIGN LCT new_lmt_count TO TRAN tranname</td>
<td>UPDATE TRAN NAME(trannamename)</td>
</tr>
<tr>
<td>a transaction.</td>
<td></td>
<td>SET(LCT(new_limit_count))</td>
</tr>
<tr>
<td>Changes the value for the limit priority</td>
<td>/ASSIGN LPRI new_lpri_number TO TRAN tranname</td>
<td>UPDATE TRAN NAME(trannamename)</td>
</tr>
<tr>
<td>of a transaction.</td>
<td></td>
<td>SET(LPRI(new_limit_priority))</td>
</tr>
<tr>
<td>Changes the value for the normal priority</td>
<td>/ASSIGN NPRI new_npri_number TO TRAN tranname</td>
<td>UPDATE TRAN NAME(trannamename)</td>
</tr>
<tr>
<td>of a transaction.</td>
<td></td>
<td>SET(NPRI(new_normal_priority))</td>
</tr>
<tr>
<td>Changes the value for the parallel</td>
<td>/ASSIGN PARLIM new_parlim_number TO TRAN tranname</td>
<td>UPDATE TRAN NAME(trannamename)</td>
</tr>
<tr>
<td>processing limit count of a transaction.</td>
<td></td>
<td>SET(PARLIM(new_parallel_limit))</td>
</tr>
<tr>
<td>Changes the value for the processing</td>
<td>/ASSIGN PLCT new_plmct_number TO TRAN tranname</td>
<td>UPDATE TRAN NAME(trannamename)</td>
</tr>
<tr>
<td>limit count of a transaction.</td>
<td></td>
<td>SET(PLCT(new_processing_limit))</td>
</tr>
<tr>
<td>Changes the limit on the number of</td>
<td>/ASSIGN SEGNO new_segno_number TO TRAN tranname</td>
<td>UPDATE TRAN NAME(trannamename)</td>
</tr>
<tr>
<td>application program output segments</td>
<td></td>
<td>SET(SEGNO(new_segment_number))</td>
</tr>
<tr>
<td>allowed in message queues for each</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GU call.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creates or changes the limit on the</td>
<td>/ASSIGN SEGSZ new_segsize_number TO TRAN tranname</td>
<td>UPDATE TRAN NAME(trannamename)</td>
</tr>
<tr>
<td>size of application program output</td>
<td></td>
<td>SET(SEGSZ(new_segment_size))</td>
</tr>
<tr>
<td>segments allowed in message queues for</td>
<td></td>
<td></td>
</tr>
<tr>
<td>each GU call.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Changes the class number of a</td>
<td>/ASSIGN TRAN tranname TO CLS new_class_number</td>
<td>UPDATE TRAN NAME(trannamename)</td>
</tr>
<tr>
<td>transaction.</td>
<td></td>
<td>SET(CLASS(new_class_number))</td>
</tr>
</tbody>
</table>

**Examples**

The following are examples of the /ASSIGN command:

**Example 1 for /ASSIGN command**

Entry ET:

/ASSIGN CLASS 5 TO REGION 3

Response ET:

DF5058I ASSIGN COMMAND COMPLETED

Explanation: Class 5 is assigned to region 3. Class 5 transactions are scheduled into region 3. This command resets any previous class assignments to this region.

**Example 2 for /ASSIGN command**

Entry ET:
/ASSIGN CLASS 4 6 2A TO REGION 5

Response ET:
  DFS058I  ASSIGN COMMAND COMPLETED EXCEPT CLASS 2A

Explanation: The requested assignment is complete except for 2A, which is an invalid class number.

Example 3 for /ASSIGN command

Entry ET:
  /ASSIGN CPRI 8 TO TRAN PIT, SEED

Response ET:
  DFS058I  ASSIGN COMMAND COMPLETED

Explanation: A current priority of 8 is set for the transactions named PIT and SEED.

Example 4 for /ASSIGN command

Entry ET:
  /ASSIGN INPUT LTERM JONES TO LINE 4 PTERM 3

Response ET:
  DFS058I  ASSIGN COMMAND COMPLETED

Explanation: Logical terminal JONES is assigned to LINE 4 PTERM 3 for input identification and security. It associates the chain of logical terminals, of which LTERM JONES will be chained in first, with LINE 4 PTERM 3 for input. LTERM JONES must not be in the interior of an input chain (no other logical terminal can point to it). A physical terminal can point (for input only) to the first logical terminal of any chain. The output physical terminal for LTERM JONES is not changed.

Example 5 for /ASSIGN command

Entry ET:
  /ASSIGN LTERM APPLE TO LINE 5 PTERM 1

Response ET:
  DFS058I  ASSIGN COMMAND COMPLETED

Explanation: Logical terminal APPLE has both its input and output capabilities assigned to LINE 5 PTERM 1. The components present on LINE 5 PTERM 1 must be compatible with the physical terminal previously related to logical terminal APPLE.

Example 6 for /ASSIGN command

Entry ET:
  /ASSIGN LTERM APPLE TO NODE JONES

Response ET:
  DFS058I  ASSIGN COMMAND COMPLETED

Chapter 9. /ASSIGN command
Explanation: Logical terminal APPLE has both its input and output capabilities assigned to node JONES. The components present on node JONES must be compatible with the physical terminal previously related to logical terminal APPLE.

*Example 7 for /ASSIGN command*

Entry ET:

/ASSIGN LTERM SMITH TO LINE 4 PTERM 6 PTERM 7 COMPONENT 2

Response ET:

DFS058I ASSIGN COMMAND COMPLETED

Explanation: Logical terminal SMITH is assigned to LINE 4 PTERM 6 for input and LINE 4 PTERM 7 for output. Output for LINE 4 PTERM 7 is directed to COMPONENT 2.

*Example 8 for /ASSIGN command*

Entry ET:

/ASSIGN LTERM X TO LINE 5 PTERM 7 PTERM 6 COMPONENT 4 COMPONENT 3

Response ET:

DFS058I ASSIGN COMMAND COMPLETED

Explanation: Logical terminal X is assigned to LINE 5 PTERM 7 for input and to LINE 5 PTERM 6 for output. Input is only received from input component 3, while output is directed to component 4.

*Example 9 for /ASSIGN command*

Entry ET:

/ASSIGN LTERM JONES TO LINE 4 PTERM 6 LINE 9 PTERM 1

Response ET:

DFS058I ASSIGN COMMAND COMPLETED

Explanation: Logical terminal JONES is assigned to LINE 4 PTERM 6 for input capability and LINE 9 PTERM 1 for output capability. The component assignment is unaffected.

*Example 10 for /ASSIGN command*

Entry ET:

/ASSIGN LTERM SMITH NODE JONES

Response ET:

DFS058I ASSIGN COMMAND COMPLETED

Explanation: Logical terminal SMITH is assigned to node JONES for both input and output.

*Example 11 for /ASSIGN command*
Entry ET:
   /ASSIGN LTERM BROWN TO LTERM WHITE

Response ET:
   DFS058I ASSIGN COMMAND COMPLETED

Explanation: Logical terminal BROWN is removed from its present input chain (if one exists) of logical terminals and added to the end of the input chain (if one exists) of logical terminal WHITE. The output physical terminal for LTERM BROWN is not changed.

Example 12 for /ASSIGN command

Entry ET:
   /ASSIGN LTERM LAX USER ILL ICOMPONENT 1 COMPONENT 2

Response ET:
   DFS058I ASSIGN COMMAND COMPLETED

Explanation: Logical terminal LAX is reassigned from its existing user to the user ILL. The user associated with LAX cannot be allocated to an active session.

Example 13 for /ASSIGN command

Entry ET:
   /ASSIGN LTERM PRIMARY TO LINE 4 PTERM 3

Response ET:
   DFS058I ASSIGN COMMAND COMPLETED

Explanation: PTERM 3 on LINE 4 becomes the master terminal. PTERM 3 must be a 3270 display.

Example 14 for /ASSIGN command

Entry ET:
   /ASSIGN LTERM PRIMARY TO NODE BOSS

Response ET:
   DFS058I ASSIGN COMMAND COMPLETED

Explanation: The node, BOSS, becomes the primary master terminal and the secondary master terminal.

Example 15 for /ASSIGN command

Entry ET:
   /ASSIGN LTERM PRIMARY TO LINE 1 PTERM 2 LINE 2 PTERM 4

Response ET:
   DFS058I ASSIGN COMMAND COMPLETED
Explanation: PTERM 2 on LINE 1 becomes the primary master terminal and PTERM 4 on LINE 2 becomes the secondary master terminal. PTERM 2 is a 3270 display station and PTERM 4 is a 3270 printer.

Example 16 for /ASSIGN command

Entry ET:
   /ASSIGN SEGNO 50 TO TRAN APPLE

Response ET:
   DFS058I ASSIGN COMMAND COMPLETED

Explanation: A limit of 50 output segments is set for the transaction APPLE.

Example 17 for /ASSIGN command

Entry ET:
   /ASSIGN SEGSZ 1000 TO TRAN APPLE

Response ET:
   DFS058I ASSIGN COMMAND COMPLETED

Explanation: A maximum size of 1000 bytes is set for any one output segment of transaction APPLE.

Example 18 for /ASSIGN command

Entry ET:
   /ASSIGN USER ILL TO USER CAL

Response ET:
   DFS058I ASSIGN COMMAND COMPLETED

Explanation: All the logical terminals of user ILL are appended to the existing LTERM string of user CAL. Use of this form of the /ASSIGN command leaves ILL with no LTERMs and therefore unavailable for allocation to a session. Both user ILL and CAL cannot be allocated to a session.

Example 19 for /ASSIGN command

Entry ET:
   /ASSIGN USER CAL TO VTAMPOOL

Response ET:
   DFS058I ASSIGN COMMAND COMPLETED

Explanation: The entire allocated LTERM string defined for user CAL is reassigned to the VTAM pool. The node to which user CAL is allocated must not be in session and must be stopped and idle. User CAL is then available for allocation to any ISC session.

Example 20 for /ASSIGN command

Entry ET:
/ASSIGN TRAN APPLE TO CLASS 5

Response ET:
   DFS058I  ASSIGN COMMAND COMPLETED

Explanation: The transaction named APPLE is assigned to class 5.

Related concepts:
- CPI Communications driven application programs (Communications and Connections)

Related reference:
- UPDATE TRAN command (Commands)
Chapter 10. /BROADCAST command

The /BROADCAST command is a multisegment command used to send a message to terminals in one or more IMS systems.

Subsections:
- “Environment”
- “Syntax”
- “Keywords” on page 122
- “Usage notes” on page 123
- “Examples” on page 124

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

Table 90. Valid environments for the /BROADCAST command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/BROADCAST</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>ACT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LINE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LTERM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MASTER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MSNAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NODE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PTERM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SYSID</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>USER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
/BROADCAST TO
```
Keywords

The following keywords can be specified for the /BROADCAST command:

**ACT**

Specifies that the supplied message is queued to the first LTERM allocated to each active node.

When operating on a dynamic terminal, the /BROADCAST ACT command only succeeds if a signed on user exists. A signed on user must exist, otherwise there is no destination to which to send the message.

**LINE**

Specifies that a message is to be sent to all terminals associated with the specified line. PTERM specifies that the message is to be sent to specific terminals on the associated line.

**LTERM**

Specifies that a message is queued to each named LTERM in the local system or any remote system. The remote logical terminal must be defined in the input system.
Where a LTERM does not exist, IMS attempts to create the LTERM and associated user structure if ETO is active. LTERM parameters can be generic, where the generic parameter specifies logical terminals that already exist.

When /BROADCAST LTERM ALL is specified, one copy of the message is queued for each logical terminal in the local system. In a multiple systems configuration, the message is not sent to remote systems when the ALL parameter is used. When more than one logical terminal is assigned to a physical terminal for output purposes, multiple copies of the message will result.

When the LTERM keyword specifies a logical terminal assigned to the VTAM pool, broadcast messages are queued for the first logical terminal in a subpool.

MASTER
Specifies that a message is to be sent to the IMS master terminal and to any specified secondary master terminal. Keywords SYSID and MSNAME can be used to further qualify the reserved parameter MASTER.

MSNAME
Specifies the logical link path in a multiple systems configuration.

NODE
Specifies that the supplied message is queued to the first output LTERM allocated to a terminal. If a terminal has no signed on user, no message can be queued. NODE parameters can be generic, where the generic parameter specifies nodes that already exist.

When operating on a dynamic terminal, the /BROADCAST NODE command only succeeds if a signed on user exists. A signed on user must exist, otherwise there is no destination to which to send the message.

PTERM
Specifies the physical terminal to which a message is to be sent.

SYSID
Specifies the system identification of a system in a multiple system configuration.

USER
Specifies that the supplied message is queued to the first LTERM associated with the dynamic user. The USER parameter can be generic. The /BROADCAST USER command applies only to existing dynamic users.

In an IMSplex, /BROADCAST USER queues the supplied message to the first LTERM associated with a dynamic user, if the user is signed on locally. /BROADCAST USER cannot be used to queue a message to an LTERM associated with a user signed on to another IMS in the IMSplex, or not signed on at all.

Usage notes

For /BROADCAST commands entered by the master terminal operator, the multisegment input from this command is combined into 79-character segments for output transmission. The first input segment contains only the broadcast destination. The second and subsequent input segments must contain the data to be broadcast. Messages that are broadcast are sent even if the line, terminal, or both, are stopped at the time the broadcast is issued.

This command can be issued to an IMSplex using the Batch SPOC utility.
All /BROADCAST formats require an EOM indication to denote end-of-message; an EOS indication must be included for all segments that precede the last segment.

**Requirement:** When the /BROADCAST command is issued from an MCS/E-MCS console, OM API, or an AOI application, a period must appear as a delimiter between the command and the message text.

Unlike message switches, broadcast messages are sent to a terminal even when the terminal, associated line, or both, are not available (stopped, process stopped, or locked). However, broadcast messages are never sent to terminals if the MSGDEL parameter of the TERMINAL macro is specified MSGDEL=NONIOPCB.

Broadcast messages are always queued for logical terminals. When the ACTIVE, LINE, NODE, FTERM, or USER keywords are used, IMS queues the message for the first logical terminal found that is associated for output purposes with the specified line or physical terminal.

**Examples**

The following are examples of the /BROADCAST command:

**Example 1 for /BROADCAST command**

Entry ET:

```
/BROADCAST ACTIVE (EOS)
SYSTEM WILL BE SHUTDOWN FOR PM (EOS)
IN 5 MINUTES (EOM)
```

Response ET:

```
DFS058I BROADCAST COMMAND COMPLETED
```

Response RT:

```
SYSTEM WILL BE SHUTDOWN FOR PM IN 5 MINUTES
```

Explanation: The entered message is transmitted to all active terminals.

**Example 2 for /BROADCAST command**

Entry ET:

```
/BROADCAST TO LTERM APPLE, TREE (EOS)
DON'T USE TRANSACTION GREENTRE UNTIL FURTHER (EOS)
NOTICE. (EOM)
```

Response ET:

```
DFS058I BROADCAST COMMAND COMPLETED
```

Response RT:

```
DON'T USE TRANSACTION GREENTRE UNTIL FURTHER NOTICE.
```

Explanation: The entered message is transmitted to the logical terminals named APPLE and TREE.

**Example 3 for /BROADCAST command**

Entry ET:
/BROADCAST TO LINE ALL (EOS)
SYSTEM WILL SHUTDOWN AT 5PM (EOM)

Response ET:
DFS058I  BROADCAST COMMAND COMPLETED

Response RT:
SYSTEM WILL SHUTDOWN AT 5PM

Explanation: The entered message is transmitted to all physical terminals.

Example 4 for /BROADCAST command

Entry ET:
/BROADCAST TO LINE 13 PTERM ALL (EOS)
EXPECT DEMO YOUR LINE AT 9PM (EOM)

Response ET:
DFS058I  BROADCAST COMMAND COMPLETED

Response RT:
EXPECT DEMO YOUR LINE AT 9PM

Explanation: The entered message is transmitted to all physical terminals on line 13.

Example 5 for /BROADCAST command

Entry ET:
/BROADCAST MASTER SYSID 2 (EOS)
SYSTEM WILL SHUTDOWN AT 5:00 PM (EOM)

Response ET:
DFS058I  BROADCAST COMMAND COMPLETED

Response RT:
SYSTEM WILL SHUTDOWN AT 5:00 PM

Explanation: The message is transmitted to the master terminal of the system specified by the SYSID 2.

Example 6 for /BROADCAST command

Entry ET:
/BROADCAST MASTER MSNAME BOSTON, CHICAGO (EOS)
SYSTEM WILL SHUTDOWN AT 5:00 PM (EOM)

Response ET:
DFS058I  BROADCAST COMMAND COMPLETED

Response RT:
SYSTEM WILL SHUTDOWN AT 5:00 PM

Explanation: The message is transmitted to the master terminals of the remote systems specified by the MSNAMEs BOSTON and CHICAGO.
Example 7 for /BROADCAST command

Remote Terminal entry:

```
/FORMAT DFSMO4
/BRO LTERM WTOR (eos)
this is segment 1 (eos)
this is segment 2 (eos)
this is segment 3 (eom)
```

Response ET:

```
DFSM858I BROADCAST COMMAND COMPLETED
```

Response RT:

```
THIS IS SEGMENT 1
THIS IS SEGMENT 2
THIS IS SEGMENT 3
```

Explanation: The remote terminal is first formatted by the /FORMAT command, where default format DFSMO4 supports the input of four segments. This is followed by /BROADCAST with four segments.

Related reference:

“Multisegment command input” on page 6
Chapter 11. /CANCEL command

The /CANCEL command cancels all segments of a multisegment input message.

It must be entered prior to the end-of-message (EOM) indicator from the terminal that was entering the message.

Subsections:
- “Environment”
- “Syntax”
- “Usage notes”
- “Example”

**Environment**

The following table lists the environments (DB/DC, DBCTL, and DCCTL) from which the command can be issued.

<table>
<thead>
<tr>
<th>Command</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/CANCEL</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

**Syntax**

```
/CANCEL
```

**Usage notes**

Because a /CANCEL command must comprise a segment, it cannot be used to cancel a single-segment message.

On a non-3270 device, you can cancel a single-segment message by entering two asterisks (**), followed immediately by an end-of-segment (EOS) indicator. When Message Format Service (MFS) is used, you can define delete characters other than (**) to cancel other segments besides the first.

/CANCEL command has no meaning on display terminals where it is not possible to have some segments of a message already received by IMS while receiving subsequent segments.

**Example**

Entry ET:
```
/BROADCAST TO ACTIVE (EOS)
SYSTEM WILL BE AVAILABLE (EOS)
```

Entry ET:
```
/CANCEL
```
Response ET:

DFS058I  CANCEL COMMAND COMPLETED

Explanation: All previously entered segments of the current message are discarded.
Chapter 12. /CHANGE commands

The /CHANGE commands are multisegment commands used to change or delete internal resources within IMS.

All /CHANGE formats require an EOM indication to denote end-of-message; an EOS indication must be included for all segments that precede the last segment.

These commands can be issued to an IMSplex using the Batch SPOC utility.

Subsections:
- "/CHANGE APPC command"
- "/CHANGE CCTL command" on page 130
- "/CHANGE CPLOG command" on page 132
- "/CHANGE DESC command" on page 132
- "/CHANGE DIR MFS command" on page 134
- "/CHANGE FDR command" on page 135
- "/CHANGE LINK command" on page 136
- "/CHANGE NODE command" on page 140
- "/CHANGE SUBSYS command" on page 144
- "/CHANGE SURV command" on page 145
- "/CHANGE TRAN command" on page 148
- "/CHANGE UOR command" on page 149
- "/CHANGE USER command" on page 151

Related reference:
"Multisegment command input" on page 6

/CHANGE APPC command

Use the /CHANGE APPC command to specify a change to the timeout value for APPC/MVS.

This value is set in the DFSDCxxx member of IMS.PROCLIB. IMS passes this value to APPC/z/OS for every implicit APPC/MVS conversation.

Subsections:
- "Environment"
- "Syntax" on page 130
- "Keywords" on page 130
- "Usage notes" on page 130

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.
Table 92. Valid environments for the /CHANGE APPC command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/CHANGE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>APPC</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>OUTBND</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TIMEOUT</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
/CHANGE APPC TIMEOUT mmmm:ss OUTBND luname
```

Keywords

The following keywords are valid for the /CHANGE APPC command:

OUTBND

Specifies a different outbound LU. The specified LU must be one of the APPC LUs defined in the APPCPMxx member of the SYS1.PARMLIB library. The default outbound LU is BASE LU. Message DFS182 is issued if the specified `luname` is not defined as a SCHEDULER in APPC/MVS for this IMS (in the APPCPMxx SYS1.PARMLIB member or through the SETAPPC command).

TIMEOUT

Specifies the timeout value in minutes and seconds (`mmmm:ss`). `mmmm` can be a number between 0 and 1440. `ss` can be a number between 0 and 59. If the timeout value is 0, APPC/MVS timeout will be deactivated.

Usage notes

A DFS34091 or DFS3491I message is issued after the /CHANGE APPC TIMEOUT command is issued to inform the operator of the new timeout value.

/CHANGE CCTL command

Use the /CHANGE CCTL command to specify the coordinator control subsystem. The recovery elements are resolved by IMS.

Subsections:

- "Environment"
- "Syntax" on page 131
- "Keywords" on page 131
- "Examples" on page 131

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

Table 93. Valid environments for the /CHANGE CCTL command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/CHANGE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Table 93. Valid environments for the /CHANGE CCTL command and keywords (continued)

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABORT</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CCTL</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>COMMIT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PRTKN</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

**Syntax**

```
/CHANGE CCTL <cctlname> PRTKN <prtkn> ABORT ALL COMMIT
```

**Keywords**

The following keywords are valid for the /CHANGE CCTL command:

- **cctlname**
  
  Specifies CCTL subsystem ID.

- **prtkn**
  
  Specifies the pseudorecovery token, which designates the unit of recovery to be aborted or committed. Use the /DISPLAY CCTL command to determine the name of the pseudorecovery token.

- **ABORT**
  
  Backs out changes for a unit of recovery. After completion of backout, the recoverable indoubt structure (RIS) is removed.

- **COMMIT**
  
  Commits changes for a unit of recovery. After the process is complete, the RIS is removed.

**Examples**

This set of examples shows that an INDOUBT unit of recovery can be aborted if the INDOUBT status cannot be resolved. The /CHANGE ... PRTKN command backs out changes made to the database.

Entry ET:

```
/DISPLAY CCTL CICS1 IND
```

Response ET:

```
CCTL PSEUDO-RTKN RECOVERY-TOKEN REGID PSNAME STATUS
CICS1 000100C0 9FFA956B7AE24E00 BMP255 INDOUBT
 00010040 9FFA9568FF594301 BMP255 INDOUBT
90067/113446
```

Entry ET:

```
/CHANGE CCTL CICS1 PRTKN 000100C0 ABORT (EOM)
```

Response ET:
Explanation: The INDOUBT unit of recovery whose pseudorecovery token (PRTKN) is 000100C0 has been aborted.

/CHANGE CPLOG command

Use the /CHANGE CPLOG command to change the value of the IMS execution parameter, CPLOG.

The IMS CPLOG execution parameter specifies the number of system log records between system-generated checkpoints.

Subsections:
- “Environment”
- “Syntax”
- “Keywords”

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

Table 94. Valid environments for the /CHANGE CPLOG command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/CHANGE CPLOG</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CPLOG</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
/CHANGE CPLOG cp_log
```

Keywords

The following keyword is valid for the /CHANGE CPLOG command:

`cp_log`

This value must be specified as one or more numeric characters followed by either K or M. Values can range from 1K (1 KB) to 16M (16 MB).

/CHANGE DESC command

Use the /CHANGE DESC command to specify the name of an LU 6.2 descriptor that will be updated with new values.

An error message is issued if the specified descriptor is not found.

Subsections:
- “Environment” on page 133
- “Syntax” on page 133
- “Keywords” on page 133
Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

Table 95. Valid environments for the /CHANGE DESC command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/CHANGE DESC</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LUNAME</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>MODE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OUTBND</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SIDE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SYNCLEVEL</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TPNAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TYPE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
►► /CHANGE DESC descriptor
 LUNAME luname
 MODE modename
 NONE
 OUTBND locally
 SIDE sidename
 SYNCLEVEL NONE CONFIRM
 TPNAME tpname
 TYPE BASIC MAPPED
 CONFIRM

►◄
```

Keywords

The following keywords are valid for the /CHANGE DESC command:

**LUNAME**

Specifies the LU name that is updated in the LU 6.2 descriptor.

The luname value in the descriptor is set to blanks unless the LUNAME keyword is also specified. A network-qualified LU name is optional for the LUNAME keyword.

**MODE**

Specifies the VTAM mode table entry name that is updated in the LU 6.2 descriptor. The NONE parameter resets the mode field to its null state.

The MODE value in the descriptor is set to blanks unless the MODE keyword is also specified.

**OUTBND**

Identifies a local LU to be used for outbound message processing. If you do
not specify a local LU, no LU name is displayed in the OUTBNDLU column of the /DISPLAY DESC command, and IMS uses the default LU.

**SIDE**
Specifies the APPC/z/OS side information that is set in the LU 6.2 descriptor. The side information contains default values for APPC conversation attributes such as LUNAME, TPNAME, and MODE.

**SYNCLEVEL**
Specifies the APPC sync level that is updated in the LU 6.2 descriptor. One of the following must be specified:

- **CONFIRM**
  IMS sync point processing continues.

- **NONE**
  IMS sync processing continues despite a session failure.

**TPNAME**
Specifies the tpname that is updated in the LU 6.2 descriptor. Message DFS182 is issued if the TPNAME parameter specified is DFSSIDE.

The TPNAME value in the descriptor is set to blanks unless the TPNAME keyword is also specified.

**TYPE**
Specifies the APPC conversation type that is updated in the LU 6.2 descriptor. The conversation types are:

- **BASIC**
  Specifies that the data is to be formatted by the transaction programs, using the pattern “LL,data,LL,data”.

- **MAPPED**
  Specifies that the data is to be formatted by APPC.

**Usage notes**

The /CHANGE DESC command changes the destination for future messages only. It does not change the destination for existing messages. The existing output messages are delivered only to the luname and tpname that had been previously specified for that message. This restriction is required by security requirements so message delivery to the intended destination only occurs at the time the messages are created.

**/CHANGE DIR MFS command**

Use the /CHANGE DIR MFS command to specify that the entries in the MFS dynamic directory are to be deleted.

This restores the dynamic directory to the original state that it was in just after IMS was initialized.

Subsections:
- “Environment” on page 135
- “Syntax” on page 135
- “Usage notes” on page 135
Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

Table 96. Valid environments for the /CHANGE DIR MFS command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/CHANGE DIR MFS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

►►/CHANGE DIR MFS◄◄

Usage notes

When IMS is initialized, IMS creates an MFS block primary directory based on the contents of all the $SIMSDIR members found. At the same time, IMS issues GETMAINs to acquire additional storage that is large enough to hold approximately 10% of the members in the active format library. While IMS is running, entries are only added to the dynamic directory, they are not deleted. Therefore, the dynamic directory continues to get larger until it runs out of space. When this happens, IMS can extend the amount of space in the dynamic directory to hold another 10%. IMS can extend the size of the dynamic directory a maximum of 9 times.

If you want to delete the in-storage (or index) entries from the dynamic directory without restarting IMS or performing an online change for the format library, use the /CHANGE DIR MFS command.

/CHANGE FDR command

Use the /CHANGE FDR command to specify a change to the timeout value for IMS Fast Database Recovery surveillance.

This value is set in the DFSFDRxx member of IMS.PROCLIB. IMS uses this value to determine how long to wait before initiating a Fast Database Recovery takeover.

Subsections:

• “Environment”
• “Syntax” on page 136
• “Usage notes” on page 136

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

Table 97. Valid environments for the /CHANGE FDR command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/CHANGE FDR</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Table 97. Valid environments for the /CHANGE FDR command and keywords (continued)

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDR</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIMEOUT</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
/CHANGE FDR TIMEOUT #second
```

Usage notes

The timeout value (#seconds) must be at least 3 but no greater than 999.

IMS rejects this command if the active IMS subsystem is not connected to a Fast Database Recovery region.

/CHANGE LINK command

Use the /CHANGE LINK command with FORCSESS, SYNCSESS, COLDSESS to override the system definition option defined for forcing resynchronization until the next /CHANGE LINK command or IMS cold start.

The /CHANGE LINK command applies only to IMS systems that are linked by Multiple Systems Coupling (MSC) when TCP/IP or VTAM is used.

Subsections:
- “Environment”
- “Syntax” on page 137
- “Keywords” on page 137
- Examples

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

Table 98. Valid environments for the /CHANGE LINK keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/CHANGE LINK</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>ASR</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>COLDSESS</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>FORCSESS</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MODE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SYNCSESS</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Syntax

/CHANGE LINK link# FORCSESS A COLDSESS

A:

ASR OFF

MODE None

Keywords

The following keywords are valid for the /CHANGE LINK command:

FORCSESS
Defines the link as capable of being warm started from an ERE state, even if the message sequence numbers on each side of the link are not synchronized.

Attention: The use of FORCSESS can cause messages to be lost. Specify FORCSESS for a link only if the loss of messages during a restart can be tolerated.

SYNCSESS
Defines the link as incapable of being warm started from an ERE state, unless the message sequence numbers on each side of the link are synchronized.

COLDSESS
Resets a link that is in either ERE or NRE state to COLD state, the state of a link when IMS comes up with a cold start.

The FORCSESS or the SYNCSESS keyword must be specified with the COLDSESS keyword. The specification of FORCSESS or SYNCSESS keyword with COLDSESS overrides the previous specification of FORCSESS or SYNCSESS for the link.

Attention: Use of the COLDSESS keyword can cause messages to be lost. Use the COLDSESS keyword only if one of the systems associated with an MSC link goes down, and the only way to bring up the session is to cold start it.

The COLDSESS keyword can be specified to terminate control blocks associated with the specified link or links and reset the link to COLD. COLDSESS should be used only after the /PSTOP command is issued and completes against the link or links and the links appear to be hung. If COLDSESS is specified, it should be used on both sides of the link or links. Gather documentation to determine why the link or links did not come down normally.

ASR
Changes the automatic keyword session restart designation of a VTAM link. The default parameter for ASR is ON.
Automatic session restart is not necessarily activated for a link just because a status of ASR is displayed for that link. You must also have coded SONSCIP=YES on the APPL definition statement for VTAM when defining the network for the VTAM.

ASR applies only to VTAM MSC links. Attempting to turn ASR ON for any other type of MSC link is invalid. If non-VTAM MSC links are specified on the /CHANGE LINK ASR command, the command response indicates that the command processing completed with exceptions.

**MODE**

Changes the default mode table name of a VTAM link. This default is usually established by system definition. Parameter NONE resets this field to its null state (as if no mode table name was specified at system definition).

MODE applies only to VTAM MSC links. Changing the mode table name for any other type of MSC link is invalid. If non-VTAM MSC links are specified on the /CHANGE LINK MODE command, the command response indicates that the command processing completed with exceptions.

**Examples: FORCSESS, SYNCSESS, and COLDSESS**

The following series of command examples illustrate the use the /CHANGE LINK command with the FORCSESS, SYNCSSESS, and COLDSESS keywords. In all of the examples in this series, LINK 22 is an MSC TCP/IP link.

In the following example, LINK 22 is displayed. The link has not been used yet and is in a PSTOPPED IDLE COLD state.

```
/DISPLAY LINK 22
DFS000I LINK PARTNER RECD ENQCT DEQCT QCT SENT
DFS000I 22 TA 0 0 0 0 0 PSTOPPED IDLE COLD
```

In the following example, /CHANGE LINK 22 FORCSESS is issued to define the link as capable of being restarted when the message sequence numbers are not synchronized.

```
/CHANGE LINK 22 FORCSESS.
DFS058I 16:58:59 CHANGE COMMAND COMPLETED
```

In the following example, the /DISPLAY LINK command shows that the status of the link now includes FORCE, which indicates that the FORCSESS attribute is set on the link.

```
/DISPLAY LINK 22
DFS000I LINK PARTNER RECD ENQCT DEQCT QCT SENT
DFS000I 22 TA 0 0 0 0 0 PSTOPPED IDLE COLD FORCE
```

In the following example, the /START command starts the link and the /DISPLAY command shows that the status of the link is now IDLE ACTV PRI FORCE.

```
/RSTART LINK 22
DFS058I 17:02:03 RSTART COMMAND COMPLETED
DFS2168I 17:02:05 CONNECTION ESTABLISHED ON LINK 22
```

```
/DISPLAY LINK 22
```
In the following example, the /PSTOP command is issued with the FORCE keyword, which stops the link. Because LINK 22 is a TCP/IP link, the link does not need to be shut down before issuing the /PSTOP command with the FORCE keyword.

After the /PSTOP command is processed, the reason code and LOSTSESS value in message DFS3177E indicate why the link stopped.

/PSTOP LINK 22 FORCE

DFS058I 17:08:01 PSTOP COMMAND COMPLETED

DFS3177E 17:08:01 MSC DETECTED AN ERROR,
DFS000I SENDMSG , RETCODE = 00000000, RSNCODE = 00000070, LOSTSESS = FORCESTO
DFS000I MODULE = DFSTC7C0, LINK = 022, LNK12T01

DFS2169I 17:08:01 DISCONNECTION COMPLETED ON LINK 0022

After the disconnection of LINK 22 is complete, a /DISPLAY LINK command shows the status of LINK 22 as PSTOPPED IDLE ERE FORCE IMS1. In the link status,
- ERE indicates that the link is in a warm state and that when the link is restarted, emergency restart synchronization will be performed.
- FORCE indicates that the link will start even if the message sequence numbers are not synchronized.
- IMS1 identifies the IMS system in which the link was stopped.

/DISPLAY LINK 22

DFS000I LINK PARTNER RECD ENQCT DEQCT QCT SENT
DFS000I 22 TA 0 0 0 0 0 IDLE ACTV PRI FORCE

In the following example, the /CHANGE LINK command is issued with the SYNCSESS COLDSESS keywords. The COLDSESS keyword resets the link status from ERE to COLD. The SYNCSESS keyword changes FORCSESS attribute of the link to the SYNCSESS attribute, which redefines the link as requiring the message sequence numbers on each side of the link to be synchronized before the link can start.

/CHANGE LINK 22 SYNCSESS COLDSESS.

DFS058I 17:08:45 CHANGE COMMAND COMPLETED

In the following final example of this series, the /DISPLAY LINK command shows that the link status no longer includes FORCE, which indicates that the FORCSESS attribute is no longer set and that the message sequence numbers must be synchronized before the link will start from a warm state.

/DISPLAY LINK 22

DFS000I LINK PARTNER RECD ENQCT DEQCT QCT SENT
DFS000I 22 TA 0 0 0 0 0 PSTOPPED IDLE COLD

**Examples: ASR**

This set of commands illustrates how the ASR setting of a link can be modified by the /CHANGE command:

Entry ET:
/DISPLAY LINK 6

Response ET:

```
 LINK PARTNER RECEIVED ENQCT DEQCT QCT SENT
 6 AL 0 0 0 0 0 ASR PSSTOPPED IDLE COLD
 90179/102004 IMSA
```

Explanation: Automatic Session Restart was defined for link 6 by system definition.

Entry ET:
/CHANGE LINK 6 ASR OFF (EOM)

Response ET:

```
 DFS058I CHANGE COMMAND COMPLETED
```

Entry ET:
/DISPLAY LINK 6

Response ET:

```
 LINK PARTNER RECEIVED ENQCT DEQCT QCT SENT
 6 AL 0 0 0 0 0 PSSTOPPED IDLE COLD
 90179/102126
```

Explanation: Automatic Session Restart is not available for link 6

Entry ET:
/CHANGE LINK 6 ASR (EOM)

Response ET:

```
 DFS058I CHANGE COMMAND COMPLETED
```

Explanation: The ASR parameter will default to ON.

Entry ET:
/DISPLAY LINK 6

Response ET:

```
 LINK PARTNER RECEIVED ENQCT DEQCT QCT SENT
 6 AL 0 0 0 0 0 ASR PSSTOPPED IDLE COLD
 90179/102300
```

Explanation: Automatic Session Restart is in effect again as a result of the second /CHANGE command.

/CHANGE NODE command

Use the /CHANGE NODE command to specify a VTAM node to be changed. The NODE parameter can be generic if the USER keyword is not present. The generic parameter specifies nodes that already exist.

Subsections:
- “Environment” on page 141
- “Syntax” on page 141
- “Keywords” on page 141
Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

Table 99. Valid environments for the /CHANGE NODE command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/CHANGE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ASR</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>COLDSESS</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FORCSESS</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MODE</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SYNCSESS</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
/CHANGE
/CHANGE NODE nodename
 USER username
 ALL
 nodename
 nodename*
 COLDSESS
```

A:

```
ASR OFF
MODE None
```

B:

```
FORCSESS
SYNCSESS
COLDSESS
```

Keywords

The following keywords are valid for the /CHANGE NODE command:

**ASR**

The ASR keyword allows you to change the automatic session restart designation of a node. The default parameter for ASR is ON.
Automatic session restart is not necessarily activated for a node just because a status of ASR is displayed for that node. You must also have coded SONCSIP=YES on the APPL definition statement for VTAM when defining your network.

**COLDSESS**

When COLDSESS is used with the NODE keyword, it sets up the SLU P or FINANCE session so that the session can be cold started. The COLDSESS keyword should be used if the SLU P or FINANCE session has experienced problems and attempts to warm start the session fail. The COLDSESS keyword terminates terminal and user control blocks associated with the specified node or nodes, and resets the node status to COLD.

In an IMSp lex, if global resource information is not kept in Resource Manager (RM), the change is applied locally. If global resource information is kept in RM, the change is applied globally.

A DFS0581 COMMAND COMPLETE EXCEPT message may be received if the node is temporarily in use by another task even if the criteria (node is terminated and idle) for successful completion of the command is met.

**FORCSESS, SYNCSCESS**

The FORCSESS and SYNCSCESS keywords are valid only for ISC nodes. Specify FORCSESS and SYNCSCESS to override the system definition or logon descriptor option defined to force or not force synchronization of sessions. This override is effective until the next /CHANGE command is issued or an IMS cold start is effected.

**MODE**

Changes the default mode table name of a node. This default is usually established by system definition or logon descriptor. MODE resets this field to its null state (as if no mode table name had been specified at system definition).

Changing ASR or the mode table name for VTAM 3270 nodes is invalid. If nodes of this type are referred to specifically in the /CHANGE ASR or /CHANGE MODE commands, they are marked in error.

**USER**

Indicates the ISC user that is allocated to the node or the dynamic user that is signed on to the node.

/CHANGE USER AUTOLOGON SAVE changes the autologon information previously specified by a user descriptor, Destination Creation exit routine (DFSINSX0), or signon exit routine (DFSSGNX0). The autologon change is saved. The autologon information includes the node name, the mode table, the logon descriptor, and the ID. If the Resource Manager is active, the user will be dynamically created if it does not already exist. The SAVE keyword must be specified. If SAVE is not specified, the command is rejected with message DFS1199.

**Restrictions for using NODE and USER parameters together:**

- Commands with the NODE USER keyword pair are valid only if:
  - The USER is signed on to the NODE
  - In an ISC environment, the USER is allocated to the NODE
  - The nodes and users already exist
- /CHANGE NODE USER commands with ASR or MODETABLE keyword are valid for ISC and non-ISC nodes and users.
• /CHANGE NODE USER commands with FORCSESS or SYNCSESS keyword are valid for ISC nodes only.

Examples

The following are examples of the /CHANGE NODE command:

Example 1

Entry ET:
/DISPLAY NODE LUTYPEP1 MODE

Response ET:

<table>
<thead>
<tr>
<th>NODE-USR</th>
<th>TYPE</th>
<th>DEF MODETBL</th>
<th>ACT MODETBL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUTYPEP1</td>
<td>SLUP</td>
<td>DEFRESP</td>
<td></td>
</tr>
</tbody>
</table>

*90179/100630*

Explanation: DEFRESP is the mode table name defined for node LUTYPEP1 at system definition or logon descriptor or resource creation. The session is not active so the active mode table field (ACT MODETBL) is blank.

Entry ET:
/CHANGE NODE LUTYPEP1 MODE XXXXXXXX (EOM)

Response ET:

DFS058I CHANGE COMMAND COMPLETED

Entry ET:
/DISPLAY NODE LUTYPEP1 MODE

Response ET:

<table>
<thead>
<tr>
<th>NODE-USR</th>
<th>TYPE</th>
<th>DEF MODETBL</th>
<th>ACT MODETBL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUTYPEP1</td>
<td>SLUP</td>
<td>XXXXXXXX</td>
<td></td>
</tr>
</tbody>
</table>

*84179/100733*

Explanation: The default mode table name has been changed to XXXXXXXX by the previous /CHANGE command. The session is still not active so the active mode table field (ACT MODETBL) is blank.

Example 2

Entry ET:
/DISPLAY NODE LUTYPEP

Response ET:

<table>
<thead>
<tr>
<th>NODE-USR</th>
<th>TYPE</th>
<th>CID</th>
<th>RECD</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
<th>SENT</th>
<th>SLUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUTYPEP</td>
<td>SLUP</td>
<td>00000000</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>0</td>
<td>37</td>
<td>IDLE</td>
</tr>
</tbody>
</table>

*98276/153630*

Explanation: Node LUTYPEP is terminated warm after session received and processed 37 messages.

Entry ET:
/CHANGE NODE LUTYPEP COLDSESS (EOM)
Response ET:
DFS058I CHANGE COMMAND COMPLETED

Entry ET:
/DISPLAY NODE LUTYPEP

Response ET:

<table>
<thead>
<tr>
<th>NODE-USR</th>
<th>TYPE</th>
<th>CID</th>
<th>RECQ</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
<th>SENT</th>
<th>SLUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUTYPEP</td>
<td>SLUP</td>
<td>00000000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IDLE</td>
</tr>
</tbody>
</table>

Explanation: Terminal and user blocks associated with node LUTYPEP have been cleared and the status has been reset to COLD.

/CHANGE SUBSYS command

Use the /CHANGE SUBSYS command to specify the subsystem name from which IMS recovery elements are to be deleted.

Subsections:
- "Environment"
- "Syntax"
- "Keywords"
- "Examples" on page 145

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

| Table 100. Valid environments for the /CHANGE SUBSYS command and keywords |
|-----------------------------|-------------------|------------------|------------------|
| Command / Keywords | DB/DC | DBCTL | DCCTL |
| /CHANGE SUBSYS | X | X | X |
| OASN | X | X | X |
| RESET | X | X | X |
| SUBSYS | X | X | X |

Syntax

```
/CHANGE SUBSYS subsysname OASN oasname RESET
```

Keywords

The following keywords are valid for the /CHANGE SUBSYS command:
OASN
  Specifies the outstanding recovery element to be deleted.

RESET
  Causes an incomplete unit of work assigned to an external subsystem (not a
  CCTL subsystem) to be deleted.

Examples

The following are examples of the /CHANGE SUBSYS command:

Example 1

Entry ET:
  /CHANGE SUBSYS DSN RESET (EOM)

Response ET:
  DFS058I  CHANGE COMMAND COMPLETED

Explanation: Reset all IN-DOUBT recovery units for subsystem DSN.

Example 2

Entry ET:
  /CHANGE SUBSYS ALL RESET (EOM)

Response ET:
  DFS058I  CHANGE COMMAND COMPLETED

Explanation: Reset all IN-DOUBT recovery units for all subsystems.

Example 3

Entry ET:
  /CHANGE SUBSYS ABCD OASN 99 685 2920 RESET (EOM)

Response ET:
  DFS058I  CHANGE COMMAND COMPLETED

Explanation: Reset IN-DOUBT recovery units identified by OASN numbers 99, 685, 2920 for subsystem ABCD.

/CHANGE SURV command

Use the /CHANGE SURV command to specify that the interval or timeout value
on the active or alternate system in an XRF environment is changed.

Subsections:
  • “Environment” on page 146
  • “Syntax” on page 146
  • “Keywords” on page 146
  • “Usage notes” on page 146
  • “Examples” on page 147
Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

Table 101. Valid environments for the /CHANGE SURV command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/CHANGE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>INTERVAL</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SURV</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIMEOUT</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
/CHANGE SURV ALL INTERVAL #seconds LNK LOG RDS
```

Keywords

The following keywords are valid for the /CHANGE SURV command:

- **ALL**
  Same as specifying LNK, LOG, and RDS.

- **INTERVAL**
  Specifies the new interval on the active or alternate system in an XRF environment. The INTERVAL keyword identifies the new value in seconds and must be in the range 1 through 99.

- **LNK**
  IMS ISC link.

- **LOG**
  IMS system log.

- **RDS**
  IMS restart data set.

- **TIMEOUT**
  Specifies the new timeout value on the active or alternate system in an XRF environment. The TIMEOUT keyword identifies the new value in seconds and must be in the range 1 through 99.

Usage notes

When /CHANGE SURV is entered on the active system, it becomes effective on both the active and alternate systems if the alternate system is up. If entered on the alternate system, only the alternate system is changed.

**Recommendation:** Change surveillance on the active system and allow the alternate system to take affect.
Additional considerations when changing the TIMEOUT values are shown in the following table. Listed in the table are the TIMEOUT value requirements for certain systems where the command is entered on and the action taken for exceptions.

**Table 102. Changing the TIMEOUT value**

<table>
<thead>
<tr>
<th>System the command is entered on</th>
<th>Requirement</th>
<th>Action taken for exceptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>New timeout value must be greater than or equal to twice the active interval value.</td>
<td>DFS3832 issued. Active timeout value forced to twice the active interval value.</td>
</tr>
<tr>
<td>Alternate</td>
<td>Alternate interval value must be greater than or equal to the active interval value.</td>
<td>DFS3812 issued. Alternate interval value forced to active interval value.</td>
</tr>
<tr>
<td>Alternate</td>
<td>New timeout value must be greater than or equal to twice the alternate interval value.</td>
<td>DFS3832 issued. Alternate timeout value forced to twice the alternate interval value.</td>
</tr>
</tbody>
</table>

Additional considerations when changing the INTERVAL values are shown in the following table. Listed in the table are the INTERVAL value requirements for certain systems where the command is entered and the action taken for exceptions.

**Table 103. Changing the INTERVAL value**

<table>
<thead>
<tr>
<th>System the command is entered on</th>
<th>Requirement</th>
<th>Action taken for exceptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>Twice the new interval value must be less than or equal to the active timeout value.</td>
<td>DFS3832 issued. Active timeout value forced to twice the new interval value.</td>
</tr>
<tr>
<td>Alternate</td>
<td>Alternate interval value must be greater than or equal to the active interval value.</td>
<td>DFS3812 issued. Alternate interval value forced to active interval value.</td>
</tr>
<tr>
<td>Alternate</td>
<td>New alternate interval value must be greater than or equal to the alternate LOG interval value (LNK and RDS).</td>
<td>DFS3833 issued. Alternate interval value forced to alternate log interval value.</td>
</tr>
<tr>
<td>Alternate</td>
<td>New alternate interval value must be less than or equal to the alternate RDS and LNK interval value (LOG only).</td>
<td>DFS3833 issued. Alternate interval value forced to alternate RDS then LNK interval value.</td>
</tr>
<tr>
<td>Alternate</td>
<td>Twice the new interval value must be less than or equal to the alternate timeout value.</td>
<td>DFS3832 issued. Alternate timeout value forced to twice the new interval value.</td>
</tr>
</tbody>
</table>

**Examples**

This set of commands illustrates how surveillance can be modified by the /CHANGE command.

Entry ET (Alternate system):

/DISPLAY HSB
Response ET (Alternate system):

<table>
<thead>
<tr>
<th>RESNAME</th>
<th>STATUS</th>
<th>PHASE</th>
<th>IMS-ID</th>
<th>VTAM UVAR</th>
<th>ACT-ID</th>
<th>LOG-TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFSRSENM</td>
<td>BACKUP</td>
<td>TRK</td>
<td>IMSB</td>
<td>USERVAR</td>
<td>IMSA</td>
<td>10:35:17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>INTERVAL</th>
<th>TIMEOUT</th>
<th>STATUS</th>
<th>INTERVAL</th>
<th>TIMEOUT</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOG</td>
<td>2</td>
<td>99</td>
<td>INACTIVE</td>
<td>2</td>
<td>99</td>
<td>INACTIVE</td>
</tr>
<tr>
<td>LNK</td>
<td>4</td>
<td>99</td>
<td>INACTIVE</td>
<td>4</td>
<td>99</td>
<td>INACTIVE</td>
</tr>
<tr>
<td>RDS</td>
<td>3</td>
<td>99</td>
<td>INACTIVE</td>
<td>3</td>
<td>99</td>
<td>INACTIVE</td>
</tr>
</tbody>
</table>

TAKEOVER CONDITIONS - ALARM AUTO
RDS LINK LOG +RDS LINK
VTAM +IRLM

*91226/103517*

Entry ET (Alternate system):

/CHANGE SURV LNK INTERVAL 3 (EOM)

Response ET (Alternate system):

DFS058I CHANGE COMMAND COMPLETED
DFS3812I BACKUP LNK INTERVAL VALUE OF 3 HAS BEEN FORCED TO ACTIVE VALUE OF 4
DFS3811I LNK SURVEILLANCE INACTIVE: INTERVAL VALUE CHANGED FROM 4 TO 4

Explanation: An attempt to change the interval value was made by entering
/CHANGE on the alternate system. The new alternate interval value was not
greater than or equal to the active interval value, so IMS forced the interval to the
active value and issued asynchronous message DFS3812. Asynchronous message
DFS3811 indicates the status of the change that follows the above action by IMS.

/CHANGE TRAN command

Use the /CHANGE TRAN command with the MAXRGN keyword to change the
maximum number of regions that can be simultaneously scheduled for a given
transaction.

Subsections:
- “Environment”
- “Syntax”
- “Keywords” on page 149
- “Examples” on page 149

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which
you can use the command and keywords.

Table 104. Valid environments for the /CHANGE TRAN command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/CHANGE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MAXRGN</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TRAN</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Syntax

```
/CHANGE TRAN tranname MAXRGN #regions
```
Keywords

The following keywords are valid for the /CHANGE TRAN command:

MAXRGN

Specifies the maximum number of regions that can be simultaneously scheduled for a given transaction.

The transaction must be eligible for parallel scheduling (load balancing). For static transactions, the MAXRGN parameter (#regions) is initially set by system definition using the TRANSACT macro statement. For CPI Communications driven transactions, the initial value is obtained from the TP profile. The value of #regions must be between 0 and the number specified on the MAXPST=region parameter.

Examples

The following commands illustrate how to change the maximum number of regions that can be simultaneously scheduled for a given transaction.

Entry ET:

/DISPLAY TRAN SKS7

Response ET:

TRAN CLS ENQCT QCT LCT PLCT CP NP LP SEGSZ SEGNO PARLM RC
SKS7 7 0 0 65535 65535 8 8 8 0 0 1 0
PSBNAM: DFSDDLT7
STATUS: BAL(2)
*90226/134816*

Explanation: The status of transaction SKS7 indicates it is eligible for load balancing (BAL) and that two regions can be simultaneously scheduled.

Entry ET:

/CHANGE TRANSACTION SKS7 MAXRGN 4 (EOM)

Response ET:

DFS058I CHANGE COMMAND COMPLETED

Entry ET:

/DISPLAY TRAN SKS7

Response ET:

TRAN CLS ENQCT QCT LCT PLCT CP NP LP SEGSZ SEGNO PARLM RC
SKS7 7 0 0 65535 65535 8 8 8 0 0 1 0
PSBNAM: DFSDDLT7
STATUS: BAL(4)
*90226/134845*

Explanation: The maximum number of regions that can be simultaneously scheduled for transaction SKS7 has been changed from 2 to 4.

/CHANGE UOR command

Use the /CHANGE UOR command to specify that IMS should resolve units of recovery (UORs) for protected resources on the z/OS Resource Recovery Services (RRS) platform.
Recommendation: Use the /CHANGE UOR command only when you are certain that no other resource managers would be adversely affected after IMS resolves the UOR.

Subsections:
- “Environment”
- “Syntax”
- “Keywords”
- “Examples”

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

Table 105. Valid environments for the /CHANGE UOR command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/CHANGE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ABORT</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>COMMIT</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>UOR</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Syntax


Keywords

The following keywords are valid for the /CHANGE UOR command:

prtkn
- Specifies the pseudorecovery token that designates the UOW to be committed. Use the /DISPLAY UOR command to obtain the pseudorecovery token (prtkn).
- If you specify ALL, the /CHANGE UOR command affects all units of recovery.

ABORT
- Specifies that IMS back out changes for the protected resources.

COMMIT
- Specifies that IMS make changes permanent for the protected resources.

Examples

The following commands illustrate the changing of a unit of recovery.

Entry ET:

/CHANGE UOR 010040 ABORT

Response ET:
Explanation: IMS backs out changes for pseudorecovery token 010040.

Entry ET:
/CHANGE UOR 010040 COMMIT

Response ET:
DFS058I CHANGE COMMAND COMPLETED
DFS0699I RESYNC COMMIT COMPLETE FOR PSB STLDDTL1, PRTKN=00010040,
TOKEN IMS2  0000000100000000 IMS2
*97226/134816*

Explanation: IMS makes changes for pseudorecovery token 010040 permanent.

/CHANGE USER command

Use the /CHANGE USER command to specify that an ETO user will change. The user parameter cannot be generic.

Subsections:
- "Environment"
- "Syntax"
- "Keywords" on page 152

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/CHANGE AUTOLOGON</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ID</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LOGOND</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MODE</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NOSAVE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SAVE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>USER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
/CHANGE USER username AUTOLOGON C SAVE NOSAVE
```
The following keywords are valid for the /CHANGE USER command:

**AUTOLOGON**
- Specifies that the autologon information previously specified by a user descriptor, the Destination Creation exit routine (DFSINSX0), or the signon exit routine (DFSSGNX0) is being updated dynamically.

**nodename**
- Specifies the autologon terminal session for the specified user. Omitting the nodename clears all autologon information.

**MODE**
- Specifies the VTAM mode table entry name.

**LOGOND**
- Specifies the logon descriptor used to build the terminal control blocks.

**ID**
- Specifies the ISC partner's half-session qualifier (if the terminal is ISC).

**NOSAVE**
- Indicates that the changed autologon information should not be retained. Deletion of the user occurs when an IMS checkpoint is taken, at session termination, IMS restart, or XRF takeover. If SAVE and NOSAVE are omitted, IMS uses the system-wide default as specified in the DFSDCaaa PROCLIB member.

**SAVE**
- Indicates that the changed autologon information should be retained. This keyword prevents deletion of the user and remains in effect across a restart or XRF takeover until another /CHANGE command with the NOSAVE option is issued. If SAVE and NOSAVE are omitted, IMS uses the system-wide default as specified in the DFSDCaaa PROCLIB member.

If global resource information is kept in Resource Manager, the change is applied globally when the SAVE keyword is specified. If SAVE is not specified in this environment, the command is rejected.
Chapter 13. /CHECKPOINT command

The /CHECKPOINT command records control and status information about the system log.

Subsections:
- “Environment”
- “Syntax”
- “Keywords” on page 154
- “Usage notes” on page 156
- “Examples” on page 157

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

Table 107. Valid environments for the /CHECKPOINT command and keywords

<table>
<thead>
<tr>
<th>Command / Keyword</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/CHECKPOINT</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ABDUMP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DUMPQ</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>FREEZE</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LEAVEGR</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEAVEPLEX</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NOCQSSHUT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PURGE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>QUIESCE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SNAPQ</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>STATISTICS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

Shutdown checkpoint

Attention: This command shuts down your IMS system. Be sure that you understand the consequences of shutting down the system before you issue this command.
Simple checkpoint

►►/CHECKPOINT◄◄

Statistics checkpoint

►►/CHECKPOINT STATISTICS◄◄

Keywords

The following keywords are valid for the /CHECKPOINT command:

(b1ank)

Requests a simple checkpoint. Simple checkpoints are also invoked by IMS based on the number of entries to the system log. The number of log entries between simple checkpoints is specified during system definition. In an ETO environment, any dynamic nodes, LTERMs or users with no messages queued or status are deleted.

ABDUMP

Requests an abnormal termination dump of the IMS control region in addition to the shutdown option selected.

In a DBCTL environment, when /CHECKPOINT FREEZE ABDUMP is entered, all of the DBCTL address spaces are dumped.

FREEZE | DUMPQ | PURGE

Requests a shutdown of IMS. These variations of shutdown are provided for control over the method of stopping programs and lines, and to control the method of disposing of queues. The effects of these variations are shown in Table 108 on page 155. The request for a checkpoint shutdown might not be responded to immediately if any dependent regions are active. IMS will wait until these regions complete their current processing before continuing with the checkpoint shutdown. Message resynchronization for a specified transaction pipe does not affect IMS shutdown.

Restriction: A shutdown checkpoint is not allowed in a shared-queues environment if the CQS is not available.

Connections to external subsystems (not CCTIL subsystems) will be quiesced. Connection attempts originating from dependent regions will be prohibited. After all dependent region connections have terminated, the control region will terminate its connection.

The FREEZE keyword shuts down IMS pending actions shown in Table 108 on page 155. For DBCTL, active CCTIL threads are allowed to complete before this keyword takes effect. This is also true when ABDUMP is used with this keyword. In the DBCTL environment, a /CHECKPOINT command with the PURGE keyword will be processed as though the FREEZE keyword was used instead of PURGE. /CHECKPOINT FREEZE in the DBCTL environment is correct because there are no message queues to empty.

The DUMPQ and SNAPQ keywords designate starting points from which the message queue data sets can be rebuilt. However, the SNAPQ option dumps the message queues online while IMS is running without causing a shutdown of IMS.
The PURGE keyword attempts to empty all the queues so that no outstanding work remains. For DBCTL, IMS performs FREEZE processing because there are no message queues.

In a DBCTL environment, when /CHECKPOINT FREEZE ABDUMP is entered, all of the DBCTL address spaces are dumped.

In a shared-queues environment, the DUMPQ and PURGE keywords cause IMS to shut down (as if you entered a /CHECKPOINT FREEZE command), but the message queues are not dumped or purged because the local IMS subsystem has no local queues. To dump the shared message queues when CQS terminates, use the /CQSET command before issuing the IMS shutdown checkpoint command.

The following table displays when to issue one of the three IMS shutdown options (FREEZE, DUMPQ, and PURGE) and the effect on the IMS resource.

<table>
<thead>
<tr>
<th>Resource status</th>
<th>FREEZE keyword</th>
<th>DUMPQ keyword</th>
<th>PURGE keyword</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message processing regions stopped</td>
<td>At program completion</td>
<td>At program completion</td>
<td>When transaction queues are empty</td>
</tr>
<tr>
<td>Batch message processing regions stopped</td>
<td>At checkpoint, SYNC call, or program completion</td>
<td>At checkpoint, SYNC call, or program completion</td>
<td>At program completion</td>
</tr>
<tr>
<td>Line input stopped</td>
<td>At message completion</td>
<td>At message completion</td>
<td>At message completion</td>
</tr>
<tr>
<td>Line output stopped</td>
<td>At message completion</td>
<td>At message completion</td>
<td>When all messages complete</td>
</tr>
<tr>
<td>Transaction and message queues</td>
<td>Retained in queue data sets</td>
<td>Dumped to system log</td>
<td>Emptied normally</td>
</tr>
<tr>
<td>Message-driven regions stopped</td>
<td>At message completion</td>
<td>At program completion</td>
<td>When transaction queues are empty</td>
</tr>
<tr>
<td>Fast Path output messages queued</td>
<td>Dumped to system log</td>
<td>Dumped to system log</td>
<td>Emptied normally</td>
</tr>
<tr>
<td>Fast Path input messages queued</td>
<td>Discarded</td>
<td>Emptied normally</td>
<td>Emptied normally</td>
</tr>
<tr>
<td>Fast Path DEDB online utility region</td>
<td>At program completion</td>
<td>At program completion</td>
<td>At program completion</td>
</tr>
<tr>
<td>Fast Path DEDBs</td>
<td>Closed</td>
<td>Closed</td>
<td>Closed</td>
</tr>
<tr>
<td>MSDBs</td>
<td>Dumped to MSDB checkpoint data set</td>
<td>Dumped to MSDB checkpoint data set</td>
<td>Dumped to MSDB checkpoint data set</td>
</tr>
<tr>
<td>CCTL Regions</td>
<td>See DRA thread statistics for a discussion of DRA threads.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**LEAVEGR**

Deletes all affinities from the VTAM affinity table for the IMS subsystem on which this command is issued. Using this keyword removes the IMS subsystem from the generic resource group.

**Recommendation:** Cold start the DC component of an IMS subsystem that has been shut down with the LEAVEGR keyword to ensure that all affinities in IMS control blocks are also deleted. The IMS subsystem rejoins the generic resource group during startup.
If the VTAM ACB is closed (usually because of a /STOP DC command), a shutdown checkpoint command with the LEAVEGR keyword is rejected.

**LEAVEPLEX**

In an IMSplex, this keyword is specified if the IMS that is being shut down is not going to rejoin the IMSplex. Specify the LEAVEPLEX keyword when you do not intend to bring the IMS back up in the IMSplex.

If LEAVEPLEX is specified, and the IMS is a member of an IMSplex with global online change enabled, an attempt is made to remove the IMS ID from the OLCSTAT data set. If there is any error in removing the IMS ID from the OLCSTAT, message, DFS3443, DFS3444, or DFS3448 is written out to the system console and the IMS is shut down. In this case, the IMS ID might still be in the OLCSTAT data set and will have to be deleted by using the DFSUOLC utility.

**NOCQSSHUT**

Is used with the /CHE DUMPQ, /CHE FREEZE, or /CHE PURGE commands to not shut down the CQS address space when the IMS control region terminates. The CQS address space remains active and connected to the message queue structures. NOCQSSHUT is only applicable when IMS is running in a shared-queues environment. The default is to shut down the CQS address space when the IMS control region terminates.

**QUIESCE**

Halts processing of all VTAM terminals. When QUIESCE is specified, IMS sends the VTAM shutdown indicator to all VTAM terminals and waits until these nodes have completed processing before performing the normal checkpoint shutdown. During the processing of a quiesce shutdown, the master terminal operator might want to terminate the VTAM network without waiting for the orderly termination to complete. This can be done by entering the /CHECKPOINT command again, either with FREEZE, DUMPQ, or PURGE but without QUIESCE.

**SNAPQ**

Requests a simple checkpoint and dumps the contents of the message queues to the system log.

In a shared-queues environment, /CHECKPOINT SNAPQ does not snap the queues because the local IMS subsystem has no local queues. Use the /CQCHKPT command to initiate a CQS structure checkpoint.

In an XRF environment, /CHECKPOINT SNAPQ synchronizes the active and alternate IMS subsystems.

**STATISTICS**

Requests that IMS performance records be created and written to the system log. No other checkpoint processing occurs.

The /CHECKPOINT STATISTICS command does not create a system checkpoint on the log.

**Usage notes**

The /CHECKPOINT command can be used to take a simple checkpoint of IMS, with the option of also dumping the contents of the message queue data sets to the system log or to shut down IMS normally. When IMS is shut down by the /CHECKPOINT command, it can be restarted with the /NRESTART command.

This command can be issued to an IMSplex using the Batch SPOC utility.
There are two conditions under which IMS cannot complete a shutdown normally. The most frequent is when there are multiple-page messages on a master terminal non-VTAM line, paging is not complete, and the master terminal is sharing a communication line with other physical terminals. It might be necessary to use the \ASSIGN command to reassign the master terminal to a line by itself so that the \IDLE command can be issued to terminate the multiple page output. If the master terminal cannot be reassigned to another line, assign it to the system console line.

The second condition occurs when a number of system messages generated by IMS are awaiting delivery to the master terminal. All system messages destined for the master terminal will be delivered, because they can affect the way the system is restarted. The master terminal operator should acknowledge delivery of a message by causing an I/O interrupt; that is, pressing PA2, which in turn causes another message to be sent, if one exists. Another option is to assign the master terminal to the system console.

When the \CHECKPOINT command is used to shut down IMS, the \BROADCAST command can be helpful in notifying the remote terminal operators that IMS is shutting down.

If OTMA is active and a tpipe is idle for three consecutive system checkpoints, depending on certain eligibility requirements, the tpipe is removed.

**Examples**

The following are examples of the \CHECKPOINT command:

**Example 1 for \CHECKPOINT command**

Entry ET:

/CHECKPOINT

Response ET:

DFS058I (time stamp) CHECKPOINT COMMAND IN PROGRESS
DFS994I *CHKPT 82102/110247**SIMPLE**

Explanation: A simple checkpoint of IMS is written to the system log at 110247 (time) on 82102 (Julian date). The checkpoint number is 82102/110247.

**Example 2 for \CHECKPOINT command**

Entry ET:

/CHECKPOINT FREEZE

Response ET:

DFS058I (time stamp) CHECKPOINT COMMAND IN PROGRESS
DFS994I *CHKPT 82206/120118**FREEZE**

Explanation: IMS is terminated after all checkpoint freeze functions are completed. The checkpoint is written to the system log at 120118 (time) on 82206 (Julian date). The checkpoint number is 82206/120118.

**Example 3 for \CHECKPOINT command**

Entry ET:
/CHECKPOINT FREEZE QUIESCE

Response ET:

```
DFS058I (time stamp) CHECKPOINT COMMAND IN PROGRESS
DFS994I **CHKPT 82102/110247**=FREEZE*
```

Explanation: IMS is terminated after all VTAM nodes have returned a shutdown-complete indicator to IMS and IMS has completed all checkpoint freeze functions. The checkpoint is written to the system log at 110247 (time) on 82102 (Julian date). The checkpoint number is 82102/110247.

**Example 4 for /CHECKPOINT command**

Entry ET:

```
/CHECKPOINT PURGE ABDUMP
```

Response ET:

```
DFS058I (time stamp) CHECKPOINT COMMAND IN PROGRESS
DFS994I **CHKPT 82128/101112**=PURGE*
```

Explanation: IMS is terminated after all checkpoint purge functions are completed. The checkpoint is written to the system log at 101112 (time) on 82128 (Julian date). The checkpoint number is 82128/101112.

A z/OS ABEND message is issued when the dump of the IMS control region is completed.

**Example 5 for /CHECKPOINT command**

Entry ET:

```
/CHECKPOINT PURGE
```

Response ET:

```
DFS058I (time stamp) CHECKPOINT COMMAND IN PROGRESS
DFS994I **CHKPT 82103/131415**=PURGE*
```

Explanation: IMS is terminated after all checkpoint purge functions are completed. The checkpoint is written to the system log at 131415 (time) on 82103 (Julian date). The checkpoint number is 82103/131415.

**Example 6 for /CHECKPOINT command**

Entry ET:

```
/CHECKPOINT STATISTICS
```

Response ET:

```
/DFS058I (timestamp) CHECKPOINT COMMAND IN PROGRESS
/DFS994I **STATISTICS CHECKPOINT COMMAND COMPLETED**
```

Explanation: IMS performance statistics records are written to the system log. No other information is saved. This checkpoint cannot be used for a system restart.
Chapter 14. /CLSDST command

The /CLSDST command causes IMS to disconnect an ISC TCP/IP or a VTAM terminal.

Subsections:
- “Environment”
- “Syntax”
- “Keywords”
- “Usage notes” on page 161
- “Example” on page 161

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

Table 109. Valid environments for the /CLSDST command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/CLSDST</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>FORCE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NODE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>USER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

Notes:
1. ISC TCP/IP nodes do not support the FORCE keyword.

Keywords

The following keywords are valid for the /CLSDST command:

FORCE

Allows IMS to reinitialize a hung node with I/O in progress. FORCE reinitializes one session and is valid only on an active IMS system. To activate FORCE on VTAM nodes, use the command /CLSDST NODE P1 FORCE.
For ISC VTAM nodes with parallel sessions, the USER keyword must be specified and only one USER parameter is allowed.

ISC TCP/IP nodes do not support the FORCE keyword.

FORCE operates under the following conditions:

- A display from VTAM indicates that no session exists. If a session does exist, or is in process, you must issue the VTAM command VARY NET,INACT,FORCE to terminate the session, and the command must successfully complete. This command terminates all parallel sessions.

**Attention:** If VARY NET,INACT,FORCE is not issued or does not successfully complete before you issue the FORCE command, and the terminal is in the process of creation or termination, the results might be unpredictable.

- The session is connected to IMS and output is in progress. A /DISPLAY on the node indicates that a CID exists, that the node is connected (a status of CON is displayed), and that the node is not idle (a status of IDLE is not displayed).

**NODE**

Specifies the node to be disconnected by IMS. The specified node must be connected before a command is issued to disconnect it, as indicated by CON on the /DISPLAY NODE command referring to that terminal.

If the USER keyword is omitted for ISC nodes, all half-sessions of a session type 6 node are terminated. If the USER keyword is omitted, generic parameters are allowed for the NODE keyword.

The timing of the disconnection depends on the type of terminal:

- For keyboards or printers, console components and interactive terminals, the disconnection occurs at the next message boundary.

- For component types that group messages (such as a SLU 1 statement reader, printer, or disk), the disconnection occurs at the end of any group where processing is in progress.

- For 3270 displays, the disconnection occurs at the completion of the current (if any) I/O operation.

**USER**

Must be specified with the NODE keyword. NODE USER specifies the ISC user allocated to the ISC node or the dynamic user signed on to the dynamic node. When a /CLSDST NODE nodename USER username command is issued, it only affects the NODE if the USER is still associated with the node.

For non-ISC dynamic nodes, this command is valid only if the user is still signed on to the node. For ISC nodes, the half-sessions of the ISC node allocated to the specific users are terminated and the users are not deallocated from the session. On restart, the /OPNDST command must specify the same users and ID pairs.

**Restrictions for using NODE and USER parameters together:**

- Commands with the NODE USER keyword pair are valid only if:
  - The USER is signed on to the NODE
  - In an ISC environment, the USER is allocated to the NODE
  - The nodes and users already exist

- /CLSDST NODE USER commands are valid for ISC and non-ISC nodes and users.
Usage notes

/CLSDST resets preset mode, test mode, lock node, lock LTERM, pstop LTERM, and purge LTERM, because these statuses are not significant and therefore are not kept after a logon or restart.

This command can be issued to an IMSplex using the Batch SPOC utility.

The /CLSDST command will also do some other cleanup depending on the recovery settings for the node. Below are the actions taken:

RCVYSTSN=NO
/CLSDST acts like a /CHANGE NODE COLDSESS command for FINANCE and SLUP nodes by setting the session status to “cold”.
/CLSDST will act like a /QUIESCE NODE command for ISC (LU6.1) nodes by initiating the shutdown and deallocating the user for the specified node. This action changes the session status to cold. With these actions taken by the /CLSDST command, the next session initiation request for this node will be allowed to again attempt a session cold start. For ETO nodes, the control block structure could be deleted, if no significant status exists.

RCVYCONV=NO
/CLSDST causes any IMS conversations (active and held) to be terminated. Any conversational message that is queued or being processed will have its output response message delivered asynchronously.

RCVYFP=NO
/CLSDST causes Fast Path status and messages to be discarded.

RCVYRESP=NO
/CLSDST resets full-function response mode.

If global resource information is not kept in Resource Manager (RM), /CLSDST logs a node off and resets status locally. If global resource information is kept in RM, /CLSDST resets status globally. If the node has no significant status, /CLSDST deletes the node in RM.

If ROUTE is specified, it should be specified with ROUTE(*). The command fails if not routed to the IMS where the node is active.

Example

Entry ET:
/CLSDST NODE WEST

Response ET:
DFS058I  CLSDST COMMAND COMPLETED

Explanation: The node, WEST, is disconnected from IMS.
Chapter 15. /COMPT command

The /COMPT command sets a particular terminal component to a ready or not-ready state.

Output messages queued for a particular component will not be sent unless the component is ready. Depending on terminal type and the availability of messages queued for other components, output operations for other components can continue.

Subsections:
- “Environment”
- “Syntax” on page 164
- “Keywords” on page 164
- “Usage notes” on page 165
- “Examples” on page 165

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

Table 110. Valid environments for the /COMPT command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/COMPT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CNS</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CRD</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NODE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NOTRDY</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PCH</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PDS</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PRT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>RDR</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>READY</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TDS</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>UDS</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>USER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>VID</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>WPM1</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>WPM2</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>WPM3</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Syntax

```plaintext
/COMPT [CNS | CRD | PCH | PDS | PRT | RDR | TDS | UDS | VID | WPM1 | WPM2 | WPM3 | NODE <nodename> | READY | NOTRDY]
```

Keywords

The following keywords are valid for the /COMPT command:

- **CNS**
- **CRD**
- **PCH**
- **PDS**
- **PRT**
- **RDR**
- **TDS**
- **UDS**
- **VID**
- **WPM1**
- **WPM2**
- **WPM3**
- **NODE <nodename>**
- **READY**
- **NOTRDY**

Specifies the component that you want to set to a ready or not-ready state.

The command format can take two forms. That is, a component can be referenced by using a keyword, such as VID, or by using a number, such as 2.

When a keyword is used, a search is made of the components (as defined in the TERMINAL macro during IMS system definition) for the component type defined that responds to the specified keyword.

When a match is found, that component is made ready/not ready as specified by the command. If a number other than 1 follows the keyword, the corresponding occurrence of that component type is made ready/not ready.

/COMPT supports up to four components. When a number from 1 through 4 is used instead of a keyword, the component affected is the one defined in that position during system definition, independent of component type.

**Restriction:** When the /COMPT command contains the keyword CRD, it cannot also contain any of the following keywords: WPM1, WPM2, or WPM3.

- **READY**
  Sets the specified terminal component to a ready state.

- **NOTRDY**
  Sets the specified terminal component to a not-ready state.

- **NODE <nodename>**
  Specifies the node name (as specified by the TERMINAL macro) of the terminal component that is to be set in ready or not-ready state.

- **USER <username>**
  Specifies the ISC subpool name of the *nodename*. The USER keyword is required if the node specified on the command is an ISC node.
Usage notes

The ready or not-ready state set by the /COMPT command can be altered by the following:
- Another /COMPT command
- A /START, /RSTART, or /RCOMPT command
- An I/O error on the terminal component

The /COMPT command can only refer to a VTAM-attached terminal component.

Restrictions for using NODE and USER parameters together:
- Commands with the NODE USER keyword pair are valid only if:
  - The USER is signed on to the NODE
  - In an ISC environment, the USER is allocated to the NODE
  - The nodes and users already exist
- /COMPT (1121314) NODE USER (READY/NOTRDY) commands are valid for ISC and non-ISC nodes and users.

Examples

The following are examples of the /COMPT command:

Example 1 for /COMPT command

Entry ET:
/COMPT 4 NODE ABC READY

Response ET:
DFS058I  COMPT COMMAND COMPLETED

Explanation: The fourth component defined in the TERMINAL macro on node ABC is made ready to IMS.

Example 2 for /COMPT command

Entry ET:
/COMPT VID 2 NODE ABC READY

Response ET:
DFS058I  COMPT COMMAND COMPLETED

Explanation: The second display component on node ABC is declared operable to IMS.

Related reference:
Chapter 9, "/ASSIGN command," on page 101
Chapter 16. /CQCHKPT command

The /CQCHKPT command initiates a CQS checkpoint for a specific coupling facility list structure or all the coupling facility list structures to which the IMS subsystem is connected.

Subsections:
- “Environment”
- “Syntax”
- “Keywords”
- “Usage notes” on page 168
- “Examples” on page 168

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/CQCHKPT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SHAREDQ</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>STRUCTURE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SYSTEM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
/CQCHKPT
/CQC SYSTEM STRUCTURE structurename
```

Keywords

The following keywords are valid for the /CQCHKPT command:

**SHAREDQ**

Specifies that the entire queue structure is to be checkpointed to the structure recovery data set. While the checkpoint is in progress for the structure, no CQS can access the structure.

During a structure checkpoint, every CQS connected to that structure also takes a system checkpoint.

**Recommendation:** When possible, issue this command when it will have the least performance impact to your online IMS subsystems.

**STRUCTURE**

Specifies a specific structure name (or all) for which a CQS checkpoint is to be taken. If an overflow structure exists for a structure, a checkpoint is taken for both the primary and overflow structure.
SYSTEM
Specifies that a system checkpoint is to be taken; the CQS internal tables are checkpointed and written to the CQS log. Only the CQS for which you enter the command takes a system checkpoint.

Usage notes
This command sends the DFS058 CQCHKPT COMMAND IN PROGRESS message to the inputting terminal, and sends an asynchronous response to the system console and master terminal when the CQS checkpoint is complete.

This command is valid only in a shared-queues environment.

This command can be issued to an IMSplex using the Batch SPOC utility.

Examples
The following are examples of the /CQCHKPT command:

Example 1 for /CQCHKPT command

Entry ET:
/CQCHKPT SYSTEM STRUCTURE IMSMSGQ01

Response ET:
DFS058I CQCHKPT COMMAND IN PROGRESS
CQS0030I SYSTEM CHECKPOINT COMPLETE, STRUCTURE IMSMSGQ01 , LOGTOKEN 0000000001687D3F CQS1CQS
DFS1972I CQCHKPT SYSTEM COMMAND COMPLETE FOR STRUCTURE=IMMSGQ01

Explanation: A CQS system checkpoint completes successfully.

Recommendation: Record the log token displayed in the CQS0030I message because you might need it for a CQS restart.

Example 2 for /CQCHKPT command

Entry ET:
/CQCHKPT SHAREDQ STRUCTURE IMSMSGQ01

Response ET:
DFS058I CQCHKPT COMMAND IN PROGRESS
CQS0220I CQS CQS1CQS STARTED STRUCTURE CHECKPOINT FOR STRUCTURE IMSMSGQ01 CQS1CQS
CQS0202I STRUCTURE IMSMSGQ01 QUIESCED FOR STRUCTURE CHECKPOINT CQS1CQS
CQS0201I STRUCTURE IMSMSGQ01 RESUMED AFTER STRUCTURE CHECKPOINT CQS1CQS
CQS0030I SYSTEM CHECKPOINT COMPLETE, STRUCTURE IMSMSGQ01 , LOGTOKEN 0000000001688652 CQS1CQS
CQS0221I CQS CQS1CQS COMPLETED STRUCTURE CHECKPOINT FOR STRUCTURE IMSMSGQ01 CQS1CQS
DFS1972I CQCHKPT SHAREDQ COMMAND COMPLETE FOR STRUCTURE=IMMSGQ01

Explanation: A CQS structure checkpoint for a specific structure completes successfully.
Chapter 17. /CQQUERY command

The /CQQUERY command displays information regarding a specific coupling facility list structure or all the coupling facility list structures holding IMS messages.

The /CQQUERY STATISTICS command displays the statistics and status information for the coupling facility list structures specified by the STRUCTURE keyword.

Subsections:
- “Environment”
- “Syntax”
- “Keywords”
- “Usage notes” on page 170
- “Examples” on page 170

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/CQQUERY</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>STATISTICS</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>STRUCTURE</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Syntax

```plaintext
/CQQUERY STATISTICS STRUCTURE structurename
```

Keywords

The following keywords are valid for the /CQQUERY command:

**STATISTICS**
- Specifies that statistics should be gathered and displayed.

**STRUCTURE**
- Specifies that one or more structure names follow.
  - Only primary, coupling facility list-structure names used by IMS for shared queues are valid.
Usage notes

This command is valid only in a shared-queues environment.

The following statistics information is displayed:
- Number of data elements that can be allocated in the structure
- Number of list entries that can be allocated in the structure
- Number of data elements in use in the structure
- Number of list entries in use in the structure
- Entry-to-element ratio

The entry-to-element ratio is the ratio of list entries to list elements in the structure when the structure was first allocated, or last altered (for structures defined with ALLOWAUTOALT(YES)). The ratio value is initially derived by CQS from the OBJAVGSZ parameter in the CQSSGxxx PROCLIB member. The ratio can be changed by z/OS dynamically as needed for ALLOWAUTOALT(YES) structures. The ratio might also change slightly when a structure is rebuilt, because CQS uses the saved values of the actual number of allocated entries and elements to derive the entry-to-element ratio for the connection to a rebuild structure.

In an IMSplex, /CQQUERY displays information regarding a specific shared queue coupling facility list structure or all the shared queue coupling facility list structures holding IMS messages. /CQQUERY does not display any information about resource structures.

When the /CQQ command is issued through OM, command processing is not serialized through the IMS CTL TCB.

This command can be issued to an IMSplex by using the Batch SPOC utility.

Examples

The following are examples of the /CQQUERY command:

Example 1 for /CQQUERY command

Entry ET:
/CQQUERY STATISTICS STRUCTURE ALL

Response ET:

<table>
<thead>
<tr>
<th>STRUCTURE NAME</th>
<th>LEALLOC</th>
<th>LEINUSE</th>
<th>ELMALLOC</th>
<th>ELMINUSE</th>
<th>LE/EL</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSMSGQ001</td>
<td>1789</td>
<td>11</td>
<td>1787</td>
<td>19</td>
<td>00001/00001</td>
</tr>
<tr>
<td>IMSMSGQ001FLW</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>IMSEMHQ001</td>
<td>377</td>
<td>3</td>
<td>375</td>
<td>3</td>
<td>00001/00001</td>
</tr>
<tr>
<td>IMSEMHO001FLW</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td><em>08282/211714</em></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Explanation: This command displays the structure statistics of the message queue and Fast Path EMH queue structures used by IMS. The list entries allocated (LEALLOC), the list entries in use (LEINUSE), the elements allocated (ELMALLOC) and the elements in use (ELMINUSE) show the usage of the structures. When CQS allocates a structure, it allocates a certain number of list entries and elements to manage data on the structure. A structure is full if all list entries are in use or if all elements are in use.
Example 2 for /CQQUERY command

Entry ET:
/CQ STATISTICS STRUCTURE IMSMSGQ01

Response ET:

<table>
<thead>
<tr>
<th>STRUCTURE NAME</th>
<th>LEALLOC</th>
<th>LEINUSE</th>
<th>ELMALLOC</th>
<th>ELMINUSE</th>
<th>LE/EL</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSMSG101</td>
<td>9132</td>
<td>9027</td>
<td>9130</td>
<td>9071</td>
<td>00001/00001</td>
</tr>
<tr>
<td>IMSMSGQ01OFLW</td>
<td>1915</td>
<td>1866</td>
<td>1912</td>
<td>1866</td>
<td>00001/00001</td>
</tr>
<tr>
<td><em>08282/211714</em></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Explanation: This command displays the structure statistics of the message queue structure used by IMS and its associated overflow queue.

Related concepts:
- [Using structure alter for CQS (System Administration)](1)

Related reference:
- [CQSSGxxx member of the IMS PROCLIB data set (System Definition)](1)
Chapter 18. /CQSET command

Use a /CQSET SHUTDOWN SHAREDQ ON|OFF command to tell CQS whether to take a structure checkpoint during normal shutdown.

You can specify a structure checkpoint for a specific coupling facility or for all coupling facility list structures used by IMS.

Subsections:
- “Environment”
- “Syntax”
- “Keywords”
- “Usage notes” on page 174
- “Example” on page 174

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

<table>
<thead>
<tr>
<th>Command / Keyword</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/CQSET</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SHAREDQ</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SHUTDOWN</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>STRUCTURE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
/CQSET SHUTDOWN SHAREDQ ON|OFF structure structurename
```

Keywords

The following keywords are valid for the /CQSET command:

**SHAREDQ**

Specifies that the entire queue structure is to be checkpointed to the structure recovery data set. While the checkpoint is in progress for the structure, no CQS can access the structure.

During a structure checkpoint, every CQS connected to that structure also takes a system checkpoint.

**SHUTDOWN**

Specifies that CQS should take a structure checkpoint during normal CQS shutdown.
 STRUCTURE
    Specifies a specific structure name (or all) for which a CQS checkpoint is to be taken. If an overflow structure exists for a structure, a checkpoint is taken for both the primary and overflow structure.

Usage notes

IMS initiates a normal CQS shutdown during a normal IMS shutdown.

This command is valid only in a shared-queues environment.

In an IMSplex, when the /CQS command is issued through OM command processing, it is not serialized through the IMS CTL TCB.

This command can be issued to an IMSplex using the Batch SPOC utility.

Example

Entry ET:
    /CQSET SHUTDOWN SHAREDQ ON STRUCTURE ALL

Response ET:
    DFS058I CQSET COMMAND COMPLETE

Explanation: CQS will take a structure checkpoint when it shuts down.
Chapter 19. CREATE commands

Use the IMS CREATE commands to create resources and resource descriptors.

These commands can be issued through TSO SPOC, IBM Management Console for IMS and DB2® for z/OS, the Manage Resources options in the IMS Applications menu, or other user-written programs that issue commands through OM API.

These commands can also be issued to an IMSplex by using the Batch SPOC utility.

Subsections:
- “CREATE DB command” on page 175
- “CREATE DBDESC command” on page 183
- “CREATE IMSCON commands” on page 189
- “CREATE OTMADESC command” on page 205
- “CREATE PGM command” on page 215
- “CREATE PGMDESC command” on page 226
- “CREATE RTC command” on page 235
- “CREATE RTCDESC command” on page 241
- “CREATE TRAN command” on page 247
- “CREATE TRANDESC command” on page 270

CREATE DB command

Use the CREATE DB command to create the database resource requirements for one or more physical databases managed by IMS.

Subsections:
- “Environment”
- “Syntax” on page 176
- “Keywords” on page 176
- “Usage notes” on page 178
- “Output fields” on page 179
- “Return, reason, and completion codes” on page 179
- “Examples” on page 181

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CREATE DB</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>LIKE</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SET</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Syntax

Default values shown in this syntax diagram reflect the default values that are defined in the IMS database descriptor, DFSDSDB1. If you define another descriptor as the default with a CREATE or UPDATE DBDESC command, the default values shown in this syntax diagram might not match the value defined in the current default descriptor.

Keywords

The following keywords are valid for the CREATE DB command:

LIKE

Specifies that the resource is created using an existing resource or descriptor as a model, instead of the default descriptor. The default descriptor is either the IMS descriptor DFSDSDB1, or the one that you define. The model type can either be a descriptor (DESC), or a resource (RSC). The new resource is created with all the same attributes as the model, except for the DEFAULT(Y) value. Attributes set explicitly by the CREATE command override the model attributes. Later changes to the model are not propagated to resources or descriptors that were created from it.

You can use QUERY commands to display the model name and model type used to create the resource. The model name and type returned from the QUERY command are provided for informational purposes only. The EXPORT command exports a resource definition, including the model name and model type, to the definition member. The IMPORT command imports a resource definition, including the model name and model type, from the definition member. An IMPORT command that creates a resource saves the model name and model type, but does not use the models attributes.

When you specify LIKE on a CREATE command, IMS sets the attributes of the newly created resource or descriptor to the models current attributes, except for the default attribute.

DESC(descriptor_name)

Specifies the name of the descriptor to use as a model to define this resource.
RSC(resource_name)
   Specifies the name of the resource to use as a model to define this resource.

NAME
   Specifies the 1-8 character name of the database (DBD name). Names must be alphanumeric (A through Z, 0 through 9, #, $, and @). All database names must begin with an alphabetic character (A through Z, #, $, and @) followed by 0–7 alphanumeric characters. Names cannot include a blank, comma, period, hyphen, or equal sign. Names cannot begin with DFS, except for DFSIVPxx and DFSSAMxx. Names cannot be BASICEDE, DBCDM, DBRC, ISCEDT, MSDB, SDB, or WTOR. A database resource and a database descriptor can have the same name.

SET
   Specifies the attributes of the database to be created. If the LIKE keyword is omitted, attributes not specified take the value defined in the default descriptor, which is either IMS descriptor DFSDSDB1 or user-defined. If the LIKE keyword is specified, attributes not specified take the value defined in the model.

ACCTYPE()
   Specifies the access intent for the named database, which is how the subsystem requesting access plans to use the database. Access type is used with the database sharing level declared to DBRC. Access types include the following options:

   BRWS
      The database is available for read-only processing on this IMS subsystem. The only programs that can use the database on this subsystem are those that have a PCB processing option of GO (PROCOPT=GO). Programs that access the data using the GO processing option might see uncommitted data since a sharing IMS subsystem could be updating the database. The database is opened for read-only processing.

   EXCL
      The database is to be used exclusively by this IMS subsystem. This exclusive access is guaranteed only when the database is registered to DBRC.

   READ
      The database is available for read-only processing in this IMS subsystem. Programs with update intent can be scheduled, but cannot update the database. Access type READ differs from access type BRWS in that the data is read with integrity (locking is performed) and all programs can access the data, not just those with a processing option of GO. The database is opened for read-only processing.

   UPD
      The database is available for update as well as read processing in the IMS subsystem. This is the default.

RESIDENT
   Specifies the resident option. The RESIDENT(N) option takes effect immediately. The RESIDENT(Y) option takes effect at the next restart, unless the database was created as RESIDENT(Y) after the checkpoint from which this IMS is performing emergency restart. A database defined as a
DEDB or an MSDB in ACBLIB always sets the RESIDENT(Y) attribute, regardless of the RESIDENT value specified.

N The DMB associated with the named database resource is not made resident in storage. The DMB is loaded at scheduling time.

Y The DMB associated with the named database resource is made resident in storage at the next IMS restart. At the next IMS restart, IMS loads the DMB and initializes it. A resident database is accessed from local storage, which eliminates I/O to the ACBLIB. In an online environment, the DMB control blocks are stored in the ACBLIB. If the DLI/SAS address space exists, DLI/SAS loads the DMB; otherwise, it is the IMS control region that loads it. This makes the DMB dependent on the existence of the corresponding database resource.

**Usage notes**

The database can be HSAM, HISAM, HDAM, HIDAM, DEDB, MSDB, or a HALDB master database. Two database resources must be defined for a HIDAM database; one for the INDEX DBD, and one for the HIDAM DBD. No database resource should be defined for a PHIDAM primary index. One database must be defined for each secondary index that refers to any database defined to the online system. The database cannot be a HALDB partition. HALDB partitions can be defined using the HALDB Partition Definition utility.

A BLDL is performed on the DMB associated with this database. The database is created even if the DMB is not defined in ACBLIB. In this case, the database cannot be used. The database status is NOTINIT when a /DISPLAY DB or QUERY DB is issued for the database. Online Change must be used to add the DMB to ACBLIB, before the database can be used.

After a CREATE DB command for a HALDB master database, the user must issue a QUERY DB command or a /DISPLAY DB command for the HALDB master to determine if the partitions were built. If the partitions were not built, the user must issue one of the following commands to initialize the partitions:

- A /START DB HALDB_Master OPEN command
- An UPDATE DB NAME(HALDB_Master) START(ACCESS) OPTION(OPEN) command

Fast Path DEDB or MSDB-related control blocks are loaded.

If the DMB is in the ACBLIB library, IMS loads the DMB and can determine what type of database it is. IMS takes different actions depending on whether it is a full function database, a DEDB, or an MSDB.

- For full function databases, the DMB is loaded into the DMB pool. Even if the database is created with RESIDENT(Y), DMB residency does not take effect until the next IMS restart.
- For DEDBs, the DMCB (DEDB version of a DMB), is chained into the DMCB chain (all DEDB DMCBs are resident). The parameters are then checked for CI size and to see whether the DMCB contains an area that already exists. If the CI size of any AREA is larger than the CI size specified for the DBBF buffers (fast path global buffer pool), then the CREATE command fails with completion code E3. If the DMCB contains an area definition that already exists in the FPAL (Fast Path Area List), the CREATE command fails with completion code E4.
- For MSDBs, a special procedure is required to make the MSDB available. The MSDB can then be used at the next IMS restart.
If the DMB is not in the ACBLIB library, then the DDIR control block is successfully created, but has an initial status of NOTINIT.

Resources exist in IMS until they are deleted using a DELETE command. Resources are recoverable across an IMS warm start or emergency restart. Resources are lost if IMS is cold started, unless cold start imports definitions that were exported while IMS was up.

The CREATE DB command is similar to local online change (using a /MODIFY command) or global online change (using an INITIATE OLC command) for database resources in the MODBLKS data set, except that databases are added dynamically.

**Restrictions:**
- The CREATE DB command can be issued only through the OM API.
- This command is not valid:
  - On the XRF alternate, RSR tracker, or FDBR region.
  - If online change for MODBLKS is enabled (DFSDFxxx or DFSCGxxx are defined with MODBLKS=OLC, or MODBLKS is not defined).

**Output fields**

The following table shows the CREATE DB output fields. The columns in the table are as follows:

**Short label**
Contains the short label generated in the XML output.

**Keyword**
Identifies keyword on the command that caused the field to be generated.

**Meaning**
Provides a brief description of the output field.

<table>
<thead>
<tr>
<th>Short label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>N/A</td>
<td>Completion code.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the non-zero completion code.</td>
</tr>
<tr>
<td>DB</td>
<td>DB</td>
<td>Database name.</td>
</tr>
<tr>
<td>MBR</td>
<td>N/A</td>
<td>IMSplex member that built the output line.</td>
</tr>
</tbody>
</table>

**Return, reason, and completion codes**

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.
Table 116. Return and reason codes for CREATE DB

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>Command completed successfully. The command output contains a line for each resource, accompanied by its completion code. See the completion code table for details.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002048'</td>
<td>Invalid SET attribute.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002117'</td>
<td>Invalid LIKE descriptor name.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002118'</td>
<td>Invalid LIKE resource name.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003000'</td>
<td>Command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code. See the completion code table for details.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>Command was not successful for any of the resources. The command output contains a line for each resource, accompanied by its completion code. See the completion code table for details.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000400C'</td>
<td>Command is not valid on the XRF alternate.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>Command is not valid on the RSR tracker.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004204'</td>
<td>Model is quiesced. Cannot quiesce the model.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004120'</td>
<td>Online change phase is in progress.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004300'</td>
<td>Command is not allowed because online change for MODBLKS is enabled (DFSDFxxx or DFSCGxxx defined with MODBLKS=OLC, or MODBLKS not defined).</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004301'</td>
<td>Command is not allowed because the database is defined RESIDENT(Y), the DMB indicates there is a logical relationship for the database, but the other database is not defined.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005004'</td>
<td>DFSOCMD response buffer could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005008'</td>
<td>DFSPOOL storage could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'0000500C'</td>
<td>AWE could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005010'</td>
<td>Unable to obtain latch.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005114'</td>
<td>Resource or descriptor that is specified as a model is in the process of being imported from the change list in the IMSRSC repository or was not imported successfully from the change list at the end of IMS restart. This resource or descriptor cannot be referenced as a model on a CREATE command until it is successfully imported from the repository.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. The following table includes an explanation of the completion codes.

Table 117. Completion codes for the CREATE DB command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>Command completed successfully for database.</td>
</tr>
<tr>
<td>11</td>
<td>RESOURCE ALREADY EXISTS</td>
<td>Database exists.</td>
</tr>
</tbody>
</table>
Table 117. Completion codes for the CREATE DB command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>ANOTHER CMD IN PROGRESS</td>
<td>Quiescing the default descriptor failed because it was being referenced by another command.</td>
</tr>
<tr>
<td>5F</td>
<td>INVALID CHARACTERS IN NAME</td>
<td>Name is invalid because it contains an invalid character.</td>
</tr>
<tr>
<td>60</td>
<td>GETMAIN STORAGE ERROR</td>
<td>A GETMAIN request for storage was unsuccessful.</td>
</tr>
<tr>
<td>61</td>
<td>DFSBCB STORAGE ERROR</td>
<td>Request to get BCB storage for DDIR control block failed.</td>
</tr>
<tr>
<td>65</td>
<td>DMB POOL STORAGE ERROR</td>
<td>During a CREATE command for a DB resource, there was no storage available in the DMB pool to load a resident DMB.</td>
</tr>
<tr>
<td>8A</td>
<td>WILDCARD PARAMETER NOT SUPPORTED</td>
<td>The CREATE command does not support wildcard parameters. You must explicitly specify the names of the resources you want to create.</td>
</tr>
<tr>
<td>90</td>
<td>INTERNAL ERROR</td>
<td>An IMS system service failure.</td>
</tr>
<tr>
<td>93</td>
<td>RESERVED NAME</td>
<td>Name is reserved. For example, name starts with DFS (except for DFSSAMxx or DFSIVPxx), or is an IMS reserved name such as BASICEDT or WTOR.</td>
</tr>
<tr>
<td>BC</td>
<td>MAX 32767 DB EXCEEDED</td>
<td>The CREATE DB command failed, because it attempted to create the 32768th database. A maximum of 32,767 databases are allowed.</td>
</tr>
<tr>
<td>DE</td>
<td>ACBLIB READ FAILURE</td>
<td>A read request for a member in ACBLIB failed.</td>
</tr>
<tr>
<td>FA</td>
<td>AREA SIZE GREATER THAN BUFF SIZE</td>
<td>A CREATE command for a DEDB failed because one of the areas in the DEDB has a buffer size greater than the system buffer size (BSIZ).</td>
</tr>
<tr>
<td>E4</td>
<td>DUPLICATE AREA already EXISTS</td>
<td>A CREATE command for a DEDB failed because one of the areas in the DEDB already exists.</td>
</tr>
</tbody>
</table>

Examples

The following are examples of the CREATE DB command:

Example 1 for CREATE DB command

TSO SPOC input:
CREATE DB NAME(DB000001, DB000002, DB000003) SET(ACCTYPE(UPD), RESIDENT(Y))

TSO SPOC output:
OM API input:

```
CMD(CREATE DB NAME(DB000001, DB000002, DB000003) SET(ACCTYPE(UPD), RESIDENT(Y)))
```

OM API output:

```
<imsout>
<ctl>
<omname>OM1OM</omname>
<xmlvsn>1.3.0</xmlvsn>
<stoseq>BF641C25FD108C5</stoseq>
<rqsttkn1>USRT011 10162204</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>IMS1</master>
<userid>USRT011</userid>
<verb>CRE</verb>
<kwd>DB</kwd>
<input>CREATE DB NAME(DB000001, DB000002, DB000003)
SET(ACCTYPE(UPD), RESIDENT(Y))</input>
</cmd>
</imsout>
```

TSO SPOC input:

```
QRY DB NAME(DB00*) SHOW(ACCTYPE, RESIDENT, DEFNTYPE, MODEL)
```

TSO SPOC output:

```
DBName MbrName CC TYPE LAcc Rsdn LRsdn ModelName ModelType DefnType
DB000001 IMS1 0 UPD Y N DFSDBDB1 DESC CREATE
DB000002 IMS1 0 UPD Y N DFSDBDB1 DESC CREATE
DB000003 IMS1 0 UPD Y N DFSDBDB1 DESC CREATE
```

Explanation: Several databases are created dynamically, with an access type of update (UPD) and an attribute of resident. Attributes not specified on the command are set to the attributes defined in the database default descriptor. The QRY DB command displays the database attributes specified on the SHOW keyword. The database TYPE is shown as blank for both databases, since there is no DMB in ACBLIB and IMS cannot tell what the database type is. The resident
attribute (Rsdnt) is shown as Y (yes), but the local resident attribute (Lrsdnt) is shown as N (no), since the resident attribute does not take effect until the next restart. The database default descriptor used to create the databases is shown as ModelName DFSDSDB1 and ModelType DESC for descriptor. The definition type Defntype is CREATE, since both of these databases were defined with a CREATE command.

Related concepts:

- How to interpret CSL request return and reason codes (System Programming APIs)

Related tasks:

- Adding MSDB databases dynamically to an online IMS system (Database Administration)

Related reference:

Chapter 2, “Command keywords and their synonyms,” on page 63

CREATE DBDESC command

Use the CREATE DBDESC command to create database descriptors, which serve as models for creating database resources or other database descriptors.

A descriptor is created with a value set for every attribute.

Subsections:

- “Environment”
- “Syntax”
- “Keywords” on page 184
- “Usage notes” on page 186
- “Output fields” on page 186
- “Return, reason, and completion codes” on page 187
- “Examples” on page 189

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

Table 118. Valid environments for the CREATE DBDESC command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CREATE DBDESC</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>LIKE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SET</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```sql
CREATE DBDESC NAME(name)
```
Default values shown in this syntax diagram reflect the default values that are defined in the IMS database descriptor, DFSDSDB1. If you define another descriptor as the default with a CREATE or UPDATE DBDESC command, the default values shown in this syntax diagram might not match the value defined in the current default descriptor.

**Keywords**

The following keywords are valid for the CREATE DBDESC command:

**LIKE**

Specifies that the descriptor is created using an existing descriptor as a model, instead of the default descriptor. The default descriptor is either the IMS descriptor DFSDSDB1, or user-defined. The model type can either be a descriptor (DESC), or a resource (RSC). The descriptor is created with all the same attributes as the model, except for the DEFAULT(Y) value. Attributes set explicitly by the CREATE command override the model attributes. DEFAULT(Y) must be specified explicitly to make a descriptor the default descriptor. Later changes to the model are not propagated to resources or descriptors that were created from it.

Use QUERY commands to display the model name and model type used to create the descriptor. The model name and type returned from the QUERY command are provided for informational purposes only. The EXPORT command exports a resource definition including the model name and model type to the definition member. The IMPORT command imports a resource definition including the model name and model type from the definition member. An IMPORT command that creates a resource saves the model name and model type, but does not use the model’s attributes.

When you specify LIKE on a CREATE command, IMS uses the model’s current attributes to set the attributes of the newly-created descriptor, except for the default attribute.

**DESC(descriptor_name)**

Specifies the name of the descriptor to use as a model to define this descriptor.
**RSC(resource_name)**

Specifies the name of the resource to use as a model to define this descriptor.

**NAME**

Specifies the 1-8 character name of the database descriptor. Names must be alphanumeric (A through Z, 0 through 9, #, $, and @). All database descriptor names must begin with an alphabetic character (A through Z, #, $, and @) followed by 0–7 alphanumeric characters. Names cannot include a blank, comma, period, hyphen, or equal sign. Names cannot begin with DFS, except for DFSIVPxx and DFSSAMxx. Names cannot be BASICEDT, DBCDM, DBRC, ISCEDT, MSDB, SDB, or WTO. A database resource and a database descriptor can have the same name.

**SET**

Specifies the attributes of the database to be created. If the LIKE keyword is omitted, attributes not specified take the value defined in the default descriptor, which is either IMS descriptor DFSDSDB1 or user-defined. If the LIKE keyword is specified, attributes not specified take the value defined in the model.

**ACCTYPE()**

Specifies the access intent for the named database, which is how the subsystem requesting access plans to use the database. Access type is used in conjunction with the database sharing level declared to DBRC.

**UPD**

The database is available for update as well as read processing in the IMS subsystem. This is the default.

**BRWS**

The database is available for read-only processing on this IMS subsystem. The only programs that can use the database on this subsystem are those that have a PCB processing option of GO (PROCOPT=GO). Programs that access the data using the GO processing option might see uncommitted data since a sharing IMS subsystem could be updating the database. The database is opened for read-only processing.

**EXCL**

The database is to be used exclusively by this IMS subsystem. This exclusive access is guaranteed only when the database is registered to DBRC.

**READ**

The database is available for read-only processing in this IMS subsystem. Programs with update intent can be scheduled, but cannot update the database. Access type READ differs from access type BRWS in that the data is read with integrity (locking is performed) and all programs can access the data, not just those with a processing option of GO. The database is opened for read-only processing.

**DEFAULT**

Specifies whether the descriptor is the default.

**N** The descriptor is not the default.

**Y** The descriptor is the default, which resets the existing default descriptor to DEFAULT(N). When a descriptor is created without the LIKE keyword, any attribute not specified on the CREATE command takes the value defined in the default descriptor. Only one descriptor
can be defined as the default for a resource type. IMS defines a default database descriptor called DFSDSDB1, where all attributes are defined with the default value. Defining a user-defined descriptor as the default overrides the IMS-defined descriptor. Since only one database descriptor can be the default at one time, only one database name may be specified with DEFAULT(Y).

**RESIDENT**

Specifies the resident option. The RESIDENT(N) option takes effect right away. The RESIDENT(Y) option takes effect at the next restart, unless the database was created as RESIDENT(Y) after the checkpoint from which this IMS is performing emergency restart. A database defined as a DEDB in ACBLIB always sets the RESIDENT(Y) attribute when the DEDB is loaded, regardless of the RESIDENT value specified. RESIDENT(N) is rejected for a DEDB.

N  The DMB associated with the named database resource is not made resident in storage. The DMB is loaded at scheduling time.

Y  The DMB associated with the named database resource is made resident in storage at the next IMS restart. At the next IMS restart, IMS loads the DMB and initializes it. A resident database is accessed from local storage, which eliminates I/O to the ACBLIB. In an online environment, the DMB control blocks are stored in the ACBLIB. If the DLI/SAS address space exists, DLI/SAS loads the DMB; otherwise, it is the IMS control region that loads it. This makes the DMB dependent on the existence of the corresponding database resource.

**Usage notes**

Attributes not explicitly specified on the CREATE command take the default value. Any database resource or descriptor can be created using this descriptor as a model, by specifying the CREATE command with LIKE(DESC(descriptor_name)).

Descriptors exist for the life of the IMS unless they are deleted using a DELETE command. The descriptors are recoverable across an IMS warm start or emergency restart. Descriptors are lost if IMS is cold started, unless cold start imports definitions that were exported while IMS was up.

The CREATE DBDESC command can only be issued through the Operations Manager API. This command applies to DB/DC and DBCTL systems. This command is not valid on the XRF alternate, RSR tracker, or FDBR region. The CREATE DBDESC command is not valid if online change for MODBLKS is enabled (DFSDFxxx or DFSCGxxx defined with MODBLKS=OLC or MODBLKS not defined).

**Output fields**

The following table shows the CREATE DBDESC output fields. The columns in the table are as follows:

**Short label**
Contains the short label generated in the XML output.

**Keyword**
Identifies keyword on the command that caused the field to be generated. N/A appears for output fields that are always returned. error appears for output fields that are returned only in case of an error.
Meaning

Provides a brief description of the output field.

Table 119. Output fields for the CREATE DBDESC command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>N/A</td>
<td>Completion code.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the non-zero completion code.</td>
</tr>
<tr>
<td>DESC</td>
<td>DBDESC</td>
<td>Database descriptor name.</td>
</tr>
<tr>
<td>MBR</td>
<td>N/A</td>
<td>IMSplex member that built the output line.</td>
</tr>
<tr>
<td>OLDDEF</td>
<td>DBDESC</td>
<td>Old default descriptor name, if this descriptor is made the default by specifying DEFAULT(Y). The old default descriptor is no longer the default.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 120. Return and reason codes for CREATE DBDESC

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>Command completed successfully. The command output contains a line for each descriptor, accompanied by its completion code. See the completion code table for details.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002048'</td>
<td>Invalid SET attribute.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002117'</td>
<td>Invalid LIKE descriptor name.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002118'</td>
<td>Invalid LIKE resource name.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002133'</td>
<td>Multiple name parameters specified with DEFAULT(Y) is invalid. Only one descriptor may be the default at one time.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003000'</td>
<td>Command was successful for some descriptors but failed for others. The command output contains a line for each descriptor, accompanied by its completion code. See the completion code table for details.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>Command was not successful for any of the descriptors. The command output contains a line for each descriptor, accompanied by its completion code. See the completion code table for details.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000400C'</td>
<td>Command is not valid on the XRF alternate.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>Command is not valid on the RSR tracker.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004120'</td>
<td>Online change phase is in progress.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004204'</td>
<td>Model is quiesced. Cannot quiesce model.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004300'</td>
<td>Command is not allowed because online change for MODBLKS is enabled (DFSDFxxx or DFSCGxxx defined with MODBLKS=OLC, or MODBLKS not defined).</td>
</tr>
</tbody>
</table>
**Table 120. Return and reason codes for CREATE DBDESC (continued)**

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000010'</td>
<td>X'00004301'</td>
<td>Command is not allowed because the database is defined RESIDENT(Y), the DMB indicates there is a logical relationship for the database, but the other database is not defined.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005004'</td>
<td>DFSOCMD response buffer could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005008'</td>
<td>DFSPOOL storage could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'0000500C'</td>
<td>AWE could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005010'</td>
<td>Unable to obtain latch.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005114'</td>
<td>Resource or descriptor that is specified as a model is in the process of being imported from the change list in the IMSRSC repository or was not imported successfully from the change list at the end of IMS restart. This resource or descriptor cannot be referenced as a model on a CREATE command until it is successfully imported from the repository.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. The following table includes an explanation of the completion codes.

**Table 121. Completion codes for the CREATE DBDESC command**

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>Command completed successfully for database descriptor.</td>
</tr>
<tr>
<td>11</td>
<td>RESOURCE ALREADY EXISTS</td>
<td>Database descriptor already exists.</td>
</tr>
<tr>
<td>17</td>
<td>ANOTHER CMD IN PROGRESS</td>
<td>Quiescing the default descriptor failed because it was being referenced by another command.</td>
</tr>
<tr>
<td>5F</td>
<td>INVALID CHARACTERS IN NAME</td>
<td>Name is invalid because it contains an invalid character.</td>
</tr>
<tr>
<td>60</td>
<td>GETMAIN STORAGE ERROR</td>
<td>A GETMAIN request for storage was unsuccessful.</td>
</tr>
<tr>
<td>61</td>
<td>DFSBCB STORAGE ERROR</td>
<td>Request to get BCB storage for DDIR control block failed.</td>
</tr>
<tr>
<td>8A</td>
<td>WILDCARD PARAMETER NOT SUPPORTED</td>
<td>You must explicitly specify the names of the descriptors you want to create. The CREATE command does not support wildcard parameters.</td>
</tr>
<tr>
<td>90</td>
<td>INTERNAL ERROR</td>
<td>An IMS system service failure.</td>
</tr>
<tr>
<td>93</td>
<td>RESERVED NAME</td>
<td>Name is reserved. For example, name starts with DFS (except for DFSSAMxx or DFSIVPxx), or is an IMS reserved name such as BASICEDE or WTOR.</td>
</tr>
</tbody>
</table>
Examples

The following are examples of the CREATE DBDESC command:

Example 1 for CREATE DBDESC command

In this example, the database descriptors listed in the command with the NAME keyword are created with update access. Attributes not specified on the command are assigned the system defaults.

TSO SPOC input:
CREATE DBDESC NAME(DBHDAM1, DBHDAM2, DBHDAM3, DBHDAM4) SET(ACCTYPE(UPD))

TSO SPOC output:

<table>
<thead>
<tr>
<th>DBName</th>
<th>MbrName</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBHDAM1</td>
<td>IMS1</td>
<td>0</td>
</tr>
<tr>
<td>DBHDAM2</td>
<td>IMS1</td>
<td>0</td>
</tr>
<tr>
<td>DBHDAM3</td>
<td>IMS1</td>
<td>0</td>
</tr>
<tr>
<td>DBHDAM4</td>
<td>IMS1</td>
<td>0</td>
</tr>
</tbody>
</table>

Related concepts:

- How to interpret CSL request return and reason codes (System Programming APIs)

Related reference:

- Chapter 2, “Command keywords and their synonyms,” on page 63

---

**CREATE IMSCON commands**

Use the CREATE IMSCON commands to add IMS Connect port or data store definitions during runtime processing without having to restart your IMS Connect instance.

The TYPE keyword specifies the type of IMS Connect resource to create.

The CREATE IMSCON command is processed by every IMS Connect to which OM routes the command, whether or not OM has designated a particular IMS Connect as the command master.

Subsections:

- “CREATE IMSCON TYPE(PORT) command” on page 197

Related reference:

- IMS Connect type-2 commands (Commands)
- HWSCFGxx member of the IMS PROCLIB data set (System Definition)

**CREATE IMSCON TYPE(DATASTORE) command**

Use the CREATE IMSCON TYPE(DATASTORE) command to add IMS Connect data store definitions during runtime processing without having to restart your IMS Connect instance.

The CREATE IMSCON TYPE(DATASTORE) command is used to add a communications path to an IMS data store from IMS Connect.
You can also create data store definitions by specifying the DATASTORE statement in the HWSCFGXXX member of the IMS PROCLIB data set.

Subsections:
- “Environment”
- “Syntax”
- “Keywords”
- “Usage notes” on page 193
- “Equivalent WTOR and z/OS commands” on page 193
- “Output fields” on page 193
- “Return, reason, and completion codes” on page 194
- “Return, reason, and completion codes handled by OM” on page 195
- “Examples” on page 195

Environment

The CREATE IMSCON command is applicable only to IMS Connect. To issue this command, the following conditions must be satisfied:
- IMS Connect must be active and configured to communicate with the Common Service Layer (CSL) Structured Call Interface (SCI).
- A type-2 command environment with Structured Call Interface (SCI) and Operations Manager (OM) must be active.

Syntax

```plaintext
CREATE IMSCON TYPE(DATASTORE) NAME(name) LIKE(rsc_name)

SET (A)

A:
- ACKTO(120 timeout_value)
- APPL(appl_name)
- CMQCTO(que_name)
- DRU(exit_name)
- GROUP(xcf_group_name)
- MAXI(5000)
- MEMBER(xcf_member_name)
- OAAV(999999)
- RRNAME(reroute_name)
- SMEMBER(super_member_name)
- TMEMBER(ims_xcf_member_name)
```

Keywords

The following keywords are valid for the CREATE IMSCON TYPE(DATASTORE) command:
LIKE
Specifies the existing IMS Connect data store to use as a model. The new
resource is created with all of the same attribute values as the specified model
data store.
Attributes that are set explicitly by the CREATE IMSCON TYPE(DA-
TASTORE) command override the attribute values that are generated from the model.
Later changes to the model are not propagated to resources that were created
from it.

NAME
Specifies the 1- to 8-character name of the IMS data store. The name can
consist of alphanumeric characters and must be unique within IMS Connect.
This keyword is equivalent to the ID parameter of the DATASTORE statement
in the HWSCFGxx member of the IMS PROCLIB data set.
This parameter is required.

SET
Specifies the attributes of the IMS data store to be created.
If the LIKE keyword is omitted, the required attributes must be specified. If an
optional attribute is not specified, IMS Connect uses its default value.
If the LIKE keyword is specified, the attribute values that are specified with
the SET keyword override the values that are generated from the model.

ACKTO
Specifies the timeout interval for acknowledgements to OTMA for CM0
and CM1 output messages and for IMS-to-IMS transaction messages. The
timeout value can be 0 - 255 seconds.
This parameter is optional and defaults to 120. If the timeout value is 0 or
is not specified, the OTMA ACK timeout default value of 120 seconds is
set.
For IMS-to-IMS transaction messages, if an acknowledgement is not
received by OTMA before the timeout interval expires, OTMA reroutes the
transaction message to the timeout queue, DFS$$TOQ.

APPL
Specifies the 1- to 8-character alphanumeric TCP/IP APPL name defined to
RACF in the PTKTDATA statement.
This parameter is optional and defaults to blanks. If you are using
PassTicket and user message exits, you must specify the APPL parameter.

CMOATOQ
Specifies the 1- to 8-character alphanumeric name for the OTMA CM0 ACK
timeout queue.
The value that is specified here overrides both the OTMA default value of
DFS$$TOQ and the value that is set in the HWS statement of the
HWSCFGxx member of the IMS PROCLIB data set.
This parameter is optional and defaults to blanks.

DRU
Specifies the 1- to 8-character alphanumeric name for the OTMA
destination resolution user (DRU) exit that is passed to OTMA. The DRU
exit is required to support asynchronous output to IMS Connect clients.
This parameter is optional and defaults to DFSYDRU0.
GROUP
Specifies the 1- to 8-character alphanumeric name of the z/OS cross-system 
coupling facility (XCF) group for the IMS OTMA. IMS Connect uses this 
value to join the XCF group.

Because IMS Connect and IMS must be in the same XCF group to 
communicate, this group name must match the XCF group name that you 
define to IMS (GRNAME) in the IMS startup JCL (for example, 
"OTMA=Y,GRNAME=&GROUP,USERVAR=&MEMBER",...).

This parameter is required if the LIKE keyword is not specified.

MAXI
Specifies the OTMA input message flood control value. The valid range is 
0 - 9999.

If you specify a value of 0, the OTMA default value of 5000 is used.

If you specify a value 1 - 200, the OTMA minimum value of 200 is used.

This parameter is optional and defaults to 5000.

MEMBER
Specifies the 1- to 8-character alphanumeric XCF member name that 
identifies IMS Connect in the XCF group that is specified by the GROUP 
parameter.

This name is the XCF name that IMS uses to communicate with IMS 
Connect in that XCF group. This XCF member name for IMS Connect must 
be unique in the data store definitions for all data stores that are members 
of the same XCF group.

This parameter is required.

OAAV
Specifies the decimal integer that defines the OTMA accessor environment 
element (ACEE) aging value, in seconds, for this IMS data store.

When the OTMA ACEE aging value is reached, OTMA refreshes the ACEE 
before it processes the next input message that is received from IMS 
Connect.

Valid values are 0 - 999999. If you specify 0, OTMA uses the default value 
of 999999. If you specify a value 1 - 300, OTMA uses a value of 300 
seconds.

This parameter is optional and defaults to 999999.

RRNAME
Specifies the 1- to 8-character alphanumeric name of the alternative 
destination of a client reroute request. The name can consist of 
alphanumeric characters (A – Z, 0 – 9) and special characters (@, #, $). IMS 
Connect translates lowercase characters to uppercase characters.

This parameter is optional and defaults to HWSS$DEF.

SMEMBER
Specifies the 1-4 character name of the OTMA super member to which this 
IMS data store belongs.

If specified, this value overrides the attribute values for the SMEMBER 
parameter in the HWS statement of the HWSCFGxx member of the IMS 
PROCLIB data set.
To disable the value of SMEMBER specified on this IMS data store, specify the parameter with no value, for example, SMEMBER().

This parameter is optional and defaults to blanks.

**TMEMBER**

Specifies the 1- to 8-character alphanumeric XCF member name of the IMS that this IMS Connect communicates with in the XCF group.

This target member name must match the member name that IMS uses when it joins the XCF group. The XCF member name for IMS is specified in the IMS startup JCL (for example, ". . . , OUTMA=Y, GRNAME=&GROUP , OTMANM= &TMEMBER , . . .").

This parameter is required if the LIKE keyword parameter is not specified.

**Usage notes**

You can issue the CREATE IMSCON TYPE(DASTORE) command only through the Operations Manager (OM) API.

IMS Connect can process IMS Connect type-2 commands only if the IMSpelix from which the commands were issued has a status of ACTIVE.

When a keyword is specified without any value, that keyword is ignored. IMS Connect processes the command as if the keyword were not specified.

At the completion of the CREATE IMSCON TYPE(DASTORE) command, IMS Connect starts the IMS data store and sets the IMS data store status to CONNECT if it is successful and DISCONNECT if it is not successful.

IMS Connect resources that are created by use of this command are not saved across restarts of IMS Connect, unless a corresponding configuration statement is also added to the HWSFCFGxx member of the IMS PROCLIB data set before the next restart.

**Equivalent WTO and z/OS commands**

Equivalent WTO and z/OS commands that perform similar functions as the CREATE IMSCON TYPE(DASTORE) command are not available.

**Output fields**

The following table shows the CREATE IMSCON TYPE(DASTORE) output fields. The following is a list of the columns that are available in the table:

Short label	Contains the short label that is generated in the XML output.
Long label	Contains the column heading for the output field in the formatted output.
Keyword	Identifies the keyword on the command that caused the field to be generated. N/A is displayed for output fields that are always returned. For output fields that are returned only in case of an error, error is displayed.
Meaning	Provides a brief description of the output field.
Table 122. Output fields for the CREATE IMSCON TYPE(DATASTORE) command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code that indicates whether IMS Connect was able to process the command for the specified resource. The completion code is always returned.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>N/A</td>
<td>Completion code text that briefly explains the meaning of the nonzero completion code. This field is returned only for an error completion code.</td>
</tr>
<tr>
<td>DS</td>
<td>DataStore</td>
<td>N/A</td>
<td>The data store name. The data store name is always returned.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>Identifier of the IMS Connect that built the output line. The identifier is always returned.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

An IMS Connect return and reason code is returned to OM by the CREATE IMSCON TYPE(DATASTORE) command. The OM return and reason codes that might be returned as a result of the CREATE IMSCON TYPE(DATASTORE) command are standard for all commands that are entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 123. Return and reason codes for the CREATE IMSCON TYPE(DATASTORE) command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The command completed successfully. The command output contains a line for each resource, which is accompanied by its completion code. See the completion codes table for details.</td>
</tr>
<tr>
<td>X'0C000008'</td>
<td>X'00002010'</td>
<td>Wildcards (*) and (%) are not supported.</td>
</tr>
<tr>
<td>X'0C000008'</td>
<td>X'00002018'</td>
<td>The required NAME parameter is not specified.</td>
</tr>
<tr>
<td>X'0C000008'</td>
<td>X'00002024'</td>
<td>The LIKE keyword parameter value is invalid. The resource cannot be found.</td>
</tr>
<tr>
<td>X'0C000008'</td>
<td>X'0000202C'</td>
<td>The resource already exists.</td>
</tr>
<tr>
<td>X'0C000008'</td>
<td>X'0000204C'</td>
<td>The required GROUP parameter is not specified.</td>
</tr>
<tr>
<td>X'0C000008'</td>
<td>X'00002050'</td>
<td>The required MEMBER parameter is not specified.</td>
</tr>
<tr>
<td>X'0C000008'</td>
<td>X'00002054'</td>
<td>The required T MEMBER parameter is not specified.</td>
</tr>
<tr>
<td>X'0C000008'</td>
<td>X'0000207C'</td>
<td>The MEMBER parameter value is a duplicate of an existing DATASTORE MEMBER value.</td>
</tr>
<tr>
<td>X'0C000008'</td>
<td>X'00002133'</td>
<td>Multiple NAME parameter values are not allowed.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003000'</td>
<td>The command was successful for some resources but failed for others. The command output contains a line for each resource, which is accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003004'</td>
<td>The command was not successful for any resource. The command output contains a line for each resource, which is accompanied by its completion code.</td>
</tr>
</tbody>
</table>
The following table includes an explanation of the completion codes. Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The CREATE IMCON TYPE(DATASTORE) command completed successfully.</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>The resource already exists.</td>
<td>The data store already exists.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes handled by OM

IMS Connect registers its type-2 command set with OM. When OM detects a command parsing error, OM returns a return code and reason code to the requester, and the command is not routed to IMS Connect.

Clients such as the TSO SPOC send commands to OM by using the CSLOMC cmd API. CSLOMC cmd return and reason codes are listed in the description of the CSLOMC cmd request.

Examples

The following are examples of the CREATE IMCON TYPE(DATASTORE) command:

**Example 1 for CREATE IMCON TYPE(DATASTORE) command**

TSO SPOC input:

```
CREATE IMCON TYPE(DATASTORE) NAME(IMS2)
SET(GROUP(XCFGRP1),MEMBER(ICON1),TMMEMBER(IMS2))
```

TSO SPOC output:

```
DataStore MbrName CC
IMS2 HWS1 0
```

OM API input:

```
CMD(CRE IMCON TYPE(DATASTORE) NAME(IMS2)
SET(GROUP(XCFGRP1),MEMBER(ICON1),TMMEMBER(IMS2)))
```

OM API output:

```
<?xml version="1.0"?>
<!DOCTYPE imsout SYSTEM "imsout.dtd">
<imsout>
<ctl>
<omname>OM1OM </omname>
<omvsn>1.6.0</omvsn>
<xmlvsn>20 </xmlvsn>
<statime>2012.314 00:31:32.035293</statime>
<stotime>2012.314 00:31:32.035883</stotime>
<staseq>CA7155B83AAD0297</staseq>
<stoseq>CA7155B83AD2B797</stoseq>
<rqtgtknl>USRRT011 10163132</rqttknl>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
```
CREATE IMSCON TYPE(DATASTORE) NAME(IMS2) SET(GROUP(XCFGRP1),MEMBER(ICON1), TMEMBER(IMS2))

Explanation: Data store IMS2 is created with the specified attributes.

Example 2 for CREATE IMSCON TYPE(DATASTORE) command

TSO SPOC input:
CREATE IMSCON TYPE(DATASTORE) NAME(IMS2) LIKE(IMS1) SET(GROUP(XCFGRP1),MEMBER(ICON1B),TMEMBER(IMS2),ACKTO(60), SMEMBER(SM02))

TSO SPOC output:
DataStore MbrName CC
IMS2 HWS1 0

OM API input:
CMD(CRE IMSCON TYPE(DATASTORE) NAME(IMS2) LIKE(IMS1) SET(GROUP(XCFGRP1),MEMBER(ICON1B),TMEMBER(IMS2),ACKTO(60), SMEMBER(SM02)))

OM API output:
<?xml version="1.0"?>
<!DOCTYPE imsout SYSTEM "imsout.dtd">
<imsout>
<ctl>
<omname>OM10M</omname>
<omvsn>1.6.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2012.314 00:55:31.481740</statime>
<stotime>2012.314 00:55:31.482361</stotime>
<staseq>CA715B14FE08C990</staseq>
<stoseq>CA715B14FE2F921D</stoseq>
<rqsttkn1>USRT011 10165531</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>HWS1</master>
<userid>USRT011</userid>
<verb>CRE</verb>
<kwd>IMSCON</kwd>
<input>CREATE IMSCON TYPE(DATASTORE) NAME(IMS2) LIKE(IMS1) SET(GROUP(XCFGRP1),
MEMBER(ICON1B), TMEMBER(IMS2), ACKTO(60),
SMEMBER(SM02))</input>
</cmd>
</cmdrsphdr>
<hdr slbl="DS" llbl="DataStore" scope="LCL" sort="a" key="1" scroll="no" len="8"
dtype="CHAR" align="left" skipb="no" />
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" key="2" scroll="no" len="8"
dtype="CHAR" align="left" skipb="no" />
<hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0" scroll="yes" len="4"
dtype="INT" align="right" skipb="no" />
<hdr slbl="CCTXT" llbl="CCText" scope="LCL" sort="n" key="0" scroll="yes" len="32"
dtype="CHAR" align="left" skipb="yes" />
</cmdrsphdr>
</cmdrspdata>
<rsp>DS(IMS2) MBR(HWS1) CC(0) </rsp>
</cmdrspdata>
</imsout>

Explanation: Data store IMS2 is created with the same attribute values as data store IMS1. However, the GROUP, MEMBER, TMEMBER, ACKTO, and SMEMBER attributes are also specified, and their values override the values from the IMS1 data store model.

Related reference:
- CSLOMCMD: command request (System Programming APIs)
- IMSPLEX statement (System Definition)
- DATASTORE statement (System Definition)

CREATE IMSCON TYPE(PORT) command

Use the CREATE IMSCON TYPE(PORT) command to add IMS Connect port definitions during runtime processing without having to restart your IMS Connect instance.

The CREATE IMSCON TYPE(PORT) command is used to add a listening port.

Specifying PORTTYPE(REG) creates a regular listening port.

Specifying PORTTYPE(DRDA®) creates a DRDA listening port.

Table 125. Type-2 CREATE IMSCON TYPE(PORT) command and HWSCFGxx member configuration equivalents

<table>
<thead>
<tr>
<th>Type-2 command</th>
<th>Configuration for the HWSCFGxx member of the IMS PROCLIB data set</th>
</tr>
</thead>
<tbody>
<tr>
<td>CREATE IMSCON TYPE(PORT)</td>
<td>PORT= substatement of the TCPIP statement</td>
</tr>
<tr>
<td>PORTTYPE(REG)</td>
<td></td>
</tr>
<tr>
<td>CREATE IMSCON TYPE(PORT)</td>
<td>DRDAPORT= substatement of the ODACCESS statement</td>
</tr>
<tr>
<td>PORTTYPE(DRDA)</td>
<td></td>
</tr>
</tbody>
</table>

Subsections:
- “Environment” on page 198
- “Syntax” on page 198
- “Keywords” on page 198
- “Usage notes” on page 200
- “Equivalent WTO and z/OS commands” on page 200
Environment

The CREATE IMSCON command is applicable only to IMS Connect. To issue this command, the following conditions must be satisfied:

- IMS Connect must be active and configured to communicate with the Common Service Layer (CSL) Structured Call Interface (SCI).
- A type-2 command environment with Structured Call Interface (SCI) and Operations Manager (OM) must be active.

Syntax

```
CREATE IMSCON TYPE(PORT) A
```

A:

```
NAME(name), LIKE(rsc_name), SET(
 EDITRTN(exit_name),
 KEEPAV(value),
 PORTTMOT(value),
 REG PORTTYPE(DRDA)
)
```

Keywords

The following keywords are valid for the CREATE IMSCON TYPE(PORT) command:

**LIKE**

Specifies the existing IMS Connect port resource to use as a model. The new resource is created with all of the same attribute values as the specified model port resource.

Attributes that are set explicitly by the CREATE IMSCON TYPE(PORT) command override the attribute values that are generated from the model. Later changes to the model are not propagated to resources that were created from it.

**NAME**

Specifies the 1- to 5-character decimal field of the port number. Valid values are decimal numbers 1 - 65535.

Port numbers must be unique for a specific instance of IMS Connect and must not conflict with other ports selected in the TCP/IP domain.

This parameter is required.
SET
Specifies the attributes of the port to be created.

If the LIKE keyword is omitted, the required attributes must be specified. If an optional attribute is not specified, IMS Connect uses its default value.

If the LIKE keyword is specified, the attribute values that are specified with the SET keyword override the values that are generated from the model.

EDITRTN
Specifies the 1- to 8-character name of the IMS Connect Port Message Edit exit routine.

This parameter is equivalent to the EDIT parameter of the PORT substatement of the TCPIP statement of the HWSCFGxx member of the IMS PROCLIB data set.

The exit routine can modify messages that do not conform to the standard message formats for IMS Connect. The exit routine must be accessible to IMS Connect by JOBLIB, STEPLIB, or LinkList.

This parameter is valid only when the (PORTTYPE(REG)) keyword is specified.

This parameter is optional.

KEEPAV
Specifies the number of seconds for the z/OS TCP/IP KeepAlive interval for sockets on this port. TCP/IP accepts a range 1 - 2147460 seconds.

Use the TCP/IP KeepAlive function to detect error situations for inactive sockets. Specify the KEEPAV parameter to override the default TCP/IP KeepAlive interval value.

This parameter is optional and defaults to 0. If you specify 0, the KeepAlive interval value is bypassed, and the setting for the TCP/IP stack is used.

PORTTMOT
Specifies the numeric value of the DRDA port timeout value.

This value is the amount of time that IMS Connect waits for the next input message from a client application that is connected on a DRDA port before IMS Connect disconnects the client.

The timeout interval is specified as a decimal integer in hundredths of a second. Valid values are 0 - 2,147,483,647 (X'7FFFFFFF').

Specifying a value of 0 disables the timeout function.

This parameter is optional and defaults to 6000 (1 minute).

This parameter is valid only when the PORTTYPE(DRDA) keyword is specified.

PORTTYPE
Specifies the type of port.

This keyword is optional and defaults to PORTTYPE(REG).

DRDA
Indicates that this port is being created for listening to DRDA messages.
Specifying this parameter is equivalent to creating a port by defining the DRDAPORT substatement in the ODACCESS statement of the HWSCFGxx member of the IMS PROCLIB data set.

**REG**

Indicates that this port is being created for listening to regular IMS Connect client messages.

Specifying this parameter is equivalent to creating a port by defining the PORT substatement in the TCPIP statement of the HWSCFGxx member of the IMS PROCLIB data set.

**Usage notes**

You can issue the CREATE IMSCON TYPE(PORT) command only through the Operations Manager (OM) API.

IMS Connect can process IMS Connect type-2 commands only if the IMSplex from which the commands were issued has a status of **ACTIVE**.

When a keyword is specified without any value, that keyword is ignored. IMS Connect processes the command as if the keyword were not specified. The following command examples are valid:

- **CREATE IMSCON TYPE(PORT) NAME(1111) SET()**
  
  None of the **SET** attribute keywords are required, so the command is processed as if it were **CREATE IMSCON TYPE(PORT) NAME(1111)**.

- **CREATE IMSCON TYPE(PORT) NAME(2222) SET(KEEPAV())**

  The command is processed as if it were **CREATE IMSCON TYPE(PORT) NAME(2222)**.

- **CREATE IMSCON TYPE(PORT) NAME(3333) LIKE()**

  The command is processed as if it were **CREATE IMSCON TYPE(PORT) NAME(3333)**.

At the completion of the CREATE IMSCON TYPE(PORT) command, IMS Connect starts the port and sets the port status to **ACTIVE** if it is successful and **NOT ACTIVE** if it is not successful.

If TCP/IP is up, at the successful completion of the CREATE IMSCON TYPE(PORT) command, IMS Connect issues a HWSS0790I message to the system console. If TCP/IP is down, at the successful completion of the CREATE IMSCON TYPE(PORT) command, IMS Connect issues a HWSS0771W message to the system console.

IMS Connect resources that are created by use of this command are not saved across restarts of IMS Connect, unless a corresponding configuration statement is also added to the HWSCFGxx member of the IMS PROCLIB data set before the next restart.

**Equivalent WTOR and z/OS commands**

Equivalent WTOR and z/OS commands that perform similar functions as the CREATE IMSCON TYPE(PORT) command are not available.

**Output fields**

The following table shows the CREATE IMSCON TYPE(PORT) output fields. The following is a list of the columns that are available in the table:
Short label  
Contains the short label that is generated in the XML output.

Long label  
Contains the column heading for the output field in the formatted output.

Keyword  
Identifies the keyword on the command that caused the field to be generated. N/A is displayed for output fields that are always returned. For output fields that are returned only in case of an error, error is displayed.

Meaning  
Provides a brief description of the output field.

<p>| Table 126. Output fields for the CREA*TE IMSCON TYPE(PORT) command |</p>
<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code that indicates whether IMS Connect was able to process the command for the specified resource. The completion code is always returned.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>N/A</td>
<td>Completion code text that briefly explains the meaning of the nonzero completion code. This field is returned only for an error completion code.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>Identifier of the IMS Connect that built the output line. The identifier is always returned.</td>
</tr>
<tr>
<td>PORT</td>
<td>Port</td>
<td>N/A</td>
<td>The port number. The port number is always returned.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

An IMS Connect return and reason code is returned to OM by the CREATE IMSCON TYPE(PORT) command. The OM return and reason codes that might be returned as a result of the CREATE IMSCON TYPE(PORT) command are standard for all commands that are entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

<p>| Table 127. Return and reason codes for the CREATE IMSCON TYPE(PORT) command |</p>
<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The command completed successfully. The command output contains a line for each resource, which is accompanied by its completion code. See the completion codes table for details.</td>
</tr>
<tr>
<td>X'0C000008'</td>
<td>X'00002004'</td>
<td>The command contains an invalid primary keyword or no client is registered for the keyword.</td>
</tr>
<tr>
<td>X'0C000008'</td>
<td>X'00002010'</td>
<td>Wildcards (*) and %) are not supported.</td>
</tr>
<tr>
<td>X'0C000008'</td>
<td>X'00002024'</td>
<td>The LIKE keyword parameter value is invalid. The resource cannot be found.</td>
</tr>
<tr>
<td>X'0C000008'</td>
<td>X'00002028'</td>
<td>The LIKE keyword parameter value cannot be an SSL port.</td>
</tr>
<tr>
<td>X'0C000008'</td>
<td>X'00002058'</td>
<td>IMS Connect could not load the Port Message Edit exit routine.</td>
</tr>
<tr>
<td>X'0C000008'</td>
<td>X'00002084'</td>
<td>The EDITRIN keyword is invalid for PORTTYPE(DRDA).</td>
</tr>
</tbody>
</table>

Chapter 19. CREATE commands 201
Table 127. Return and reason codes for the CREATE IMSCON TYPE(PORT) command (continued)

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0C000008'</td>
<td>X'00002088'</td>
<td>The PORTTMOT keyword is invalid for PORTTYPE(REG).</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003000'</td>
<td>The command was successful for some resources but failed for others. The command output contains a line for each resource, which is accompanied by its completion code.</td>
</tr>
<tr>
<td>X'0C00000C'</td>
<td>X'00003004'</td>
<td>The command was not successful for any resource. The command output contains a line for each resource, which is accompanied by its completion code.</td>
</tr>
</tbody>
</table>

The following table includes an explanation of the completion codes. Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

Table 128. Completion codes for the CREATE IMSCON TYPE(PORT) command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>The CREATE IMSCON TYPE(PORT) command completed successfully.</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>The resource already exists. The port already exists.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes handled by OM

IMS Connect registers its type-2 command set with OM. When OM detects a command parsing error, OM returns a return code and reason code to the requester, and the command is not routed to IMS Connect.

Clients such as the TSO SPOC send commands to OM by using the CSLOMCMCMD API. CSLOMCMCMD return and reason codes are listed in the description of the CSLOMCMCMD request.

Examples

The following are examples of the CREATE IMSCON TYPE(PORT) command:

Example 1 for CREATE IMSCON TYPE(PORT) command

TSO SPOC input:

```
CREATE IMSCON TYPE(PORT) NAME(8888)
SET(EDITRTN(HWSEDIT0),KEEPAV(120))
```

TSO SPOC output:

```
Port MbrName CC
8888 HMS1 0
```

OM API input:

```
CMD(CRE IMSCON TYPE(PORT) NAME(8888)
 SET(EDITRTN(HWSEDIT0),KEEPAV(120)))
```
OM API output:

```xml
<?xml version="1.0"?>
<!DOCTYPE imsout SYSTEM "imsout.dtd">
<imsout>
 <ctl>
 <omname>OM1OM</omname>
 <omvsn>1.6.0</omvsn>
 <xmlvsn>20</xmlvsn>
 <statime>2012.314 17:20:25.453406</statime>
 <stotime>2012.314 17:20:25.535260</stotime>
 <staseq>CA723167E3C4711B</staseq>
 <stoseq>CA7231682AD21F14</stoseq>
 <rqsttkn1>USRT01110085423</rqsttkn1>
 <rc>00000000</rc>
 <rsn>00000000</rsn>
 </ctl>
 <cmd>
 <master>HWS1</master>
 <userid>USRT011</userid>
 <verb>CRE</verb>
 <kwd>IMSCON</kwd>
 <input>CREATE IMSCON TYPE(PORT) NAME(8888) LIKE(9999) SET(EDITRTN(HWSEDIT0),KEEPAV(120))</input>
 </cmd>
 <cmdrsphdr>
 <hdr slbl="PORT" llbl="Port" scope="LCL" sort="a" key="1" scroll="no" len="8" dtype="CHAR" align="left" skipb="no" />
 <hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" key="2" scroll="no" len="8" dtype="CHAR" align="left" skipb="no" />
 <hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0" scroll="yes" len="4" dtype="INT" align="right" skipb="no" />
 <hdr slbl="CCTXT" llbl="CCText" scope="LCL" sort="n" key="0" scroll="yes" len="32" dtype="CHAR" align="left" skipb="yes" />
 </cmdrsphdr>
 <cmdrspdata>
 <rsp>PORT(8888) MBR(HWS1) CC(0)</rsp>
 </cmdrspdata>
</imsout>
```

**Explanation:** Regular port 8888 is created with the EDITRTN and KEEPAV attributes specified.

**Example 2 for CREATE IMSCON TYPE(PORT) command**

**TSO SPOC input:**

```sql
CREATE IMSCON TYPE(PORT) NAME(8888) LIKE(9999) SET(EDITRTN(HWSEDIT0))
```

**TSO SPOC output:**

<table>
<thead>
<tr>
<th>Port</th>
<th>MbrName</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>8888</td>
<td>HWS1</td>
<td>0</td>
</tr>
</tbody>
</table>

**OM API input:**

```xml
<?xml version="1.0"?>
<!DOCTYPE imsout SYSTEM "imsout.dtd">
<imsout>
 <ctl>
 <omname>OM1OM</omname>
 <omvsn>1.6.0</omvsn>
 <xmlvsn>20</xmlvsn>
 <statime>2012.314 17:20:25.453406</statime>
 <stotime>2012.314 17:20:25.535260</stotime>
 <staseq>CA723167E3C4711B</staseq>
 <stoseq>CA7231682AD21F14</stoseq>
 <rqsttkn1>USRT01110085423</rqsttkn1>
 <rc>00000000</rc>
 <rsn>00000000</rsn>
 </ctl>
 <cmd>
 <master>HWS1</master>
 <userid>USRT011</userid>
 <verb>CRE</verb>
 <kwd>IMSCON</kwd>
 <input>CREATE IMSCON TYPE(PORT) NAME(8888) LIKE(9999) SET(EDITRTN(HWSEDIT0))</input>
 </cmd>
 <cmdrsphdr>
 <hdr slbl="PORT" llbl="Port" scope="LCL" sort="a" key="1" scroll="no" len="8" dtype="CHAR" align="left" skipb="no" />
 <hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" key="2" scroll="no" len="8" dtype="CHAR" align="left" skipb="no" />
 <hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0" scroll="yes" len="4" dtype="INT" align="right" skipb="no" />
 <hdr slbl="CCTXT" llbl="CCText" scope="LCL" sort="n" key="0" scroll="yes" len="32" dtype="CHAR" align="left" skipb="yes" />
 </cmdrsphdr>
 <cmdrspdata>
 <rsp>PORT(8888) MBR(HWS1) CC(0)</rsp>
 </cmdrspdata>
</imsout>
```
Explanation: Regular port 8888 is created with the same attributes as port 9999. However, the EDITRTN attribute is also specified, and its values override the values from the 9999 port model.

Example 3 for CREATE IMSCON TYPE(PORT) command

TSO SPOC input:
CREATE IMSCON TYPE(PORT) NAME(8888,9999)
SET(PORTTYPE(DRDA))

TSO SPOC output:
<table>
<thead>
<tr>
<th>Port</th>
<th>MbrName</th>
<th>CC</th>
<th>CCText</th>
</tr>
</thead>
<tbody>
<tr>
<td>8888</td>
<td>HWS1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>9999</td>
<td>HWS1</td>
<td>13</td>
<td>Resource already exists</td>
</tr>
</tbody>
</table>

OM API input:
CMD(CRE IMSCON TYPE(PORT) NAME(8888,9999)
SET(PORTTYPE(DRDA)))

OM API output:
<?xml version="1.0"?>
<!DOCTYPE imsout SYSTEM "imsout.dtd">
<imsout>
<ctl>
<omname>OM1OM </omname>
<omvsn>1.6.0 </omvsn>
<xmlvsn>2.0 </xmlvsn>
<statime>2012.314 17:30:09.273414 </statime>
<stotime>2012.314 17:30:09.277816 </stotime>
<staseq>CA7239662B64659E </staseq>
<stoseq>CA7239662C778D9C </stoseq>
<rqsttkn1>USRT011 10092025 </rqsttkn1>
<rc>00000000 </rc>
<rsn>00000000 </rsn>
<rsnmq>CSLN054I </rsnmq>
<rsntxt>No of the clients were successful. </rsntxt>
</ctl>
<cmderr>
  <mbr name="HWS1"></mbr>
  <typ>IMSCON</typ>
  <rc>0C00000C</rc>
  <rsn>00003000</rsn>
  <rsntxt>At least one request successful</rsntxt>
</cmderr>

<cmd>
  <master>HWS1</master>
  <userid>USRT011</userid>
  <verb>CRE</verb>
  <kwds><kwdmime>IMSCON</kwdmime></kwds>
  <input>CREATE IMSCON TYPE(PORT) NAME(8888,9999) SET(PORTTYPE(DRDA))</input>
</cmd>

<cmdrsphdr>
  <hdr slbl="PORT" llbl="Port" scope="LCL" sort="a" key="1" scroll="no" len="8"
       dtype="CHAR" align="left" skipb="no" />
  <hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" key="2" scroll="no" len="8"
       dtype="CHAR" align="left" skipb="no" />
  <hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0" scroll="yes" len="4"
       dtype="INT" align="right" skipb="no" />
  <hdr slbl="CCTXT" llbl="CCText" scope="LCL" sort="n" key="0" scroll="yes" len="32"
       dtype="CHAR" align="left" skipb="yes" />
</cmdrsphdr>

<cmdrspdata>
  <rsp>PORT(8888)  MBR(HWS1)  CC( 0)  </rsp>
  <rsp>PORT(9999)  MBR(HWS1)  CC( 13)  CCTXT(Resource already exists) </rsp>
</cmdrspdata>

<imsout>

Explanation: DRDA port 8888 is created without any attribute overrides. DRDA port 9999 is not created and returns completion code 13, which indicates that port 9999 already exists.

Related reference:
- [CSLOMCMDC: command request (System Programming APIs)](CSLOMCMDC: command request (System Programming APIs))
- [IMS Connect Port Message Edit exit routine (Exit Routines)](IMS Connect Port Message Edit exit routine (Exit Routines))
- [IMSPLEX statement (System Definition)](IMSPLEX statement (System Definition))
- [ODACCESS statement (System Definition)](ODACCESS statement (System Definition))
- [TCP/IP statement (System Definition)](TCP/IP statement (System Definition))

CREATE OTMADESC command

Use the CREATE OTMADESC command to create a OTMA destination descriptor without restarting IMS.

Subsections:
- “Environment” on page 206
- “Syntax” on page 206
- “Keywords” on page 207
- “Usage notes” on page 211
- “Output fields” on page 211
- “Return, reason, and completion codes” on page 212
- “Examples” on page 214
Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CREATE OTMADESC</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SET</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
CREATE OTMADESC NAME(destname*)
```

```
SET TYPE(IMSCON) A
```

```
SET TYPE(IMSTRAN) B
```

```
SET TYPE(MQSERIES) C
```

```
EXIT(Y) TYPE(NONOTMA)
```

A (TYPE=IMSCON):

```
TMEMBER(tmem)
```

```
TPIPE(tpipename)
```

```
SMEM(N)
```

```
SMEM(Y)
```

```
SYNTIMER(syntimer)
```

```
ADAPTER(adaptername) CONVRTR(convertrname)
```

```
RMTIMSCON(rmtimsconnect) RMTIMS(remote_IMS) RMTTRAN(trancode)
```

```
USERID(user_id)
```

B (TYPE=IMSTRAN):

```
TMEMBER(tmem)
```

```
TPIPE(tpipename)
```

```
LTERMOVR(ltermname)
```

```
REPLYCHK(N) SMEM(Y)
```

```
SYNTIMER(timeout value)
```
C (TYPE=MQSERIES):

- TMEMBER(tmem)
- TPIPE(tpipename)
- COPYMTCO(NEWMSGID)
- PASSMSG1
- PASSCORR
- NONE

- USERID(userid)
- MQIMSVS
- MQFORMAT(MQIMS)
- NONE
- MQSTR

- MQRTF(mqmd_replytoformatname)
- MQMSGID(mqmdmsgid)

- MQCORREL(mqmd_correlid)
- MQRTQ(mqmd_replytoqueueuname)

- MQRTQMG(mqmd_replytoqueuemgrname)
- MQAPPLID(mqmd_appidentitydata)

- MQCOPYMD(N)
- SYNTCP(Y)
- MQPERST(Y)

Keywords

The following keywords are valid for the CREATE OTMADESC command:

**ADAPTER(adaptername)**

An optional keyword for TYPE(IMSCON). The *adaptername* is a 1- to 8-character name that identifies the IMS Connect adapter. If TYPE(NONOTMA) is specified, you cannot specify this keyword.

**CONVRTR(convertrname)**

A required parameter only if the ADAPTER keyword is specified. The *convertrname* is a 1- to 8-character converter name used by the adapter. Coding this keyword without the ADAPTER keyword or with TYPE(NONOTMA) will cause an error.

**EXIT(N|Y)**

When TYPE=IMSTRAN, this is an optional parameter used to indicate whether the IMS user exit (DFSCMUX0) can override the descriptor routing information for late messages.

For other descriptor types, this is an optional parameter used to specify whether the OTMA routing exits (DFSYPRX0 and DFYDRU0) can override the descriptor switch destination from ALT IOPCB.

**LTERMOVR(ltermname)**

When TYPE=IMSTRAN, this is an optional parameter used to specify a logical terminal name that overrides the name specified in the application I/O PCB. If an override name is also specified in the AIBRSNM2 field of the AIB, that name is used instead of the name in the descriptor. If neither the descriptor or
the AIB contains an override name, the IMS application terminal symbolic (PSTSYMBO) is used as the default logical terminal name for the target transaction.

**MQAPPLID(mqmd_appidentitydata)**
When TYPE=MQSERIES, this is an optional parameter that specifies a 1- to 32-character value for the MQMD_APPLIDENTITYDATA field. This field is used to pass data to the receiving IBM MQ application. The default is 32 blanks.

**MQCOPYMD(Y | N)**
When TYPE=MQSERIES, this is an optional parameter that specifies whether the original input values of the MQMD data structure from the MQ IMS Bridge are copied to the output message.

**MQCORREL(mqmd_correlid)**
When TYPE=MQSERIES, this is an optional parameter that specifies a 1- to 24-character value for the MQMD_CORRELID field. This value is passed directly to the receiving IBM MQ application if the value of the MQREPORT parameter is PASSCORR. The default is 0.

**MQFORMAT(MQIMSVS | MQIMS | NONE | MQSTR)**
When TYPE=MQSERIES, this is an optional parameter that specifies value for the MQMD_FORMAT field. The default value is MQIMSVS.

**MQMSGID(mqmd_msgid)**
When TYPE=MQSERIES, this is an optional parameter that specifies a 1- to 24-character value for the MQMD_MSGID field. This value is passed directly to the receiving IBM MQ application if the value of the MQREPORT parameter is PASSMSG1.

**MQPERST(N | Y)**
When TYPE=MQSERIES, this is an optional parameter that specifies whether messages that use this descriptor are persistent on a SYNC TPIPE. Setting this parameter to Y is analogous to setting X'40' for the output flag value of the DFSYDRU0 exit routine.

**MQREPORT(COPYMTOC | NEWMSGID | PASSMSG1 | PASSCORR | NONE)**
When TYPE=MQSERIES, this is an optional parameter that specifies the MQMD_REPORT field value for messages that use the descriptor. The default value is COPYMTOC. Each supported value corresponds to an equivalent value in the MQMD data structure:

<table>
<thead>
<tr>
<th>Parameter value</th>
<th>Equivalent MQMD structure value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEWMSGID</td>
<td>MQRO_NEW_MSG_ID</td>
</tr>
<tr>
<td>PASSMSG1</td>
<td>MQRO_PASS_MSG_ID</td>
</tr>
<tr>
<td>COPYMTOC</td>
<td>MQRO_COPY_MSG_ID_TO_CORREL_ID</td>
</tr>
<tr>
<td>PASSCORR</td>
<td>MQRO_PASS_CORREL_ID</td>
</tr>
<tr>
<td>PASSMSCO</td>
<td>MQRO_PASS_MSG_ID and MQRO_PASS_CORREL_ID</td>
</tr>
<tr>
<td>NONE</td>
<td>MQRO_NONE</td>
</tr>
</tbody>
</table>
When TYPE=MQSERIES, this is a 1- to 8-character value for the MQMD_REPLTF field. The default is 0.

When TYPE=MQSERIES, this is a required parameter that specifies a 1- to 48-character value for the MQMD_REPLYTOFORMAT field.

When TYPE=MQSERIES, this is an optional parameter that specifies a 1- to 48-character value for the MQMD_REPLYTOQMGR field. If this parameter is not specified, MQSeries® will use the local queue manager.

A required keyword parameter that specifies a 1- to 8-character destination name. The destination name can have an asterisk (*) at the end to mask groups of names. An asterisk by itself is a valid name and is an entry in the table of destination routing descriptors. A masked name that encompasses another masked name does not have to be created in the order from most specific to most generic. However, the search order starts from the most specific to the most generic.

Creating a destination name that already exists in the system is an error.

Specifies whether an IMS application replies to the IOPCB for a synchronous program switch request. When REPLYCHK=YES and the ICAL target application does not reply to the IOPCB or switch to another transaction, IMS gives the error return code X’0100’, with reason code X’0110’, and extended reason code X’0014’ instead of a timeout to the ICAL call. The default is Y.

An optional 1- to 8-character name of a remote, destination IMS system for ALTPCB output messages. When RMTIMS is specified, you must also specify the RMTIMSCON parameter. The RMTIMS value must match the value specified on the ID parameter of a DATASTORE statement in the configuration member of the remote IMS Connect instance. This parameter is valid only when TYPE(IMSCON) is specified.

An optional 1- to 8-character name of a connection to a remote IMS Connect instance, as defined on ID parameter of the RMTIMSCON statement in the HWSCFGxx PROCLIB member of the local IMS Connect. When RMTIMSCON is specified, you must also specify RMTIMS. This parameter is valid only when TYPE(IMSCON) is specified.

An optional 1- to 8-character name of the transaction to use at the remote, destination IMS system. When this parameter is specified with RMTIMSCON and RMTIMS parameters, OTMA passes the transaction code to IMS Connect, which inserts it into the outgoing message. This parameter is valid only when TYPE(IMSCON) is specified.

An optional parameter that can either be a Y or N value to indicate whether the TMEMBER name specified in the TMEMBER parameter is a super member. If the TMEMBER name is a super member, the length of the TMEMBER name has a maximum of 4 characters. SMEM and TYPE(NONOTMA) are mutually exclusive.
SYNCTP(N | Y)
When TYPE=MQSERIES, this parameter specifies whether a SYNC TPIPE must be created for messages that use this descriptor. Setting this parameter to Y is analogous to setting X’80’ for the output flag value of the DFSYDRU0 exit routine.

SYNTIMER(syntimer)
An optional parameter that specifies the timeout value that when reached, the synchronous callout reply expires because an ACK/NAK or reply from the client has not been received. The value syntimer, which is expressed in hundredths of a second, must be numeric and within a range of 0 through 999999, inclusive. When the parameter is coded, a numeric value must be specified. If SYNTIMER(0) is specified, the value defaults to 1000, which is equivalent to 10 seconds.

If TYPE(IMSTRAN) is specified, this parameter is the timeout value for synchronous program switch ICAL calls. If a timeout value is also specified in the AIB interface, IMS will compare the timeout values and use the lower value.

TMEMBER(tmem)
A required parameter for TYPE(IMSCON). The tmem value is a 1- to 16-character OTMA TMEMBER name. Coding this keyword with TYPE(NONOTMA) causes an error. If SMEM(Y) is specified, tmem is a maximum of 4-character super member name.

An optional parameter for TYPE(IMSTRAN). The tmem value is a 1- to 16-character OTMA TMEMBER name. IMS queues late responses from a synchronous program switch to this OTMA TMEMBER. The destination name is used as the default OTMA TPIPE name if the TPIPE parameter is not specified in the descriptor.

TPIPE(tpipename)
An optional parameter that is a 1- to 8-character TPIPE name when TYPE(IMSCON) is specified. If this keyword is not coded, the TPIPE name is the destination name specified in the NAME keyword. This keyword is not valid if TYPE(NONOTMA) is specified. If the TPIPE is not coded and the NAME is a mask, the TPIPE will be a specific destination name that matched the mask in the table of destination routing descriptors and not the NAME keyword.

An optional parameter for TYPE(IMSTRAN) that specifies a 1- to 8-character TPIPE name. This parameter defaults to the destination name. IMS queues late responses from a synchronous program switch to this OTMA TPIPE. A value for the TMEMBER parameter is required when TPIPE is specified.

TYPE(IMSCON | IMSTRAN | MQSERIES | NONOTMA)
Specifies the type of destination:

IMSCON
An IMS Connect client. This is the default value.

IMSTRAN
An IMS transaction.

MQSERIES
IBM MQ.

NONOTMA
A non-OTMA destination. Only the EXIT parameter is valid with this descriptor type.
USERID(userid)

For TYPE=IMSCON, this is an optional 1- to 8-character RACF user ID. When this parameter is specified with RMTIMSCON, RMTTRAN, and RMTMIMS parameters, a remote, destination IMS system uses the USERID value to perform transaction authorization. The value of USERID specified in the OTMA destination descriptor overrides the user ID provided by the IMS application program that issued the ISRT call to the OTMA ALTPCB. This parameter is valid only when TYPE(IMSCON) is specified.

For TYPE=MQSERIES, this is a 1- to 8-character user ID that corresponds with the MQMD_USERIDENTIFIER field in the MQMD data structure. This field allows the OTMA descriptor to override the default user ID in the MQMD structure. Specify the value *USERID* to use the IMS user ID value from the PST.

Usage notes

The CREATE OTMADESC command is used to facilitate the creation of OTMA destination descriptors while IMS is up and running. The user can add new routing descriptors dynamically in addition to the statically defined destination routing descriptors in DFSYDTx of IMS.PROCLIB. The order in which the destination routing descriptors are coded is unrestricted and need not be coded in the order from most specific to most generic destination routing descriptor name. However, the search order in the table of destination routing descriptors will be performed from most specific to most generic.

Note: Note the distinction between the coding in DFSYDTx and the search order that is performed internally in the table of destination routing descriptors. In DFSYDTx, the rule of coding does not require the order from most specific to most generic; however, the search order in the table of destination routing descriptor is performed from most specific to most generic.

The destination routing descriptors are part of the checkpoint records used for persistency on IMS restart. Also, all CREATE OTMADESC commands will generate log records. The checkpoint log record is X4035 and the log record for CREATE, DELETE, and UPDATE is X221B. During an IMS warm restart, the destination routing descriptors will be rebuilt based on the checkpoint records. In case of an ERE restart, the log records will be used to completely rebuild the destination routing descriptors after the checkpoint records have been processed. Because of the rebuilding process, the routing descriptors in member DFSYDTx in PROCLIB will not be read and processed. However, during cold start processing, the routing descriptors in member DFSYDTx will be read and processed.

The CREATE OTMADESC command is not valid in an XRF alternate, RSR tracking, or an FDBR region environment. The checkpoint and log records will be used to update the destination routing descriptors in these environments. The CREATE OTMADESC command becomes a valid command only when the XRF alternate or the RSR tracking environment becomes the active IMS environment.

Output fields

The following table shows the CREATE OTMADESC output fields. The columns in the table are:

- **Short label**
  - Contains the short label generated in the XML output.
Long label
Contains the column heading for the output field in the formatted output.

Keyword
Identifies the keyword on the command that caused the field to be generated. N/A appears for output fields that are always returned. error appears for output fields that are returned only in case of an error.

Meaning
Provides a brief description of the output field.

Table 130. Output fields for the CREATE OTMADESC command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code for the line of output. The completion code indicates whether IMS was able to process the command for the specified resource. See &quot;Return, reason, and completion codes&quot; for more information. The completion code is always returned.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>N/A</td>
<td>Completion code text that briefly explains the meaning of the non-zero completion code. This field is returned only for an error completion code.</td>
</tr>
<tr>
<td>DEST</td>
<td>DestName</td>
<td>NAME</td>
<td>Destination name.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>Member name.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

An IMS return and reason code is returned to OM by the CREATE OTMADESC command. The OM return and reason codes that might be returned as a result of the CREATE OTMADESC command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 131. Return and reason codes for the CREATE OTMADESC command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>Command completed successfully. The command output contains a line for each resource, accompanied by its completion code. See the completion codes table for details.</td>
</tr>
<tr>
<td>X'02000008'</td>
<td>X'00002000'</td>
<td>The command contains an invalid verb or no client is registered for the verb.</td>
</tr>
<tr>
<td>X'02000008'</td>
<td>X'00002004'</td>
<td>The command contains an invalid primary keyword or no client is registered for the keyword.</td>
</tr>
<tr>
<td>X'02000008'</td>
<td>X'00002028'</td>
<td>The command contains an invalid keyword.</td>
</tr>
<tr>
<td>X'02000008'</td>
<td>X'0000202C'</td>
<td>The command contains an unknown positional parameter.</td>
</tr>
<tr>
<td>X'02000008'</td>
<td>X'00002034'</td>
<td>The command contains an incomplete keyword parameter.</td>
</tr>
<tr>
<td>X'02000008'</td>
<td>X'00002038'</td>
<td>The command is missing a required parameter.</td>
</tr>
<tr>
<td>X'02000008'</td>
<td>X'0000203C'</td>
<td>The command contains an invalid keyword parameter value.</td>
</tr>
</tbody>
</table>
The following table includes an explanation of the completion codes. Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

Table 132. Completion codes for the CREATE OTMADESC command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command completed successfully</td>
<td>The CREATE OTMADESC command completed successfully for the resource.</td>
</tr>
<tr>
<td>153</td>
<td>Adapter blank, Convtr not blank</td>
<td>Both ADAPTER() and CONVRTR() keywords must be either both blanks or both contain valid names.</td>
</tr>
<tr>
<td>154</td>
<td>Adapter not blank, Convtr blank</td>
<td>Both ADAPTER() and CONVRTR() keywords must be either both blanks or both contain valid names.</td>
</tr>
<tr>
<td>155</td>
<td>NONOTMA, other parms specified</td>
<td>For TYPE(NONOTMA), no other keywords must be specified, such as TYPE(), TMEMBER(), SMEM(), ADAPTER(), or CONVRTR().</td>
</tr>
<tr>
<td>156</td>
<td>SMEM=Y, super mbr name GT 4 char</td>
<td>For SMEM(Y), the TMEMBER value must not be greater than 4 characters.</td>
</tr>
<tr>
<td>157</td>
<td>SMEM=Y, Tmember parm not specfd</td>
<td>The TMEMBER keyword is a required parameter when SMEM(Y) is specified.</td>
</tr>
<tr>
<td>159</td>
<td>TMEMBER is required for IMSCON</td>
<td>For TYPE(IMSCON), a value for the TMEMBER keyword is required and must be specified.</td>
</tr>
<tr>
<td>162</td>
<td>Descriptor already exist in tbl</td>
<td>The descriptor being created already exists in the table of destination routing descriptors.</td>
</tr>
<tr>
<td>167</td>
<td>SYNTIMER must have numeric value</td>
<td>The timeout value must have a value expressed in numbers within parenthesis.</td>
</tr>
<tr>
<td>169</td>
<td>SYNTIMER has nonnumeric value</td>
<td>The value must not contain alphabetic characters or any character that is not numeric.</td>
</tr>
<tr>
<td>16A</td>
<td>RmtIMSCon blank, RmtIMS not blank</td>
<td>The RMTIMS and RMTIMSCon keywords were specified on the CREATE OTMADESC command, but no value was entered for RMTIMSCon. When a value is specified on the RMTIMS keyword, a value must also be specified on the RMTIMSCon keyword.</td>
</tr>
<tr>
<td>16B</td>
<td>RmtIMSCon not blank, RmtIMS blank</td>
<td>The RMTIMS and RMTIMSCon keywords were specified on the CREATE OTMADESC command, but no value was entered for RMTIMS. When a value is specified on the RMTIMSCon keyword, a value must also be specified on the RMTIMS keyword.</td>
</tr>
</tbody>
</table>
**Examples**

The following are examples of the CREATE OTMADESC command:

*Example 1 for CREATE OTMADESC command*

TSO SPOC input:

```
CREATE OTMADESC NAME(OTMACL*) SET(TYPE(IMSCON) TMEMBER(HWS2))
```

TSO SPOC output:

```
DestName MbrName CC
 OTMACL* IMSA 0
```

**Explanation:** In the example, the CREATE OTMADESC command is issued with
NAME(OTMACL*) and the descriptor OTMACL* is included in the table of
destination routing descriptors.

*Example 2 for CREATE OTMADESC command*

TSO SPOC input:

```
CREATE OTMADESC NAME(OTMACL99) SET(TYPE(IMSCON) TMEMBER(HWS1) TPIPE(HWS1TP01))
```

TSO SPOC output:

```
DestName MbrName CC
 OTMACL99 IMSA 0
```

**Explanation:** If the CREATE OTMADESC command is issued with the TPIPE
keyword, the descriptor OTMACL99 is included in the table of destination routing
descriptors. Although not shown in the example, a CREATE command issued for
OTMACL* would be ahead of the CREATE for OTMACL99.

*Example 3 for CREATE OTMADESC command*

TSO SPOC input:

```
CREATE OTMADESC NAME(OTMACL01) SET(TYPE(IMSCON) TMEMBER(ICON1) RMTIMSCON(ICON2) RMTIMS(IMS2) RMTTRAN(TRAN01) USERID(USER01))
```

TSO SPOC output:

```
DestName MbrName CC
 OTMACL01 IMS1 0
```

**Explanation:** The CREATE OTMADESC command shown in this example creates
an OTMA destination descriptor called OTMACL01 that routes ALTPCB output
messages to a remote IMS system via a TCP/IP connection between two instances
of IMS Connect. The command also defines the following values on the OTMA
destination descriptor:

- The local instance of IMS Connect, as specified by TMEMBER(ICON1).
- The remote IMS Connect connection, as specified by RMTIMSCON(ICON2) in
  the local IMS Connect configuration member. This value is also specified on
  the ID parameter of the RMTIMSCON configuration statement of the local IMS
  Connect instance.
- The remote IMS system, as specified by RMTIMS(IMS2).
- The transaction to schedule at the remote IMS system, as specified by
  RMTTRAN(TRAN01).
The user ID to be used for transaction authorization at the remote IMS system, as specified by USERID(USER01).

When the OTMA messages reach IMS2, IMS2 schedules TRAN01 to process the messages. The descriptor OTMACL01 is included in the table of destination routing descriptors.

Related concepts:
- How to interpret CSL request return and reason codes (System Programming APIs)

Related tasks:
- Specifying a remote transaction code (Communications and Connections)

Related reference:
- Chapter 2, “Command keywords and their synonyms,” on page 63

CREATE PGM command

Use the CREATE PGM command to define the program resource requirements for application programs that run under the control of the DB/TM environment, as well as for application programs that access databases through DBCTL.

The program resource describes an application program that operates in a message processing region, Fast Path message-driven program region, batch processing region, batch message processing region, or CCTL threads. Program resources combined with transactions define the scheduling and resource requirements for a message-driven application program.

Subsections:
- “Environment”
- “Syntax” on page 216
- “Keywords” on page 216
- “Usage notes” on page 220
- “Output fields” on page 221
- “Return, reason, and completion codes” on page 221
- “Examples” on page 223

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CREATE PGM</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>LIKE</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>NAME</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>SET</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>
Syntax

Default values shown in this syntax diagram reflect the default values that are defined in the IMS program descriptor, DFSDSPG1. If you define another descriptor as the default with a CREATE or UPDATE PGMDESC command, the default values shown in this syntax diagram might not match the value defined in the current default descriptor.

Keywords

The following keywords are valid for the CREATE PGM command:

LIKE

Specifies that the resource is created using an existing resource or descriptor as a model, instead of the default descriptor. The default descriptor is either the IMS descriptor DFSDSPG1, or user-defined. The model type can either be a descriptor (DESC), or a resource (RSC). The new resource is created with all the same attributes as the model. Attributes set explicitly by the CREATE command override the model attributes. Later changes to the model are not propagated to resources or descriptors that were created from it.

The QUERY commands can be used to display the model name and model type used to create the resource. The model name and type returned from the QUERY command are provided for informational purposes only. The EXPORT command exports a resource definition, including the model name and model type, to the definition member. The IMPORT command imports a resource definition, including the model name and model type, from the definition.
member. An IMPORT command that creates a resource saves the model name and model type, but does not use the models attributes.

**DESC**(*descriptor_name*)

Specifies the name of the descriptor to use as a model to define this resource.

**RSC**(*resource_name*)

Specifies the name of the resource to use as a model to define this resource.

**NAME**

Specifies the 1-8 character name of the program. Names must be alphanumeric (A through Z, 0 through 9, #, $, and ®). All program names must begin with an alphabetic character (A through Z, #, $, and ®) followed by zero to seven alphanumeric characters. Names cannot include a blank, comma, period, hyphen, or equal sign. Names cannot begin with DFS, except for DFSIVPxx and DFSASAMxx. Names cannot be BASICEDT, DBCDM, DBF#FPU0, DBRC, ISCEDT, MSDB, SDB, or WTOR. Each local program name must be unique. If the program is defined with BMPTYPE(N) and FP(N), the program name and associated PSB name must be the same. A program resource and a program descriptor can have the same name.

**SET**

Specifies the attributes of the program to be created. If the LIKE keyword is omitted, attributes not specified take the value defined in the default descriptor, which is either IMS descriptor DFSDSPG1 or user-defined. If the LIKE keyword is specified, attributes not specified take the value defined in the model.

**BMPTYPE()**

BMP type option. Specifies whether the program executes in a BMP type region or not. A BMP type region can be a BMP region or a JBP region. PSBs scheduled by DB2 stored procedures, by programs running under WebSphere® Application Server, and by other users of the ODBA interface may be defined with BMPTYPE Y or N.

**N** The program does not execute in a BMP type region. It might execute in an IMS TM MPP, JMP, or IFP region or it might use either the ODBA or DRA interface. This specification should be used for programs running in IMS TM MPP, JMP, and IFP regions, or PSBs scheduled by CICS® programs using DBCTL and other users of the DRA interface. This is the default.

**Y** The program executes in a BMP type region. It might execute in an IMS BMP region or a JBF region. Any associated transactions are assigned normal and limit priority values of zero.

FP(E) and BMPTYPE(Y) are mutually exclusive.

**DOPT**

Specifies the dynamic option.

**N** The PSB associated with this program is not located dynamically. The PSB must exist in ACBLIB, otherwise the program is set to a NOTINIT status and cannot be scheduled. This is the default.

**Y** The PSB associated with this program is located dynamically. Each time the program associated with this PSB is scheduled, the latest copy of the PSB is loaded from ACBLIB. The PSB does not need to be in any
data set defined for ACBLIB until it is actually required to process a transaction. A new version of the PSB can be defined in ACBLIB and is picked up the next time the PSB is scheduled. DOPT PSBs referencing DBDs that are missing from ACBLIB cannot be scheduled. When the program terminates, the PSB is deleted from the PSB pool.

Keyword combination rules include the following:
- DOPT(Y) and GPSB(Y) are mutually exclusive.
- DOPT(Y) and LANG(JAVA) is a valid combination.
- LANG is invalid with GPSB(N), except if DOPT(Y) and LANG(JAVA).
- LANG(JAVA), DOPT(Y), and GPSB(N) is a valid combination.
- RESIDENT(Y) and DOPT(Y) are mutually exclusive.
- SCHDTYPE(PARALLEL) and DOPT(Y) are mutually exclusive.

**FP** Specifies the Fast Path option.

**E**

The program is a Fast Path-exclusive program. This implicitly defines a wait-for-input (WFI) program. Either a transaction or a routing code that can be assigned by the user Input Edit/Routing exit routine must be defined for the Fast Path-exclusive program, in order for this program to be usable.

Fast Path must be defined in the IMS system.

**N** The program is not a Fast Path-exclusive program. This is the default. When FP(N) is specified, any attempt to use Fast Path resources or commands will yield unpredictable results.

Keyword combination rules include the following:
- FP(E) requires that Fast Path be defined.
- LANG(JAVA) and FP(E) are mutually exclusive.
- BMPTYPE(N) and FP(E) are mutually exclusive.

**GPSB**

Specifies the generated PSB option.

**N** The PSB associated with the program is not generated by IMS. The PSB must exist in ACBLIB, otherwise the program is set to a NOTINIT status and cannot be scheduled. This is the default.

**Y** The PSB associated with the program is generated by IMS. It is not loaded from ACBLIB. The scheduling process of all environments generates a PSB containing an I/O PCB and an alternate modifiable PCB. You do not need to perform the PSBGEN and ACBGEN, thus eliminating I/O to the ACBLIB.

The generated PSB contains an I/O PCB named IOPCBbbb and a modifiable, alternate PCB named TPPCB1bb. With an alternate modifiable PCB, an application can use the CHNG call to change the output destination and send output to a destination other than the input destination.

Keyword combination rules include the following:
- DOPT(Y) and GPSB(Y) are mutually exclusive.
- DOPT(Y) and LANG(JAVA) is a valid combination.
• GPSB(Y) requires LANG.
• LANG is invalid with GPSB(N), except if DOPT(Y) and LANG(JAVA).
• LANG(JAVA), DOPT(Y), and GPSB(N) is a valid combination.
• RESIDENT(Y) and GPSB(Y) are mutually exclusive.

**LANG**
Specifies the language interface of the program for a GPSB, or defines a DOPT(Y) program as using the Java™ language.

In order to define a DOPT program using the Java language, the program must be defined with DOPT(Y) and LANG(JAVA). DOPT PSBs are not loaded at IMS restart, they are loaded every time the program is scheduled. When the program is scheduled for the first time, IMS does not know the language until after the program is scheduled in a region and the PSB is loaded. Unless LANG(JAVA) is defined for the DOPT(Y) program, the program is incorrectly scheduled in a non-Java region.

<table>
<thead>
<tr>
<th>LANG parameter</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSEM</td>
<td>Assembler</td>
</tr>
<tr>
<td>COBOL</td>
<td>COBOL</td>
</tr>
<tr>
<td>JAVA</td>
<td>Java</td>
</tr>
<tr>
<td>PASCAL</td>
<td>Pascal</td>
</tr>
<tr>
<td>PLI</td>
<td>PL/I</td>
</tr>
</tbody>
</table>

Keyword combination rules include the following:
• LANG is invalid with GPSB(N), except if DOPT(Y) and LANG(JAVA).
• DOPT(Y) and LANG(JAVA) is a valid combination.
• LANG(JAVA), DOPT(Y), and GPSB(N) is a valid combination.
• LANG(JAVA) and FP(E) are mutually exclusive.

**RESIDENT**
Specifies the resident option. The RESIDENT(N) option takes effect right away. The RESIDENT(Y) option takes effect at the next restart, unless an error is encountered such as no PSB in ACBLIB for the program, or if the program was created as RESIDENT(Y) after the checkpoint from which this IMS is performing emergency restart.

N Use N to specify that the PSB associated with the program is not made resident in storage. The PSB is loaded at scheduling time. This is the default. The RESIDENT(N) option takes effect immediately.

Y The PSB associated with the program is made resident in storage at IMS cold start or restart. IMS loads the PSB and initializes it. A resident PSB is accessed in local storage, which avoids I/O to retrieve the associated ACB.

Keyword combination rules include the following:
• DOPT(Y) and RESIDENT(Y) are mutually exclusive.
• GPSB(Y) and RESIDENT(Y) are mutually exclusive.

**SCHDTYPE**
Specifies whether this program can be scheduled into more than one message region or batch message region simultaneously.
PARALLEL
The program can be scheduled in multiple regions simultaneously. This is the default.

SERIAL
The program can be scheduled in only one region at a time.

Keyword combination rules include the following:
• DOPT(Y) and SCHDTYPE(PARALLEL) are mutually exclusive.

TRANSTAT
Specifies whether transaction level statistics should be logged. The value specified has meaning only if the program is a JBP or a non-message driven BMP. If Y is specified, transaction level statistics are written to the log in a X'56FA' log record.

N  Transaction level statistics should not be logged.
Y  Transaction level statistics should be logged.

The TRANSTAT keyword is optional. If a value is not specified for the TRANSTAT keyword, the system default is used. The system default for the transaction level statistics parameter is set with the TRANSTAT parameter in the DFSDFxxx PROCLIB member. If a value is not specified for the TRANSTAT parameter, the system default is set to N. The TRANSTAT keyword on the CREATE PGM command gives the user the ability to override the system default when creating a program resource.

Usage notes
BLDL is performed on the PSB associated with this program (except DOPT or GPSB). If the PSB is not defined in ACBLIB, the program is created anyway and the command results in a completion code of zero, even though it cannot be scheduled. The program status is NOTINIT when a /DIS PGM or QRY PGM is issued for the program. Online Change must be used to add the PSB to ACBLIB, before the application program can be scheduled.

Resources exist for the life of the IMS unless they are deleted using a DELETE command. The resources and descriptors are recoverable across an IMS warm start or emergency restart. Resources and descriptors are lost if IMS is cold started, unless cold start imports definitions that were exported while IMS was up.

The CREATE PGM command is similar to local online change (using a /MODIFY command) or global online change (INITIATE OLC) for application program resources in the MODBLKS data set, except that programs are added dynamically.

A CREATE PGM command can be issued only through the Operations Manager API. This command applies to DB/DC, DBCTL and DCCTL systems. These commands are not valid on the XRF alternate, RSR tracker, or FDBR region. The CREATE command is not valid if online change for MODBLKS is enabled (DFSDFxxx or DFSCGxxx defined with MODBLKS=OLC or MODBLKS not defined).

When a program is created, if the PSB is in the ACBLIB library, the PSB is loaded into the PSB pool at first schedule. If the program is created with RESIDENT(Y), the PSB is made resident at the next IMS restart. If the PSB is not in the ACBLIB library, the program is created anyway, but marked bad because it is unusable. A QRY PGM command specified with SHOW(ALL) or SHOW(STATUS) shows the
program status as NOTINIT-40-NOPS, which means there is no PSB in the
ACBLIB library for it. You must use online change for the ACBLIB library to add
the PSB before the program can be used.

Output fields

The following table shows the CREATE PGM output fields. The columns in the
table are as follows:

Short label
Contains the short label generated in the XML output.

Keyword
Identifies keyword on the command that caused the field to be generated.
N/A appears for output fields that are always returned. error appears for
output fields that are returned only in case of an error.

Meaning
Provides a brief description of the output field.

Table 134. Output fields for the CREATE PGM command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>N/A</td>
<td>Completion code.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the non-zero completion code.</td>
</tr>
<tr>
<td>MBR</td>
<td>N/A</td>
<td>IMSplex member that built the output line.</td>
</tr>
<tr>
<td>PGM</td>
<td>PGM</td>
<td>Program name.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The following table includes the return and reason codes and a brief explanation of
the codes. The return or reason code returned for the command might also indicate
an error from a CSL request.

Table 135. Return and reason codes for CREATE PGM

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>Command completed successfully. The command output contains a line for each resource, accompanied by its completion code. See the completion code table for details.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002009'</td>
<td>Multiple values specified for the same attribute are invalid. For example, you cannot specify both BMPTYPE(Y) and BMPTYPE(N). This reason code is applicable only when you create a program by using the DFSINSX0 user exit.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002048'</td>
<td>Invalid SET attribute.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002106'</td>
<td>DOPT(Y) mutually exclusive with RESIDENT(Y). Either both keywords were explicitly specified, or one keyword was explicitly specified and the other attribute was gotten from the model.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002107'</td>
<td>DOPT(Y) mutually exclusive with SCHDTYPE(PARALLEL). Either both keywords were explicitly specified, or one keyword was explicitly specified and the other attribute was gotten from the model.</td>
</tr>
<tr>
<td>Return code</td>
<td>Reason code</td>
<td>Meaning</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000210B'</td>
<td>FP(E) mutually exclusive with BMPTYPE(Y). Either both keywords were explicitly specified, or one keyword was explicitly specified and the other attribute was gotten from the model.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000210D'</td>
<td>FP(E) mutually exclusive with LANG(JAVA). Either both keywords were explicitly specified, or one keyword was explicitly specified and the other attribute was gotten from the model.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002113'</td>
<td>GPSB(Y) mutually exclusive with DOPT(Y). Either both keywords were explicitly specified, or one keyword was explicitly specified and the other attribute was gotten from the model.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002114'</td>
<td>GPSB(N) mutually exclusive with LANG.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002115'</td>
<td>GPSB(Y) mutually exclusive with RESIDENT(Y). Either both keywords were explicitly specified, or one keyword was explicitly specified and the other attribute was gotten from the model.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002117'</td>
<td>Invalid LIKE descriptor name.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002118'</td>
<td>Invalid LIKE resource name.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002131'</td>
<td>GPSB(Y) requires LANG to be specified.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002132'</td>
<td>DOPT(Y) not supported with LANG except for LANG(JAVA). Either both keywords were explicitly specified, or one keyword was explicitly specified and the other attribute was gotten from the model.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003000'</td>
<td>Command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code. See the completion code table for details.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>DFSOCMD response buffer could not be obtained.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003008'</td>
<td>DFSPOOL storage could not be obtained.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'0000300C'</td>
<td>AWE could not be obtained.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000400C'</td>
<td>Command is not valid on the XRF alternate.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>Command is not valid on the RSR tracker.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004024'</td>
<td>No FP defined, so FP(E) invalid.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004040'</td>
<td>Online change phase is in progress.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004050'</td>
<td>Online change phase is in progress.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004060'</td>
<td>Model is quiesced. Cannot quiesce model.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004070'</td>
<td>Model is quiesced. Cannot quiesce model.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005004'</td>
<td>DFSOCMD response buffer could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005008'</td>
<td>DFSPOOL storage could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'0000500C'</td>
<td>AWE could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005010'</td>
<td>Unable to obtain latch.</td>
</tr>
</tbody>
</table>
Errors unique to the processing of this command are returned as completion codes. The following table includes an explanation of the completion codes.

**Table 136. Completion codes for the CREATE PGM command**

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>Command completed successfully for the program.</td>
</tr>
<tr>
<td>11</td>
<td>RESOURCE ALREADY EXISTS</td>
<td>Program exists.</td>
</tr>
<tr>
<td>5F</td>
<td>INVALID CHARACTERS IN NAME</td>
<td>Name is invalid because it contains an invalid character.</td>
</tr>
<tr>
<td>61</td>
<td>DFSBCB STORAGE ERROR</td>
<td>Request to get BCB storage for PDIR control block failed.</td>
</tr>
<tr>
<td>8A</td>
<td>WILDCARD PARAMETER NOT SUPPORTED</td>
<td>CREATE command does not support wildcard parameters. You must explicitly specify the names of the resources you want to create.</td>
</tr>
<tr>
<td>93</td>
<td>RESERVED NAME</td>
<td>Name is reserved. For example, name starts with DFS (except for DFSSAMxx or DFSIVPxx), or is an IMS reserved name such as BASICEDT or WTOR.</td>
</tr>
<tr>
<td>BA</td>
<td>NOT ALLOWED FOR MRQ PSB</td>
<td>CREATE command failed for MRQ PSB because an attribute was specified that is not supported for the MRQ PSB: BMPTYPE(N), DOPT(Y), GPSB(Y), FP(E), RESIDENT(Y), SCHDTYPE(SERIAL)</td>
</tr>
<tr>
<td>B8</td>
<td>NO PSB IN ACBLIB</td>
<td>The DFSINSX0 exit attempted specified that the create should fail if no PSB for the program exists in ACBLIB.</td>
</tr>
</tbody>
</table>

**Examples**

The following are examples of the CREATE PGM command:

**Example 1 for CREATE PGM command**

TSO SPOC input:

```
CREATE PGM NAME(PGM00001) SET(BMPTYPE(Y))
```

TSO SPOC output:
OM API input:
CMD(CREATE PGM NAME(PGM00001) SET(BMPTYPE(Y)))

OM API output:

<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.3.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2006.254 22:20:06.531446</statime>
<stotime>2006.254 22:20:06.542510</stotime>
<staseq>BF6453E8ED8AE98C</staseq>
<rqsttkn1>USRT011 10132006</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>IMS1</master>
<userid>USRT011</userid>
<verb>CRE</verb>
<kwd>PGM</kwd>
<input>CREATE PGM NAME(PGM00001) SET(BMPTYPE(Y))</input>
</cmd>
</cmdrsphdr>
<cmdrspdata>
<rsp>PGM(PGM00001) MBR(IMS1) CC(0)</rsp>
</cmdrspdata>
</imsout>

TSO SPOC input:
QRY PGM NAME(PGM00001) SHOW(MODEL,BMPTYPE,DEFNTYPE)

TSO SPOC output:

PgName MbrName CC RgnType BMPType ModelName ModelType DefnType
PGM00001 IMS1 0 BMP Y DFSDSPG1 DESC CREATE

Explanation: Create a batch program called PGM00001. Attributes not specified on the command are assigned the defaults from the program default descriptor. The QRY PGM command shows the model name DFSDSPG1 and model type DESC for the program default descriptor.

Example 2 for CREATE PGM command

TSO SPOC input:
CREATE PGM NAME(DFSSAM02,PLAPJK02,PGM00002,WTOR,PGM*)

TSO SPOC output:
OM API input:

CMD(CREATE PGM NAME(DFSSAM02, PLAPJK02, PGM00002, WTOR, PGM*))

OM API output:

<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.3.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2006.254 23:05:22.692697</statime>
<stotime>2006.254 23:05:22.738636</stotime>
<staseq>BF645E0740259287</staseq>
<stoseq>BF645E074B5CC902</stoseq>
<rqsttkn1>USRT011 10160022</rqsttkn1>
<rc>0200000C</rc>
<rsn>00003008</rsn>
<rsnmsg>CSLN054I</rsnmsg>
<rsntxt>None of the clients were successful.</rsntxt>
</ctl>
<cmanderr>
<mbr name="IMS1">
<typ>IMS</typ>
<styp>DBDC</styp>
<rc>0000000C</rc>
</mbr>
</cmanderr>
</imsout>
**Explanation:** Several programs fail to be created because of different error conditions. The CREATE commands that fail return a nonzero completion code (CC) and completion code text (CCText) that briefly describes the completion code. The CREATE command fails for programs DFSSAM02 and PLAPJK02, because they already exist. The CREATE command succeeds for program PGM00002. The CREATE command fails for program WTOR, because WTOR is a reserved name that cannot be used as a resource name. The CREATE command fails for program PGM*, because an asterisk is an invalid character that cannot be used in a resource name.

**Related concepts:**

- How to interpret CSL request return and reason codes (System Programming APIs)

**Related reference:**

- Chapter 2, “Command keywords and their synonyms,” on page 63

---

**CREATE PGMDESC command**

Use the CREATE PGMDESC command to create program descriptors. A descriptor is a model that can be used to create descriptors or resources.

A descriptor is created with a value set for every attribute. Attributes not explicitly specified on the CREATE command take the default value. Any program resource or descriptor can be created using this descriptor as a model, by specifying the CREATE command with LIKE(DESC(descriptor_name)).

**Subsections:**

- Environment
- Syntax
- Keywords on page 227
- Usage notes on page 231
- Output fields on page 231
- Return, reason, and completion codes on page 232
- Examples on page 234

---

**Environment**

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

*Table 137. Valid environments for the CREATE PGMDESC command and keywords*

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CREATE PGMDESC</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LIKE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SET</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

**Syntax**
Default values shown in this syntax diagram reflect the default values that are defined in the IMS program descriptor, DFSDSPG1. If you define another descriptor as the default with a CREATE or UPDATE PGMDESC command, the default values shown in this syntax diagram might not match the value defined in the current default descriptor.

**Keywords**

The following keywords are valid for the CREATE PGMDESC command:

**LIKE**

Specifies that the descriptor is created using an existing resource or descriptor as a model, instead of the default descriptor. The default descriptor is either the IMS descriptor DFSDSPG1, or user-defined. The model type can either be a descriptor (DESC), or a resource (RSC). The descriptor is created with all the same attributes as the model, except for the DEFAULT(Y) value. Attributes set explicitly by the CREATE command override the model attributes.

DEFAULT(Y) must be specified explicitly to make a descriptor the default descriptor. Later changes to the model are not propagated to resources or descriptors that were created from it.

The QUERY commands can be used to display the model name and model type used to create the descriptor or resource. The model name and type returned from the QUERY command are provided for informational purposes only. The EXPORT command exports a resource definition including the model name and model type to the definition member. The IMPORT command
imports a resource definition including the model name and model type from the definition member. An IMPORT command that creates a resource saves the model name and model type, but does not use the models attributes.

DESC(descriptor_name)

Specifies the name of the descriptor to use as a model to define this descriptor.

RSC(resource_name)

Specifies the name of the resource to use as a model to define this descriptor.

NAME

Specifies the 1-8 character name of the descriptor. Names must be alphanumeric (A through Z, 0 through 9, $, and @). All program names must begin with an alphabetic character (A through Z, $, and @) followed by 0 - 7 alphanumeric characters. Names cannot include a blank, comma, period, hyphen, or equal sign. Names cannot begin with DFS, except for DFSIVPxx and DFSSAMxx. Names cannot be BASICEDT, BCDLM, DBF#FPU0, DBRC, ISCEDT, MSDB, SDB, or WTOR. Each local program name must be unique. If the descriptor is defined with BMPTYPE(N) and FP(N), the program name and associated PSB name must be the same. A program resource and a program descriptor can have the same name.

SET

Specifies the attributes of the descriptor to be created. If the LIKE keyword is omitted, attributes not specified take the value defined in the default descriptor, which is either IMS descriptor DFSDSPG1 or user-defined. If the LIKE keyword is specified, attributes not specified take the value defined in the model.

BMPTYPE()

BMP type option. Specifies whether the program executes in a BMP type region or not. A BMP type region might be a BMP region or a JBP region.

N The program does not execute in a BMP type region. It can execute in an IMS TM MPP, JMP, or IFP region or it can use either the ODBA or DRA interface. This specification should be used for programs running in IMS TM MPP, JMP, and IFP regions, or PSBs scheduled by CICS programs using DBCTL and other users of the DRA interface. This is the default.

Y The program executes in a BMP type region. It can execute in an IMS BMP region or a JBP region. Any associated transactions are assigned normal and limit priority values of zero.

DEFAULT

Specifies whether the descriptor is the default.

N The descriptor is not the default.

Y The descriptor is the default, which resets the existing default descriptor to DEFAULT(N). When a descriptor or resource is created without the LIKE keyword, any attribute not specified on the CREATE command takes the value defined in the default descriptor. Only one descriptor can be defined as the default for a resource type. IMS defines a default program descriptor called DFSDSPG1, where all attributes are defined with the default value. Defining a user-defined descriptor as the default overrides the IMS-defined descriptor. Since
only one program descriptor can be the default at one time, only one program name can be specified with DEFAULT(Y).

**DOPT**

Specifies the dynamic option.

- **N** The PSB associated with this program is not located dynamically. The PSB must exist in ACBLIB, otherwise the program is set to a NOTINIT status and cannot be scheduled. This is the default.

- **Y** The PSB associated with this program is located dynamically. Each time the program associated with this PSB is scheduled, the latest copy of the PSB is loaded from ACBLIB. The PSB does not need to be in any data set defined for ACBLIB until it is actually required to process a transaction. A new version of the PSB can be defined in ACBLIB and is picked up the next time the PSB is scheduled. DOPT PSBs referencing DBDs that are missing from ACBLIB cannot be scheduled. When the program terminates, the PSB is deleted from the PSB pool.

Keyword combination rules include the following:
- DOPT(Y) and GPSB(Y) are mutually exclusive.
- DOPT(Y) and LANG(JAVA) is a valid combination.
- LANG is invalid with GPSB(N), except if DOPT(Y) and LANG(JAVA).
- LANG(JAVA), DOPT(Y), and GPSB(N) is a valid combination.
- RESIDENT(Y) and DOPT(Y) are mutually exclusive.
- SCHDTYPE(PARALLEL) and DOPT(Y) are mutually exclusive.

**FP**

Specifies the Fast Path option.

- **E** The program is a Fast Path-exclusive program. This implicitly defines a wait-for-input (WFI) program. Either a transaction or a routing code that can be assigned by the user Input Edit/Routing exit routine must be defined for the Fast Path-exclusive program, in order for this program to be usable.

  Fast Path must be defined in the IMS system.

- **N** The program is not a Fast Path-exclusive program. This is the default. When FP(N) is specified, any attempt to use Fast Path resources or commands will yield unpredictable results.

Keyword combination rules include the following:
- FP(E) requires that Fast Path be defined.
- LANG(JAVA) and FP(E) are mutually exclusive.
- BMPTYPE(N) and FP(E) are mutually exclusive.

**GPSB**

Specifies the generated PSB option.

- **N** The PSB associated with the program is not generated by IMS. The PSB must exist in ACBLIB, otherwise the program is set to a NOTINIT status and cannot be scheduled. This is the default.

- **Y** The PSB associated with the program is generated by IMS. It is not loaded from ACBLIB. The scheduling process of all environments generates a PSB containing an I/O PCB and an alternate modifiable PCB. You do not need to perform the PSBGEN and ACBGEN, thus eliminating I/O to the ACBLIB.
The generated PSB contains an I/O PCB named IOPCBbbb and a modifiable, alternate PCB named TPPCB1bb. With an alternate modifiable PCB, an application can use the CHNG call to change the output destination and send output to a destination other than the input destination.

Keyword combination rules include the following:
- DOPT(Y) and GPSB(Y) are mutually exclusive.
- DOPT(Y) and LANG(JAVA) is a valid combination.
- GPSB(Y) requires LANG.
- LANG is invalid with GPSB(N), except if DOPT(Y) and LANG(JAVA).
- LANG(JAVA), DOPT(Y), and GPSB(N) is a valid combination.
- RESIDENT(Y) and GPSB(Y) are mutually exclusive.

**LANG**
Specifies the language interface of the program for a GPSB.

<table>
<thead>
<tr>
<th>LANG parameter</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSEM</td>
<td>Assembler</td>
</tr>
<tr>
<td>COBOL</td>
<td>COBOL</td>
</tr>
<tr>
<td>JAVA</td>
<td>Java</td>
</tr>
<tr>
<td>PASCAL</td>
<td>Pascal</td>
</tr>
<tr>
<td>PLI</td>
<td>PL/I</td>
</tr>
</tbody>
</table>

Keyword combination rules include the following:
- LANG is invalid with GPSB(N), except if DOPT(Y) and LANG(JAVA).
- DOPT(Y) and LANG(JAVA) is a valid combination.
- LANG(JAVA), DOPT(Y), and GPSB(N) is a valid combination.
- LANG(JAVA) and FP(E) are mutually exclusive.

**RESIDENT**
Specifies the resident option.

- N The PSB associated with the program is not made resident in storage. The PSB is loaded at scheduling time. This is the default.
- Y The PSB associated with the program is made resident in storage immediately. IMS loads the PSB and initializes it. A resident PSB is accessed in local storage, which avoids I/O to retrieve the ACB. Resident PSBs are loaded by IMS restart, a CREATE PGM or an UPDATE PGM command that defines the PSB as resident.

Keyword combination rules include the following:
- DOPT(Y) and RESIDENT(Y) are mutually exclusive.
- GPSB(Y) and RESIDENT(Y) are mutually exclusive.

**SCHDTYPE**
Specifies whether this program can be scheduled into more than one message region or batch message region simultaneously.

**PARALLEL**
The program can be scheduled in multiple regions simultaneously. This is the default.
The program can only be scheduled in one region at a time.

Keyword combination rules include the following:
- DOPT(Y) and SCHDTYPE(PARALLEL) are mutually exclusive.

**TRANSTAT**
Specifies whether transaction level statistics should be logged. The value specified has meaning only if the descriptor is a JBP or a non-message driven BMP. If Y is specified, transaction level statistics are written to the log in a ‘X’56FA’ log record.

- N Transaction level statistics should not be logged.
- Y Transaction level statistics should be logged.

The TRANSTAT keyword is optional. If a value is not specified for the TRANSTAT keyword, the system default is used. The system default for the transaction level statistics parameter is set with the TRANSTAT parameter in the DFSDFxxx PROCLIB member. If a value is not specified for the TRANSTAT parameter, the system default is set to N. The TRANSTAT keyword on the CREATE PGM or CREATE PGMDESC command gives the user the ability to override the system default when creating a program or program descriptor.

**Usage notes**
Descriptors exist for the life of the IMS unless they are deleted using a DELETE command. The resources and descriptors are recoverable across an IMS warm start or emergency restart. Resources and descriptors are lost if IMS is cold started, unless cold start imports definitions that were exported while IMS was up.

The CREATE PGMDESC command can be issued only through the Operations Manager API. This command applies to DB/DC, DBCTL and DCCTL systems. This command is not valid on the XRF alternate, RSR tracker, or FDBR region. The CREATE command is not valid if online change for MODBLKS is enabled (DFSDFxxx or DFSCGxxx defined with MODBLKS=OLC or MODBLKS not defined).

**Output fields**

The following table shows the CREATE PGMDESC output fields. The columns in the table are as follows:

<table>
<thead>
<tr>
<th>Short label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>N/A</td>
<td>Completion code.</td>
</tr>
</tbody>
</table>
Table 138. Output fields for the CREATE PGMDESC command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCTXT</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the nonzero completion code.</td>
</tr>
<tr>
<td>DESC</td>
<td>PGMDESC</td>
<td>Program descriptor name.</td>
</tr>
<tr>
<td>MBR</td>
<td>N/A</td>
<td>IMSplex member that built the output line.</td>
</tr>
<tr>
<td>OLDDF</td>
<td>PGMDESC</td>
<td>Old default descriptor name, if this descriptor is made the default by specifying DEFAULT(Y). The old default descriptor is no longer the default.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 139. Return and reason codes for CREATE PGMDESC

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>Command completed successfully. The command output contains a line for each descriptor, accompanied by its completion code. See the completion code table for details.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002048'</td>
<td>Invalid SET attribute.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002106'</td>
<td>DOPT(Y) mutually exclusive with RESIDENT(Y). Either both keywords were explicitly specified, or one keyword was explicitly specified and the other attribute was obtained from the model.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002107'</td>
<td>DOPT(Y) mutually exclusive with SCHDTYPE(PARALLEL). Either both keywords were explicitly specified, or one keyword was explicitly specified and the other attribute was obtained from the model.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000210B'</td>
<td>FP(E) mutually exclusive with BMPTYPE(Y). Either both keywords were explicitly specified, or one keyword was explicitly specified and the other attribute was obtained from the model.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002113'</td>
<td>GPSB(Y) mutually exclusive with DOPT(Y). Either both keywords were explicitly specified, or one keyword was explicitly specified and the other attribute was obtained from the model.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002114'</td>
<td>GPSB(N) mutually exclusive with LANG.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002115'</td>
<td>GPSB(Y) mutually exclusive with RESIDENT(Y). Either both keywords were explicitly specified, or one keyword was explicitly specified and the other attribute was obtained from the model.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002117'</td>
<td>Invalid LIKE descriptor name.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002118'</td>
<td>Invalid LIKE resource name.</td>
</tr>
</tbody>
</table>
### Table 139. Return and reason codes for CREATE PGMDESC (continued)

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000008'</td>
<td>X'00002131'</td>
<td>GPSB(Y) requires LANG to be specified.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002132'</td>
<td>DOPT(Y) not supported with LANG except for LANG(JAVA). Either both keywords were explicitly specified, or one keyword was explicitly specified and the other attribute was obtained from the model.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002133'</td>
<td>Multiple name parameters were specified with DEFAULT(Y). Only one descriptor can be the default at one time.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003000'</td>
<td>Command was successful for some descriptors but failed for others. The command output contains a line for each descriptor, accompanied by its completion code. See the completion code table for details.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>Command was not successful for any of the descriptors. The command output contains a line for each descriptor, accompanied by its completion code. See the completion code table for details.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000400C'</td>
<td>Command is not valid on the XRF alternate.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>Command is not valid on the RSR tracker.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004024'</td>
<td>No FP defined, so FP(E) invalid.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004120'</td>
<td>Command is quiesced. Cannot quiesce model.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004204'</td>
<td>Online change phase is in progress.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004300'</td>
<td>Command is not allowed because online change for MODBLKS is enabled (DFSDFxxx or DFSGxxx defined with MODBLKS=OLC, or MODBLKS not defined).</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005004'</td>
<td>DFSOCMD response buffer could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005008'</td>
<td>DFSPOOL storage could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'0000500C'</td>
<td>AWE could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005010'</td>
<td>Unable to obtain latch.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005114'</td>
<td>Resource or descriptor that is specified as a model is in the process of being imported from the change list in the IMSRSC repository or was not imported successfully from the change list at the end of IMS restart. This resource or descriptor cannot be referenced as a model on a CREATE command until it is successfully imported from the repository.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. The following table includes an explanation of the completion codes.

### Table 140. Completion codes for the CREATE PGMDESC command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>Command completed successfully for program descriptor.</td>
</tr>
<tr>
<td>11</td>
<td>RESOURCE_ALREADY_EXISTS</td>
<td>Program descriptor already exists.</td>
</tr>
</tbody>
</table>
Table 140. Completion codes for the CREATE PGMDESC command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>5F</td>
<td>INVALID CHARACTERS IN NAME</td>
<td>Name is invalid because it contains an invalid character.</td>
</tr>
<tr>
<td>61</td>
<td>DFSBCB STORAGE ERROR</td>
<td>Request to get BCB storage for PDIR control block failed.</td>
</tr>
<tr>
<td>8A</td>
<td>WILDCARD PARAMETER NOT SUPPORTED</td>
<td>The CREATE command does not support wildcard parameters. You must explicitly specify the names of the descriptors you want to create.</td>
</tr>
<tr>
<td>93</td>
<td>RESERVED NAME</td>
<td>Name is reserved. For example, name starts with DFS (except for DFSSAMxx or DFSIVPxx), or is an IMS reserved name such as BASICEDT or WTOR.</td>
</tr>
</tbody>
</table>

Examples

The following are examples of the CREATE PGMDESC command:

Example 1 for CREATE PGMDESC command

TSO SPOC input:
CREATE PGMDESC NAME(FPEDESC) SET(DOPT(Y) FP(E) BMPTYPE(N),SCHDTYPE(SERIAL))

TSO SPOC output:
DescName MbrName CC
FPEDESC IMS1 0

OM API input:
CMD(CREATE PGMDESC NAME(FPEDESC) SET(DOPT(Y) FP(E) BMPTYPE(N),SCHDTYPE(SERIAL)))

OM API output:
<?xml version="1.0" encoding="US-ASCII"?>
<imsout>
  <ctl>
    <omname>OM1OM</omname>
    <omvsn>1.3.0</omvsn>
    <xmlvsn>20</xmlvsn>
    <statime>2006.254 22:51:06.632728</statime>
    <stotime>2006.254 22:51:06.633257</stotime>
    <staseq>BF645AD6D921890E</staseq>
    <stoseq>BF645AD6D9429A8E</stoseq>
    <rqsttkn1>USRT011 10155106</rqsttkn1>
    <rc>00000000</rc>
    <rsn>00000000</rsn>
  </ctl>
  <cmd>
    <master>IMS1</master>
    <userid>USRT011</userid>
    <verb>CRE</verb>
    <kwd>PGMDESC</kwd>
    <input>CREATE PGMDESC NAME(FPEDESC) SET(DOPT(Y) FP(E) BMPTYPE(N),SCHDTYPE(SERIAL))</input>
  </cmd>
</imsout>
Explanation: Creates a descriptor with attributes appropriate for a Fast Path exclusive program. Subsequent Fast Path exclusive programs can be created more easily by using this descriptor.

Related concepts:

- How to interpret CSL request return and reason codes (System Programming APIs)

Related reference:

Chapter 2, “Command keywords and their synonyms,” on page 63

CREATE RTC command

Use the CREATE RTC command to create a Fast Path routing code that can be used by the Fast Path Input Edit/Routing Exit Routine (DBFHAGU0) to route a transaction to a different application program within the same load balancing group for processing.

Subsections:

- "Environment"
- "Syntax" on page 236
- "Keywords" on page 236
- "Usage notes" on page 237
- "Output fields" on page 238
- "Return, reason, and completion codes" on page 238
- "Examples" on page 240

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CREATE RTC</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LIKE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SET</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Syntax

```
CRE
NAME(name)
LIKE(DESC(descriptor_name), RSC(resource_name))
SET(INQ(Y) (1))
PGM(name)
```

Notes:

1. The PGM() keyword is required if the default descriptor or other descriptor from which the resource is being created does not already have a program defined.

Default values shown in this syntax diagram reflect the default values that are defined in the IMS routing code descriptor, DBFDSRT1. If you define another descriptor as the default with a CREATE or UPDATE RTCDESC command, the default values shown in this syntax diagram might not match the value defined in the current default descriptor.

Keywords

The following keywords are valid for the CREATE RTC command:

LIKE

Specifies that the resource is created using an existing resource or descriptor as a model, instead of the default descriptor. The default descriptor is either the IMS descriptor DBFDSRT1, or user-defined. The model type can either be a descriptor (DESC), or a resource (RSC). The new resource is created with all the same attributes as the model, except for the DEFAULT(Y) value. Attributes set explicitly by the CREATE command override the model attributes. Later changes to the model are not propagated to resources or descriptors that were created from it.

QUERY commands can be used to display the model name and model type used to create the resource. The model name and type returned from the QUERY command are provided for informational purposes only. The EXPORT command exports a resource definition, including the model name and model type, to the definition member. The IMPORT command imports a resource definition, including the model name and model type, from the definition member. An IMPORT command that creates a resource saves the model name and model type, but does not use the models attributes.

When LIKE is used on a CREATE command, the models current attributes are used to set the attributes of the newly created resource.

DESC(descriptor_name)

Specifies the name of the descriptor to use as a model to define this resource.
RSC(resource_name)

Specifies the name of the resource to use as a model to define this resource.

NAME

Specifies the one- to eight-character alphanumeric routing code. Names must be alphanumeric (A through Z, 0 through 9, #, $, and @). Names cannot include a blank, comma, period, hyphen, or equal sign. Names cannot begin with DFS, except for DFSIVPxx and DFSSAMxx. Names cannot be BASICEDT, DBCDM, DBFDSRT1, DBRC, ISCEDT, MSDB, SDB, or WTOR. Routing codes can be duplicates of either transaction names or logical terminal names, but each must be unique within the set of routing codes. A set of routing codes is the group of all routing codes associated with the same program. A routing code resource and a routing code descriptor can have the same name.

SET

Specifies the attributes of the routing code to be created. If the LIKE keyword is omitted, attributes not specified take the value defined in the default descriptor, which is either IMS descriptor DBFDSRT1 or user-defined. If the LIKE keyword is specified, attributes not specified take the value defined in the model.

INQ

N  This is not an inquiry transaction. This is the default.

Y  This is an inquiry transaction. Any message associated with the routing code is an inquiry transaction. This should be specified only for transactions that do not cause a change to a database. Programs are prohibited from issuing Insert, Delete, or Replace calls to a database when processing a transaction defined as INQ(Y).

PGM

Specifies the name of the program associated with the routing code. For a CREATE RTC command, the program must exist and be defined with a BMPTYPE(N). The PGM() keyword is required if the default descriptor or other descriptor from which the resource is being created does not already have a program defined.

Usage notes

Resources exist for the life of the IMS unless they are deleted using a DELETE command. The resources are recoverable across an IMS warm start or emergency restart. Resources are lost if IMS is cold started, unless cold start imports definitions that were exported while IMS was up.

The CREATE RTC command is similar to local online change (using a /MODIFY command) or global online change (INITIATE OLC) for routing code resources in the MODBLKS data set, except that routing codes are added dynamically.

The CREATE RTC command can be issued only through the Operations Manager API. Fast Path must be installed on the system. This command applies to DB/DC and DCCTL systems. This command is not valid on the XRF alternate, RSR tracker, or FDBR region. The CREATE command is not valid if online change for MODBLKS is enabled (DFSDFxxy or DFSCGxxx defined with MODBLKS=OLC or MODBLKS not defined).
Output fields

The following table shows the CREATE RTC output fields. The columns in the table are as follows:

**Short label**
Contains the short label generated in the XML output.

**Keyword**
Identifies keyword on the command that caused the field to be generated. N/A appears for output fields that are always returned. error appears for output fields that are returned only in case of an error.

**Meaning**
Provides a brief description of the output field.

*Table 142. Output fields for the CREATE RTC command*

<table>
<thead>
<tr>
<th>Short label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>N/A</td>
<td>Completion code.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the non-zero completion code.</td>
</tr>
<tr>
<td>MBR</td>
<td>N/A</td>
<td>IMSplex member that built the output line.</td>
</tr>
<tr>
<td>RTC</td>
<td>RTC</td>
<td>Routing code name.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

*Table 143. Return and reason codes for CREATE RTC*

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>Command completed successfully. The command output contains a line for each resource, accompanied by its completion code. See the completion code table for details.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002048'</td>
<td>Invalid SET attribute.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002117'</td>
<td>Invalid LIKE descriptor name.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002118'</td>
<td>Invalid LIKE resource name.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002120'</td>
<td>No PGM() defined.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002123'</td>
<td>Invalid PGM name. PGM was specified explicitly, or gotten from the model. If the IMS-defined descriptor DBFDSRT1 was used, the command failed because DBFDSRT1 defines no program name.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002133'</td>
<td>Multiple name parameters were specified with DEFAULT(Y). Only one descriptor can be the default at one time.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003000'</td>
<td>Command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code. See the completion code table for details.</td>
</tr>
</tbody>
</table>
Table 143. Return and reason codes for CREATE RTC (continued)

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>Command was not successful for any of the resources. The command output contains a line for each resource, accompanied by its completion code. See the completion code table for details.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004004'</td>
<td>Command is not valid on the XRF alternate.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004004'</td>
<td>Command is not valid on the RSR tracker.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004024'</td>
<td>No Fast Path defined.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004120'</td>
<td>Online change phase is in progress.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004204'</td>
<td>Model is quiesced. Cannot quiesce model.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004300'</td>
<td>Command is not allowed because online change for MODBLKS is enabled (DFSDFxxx or DFSCGxxx defined with MODBLKS=OLC, or MODBLKS not defined).</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000431C'</td>
<td>Program is quiesced. Cannot quiesce program.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005004'</td>
<td>DFSOCMD response buffer could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005008'</td>
<td>DFSPOOL storage could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005010'</td>
<td>AWE could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005010'</td>
<td>Unable to obtain latch.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005114'</td>
<td>Resource or descriptor that is specified as a model is in the process of being imported from the change list in the IMSRSC repository or was not imported successfully from the change list at the end of IMS restart. This resource or descriptor cannot be referenced as a model on a CREATE command until it is successfully imported from the repository.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. The following table includes an explanation of the completion codes.

Table 144. Completion codes for the CREATE RTC command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command completed successfully for routing code.</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>RESOURCE ALREADY EXISTS</td>
<td>Routing code already exists.</td>
</tr>
<tr>
<td>17</td>
<td>ANOTHER CMD IN PROGRESS</td>
<td>Another command (such as DELETE PGM or UPDATE PGM) is in progress for the program referenced by this routing code.</td>
</tr>
<tr>
<td>5F</td>
<td>INVALID CHARACTERS IN NAME</td>
<td>Name is invalid because it contains an invalid character.</td>
</tr>
<tr>
<td>61</td>
<td>DFSBCB STORAGE ERROR</td>
<td>Request to get BCB storage for RCTE control block failed.</td>
</tr>
<tr>
<td>7A</td>
<td>RTC/FP=N PGM CONFLICT</td>
<td>Routing code to be created conflicts with program defined as non-Fast Path FP(N).</td>
</tr>
</tbody>
</table>
Table 144. Completion codes for the CREATE RTC command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>8A</td>
<td>WILDCARD PARAMETER NOT SUPPORTED</td>
<td>The CREATE command does not support wildcard parameters. You must explicitly specify the names of the resources you want to create.</td>
</tr>
<tr>
<td>90</td>
<td>INTERNAL ERROR</td>
<td>Internal error.</td>
</tr>
<tr>
<td>93</td>
<td>RESERVED NAME</td>
<td>Name is reserved. For example, name starts with DFS (except for DFSSAMxx or DFSIVPxx), or is an IMS reserved name such as BASICEDT or WTOR.</td>
</tr>
</tbody>
</table>

Examples

The following are examples of the CREATE RTC command:

Example 1 for CREATE RTC command

TSO SPOC input:

CRE RTC (NAME(RTC00001)) LIKE(RSC(TXCDRN14))

TSO SPOC output:

RtcName MbrName CC
RTC00001 IMS1 0

OM API input:

CMD(CRE RTC (NAME(RTC00001)) LIKE(RSC(TXCDRN14)))

OM API output:

<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>V1.3.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2006.254 23:36:59.043900</statime>
<stotime>2006.254 23:36:59.043761</stotime>
<staseq>B646517C0512E05</staseq>
<stoseq>B646517C07B1705</stoseq>
<rqsttknl>USRT011 1016365B</rqsttknl>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>IMS1</master>
<userid>USRT011</userid>
<verb>CRE</verb>
<kwd>RTC</kwd>
<input>CRE RTC (NAME(RTC00001)) LIKE(RSC(TXCDRN14))</input>
</cmd>
<cmdrhdr>
<hdr slbl="RTC" llbl="RtcName" scope="LCL" sort="a" key="1" scroll="no" len="8" dtype="CHAR" align="left" />
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" key="2" scroll="no" len="8" dtype="CHAR" align="left" />
<hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0" scroll="yes" len="4" dtype="INT" align="right" />

240 Commands, Volume 1: IMS Commands A - M
**CREATE RTCDESC command**

Use the CREATE RTCDESC command to create Fast Path routing code descriptors.

A descriptor is a model that can be used to create routing code descriptors or resources. A descriptor is created with a value set for every attribute. Attributes not explicitly specified on the CREATE command take the default value. Any routing code resource or descriptor can be created using this descriptor as a model, by specifying the CREATE command with LIKE(DESC(descriptor_name)).

Subsections:
- “Environment”
- “Syntax” on page 242
- “Keywords” on page 242
- “Usage notes” on page 243
- “Output fields” on page 244
- “Return, reason, and completion codes” on page 244
- “Examples” on page 246

**Environment**

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CREATE RTCDESC</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LIKE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Table 145. Valid environments for the CREATE RTCDESC command and keywords (continued)

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>SET</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

**Syntax**

```
CREATE RTCDESC
 NAME(name)
LIKE(DESC(descriptor_name))
 RSC(resource_name)
SET(
 DEFAULT(Y)
 INQ(Y)
 PGM(name)
)
```

Default values shown in this syntax diagram reflect the default values that are defined in the IMS routing code descriptor, DBFDSRT1. If you define another descriptor as the default with a CREATE or UPDATE RTCDESC command, the default values shown in this syntax diagram might not match the value defined in the current default descriptor.

**Keywords**

The following keywords are valid for the CREATE RTCDESC command:

**LIKE**

Specifies that the descriptor is created using an existing resource or descriptor as a model, instead of the default descriptor. The default descriptor is either the IMS descriptor DBFDSRT1, or user-defined. The model type can either be a descriptor (DESC), or a resource (RSC). The descriptor is created with all the same attributes as the model, except for the DEFAULT(Y) value. Attributes set explicitly by the CREATE command override the model attributes. DEFAULT(Y) must be specified explicitly to make a descriptor the default descriptor. Later changes to the model are not propagated to resources or descriptors that were created from it.

QUERY commands can be used to display the model name and model type used to create the descriptor or resource. The model name and type returned from the QUERY command are provided for informational purposes only. The EXPORT command exports a resource definition including the model name and model type to the definition member. The IMPORT command imports a resource definition including the model name and model type from the definition member. An IMPORT command that creates a resource saves the model name and model type, but does not use the model's attributes.

When LIKE is used on a CREATE command, the model's current attributes are used to set the attributes of the newly-created resource or descriptor, except for the default attribute.
DESC(descriptor_name)

Specifies the name of the descriptor to use as a model to define this descriptor.

RSC(resource_name)

Specifies the name of the resource to use as a model to define this descriptor.

NAME

Specifies the one- to eight-character alphanumeric routing code descriptor. Names must be alphanumeric (A through Z, 0 through 9, #, $, and @). Names cannot include a blank, comma, period, hyphen, or equal sign. Names cannot begin with DFS, except for DFSIVPxx and DFSSAMxx. Names cannot be BASICEDIT, DBCDM, DBFDSRT1, DBRC, ISCEDT, MSDB, SDB, or WTOR. Routing codes can be duplicates of either transaction names or logical terminal names, but each must be unique within the set of routing codes. A set of routing codes is the group of all routing codes associated with the same program. A routing code resource and a routing code descriptor can have the same name.

SET

Specifies the attributes of the routing code descriptor to be created. If the LIKE keyword is omitted, attributes not specified take the value defined in the default descriptor, which is either IMS descriptor DBFDSRT1 or user-defined. If the LIKE keyword is specified, attributes not specified take the value defined in the model.

DEFAULT

Specifies whether the descriptor is the default.

N The descriptor is not the default.

Y The descriptor is the default, which resets the existing default descriptor to DEFAULT(N). When a descriptor or resource is created without the LIKE keyword, any attribute not specified on the CREATE command takes the value defined in the default descriptor. Only one descriptor can be defined as the default for a resource type. IMS defines a default routing code descriptor called DBFDSRT1, where all attributes are defined with the default value. Defining a user-defined descriptor as the default overrides the IMS-defined descriptor. Since only one routing code descriptor can be the default at one time, only one routing code parameter may be specified with DEFAULT(Y).

INQ

N This is not an inquiry transaction. This is the default.

Y This is an inquiry transaction. Any message associated with the routing code descriptor is an inquiry transaction. This should be specified only for transactions that do not cause a change to a database. Programs are prohibited from issuing Insert, Delete, or Replace calls to a database when processing a transaction defined as INQ(Y).

PGM

Specifies the name of the program associated with the routing code descriptor.

Usage notes

Descriptors exist for the life of the IMS unless they are deleted using a DELETE command. The resources and descriptors are recoverable across an IMS warm start.
or emergency restart. Descriptors are lost if IMS is cold started, unless cold start imports definitions that were exported while IMS was up.

The CREATE RTCDESC command can only be issued through the Operations Manager API. Fast Path must be installed on the system. This command applies to DB/DC and DCCtl systems. This command is not valid on the XRF alternate, RSR tracker, or FDBR region. The CREATE command is not valid if online change for MODBLKS is enabled (DFSDFxxx or DFSCGxxx defined with MODBLKS=OLC or MODBLKS not defined).

### Output fields

The following table shows the CREATE RTCDESC output fields. The columns in the table are as follows:

**Short label**
- Contains the short label generated in the XML output.

**Keyword**
- Identifies keyword on the command that caused the field to be generated. N/A appears for output fields that are always returned. error appears for output fields that are returned only in case of an error.

**Meaning**
- Provides a brief description of the output field.

#### Table 146. Output fields for the CREATE RTCDESC command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>N/A</td>
<td>Completion code.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the non-zero completion code.</td>
</tr>
<tr>
<td>DESC</td>
<td>RTCDESC</td>
<td>Routing code descriptor name.</td>
</tr>
<tr>
<td>MBR</td>
<td>N/A</td>
<td>IMSplex member that built the output line.</td>
</tr>
<tr>
<td>OLDDEF</td>
<td>RTCDESC</td>
<td>Old default descriptor name, if this descriptor is made the default by specifying DEFAULT(Y). The old default descriptor is no longer the default.</td>
</tr>
</tbody>
</table>

### Return, reason, and completion codes

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

#### Table 147. Return and reason codes for CREATE RTCDESC

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>Command completed successfully. The command output contains a line for each descriptor, accompanied by its completion code. See the completion code table for details.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002048'</td>
<td>Invalid SET attribute.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002117'</td>
<td>Invalid LIKE descriptor name.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002118'</td>
<td>Invalid LIKE resource name.</td>
</tr>
</tbody>
</table>
Table 147. Return and reason codes for CREATE RTCDESC (continued)

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000008'</td>
<td>X'00002123'</td>
<td>Invalid PGM name. PGM was specified explicitly, or gotten from the model. If the IMS-defined descriptor DBFDSRT1 was used, the command failed because DBFDSRT1 defines no program name.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002137'</td>
<td>Multiple name parameters specified with DEFAULT(Y) is invalid. Only one descriptor can be the default at one time.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003000'</td>
<td>Command was successful for some descriptors but failed for others. The command output contains a line for each descriptor, accompanied by its completion code. See the completion code table for details.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>Command was not successful for any of the descriptors. The command output contains a line for each descriptor, accompanied by its completion code. See the completion code table for details.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000400C'</td>
<td>Command is not valid on the XRF alternate.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>Command is not valid on the RSR tracker.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004024'</td>
<td>No Fast Path defined.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004120'</td>
<td>Online change phase is in progress.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004204'</td>
<td>Model is quiesced. Cannot quiesce model.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004300'</td>
<td>Command is not allowed because online change for MODBLKS is enabled (DFSDFxxx or DFSCGxxx defined with MODBLKS=OLC, or MODBLKS not defined).</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005004'</td>
<td>DFSOCMD response buffer could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005008'</td>
<td>DFSPOOL storage could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005010'</td>
<td>Unable to obtain latch.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005114'</td>
<td>Resource or descriptor that is specified as a model is in the process of being imported from the change list in the IMSRSC repository or was not imported successfully from the change list at the end of IMS restart. This resource or descriptor cannot be referenced as a model on a CREATE command until it is successfully imported from the repository.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. The following table includes an explanation of the completion codes.

Table 148. Completion codes for the CREATE RTCDESC command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command completed successfully for routing code descriptor.</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>RESOURCE ALREADY EXISTS</td>
<td>Routing code descriptor already exists.</td>
</tr>
</tbody>
</table>
Table 148. Completion codes for the CREATE RTCDESC command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>ANOTHER CMD IN PROGRESS</td>
<td>Another command (such as DELETE PGM or UPDATE PGM) is in progress for the program referenced by this routing code descriptor.</td>
</tr>
<tr>
<td>5F</td>
<td>INVALID CHARACTERS IN NAME</td>
<td>Name is invalid because it contains an invalid character.</td>
</tr>
<tr>
<td>61</td>
<td>DFSBCB STORAGE ERROR</td>
<td>Request to get BCB storage for RCTE control block failed.</td>
</tr>
<tr>
<td>7A</td>
<td>RTC/FP=N PGM CONFLICT</td>
<td>Routing code to be created conflicts with program defined as non-Fast Path FP(N).</td>
</tr>
<tr>
<td>8A</td>
<td>WILDCARD PARAMETER NOT SUPPORTED</td>
<td>CREATE command does not support wildcard parameters. You must explicitly specify the names of the resources you want to create.</td>
</tr>
<tr>
<td>90</td>
<td>INTERNAL ERROR</td>
<td>Internal error</td>
</tr>
<tr>
<td>93</td>
<td>RESERVED NAME</td>
<td>Name is reserved. For example, name starts with DFS (except for DFSSAMxx or DFSIVPxx), or is an IMS reserved name such as BASICEDT or WTOR.</td>
</tr>
</tbody>
</table>

Examples

The following are examples of the CREATE RTCDESC command:

Example 1 for CREATE RTCDESC command

TSO SPOC input:
CRE RTCDESC NAME(DRCTRN02,DRCTRN03) LIKE(RSC(FPTRN01)) SET(PGM(FPPSB03))

TSO SPOC output:
DescName MbrName CC
DRCTRN02 IMS1 0
DRCTRN03 IMS1 0

Explanation: A CREATE RTCDESC command is issued to create two routing code descriptors at IMS1 in an IMSplex. Routing code descriptors DRCTRN02 and DRCTRN03 are defined using the existing routing code resource called FPTRN01. Routing code FPTRN01 is defined with INQ(Y). Descriptors DRCTRN02 and DRCTRN03 are defined using routing code FPTRN01 as a model for the INQ(Y) attribute, but overriding the program name by explicitly specifying PGM(FPPSB03) on the command.

Related concepts:

How to interpret CSL request return and reason codes (System Programming APIs)

Related reference:

Chapter 2, “Command keywords and their synonyms,” on page 63
CREATE TRAN command

Use the CREATE TRAN command to create a transaction code that causes the application program associated with the program resource defined by PGM() to be scheduled for execution in an IMS message processing region.

The transaction provides IMS with information that influences the application program scheduling algorithm. The program resource defined by PGM() keyword must exist for the CREATE TRAN command to complete successfully.

Subsections:
- “Environment”
- “Syntax”
- “Keywords” on page 249
- “Usage notes” on page 263
- “Output fields” on page 263
- “Return, reason, and completion codes” on page 264
- “Examples” on page 269

Environment

The following table lists the environments (DB/BC, DBCTL, and DCCTL) from which the command keywords can be issued.

Table 149. Valid environments for the CREATE TRAN command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CREATE TRAN</td>
<td>X</td>
<td>DBCTL</td>
<td>X</td>
</tr>
<tr>
<td>LIKE</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SET</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Syntax

A:
Default values shown in this syntax diagram reflect the default values that are defined in the IMS transaction descriptor, DFSDSTR1. If you define another descriptor as the default with a CREATE or UPDATE TRANDESC command, the default values shown in this syntax diagram might not match the value defined in the current default descriptor.

**Keywords**

The following keywords are valid for the CREATE TRAN command:

**LIKE**

 Specifies that the resource is created using an existing resource or descriptor as a model, instead of the default descriptor. The default descriptor is either the IMS descriptor DFSDSTR1, or user-defined. The model type can either be a descriptor (DESC), or a resource (RSC). The new resource is created with all the same attributes as the model. Attributes set explicitly by the CREATE command override the model attributes. Later changes to the model are not propagated to resources or descriptors that were created from it.

The QUERY commands can be used to display the model name and model type used to create the resource. The model name and type returned from the QUERY command are provided for informational purposes only. The EXPORT command exports a resource definition, including the model name and model type, to the definition member. The IMPORT command imports a resource definition, including the model name and model type, from the definition member. An IMPORT command that creates a resource saves the model name and model type, but does not use the models attributes.

**DESC(descriptor_name)**

 Specifies the name of the descriptor to use as a model to define this resource.

**RSC(resource_name)**

 Specifies the name of the resource to use as a model to define this resource.

**NAME**

 Specifies the 1-8 character name of the transaction. Names must be alphanumeric (A through Z, 0 through 9, #, $, and @). Names cannot include a blank, comma, period, hyphen, or equal sign. Names cannot begin with DFS, except for DFSCONE, DFSIVPxx, and DFSSAMxx. Names cannot be BASICEDT, DBCDM, DBRC, ISCEDT, MSDB, SDB, or WTOR. A transaction resource and a transaction descriptor can have the same name. A transaction cannot have the same name as an lterm.

**SET**

 Specifies the attributes of the transaction to be created. If the LIKE keyword is omitted, attributes not specified take the value defined in the default descriptor, which is either the IMS descriptor DFSDSTR1, or user-defined. If the LIKE keyword is specified, attributes not specified take the value defined in the model. A transaction must have the same characteristics in all systems where it is defined when it is shared. These characteristics include:

- Nonconversational/conversational
- SPA size if conversational
- Single-/multi-segment messages
- Noninquiry/inquiry
- Recoverable/nonrecoverable
- Response mode/non-response mode
- Fast Path exclusive/Fast Path potential/non-Fast Path

**AOCMD**
Specifies the AOI option that indicates whether the transaction can issue the type-1 AOI CMD call or the type-2 AOI ICMD call. If AOCMD is defined as CMD, TRAN, or Y, and the AOI1 execute parameter is defined as AOI1=N, no authorization checking is done, and the transaction is permitted to issue CMD and ICMD calls.

- N Indicates that the transaction is not permitted to issue type-1 AOI CMD calls. The transaction is permitted to issue type-2 AOI ICMD calls.

- CMD Indicates that the transaction is permitted to issue type-1 AOI CMD calls and type-2 AOI ICMD calls. If the AOI execute parameter is defined as C, R, or A, authorization checking is based on which transactions can issue a particular command. In this case, the commands (or the first three characters of the commands) need to be defined to RACF or an equivalent product as a user. The type-1 AOI transactions must be defined as profiles under the TIMS class, and for each transaction, the commands it can issue must be specified. Defining AOCMD(CMD) requires you to create fewer user IDs than you need to create for the AOCMD(TRAN) definition. However, defining AOCMD(CMD) requires you to create or modify a larger number of resource profiles.

- TRAN Indicates that the transaction is permitted to issue type-1 AOI CMD calls and type-2 AOI ICMD calls. If the AOI execute parameter is defined as C, R, or A, the transaction code is used for authorization. The first authorization check results in the accessor environment element (ACEE) being built. This environment is kept for use by future authorization checks. The type-1 AOI transaction needs to be defined to RACF or an equivalent product as a user. The transactions will then be specified on RACF PERMIT statements for each command they are allowed to issue from a type-1 AOI transaction. Specifying AOI transactions as users to RACF might conflict with the name of a user already defined to RACF. If this occurs, then either the transaction name or the existing user name needs to be changed.

- Y Indicates that the transaction is permitted to issue type-1 AOI CMD calls and type-2 AOI ICMD calls. If the AOI execute parameter is defined as C, R, or A, the user ID or the program name is used for authorization. For some environments, if a Get Unique call has not yet occurred, the program name is used for authorization.

**CLASS**
Specifies the transaction class, which is an attribute used to select a transaction for scheduling. A transaction can be scheduled if there is a message processing region available for that class. The value can be a number from 1 to 999. The default is 1. This value must not exceed the value given (by specification or default) on the MAXCLAS= keyword of the IMSCtrl macro.

Define CPI-C transactions with a different message class from that used for non-CPI-C transactions. IMS handles all CPI-C transactions as priority zero within the transaction class.

**CMTMODE**
Specifies when database updates and non-express output messages are committed. This operand affects emergency restart.

**MULT**

Database updates and non-express output messages are committed only when the application program terminates normally, when the processing limit count has been reached, or, in the case of a pseudo-WFI dependent region, when there are no more messages on the queue. For example, if five transactions are processed during a single schedule of a program, all five are committed only when the fifth one is completed and the program terminates. Until a transaction has been committed, locks for updated database records are not released and non-express output messages are not queued for output. If an application ends abnormally before committing its messages, emergency restart requeues all the messages that were processed within the commit scope and makes them available for reprocessing.

If the transaction results in the application calling an external subsystem, such as DB2, the Commit Verify exit provided by the external subsystem can determine whether CMTMODE(MULT) is supported. See documentation under the Commit Verify exit routine in *IMS Version 13 Exit Routines*.

**SNGL**

Database updates and non-express output messages are committed when the application program completes processing each transaction. IMS invokes commit processing either when the application program requests the next message (issues a GU to the IO-PCB), or when the application program terminates. If an application ends abnormally before committing its message, emergency restart requeues the message that was in process before the abend and makes it available for reprocessing. This is the default.

*Note:* The TRANSACT macro MODE keyword uses a default of MULT. The CREATE TRAN command CMTMODE keyword uses a default of SNGL.

Keyword combination rules include the following:
- CMTMODE(MULT) and CONV(Y) are mutually exclusive.
- CMTMODE(MULT) and WFI(Y) are mutually exclusive.

**CONV**

Specifies the conversation option.

**N** The transaction is not conversational. This is the default.

**Y** The transaction is conversational. The transaction message is destined for a conversational program. A conversational program processes transactions made up of several steps. A conversational program receives a message from a terminal, replies to the terminal, but saves the data from the transaction in a scratchpad area (SPA). When the person at the terminal enters more data, the program has the data it saved from the last message in the SPA, so it can continue processing the request without the person at the terminal having to enter the data again.

Keyword combination rules include the following:
- CMTMODE(MULT) and CONV(Y) are mutually exclusive.
- FP(E) and CONV(Y) are mutually exclusive.
- CONV(Y) requires SPASZ and SPATRUNC.
• RECOVER(N) and CONV(Y) are mutually exclusive.
• SPASZ and CONV(N) are mutually exclusive.
• SPATRUNC and CONV(N) are mutually exclusive.

**DCLWA**

Specifies the log write-ahead option. If not specified and the default descriptor is the IMS-defined descriptor DFSDSTR1, the value is defined to be the DFSDFxxx PROCLIB member DCLWA parameter at IMS cold start. Changing the DFSDFxxx DCLWA value across a restart has no effect on the default descriptor DCLWA value. If DCLWA is not defined in the DFSDFxxx PROCLIB member, the default is DCLWA=Y.

**N** IMS should not perform log write-ahead. Specify N if input message integrity and the consistency of output messages with associated database updates is not required. DCLWA does not apply to response mode or Fast Path input processing, and is ignored during IMS execution.

**Y** IMS should perform log write-ahead for recoverable, nonresponse input messages and transaction output messages. This ensures the following:

• A nonresponse input transaction is made recoverable across IMS failures before IMS acknowledges receipt of the input.
• Database changes are made recoverable before IMS sends associated output reply messages.
• Information in the log buffers is written to the IMS log, before the associated input acknowledgment or output reply is sent to the terminal.

Define DCLWA(Y) for all VTAM terminal types.

**DIRROUTE**

Specifies the MSC directed routing option.

**N** The application program processing a transaction is not informed of the system which originated the transaction. The name of the originating LTERM is placed in the I/O PCB. This is the default.

**Y** The application program processing a transaction is informed of the system which originated the transaction, if MSC directed routing is used in a multiple IMS system configuration. An MSNAME corresponding to a logical path back to the originating system is placed in the I/O PCB.

**EDITRTN**

Specifies the 1- to 8-character name of your transaction input edit routine that edits messages before the program receives the message. This name must be alphanumeric (A through Z, 0 through 9, #, $, and @). It must begin with an alphabetic character (A through Z, #, $, @). It cannot include a blank, comma, period, hyphen, or equal. It cannot include the wildcard characters * or %.

The specified edit routine can either be an edit routine defined during the system definition process with the EDIT= parameter on the TRANSACT macro or it can be a new routine. If the routine is a new routine, the routine must reside in one of the RESLIB concatenated data sets. A maximum of 255 input edit routines are supported.

If the edit routine specified on the command is new to IMS, IMS attempts to load the routine from RESLIB. If the load fails, the command is rejected. If the edit routine specified is already defined to IMS, a decision is made whether to load a new copy of the routine or to use the existing copy. If the routine was
generated into the system, but there are no transactions referencing the routine, IMS first attempts to load a new copy of the module from RESLIB. If the load is successful, the dynamic copy of the edit routine is used. The generated copy cannot be used again unless IMS is cold started. If the load of the dynamic routine fails, the generated copy is used. If the edit routine was generated into the system and other transactions reference it, the generated copy of the module is used.

EDITRTN is used for a Fast Path potential transaction when the transaction is routed to IMS.

For input from LU 6.2 devices, the user edit exit routine DFSLUEE0 is called instead of the transaction input edit routine specified in EDITRTN.

Keyword combination rules include the following:

- FP(E) and EDITRTN are mutually exclusive.

**EDITUC**

Specifies the edit to uppercase option.

- **N** The input data is not translated to uppercase. It can consist of upper and lowercase characters as entered from the terminal.
- **Y** The input data is to be translated to uppercase before it is presented to the processing program. If FP(E) or FP(P), the transaction is to be translated to uppercase before being presented to the edit/routing exit routine. This is the default.

Specifying EDITUC(Y) for VTAM terminals prevents the transmission of embedded device control characters.

**EMHBSZ**

Specifies the EMH buffer size required to run the Fast Path transaction. This overrides the EMHL execution parameter. If EMHBSZ is not specified, the EMHL execution parameter value is used. The value can be a number from 0 to 30720.

Keyword combination rules include the following:

- EMHBSZ>0 requires Fast Path to be defined.
- FP(N) and EMHBSZ>0 are mutually exclusive.

**EXPTIME**

Specifies the elapsed time in seconds that IMS can use to cancel the input transaction. After a transaction is submitted to IMS, the transaction could be delayed for processing because of a stopped transaction or a potential system slow down. In that case, the user or client application could time out before the transaction is processed. When IMS eventually schedules and processes the transaction, the response message is no longer wanted. With the elapsed time specified for the transaction, IMS can flag the input transaction as expired so that the system does not waste CPU cycles to process the unwanted transaction.

The value can be a number, in seconds, which can range from 0 to 65535. The default is 0, which means that no expiration time is set for this transaction. The transaction expiration attribute is supported by all of the IMS TM interfaces.

**Restriction:** The transaction expiration checking is not performed at the GU time for Fast Path transactions, IMS conversational transactions, and program-to-program switch transactions.

**FP** Specifies the Fast Path option.
The transaction is processed exclusively as Fast Path. A Fast Path routing code by the same name is created. The program must be defined as Fast Path exclusive.

The transaction is not a candidate for Fast Path processing. The program identified by PGM() must be defined as not Fast Path. This is the default.

The transaction is a potential candidate for Fast Path processing. Fast Path-potential transactions must be able to run under two programs: a Fast Path exclusive program and a non-Fast Path program. This CREATE TRAN command defines the non-Fast Path program with PGM(). A Fast Path exclusive program should be defined to which this transaction can be routed. Fast Path-potential transactions must be processed by a user edit/routing exit to determine whether the transaction is actually to be processed by IMS Fast Path. If it is to be processed by IMS Fast Path, the edit/routing exit routine associates the transaction with a routing code. This routing code identifies which Fast Path program is to process the transaction.

The program defined by PGM() must not be defined as Fast Path exclusive.

Keyword combination rules include the following:

- EDITRTN and FP(E) are mutually exclusive.
- FP(P) and FP(E) require Fast Path to be defined.
- CONV(Y) and FP(E) are mutually exclusive.
- MSGTYPE(MULTSEG) and FP(E) are mutually exclusive.
- MSGTYPE(MULTSEG) and FP(P) are mutually exclusive.
- MSNAME and FP(E) are mutually exclusive.
- MSNAME and FP(P) are mutually exclusive.
- RECOVER(N) and FP(E) are mutually exclusive.
- RECOVER(N) and FP(P) are mutually exclusive.
- RESP(N) and FP(E) are mutually exclusive.
- RESP(N) and FP(P) are mutually exclusive.
- SIDL and FP(E) are mutually exclusive.
- SIDL and FP(P) are mutually exclusive.
- SIDR and FP(E) are mutually exclusive.
- SIDR and FP(P) are mutually exclusive.

**INQ**

Specifies the inquiry option.

- N This is not an inquiry transaction. This is the default.
- Y This is an inquiry transaction. If INQ(Y) is specified, you can also specify whether this transaction should be recovered during an IMS emergency or normal restart using the RECOVER() parameter.

This option should be specified only for those transactions that, when entered, do not cause a change in any database. Programs are prohibited from issuing ISRT, DLET, or REPL calls to a database when scheduled to process a transaction defined as INQ(Y).

An application program cannot do an SQL INSERT, DELETE, or UPDATE when the IMS transaction is defined with INQ(Y).

Keyword combination rules include the following:
• RECOVER(N) and INQ(N) are mutually exclusive.

**LCT**

Specifies the limit count. This is the number that, when compared to the number of input transactions queued and waiting to be processed, determines whether the normal or limit priority value is assigned to this transaction. The value can be a number from 1 to 65535. The default is 65535.

The limit count value is ignored for a transaction processed by a BMP.

The limit count value is ignored in a shared-queues environment.

The limit count value does not apply to FP exclusive transactions and is ignored.

**LPRI**

Specifies the limit priority. This is the scheduling priority to which this transaction is raised when the number of input transactions enqueued and waiting to be processed is equal to or greater than the limit count value. The scheduling priority is an attribute used to select a transaction for scheduling. A transaction of higher priority is scheduled before a lower priority one, if they are defined with the same class. The value can be a number from 0 through 14. The default is 1.

When the limit priority is used and the scheduling priority is raised to the limit priority, the priority is not reduced to the normal priority until all messages enqueued for this transaction name are processed. If you do not want the limit priority for this transaction, define equal values for the normal priority and limit priority, and a limit count of 65535.

When a transaction is processed exclusively by a batch message program (BMP), define the limit priority as 0. If the program specified by PGM() is defined with a program type of batch, the current priority is forced to be 0. However, a batch message processing region (BMP) can process transactions with current scheduling priorities other than 0.

This priority also controls the priority of messages created by this transaction and sent to a destination in a remote system. See also the discussion on MSC priorities under the NPRI definition.

The limit priority value is ignored for a transaction processed by a BMP.

Scheduling ignores the limit priority value for batch programs. If the transaction refers to a batch program and a non-zero LPRI value is specified, it is set to 0.

The limit priority value is ignored in a shared queues environment.

**MAXRGN**

Specifies the maximum region count. This count value limits the number of message processing program (MPP) regions that can be concurrently scheduled to process a transaction. When the number of MPP regions is not limited, one transaction might monopolize all available regions. The value can be a number between 0 and the value specified on the MAXPST= control region parameter. MAXRGN(0) means that no limit is imposed. If you define the program with a scheduling type of SERIAL, omit the MAXRGN parameter or define it as 0.

Keyword combination rules include the following:
• PARLIM(65535) and MAXRGN>0 are mutually exclusive.
• SERIAL(Y) and MAXRGN>0 are mutually exclusive.
MSGTYPE

Specifies the message type (single segment or multiple segment). It specifies the time at which an incoming message is considered complete and available to be routed to an application program for subsequent processing.

If MSC-directed routing is used in a multiple IMS system configuration, IMS does not ensure that both the message and the transaction destined to process that message are either single segment or multiple segments.

MULTSEG

The incoming message can be more than one segment in length. It is not eligible for scheduling to an application program until an end-of-message indication is received, or a complete message is created by MFS. This is the default.

SNGLESEG

The incoming message is one segment in length. It becomes eligible for scheduling when the terminal operator indicates end-of-segment.

Keyword combination rules include the following:
• FP(E) and MSGTYPE(MULTSEG) are mutually exclusive.
• FP(P) and MSGTYPE(MULTSEG) are mutually exclusive.

MSNAME

Specifies the one- to eight-character name of the logical link path in a multiple IMS system configuration (MSC). A logical link path is a path between any two IMS systems. The IMS systems are identified by the remote system ID and the local system ID associated with the logical link path. The remote system ID identifies the system in which messages using this path are to be processed. The local system ID identifies this system. If this transaction is exported, the local and remote system IDs are exported, not the msname. For a CREATE TRAN command adding a remote transaction, the MSNAME must already be defined.

Keyword combination rules include the following:
• FP(E) and MSNAME are mutually exclusive.
• FP(P) and MSNAME are mutually exclusive.
• SIDL and MSNAME are mutually exclusive.
• SIDR and MSNAME are mutually exclusive.

NPRI

Specifies the normal scheduling priority. The scheduling priority is an attribute used to select a transaction for scheduling. A transaction of higher priority is scheduled before a lower priority one, if they are defined with the same class. When a transaction resource is created, the current priority (CPRI), or the scheduling priority, is initialized to the normal priority (NPRI). The normal priority is also assigned to a transaction as the current priority when the number of input transactions enqueued and waiting to be processed is less than the limit count value. The value can be a number from 0 through 14. The default is 1.

This priority also controls the priority of messages created by this transaction and sent to a destination in a remote system.

When a transaction is processed exclusively by a batch message program (BMP), code the normal priority as 0.
When a transaction is processed exclusively by a batch message program (BMP), define the limit priority as 0. If the program specified by PGM() is defined with a program type of batch, the current priority is forced to be 0. However, a batch message processing region (BMP) can process transactions with current scheduling priorities other than 0.

For remote transactions, the priority used to send the transaction to the processing system, which is termed the MSC link message priority. The three MSC link message priority groups are:

- Low
- Medium
- High

The low priority group consists of primary requests in the input terminal system. This group is assigned remote transaction priorities from 0 to 6. The medium group consists of secondary requests, responses, primary requests in an intermediate system, and primary requests in the input terminal system. This group is assigned a remote transaction priority of 7. The high group consists of primary requests in the input terminal system. Messages in this group are assigned remote transaction priorities from 8 to 14. Within each group, messages have a priority based on the current priority value of the transaction or remote transaction in the input terminal system for primary requests, and on the latest processing system for secondary requests and responses.

In an MSC configuration, the transaction priority determines the priority used to send messages inserted by this transaction across an MSC link. If the transaction inserts multiple messages to the same destination (for example, pages to a printer) and these messages must be sent in the order inserted, the normal and limit priority values should be the same. If the normal and limit priority values are not identical, messages inserted at a higher priority than previously inserted messages could arrive at their destination first. (This restriction does not apply to multiple segments of the same message.)

The normal priority value is ignored for a transaction processed by a BMP.

Scheduling ignores the normal priority value for batch programs. If the transaction refers to a batch program and a non-zero NPRI value is specified, it is set to 0.

**PARLIM**

Specifies the parallel processing limit count. This is the maximum number of messages that can currently be queued, but not yet processed, by each active message region currently scheduled for this transaction. This is the threshold value to be used when the associated program is defined with a scheduling type of parallel. An additional region is scheduled whenever the current transaction enqueue count exceeds the PARLIM value multiplied by the number of regions currently scheduled for this transaction.

The value can be a number from 0 to 32767 or 65535. PARLIM(0) indicates that any input message can cause a new region to be scheduled because the scheduling condition is always being met (the number of messages are greater than zero). If you specify PARLIM(0), you should specify a MAXRGN value to limit the number of regions that can be scheduled to process a particular transaction. PARLIM(65535) means that parallel processing is disabled and IMS allows the transaction to be scheduled in only one region at a time. PARLIM(65535) is the default.
The value specified for PARLIM applies to message processing programs (MPPs) only; it is not supported for batch message processing programs (BMPs).

If you define the transaction as serial or the program with a scheduling type as SERIAL, define PARLIM(65535).

In a shared-queues environment (when the scheduling type is PARALLEL), any PARLIM value other than 65535 causes a new region to be scheduled whenever the successful consecutive GU count exceeds the PARLIM value multiplied by the number of regions currently scheduled for this transaction. For shared-queues environments, the successful consecutive GU count is used instead of the queue count. New regions continue to be scheduled up to the maximum number of regions specified on MAXRGN.

The PARLIM keyword is not applicable to FPE transactions and should be allowed to default to 65535. A PARLIM value can be specified for FPE transactions, but it is ignored by scheduling. Specifying a PARLIM value that is not the default will result in a BAL status shown for an FPE transaction on commands such as /DISPLAY TRAN or QUERY TRAN. The PARLIM and BAL status can be ignored for FPE transactions.

Keyword combination rules include the following:
- MAXRGN>0 and PARLIM(65535) are mutually exclusive.
- SERIAL(Y) and PARLIM value 0 - 32767 are mutually exclusive.

**PGM**

Specifies the name of the program associated with the transaction.

For a CREATE TRAN command specified with REMOTE(N), the program must exist. PGM() is required, except for remote transactions defined with REMOTE(Y).

**PLCT**

Specifies the processing limit count. This is maximum number of messages sent to the application program by IMS for processing without reloading the application program. The value must be a number from 0 through 65535. PLCT(0) means the maximum number of messages sent to the application is one and the application program is reloaded before receiving a subsequent message. PLCT(65535) means that no limit is to be placed upon the number of messages processed at a single program load. Values 1 through 65535 are eligible for quick reschedule processing. The default is 65535.

The value is used to determine how many messages an application program is allowed to process in a single scheduling cycle. When the application program requests, and receives, the number of messages indicated, any subsequent requests result in one of two actions.
- IMS indicates “no more messages exist” if any of the following conditions is true:
  - The region is not an MPP.
  - The currently scheduled mode is not CMTMODE(SNGL).
  - Equal or higher priority transactions are enqueued for the region.

IMS might have other messages enqueued for the application program. It is the responsibility of the application program to terminate when it receives an indicator that no more messages are available. Termination of the application program makes the region it occupied available for rescheduling. This feature makes it possible for IMS to enable scheduling of higher priority transactions that entered the system while the previous transactions
were in process. In addition, if any equal-priority transactions are enqueued, they become eligible for scheduling on a first-in, first-out (FIFO) basis.

- The region goes through quick reschedule and returns the next message to the application if all of the following conditions are true:
  - The region is an MPP.
  - The transaction is CMTMODE(SNGL).
  - No equal or higher transactions are enqueued.
  - Messages are still enqueued for the application program.

**PLCTTIME**

Specifies the processing limit count time. This is the amount of time (in hundredths of seconds) allowable to process a single transaction (or message). The number specifies the maximum CPU time allowed for each message to be processed in the message processing region.

Batch Message Programs (BMPs) are not affected by this setting.

The value can be a number, in hundredths of seconds, that can range from 1 to 6553500. A value of 6553500 means no time limit is placed on the application program. The default is 6553500.

If Fast Path is used, this keyword specifies, for a given transaction name, the amount of time (in hundredths of seconds) the program is allowed to process a single transaction message. The time represents real time that elapses during transaction processing (not accumulated task time). Real time is used because the input terminal is in response mode and cannot enter another transaction until the response is sent. In this case PLCT() is ignored.

The value controls application program looping. You are not required to optimize the value for program-transaction execution time. However, the time value assigned should not be less than the expected per-transaction execution time. If the scheduled application program exceeds the product of PLCTTIME() and PLCT(), the application program ends abnormally. If an IMS STIMER value of 2 is specified on the DFSMPR procedure, the region does not abend until completion of the DL/I call.

The application program must not use STIMER timer services. IMS uses STIMER timer services to time the execution of transactions. If an application program issues an MVS STIMER macro, it cancels the STIMER timer services set by IMS. Use the STIMERM macro instead for application program timer requests.

**RECOVER**

Specifies the recovery option.

- **Y** The transaction is recovered during IMS emergency or normal restart. This is the default.
- **N** The transaction is not recovered.

Keyword combination rules include the following:

- CONV(Y) and RECOVER(N) are mutually exclusive.
- FP(E) and RECOVER(N) are mutually exclusive.
- FP(P) and RECOVER(N) are mutually exclusive.
- INQ(N) and RECOVER(N) are mutually exclusive.

**REMOTE**

Specifies the remote option.
The transaction is not remote. The transaction is local and runs on the local system. This is the default.

The transaction is remote. The transaction runs on a remote system.

Keyword combination rules include the following:
- REMOTE(Y) requires MSNAME or SIDR and SIDL.

RESP
Specifies the response-mode option.

The transaction is not response mode. For terminals specifying or accepting a default of OPTIONS=TRANRESP, input should not stop after this transaction is entered. This is the default.

The transaction is response mode. The terminal from which the transaction is entered is held and prevents further input until a response is received. For terminals specifying or accepting a default of OPTIONS=TRANRESP, no additional messages are to be allowed after this transaction is entered until this transaction sends a response message back to the terminal. Response mode can be forced or negated by individual terminal definition. RESP(Y) is ignored during online processing for all terminals that do not operate in response mode.

Keyword combination rules include the following:
- FP(E) and RESP(N) are mutually exclusive.
- FP(P) and RESP(N) are mutually exclusive.

SEGNO
Specifies the segment number. This is the maximum number of application program output segments that are allowed into the message queues per Get Unique (GU) call from the application program. The value can be a number from 0 through 65535. The default is 0. If SEGNO(0) is defined, the number of segments is not checked by the online system at execution time.

SEGSZ
Specifies the segment size. This is the maximum number of bytes allowed in any one output segment. The value can be a number from 0 through 65535. The default is 0. If SEGSZ(0) is defined, the segment size is not checked by the online system at execution time.

The maximum output message segment to an LU 6.2 device is 32767. If a transaction is expected to send output to an LU 6.2 device, the SEGSIZE parameter should be no greater than 32767. However, this is not enforced during processing of the command, because IMS cannot determine the device type for the message destination until output time.

SERIAL
Specifies the serial option.

Messages for the transaction are not processed serially. Message processing can be processed in parallel. Messages are placed on the suspend queue after a U3303 pseudoabend. Scheduling continues until repeated failures result in the transaction being stopped with a USTOP. This is the default.

Messages for the transaction are processed serially. U3303 pseudoabends do not cause the message to be placed on the suspend queue but rather on the front of the transaction message queue, and the transaction is stopped.
with a USTOP. The USTOP of the transaction is removed when the transaction or the class is started with a /START or UPD TRAN command.

Keyword combination rules include the following:

- MAXRGN>0 and SERIAL(Y) are mutually exclusive.
- PARLIM value 0 - 32767 and SERIAL(Y) are mutually exclusive.

**SIDL**

Specifies the system identification (SYSID) of the local system in a multiple-IMS system (MSC) configuration. The local system is the originating system to which responses are returned. The value can be a number from 1 to 2036, if MSC is enabled, or 0, if MSC is not enabled. The local SYSID can be defined in any or all of the MSNAMEs or transactions.

For a local transaction where SIDL is not specified, SIDL is defined with a value of the lowest system ID when MSC is enabled on this system, or SIDL is defined with a value of 0 when MSC is not enabled on this system.

The local system ID (SIDL) and the remote system ID (SIDR) are the same for local transactions. When creating a local transaction, if the SIDL and SIDR values are not defined as local to this IMS, the lowest system ID is used for the SIDL and SIDR values.

The SIDL parameter is independent of the link type (CTC, MTM, TCP/IP, VTAM) specified on the TYPE= keyword of the MSPLINK macro statement.

Keyword combination rules include the following:

- FP(E) and SIDL are mutually exclusive, unless SIDL and SIDR are specified as a pair and are equal to the local system ID of this IMS.
- FP(P) and SIDL are mutually exclusive.
- MSNAME and SIDL are mutually exclusive.
- SIDL value must be defined to this IMS.

**SIDR**

Specifies the system identification (SYSID) of the remote system in a multiple-IMS system (MSC) configuration. The remote system is the system on which the application program executes. The value can be a number from 1 to 2036 if MSC is enabled, or 0 if MSC is not enabled. The remote SYSID specified must also be defined for an MSNAME.

Local transactions must have the SIDR value set equal to the SIDL value. Both values must be set to the same local SYSID.

The SIDR parameter is independent of the link type (CTC, MTM, TCP/IP, VTAM) specified on the TYPE= keyword of the MSPLINK macro statement.

Keyword combination rules include the following:

- FP(E) and SIDR are mutually exclusive, unless SIDL and SIDR are specified as a pair and are equal to the local system ID of this IMS.
- FP(P) and SIDR are mutually exclusive.
- MSNAME and SIDR are mutually exclusive.
- SIDR value must be defined to this IMS.

**SPASZ**

Specifies the scratchpad area (SPA) size, in bytes, for a conversational transaction. The value can be a number from 16 and 32767.
Keyword combination rules include the following:

- CONV(N) and SPASZ are mutually exclusive.
- FP(E) and SPASZ are mutually exclusive.

**SPATRUNC**

Specifies the scratchpad area (SPA) truncation option of a conversational transaction. This keyword defines whether the SPA data should be truncated or preserved across a program switch to a transaction that is defined with a smaller SPA. If this keyword is not specified for a conversational transaction, the value is obtained from the model (RSC, DESC, or default descriptor). If the SPATRUNC value is not specified or set in the model, the SPATRUNC value is set based on the value specified for the TRUNC parameter in the DFSDCxxx PROCLIB member at IMS cold start. Changing the DFSDCxxx TRUNC value across a restart has no effect on the default descriptor SPATRUNC value.

When a conversation initially starts, and when a program is switched, the SPATRUNC option is checked and set or reset as specified. When the option is set, it remains set for the life of the conversation, or until a program switch occurs to a transaction that specifies the option is to be reset.

When a program switch occurs, the truncated data option for the new transaction is first checked, and that specification is set for the conversation and is used for the SPA inserted into the output message. If the option is not specified for the new transaction, the option currently in effect for the conversation is used.

**S** IMS preserves all of the data in the SPA, even when a program switch is made to a transaction that is defined with a smaller SPA. The transaction with the smaller SPA does not see the truncated data, but when the transaction switches to a transaction with a larger SPA, the truncated data is used.

**R** The truncated data is not preserved.

Keyword combination rules include the following:

- CONV(N) and SPATRUNC are mutually exclusive.
- FP(E) and SPATRUNC are mutually exclusive.

**TRANSTAT**

Specifies whether transaction level statistics are to be logged for message driven programs. If Y is specified, transaction level statistics are written to the log in a X'56FA' log record.

**N** Transaction level statistics are not logged.

**Y** Transaction level statistics are logged.

The TRANSTAT keyword is optional. If not specified and the default descriptor is the IMS-defined descriptor DFSDSTRI, the value is defined to be the DFSDFxxx PROCLIB member TRANSTAT parameter at IMS cold start. Changing the DFSDFxxx TRANSTAT value across a restart has no effect on the default descriptor TRANSTAT value. You can use the TRANSTAT keyword on the CREATE TRAN command or the CREATE TRANDESC command to override the system default when you create a transaction or transaction descriptor.

**WFI**

Specifies the wait-for-input option. This attribute does not apply to Fast Path transactions, which always behave as wait-for-input transactions.
This is not a wait-for-input transaction. This is the default.

This is a wait-for-input transaction. A message processing or batch processing application program that processes WFI transactions is scheduled and invoked normally. If the transaction to be processed is defined as WFI, the program is allowed to remain in main storage after it has processed the available input messages. The QC status code (no more messages) is returned to the program if the processing limit count (PLCT) is reached; a command is entered to change the status of the scheduled transaction, database, program, or class; commands relating to the databases used by the transaction are entered, or IMS is terminated with a checkpoint shutdown.

Keyword combination rules include the following:
- CMTMODE(MULT) and WFI(Y) are mutually exclusive.

Usage notes

In an IMSplex where an RM and a resource structure are defined, the transaction names are saved in the resource structure.

Resources exist for the life of the IMS unless they are deleted using a DELETE command. Resources are recoverable across an IMS warm start or emergency restart. Resources are lost if IMS is cold started, unless cold start imports definitions that were exported while IMS was up.

The CREATE TRAN command is similar to local online change (using a /MODIFY command) or global online change (using an INITIATE OLC command) for transaction resources in the MODBLKS data set, except that transactions are added dynamically.

The CREATE TRAN command can be issued only through the Operations Manager API. These commands apply to DB/DC and DCCTL systems. This command is not valid on the XRF alternate, RSR tracker, or FDBR region. The CREATE command is not valid if online change for MODBLKS is enabled (DFSDFxxx or DFSCGxxx defined with MODBLKS=OLC or MODBLKS not defined).

Output fields

The following table shows the CREATE TRAN output fields. The columns in the table are as follows:

<table>
<thead>
<tr>
<th>Short label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>N/A</td>
<td>Completion code.</td>
</tr>
</tbody>
</table>

Chapter 19. CREATE commands 263
Table 150. Output fields for the CREATE TRAN command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCTXT</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the non-zero completion code.</td>
</tr>
<tr>
<td>MBR</td>
<td>N/A</td>
<td>IMSplex member that built the output line.</td>
</tr>
<tr>
<td>TRAN</td>
<td>TRAN</td>
<td>Transaction name.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

An IMS return and reason code is returned to OM by the CREATE TRAN command. The OM return and reason codes that might be returned as a result of the CREATE TRAN command are standard for all commands entered through the OM.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 151. Return and reason codes for the CREATE TRAN command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>Command completed successfully. The command output contains a line for each resource, accompanied by its completion code. See the completion code table for details.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002009'</td>
<td>Multiple values specified for the same attribute are invalid. For example, you cannot specify both RESP(Y) and RESP(N). This reason code is applicable only when you create a transaction using the DFSINSX0 user exit.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000204C'</td>
<td>The class value is invalid.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002050'</td>
<td>The current priority CPRI value is invalid.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002054'</td>
<td>The limit count LCT value is invalid.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002058'</td>
<td>The limit priority LPRI is invalid.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002060'</td>
<td>The maximum region MAXRGN is invalid.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002064'</td>
<td>The processing limit count PLCT is invalid.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000206C'</td>
<td>The parallel limit count PARLIM value is invalid.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002070'</td>
<td>The segment number SEGNO value is invalid.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002100'</td>
<td>CMTMODE(MULT) mutually exclusive with WFI(Y). Either both keywords were explicitly specified, or one keyword was explicitly specified and the other attribute was obtained from the model.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002101'</td>
<td>CONV(Y) mutually exclusive with CMTMODE(MULT). Either both keywords were explicitly specified, or one keyword was explicitly specified and the other attribute was obtained from the model.</td>
</tr>
<tr>
<td>Return code</td>
<td>Reason code</td>
<td>Meaning</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002103'</td>
<td>CONV(N) mutually exclusive with SPASZ&gt;0 or SPATRUNC. Either both keywords were explicitly specified, or one keyword was explicitly specified and the other attribute was obtained from the model.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002104'</td>
<td>CONV(Y) mutually exclusive with RECOVER(N). Either both keywords were explicitly specified, or one keyword was explicitly specified and the other attribute was obtained from the model.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002105'</td>
<td>CONV(Y) requires SPASZ and SPATRUNC. Either SPASZ was not explicitly specified or defined in the model, or SPATRUNC was not explicitly specified or defined in the model. CONV(Y) was either explicitly specified or defined in the model.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002106'</td>
<td>Invalid EDITRTN name. EDITRTN was specified explicitly or obtained from the model.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002107'</td>
<td>Maximum 255 edit routines exceeded. EDITRTN was specified explicitly or obtained from the model.</td>
</tr>
</tbody>
</table>
| X'00000008' | X'00002109A' | Invalid EMHBSZ. One of the following situations occurred:  
- The EMHB size specified is either greater than the maximum size, which is 30720  
- The EMHB size specified plus the length of the X'5901' log record prefix is greater than the log buffer size |
<p>| X'00000008' | X'00002109C' | FP(E) mutually exclusive with EDITRTN. Either both keywords were explicitly specified, or one keyword was explicitly specified and the other attribute was obtained from the model. |
| X'00000008' | X'00002109E' | FP(E) or FP(P) mutually exclusive with MSC keyword, either MSNAME or SIDR and SIDL. Either both keywords were explicitly specified, or one keyword was explicitly specified and the other attribute was obtained from the model. |
| X'00000008' | X'00002109F' | FP(E) or FP(P) mutually exclusive with MSGTYPE(MULTSEG). Either both keywords were explicitly specified, or one keyword was explicitly specified and the other attribute was obtained from the model. |
| X'00000008' | X'00002110A' | FP(N) mutually exclusive with EMHBSZ &gt; 0. Either both keywords were explicitly specified, or one keyword was explicitly specified and the other attribute was obtained from the model. |
| X'00000008' | X'00002110B' | FP(E) or FP(P) mutually exclusive with RECOVER(N). Either both keywords were explicitly specified, or one keyword was explicitly specified and the other attribute was obtained from the model. |
| X'00000008' | X'00002110C' | FP(E) or FP(P) mutually exclusive with RESP(N). Either both keywords were explicitly specified, or one keyword was explicitly specified and the other attribute was obtained from the model. |</p>
<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000008'</td>
<td>X'00002116'</td>
<td>INQ(N) mutually exclusive with RECOVER(N). Either both keywords were explicitly specified, or one keyword was explicitly specified and the other attribute was obtained from the model.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002117'</td>
<td>Invalid LIKE descriptor name.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002118'</td>
<td>Invalid LIKE resource name.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002119'</td>
<td>MSC keyword MSNAME or SIDR and SIDL are mutually exclusive with application program defined as Fast Path exclusive (FP(E)) associated with this transaction.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000211A'</td>
<td>Invalid MSNAME name.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000211B'</td>
<td>MSNAME mutually exclusive with SIDR and SIDL.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000211D'</td>
<td>MAXRGN&gt;0 mutually exclusive with PARLIM(65535). Either both keywords were explicitly specified, or one keyword was explicitly specified and the other attribute was obtained from the model.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000211E'</td>
<td>MAXRGN&gt;0 mutually exclusive with SERIAL(Y). Either keywords were explicitly specified, or one keyword was explicitly specified and the other attribute was obtained from the model.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002120'</td>
<td>PGM() definition missing. PGM must be defined for local transactions either explicitly or in the model.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002121'</td>
<td>PARLIM value mutually exclusive with SERIAL(Y). Either both keywords were explicitly specified, or one keyword was explicitly specified and the other attribute was obtained from the model.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002123'</td>
<td>Invalid PGM name. PGM was specified explicitly, or obtained from the model. If the IMS-defined descriptor DFSDFSTR1 was used, the command failed because DFSDFSTR1 defines no program name.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002125'</td>
<td>If REMOTE(Y) is specified, the SIDL value must be a remote SYSID and the SIDR value must be a local SYSID. If neither the MSNAME keyword nor the SIDR and SIDL keywords are specified explicitly, the SIDR and SIDL values are obtained from the model. If REMOTE(N) is specified, the SIDR value must be equal to the SIDL value. The SIDR and SIDL values can be specified explicitly or obtained from the model. The MSNAME keyword is not allowed with REMOTE(N). The REMOTE value can be specified explicitly or obtained from the model.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002126'</td>
<td>Invalid SIDL value.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002127'</td>
<td>SIDL/SIDR must be specified as a pair. Either SIDL was specified alone or SIDR was specified alone.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002128'</td>
<td>Invalid SIDR value.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000212A'</td>
<td>The CREATE TRAN command is rejected for the transaction, because it specifies a batch program and an attribute value that is not allowed for a batch program such as a PARLIM value other than 65535.</td>
</tr>
<tr>
<td>Return code</td>
<td>Reason code</td>
<td>Meaning</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002135'</td>
<td>Parlim/schdtype(serial) conflict. If PARLIM is specified and defined with a value other than 65535 and the program is defined as schdtype(serial), the command is rejected.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002140'</td>
<td>Fast Path exclusive FP(E) is mutually exclusive with any conversation keyword, including CONV(Y), SPASZ, and SPATRUNC. An FP exclusive transaction cannot be defined as conversational.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003000'</td>
<td>Command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code. See the completion code table for details.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>Command was not successful for any of the resources. The command output contains a line for each resource, accompanied by its completion code. See the completion code table for details.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000400C'</td>
<td>Command is not valid on the XRF alternate.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>Command is not valid on the RSR tracker.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004024'</td>
<td>No Fast Path defined, so FP(E), FP(P), or EMHBSZ &gt; 0 is invalid.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004120'</td>
<td>Online change phase is in progress.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004204'</td>
<td>Model is quiesced. Cannot quiesce model.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004300'</td>
<td>Command is not allowed because online change for MODBLKS is enabled (DFSDFxxx or DFSCGxxx defined with MODBLKS=OLC, or MODBLKS not defined).</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004310'</td>
<td>Storage could not be obtained for the Transaction Input edit routine table. A cold start is required to fix this error.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004314'</td>
<td>The Transaction Input edit routine could not be loaded.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004318'</td>
<td>A new Transaction Input edit routine could not be added. The maximum of 255 routines has already been reached.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005004'</td>
<td>DFSOCMD response buffer could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005008'</td>
<td>DFSPOOL storage could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'0000500C'</td>
<td>AWE could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005010'</td>
<td>Unable to obtain latch.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005114'</td>
<td>Resource or descriptor that is specified as a model is in the process of being imported from the change list in the IMSRSC repository or was not imported successfully from the change list at the end of IMS restart. This resource or descriptor cannot be referenced as a model on a CREATE command until it is successfully imported from the repository.</td>
</tr>
</tbody>
</table>

The following table includes an explanation of the completion codes.
<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command completed successfully for transaction.</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>RESOURCE ALREADY EXISTS</td>
<td>Transaction already exists.</td>
</tr>
<tr>
<td>17</td>
<td>ANOTHER CMD IN PROGRESS</td>
<td>Another command (such as DELETE PGM or UPDATE PGM) is in progress for the program referenced by this transaction.</td>
</tr>
<tr>
<td>22</td>
<td>CPIC TRAN ALREADY EXISTS</td>
<td>CPI-C transaction already exists by that name.</td>
</tr>
<tr>
<td>36</td>
<td>FP=E/FP=N PGM CONFLICT</td>
<td>Transaction to be created as Fast Path exclusive FP(E) conflicts with program already defined as non-Fast Path FP(N).</td>
</tr>
<tr>
<td>3E</td>
<td>FP=N/FP=E PGM CONFLICT</td>
<td>Transaction to be created as non-Fast Path FP(N) conflicts with program already defined as Fast Path exclusive FP(E).</td>
</tr>
<tr>
<td>3F</td>
<td>FP=P/BMPTYPE=Y CONFLICT</td>
<td>Transaction to be created as Fast Path potential FP(P) conflicts with the program defined as batch BMPTYPE(Y).</td>
</tr>
<tr>
<td>4E</td>
<td>LTERM ALREADY EXISTS</td>
<td>LTERM already exists by that name.</td>
</tr>
<tr>
<td>5B</td>
<td>MSNAME ALREADY EXISTS</td>
<td>MSNAME already exists by that name.</td>
</tr>
<tr>
<td>5F</td>
<td>INVALID CHARACTERS IN NAME</td>
<td>Name is invalid because it contains an invalid character.</td>
</tr>
<tr>
<td>61</td>
<td>DFSBCB STORAGE ERROR</td>
<td>Request to get BCB storage for SMB control block failed.</td>
</tr>
<tr>
<td>6A</td>
<td>FP=P/FP=E PGM CONFLICT</td>
<td>Transaction to be created as Fast Path potential FP(P) conflicts with program already defined as Fast Path exclusive FP(E).</td>
</tr>
<tr>
<td>78</td>
<td>RM CONFLICT</td>
<td>LTERM, CPIC transaction, MSNAME, or descriptor already exists in RM by that name.</td>
</tr>
<tr>
<td>8A</td>
<td>WILDCARD PARAMETER NOT SUPPORTED</td>
<td>The CREATE command does not support wildcard parameters. You must explicitly specify the names of the resources you want to create.</td>
</tr>
<tr>
<td>90</td>
<td>INTERNAL ERROR</td>
<td>An IMS system service failure.</td>
</tr>
<tr>
<td>93</td>
<td>RESERVED NAME</td>
<td>Name is reserved. For example, name starts with DFS (except for DFSSAMxx or DFSIVPxx), or is an IMS reserved name such as BASICEDT or WTOR.</td>
</tr>
</tbody>
</table>
Table 152. Completion codes for the CREATE TRAN command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>B5</td>
<td>ROUTING CODE ALREADY EXISTS</td>
<td>Transaction creation failed for a Fast Path exclusive FP(E) transaction. The routing code could not be created, because one already exists with the same name as the transaction to be created.</td>
</tr>
</tbody>
</table>

Examples

The following are examples of the CREATE TRAN command:

Example 1 for CREATE TRAN command

TSO SPOC input:
CREATE TRAN NAME(TRN00001,TRN00002) LIKE(RSC(APOL18))
SET(NPRI(6),LPRI(10),TRANSTAT(Y),CLASS(2)))

TSO SPOC output:
Response for: CREATE TRAN NAME(TRN00001,TRN00002) LIKE(RSC(APO...
Trancode MbrName   CC
TRN00001 IMS1   0
TRN00002 IMS1   0

OM API input:
CMD(CRE TRAN NAME(TRN00001,TRN00002) LIKE(RSC(APOL18))
SET(NPRI(6),LPRI(10),TRANSTAT(Y),CLASS(2)))

OM API output:
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.3.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2006.307 19:23:15.095304</statime>
<stotime>2006.307 19:23:15.096942</stotime>
<staseq>BFA6CF3A7E30BC1C</staseq>
<stoseq>BFA6CF3A7E96EA52</stoseq>
<rqsttkn1>USRT011 10112315</rqsttkn1>
<rc>000000000</rc>
<rsn>000000000</rsn>
</ctl>
<cmd>
<master>IMS1</master>
<userid>USRT011</userid>
<verb>CRE</verb>
<kwd>TRAN</kwd>
<input>CREATE TRAN NAME(TRN00001,TRN00002) LIKE(RSC(APOL18))
SET(NPRI(6),LPRI(10),TRANSTAT(Y),CLASS(2)))</input>
</cmd>
</cmdrsphdr>
<hdr slbl="TRAN" llbl="Trancode" scope="LCL" sort="a" key="1" scroll="no" len="8" dtype="CHAR" align="left" />
<hdr slbl="MbrName" llbl="MbrName" scope="LCL" sort="a" key="2" scroll="no" len="8" dtype="CHAR" align="left" />
<hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0" scroll="yes"
CREATE TRANDESC command

Use the CREATE TRANDESC command to create transaction descriptors. A descriptor is a model that can be used to create descriptors or resources.

A descriptor is created with a value set for every attribute. Attributes not explicitly specified on the CREATE command take the default value. Any transaction descriptor can be created using this descriptor as a model, by specifying the CREATE command with LIKE(DESC(descriptor_name)).

Subsections:
- “Environment”
- “Syntax” on page 271
- “Keywords” on page 272
- “Usage notes” on page 286
- “Output fields” on page 286
- “Return, reason, and completion codes” on page 287
- “Examples” on page 291

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CREATE TRANDESC</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>LIKE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SET</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Syntax

```
CREATE TRANDESC NAME(name)
 LIKE(DESC(descriptor_name))
 RSC(resource_name)
```

A:

```
AOCMD(CMD TRAN Y)
CLASS(class)
CMHTMDE(SNGL)
CONV(Y)
DCLWA(N)
DEFAULT(N)
DIRROUTE(Y)
EDITRTN(name)
EDITUC(N)
EMHBSZ(size)
EXPRTIME(seconds)
FP(E P)
INQ(N Y)
LCT(value)
LPRI(value)
MAXRGN(SNGLSEG number)
MSGTYPE(MULTSEG)
MSNAME(name)
```

B:

Chapter 19. CREATE commands 271
Default values shown in this syntax diagram reflect the default values that are defined in the IMS transaction descriptor, DFSDSTR1. If you define another descriptor as the default with a CREATE or UPDATE TRANDESC command, the default values shown in this syntax diagram might not match the value defined in the current default descriptor.

Keywords

The following keywords are valid for the CREATE TRANDESC command:

LIKE

Specifies that the descriptor is created using an existing descriptor as a model, instead of the default descriptor. The default descriptor is either the IMS descriptor DFSDSTR1, or user-defined. The model type can either be a descriptor (DESC), or a resource (RSC). The descriptor is created with all the same attributes as the model, except for the DEFAULT(Y) value and the CPRI value, which is a runtime scheduling value that does not apply to transaction descriptors. Attributes set explicitly by the CREATE command override the model attributes. DEFAULT(Y) must be specified explicitly to make a descriptor the default descriptor. Later changes to the model are not propagated to resources or descriptors that were created from it.

The QUERY commands can be used to display the model name and model type used to create the descriptor or resource. The model name and type returned from the QUERY command are provided for informational purposes only. The EXPORT command exports a resource definition including the model name and model type to the definition member. The IMPORT command imports a resource definition including the model name and model type from
the definition member. An IMPORT command that creates a resource saves the model name and model type, but does not use the models attributes.

**DESC(descriptor_name)**

Specifies the name of the descriptor to use as a model to define this descriptor.

**RSC(resource_name)**

Specifies the name of the resource to use as a model to define this descriptor.

**NAME**

Specifies the 1-8 character name of the transaction. Names must be alphanumeric (A through Z, 0 through 9, #, $, and @). Names cannot include a blank, comma, period, hyphen, or equal sign. Names cannot begin with DFS, except for DFSIVPxx and DFSSAMxx. Names cannot be BASICEDT, DBCDM, DBRC, ISCEDT, MSDB, SDB, or WTOR. A transaction resource and a transaction descriptor can have the same name. A transaction cannot have the same name as a logical terminal.

**SET**

Specifies the attributes of the transaction to be created. If the LIKE keyword is omitted, attributes not specified take the value defined in the default descriptor, which is either the IMS descriptor DFSDSTR1, or user-defined. If the LIKE keyword is specified, attributes not specified take the value defined in the model. A transaction must have the same characteristics in all systems where it is defined when it is shared. These characteristics include:

- Nonconversational or conversational
- SPA size if conversational
- Single- or multi-segment messages
- Noninquiry or inquiry
- Recoverable or nonrecoverable
- Response mode or non-response mode
- Fast Path exclusive, Fast Path potential, or non-Fast Path

**AOCMD**

Specifies the AOI option indicating whether the transaction can issue the type-1 AOI CMD call or the type-2 AOI ICMD call. If AOCMD is defined as CMD, TRAN, or Y, and the AOI1 execute parameter is defined as AOI1=N, no authorization checking is done, and the transaction is permitted to issue CMD and ICMD calls.

**N** Indicates that the transaction is not permitted to issue type-1 AOI CMD calls. The transaction is permitted to issue type-2 AOI ICMD calls.

**CMD**

Indicates that the transaction is permitted to issue type-1 AOI CMD calls and type-2 AOI ICMD calls. If the AOI1 execute parameter is defined as C, R, or A, authorization checking is based on which transactions can issue a particular command. In this case, the commands (or the first three characters of the commands) need to be defined to RACF or an equivalent product as a user. The type-1 AOI transactions must be defined as profiles under the TIMS class, and for each transaction, the commands it can issue must be specified. Defining AOCMD(CMD) requires you to create fewer
user IDs than you need to create for the AOCMD(TRAN) definition. However, defining AOCMD(CMD) requires you to create or modify a larger number of resource profiles.

**TRAN**
Indicates that the transaction is permitted to issue type-1 AOI CMD calls and type-2 AOI ICMD calls. If the AOI1 execute parameter is defined as C, R, or A, the transaction code is used for authorization. The first authorization check results in the accessor environment element (ACEE) being built. This environment is kept for use by future authorization checks. The type-1 AOI transaction needs to be defined to RACF or an equivalent product as a user. The transactions will then be specified on RACF PERMIT statements for each command they are allowed to issue from a type-1 AOI transaction. Specifying AOI transactions as users to RACF might conflict with the name of a user already defined to RACF. If this occurs, then either the transaction name or the existing user name needs to be changed.

**Y**
Indicates that the transaction is permitted to issue type-1 AOI CMD calls and type-2 AOI ICMD calls. If the AOI1 execute parameter is defined as C, R, or A, the user ID or the program name is used for authorization. For some environments, if a Get Unique call has not yet occurred, the program name is used for authorization. If a Get Unique call has not yet occurred, the program name is used for authorization.

**CLASS**
Specifies the transaction class, which is an attribute used to select a transaction for scheduling. A transaction can be scheduled if there is a message processing region available for that class. The value can be a number from 1 to 999. The default is 1. This value must not exceed the value given (by specification or default) on the MAXCLAS= keyword of the IMSCTRL macro.

Define CPI-C transactions with a different message class from that used for non-CPI-C transactions. IMS handles all CPI-C transactions as priority zero within the transaction class.

**CMTMODE**
Specifies when database updates and non-express output messages are committed. This operand affects emergency restart.

**MULT**
Database updates and non-express output messages are committed only when the application program terminates normally, when the processing limit count has been reached, or, in the case of a pseudo-WFI dependent region, when there are no more messages on the queue. For example, if five transactions are processed during a single schedule of a program, all five are committed only when the fifth one is completed and the program terminates. Until a transaction has been committed, locks for updated database records are not released and non-express output messages are not queued for output. If an application ends abnormally before committing its messages, emergency restart requeues all the messages that were processed within the commit scope and makes them available for reprocessing.

If the transaction results in the application calling an external subsystem, such as DB2, the Commit Verify exit provided by the external subsystem can determine whether CMTMODE(MULT) is supported. See documentation under the Commit Verify exit routine in *IMS Version 13 Exit Routines*. 
SNGL

Database updates and non-express output messages are committed when the application program completes processing each transaction. IMS invokes commit processing either when the application program requests the next message (issues a GU to the IO-PCB), or when the application program terminates. If an application ends abnormally before committing its message, emergency restart requeues the message that was in process before the abend and makes it available for reprocessing. This is the default.

The TRANSACT macro MODE keyword uses a default of MULT. The CREATTRAN command CMTMODE keyword uses a default of SNGL.

Keyword combination rules include the following:

- CONV(Y) and CMTMODE(MULT) are mutually exclusive.
- CMTMODE(MULT) and WFI(Y) are mutually exclusive.

CONV

Specifies the conversation option.

N  The transaction is not conversational. This is the default.

Y  The transaction is conversational. The transaction message is destined for a conversational program. A conversational program processes transactions made up of several steps. A conversational program receives a message from a terminal, replies to the terminal, but saves the data from the transaction in a scratchpad area (SPA). When the person at the terminal enters more data, the program has the data it saved from the last message in the SPA, so it can continue processing the request without the person at the terminal having to enter the data again.

Keyword combination rules include the following:

- CMTMODE(MULT) and CONV(Y) are mutually exclusive.
- CONV(Y) requires SPASZ and SPATRUNC.
- INQ(Y) and CONV(Y) are mutually exclusive.
- RECOVER(N) and CONV(Y) are mutually exclusive.
- SPASZ and CONV(N) are mutually exclusive.
- SPATRUNC and CONV(N) are mutually exclusive.

DCLWA

Specifies the log write-ahead option. If not specified, the value is defined to be the DCLWA parameter in the DFSDFxxx PROCLIB member. If DCLWA is not defined in the DFSDFxxx PROCLIB member, the default is DCLWA=Y.

N  IMS should not perform log write-ahead. Specify N if input message integrity and the consistency of output messages with associated database updates is not required. DCLWA does not apply to response mode or Fast Path input processing, and is ignored during IMS execution.

Y  IMS should perform log write-ahead for recoverable, nonresponse input messages and transaction output messages. This ensures the following:

- A nonresponse input transaction is made recoverable across IMS failures before IMS acknowledges receipt of the input.
- Database changes are made recoverable before IMS sends associated output reply messages.
• Information in the log buffers is written to the IMS log, before the associated input acknowledgment or output reply is sent to the terminal.

Define DCLWA(Y) for all VTAM terminal types.

**DEFAULT**

Specifies whether the descriptor is the default.

- **N** The descriptor is not the default.
- **Y** The descriptor is the default, which resets the existing default descriptor to DEFAULT(N). When a descriptor or resource is created without the LIKE keyword, any attribute not specified on the CREATE command takes the value defined in the default descriptor. Only one descriptor can be defined as the default for a resource type. IMS defines a default transaction descriptor called DFSDDSTR1, where all attributes are defined with the default value. Defining a user-defined descriptor as the default overrides the IMS-defined descriptor. Since only one transaction descriptor can be the default at one time, only one transaction name can be specified with DEFAULT(Y).

**DIRROUTE**

Specifies the MSC directed routing option.

- **N** The application program processing a transaction is not informed of the system which originated the transaction. The name of the originating LTERM is placed in the I/O PCB. This is the default.
- **Y** The application program processing a transaction is informed of the system which originated the transaction, if MSC directed routing is used in a multiple IMS system configuration. An MSNAME corresponding to a logical path back to the originating system is placed in the I/O PCB.

**EDITRTN**

Specifies the one- to eight-character name of your transaction input edit routine that edits messages before the program receives the message. This name must begin with an alphabetic character. The specified edit routine (load module) must reside on the USERLIB data set. This routine cannot be the same as the one defined by the system definition TYPE EDIT= parameter. A maximum of 255 input edit routines are supported.

EDITRTN is used for a Fast Path potential transaction when the transaction is routed to IMS.

For input from LU 6.2 devices, the user edit exit routine DFSLUEE0 is called instead of the transaction input edit routine specified in EDITRTN.

Keyword combination rules include the following:

- FP(E) and EDITRTN are mutually exclusive.

**EDITUC**

Specifies the edit to uppercase option.

- **N** The input data is not translated to uppercase. It can consist of upper and lowercase characters as entered from the terminal.
- **Y** The input data is to be translated to uppercase before it is presented to the processing program. If FP(E) or FP(P), the transaction is to be translated to uppercase before being presented to the edit/routing exit routine. This is the default.

Specifying EDITUC(Y) for VTAM terminals prevents the transmission of embedded device control characters.
EMHBSZ

Specifies the EMH buffer size required to run the Fast Path transaction. This overrides the EMHL execution parameter. If EMHBSZ is not specified, the EMHL execution parameter value is used. The value can be a number from 12 to 30720.

Keyword combination rules include the following:
• EMHBSZ>0 requires Fast Path to be defined.
• FP(N) and EMHBSZ>0 are mutually exclusive.

EXPRTIME

Specifies the elapse time in seconds that IMS can use to cancel the input transaction. After a transaction is submitted to IMS, the transaction could be delayed for processing because of a stopped transaction or a potential system slow down. In that case, the user or client application could time out before the transaction is processed. When IMS eventually schedules and processes the transaction, the response message is no longer wanted. With the elapse time specified for the transaction, IMS can flag the input transaction as expired so that the system does not waste CPU cycles to process the unwanted transaction.

The value can be a number, in seconds, which can range from 0 to 65535. The default is 0, which means that no expiration time is set for this transaction. The transaction expiration attribute is supported by all of the IMS TM interfaces.

Restriction: The transaction expiration checking is not performed at the GU time for Fast Path transactions, IMS conversational transactions, and program-to-program switch transactions.

FP

Specifies the Fast Path option.

E The transaction is processed exclusively as Fast Path. A Fast Path routing code by the same name is created. The program must be defined as Fast Path exclusive.

N The transaction is not a candidate for Fast Path processing. The program identified by PGM() must be defined as not Fast Path. This is the default.

P The transaction is a potential candidate for Fast Path processing. Fast Path-potential transactions must be able to run under two programs: a Fast Path exclusive program a non-Fast Path program. This CREATE TRAN command defines the non-Fast Path program with PGM(). A Fast Path exclusive program should be defined to which this transaction can be routed. Fast Path-potential transactions must be processed by a user edit/routing exit to determine whether the transaction is actually to be processed by IMS Fast Path. If it is to be processed by IMS Fast Path, the edit/routing exit routine associates the transaction with a routing code. This routing code identifies which Fast Path program is to process the transaction.

The program defined by PGM() must not be defined as Fast Path exclusive.

Keyword combination rules include the following:
• EDITRTN and FP(E) are mutually exclusive.
• FP(P) and FP(E) require Fast Path to be defined.
• MSGTYPE(MULTSEG) and FP(E) are mutually exclusive.
• MSGTYPE(MULTSEG) and FP(P) are mutually exclusive.
• MSNAME and FP(E) are mutually exclusive.
- MSNAME and FP(P) are mutually exclusive.
- RECOVER(N) and FP(E) are mutually exclusive.
- RECOVER(N) and FP(E) are mutually exclusive.
- RESP(N) and FP(E) are mutually exclusive.
- RESP(N) and FP(P) are mutually exclusive.
- SIDL and FP(E) are mutually exclusive.
- SIDL and FP(P) are mutually exclusive.
- SIDR and FP(E) are mutually exclusive.
- SIDR and FP(P) are mutually exclusive.

**INQ**

Specifies the inquiry option.

- **N**  This is not an inquiry transaction. This is the default.
- **Y**  This is an inquiry transaction. If INQ(Y) is specified, you can also specify whether this transaction should be recovered during an IMS emergency or normal restart using the RECOVER() parameter.

  This should be specified only for those transactions that, when entered, do not cause a change in any database. Programs are prohibited from issuing ISRT, DLET, or REPL calls to a database when scheduled to process a transaction defined as INQ(Y).

  An application program cannot do an SQL INSERT, DELETE, or UPDATE when the IMS transaction is defined with INQ(Y).

Keyword combination rules include the following:

- CONV(Y) and INQ(Y) are mutually exclusive.
- RECOVER(N) and INQ(N) are mutually exclusive.

**LCT**

Specifies the limit count. This is the number that, when compared to the number of input transactions queued and waiting to be processed, determines whether the normal or limit priority value is assigned to this transaction. The value can be a number from 1 to 65535. The default is 65535.

The limit count value is ignored for a transaction processed by a BMP.

The limit count value is ignored in a shared queues environment.

**LPRI**

Specifies the limit priority. This is the scheduling priority to which this transaction is raised when the number of input transactions enqueued and waiting to be processed is equal to or greater than the limit count value. The scheduling priority is an attribute used to select a transaction for scheduling. A transaction of higher priority is scheduled before a lower priority one, if they are defined with the same class. The value can be a number from 0 through 14. The default is 1.

When the limit priority is used and the scheduling priority is raised to the limit priority, the priority is not reduced to the normal priority until all messages enqueued for this transaction name are processed. If you do not want the limit priority for this transaction, define equal values for the normal priority and limit priority, and a limit count of 65535.

When a transaction is processed exclusively by a batch message program (BMP), define the limit priority as 0. If the program specified by PGM() is
defined with a program type of batch, the current priority is forced to be 0. However, a batch message processing region (BMP) can process transactions with current scheduling priorities other than 0.

This priority also controls the priority of messages created by this transaction and sent to a destination in a remote system. See also the discussion on MSC priorities under the NPRI definition.

The limit priority value is ignored for a transaction processed by a BMP.

The limit priority value is ignored in a shared-queues environment.

**MAXRGN**

Specifies the maximum region count. This count value limits the number of message processing program (MPP) regions that can be concurrently scheduled to process a transaction. When the number of MPP regions is not limited, one transaction might monopolize all available regions. The value can be a number from 0 to the value specified on the MAXPST= control region parameter. The default of MAXRGN(0) means that no limit is imposed.

If you define the program with a scheduling type of SERIAL, omit the MAXRGN keyword or define it as 0.

The following keyword combinations are mutually exclusive:
- PARLIM(65535) and MAXRGN value greater than 0
- SERIAL(Y) and MAXRGN value greater than 0

**MSGTYPE**

Specifies the message type (single segment or multiple segment). It specifies the time at which an incoming message is considered complete and available to be routed to an application program for subsequent processing.

If MSC-directed routing is used in a multiple IMS system configuration, IMS does not ensure that both the message and the transaction destined to process that message are either single segment or multiple segments.

**MULTSEG**

The incoming message can be more than one segment in length. It is not eligible for scheduling to an application program until an end-of-message indication is received, or a complete message is created by MFS. This is the default.

**SNGLSEG**

The incoming message is one segment in length. It becomes eligible for scheduling when the terminal operator indicates end-of-segment.

Keyword combination rules include the following:
- FP(E) and MSGTYPE(MULTSEG) are mutually exclusive.
- FP(P) and MSGTYPE(MULTSEG) are mutually exclusive.

**MSNAME**

Specifies the one- to eight-character name of the logical link path in a multiple IMS system configuration (MSC). A logical link path is a path between any two IMS systems. The IMS systems are identified by the remote system ID and the local system ID associated with the logical link path. The remote system ID identifies the system in which messages using this path are to be processed. The local system ID identifies this system. If this transaction is exported, the
local and remote system IDs are exported, not the msname. For a CREATE TRAN command adding a remote transaction, the MSNAME must already be defined.

Keyword combination rules include the following:
- FP(E) and MSNAME are mutually exclusive.
- FP(P) and MSNAME are mutually exclusive.
- SIDL and MSNAME are mutually exclusive.
- SIDR and MSNAME are mutually exclusive.

**NPRI**

Specifies the normal scheduling priority. The scheduling priority is an attribute used to select a transaction for scheduling. A transaction of higher priority is scheduled before a lower priority one, if they are defined with the same class. When a transaction resource is created, the current priority (CPRI), or the scheduling priority, is initialized to the normal priority (NPRI). The normal priority is also assigned to a transaction as the current priority when the number of input transactions enqueued and waiting to be processed is less than the limit count value. The value can be a number from 0 through 14. The default is 1.

This priority also controls the priority of messages created by this transaction and sent to a destination in a remote system.

When a transaction is processed exclusively by a batch message program (BMP), code the normal priority as 0.

When a transaction is processed exclusively by a batch message program (BMP), define the limit priority as 0. If the program specified by PGM() is defined with a program type of batch, the current priority is forced to be 0. However, a batch message processing region (BMP) can process transactions with current scheduling priorities other than 0.

For remote transactions, the priority used to send the transaction to the processing system, which is termed the MSC link message priority. The three MSC link message priority groups are:
- Low
- Medium
- High

The low priority group consists of primary requests in the input terminal system. This group is assigned remote transaction priorities from 0 to 6. The medium group consists of secondary requests, responses, primary requests in an intermediate system, and primary requests in the input terminal system. This group is assigned a remote transaction priority of 7. The high group consists of primary requests in the input terminal system. Messages in this group are assigned remote transaction priorities from 8 to 14. Within each group, messages have a priority based on the current priority value of the transaction or remote transaction in the input terminal system for primary requests, and on the latest processing system for secondary requests and responses.

In an MSC configuration, the transaction priority determines the priority used to send messages inserted by this transaction across an MSC link. If the transaction inserts multiple messages to the same destination (for example, pages to a printer) and these messages must be sent in the order inserted, the normal and limit priority values should be the same. If the normal and limit priority values are not identical, messages inserted at a higher priority than
previously inserted messages could arrive at their destination first. (This restriction does not apply to multiple segments of the same message.)

The normal priority value is ignored for a transaction processed by a BMP.

**PARLIM**

Specifies the parallel processing limit count. This is the maximum number of messages that can currently be queued, but not yet processed, by each active message region currently scheduled for this transaction. This is the threshold value to be used when the associated program is defined with a scheduling type of parallel. An additional region is scheduled whenever the current transaction enqueue count exceeds the PARLIM value multiplied by the number of regions currently scheduled for this transaction.

The value can be a number from 0 to 32767 or 65535. PARLIM(0) indicates that any input message can cause a new region to be scheduled because the scheduling condition is always being met (the number of messages are greater than zero). If you specify PARLIM(0), you should specify a MAXRGN value to limit the number of regions that can be scheduled to process a particular transaction. PARLIM(65535) means that parallel processing is disabled and IMS allows the transaction to be scheduled in only one region at a time. PARLIM(65535) is the default.

The value specified for PARLIM applies to message processing programs (MPPs) only; it is not supported for batch message processing programs (BMPs).

If you define the transaction as serial or the program with a scheduling type as SERIAL, define PARLIM(65535).

In a shared-queues environment (when the scheduling type is PARALLEL), any PARLIM value other than 65535 causes a new region to be scheduled whenever the successful consecutive GU count exceeds the PARLIM value multiplied by the number of regions currently scheduled for this transaction. For shared-queues environments, the successful consecutive GU count is used instead of the queue count. New regions continue to be scheduled up to the maximum number of regions specified on MAXRGN.

Keyword combination rules include the following:

- MAXRGN>0 and PARLIM(65535) are mutually exclusive.
- SERIAL(Y) and PARLIM value 0 - 32767 are mutually exclusive.

**PGM**

Specifies the name of the program associated with the transaction.

For a CREATE TRANDESC command, the program does not need to exist until a CREATE TRAN command creates a transaction using the transaction descriptor.

**PLCT**

Specifies the processing limit count. This is maximum number of messages sent to the application program by IMS for processing without reloading the application program. The value must be a number from 0 through 65535. PLCT(0) means the maximum number of messages sent to the application is one and the application program is reloaded before receiving a subsequent message. PLCT(65535) means that no limit is to be placed upon the number of messages processed at a single program load. Values 1 through 65535 are eligible for quick reschedule processing. The default is 65535.
The value is used to determine how many messages an application program is allowed to process in a single scheduling cycle. When the application program requests, and receives, the number of messages indicated, any subsequent requests result in one of two actions.

- IMS indicates “no more messages exist” if any of the following conditions is true:
  - The region is not an MPP.
  - The currently scheduled mode is not CMTMODE(SNGL).
  - Equal or higher priority transactions are enqueued for the region.

IMS might have other messages enqueued for the application program. It is the responsibility of the application program to terminate when it receives an indicator that no more messages are available. Termination of the application program makes the region it occupied available for rescheduling. This feature makes it possible for IMS to enable scheduling of higher priority transactions that entered the system while the previous transactions were in process. In addition, if any equal-priority transactions are enqueued, they become eligible for scheduling on a first-in, first-out (FIFO) basis.

- The region goes through quick reschedule and returns the next message to the application if all of the following conditions are true:
  - The region is an MPP.
  - The transaction is CMTMODE(SNGL).
  - No equal or higher transactions are enqueued.
  - Messages are still enqueued for the application program.

**PLCTTIME**

Specifies the processing limit count time. This is the amount of time (in hundredths of seconds) allowable to process a single transaction (or message). The number specifies the maximum CPU time allowed for each message to be processed in the message processing region.

Batch Message Programs (BMPs) are not affected by this setting.

The value can be a number, in hundredths of seconds, that can range from 1 to 6553500. A value of 6553500 means no time limit is placed on the application program. The default is 6553500.

If Fast Path is used this specifies, for a given transaction name, the amount of time (in hundredths of seconds) the program is allowed to process a single transaction message. The time represents real time that elapses during transaction processing (not accumulated task time). Real time is used because the input terminal is in response mode and cannot enter another transaction until the response is sent. In this case PLCT() is ignored.

The value controls application program looping. You are not required to optimize the value for program-transaction execution time. However, the time value assigned should not be less than the expected per-transaction execution time. If the scheduled application program exceeds the product of PLCTTIME() and PLCT(), the application program ends abnormally. If an IMS STIMER value of 2 is specified on the DFSMPR procedure, the region does not abend until completion of the DL/I call.

**Important:** The application program must not use STIMER timer services. IMS uses STIMER timer services to time the execution of transactions. If an
application program issues an MVS STIMER macro, it cancels the STIMER timer services set by IMS. Use the STIMERM macro instead for application program timer requests.

**RECOVER**

Specifies the recovery option.

- **N** The transaction should not be recovered.
- **Y** The transaction should be recovered during IMS emergency or normal restart. This is the default.

Keyword combination rules include the following:
- CONV(Y) and RECOVER(N) are mutually exclusive.
- FP(E) and RECOVER(N) are mutually exclusive.
- FP(P) and RECOVER(N) are mutually exclusive.
- INQ(N) and RECOVER(N) are mutually exclusive.

**REMOTE**

Specifies the remote option.

- **N** The transaction is not remote. The transaction is local and runs on the local system. This is the default.
- **Y** The transaction is remote. The transaction runs on a remote system.

Keyword combination rules include the following:
- REMOTE(Y) requires MSNAME or SIDR and SIDL.

**RESP**

Specifies the response-mode option.

- **N** The transaction is not response mode. For terminals specifying or accepting a default of OPTIONS=TRANRESP, input should not stop after this transaction is entered. This is the default.
- **Y** The transaction is response mode. The terminal from which the transaction is entered is held and prevents further input until a response is received. For terminals specifying or accepting a default of OPTIONS=TRANRESP, no additional messages are to be allowed after this transaction is entered until this transaction sends a response message back to the terminal. Response mode can be forced or negated by individual terminal definition. RESP(Y) is ignored during online processing for all terminals that do not operate in response mode.

Keyword combination rules include the following:
- FP(E) and RESP(N) are mutually exclusive.
- FP(P) and RESP(N) are mutually exclusive.

**SEGNO**

Specifies the segment number. This is the maximum number of application program output segments that are allowed into the message queues per Get Unique (GU) call from the application program. The value can be a number from 0 through 65535. The default is 0. If SEGNO(0) is defined, the number of segments is not checked by the online system at execution time.
Specifies the segment size. This is the maximum number of bytes allowed in any one output segment. The value can be a number from 0 through 65535. The default is 0. If SEGSZ(0) is defined, the segment size is not checked by the online system at execution time.

The maximum output message segment to an LU 6.2 device is 32767. If a transaction is expected to send output to an LU 6.2 device, the SEGSIZE parameter should be no greater than 32767. However, this is not enforced during processing of the command, because IMS cannot determine the device type for the message destination until output time.

**SERIAL**

Specifies the serial option.

**N** Messages for the transaction are not processed serially. Message processing can be processed in parallel. Messages are placed on the suspend queue after a U3303 pseudoabend. Scheduling continues until repeated failures result in the transaction being stopped with a USTOP. This is the default.

**Y** Messages for the transaction are processed serially. U3303 pseudoabends do not cause the message to be placed on the suspend queue but rather on the front of the transaction message queue, and the transaction is stopped with a USTOP. The USTOP of the transaction is removed when the transaction or the class is started with a /START or UPD TRAN command.

Keyword combination rules include the following:
- MAXRGN>0 and SERIAL(Y) are mutually exclusive.
- PARLIM value 0 - 32767 and SERIAL(Y) are mutually exclusive.

**SIDL**

Specifies the system identification (SYSID) of the local system in a multiple-IMS system (MSC) configuration. The local system is the originating system to which responses are returned. The value can be a number from 1 to 2036. The local SYSID can be defined in any or all of the MSNAMEs or transactions.

For a local transaction where SIDL is not specified, SIDL is defined with a value of the lowest system ID when MSC is enabled on this system, or SIDL is defined with a value of 0 when MSC is not enabled on this system. The local system ID and remote system ID are the same for local transactions.

The SIDL parameter is independent of the link type (CTC, MTM, TCP/IP, VTAM) specified on the TYPE= keyword of the MSPLINK macro statement.

Keyword combination rules include the following:
- FP(E) and SIDL are mutually exclusive, unless SIDL and SIDR are specified as a pair and are equal to the local system ID of this IMS.
- FP(P) and SIDL are mutually exclusive.
- MSNAME and SIDL are mutually exclusive.
- SIDL value must be defined to this IMS.

**SIDR**

Specifies the system identification (SYSID) of the remote system in a multiple-IMS system (MSC) configuration. The remote system is the system on which the application program executes. The value can be a number from 1 to 2036. The remote SYSID specified must also be defined for an MSNAME.
For a local transaction where SIDR is not specified, SIDR is defined to be the same value as SIDL.

The SIDR parameter is independent of the link type (CTC, MTM, TCP/IP, VTAM) specified on the TYPE= keyword of the MSPLINK macro statement.

Keyword combination rules include the following:

- FP(E) and SIDR are mutually exclusive, unless SIDL and SIDR are specified as a pair and are equal to the local system ID of this IMS.
- FP(P) and SIDR are mutually exclusive.
- MSNAME and SIDR are mutually exclusive.
- SIDR value must be defined to this IMS.

**SPAZS**

Specifies the scratchpad area (SPA) size, in bytes, for a conversational transaction. The value can be a number from 16 and 32767.

CONV(N) and SPASZ are mutually exclusive.

**SPATRUNC**

Specifies the scratchpad area (SPA) truncation option of a conversational transaction. This defines whether the SPA data should be truncated or preserved across a program switch to a transaction that is defined with a smaller SPA. If not specified for a conversational transaction, the value is defined to be the TRUNC parameter in DFSDCxxx.

When a conversation initially starts, and when a program is switched, the SPATRUNC option is checked and set or reset as specified. When the option is set, it remains set for the life of the conversation, or until a program switch occurs to a transaction that specifies the option is to be reset.

When a program switch occurs, the truncated data option for the new transaction is first checked, and that specification is set for the conversation and is used for the SPA inserted into the output message. If the option is not specified for the new transaction, the option currently in effect for the conversation is used.

S  IMS preserves all of the data in the SPA, even when a program switch is made to a transaction that is defined with a smaller SPA. The transaction with the smaller SPA does not see the truncated data, but when the transaction switches to a transaction with a larger SPA, the truncated data is used.

R  The truncated data is not preserved.

Keyword combination rules include the following:

- CONV(N) and SPATRUNC are mutually exclusive.

**TRANSTAT**

Specifies whether transaction level statistics should be logged for message driven programs. If Y is specified, transaction level statistics are written to the log in a X'56FA' log record.

N  Transaction level statistics should not be logged.

Y  Transaction level statistics should be logged.

The TRANSTAT keyword is optional. If a value is not specified for the TRANSTAT keyword, the system default is used. The system default for the transaction level statistics parameter is set with the TRANSTAT parameter in
the DFSDFxxx PROCLIB member. If a value is not specified for the TRANSTAT parameter, the system default is set to N. The TRANSTAT keyword on the CREATE TRAN or CREATE TRANDESC command gives the user the ability to override the system default when creating a transaction or transaction descriptor.

**WFI**

Specifies the wait-for input option. This attribute does not apply to Fast Path transactions, which always behave as wait-for-input transactions.

- **N** This is not a wait-for-input transaction. This is the default.
- **Y** This is a wait-for-input transaction. A message processing or batch processing application program that processes WFI transactions is scheduled and invoked normally. If the transaction to be processed is defined as WFI, the program is allowed to remain in main storage after it has processed the available input messages. The QC status code (no more messages) is returned to the program if the processing limit count (PLCT) is reached; a command is entered to change the status of the scheduled transaction, database, program, or class; commands relating to the databases used by the transaction are entered, or IMS is terminated with a checkpoint shutdown.

CMTMODE(MULT) and WFI(Y) are mutually exclusive.

**Usage notes**

Descriptors exist for the life of the IMS unless they are deleted using a DELETE command. Descriptors are recoverable across an IMS warm start or emergency restart. Descriptors are lost if IMS is cold started, unless cold start imports definitions that were exported while IMS was up.

The CREATE TRANDESC command is similar to local online change (using a /MODIFY command) or global online change (using an INITIATE OLC command) for transaction resources in the MODBLKS data set, except that transactions are added dynamically.

The CREATE TRANDESC command can be issued only through the Operations Manager API. These commands apply to DB/DC and DCCTL systems. These commands are not valid on the XRF alternate, RSR tracker, or FDBR region. The CREATE command is not valid if online change for MODBLKS is enabled (DFSDFxxx or DFSCGxxx defined with MODBLKS=OLC or MODBLKS not defined).

**Output fields**

The following table shows the CREATE TRANDESC output fields. The columns in the table are as follows:

**Short label**

Contains the short label generated in the XML output.

**Keyword**

Identifies keyword on the command that caused the field to be generated. N/A appears for output fields that are always returned. The value *error* appears for output fields that are returned only in case of an error.

**Meaning**

Provides a brief description of the output field.

<table>
<thead>
<tr>
<th>Short label</th>
<th>Contains the short label generated in the XML output.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keyword</td>
<td>Identifies keyword on the command that caused the field to be generated. N/A appears for output fields that are always returned. The value <em>error</em> appears for output fields that are returned only in case of an error.</td>
</tr>
<tr>
<td>Meaning</td>
<td>Provides a brief description of the output field.</td>
</tr>
</tbody>
</table>
Table 154. Output fields for the CREATE TRANDESC command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>N/A</td>
<td>Completion code.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the non-zero completion code.</td>
</tr>
<tr>
<td>DESC</td>
<td>TRANDESC</td>
<td>Transaction descriptor name.</td>
</tr>
<tr>
<td>MBR</td>
<td>N/A</td>
<td>IMSplex member that built the output line.</td>
</tr>
<tr>
<td>OLDDEF</td>
<td>TRANDESC</td>
<td>Old default descriptor name, if this descriptor is made the default by specifying DEFAULT(Y). The old default descriptor is no longer the default.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 155. Return and reason codes for the CREATE TRANDESC command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>Command completed successfully. The command output contains a line for each descriptor, accompanied by its completion code. See the completion code table for details.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000204C'</td>
<td>The class value is invalid.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002050'</td>
<td>The current priority CPRI value is invalid.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002054'</td>
<td>The limit count LCT value is invalid.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002058'</td>
<td>The limit priority LPRI is invalid.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000205C'</td>
<td>The maximum region MAXRGN is invalid.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002060'</td>
<td>The normal priority NPRI value is invalid.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002064'</td>
<td>The parallel limit count PARLIM value is invalid.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002068'</td>
<td>The processing limit count PLCT is invalid.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000206C'</td>
<td>The segment number SEGNO value is invalid.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002070'</td>
<td>The segment size SEGSZ value is invalid.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002100'</td>
<td>CMTMODE(MULT) mutually exclusive with WFI(Y). Either both keywords were explicitly specified, or one keyword was explicitly specified and the other attribute was obtained from the model.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002101'</td>
<td>CONV(Y) mutually exclusive with CMTMODE(MULT). Either both keywords were explicitly specified, or one keyword was explicitly specified and the other attribute was obtained from the model.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002102'</td>
<td>CONV(Y) mutually exclusive with INQ(Y). Either both keywords were explicitly specified, or one keyword was explicitly specified and the other attribute was obtained from the model.</td>
</tr>
</tbody>
</table>
Table 155. Return and reason codes for the CREATE TRANDESC command  (continued)

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000008'</td>
<td>X'00002103'</td>
<td>CONV(N) mutually exclusive with SPASZ&gt;0 or SPATRUNC. Either both keywords were explicitly specified, or one keyword was explicitly specified and the other attribute was obtained from the model.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002104'</td>
<td>CONV(Y) mutually exclusive with RECOVER(N). Either both keywords were explicitly specified, or one keyword was explicitly specified and the other attribute was obtained from the model.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002105'</td>
<td>CONV(Y) requires SPASZ and SPATRUNC. Either SPASZ was not explicitly specified or defined in the model, or SPATRUNC was not explicitly specified or defined in the model. CONV(Y) was either explicitly specified or defined in the model.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002108'</td>
<td>Invalid EDITRTN name. EDITRTN was specified explicitly or obtained from the model.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002109'</td>
<td>Maximum 255 edit routines exceeded. EDITRTN was specified explicitly or obtained from the model.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000210C'</td>
<td>FP(E) mutually exclusive with EDITRTN. Either both keywords were explicitly specified, or one keyword was explicitly specified and the other attribute was obtained from the model.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000210E'</td>
<td>FP(E) or FP(P) mutually exclusive with MSC keyword, either MSNAME or SIDR and SIDL. Either both keywords were explicitly specified, or one keyword was explicitly specified and the other attribute was obtained from the model.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000210F'</td>
<td>FP(E) or FP(P) mutually exclusive with MSGTYPE(MULTSEG). Either both keywords were explicitly specified, or one keyword was explicitly specified and the other attribute was obtained from the model.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002110'</td>
<td>FP(N) mutually exclusive with EMHBSZ &gt; 0. Either both keywords were explicitly specified, or one keyword was explicitly specified and the other attribute was obtained from the model.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002111'</td>
<td>FP(E) or FP(P) mutually exclusive with RECOVER(N). Either both keywords were explicitly specified, or one keyword was explicitly specified and the other attribute was obtained from the model.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002112'</td>
<td>FP(E) or FP(P) mutually exclusive with RESP(N). Either both keywords were explicitly specified, or one keyword was explicitly specified and the other attribute was obtained from the model.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002116'</td>
<td>INQ(N) mutually exclusive with RECOVER(N). Either both keywords were explicitly specified, or one keyword was explicitly specified and the other attribute was obtained from the model.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002117'</td>
<td>Invalid LIKE descriptor name.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002118'</td>
<td>Invalid LIKE resource name.</td>
</tr>
</tbody>
</table>
Table 155. Return and reason codes for the CREATE TRANDESC command (continued)

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000008'</td>
<td>X'00002119'</td>
<td>MSC keyword MSNAME or SIDR and SIDL are mutually exclusive with application program defined as Fast Path exclusive (FP(E)) associated with this transaction.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000211A'</td>
<td>Invalid MSNAME name.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000211B'</td>
<td>MSNAME mutually exclusive with SIDR and SIDL.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000211D'</td>
<td>MAXRGN&gt;0 mutually exclusive with PARLIM(65535). Either both keywords were explicitly specified, or one keyword was explicitly specified and the other attribute was obtained from the model.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000211E'</td>
<td>MAXRGN&gt;0 mutually exclusive with SERIAL(Y). Either keywords were explicitly specified, or one keyword was explicitly specified and the other attribute was obtained from the model.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002120'</td>
<td>PGM() definition missing. PGM must be defined for local transactions either explicitly or in the model.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002121'</td>
<td>PARLIM value mutually exclusive with SERIAL(Y). Either both keywords were explicitly specified, or one keyword was explicitly specified and the other attribute was obtained from the model.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002123'</td>
<td>Invalid PGM name. PGM was specified explicitly, or obtained from the model. If the IMS-defined descriptor DFSDSTR1 was used, the command failed because DFSDSTR1 defines no program name.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002125'</td>
<td>REMOTE(Y) requires MSC keyword MSNAME or SIDR and SIDL. Either MSNAME or SIDR and SIDL were not explicitly specified or defined in the model. REMOTE(Y) was either explicitly specified or defined in the model.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002126'</td>
<td>Invalid SIDL value.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002127'</td>
<td>SIDL/SIDR must be specified as a pair. Either SIDL was specified alone or SIDR was specified alone.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002128'</td>
<td>Invalid SIDR value.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002133'</td>
<td>Multiple name parameters were specified with DEFAULT(Y). Only one descriptor can be the default at one time.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00003000'</td>
<td>Command was successful for some descriptors but failed for others. The command output contains a line for each descriptor, accompanied by its completion code. See the completion code table for details.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00003004'</td>
<td>Command was not successful for any of the descriptors. The command output contains a line for each descriptor, accompanied by its completion code. See the completion code table for details.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000400C'</td>
<td>Command is not valid on the XRF alternate.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>Command is not valid on the RSR tracker.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004024'</td>
<td>No Fast Path defined, so FP(E), FP(P), or EMHBSZ &gt; 0 is invalid.</td>
</tr>
</tbody>
</table>
Table 155. Return and reason codes for the CREATE TRANDESC command (continued)

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000010'</td>
<td>X'00004120'</td>
<td>Online change phase is in progress.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004204'</td>
<td>Model is quiesced. Cannot quiesce model.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004300'</td>
<td>Command is not allowed because online change for MODBLKS is enabled (DFSDFxxx or DFSCGxxx defined with MODBLKS=OLC, or MODBLKS not defined).</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004310'</td>
<td>Storage could not be obtained for the Transaction Input edit routine table. A cold start is required to fix this error.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004314'</td>
<td>The Transaction Input edit routine could not be loaded.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004318'</td>
<td>A new Transaction Input edit routine could not be added. The maximum of 255 routines has already been reached.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005004'</td>
<td>DFSOCMD response buffer could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005008'</td>
<td>DFSPOOL storage could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005010'</td>
<td>AWE could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005010'</td>
<td>Unable to obtain latch.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. The following table includes an explanation of the completion codes.

Table 156. Completion codes for the CREATE TRANDESC command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>Command completed successfully for transaction descriptor.</td>
</tr>
<tr>
<td>11</td>
<td>RESOURCE ALREADY EXISTS</td>
<td>Transaction descriptor already exists.</td>
</tr>
<tr>
<td>17</td>
<td>ANOTHER CMD IN PROGRESS</td>
<td>Another command (such as DELETE PGM or UPDATE PGM) is in progress for the program referenced by this transaction.</td>
</tr>
<tr>
<td>36</td>
<td>FP=E/FP=N PGM CONFLICT</td>
<td>Transaction to be created as Fast Path exclusive FP(E) conflicts with program already defined as non-Fast Path FP(N).</td>
</tr>
<tr>
<td>3E</td>
<td>FP=N/FP=E PGM CONFLICT</td>
<td>Transaction to be created as non-Fast Path FP(N) conflicts with program already defined as Fast Path exclusive FP(E).</td>
</tr>
</tbody>
</table>
Table 156. Completion codes for the CREATE TRANDESC command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>3F</td>
<td>FP=P/BMPTYPE=Y CONFLICT</td>
<td>Transaction to be created as Fast Path potential FP(P) conflicts with the program defined as batch BMPTYPE(Y).</td>
</tr>
<tr>
<td>5F</td>
<td>INVALID CHARACTERS IN NAME</td>
<td>Name is invalid because it contains an invalid character.</td>
</tr>
<tr>
<td>61</td>
<td>DFSBCB STORAGE ERROR</td>
<td>Request to get BCB storage for SMB control block failed.</td>
</tr>
<tr>
<td>8A</td>
<td>WILDCARD PARAMETER NOT SUPPORTED</td>
<td>The CREATE command does not support wildcard parameters. You must explicitly specify the names of the descriptors you want to create.</td>
</tr>
<tr>
<td>93</td>
<td>RESERVED NAME</td>
<td>Name is reserved. For example, name starts with DFS (except for DFSSAMxx or DFSIVPxx), or is an IMS reserved name such as BASICEDT or WTOR.</td>
</tr>
</tbody>
</table>

Examples

The following are examples of the CREATE TRANDESC command:

Example 1 for CREATE TRANDESC command

TSO SPOC input:

CRE TRANDESC NAME(CONVDESC) LIKE(RSC(CDEBTRNA))
SET(CONV(Y),SPASZ(128),SPATRUNC(R),PGM(DFSSAM04),DEFAULT(Y))

TSO SPOC output:

DescName MbrName CC OldDefault
CONVDESC IMS1 0 DFSDSTRI

OM API input:

CMD(CRE TRANDESC NAME(CONVDESC) LIKE(RSC(CDEBTRNA))
SET(CONV(Y),SPASZ(128),SPATRUNC(R),PGM(DFSSAM04),DEFAULT(Y)))

OM API output:

<imsout>
<ctl>
<omname>OMIOM </omname>
<omvsn>1.3.0</omvsn>
<xmlvsn>20 </xmlvsn>
<statime>2006.307 18:52:58.805900</statime>
<stotime>2006.307 18:52:58.806677</stotime>
<staseq>BFADCE875CA82844A</staseq>
<stoseq>BFADCE875CA82844A</stoseq>
<rqsttknl>USR7011 10105250</rqsttknl>
<rc>0000000000</rc>
<rsn>00000000</rsn>
</ctl>
</cmd>
<master>IMS1 </master>
</imsout>

Chapter 19. CREATE commands 291
<kw>TRANDESC</kw>
<input>CRE TRANDESC NAME(CONVDESC) LIKE(RSC(CDEBTRNA))
    SET(CONV(Y),SPASZ(128),SPATRUNC(R),PGM(DFSSAM04),DEFAULT(Y))</input>
</cmd>
<cmdrsphdr>
</cmdrsphdr>
<cmdrspdata>
</cmdrspdata>
</imsout>

**Explanation:** A CREATE TRANDESC command is issued to create a transaction descriptor for conversational transactions. Descriptor CONVDESC takes the same attributes as transaction CDEBTRNA except for the conversation attribute, SPA size, SPA truncate option, and program name. It is also made the default descriptor, so that if no LIKE keyword is specified on a CREATE TRAN or CREATE TRANDESC command, the transaction or descriptor is defined with the attributes in descriptor CONVDESC.

**Related concepts:**
- How to interpret CSL request return and reason codes (System Programming APIs)

**Related reference:**
- Chapter 2, “Command keywords and their synonyms,” on page 63
- Commit Verify exit routine (Exit Routines)
Chapter 20. /DBDUMP command

Use the /DBDUMP command to prevent transactions or programs from updating DL/I databases. It also can be used to dump all MSDBs to the MSDB dump data set. /DBDUMP does not apply to DEDBs.

Subsections:
- “Environment”
- “Syntax”
- “Keywords”
- “Usage notes” on page 295
- “Equivalent IMS type-2 commands” on page 296
- “Examples” on page 297

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

Table 157. Valid environments for the /DBDUMP command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/DBDUMP</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DB</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>GLOBAL</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>LOCAL</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NOFEOFV</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NOPFA</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Syntax

```
/DBDUMP DB dbname
```

Keywords

The following keywords are valid for the /DBDUMP command:

- **DB** Specifies the databases to which the /DBDUMP command applies. When the /DBDUMP command is entered, the message processing regions using the specified databases are terminated at the conclusion of processing their current transactions, in preparation to close the database and enable it to be opened for input only.
If a DL/I database specified in the command is being used by a batch message processing region, an error message is returned to the master terminal. When this message is issued, the command is ignored for the database named in the message; processing continues for the other databases specified in the command. The master terminal operator must wait until the batch message processing concludes processing before reentering the command.

As the message processing regions terminate programs, the data sets of the named databases in the command are closed. The IMS log switches to the next OLDS. This switch to the next OLDS is marked as a recovery point for log archiving purposes. IMS issues a simple checkpoint. The scheduling of transactions is then resumed, although no transactions will be allowed to update the specified databases. Programs with update intent will be scheduled, but update calls to the database will result in a 3303 pseudoabend or a BA status if the INIT call was issued.

/DBDUMP can be used to dump all the MSDBs to the MSDB dump data set by specifying the reserved parameter MSDB with the DB keyword when entering the /DBDUMP DB command or by entering the /DBDUMP DB ALL command. The MSDBs dumped to the MSDB dump data set can be used as input to the MSDB Dump Recovery utility. A specific MSDB cannot be a parameter of the DB keyword.

The /START DB command resets the effect of the /DBDUMP command. The /START command is not required for MSDBs, because the data for these databases resides in processor storage, and the databases are never closed.

For DBCTL, when CCTL schedules a PSB, the DBCTL thread SCHED request defines the thread as LONG or SHORT. If the database is currently scheduled to a LONG thread, the command is rejected; otherwise, the thread is allowed to “complete” before the database is acted upon. This results in either a commit point or transaction termination.

GLOBAL
Applies when an IRLM is active and specifies that the command applies to all online subsystems sharing the database. The /DBDUMP command with the GLOBAL keyword puts the database in read status and prevents transactions from updating the database in all online subsystems that share the database.

The /DBDUMP GLOBAL command is processed by the IMS system where the command was initiated. The systems will process the command locally and then request IRLM NOTIFY to route and process the command on sharing IMS systems.

If global database status is maintained, the global status maintained in RM is also updated. The global status is set to STOUPDS.

If the command is entered from OM API, the global status is updated by the command master IMS. If the command is not entered from OM API, the IMS that initiated the GLOBAL command updates the global status in RM.

If global status in RM is successfully updated, message DFS09881 for RSRCTYPE=DB is issued. If global status is not successfully updated, message DFS33081 is issued, indicating RM failure, and no command response lines are generated. Any RM error is traced to the OCMD trace table. Users can issue a QRY DB STATUS(GLOBAL) command to set the global status of the resources in RM.

The X'4C' log record for databases is updated to include both the global status and global command time stamp.
The GLOBAL keyword is mutually exclusive with the ALL parameter or the MSDB parameter and causes the command to be rejected if both parameters are specified. The GLOBAL keyword requires that IRLM be active and will cause the command to be rejected if IRLM is not active.

If the command with GLOBAL is entered from OM API, the command master IMS becomes the initiating system. The command IMS will process the command locally first and then make DBRC calls to update the RECON with GLOBAL status. It will also request IRLM NOTIFY to route and process the command on sharing IMS systems.

Messages produced on the NOTIFIED systems will appear only on the system console and will not be routed back to the OM API which originally entered the command.

If the command is routed to multiple IMS systems, the non-master IMS systems to which OM routes the command, will reject the command with the return and reason codes shown in the following table.

| Table 158. Return and reason code for the GLOBAL keyword issued from the OM API |
|--------------------------|--------------------------|--------------------------|
| Return code             | Reason code              | Meaning                  |
| X'00000004'             | X'00001000'              | The command contained the GLOBAL keyword and was routed to more than one IMS system in the IMSPLEX. The non-master IMS systems will reject this command when OM routes the command to them. The master IMS system will process this command and use IRLM NOTIFY to route and process the command on the non-master IMS systems. See the discussion under the GLOBAL keyword. |

LOCAL

Specifies that the command only applies to the subsystem in which the command is entered. This command does not affect any other subsystem sharing the database. The LOCAL keyword can be used to restrict concurrent updates. LOCAL is the default.

NOFEOV

Specifies that there is no forced end of volume, so that the IMS log does not switch to the next OLDS. If NOFEOV is specified without the MSDB keyword, a simple checkpoint is not taken.

NOPFA

Specifies that the call to DBRC that sets the Read Only flag in the RECON data set for the database or partition is to be skipped. You can use this keyword when you need to authorize the database for update after the command has been processed. By using this keyword, DBRC does not prevent authorizations for update for the database or partition. NOPFA can be specified only with the GLOBAL keyword.

Usage notes

The /DBDUMP command can be used on HALDB databases.

In an IMSplex, the output of the /DBD command is changed when the command is entered through the OM API. In this case, the DFS058I message is not returned to OM. The command response returned to OM contains one or more of the following messages as appropriate to the database type and the command completion.
This command can be issued to an IMSplex using the Batch SPOC utility.

Full Function Database messages: DFS132, DFS160, DFS216, DFS0488I, DFS1407, DFS2026, DFS3318I, DFS3320I, DFS3321I, DFS3325I, DFS3462I, DFS3463I, DFS3466I

When you enter this command, the database name can be an existing non-HALDB, a HALDB master, or a HALDB partition. A command against a HALDB partition operates exactly like a command against a non-HALDB with the exception of the /START DATABASE and the UPDATE DB START(ACCESS) command. A HALDB partition is not allocated during the command unless it was previously authorized but not allocated, the OPEN keyword was specified, or the partition has EEQEs. The partition is allocated at first reference.

The HALDB partition reflects conditions such as STOPPED (shown as STOACC or STOSCHD or STOUPDS on QUERY DB), LOCKED, or NOTOPEN. When a HALDB partition is stopped, it must be explicitly started again. The type-1 commands with the keyword ALL, type-2 commands with NAME(*), and commands against a HALDB master do not change the STOPPED (shown as STOACC, STOSCHD or STOUPDS on QUERY DB) and LOCKED indicators in each HALDB partition.

When the command target is a HALDB master, processing acts on all HALDB partitions. For example, if the IMS command is /DBR on the HALDB master, all of the HALDB partitions are closed, deallocated, and deauthorized. On a /DISPLAY DB command, only the HALDB master displays STOPPED (each HALDB partition does not display STOPPED unless it was itself stopped). If a /DBR command was issued against a HALDB master, the display output of a /DISPLAY DB command shows the HALDB master (as STOPPED), but does not display the status of the partitions.

Each partition inherits the access limitations of its HALDB master. If the /DBD command is issued against a HALDB master, all of its partitions close. A subsequent reference to any of the partitions results in the partition opening for input, although the partition’s access might be UPDATE or EXCLUSIVE. The DBRC authorization state reflects the limited access.

Restrictions:
- The /DBDUMP DB command cannot be processed against a HALDB partition on an IMS system while HALDB Online Reorganization (OLR) is running against that partition on the same IMS system.
- The /DBDUMP DB command cannot be issued against a HALDB master while OLR is reorganizing any of its partitions.
- While the database is being quiesced, this command cannot be processed successfully.

The /DBDUMP DB command is not allowed for a database that is marked bad with the NOTINIT-48-REPOCHGLIST reason code because the IMS change list processing is not complete for the database or the change list processing failed.

Equivalent IMS type-2 commands

The following table shows variations of the /DBDUMP command and the IMS type-2 commands that perform similar functions.
Table 159. Type-2 equivalents for the /DBDUMP command.

<table>
<thead>
<tr>
<th>Task</th>
<th>/DBDUMP command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stops updates to a database.</td>
<td>/DBDUMP DB dbname</td>
<td>UPDATE DB NAME(dbname) STOP(UPDATES) OPTION(FEOV)</td>
</tr>
</tbody>
</table>

1 This command does not automatically issue checkpoints unless OPTION(FEOV) is specified.

Examples

The following are examples of the /DBDUMP command:

Example 1 for /DBDUMP command

Entry ET:

/DBDUMP DATABASE PAYROLL

Response ET:

DFS058I (time stamp) DBDUMP COMMAND IN PROGRESS

Explanation: Currently executing application programs are being terminated. When the termination completes, the databases are stopped for update and the output log is switched to the next OLDS.

Response ET:

DFS0488I DBD COMMAND COMPLETED. DBN=PAYROLL RC=0

DFS3257I ONLINE LOG NOW SWITCHED FROM DFSOLP( ) TO DFSOLP( )

DFS994I *CHKPT 82080/111213**SIMPLE*

Explanation: The new OLDS is used to record a simple checkpoint at 111213 (time) on 82080 (Julian date). The checkpoint number is 82080/111213. All /DBDUMP command functions are complete. The /START DATABASE command must be used to start the database after the dump job completes.

Example 2 for /DBDUMP command

Entry ET:

/DBDUMP DATABASE MSDB

Response ET:

DFS058I (time stamp) DBDUMP COMMAND IN PROGRESS

Explanation: All MSDBs are dumped to the MSDB dump data set because MSDB was specified as the parameter of the database keyword.

Response ET:

DFS994I CHKPT 82069/123624**SIMPLE*

Explanation: A simple checkpoint is recorded on the new system log at 123624 (time) on 82069 (Julian date). The checkpoint number is 82069/123624. All MSDBs are dumped.

Related concepts:

Maintaining global information for databases, DEB areas, and transactions (System Administration)
Related reference:

UPDATE DB command (Commands)
Chapter 21. /DBRECOVERY command

Use the /DBRECOVERY command to prevent transactions or programs from accessing DL/I databases, DEDBs, or DEDB areas.

Subsections:
- “Environment”
- “Syntax”
- [“Keywords” on page 300]
- [“Usage notes” on page 303]
- [“Equivalent IMS type-2 commands” on page 304]
- [“Examples” on page 305]

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/DBRECOVER</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>AREA</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DB</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DATAGRP</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>GLOBAL</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>LOCAL</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NOFEOV</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NOPFA</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Syntax
Keywords

The following keywords are valid for the /DBRECOVERY command:

AREA
Specifications the DEDB areas (but not DEDBs) to be processed by the /DBRECOVERY command. The /DBRECOVERY AREA command stops the accessing and updating of specified DEDB areas and closes them. The /START AREA command can be used to reopen and reallocate the areas closed by /DBRECOVERY AREA command.

The /DBRECOVERY command for Fast Path Virtual Storage Option (VSO) areas in a z/OS data space removes the areas from the data space and forces updates to be written back to DASD.

While the database is being quiesced, this command cannot be processed successfully.

DATAGRP
Specifications a group of DL/I databases and Fast Path DEDBs to be processed by the /DBRECOVERY command. Use the INIT.DBDSGRP command with the GRPNAME and DBGRP keywords to define the data group in the RECON data set.

DATAGRP is valid on active and RSR tracking subsystems.

Recommendation: Although you can use DBDS groups as well as database groups for this command, you should use database groups whenever possible to eliminate the overhead of converting the DBDS group to a database group.

DB
Specifies the DL/I databases and Fast Path DEDBs (and inclusive areas) to be processed by the /DBRECOVERY command. MSDBs cannot be specified with /DBRECOVERY. The /DBRECOVERY DB command allows scheduling of transactions or programs that use the database to continue after successful completion of the command. However, calls to DEDB databases will receive an FH status code. If the application program is prepared to accept status codes regarding data unavailability through the INIT STATUS GROUPA or GROUPB call, calls to DL/I databases will result in either a 3303 pseudoabend, a BA, or BB status code.

When the /DBRECOVERY DB command is entered, the data sets of the databases named in the command are closed. The /DBRECOVERY DB command dynamically deallocates the IMS databases. For DEDBs, the randomizer is unloaded and removed from storage. You can use the UPD DB STOP(ACCESS) OPTION(NORAND) command to prevent the randomizer from being unloaded.

If a DL/I database is in use by a batch message processing region when the /DBRECOVERY command is issued, a DFS0565I message is returned to the master terminal, the command is ignored for the database named in the message, and processing continues for any other databases specified in the command. The master terminal operator must wait until the BMP ends before reissuing the /DBRECOVERY command to close the databases named in any DFS0565I messages. DEDB databases will accept the /DBRECOVERY command
while actively being used by a batch message processing region. However, all further calls to the database will receive an FH status code.

The region identified in the DFS9565I message can also be an MPP region. The error message can be issued in order to break a potential deadlock condition between Online Change, a /DBR, or /STA command against a database being used by the MPP, and an application running in the MPP issuing an ICMD or CMD call.

The /START DB command is used to reallocate the databases closed by the /DBRECOVERY DB command except for HALDB partitions. A HALDB partition can be reallocated if the partition has EEQEs, the partition was previously authorized but not allocated, or the OPEN keyword on the /START DB command was used. HALDB partitions are allocated at first reference. For DEDBs, a /START DB command also causes a reload of the randomizer.

For DBCTL, when CCTL schedules a PSB, the DBCTL thread SCHED request defines the thread as LONG or SHORT. If the database is currently scheduled to a LONG thread, the command is rejected; otherwise, the thread is allowed to “complete” before the database is acted upon. This results in either a commit point or transaction termination.

On an RSR tracking subsystem, /DBRECOVERY DB for a DEDB is not permitted.

While the database is being quiesced, this command cannot be processed successfully.

The /DBRECOVERY DB command is not allowed for a database that is marked bad with the NOTINIT-48-REPOCHLIST reason code because the IMS change list processing is not complete for the database or the change list processing failed.

**GLOBAL**

Applies when the database is registered to DBRC and specifies that the command applies to all sharing online subsystems. You can use the /DBRECOVERY GLOBAL command to close the database so that it can be taken offline when this command successfully completes in all online subsystems. If the database is registered in the RECON data set, the prohibit authorization flag will be set (PROHIBIT AUTH = ON), and DBRC will prevent any further authorization of the database. This is equivalent to the CHANGE.DB DBD(***xxx*) NOAUTH DBRC command.

The /DBRECOVERY GLOBAL command is processed by the IMS system where the command was initiated. This system will process the command locally and then request IRLM NOTIFY to route and process the command on sharing IMS systems.

If global DB or AREA status is maintained, the global status maintained in RM is also updated. The global status is set to STOACC.

If the command is entered from OM API, the global status is updated by the command master IMS. If the command is not entered from OM API, the IMS that initiated the GLOBAL command updates the global status in RM.

If global status in RM is successfully updated, message DFS0988I for RSRCTYPE=DB is issued. If global status is not successfully updated, message DFS3308I is issued, indicating RM failure, and no command response lines are generated. Any RM error is traced to the OCMD trace table. Users can issue a QRY DB STATUS(GLOBAL) or QUERY AREA STATUS(GLOBAL) to obtain the global status of the resources in RM.
The X'4C' log record for databases is updated to include both global status and global command time stamp. A new log record for DEDB areas, X'594C', includes both global status and global command time stamp.

The GLOBAL keyword and the ALL parameter are mutually exclusive. The /DBRECOVERY command will be rejected if both GLOBAL and ALL are specified. The IRLM must be active when the GLOBAL keyword is used. If IRLM is not active, the command is rejected.

If the command with GLOBAL is entered from OM API, the command master IMS becomes the initiating system. The command IMS will process the command locally first and then make DBRC calls to update the RECON with GLOBAL status. It will also request IRLM NOTIFY to route and process the command on sharing IMS systems.

Messages produced on the NOTIFIED systems will appear only on the system console and will not be routed back to the OM API that originally entered the command.

If the command is routed to multiple IMS systems, the non-master IMS systems to which OM routes the command, will reject the command with the return and reason codes shown in the following table.

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000004'</td>
<td>X'00001000'</td>
<td>The command contained the GLOBAL keyword and was routed to more than one IMS system in the IMSplex. The non-master IMS systems will reject this command when OM routes the command to them. The master IMS system will process this command and use IRLM NOTIFY to route and process the command on the non-master IMS systems. See the discussion under the GLOBAL keyword.</td>
</tr>
</tbody>
</table>

**Restriction:** When the GLOBAL keyword is specified, the command is performed for the named database only. If the command is to be performed for a HIDAM database and its index, both must be named.

The GLOBAL keyword is not supported for an RSR tracking subsystem. The GLOBAL keyword cannot be combined with the DATAGRP keyword.

**LOCAL**

Specifies that the command applies only to the subsystem in which the command is entered. This command does not affect any other subsystem sharing the database or area. Use the LOCAL keyword to increase usability for the other system sharing the database or area. LOCAL is the default.

**NOFEOV**

Specifies that there is no forced end of volume, so that the log does not switch to the next OLDS and simple checkpoint is not taken. The NOFEOV keyword is the default for an RSR tracking subsystem so that the OLDS is not switched, nor is a simple checkpoint taken.

**NOPFA**

Specifies to skip the call to DBRC that sets the Prohibit Authorization flag in the RECON data set for the database or area. You can use this keyword when you need to authorize the database for use after it is offline, for example, for offline utilities. By using this keyword, DBRC does not prevent further authorizations for the database or area.
NOPFA can be specified only with the GLOBAL keyword.

**Usage notes**

The /DBRECOVERY command can be used on HALDB databases.

Use of the ALL parameter indicates that the command applies to all databases, even those not opened.

The /DBRECOVERY command closes and deallocates the databases, and deauthorizes them with DBRC. Once the database or area referenced by /DBRECOVERY is closed, the IMS log switches to the next OLDS (unless you specify the NOFEOV keyword). This switch to the next OLDS is marked as a recovery point for log archiving purposes. IMS issues a simple checkpoint.

The /DBRECOVERY command deletes the randomizer routine from memory.

/DBRECOVERY is supported on an RSR tracking subsystem, but only for a database readiness level (DLT) subsystem. The /DBRECOVERY command is used on an RSR tracking subsystem to take shadow areas and databases offline for image copy and recovery. The /DBRECOVERY command also stops online forward recovery (OFR) if it is in progress for the specified database or area.

IMS databases, DEDBs, and DEDB areas closed by the master terminal operator with the /DBRECOVERY command can be used as input to the offline IMS Database Recovery utility. The Database Recovery utility runs in a batch region.

If the /DBRECOVERY command does not deallocate a data set because a VSAM data set hardware error occurred, use the VARY nnn,OFFLINE,FORCE command to deallocate the data set (where nnn is the number of the device).

In an IMSplex, the output of the /DBR command is different when the command is entered through the OM API. In this case, the DFS058I message is not returned to OM. The command response returned to OM contains one or more of the following messages as appropriate to the database type and the command completion.

- For /DBR AREA commands that specify GLOBAL, only the command master returns the asynchronous messages to OM. When a command is processed with the LOCAL keyword, all IMS systems are able to return the asynchronous messages to OM.
- Full-function database messages for /DBR DB: DFS132, DFS160, DFS216, DFS0488I, DFS0565I, DFS1407, DFS2026, DFS3318I, DFS3320I, DFS3321I, DFS3464I, DFS3466I.
- Fast Path database messages for /DBR DB: DFS140I, DFS0666I, DFS3062I, DFS3320I.
- Fast Path database messages for /DBR AREA: DFS140I, DFS0488I, DFS0666I, DFS1407I, DFS3060I, DFS3062I, DFS3320I, DFS3325I, DFS3342I, DFS3720I.

This command can be issued to an IMSplex using the Batch SPOC utility.

When you enter this command, the database name can be an existing non-HALDB, a HALDB master, or a HALDB partition. A command against a HALDB partition operates exactly like a command against a non-HALDB except for the /START DB and the UPDATE DB START(ACCESS) commands. A HALDB partition is not
allocated during the command unless it was previously authorized but not allocated, the OPEN keyword was specified, or the partition has EEQEs. The partition is allocated at first reference.

The HALDB partition reflects conditions such as STOPPED (shown as STOACC or STOSCHD or STOUPDS on QUERY DB), LOCKED, or NOTOPEN. When a HALDB partition is stopped, it must be explicitly started again. The type-1 commands with the keyword ALL, type-2 commands with NAME(*), and commands against a HALDB master do not change the STOPPED (shown as STOACC, STOSCHD or STOUPDS on QUERY DB) and LOCKED indicators in each HALDB partition.

When the command target is a HALDB master, processing acts on all HALDB partitions. For example, if the IMS command is /DBR on the HALDB master, all of the HALDB partitions are closed, deallocated, and deauthorized. On a /DISPLAY DB command, only the HALDB master displays STOPPED (each HALDB partition does not display STOPPED unless it was itself stopped). If a /DBR command was issued against a HALDB master, the display output of a /DISPLAY DB command shows the HALDB master (as STOPPED), but does not display the status of the partitions.

Each partition inherits the access limitations of its HALDB master. If the /DBD command is issued against a HALDB master, all of its partitions close. A subsequent reference to any of the partitions results in the partition opening for input, although the partition’s access might be UPDATE or EXCLUSIVE. The DBRC authorization state reflects the limited access.

Restrictions:
- The /DBRECOVERY DB command cannot be processed against a HALDB partition on an IMS system while HALDB Online Reorganization (OLR) is running against that partition on the same IMS system.
- The /DBRECOVERY DB command cannot be issued against a HALDB master while OLR is reorganizing any of its partitions.

The NODBR keyword can be specified in the DFSVSMxx member of the IMS PROCLIB data set to prevent a /DBRECOVERY command from processing against a database that has in-doubt EEQEs. NODBR does not apply to Fast Path databases.

**Equivalent IMS type-2 commands**

The following table shows variations of the /DBRECOVERY command and the IMS type-2 commands that perform similar functions.

<table>
<thead>
<tr>
<th>Table 162. Type-2 equivalents for the /DBRECOVERY command.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Task</strong></td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Stops the accessing and updating of an area.</td>
</tr>
<tr>
<td>Stops the accessing and updating of all areas and databases of the data group.</td>
</tr>
<tr>
<td>Stops access to the database and take it offline.</td>
</tr>
</tbody>
</table>

\(^1\) This command does not automatically issue checkpoints unless OPTION(FEOV) is specified.
Examples

The following are examples of the `/DBRECOVERY` command:

**Example 1 for `/DBRECOVERY` command**

Entry ET:

```
/DBRECOVERY AREA ALL
```

Response ET:

```
DFS058I DBRECOVERY COMMAND IN PROGRESS
DFS0488I DBRECOVERY COMMAND COMPLETED. AREA=DBAREA0
DFS0488I DBRECOVERY COMMAND COMPLETED. AREA=DBAREA1
```

Explanation: DEDB areas are being stopped for inquiry and update, closed, and deallocated; the output log is switched to the next OLDS.

**Example 2 for `/DBRECOVERY` command**

Entry ET:

```
/DBRECOVERY DATABASE SKILL
```

Response ET:

```
DFS058I DBRECOVERY COMMAND IN PROGRESS
DFS2500I DATABASE SKILL SUCCESSFULLY DEALLOCATED
DFS0488I DBRECOVERY COMMAND COMPLETED. DBN=SKILL RC=0
DFS3257I ONLINE LOG NOW SWITCHED FROM DFSOLP() TO DFSOLP()
DFS944I *CHKPT 82123/121314**SIMPLE**
```

Explanation: The new OLDS is used to record a simple checkpoint at 121314 (time) on 82123 (Julian date). The checkpoint number is 82123/121314. All `/DBRECOVERY` command functions are complete. The Database Recovery utility can be executed after archiving. Currently executing application programs are being terminated. When the termination completes, the SKILL database is stopped for inquiry and update, closed, and deallocated; the output log is switched to the next OLDS. The `/START DATABASE` command must be used to start the database after the recovery job completes.

**Example 3 for `/DBRECOVERY` command**

This example shows how to stop an online forward recovery (OFR) at the RSR tracking site with a `/DBRECOVERY` command.

Entry ET (on tracking subsystem):

```
/DISPLAY DATABASE OFR
```

Response ET (to tracking subsystem):

```
DATABASE TYPE TOTAL UNUSED TOTAL UNUSED ACC CONDITIONS
BE2PCUST DL/I EX ALLOCS OFR
BE3ORDER DL/I EX ALLOCS OFR
BE3ORDERX DL/I EX ALLOCS OFR
BE3PARTS DL/I EX ALLOCS OFR
BE3PSID1 DL/I EX ALLOCS OFR
BE3PARTS DL/I EX ALLOCS OFR
91240/132406 SYS3
```

Entry ET (on tracking subsystem):

```
/DBRECOVERY DATABASE BE3ORDER BE3PSID1
```
Response ET (to tracking subsystem):

DFS058I DBRECOVERY COMMAND IN PROGRESS
DFS0488I DBR COMMAND COMPLETED. DBN=BE3ORDER. RC=0
DFS0488I DBR COMMAND COMPLETED. DBN=BE3PSID1. RC=0

Explanation: Databases BE3ORDER and BE3PSID1 are closed, unallocated, and deauthorized with DBRC. Online forward recovery for the databases is also stopped.

Example 4 for /DBRECOVERY command

This example shows how the /DBRECOVERY command might look when entered from the SPOC.

TSO SPOC input:

DBR DB BANKATMS BANKTERM BANKLDGR BE3ORDER

TSO SPOC output:

SYS3 DFS0488I DBR COMMAND COMPLETED. DBN= BANKATMS RC=04
SYS3 DFS0488I DBR COMMAND COMPLETED. DBN= BANKTERM RC=04
SYS3 DFS0488I DBR COMMAND COMPLETED. DBN= BANKLDGR RC=04
SYS3 DFS0488I DBR COMMAND COMPLETED. DBN= BE3ORDER RC= 0
IMS3 DFS0488I DBR COMMAND COMPLETED. DBN= BANKATMS RC=04
IMS3 DFS0488I DBR COMMAND COMPLETED. DBN= BANKTERM RC=04
IMS3 DFS0488I DBR COMMAND COMPLETED. DBN= BANKLDGR RC=04
IMS3 DFS0488I DBR COMMAND COMPLETED. DBN= BE3ORDER RC= 0

OM API input:

CMD (DBR DB BANKATMS BANKTERM BANKLDGR BE3ORDER)

OM API output:

<?xml version="1.0"?>
<!DOCTYPE imsout SYSTEM "imsout.dtd">
<imsout>
<ctl>
<omname>OM1OM </omname>
<omvsn>1.1.0 </omvsn>
+xmlvsn>1 </xmlvsn>
<statime>2002.197 21:52:02.730359</statime>
<stotime>2002.197 21:52:03.383199</stotime>
<staseq>B7EFBE716A9770A4</staseq>
<stoseq>B7EFBE7209F9FD2F</stoseq>
<rqsttkn>USRT005 10145202</rqsttkn1>
<rc>02000000</rc>
<rsn>00003008</rsn>
</ctl>
<cmderr>
<mbr name="SYS3 ">
<typ>IMS </typ>
<styp>DBDC </styp>
<rc>00000014</rc>
<rsn>00005050</rsn>
<rsntext>Command processing error</rsntext>
</mbr>
<mbr name="IMS3 ">
<typ>IMS </typ>
<styp>DBDC </styp>
<rc>00000014</rc>
<rsn>00005050</rsn>
<rsntext>Command processing error</rsntext>
</mbr>
<cmderr>
Explanation: The DBR command is routed from OM to the two active IMS systems -- SYS3 and IMS3. The response from both IMS systems is returned to OM. The databases BANKATMS, BANKTERM, BANKLDGR, and BE3ORDER are taken offline at both IMS systems.

Related concepts:
- Maintaining global information for databases, DEDB areas, and transactions (System Administration)

Related reference:
- "IMS type-1 command format" on page 16
- z/OS: Recovering VSAM data sets
- DFSVSMxx member of the IMS PROCLIB data set (System Definition)
- UPDATE AREA command ( Commands)
- UPDATE DATAGRP command ( Commands)
- UPDATE DB command ( Commands)

Related information:
- DFS2406I (Messages and Codes)
- DFS2838I (Messages and Codes)
Chapter 22. /DELETE command

Use the /DELETE command to delete LU 6.2 descriptors, password security authorizations for a given transaction code, logical terminal, relative physical terminal, database, node, or program, and terminal and logical link security for a given transaction code.

This command can be issued to an IMSplex using the Batch SPOC utility.

Subsections:
- “Environment”
- “Syntax”
- “Keywords”

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/DELETE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DESC</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Syntax

```
/DELETE
/DEL DESC descriptorname
```

Keywords

The following keyword is valid for the /DELETE command:

**DESC descriptorname**

Specifies the LU62 descriptor to be deleted. Note that this will not delete the descriptor in the PROCLIB member. It is necessary to remove the descriptor from the PROCLIB member; otherwise, the descriptor will be defined at the next IMS restart.
Chapter 23. DELETE commands

Use the IMS DELETE commands to delete Language Environment (LE) runtime options, resources, and resource descriptors.

These commands can be issued through TSO SPOC, IBM Management Console for IMS and DB2 for z/OS, the Manage Resources options in the IMS Applications menu, or other user-written programs that issue commands through OM API. These commands can also be issued to an IMSplex by using the Batch SPOC utility.

Subsections:
- “DELETE DB command”
- “DELETE DBDESC command” on page 319
- “DELETE DEFN command” on page 325
- “DELETE LE command” on page 339
- “DELETE OTMADESC command” on page 346
- “DELETE PGM command” on page 349
- “DELETE PGMDESC command” on page 355
- “DELETE RTC command” on page 360
- “DELETE RTCDESC command” on page 365
- “DELETE TRAN command” on page 370
- “DELETE TRANDESC command” on page 376

DELETE DB command

Use the DELETE DB command to delete database resources.

Subsections:
- “Environment”
- “Syntax” on page 312
- “Keywords” on page 312
- “Usage notes” on page 312
- “Output fields” on page 313
- “Return, reason, and completion codes” on page 313
- “Examples” on page 317

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DELETE DB</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OPTION</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Syntax

DELETE DB NAME(name*) OPTION(ALLRSP)

Keywords

The following keywords are valid for the DELETE DB command:

NAME
Specifies the 1-8 character name of the database. Wildcards are supported in the name. Examples of valid names are NAME(*) and NAME(abc*). If the NAME parameter specified is a specific or wildcard name, command responses are returned for all the resource names that are processed. For NAME(*), command responses are returned only for the resource names that resulted in an error. For a DEL DB command when the database contains Fast Path areas, if all areas are successfully deleted, no area names are displayed. If the delete fails for any area, then all area names are displayed to show which deletes were successful and which were not.

OPTION
Specifies additional functions to be performed along with the command.

ALLRSP
Indicates that the response lines are to be returned for all resources that are processed on the command. The default action is to return response lines only for the resources that resulted in an error. The ALLRSP keyword is valid only if NAME(*) is specified.

Usage notes

This command can only be issued through the Operations Manager API. This command applies to DB/DC systems, DBCTL systems, and DCCTL systems. The DELETE DB command is not valid on the XRF alternate, RSR tracker, or FDBR region. This command is not valid if online change for MODBLKS is enabled (DFSDFxxx or DFSCGxxx defined with MODBLKS=OLC or MODBLKS not defined). This command is recoverable.

Each database is deleted individually, unlike the online change process where either all databases are deleted or no databases are deleted. The runtime resource definition for a database can only be deleted if the database is not in use. If the database is in use, the delete fails. In a sysplex environment with multiple IMS subsystems, the delete might succeed on some IMS subsystems and fail on others.

The DELETE DB command removes ACB members from the 31-bit nonresident pool as well as the 64-bit storage pool.

The resources remain deleted across an IMS warm start or emergency restart. To ensure that the resources remain deleted across a cold start, the existing resource definitions must be exported to a system RDDS and then imported from the RDDS at cold start. Or, if the IMSRSC repository is enabled, the DELETE DEFN command must be issued to delete the definition from the repository. If the resource definitions are to be imported from the MODBLKS data set at cold start instead of from an RDDS or the repository, the resource definitions must be deleted from system definition and a new MODBLKS data set must be generated.
The database can be HSAM, HISAM, HDAM, HIDAM, DEDB, or a HALDB master database. The database cannot be a HALDB partition. If a database is logically related to another database, you need to consider whether the logically related databases should also be deleted. For example, if the database is a HIDAM database, both the primary database and the index database must be deleted.

To delete a HALDB master database, a /DBRECOVER command must be issued. The /DBRECOVER command removes this IMS subsystem's knowledge of the HALDB partitions and stops the HALDB master database so that it can be deleted.

**Output fields**

The following table shows the DELETE DB output fields. The columns in the table are as follows:

**Short label**
- Contains the short label generated in the XML output.

**Long label**
- Contains the long label generated in the XML output.

**Keyword**
- Identifies keyword on the command that caused the field to be generated. N/A appears for output fields that are always returned. error appears for output fields that are returned only in case of an error.

**Meaning**
- Provides a brief description of the output field.

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the nonzero completion code.</td>
</tr>
<tr>
<td>DB</td>
<td>DBName</td>
<td>N/A</td>
<td>Database name being deleted.</td>
</tr>
<tr>
<td>ERRT</td>
<td>ErrorText</td>
<td>error</td>
<td>Error text that provides diagnostic information. Error text can be returned for a nonzero completion code and further explains the completion code.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>IMSplex member that built the output line.</td>
</tr>
<tr>
<td>TYPE</td>
<td>Type</td>
<td>DB</td>
<td>Resource type, which can be AREA, DEDB, DL/I, or blank (unknown). Resource type is returned only if areas are returned.</td>
</tr>
</tbody>
</table>

**Return, reason, and completion codes**

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.
## Table 166. Return and reason codes for the DELETE DB command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>Command completed successfully. The command output contains a line for each resource, accompanied by its completion code. If NAME(*) is specified without OPTION(ALLRSP), no output lines are returned. See the completion code table for details.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003000'</td>
<td>Command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code. If NAME(*) is specified without OPTION(ALLRSP), only resources with nonzero completion codes are returned. See the completion code table for details.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>Command was not successful for any of the resources. The command output contains a line for each resource, accompanied by its completion code. See the completion code table for details.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000400C'</td>
<td>Command is not valid on the XRF alternate.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>Command is not valid on the RSR tracker.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004120'</td>
<td>Online change phase is in progress.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004200'</td>
<td>The DELETE DB command is not processed because IMS shutdown is in progress.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004300'</td>
<td>Command is not allowed because online change for MODBLKS is enabled (DFSDFxxx or DFSCGxxx defined with MODBLKS=OLC, or MODBLKS not defined).</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004301'</td>
<td>Command is not allowed because the database has a logical relationship with another database.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005004'</td>
<td>DFSOCMD response buffer could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005008'</td>
<td>DFSPOOL storage could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'0000500C'</td>
<td>AWE could not be obtained.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. The following table includes an explanation of the completion codes.

## Table 167. Completion codes for the DELETE DB command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
<th>Error text</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command completed successfully for database.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>COMMAND COMPLETE FOR SOME</td>
<td>Command completed for some of the areas. Area names are returned with a completion code.</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>COMMAND COMPLETE FOR NONE</td>
<td>Command failed for all of the areas. Area names are returned with completion codes.</td>
<td></td>
</tr>
<tr>
<td>Completion code</td>
<td>Completion code text</td>
<td>Meaning</td>
<td>Error text</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>Database name is invalid, or the wildcard parameter specified does not match any database names.</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>ANOTHER CMD IN PROGRESS</td>
<td>Another command (such as DELETE or UPDATE) is in progress for this database. This could also mean this command, if the resource is specified by more than one specific or wildcard parameter.</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>DB STOP ACCESS IN PROGRESS</td>
<td>A /DBRECOVERY or UPDATE DB STOP(ACCESS) command to stop database access is in progress. This takes the database offline.</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>DB STOP UPDATES IN PROGRESS</td>
<td>A /DBDUMP or UPDATE DB STOP(UPDATES) command to stop database updates is in progress for the database.</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>DEDB STOP IN PROGRESS</td>
<td>A /DBRECOVERY, /STOP, or UPDATE DB STOP(SCHD) command to stop database scheduling is in progress for a DEDB.</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>REJECTED FOR DEFAULT DESCRIPTOR</td>
<td>DELETE command not allowed for user-defined default descriptor. You must issue an UPDATE command to set another descriptor as the default before deleting this descriptor.</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>GETMAIN STORAGE ERROR</td>
<td>A GETMAIN request for storage was unsuccessful.</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>DFSBCB STORAGE ERROR</td>
<td>A storage request for a DDIR block failed.</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>DMB POOL STORAGE ERROR</td>
<td>During a DELETE command for a DB resource, there was an error in the DMB pool processing of a resident DMB.</td>
<td></td>
</tr>
</tbody>
</table>
Table 167. Completion codes for the DELETE DB command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
<th>Error text</th>
</tr>
</thead>
<tbody>
<tr>
<td>6C</td>
<td>NOT ALLOWED FOR HALDB PARTITION</td>
<td>DELETE is not allowed for a HALDB partition.</td>
<td></td>
</tr>
<tr>
<td>6F</td>
<td>REFERENCED BY PROGRAM</td>
<td>Program references the database to be deleted. The program name that references this database to be deleted is returned as error text. Suggested actions: Use online change for ACBLIB to change the PSB to no longer reference the database to be deleted or delete the PSB or issue DELETE PGM.</td>
<td>pgmname (8 characters)</td>
</tr>
<tr>
<td>76</td>
<td>RECOVER CMD ACTIVE</td>
<td>RECOVER START command is in progress to recover one or more databases with the database recovery services.</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>DEPENDENT REGIONS ACTIVE</td>
<td>One or more active dependent regions reference the database.</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>INTERNAL ERROR</td>
<td>An IMS system service failure.</td>
<td></td>
</tr>
<tr>
<td>DE</td>
<td>ACBLIB READ FAILURE</td>
<td>A read request for a member in ACBLIB failed.</td>
<td></td>
</tr>
<tr>
<td>E1</td>
<td>DB MUST BE STOPPED AND OFFLINE</td>
<td>The database must be stopped and taken offline in order for the database to be deleted. You might need to issue a /DBR DB command or an UPDATE DB STOP(ACCESS) command to stop the database and take it offline before issuing the DELETE DB command.</td>
<td></td>
</tr>
<tr>
<td>E2</td>
<td>PARALLEL DB OPEN NOT COMPLETE</td>
<td>The DELETE DB command was rejected because DB parallel open is in progress.</td>
<td></td>
</tr>
</tbody>
</table>
### Table 167. Completion codes for the DELETE DB command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
<th>Error text</th>
</tr>
</thead>
<tbody>
<tr>
<td>1D7</td>
<td>IMPORT CHANGE LIST</td>
<td>Resource or descriptor is in the process of being imported from the change list in the IMSRSC repository, or the import from the change list failed. The resource cannot be deleted until it is successfully imported.</td>
<td></td>
</tr>
</tbody>
</table>

### Examples

The following are examples of the DELETE DB command:

**Example 1 for DELETE DB command**

TSO SPOC input:

```plaintext
DEL DB NAME(DBHIDO*,BADNAME,DEDBJ%%1,IPODB)
```

TSO SPOC output:

```
Response for: DEL DB NAME(DBHIDO*,BADNAME,DEDBJ%%1,IPODB)

<table>
<thead>
<tr>
<th>DBName</th>
<th>MbrName</th>
<th>CC</th>
<th>CText</th>
<th>ErrorText</th>
</tr>
</thead>
<tbody>
<tr>
<td>BADNAME</td>
<td>IMS1</td>
<td>1D</td>
<td>NO RESOURCES FOUND</td>
<td></td>
</tr>
<tr>
<td>DBHID0K2</td>
<td>IMS1</td>
<td>E1</td>
<td>DATABASE HAS NOT BEEN DBR"D"</td>
<td></td>
</tr>
<tr>
<td>DBHID0K8</td>
<td>IMS1</td>
<td>6</td>
<td>F REFERENCED BY PROGRAM PBODSAGM</td>
<td></td>
</tr>
<tr>
<td>DBHID0K8</td>
<td>IMS1</td>
<td>6</td>
<td>F REFERENCED BY PROGRAM PBODSAGR</td>
<td></td>
</tr>
<tr>
<td>DBHID0K8</td>
<td>IMS1</td>
<td>6</td>
<td>F REFERENCED BY PROGRAM PBODSAU</td>
<td></td>
</tr>
<tr>
<td>DBB/20</td>
<td>IMS1</td>
<td>6</td>
<td>F REFERENCED BY PROGRAM DDLTM02</td>
<td></td>
</tr>
<tr>
<td>DBB/21</td>
<td>IMS1</td>
<td>E1</td>
<td>DATABASE HAS NOT BEEN DBR"D"</td>
<td></td>
</tr>
<tr>
<td>DBB/21</td>
<td>IMS1</td>
<td>E1</td>
<td>DATABASE HAS NOT BEEN DBR"D"</td>
<td></td>
</tr>
<tr>
<td>DBB/21</td>
<td>IMS1</td>
<td>E1</td>
<td>DATABASE HAS NOT BEEN DBR"D"</td>
<td></td>
</tr>
<tr>
<td>DBB/21</td>
<td>IMS1</td>
<td>E1</td>
<td>DATABASE HAS NOT BEEN DBR"D"</td>
<td></td>
</tr>
<tr>
<td>DBB/01</td>
<td>IMS1</td>
<td>E1</td>
<td>DATABASE HAS NOT BEEN DBR"D"</td>
<td></td>
</tr>
<tr>
<td>DBB/01</td>
<td>IMS1</td>
<td>E1</td>
<td>DATABASE HAS NOT BEEN DBR"D"</td>
<td></td>
</tr>
<tr>
<td>DBB/01</td>
<td>IMS1</td>
<td>E1</td>
<td>DATABASE HAS NOT BEEN DBR"D"</td>
<td></td>
</tr>
<tr>
<td>DBB/01</td>
<td>IMS1</td>
<td>E1</td>
<td>DATABASE HAS NOT BEEN DBR"D"</td>
<td></td>
</tr>
<tr>
<td>DBB/01</td>
<td>IMS1</td>
<td>E1</td>
<td>DATABASE HAS NOT BEEN DBR"D"</td>
<td></td>
</tr>
<tr>
<td>DBB/01</td>
<td>IMS1</td>
<td>E1</td>
<td>DATABASE HAS NOT BEEN DBR"D"</td>
<td></td>
</tr>
<tr>
<td>DBB/01</td>
<td>IMS1</td>
<td>E1</td>
<td>DATABASE HAS NOT BEEN DBR"D"</td>
<td></td>
</tr>
<tr>
<td>DBB/01</td>
<td>IMS1</td>
<td>E1</td>
<td>DATABASE HAS NOT BEEN DBR"D"</td>
<td></td>
</tr>
<tr>
<td>DBB/01</td>
<td>IMS1</td>
<td>E1</td>
<td>DATABASE HAS NOT BEEN DBR"D"</td>
<td></td>
</tr>
<tr>
<td>DBB/01</td>
<td>IMS1</td>
<td>E1</td>
<td>DATABASE HAS NOT BEEN DBR"D"</td>
<td></td>
</tr>
<tr>
<td>DBB/01</td>
<td>IMS1</td>
<td>E1</td>
<td>DATABASE HAS NOT BEEN DBR"D"</td>
<td></td>
</tr>
<tr>
<td>DBB/01</td>
<td>IMS1</td>
<td>E1</td>
<td>DATABASE HAS NOT BEEN DBR"D"</td>
<td></td>
</tr>
<tr>
<td>DBB/01</td>
<td>IMS1</td>
<td>E1</td>
<td>DATABASE HAS NOT BEEN DBR"D"</td>
<td></td>
</tr>
</tbody>
</table>
```

OM API input:

```plaintext
CMD(DEL DB NAME(DBHIDO*,BADNAME,DEDBJ%%1,IPODB))
```

OM API output:

```xml
<imsout>
 <ctl>
 <omname>OM1OM</omname>
 <omvsn>1.3.0</omvsn>
 <xmlvsn>20</xmlvsn>
 <statime>2006.310 23:26:32.420713</statime>
 <stotime>2006.310 23:26:32.422399</stotime>
 <staseq>BAACB33F8569D5C</staseq>
 <stoseq>BAACB33F8BFFD5C</stoseq>
 <rqsttkn1>USRT011 10152632</rqsttkn1>
```
<ctl>
<cmd><mbr name="IMS1 ">
<typ>IMS </typ>
<style>DBDC </style>
<rc>0000000C</rc>
<rsn>00003000</rsn>
<rsntxt>At least one request successful</rsntxt>
</mbr></cmd>
</ctl>

<mbr>
<cmd><master>IMS1 </master>
<userid>USRRT011 </userid>
<verb>DEL </verb>
<kwd>DB </kwd>
<input>DEL DB NAME(DBHIDO*,BADNAME,DEDBJN1,IPODB) </input>
</cmd></mbr>

<cmdrsphdr>
<hdr slbl="DB" llbl="DBName" scope="LCL" sort="a" key="1" scroll="no" len="8" dtype="CHAR" align="left"/>
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" key="2" scroll="no" len="8" dtype="CHAR" align="left"/>
<hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0" scroll="yes" len="4" dtype="INT" align="right" skipb="no"/>
<hdr slbl="CCTXT" llbl="CCText" scope="LCL" sort="n" key="0" scroll="yes" len="*" dtype="CHAR" skipb="yes" align="left"/>
<hdr slbl="ERTT" llbl="ErrorText" scope="LCL" sort="n" key="0" scroll="yes" len="*" dtype="CHAR" skipb="yes" align="left"/>
</cmdrsphdr>

<cmdrspdata>
<rsp>DB( DBHIDOK2) MBR(IMS1) CC(  E1) CCTXT(DATABASE HAS NOT BEEN DBR'D) </rsp>
<rsp>DB( BADNAME ) MBR(IMS1) CC( 10) CCTXT(NO RESOURCES FOUND) </rsp>
<rsp>DB( DEDBJN011) MBR(IMS1) CC( 6F) CCTXT(REFERENCED BY PROGRAM) ERTT(DDLTM02) </rsp>
<rsp>DB( IPODB   ) MBR(IMS1) CC(  E1) CCTXT(DATABASE HAS NOT BEEN DBR'D) </rsp>
<rsp>DB( DBHIDOK8) MBR(IMS1) CC( 6F) CCTXT(REFERENCED BY PROGRAM) ERTT(PBODSAGM) </rsp>
<rsp>DB( DEDBJN21) MBR(IMS1) CC(  E1) CCTXT(DATABASE HAS NOT BEEN DBR'D) </rsp>
<rsp>DB( DEDBJN01) MBR(IMS1) CC(  E1) CCTXT(DATABASE HAS NOT BEEN DBR'D) </rsp>
<rsp>DB( DEDBJ011) MBR(IMS1) CC(  E1) CCTXT(DATABASE HAS NOT BEEN DBR'D) </rsp>
<rsp>DB( DEDBJ021) MBR(IMS1) CC(  0) </rsp>
<rsp>DB( DEDBJ031) MBR(IMS1) CC(  E1) CCTXT(DATABASE HAS NOT BEEN DBR'D) </rsp>
<rsp>DB( DEDBJ041) MBR(IMS1) CC(  E1) CCTXT(DATABASE HAS NOT BEEN DBR'D) </rsp>
<rsp>DB( DEDBJ051) MBR(IMS1) CC(  E1) CCTXT(DATABASE HAS NOT BEEN DBR'D) </rsp>
<rsp>DB( DEDBJ061) MBR(IMS1) CC(  E1) CCTXT(DATABASE HAS NOT BEEN DBR'D) </rsp>
<rsp>DB( DEDBJ071) MBR(IMS1) CC(  E1) CCTXT(DATABASE HAS NOT BEEN DBR'D) </rsp>
<rsp>DB( DEDBJ081) MBR(IMS1) CC(  E1) CCTXT(DATABASE HAS NOT BEEN DBR'D) </rsp>
<rsp>DB( DEDBJ091) MBR(IMS1) CC(  E1) CCTXT(DATABASE HAS NOT BEEN DBR'D) </rsp>
<rsp>DB( DBHIDOK8) MBR(IMS1) CC( 6F) CCTXT(REFERENCED BY PROGRAM) ERTT(PBODSAGR) </rsp>
</cmdrspdata>
Delete DB DESC command

Use the DELETE DB DESC command to delete database descriptors.

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) from which the command keywords can be issued.

Table 168. Valid environments for the DELETE DB DESC command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DELETE DB DESC</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NAME</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPTION</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Syntax

```
DELETE DBDESC NAME(name*) OPTION(ALLRSP)
```

Keywords

The following keywords are valid for the DELETE DBDESC command:

**NAME**

Specifies the 1-8 character name of the database descriptor. Wildcards are supported in the name. Examples of valid names are NAME(*) and NAME(abc*). If the NAME parameter specified is a specific or wildcard name, command responses are returned for all the descriptor names that are processed. For NAME(*), command responses are returned only for the descriptor names that resulted in an error. OPTION(ALLRSP) can be specified with NAME(*) to obtain the command responses for all the descriptor names that are processed.

**OPTION**

Specifies additional functions to be performed along with the command.

**ALLRSP**

Indicates that the response lines are to be returned for all descriptors that are processed on the command. The default action is to return response lines only for the descriptors that resulted in an error. It is valid only with NAME(*). ALLRSP is ignored for other NAME values.

Usage notes

This command can only be issued through the Operations Manager API. This command applies to DB/DC systems, and DBCTL system. The DELETE DBDESC command is not valid on the XRF alternate, RSR tracker, or FDBR region. The DELETE DBDESC command is not valid if online change for MODBLKS is enabled (DFSDFxxx or DFSCGxxx defined with MODBLKS=OLC or MODBLKS not defined). This command is recoverable.

Each descriptor is deleted individually. Individual deletion does not work like online change where either all descriptors are deleted or no descriptors are deleted. Descriptors can be successfully deleted if they are not currently in use. If a descriptor is in use, the delete fails. In a sysplex environment, the delete might succeed on some IMS systems and fail on others. A descriptor is in use if another command is in progress that references the descriptor.

The descriptors remain deleted across an IMS warm start or emergency restart. To ensure they remain deleted across a cold start, the existing descriptor definitions must be exported to an RDDS and imported from the RDDS during cold start.

The DELETE DBDESC command is not allowed for IMS descriptors that are identified with a definition type of IMS. For DELETE DBDESC commands, this means IMS database descriptor DFSDSDB1.
Output fields

The following table shows the DELETE DBDESC output fields. The columns in the table are as follows:

**Short label**
Contains the short label generated in the XML output.

**Long label**
Contains the long label generated in the XML output.

**Keyword**
Identifies keyword on the command that caused the field to be generated. 
N/A appears for output fields that are always returned. error appears for output fields that are returned only in case of an error.

**Meaning**
Provides a brief description of the output field.

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the non-zero completion code.</td>
</tr>
<tr>
<td>DESC</td>
<td>DescName</td>
<td>DBDESC</td>
<td>Database descriptor name.</td>
</tr>
<tr>
<td>ERRT</td>
<td>ErrorText</td>
<td>error</td>
<td>Error text that provides diagnostic information. Error text can be returned for a non-zero completion code and further explains the completion code.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>IMSplex member that built the output line.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000000000'</td>
<td>X'0000000000'</td>
<td>Command completed successfully. The command output contains a line for each descriptor, accompanied by its completion code. If NAME(*) is specified without OPTION(ALLRSP), no output lines are returned. See the completion code table for details.</td>
</tr>
<tr>
<td>X'00000000C'</td>
<td>X'00003000'</td>
<td>Command was successful for some descriptors but failed for others. The command output contains a line for each descriptor, accompanied by its completion code. If NAME(*) is specified without OPTION(ALLRSP), only descriptors with non-zero completion codes are returned. See the completion code table for details.</td>
</tr>
</tbody>
</table>
Table 170. Return and reason codes for the DELETE DBDESC command (continued)

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>Command was not successful for any of the descriptors. The command output contains a line for each descriptor, accompanied by its completion code. See the completion code table for details.</td>
</tr>
<tr>
<td>X'00000100'</td>
<td>X'0000400C'</td>
<td>Command is not valid on the XRF alternate.</td>
</tr>
<tr>
<td>X'00000100'</td>
<td>X'00004014'</td>
<td>Command is not valid on the RSR tracker.</td>
</tr>
<tr>
<td>X'00000100'</td>
<td>X'00004120'</td>
<td>Online change phase is in progress.</td>
</tr>
<tr>
<td>X'00000100'</td>
<td>X'00004200'</td>
<td>The DELETE DBDESC command is not processed because IMS shutdown is in progress.</td>
</tr>
<tr>
<td>X'00000100'</td>
<td>X'00004300'</td>
<td>Command is not allowed because online change for MODBLKS is enabled (DFSDFxxx or DFSCGxxx defined with MODBLKS=OLC, or MODBLKS not defined).</td>
</tr>
<tr>
<td>X'00000114'</td>
<td>X'00005004'</td>
<td>DFSOCMD response buffer could not be obtained.</td>
</tr>
<tr>
<td>X'00000114'</td>
<td>X'00005008'</td>
<td>DFSPOOL storage could not be obtained.</td>
</tr>
<tr>
<td>X'00000114'</td>
<td>X'0000500C'</td>
<td>AWE could not be obtained.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. The following table includes an explanation of the completion codes.

Table 171. Completion codes for the DELETE DBDESC command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command completed successfully for database descriptor.</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>ANOTHER CMD IN PROGRESS</td>
<td>Another command (such as DELETE or UPDATE) is in progress for this database descriptor. This could also mean this command, if the descriptor is specified by more than one specific or wildcard parameter.</td>
</tr>
<tr>
<td>27</td>
<td>REJECTED FOR DEFAULT DESCRIPTOR</td>
<td>DELETE command not allowed for user-defined default descriptor. You must issue an UPDATE command to set another descriptor as the default before deleting this descriptor.</td>
</tr>
<tr>
<td>48</td>
<td>NOT ALLOWED FOR IMS RESOURCE</td>
<td>DELETE command not allowed for IMS defined-descriptor or resource. An IMS descriptor example is DFSDSDB1.</td>
</tr>
</tbody>
</table>
Table 171. Completion codes for the DELETE DBDESC command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
<th>Error text</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>GETMAIN STORAGE ERROR</td>
<td>A GETMAIN request for storage was unsuccessful.</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>DFSBCB STORAGE ERROR</td>
<td>A storage request for a DDIR block failed.</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>INTERNAL ERROR</td>
<td>AN IMS system service failure.</td>
<td></td>
</tr>
<tr>
<td>1D7</td>
<td>IMPORT CHANGE LIST ERROR</td>
<td>Descriptor is in the process of being imported from the change list in the IMSRSC repository, or the import from the change list failed. The descriptor cannot be deleted until it is successfully imported.</td>
<td></td>
</tr>
</tbody>
</table>

Examples

The following are examples of the DELETE DBDESC command:

Example 1 for DELETE DBDESC command

TSO SPOC input:
DEL DBDESC NAME(*) OPTION(ALLRSP)

TSO SPOC output:
Response for: DEL DBDESC NAME(*) OPTION(ALLRSP)
DescName MbrName CC CCText
BRWSDESC IMS1 27 REJECTED FOR DEFAULT DESCRIPTOR
DESC001 IMS1 0
DESC002 IMS1 0
DESC003 IMS1 0
DESC004 IMS1 0
DESC005 IMS1 0
DFSDSDB1 IMS1 48 NOT ALLOWED FOR IMS RESOURCE
EXCLDESC IMS1 0
EXCLDESC IMS1 0

OM API input:
CMD(DEL DBDESC NAME(*) OPTION(ALLRSP))

OM API output:
<imsout>
<ctl>
<omname>OM1OM </omname>
<omvsn>1.3.0</omvsn>
<xmlvsn>20 </xmlvsn>
<stotime>2006.310 23:15:13.679097</stotime>
<staseq>BFAACBACABZBD0C</staseq>
<stoseq>BFAACBACABEF95C</stoseq>
<rqsttkn1>USR01110151513</rqsttkn1>
<rc>02000000C</rc>
<rsn>00003008</rsn>
<rsmsg>CSLN054I</rsmsg>
<rsntxt>None of the clients were successful.</rsntxt>
</ctl>
</cmderr>

<cmd>
<mbr name="IMS1">
<typ>IMS</typ>
<styp>DBDC</styp>
<rc>00800000</rc>
<rsn>00000300</rsn>
<rsntxt>At least one request successful</rsntxt>
</mbr>
</cmderr>

<cmd>
<master>IMS1</master>
<userid>USRT011</userid>
<verb>DEL</verb>
<kwd>DBDESC</kwd>
<input>DEL DBDESC NAME(*) OPTION(ALLRSP) </input>
</cmd>

<cmdrsphdr>
<hdr slbl="DESC" llbl="DescName" scope="LCL" sort="a" key="1" scroll="no" len="8" dtype="CHAR" align="left"/>
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" key="2" scroll="no" len="8" dtype="CHAR" align="left"/>
<hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0" scroll="yes" len="4" dtype="INT" align="right" skipb="no"/>
<hdr slbl="CCTXT" llbl="CCText" scope="LCL" sort="n" key="0" scroll="yes" len="*" dtype="CHAR" skipb="yes" align="left"/>
<hdr slbl="ERRT" llbl="ErrorText" scope="LCL" sort="n" key="0" scroll="yes" len="*" dtype="CHAR" skipb="yes" align="left"/>
</cmdrsphdr>

<cmdrspdata>
<rsp>DESC(EXCLDESC) MBR(IMS1) CC( 0) </rsp>
<rsp>DESC(DESC004) MBR(IMS1) CC( 0) </rsp>
<rsp>DESC(DESC005) MBR(IMS1) CC( 0) </rsp>
<rsp>DESC(DESC001) MBR(IMS1) CC( 0) </rsp>
<rsp>DESC(RESDESC) MBR(IMS1) CC( 0) </rsp>
<rsp>DESC(BRWSDESC) MBR(IMS1) CC( 27) CCTXT(REJECTED FOR DEFAULT DESCRIPTOR) </rsp>
<rsp>DESC(DESC002) MBR(IMS1) CC( 0) </rsp>
<rsp>DESC(DESC003) MBR(IMS1) CC( 0) </rsp>
<rsp>DESC(DFSDSDB1) MBR(IMS1) CC( 48) CCTXT(NOT ALLOWED FOR IMS RESOURCE) </rsp>
</cmdrspdata>
</imsout>

**Explanation:** A DELETE DBDESC command is issued to delete all database descriptors from an active IMS system. Many database descriptors are successfully deleted, as indicated by the completion code 0. Because the DELETE command attempted to delete all of the database descriptors, OPTION(ALLRSP) is specified to display the successfully deleted database descriptors. Database descriptor BRWSDESC fails, because it is the default database descriptor. Database descriptor DFSDSDB1 fails, because it is the IMS-defined database descriptor.

**Related concepts:**

How to interpret CSL request return and reason codes (System Programming APIs)

**Related reference:**

Chapter 2, “Command keywords and their synonyms,” on page 63
DELETE DEFN command

Use the DELETE DEFN command to delete one or more stored resource definitions from the IMSRSC repository.

Subsections:
- “Environment”
- “Syntax”
- “Keywords” on page 326
- “Usage notes” on page 329
- “Output fields” on page 330
- “Return, reason, and completion codes” on page 331
- “Examples” on page 333

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

Table 172: Valid environments for the DELETE DEFN command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DELETE DEFN</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>FOR</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>OPTION</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TARGET</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TYPE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

![Diagram](image)

A:

```
TYPE(DB DESC PGM PGM DESC RTC RTC DESC TRAN TRAN DESC)
NAME(name name *)
FOR(IMSID(imsid))
```
Keywords

The following keywords are valid for the DELETE DEFN command:

**DEFN**
Specifies that resource and descriptor definitions are to be deleted.

**TARGET**
Indicates where the definitions must be deleted from. TARGET(REPO) is the default.

**REPO**
TARGET(REPO) is valid only when IMS is enabled to use the repository. The DELETE DEFN command is defined to OM with ROUTE=ANY. OM routes the command to one command master IMS for processing.

All resource definitions are deleted from the repository as a single unit of work (UOW). If the deletion of any of the resource definitions results in an error, none of the resource definitions are deleted.

A resource definition not being found in the repository is not treated as an error in the command processing. If one or more resource definitions for the names that are specified on the DELETE DEFN command are not found in the repository, the command is processed for the names that have resource definitions in the repository.

If any CSLRPDEL errors are returned for the DELETE command, you must check to see whether there are any in-doubts. If the error is before the UOW is committed, all deletes from the repository are backed out. If the failure is during UOW commit and if the primary data set is updated, the UOW is committed. You must issue the QUERY xxx SHOW(DEFN, IMSID) commands to verify whether the resource definitions exist in the repository. If they still exist, you must reissue the DELETE DEFN command.

**Recommendation:** Avoid issuing the DELETE DEFN TARGET(REPO) NAME(*) FOR(IMSID(*)) command during peak hours because deleting all the resource definitions from the repository can incur a larger than normal command response time. However, while the resource definitions are being deleted from the repository, there is no impact to other work in IMS.

**TYPE**
Specifies the type of resource or descriptor definitions to delete.

**CHGLIST**
Specifies that any residual IMS change list that could not be deleted by IMS during IMS change list processing is to be deleted.

If the IMS system goes down without deleting the change list, another change list cannot be created at the next IMPORT DEFN SOURCE(REPO)
SCOPE(ALL) command. The IMPORT command will fail because the change list is locked and not accessible.

Use the CHGLIST keyword under the following situations:

- After a DFS4409A message (REPOSITORY CHANGE LIST IS NOT ACCESSIBLE) is issued and you issue an IMPORT DEFN SOURCE(REPO) SCOPE(ALL) command manually to successfully synchronize IMS with the repository.

  Because the IMPORT command is issued manually, the change list is not needed and should be deleted. If the change list is not deleted, it is processed at the next IMS restart.

- After a DFS4401E message is issued (RM CSLRPDEL REQUEST FAILED) when IMS could not delete the change list.

  Because IMS could not delete the change list automatically, you can use the DELETE DEFN command to delete the change list. If this residual change list is not deleted, it is deleted at the next IMS restart.

DB  Specifies that one or more database definitions are to be deleted from the repository. If TYPE(DB) is specified on a DCCTL system, completion code 1D3 ("REPOSITORY MEMBER NOT FOUND") is returned for each name specified.

DBDESC  Specifies that one or more database descriptor definitions are to be deleted from the repository. If TYPE(DBDESC) is specified on a DCCTL system, completion code 1D3 ("REPOSITORY MEMBER NOT FOUND") is returned for each name specified.

PGM  Specifies that one or more program definitions are to be deleted from the repository.

PGMDESC  Specifies that one or more program descriptor definitions are to be deleted from the repository.

RTC  Specifies that one or more routing code definitions are to be deleted from the repository. If TYPE(RTC) is specified on a DBCTL system, completion code 1D3 ("REPOSITORY MEMBER NOT FOUND") is returned for each name specified.

RTCDESC  Specifies that one or more routing code descriptor definitions are to be deleted from the repository. If TYPE(RTCDESC) is specified on a DBCTL system, completion code 1D3 ("REPOSITORY MEMBER NOT FOUND") is returned for each name specified.

TRAN  Specifies that one or more transaction definitions are to be deleted from the repository. If TYPE(TRAN) is specified on a DBCTL system, completion code 1D3 ("REPOSITORY MEMBER NOT FOUND") is returned for each name specified.

TRANDESC  Specifies that one or more transaction descriptor definitions are to be
deleted from the repository. If TYPE(TRANDESC) is specified on a DBCTL system, completion code 1D3 ("REPOSITORY MEMBER NOT FOUND") is returned for each name specified.

**NAME**

Specifies the 1- to 8-character name of a resource or descriptor. Wildcards can be specified in the name. The name is a repeatable parameter. If the NAME parameter specified is a specific name or a wildcard, command responses are returned for all the resource names that are processed. NAME is a required parameter.

For NAME(*), command responses are returned only for the resource and descriptor names that resulted in an error. OPTION(ALLRSP) can be specified with NAME(*) to obtain the command responses for all the resource and descriptor names that are deleted.

**FOR**

Specifies what actions to be set.

**IMSID**

Specifies the list of IMS IDs for which the resource and descriptor definitions are to be deleted.

An IMS resource list is a list of resource and descriptor names and types that defines the resources for an IMS system. IMS resource lists exist in the repository and are used during IMS cold start to identify all the resource and descriptor definitions that are to be read during the cold start. The IMSID values specified on the DELETE DEFN command identify the IMS resource lists from which the resources are to be deleted when a stored resource definition is deleted from the repository.

The IMSID value can be a specific IMS ID, a list of specific IMS IDs, a wildcard name of *, or a wildcard name with * or %.

If the IMSID value specified is a wildcard name other than *, the list of IMS IDs in RM that match the IMS ID wildcard name will be used on the command. The list of IMS IDs that are processed is returned on the command output.

IMSID(*) indicates that all IMS resource lists must be updated to remove the resource name being deleted. As a result of the DELETE DEFN command, the resource definition does not belong to any IMS systems that are defined to use the repository.

You can specify one or more IMS IDs. When one or more IMS IDs are specified, only the IMS resource lists for the specified IMS IDs are modified to delete the resource names being deleted from the repository.

If the resource name belongs to one or more IMS resource lists, and the DELETE DEFN command does not specify deletion from all IMS IDs, the stored resource definition from the repository is not deleted. Only the IMS resource lists for the specified IMS subsystems are modified to delete the resource names that are specified on the command.

The IMS ID specified on the FOR(IMSID()) keyword must be an IMS that is defined to RM to use the repository. The IMS specified might be active or down when the command is issued.

**OPTION**

Specifies additional functions to be performed along with the command.
**ALLRSP**

Specifies that all response lines must be returned. You can specify OPTION(ALLRSP) only if NAME(*) is also specified. If OPTION(ALLRSP) is not specified, only the response lines for the names in error are returned.

OPTION(ALLRSP) is not valid when NAME parameters are specified. A response line is returned for each name that is specified on the NAME keyword.

**Usage notes**

The DELETE DEFN command is valid from the Operations Manager (OM) API. This command is defined as ROUTE=ANY to OM and is processed only by the command master IMS.

You cannot delete a program definition from the repository if the program is referenced by one or more transaction or routing code definitions in the IMSRSC repository.

When you delete definitions from the repository for multiple resource types, delete the definitions in the following order:

1. Transaction and transaction descriptor definitions
2. Routing code and routing code descriptor definitions
3. Program and program descriptor definitions

Database and database descriptor definitions can be deleted at any time.

As a result of the DELETE DEFN command with keyword DB, DBDESC, RTC, RTCDESC, PGM, PGMDESC, TRAN, or TRANDESC, definitions of the specified resource names are deleted from the IMSRSC repository for the specified IMS systems. Additionally, the DELETE DEFN command deletes the resource names from an IMS change list in the repository if a change list exists for one or more IMS systems that are specified on the FOR() keyword. Because the resource definition is being deleted and will not be available to be imported when the IMS system restarts, it is also deleted from the IMS system's change list.

The IMS change list in the repository is not created when a DELETE DEFN command is issued and one or more IMS systems that are specified on the FOR() keyword are down. When you delete a resource definition, delete the IMS runtime definition from IMS by using the DELETE command and then delete the stored resource definition from the repository by using the DELETE DEFN command. If the stored resource definition is deleted from the repository for the IMS before the runtime resource definition is deleted from the IMS system, the resource definition still exists in the IMS after restart. In this case, issue the DELETE command to delete the runtime resource definition after IMS restarts.

**Considerations for Fast Path exclusive transactions and their associated routing codes:** When you delete a definition for a Fast Path exclusive transaction from the repository, the definition for its associated routing code is also deleted. If you issue the DELETE DEFN command to delete a routing code definition from the repository and the routing code is associated with a Fast Path exclusive transaction, the deletion fails. To delete the routing code definition, you must first delete the transaction definition.

**Consideration for an XRF-capable system:** When the DELETE DEFN command is used in an XRF environment, and the resource definition exists in the IMSRSC
repository for both the active system and the alternate system, you must issue the
DELETE DEFN command with the IMS IDs of both the active system and the
alternate system on the FOR(IMSID(imsid)) keyword.

Output fields

The DELETE DEFN TARGET(REPO) command results in the DFS3406I message,
which indicates that the deletion from the repository was successful, or the
DFS3407E message, which indicates that the deletion was not successful. These
messages include the repository name and repository type. If the deletion from
the repository is not successful, the DFS3407E message consists of the CSLRPDEL
request return code and reason code. The CSLRPDEL return and reason codes are
in the CSLRRR macro.

The following table shows the DELETE DEFN output fields. The columns in the
table are as follows:

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the nonzero completion code.</td>
</tr>
<tr>
<td>DTYPE</td>
<td>DelType</td>
<td>N/A</td>
<td>The value CHGLIST is returned under DelType if the resource name on the output line was deleted from the IMS change list and the IMS resource list.</td>
</tr>
<tr>
<td>IMSID</td>
<td>IMSid</td>
<td>N/A</td>
<td>The names of IMS resource lists that are updated or deleted by the DELETE DEFN command.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>The IMS identifier of the command master IMS that processed the DELETE DEFN command.</td>
</tr>
<tr>
<td>NAME</td>
<td>Name</td>
<td>N/A</td>
<td>The name of the resource or descriptor definition that was updated or deleted from the repository, or the name of the IMS resource list that was updated in the repository.</td>
</tr>
<tr>
<td>TYPE</td>
<td>Type</td>
<td>N/A</td>
<td>The resource or descriptor type, which can be DB, DBDESC, PGM, PGMDESC, RTC, RTCDESC, TRAN, or TRANDESC; or LIST for IMS resource lists.</td>
</tr>
</tbody>
</table>
Return, reason, and completion codes

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 174. Return and reason codes for the DELETE DEFN command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>Command completed successfully.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>No requests were successful.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004004'</td>
<td>No CQS address space.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004018'</td>
<td>No resource structure, or resource structure not available.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000401D'</td>
<td>Resource structure is full.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004104'</td>
<td>No CQS address space.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004108'</td>
<td>No SCI address space.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004500'</td>
<td>IMS is not enabled to use the repository.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004501'</td>
<td>RM is not enabled with the repository.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004502'</td>
<td>Repository is not available.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004503'</td>
<td>Repository is stopped.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004504'</td>
<td>Repository spare recovery is in progress.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004505'</td>
<td>Repository access is denied.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00004506'</td>
<td>No RM address space.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005000'</td>
<td>Repository maximum put length exceeded.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005009'</td>
<td>RM data version is lower than the IMS data version.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005010'</td>
<td>Repository Server is being shut down.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005018'</td>
<td>Repository Server is not available.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005019'</td>
<td>Repository Server is busy.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005020'</td>
<td>RM failed to define some of the internal fields that are related to the IMSRSC repository.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'0000501C'</td>
<td>IMODULE GETMAIN error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005100'</td>
<td>RM request error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005104'</td>
<td>CQS error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005108'</td>
<td>SCI request error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005110'</td>
<td>Repository error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'0000551C'</td>
<td>A request to update the repository was rejected. Either a corrupted resource list was detected, or the update request was rejected to prevent a corruption of the resource list. Contact IBM Software Support. Send in the output from the command in error, a dump of the local RM address space where the command executed or the dump of all RM address spaces in the IMSplex. Also, send a copy of the IMSRSC repository RID and RMD data sets.</td>
</tr>
</tbody>
</table>
Errors unique to the processing of this command are returned as completion codes. The following table includes an explanation of the completion codes.

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command completed successfully for database.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>The specified resource was not found.</td>
</tr>
<tr>
<td>39</td>
<td>FP=E TRAN FOR RTC EXISTS</td>
<td>A routing code definition is being deleted, but the routing code is associated with a Fast Path exclusive FP(E) transaction.</td>
</tr>
<tr>
<td>48</td>
<td>NOT ALLOWED FOR IMS RESOURCE</td>
<td>The specified resource is not allowed.</td>
</tr>
<tr>
<td>5F</td>
<td>INVALID CHARACTERS IN NAME</td>
<td>The specified name contains invalid characters.</td>
</tr>
<tr>
<td>7B</td>
<td>REFERENCED BY RTCODE</td>
<td>A program definition is being deleted, but the program is referenced by one or more routing code definitions.</td>
</tr>
<tr>
<td>88</td>
<td>REFERENCED BY TRAN</td>
<td>A program definition is being deleted, but the program is referenced by one or more transaction definitions.</td>
</tr>
<tr>
<td>94</td>
<td>RM REQUEST ERROR</td>
<td>An error resulted in the command not being processed for the RM.</td>
</tr>
<tr>
<td>14D</td>
<td>INVALID CHARACTER IN IMSID</td>
<td>There is an invalid character in the IMS ID.</td>
</tr>
<tr>
<td>1D0</td>
<td>NOT DONE DUE TO ERROR</td>
<td>An error resulted in the command not being processed for the resource name in the response line. The resource name that had the error will show the error that was encountered. All other resource names will have 100 completion code because the deletion was aborted due to one error. All members are deleted as a single unit of work.</td>
</tr>
<tr>
<td>1D1</td>
<td>NO RESPOSITORY DEFINED</td>
<td>An error resulted due to repository not being defined.</td>
</tr>
<tr>
<td>1D3</td>
<td>MEMBER NOT FOUND</td>
<td>The specified resource name is not found.</td>
</tr>
<tr>
<td>1D4</td>
<td>REPOSITORY MEMBER IN USE</td>
<td>The specified repository member is already in use.</td>
</tr>
<tr>
<td>1D5</td>
<td>NO IMS RESOURCE LIST</td>
<td>The specified IMS resource list is not found.</td>
</tr>
<tr>
<td>1D6</td>
<td>REPOSITORY ERROR</td>
<td>An error resulted due to a repository error.</td>
</tr>
</tbody>
</table>
### Table 175. Completion codes for the DELETE DEFN command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1D8</td>
<td>CHANGE LIST IN USE</td>
<td>The DELETE DEFN TARGET(REPO) command could not be completed because the change list for an IMS was in use and not accessible to be deleted.</td>
</tr>
</tbody>
</table>

### Examples

The following are examples of the DELETE DEFN command:

#### Example 1 for DELETE DEFN command

**TSO SPOC input:**

DELETE DEFN TARGET(REPO) NAME(*) TYPE(DB) FOR(IMSID(*))

**TSO SPOC output:**

<table>
<thead>
<tr>
<th>MbrName</th>
<th>Messages</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMS1</td>
<td>DFS3406I DELETE COMMAND COMPLETE FOR ALL, REPOTYPE=IMSRSC, REPONAME=IMSRSC_REPOSITORY</td>
</tr>
</tbody>
</table>

**OM API input:**

CMD(DELETE DEFN TARGET(REPO) NAME(*) TYPE(DB) FOR(IMSID(*)))

**OM API output:**

```xml
<imsout>
<ctl>
<omname>OM10M</omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2011.133 12:45:21.34</statime>
<stotime>2011.133 12:45:21.82</stotime>
<command>IMS1</command>
<mbr name="IMS1">
<msg>DFS3406I DELETE COMMAND COMPLETE FOR ALL, REPOTYPE=IMSRSC, REPONAME=IMSRSC_REPOSITORY</msg>
</mbr>
</ctl>
</cmd>
</imsout>
```
Explanation: All the stored resource definitions for all the database resources and descriptors are deleted in the repository. This command is processed by the command master IMS. The resource list for all IMS systems that are defined to use the repository is updated.

Example 2 for DELETE DEFN command

TSO SPOC input:
DEL DEFN TARGET(REPO) TYPE(RTC) NAME(EMHTX2,RTC2)
FOR(IMSID(IMS2,IMS3))

TSO SPOC output:
Response for: DEL DEFN TARGET(REPO) TYPE(RTC) NAME(EMHTX2,RTC2)
FOR(IMSID(IMS2,IMS3))

Name  Type  MbrName  CC  CmText  IMSid
IMS2  LIST  IMS1  0
IMS3  LIST  IMS1  0
EMHTX2 RTC  IMS1  0  IMS2
EMHTX2 RTC  IMS1  0  IMS3
RTC2  RTC  IMS1  ID3  REPOSITORY MEMBER NOT FOUND

When the PF4 key is pressed, the following is displayed:

Log for . . . DEL DEFN TARGET(REPO) TYPE(RTC) NAME(EMHTX2,RTC... More:

IMSplex . . . : PLEX1
Routing . . . : 
Return code . : 0200000C
Reason code . : 00003008
Reason text . : None of the clients were successful.
Command master . . : IMS1

MbrName  Return  Reason  Messages
--------  --------  --------  ---------------------
IMS1      0000000C  00003008  At least one request successful

OM API input:
CMD(DEL DEFN TARGET(REPO) TYPE(RTC) NAME(EMHTX2,RTC2)
FOR(IMSID(IMS2,IMS3)))

OM API output:
<omout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2011.133 18:41:54.498030</statime>
<stotime>2011.133 18:41:54.547807</stotime>
<staseq>C7C3CF1A479EE33C</staseq>
<stoseq>C7C3CF1A53C5FFF0</stoseq>
Explanation: Routing code resource EMHTX2 exists in the IMSRSC repository, and routing code resource RTC2 does not exist in the repository. The DELETE DEFN command completed successfully with some of the resources deleted. IMS1 processed the DELETE DEFN command on behalf of IMS2 and IMS3. Routing code resource EMHTX2 in the repository is deleted for both IMS2 and IMS3. The resource list of IMS2 and the resource list of IMS3 are updated to remove routing code resource EMHTX2 from the resource lists. IMS2 and IMS3 do not have routing code resource RTC2 in the repository. The completion code is 1D3, and the completion code text is REPOSITORY MEMBER NOT FOUND.

Example 3 for DELETE DEFN command
TSO SPOC input:
DEL DEFN TARGET(REPO) TYPE(RTC) NAME(EMHTX2,RTC2)
FOR(IMSID(IMS2,IMS3))

TSO SPOC output:
Response for: DEL DEFN TARGET(REPO) TYPE(RTC) NAME(EMHTX2,RTC2)
FOR(IMSID(IMS2,IMS3))

Name Type MbrName CC CCText
IMS2 LIST IMS1 100 NOT DONE DUE TO ERROR
IMS3 LIST IMS1 100 NOT DONE DUE TO ERROR
EMHTX2 RTC IMS1 103 REPOSITORY MEMBER NOT FOUND
RTC2 RTC IMS1 103 REPOSITORY MEMBER NOT FOUND

When the PF4 key is pressed, the following is displayed:
Log for . . . : DEL DEFN TARGET(REPO) TYPE(RTC) NAME(EMHTX2,RTC... More: +>

IMSpelx . . . . : PLEX1
Routing . . . . .
Start time . . . : 2011.133 12:07:41.08
Return code . . . : 0200000C
Reason code . . . : 00003008
Reason text . . . : None of the clients were successful.
Command master. . . : IMS1

MbrName Return Reason Reason text
-------- -------- -------------- ------------
IMS1 0000000C 00003004 No requests were successful

MbrName Messages
-----------------------------
IMS1 DFS3407E DELETE COMMAND COMPLETE FOR NONE, REQUEST=CSLRPDEL, RC=0300000C,
RSN=00003004, ERRORTEXT=, MBR=RSC, REPOTYPE=IMSRSC,
REPO=IMSRSC_REPOSITORY

OM API input:
CMD(DEL DEFN TARGET(REPO) TYPE(RTC) NAME(EMHTX2,RTC2)
FOR(IMSID(IMS2,IMS3)))

OM API output:
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2011.133 19:07:41.108147</statime>
<brstatime>2011.133 19:07:41.139772</brstatime>
<brstatime>C7C3D404D0F83522</brstatime>
<brstatime>C7C3D404D0F83522</brstatime>
<rqsttkn1>USRT011 10120741</rqsttkn1>
<rc>0200000C</rc>
<rsn>00003008</rsn>
<rsnmsg>CSLN054I</rsnmsg>
<rsntxt>No requests were successful</rsntxt>
</ctl>
<cmderr>
<mbr name="IMS1 ">
<typ>IMS </typ>
<styp>DBDC</styp>
<rc>0000000C</rc>
<rsn>00003004</rsn>
<rsntxt>No requests were successful</rsntxt>
</mbr>
</cmderr>
<cmd>
<master>IMS1 </master>
<userid>USRT011 </userid>

336 Commands, Volume 1: IMS Commands A - M
Example 4 for DELETE DEFN command

TSO SPOC input:
DEL DEFN TARGET(REPO) TYPE(RTC) NAME(EMHTX*,RTC*)
FOR(IMSID(IMS2,IMS3))

TSO SPOC output:
Response for: DEL DEFN TARGET(REPO) TYPE(RTC) NAME(EMHTX*,RTC*)
FOR(IMSID(IMS2,IMS3))

When the PF4 key is pressed, the following is displayed:
Log for . . . : DEL DEFN TARGET(REPO) TYPE(RTC) NAME(EMHTX*,RTC*) FO...

Example 4 for DELETE DEFN command

TSO SPOC input:
DEL DEFN TARGET(REPO) TYPE(RTC) NAME(EMHTX*,RTC*)
FOR(IMSID(IMS2,IMS3))

TSO SPOC output:
Response for: DEL DEFN TARGET(REPO) TYPE(RTC) NAME(EMHTX*,RTC*)
FOR(IMSID(IMS2,IMS3))

When the PF4 key is pressed, the following is displayed:
Log for . . . : DEL DEFN TARGET(REPO) TYPE(RTC) NAME(EMHTX*,RTC*) FO... More: >

IMSplex . . . . . . . . . : PLEX1
Routing . . . . . . . . .
Return code . . . . . . : 00000000

Chapter 23. DELETE commands 337
Reason code . . . : 00000000
Reason text . . . : 
Command master . . : IMS1

MbrName Messages
-------- -----------------------
IMS1 DFS3406I DELETE COMMAND COMPLETE FOR ALL, REPOTYPE=IMSRSC,
REPONAME=IMSRSC_REPOSITORY

OM API input:
CMD(DEL DEFN TARGET(REPO) TYPE RTC) NAME(EMH*, R*)
FOR(IMSID(IMS2, IMS3))

OM API output:
<imsout>
<ctl>
<omname>OM1OM </omname>
<omvsn>1.5.0 </omvsn>
<xmlvsn>20 </xmlvsn>
<statime>2011.133 19:22:50.121164 </statime>
<stotime>2011.133 19:22:50.167741 </stotime>
<staseq>C7C3D84024FCC3A0 </staseq>
<stoseq>C7C3D840305BDD22 </stoseq>
<rqsttknl>USRTO11 10122250 </rqsttknl>
<rc>000000000 </rc>
<rsn>00000000 </rsn>
</ctl>
</cmd>
</cmdrespdr>

<cmdrespdata>
<rsp>NAME(IMS2 ) TYPE LIST MBR(IMS1) CC ( 0 ) </rsp>
<rsp>NAME(IMS3 ) TYPE LIST MBR(IMS1) CC ( 0 ) </rsp>
<rsp>NAME(EMHTX3 ) TYPE RTC MBR(IMS1) CC ( 0 ) IMSId(IMS2 ) </rsp>
<rsp>NAME(RTC3 ) TYPE RTC MBR(IMS1) CC ( 0 ) IMSId(IMS2 ) </rsp>
<rsp>NAME(EMHTX3 ) TYPE RTC MBR(IMS1) CC ( 0 ) IMSId(IMS3 ) </rsp>
<rsp>NAME(RTC3 ) TYPE RTC MBR(IMS1) CC ( 0 ) IMSId(IMS3 ) </rsp>
</cmdrespdata>

<msgdata>
<mbr name="IMS1 ">
<msg>DFS3406I DELETE COMMAND COMPLETE FOR ALL, REPOTYPE=IMSRSC,
REPONAME=IMSRSC_REPOSITORY </msg>
</mbr>
</msgdata>
</imsout>
Explanation: Routing code resources EMHTX3 and RTC3 exist in the IMSRSC repository. The DELETE DEFN command completed successfully with all of the resources deleted. IMS1 processed the DELETE DEFN command on behalf of IMS2 and IMS3. Routing code resource EMHTX3 that exists in the repository matched the wildcard resource name of EMH*. Routing code resource RTC3 that exists in the repository matched the wildcard resource name of R*. Routing code resources EMHTX3 and RTC3 exist in the repository for IMS2 and IMS3. The resource list of IMS2 and the resource list of IMS3 are updated to remove routing code resources EMHTX3 and RTC3 from the resource lists.

Related information:
- DFS3406I (Messages and Codes)
- DFS3407E (Messages and Codes)

DELETE LE command

Use the DELETE command (with the LE keyword) to delete Language Environment (LE) runtime options that have previously been defined by the UPDATE command (with the LE keyword).

Subsections:
- “Environment”
- “Syntax”
- “Keywords” on page 340
- “Usage notes” on page 340
- “Output fields” on page 341
- “Return, reason, and completion codes” on page 341
- “Examples” on page 342

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DELETE LE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LTERM</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PGM</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TRAN</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>USERID</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax
Keywords

LTERM()
   Specifies the 1 - 8 character name of the LTERM that matches the generic or wildcard parameter.

PGM()
   Specifies the 1 - 8 character name of the programs that match the generic or wildcard parameter.

TRAN()
   Specifies the 1 - 8 character name of the transactions that match the generic or wildcard parameter.

USERID()
   Specifies the 1 - 8 character name of the user IDs that match the generic or wildcard parameter.

Usage notes

The delete can use filters on transaction code, LTERM name, user ID, or program name. Any combination of parameters can be used to qualify the application instance to which the runtime parameters are deleted. All matches found are deleted. The entry is logically deleted. The entry is then immediately available for reuse by the next UPDATE LE command. There is a small window of time where it is possible for an entry to be deleted and reused before LE uses it, that could cause LE to use the wrong set of parameters.

This command may be specified only through the Operations Manager API. The command syntax for this command is defined in XML and is available to automation programs that communicate with OM.

OM overrides the routing on the command and routes the command to all IMS systems in the IMSplex. The user-specified route list is ignored.

Rules for matching an entry which results in the delete of an entry:

• If a filter is specified in the command for a particular resource it must match the resource filter defined in the entry. The resource in the DELETE LE command can be specified with wildcards as defined previously.

• A resource filter that is not specified on a DELETE LE command will match on any filter for the specific resource defined in the entry. A non-specified filter is treated as a wildcard. For instance if the LTERM filter is not specified on a DELETE LE command it will match on any LTERM resource defined in an entry, as if LTERM(*) was specified on the command.

If an existing set of LE runtime options are found for the specified TRAN, LTERM, USERID, or PGM, the existing parameter string is deleted. The string is deleted only when the specified filters are an exact match for the existing entry. The entry is logically deleted. The entry is available for reuse on the next UPDATE LE command.

The following keywords support a generic or wildcard character. A generic parameter is a 1 - 8 character alphanumeric name that includes one or more special characters and an asterisk or a percent sign. An asterisk can be replaced by a zero or more characters to create a valid resource name. A percent sign can be replaced by exactly one character to create a valid resource name.
**Requirement:** At least one of the resource filters (LTERM, PGM, TRAN, or USERID) must be specified on the UPDATE LE command.

**Output fields**

The following table shows the output fields for an DELETE LE command. The columns in the table are as follows:

**Short label**
Contains the short label generated in the XML output.

**Keyword**
Identifies the keyword on the command that caused the field to be generated. N/A appears for output fields that are always returned.

**Meaning**
Provides a brief description of the output field.

*Table 177. Output fields for the DELETE LE command*

<table>
<thead>
<tr>
<th>Short label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>N/A</td>
<td>Completion code for the line of output. Completion code is always returned.</td>
</tr>
<tr>
<td>LTRM</td>
<td>LTERM</td>
<td>LTERM name affected by the DELETE.</td>
</tr>
<tr>
<td>MBR</td>
<td>N/A</td>
<td>IMSplex member (IMS identifier) that built the output line. Member name is always returned.</td>
</tr>
<tr>
<td>PGM</td>
<td>PGM</td>
<td>Program name affected by the DELETE.</td>
</tr>
<tr>
<td>TRAN</td>
<td>TRAN</td>
<td>Transaction name affected by the DELETE.</td>
</tr>
<tr>
<td>UID</td>
<td>USERID</td>
<td>Userid affected by the DELETE.</td>
</tr>
</tbody>
</table>

**Return, reason, and completion codes**

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

*Table 178. Return and reason codes for the DELETE LE command*

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The DELETE LE command completed successfully.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002008'</td>
<td>No keywords were specified on the command. At least one keyword is required.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000200C'</td>
<td>No resources found to delete. Either the entry was previously deleted or a keyword filter was typed incorrectly.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002014'</td>
<td>An invalid character was specified in the filter name.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004040'</td>
<td>The parameter override header has not been initialized. Retry the command after restart is complete.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005000'</td>
<td>Unable to get storage from IMODULE GETSTOR.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005010'</td>
<td>Unable to obtain latch.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005FFF'</td>
<td>Internal IMS Error - should not occur.</td>
</tr>
</tbody>
</table>

The following table contains the completion code that can be returned on a DELETE LE command and the meaning of the code.

---

Chapter 23. DELETE commands 341
Table 179. Completion code for the DELETE LE command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The DELETE LE command completed successfully for the specified resource.</td>
</tr>
</tbody>
</table>

Examples

The following are examples of the DELETE LE command:

Example 1 for DELETE LE command

For this example, the following table shows the parameter override table entries prior to any DELETE LE commands being processed.

Table 180. Parameter override table entries for DELETE LE example

<table>
<thead>
<tr>
<th>Entry#</th>
<th>TRAN</th>
<th>LTERM</th>
<th>USERID</th>
<th>PROGRAM</th>
<th>LERUNOPTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PART</td>
<td></td>
<td></td>
<td></td>
<td>DFSSAM02</td>
</tr>
<tr>
<td>2</td>
<td>PART</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>PART</td>
<td>TERM1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DFSSAM02</td>
</tr>
<tr>
<td>5</td>
<td>PART</td>
<td>TERM1</td>
<td>BARBARA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>PART</td>
<td>TERM1</td>
<td>BOB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>TERM2</td>
<td>BETTY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PART</td>
<td>TERM2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following table shows the resulting actions when different filters are specified on a DELETE LE command.

Table 181. Example filters and resulting actions for DELETE LE command

<table>
<thead>
<tr>
<th>Filters active on command</th>
<th>Resulting action</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAN(PART)</td>
<td>Deletes entries #1, 2, 3, 5, 6, 8</td>
</tr>
<tr>
<td>TRAN(PART) LTERM(TERM1)</td>
<td>Deletes entries #3, 5, 6</td>
</tr>
<tr>
<td>LTERM(TERM2) USERID(BETTY)</td>
<td>Deletes entry #7</td>
</tr>
<tr>
<td>TRAN(PART) LTERM(TERM1)</td>
<td>Does not delete any entries</td>
</tr>
<tr>
<td>USERID(dddd)</td>
<td></td>
</tr>
<tr>
<td>TRAN(PART) LTERM(TERM2)</td>
<td>Deletes entries #3, 5, 6, 8</td>
</tr>
<tr>
<td>USERID(B*)</td>
<td>Deletes entries #2, 5, 6, 7</td>
</tr>
</tbody>
</table>

Example 2 for DELETE LE command

The following TSO SPOC and OM API input and output sets up the scenario for the DELETE LE command examples. The UPDATE commands are used to add entries to the table; the QUERY command shows the resulting entries.

TSO SPOC input:

```
UPD LE TRAN(IAPMDI27) USERID(USRT003) SET(LERUNOPTS(cccc))
UPD LE TRAN(IAPMDI27) USERID(USRT001) SET(LERUNOPTS(bbbb))
UPD LE TRAN(IAPMDI26) USERID(USRT001) SET(LERUNOPTS(aaaa))
QRY LE SHOW(ALL)
```
Example 3 for DELETE LE command

TSO SPOC input:
DEL LE TRAN(IAPMDI27) USERID(USRT001)
TSO SPOC output:

MbrName  CC  Trancode  Lterm  Userid  Program
SYS3     0    IAPMDI27  USRT001  

OM API input:

CMD(DEL LE TRAN(IAPMDI27) USERID(USRT001))

OM API output:

<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.1.0</omvsn>
<xmlvsn>1</xmlvsn>
<stotime>2002.163 18:12:21.933334</stotime>
<staseq>B7C4CDED8E70D786</staseq>
<stoseq>B7C4CDED8E916246</stoseq>
<rqsttkn1>USRT002 10111221</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
</cmd>
<master>SY53</master>
<userid>USRT002</userid>
<verb>DEL</verb>
<kwd>LE</kwd>
<input>DEL LE TRAN(IAPMDI27) USERID(USRT001)</input>
</cmd>
</cmdrsphdr>
<rsp>MbrName  CC  Trancode  Lterm  Userid  Program
   SYS3     0    IAPMDI26  USRT001  
   SYS3     0    IAPMDI27  USRT003  
</rsp>
</cmdrspdata>
</imsout>

Explanation: This command specifies two filters- transaction and userid. A table entry is deleted if both of these filters are defined and match what was specified in the command. This command deletes one entry from the table. That entry is shown in the command output.

Example 4 for DELETE LE command

TSO SPOC input:

DEL LE USERID(USRT00%)

TSO SPOC output:

MbrName  CC  Trancode  Lterm  Userid  Program
SYS3     0    IAPMDI26  USRT001  
SYS3     0    IAPMDI27  USRT003  

344  Commands, Volume 1: IMS Commands A - M
OM API input:
CMD(DEL LE USERID(USRT00%))

OM API output:

<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.1.0</omvsn>
<xmlvsn>1</xmlvsn>
<statime>2002.163 18:19:45.616468</statime>
<stotime>2002.163 18:19:45.616972</stotime>
<staseq>B7C4CF94AF54304</staseq>
<stoseq>B7C4CF94AF54304</stoseq>
<rqsttkn1>USRT002 10111945</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>SYS3</master>
<userid>USRT002</userid>
<verb>DEL</verb>
<kwd>LE</kwd>
<input>DEL LE USERID(USRT00%)</input>
</cmd>
<cmdrsphdr>
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="A" key="1" scroll="NO" len="8"
dtype="CHAR" align="left"/>
<hdr slbl="CC" llbl="CC" scope="LCL" sort="N" key="0" scroll="YES" len="4"
dtype="INT" align="right"/>
<hdr slbl="TRAN" llbl="Trancode" scope="LCL" sort="N" key="0" scroll="YES" len="8"
dtype="CHAR" align="left"/>
<hdr slbl="LTRM" llbl="Lterm" scope="LCL" sort="N" key="0" scroll="YES" len="8"
dtype="CHAR" align="left"/>
<hdr slbl="UID" llbl="Userid" scope="LCL" sort="N" key="0" scroll="YES" len="8"
dtype="CHAR" align="left"/>
<hdr slbl="PGM" llbl="Program" scope="LCL" sort="N" key="0" scroll="YES" len="8"
dtype="CHAR" align="left"/>
</cmdrsphdr>
<cmdrspdata>
<rsp>MBR(SYS3 ) CC( 0) TRAN(IAPMDI26) LTRM( ) UID(USRT001 ) PGM( )</rsp>
<rsp>MBR(SYS3 ) CC( 0) TRAN(IAPMDI27) LTRM( ) UID(USRT003 ) PGM( )</rsp>
</cmdrspdata>
</imsout>

Explanation: This command specifies only one filter, userid. A wildcard is used, so any table entry where the USERID filter matches the string will be deleted. The command output shows that both of the remaining table entries were deleted.

Related concepts:

- How to interpret CSL request return and reason codes (System Programming APIs)

Related reference:

Chapter 2, “Command keywords and their synonyms,” on page 63
DELETE OTMADESC command

Use the DELETE OTMADESC command to delete an existing OTMA destination descriptor without restarting IMS.

Subsections:
- “Environment”
- “Syntax”
- “Keywords”
- “Usage notes” on page 347
- “Output fields” on page 347
- “Return, reason, and completion codes” on page 347
- “Examples” on page 348

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 182. Valid environments for the DELETE OTMADESC command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DELETE OTMADESC</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OPTION</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Syntax

```
DELETE OTMADESC NAME(descname*) OPTION(nowildcard | wildcard)
```

Keywords

The following keywords are valid for the DELETE OTMADESC command:

NAME(descname*)

A required keyword parameter that specifies a 1- to 8-character destination routing descriptor name. The destination routing descriptor name can have an asterisk (*) at the end to mask a group of names. The asterisk can be used by itself to mask all defined descriptor names in the system. Issuing the DELETE command with a name of asterisk only will delete all entries in the destination routing descriptors. If you intend to delete all entries in the table, you must specify DELETE NAME(*) OPTION(WILDCARD). All entries including the entry of asterisk are deleted.

OPTION(nowildcard | wildcard)

Specify NOWILDCARD to delete the descriptor having a name with an asterisk as an entry from the table of destination routing descriptors. Specify WILDCARD to delete the groups of names that the asterisk is masking. If the name with the asterisk is also an entry in the table, the name with the asterisk itself is deleted.
Usage notes

The DELETE OTMADESC command requires only the NAME keyword. If the NAME keyword contains the masked character of asterisk, it will not delete the group of names it is masking. It will only delete the name with the asterisk as its own entry in the destination routing descriptors. If the OPTION(WILDCARD) keyword is specified, then the group of names under a masked destination routing descriptor name will also be deleted; the name with the asterisk is also deleted. Log records will be created to track the dynamic changes to destination routing descriptors on restart of IMS.

The DELETE OTMADESC command is not valid in an XRF alternate or an RSR tracking environment.

Output fields

The following table shows the DELETE OTMADESC output fields. The columns in the table are:

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code for the line of output. The completion code indicates whether IMS was able to process the command for the specified resource. See “Return, reason, and completion codes” for more information. The completion code is always returned.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>N/A</td>
<td>Completion code text that briefly explains the meaning of the non-zero completion code. This field is returned only for an error completion code.</td>
</tr>
<tr>
<td>DEST</td>
<td>DestName</td>
<td>NAME</td>
<td>Destination name.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>Member name.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

An IMS return and reason code is returned to OM by the DELETE OTMADESC command. The OM return and reason codes that may be returned as a result of the DELETE OTMADESC command are standard for all commands entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.
Table 184. Return and reason codes for the DELETE OTMADESC command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>Command completed successfully. The command output contains a line for each resource, accompanied by its completion code. See Table 185 for details.</td>
</tr>
<tr>
<td>X'02000008'</td>
<td>X'00002000'</td>
<td>The command contains an invalid verb or no client is registered for the verb.</td>
</tr>
<tr>
<td>X'02000008'</td>
<td>X'00002004'</td>
<td>The command contains an invalid primary keyword or no client is registered for the keyword.</td>
</tr>
<tr>
<td>X'02000008'</td>
<td>X'00002028'</td>
<td>The command contains an invalid keyword.</td>
</tr>
<tr>
<td>X'02000008'</td>
<td>X'0000202C'</td>
<td>The command contains an unknown positional parameter.</td>
</tr>
<tr>
<td>X'02000008'</td>
<td>X'00002034'</td>
<td>The command contains an incomplete keyword parameter.</td>
</tr>
<tr>
<td>X'02000008'</td>
<td>X'00002038'</td>
<td>The command is missing a required parameter.</td>
</tr>
<tr>
<td>X'02000008'</td>
<td>X'0000203C'</td>
<td>The command contains an invalid keyword parameter value.</td>
</tr>
</tbody>
</table>

The following table includes an explanation of the completion codes. Errors unique to the processing of this command are returned as completion codes. A completion code is returned for each action against an individual resource.

Table 185. Completion codes for the DELETE OTMADESC command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command completed successfully</td>
<td>The DELETE OTMADESC command completed successfully for the resource.</td>
</tr>
<tr>
<td>163</td>
<td>Descriptor not available for del</td>
<td>During delete processing, the entry in the table of destination routing descriptors might have already been deleted by another user.</td>
</tr>
<tr>
<td>166</td>
<td>No entries found</td>
<td>Command failed for DELETE OTMADESC, because no entries were found in the table of destination routing descriptors.</td>
</tr>
</tbody>
</table>

Examples

The following are examples of the DELETE OTMADESC command:

Example 1 for DELETE OTMADESC command

TSO SPOC input:
DELETE OTMADESC NAME(OTMACL*)

TSO SPOC output:

DestName MbrName CC
OTMACL* IMSA 0
Explanation: The DELETE command will delete only OTMACL* and not delete OTMACL99, because the default for the OPTION keyword is NOWILDCARD. It treats OTMACL* as a standalone entry in the table of destination routing descriptors.

Example 2 for DELETE OTMADESC command

TSO SPOC input:
DELETE OTMADESC NAME(OTMACL*) OPTION(WILDCARD)

TSO SPOC output:
DestName MbrName CC
OTMACL99 IMSA 0
OTMACL* IMSA 0

Explanation: The DELETE command will delete both OTMACL99 and OTMACL*, because the OPTION keyword is coded with WILDCARD. It treats OTMACL* as a mask for a group of names, so it includes OTMACL99 and OTMACL* as an entry in itself in the table of destination routing descriptors.

Related concepts:
How to interpret CSL request return and reason codes (System Programming APIs)

Related reference:
Chapter 2, “Command keywords and their synonyms,” on page 63

DELETE PGM command

Use the DELETE PGM command to delete program resources.

Subsections:
- “Environment”
- “Syntax” on page 350
- “Keywords” on page 350
- “Usage notes” on page 350
- “Output fields” on page 351
- “Return, reason, and completion codes” on page 351
- “Examples” on page 353

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

Table 186. Valid environments for the DELETE PGM command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DELETE PGM</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>OPTION</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Syntax

```
DELETE PGM NAME(name*) OPTION(ALLRSP)
```

Keywords

The following keywords are valid for the DELETE PGM command:

**NAME**

Specifies the 1-8 character name of the program. Wildcards are supported in the name. Examples of valid names are `NAME(*)` and `NAME(abc*)`. If the NAME parameter specified is a specific or wildcard name, command responses are returned for all the resource names that are processed. For `NAME(*)`, command responses are returned only for the resource names that resulted in an error. `OPTION(ALLRSP)` can be specified with `NAME(*)` to obtain the command responses for all the resource names that are processed.

**OPTION**

Specifies additional functions to be performed along with the command.

**ALLRSP**

Indicates that the response lines are to be returned for all resources that are processed on the command. The default action is to return response lines only for the resources that resulted in an error. It is valid only with `NAME(*)`. `ALLRSP` is ignored for other NAME values.

Usage notes

This command can only be issued through the Operations Manager API. This command applies to DB/DC systems, DBCTL systems, and DCCTL systems. The DELETE PGM command is not valid on the XRF alternate, RSR tracker, or FDBR region. The DELETE PGM command is not valid if online change for MODBLKS is enabled (DFSDFxxx or DFSCGxxx defined with MODBLKS=OLC or MODBLKS not defined). This command is recoverable.

Each program is deleted individually, unlike the online change process where either all programs are deleted or no programs are deleted. The runtime resource definition for a program can be deleted only if the program is not in use. If the program is in use, the delete fails. In a sysplex environment with multiple IMS systems, the delete might succeed on some IMS systems and fail on others.

The DELETE PGM command removes ACB members from the 31-bit nonresident pool as well as the 64-bit storage pool.

The resources remain deleted across an IMS warm start or emergency restart. To ensure that the resources remain deleted across a cold start, the existing resource definitions must be exported to a system RDDS and then imported from the RDDS at cold start. Or, if the IMSRC repository is enabled, the DELETE DEFN command must be issued to delete the definition from the repository. If the resource definitions are to be imported from the MODBLKS data set at cold start instead of from an RDDS, the resource definitions must be deleted from system definition and a new MODBLKS data set must be generated.
The DELETE command is not allowed for IMS resources that are identified with a definition type of IMS. For DELETE PGM commands, this means Fast Path utility program DBF#FPU0.

**Output fields**

The following table shows the DELETE PGM output fields. The columns in the table are as follows:

**Short label**
Contains the short label generated in the XML output.

**Long label**
Contains the long label generated in the XML output.

**Keyword**
Identifies keyword on the command that caused the field to be generated. N/A appears for output fields that are always returned. error appears for output fields that are returned only in case of an error.

**Meaning**
Provides a brief description of the output field.

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the non-zero completion code.</td>
</tr>
<tr>
<td>ERRT</td>
<td>ErrorText</td>
<td>error</td>
<td>Error text that provides diagnostic information. Error text can be returned for a non-zero completion code and further explains the completion code.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>IMSplex member that built the output line.</td>
</tr>
<tr>
<td>PGM</td>
<td>PgmName</td>
<td>PGM</td>
<td>Program name.</td>
</tr>
</tbody>
</table>

**Return, reason, and completion codes**

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>Command completed successfully. The command output contains a line for each resource, accompanied by its completion code. If NAME(*) is specified without OPTION(ALLRSP), no output lines are returned. See the completion code table for details.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003000'</td>
<td>Command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code. If NAME(*) is specified without OPTION(ALLRSP), only resources with non-zero completion codes are returned. See the completion code table for details.</td>
</tr>
</tbody>
</table>
### Table 188. Return and reason codes for the DELETE PGM command (continued)

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>Command was not successful for any of the resources. The command output contains a line for each resource, accompanied by its completion code. See the completion code table for details.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004004'</td>
<td>Command is not valid on the XRF alternate.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>Command is not valid on the RSR tracker.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004120'</td>
<td>Online change phase is in progress.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004300'</td>
<td>Command is not allowed because online change for MODBLKS is enabled (DFSDFxxx or DFSCGxxx defined with MODBLKS=OLC, or MODBLKS not defined).</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005004'</td>
<td>DFSOCMD response buffer could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005008'</td>
<td>DFSPOOL storage could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'0000500C'</td>
<td>AWE could not be obtained.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. The following table includes an explanation of the completion codes.

### Table 189. Completion codes for the DELETE PGM command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
<th>Error text</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command completed successfully for program.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>Program name is invalid, or the wildcard parameter specified does not match any resource names.</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>ANOTHER CMD IN PROGRESS</td>
<td>Another command (such as DELETE or UPDATE) is in progress for this program. This could also mean this command, if the resource is specified by more than one specific or wildcard parameter.</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>NOT ALLOWED FOR IMS RESOURCE</td>
<td>DELETE command not allowed for IMS descriptor or resource. An example of an IMS resource include DBF#FPU0.</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>PROGRAM SCHEDULED</td>
<td>Program is scheduled.</td>
<td></td>
</tr>
<tr>
<td>7B</td>
<td>REFERENCED BY RTCODE</td>
<td>Routing code references the program to be deleted. The routing code name is returned as error text. rtcodename (8 chars)</td>
<td></td>
</tr>
</tbody>
</table>

**Suggested actions:**

- Issue DELETE RTC command to delete the routing code.
- or
- Issue UPDATE RTC command to update the program to another name.
Table 189. Completion codes for the DELETE PGM command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
<th>Error text</th>
</tr>
</thead>
<tbody>
<tr>
<td>88</td>
<td>REFERENCED BY TRAN</td>
<td>Transaction references the program to be deleted. The transaction name is returned as error text.</td>
<td>tranname (8 char)</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Suggested actions:</strong>&lt;br&gt; • Issue DELETE TRAN command to delete the transaction.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>or</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Issue UPDATE TRAN command to update the program to another name.</td>
<td></td>
</tr>
<tr>
<td>1D7</td>
<td>IMPORT CHANGE LIST ERROR</td>
<td>Resource is in the process of being imported from the change list in the IMSRSC repository, or the import from the change list failed. The resource cannot be deleted until it is successfully imported.</td>
<td></td>
</tr>
</tbody>
</table>

Examples

The following are examples of the DELETE PGM command:

**Example 1 for DELETE PGM command**

**TSO SPOC input:**

DELETE PGM NAME(DFSSAM02,AUTPSB2,BADNAME,DFSSAM04)

**TSO SPOC output:**

Response for: DELETE PGM NAME(DFSSAM02,AUTPSB2,BADNAME,DFSSAM04)

<table>
<thead>
<tr>
<th>PgmName</th>
<th>MbrName</th>
<th>CC</th>
<th>CCText</th>
<th>ErrorText</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTPSB2</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BADNAME</td>
<td>IMS1</td>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td></td>
</tr>
<tr>
<td>DFSSAM02</td>
<td>IMS1</td>
<td>88</td>
<td>REFERENCED BY TRAN PART</td>
<td></td>
</tr>
<tr>
<td>DFSSAM04</td>
<td>IMS1</td>
<td>88</td>
<td>REFERENCED BY TRAN ADDINV</td>
<td></td>
</tr>
<tr>
<td>DFSSAM04</td>
<td>IMS1</td>
<td>88</td>
<td>REFERENCED BY TRAN ADDOPART</td>
<td></td>
</tr>
<tr>
<td>DFSSAM04</td>
<td>IMS1</td>
<td>88</td>
<td>REFERENCED BY TRAN DLETINV</td>
<td></td>
</tr>
<tr>
<td>DFSSAM04</td>
<td>IMS1</td>
<td>88</td>
<td>REFERENCED BY TRAN DLETPART</td>
<td></td>
</tr>
</tbody>
</table>

**OM API input:**

CMD(DEL PGM NAME(DFSSAM02,AUTPSB2,BADNAME,DFSSAM04))

**OM API output:**

<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.3.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2006.310 23:38:41.931770</statime>
<stotime>2006.310 23:38:41.931770</stotime>
<staseq>BFAACDEBAF9FA480</staseq>
<stoseq>BFAACDEBAF9FA480</stoseq>
<rqsttkn1>USRRT011 10153841</rqsttkn1>
<rc>0200000C</rc>
<rsn>00003008</rsn>
<rmsg>CSLN054I</rmsg>
<rsntxt>None of the clients were successful.</rsntxt>
</ctl>

Chapter 23. DELETE commands 353
<cmderr>
  <mbr name="IMS1 ">
  <typ>IMS </typ>
  <styp>DBDC </styp>
  <rc>0000000C</rc>
  <rsn>00003000</rsn>
  <rsntxt>At least one request successful</rsntxt>
</mbr>
</cmderr>
<cmd>
  <master>IMS1 </master>
  <userid>USRT011 </userid>
  <verb>DEL </verb>
  <kwd>PGM </kwd>
  <input>DELETE PGM NAME(DFSSAM02,AUTPSB2,BADNAME,DFSSAM04) </input>
</cmd>
<cmdrsphdr>
<hdr slbl="PGM" llbl="PgmName" scope="LCL" sort="a" key="1" scroll="no" len="8" dtype="CHAR" align="left"/>
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" key="2" scroll="no" len="8" dtype="CHAR" align="left"/>
<hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0" scroll="yes" len="4" dtype="INT" align="right" skipb="no"/>
<hdr slbl="CCTXT" llbl="CCText" scope="LCL" sort="n" key="0" scroll="yes" len="*" dtype="CHAR" skipb="yes" align="left"/>
<hdr slbl="ERRT" llbl="ErrorText" scope="LCL" sort="n" key="0" scroll="yes" len="*" dtype="CHAR" skipb="yes" align="left"/>
</cmdrsphdr>
<cmdrspdata>
<rsp>PGM(DFSSAM02) MBR(IMS1) CC( 88) CCTXT(REFERENCED BY TRAN) ERRT(PART ) </rsp>
<rsp>PGM(AUTPSB2 ) MBR(IMS1) CC( 0) </rsp>
<rsp>PGM(BADNAME ) MBR(IMS1) CC(10) CCTXT(NO RESOURCES FOUND) </rsp>
<rsp>PGM(DFSSAM04) MBR(IMS1) CC( 88) CCTXT(REFERENCED BY TRAN) ERRT(ADDINV ) </rsp>
<rsp>PGM(DFSSAM04) MBR(IMS1) CC( 88) CCTXT(REFERENCED BY TRAN) ERRT(ADDPART ) </rsp>
<rsp>PGM(DFSSAM04) MBR(IMS1) CC( 88) CCTXT(REFERENCED BY TRAN) ERRT(DLETPART) </rsp>
<rsp>PGM(DFSSAM04) MBR(IMS1) CC( 88) CCTXT(REFERENCED BY TRAN) ERRT(DLETINV ) </rsp>
</cmdrspdata>
</imsout>

**Explanation:** Delete programs DFSSAM02, AUTPSB2, BADNAME, and DFSSAM04. The delete is successful for program AUTPSB2, as shown by the completion code 0. The delete is rejected for DFSSAM02, because transaction PART refers to it. The delete fails for program DFSSAM04, because transactions ADDPART, ADDINV, DLETPART, and DLETINV refer to it. Transactions PART, ADDPART, ADDINV, DLETPART, and DLETINV must either be deleted or updated to refer to another program before deleting programs DFSSAM02 and DFSSAM04. The delete fails for BADNAME, because there is no program named BADNAME.

**Related concepts:**

- How to interpret CSL request return and reason codes (System Programming APIs)

**Related tasks:**

- Deleting runtime application program resource and descriptor definitions with the DELETE command (System Definition)

**Related reference:**

- Chapter 2, “Command keywords and their synonyms,” on page 63
DELETE PGMDESC command

Use the DELETE PGMDESC command to delete program descriptors.

Subsections:
- “Environment”
- “Syntax”
- “Keywords”
- “Usage notes” on page 356
- “Output fields” on page 356
- “Return, reason, and completion codes” on page 357
- “Examples” on page 358

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

Table 190. Valid environments for the DELETE PGMDESC command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DELETE PGMDESC</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>OPTION</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
DELETE PGMDESC [NAME(name*)] [OPTION(ALLRSP)]
```

Keywords

The following keywords are valid for the DELETE PGMDESC command:

NAME

Specifies the 1-8 character name of the program descriptor. Wildcards are supported in the name. Examples of valid names are NAME(*) and NAME(abc*). If the NAME parameter specified is a specific or wildcard name, command responses are returned for all the descriptor names that are processed. For NAME(*), command responses are returned only for the descriptor names that resulted in an error. OPTION(ALLRSP) can be specified with NAME(*) to obtain the command responses for all the descriptor names that are processed.

OPTION

Specifies additional functions to be performed along with the command.

ALLRSP

Indicates that the response lines are to be returned for all descriptors that are processed on the command. The default action is to return response lines only for the descriptors that resulted in an error. It is valid only with NAME(*). ALLRSP is ignored for other NAME values.
Usage notes

This command can only be issued through the Operations Manager API. This command applies to DB/DC systems, DBCTL systems, and DCCTL systems. The DELETE PGMDESC command is not valid on the XRF alternate, RSR tracker, or FDBR region. The DELETE PGMDESC command is not valid if online change for MODBLKS is enabled (DFSDFx=x or DFSCGxxx defined with MODBLKS=OLC or MODBLKS not defined). This command is recoverable.

Each descriptor is deleted individually. Individual deletion does not work like online change where either all descriptors are deleted or no descriptors are deleted. Descriptors can be successfully deleted if they are not currently in use. If a descriptor is in use, the delete fails. In a sysplex environment, the delete might succeed on some IMS systems and fail on others. A descriptor is in use if another command is in progress that references the descriptor.

The descriptors remain deleted across an IMS warm start or emergency restart. To ensure they remain deleted across a cold start, the existing descriptor definitions must be exported to an RDDS and imported from the RDDS at cold start.

The DELETE PGMDESC command is not allowed for IMS descriptors that are identified with a definition type of IMS. For DELETE PGMDESC commands, this means IMS-defined program descriptor DFSDSPG1.

Output fields

The following table shows the DELETE PGMDESC output fields. The columns in the table are as follows:

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the non-zero completion code.</td>
</tr>
<tr>
<td>DESC</td>
<td>DescName</td>
<td>PGMDESC</td>
<td>Program descriptor name.</td>
</tr>
<tr>
<td>ERRT</td>
<td>EditText</td>
<td>error</td>
<td>Error text that provides diagnostic information. Error text can be returned for a non-zero completion code and further explains the completion code.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>IMSplex member that built the output line.</td>
</tr>
</tbody>
</table>

Table 191. Output fields for the DELETE PGMDESC command
Return, reason, and completion codes

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 192. Return and reason codes for the DELETE PGMDESC command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X’00000000’</td>
<td>X’00000000’</td>
<td>Command completed successfully. The command output contains a line for each descriptor, accompanied by its completion code. If NAME(*) is specified without OPTION(ALLRSP), no output lines are returned. See the completion code table for details.</td>
</tr>
<tr>
<td>X’0000000C’</td>
<td>X’00003000’</td>
<td>Command was successful for some descriptors but failed for others. The command output contains a line for each descriptor, accompanied by its completion code. If NAME(*) is specified without OPTION(ALLRSP), only descriptors with nonzero completion codes are returned. See the completion code table for details.</td>
</tr>
<tr>
<td>X’0000000C’</td>
<td>X’00003004’</td>
<td>Command was not successful for any of the descriptors. The command output contains a line for each descriptor, accompanied by its completion code. See the completion code table for details.</td>
</tr>
<tr>
<td>X’00000010’</td>
<td>X’0000400C’</td>
<td>Command is not valid on the XRF alternate.</td>
</tr>
<tr>
<td>X’00000010’</td>
<td>X’00004014’</td>
<td>Command is not valid on the RSR tracker.</td>
</tr>
<tr>
<td>X’00000010’</td>
<td>X’00004120’</td>
<td>Online change phase is in progress.</td>
</tr>
<tr>
<td>X’00000010’</td>
<td>X’00004300’</td>
<td>Command is not allowed because online change for MODBLKS is enabled (DFSDFxxx or DFSCGxxx defined with MODBLKS=OLC, or MODBLKS not defined).</td>
</tr>
<tr>
<td>X’00000014’</td>
<td>X’00005004’</td>
<td>DFSOCMD response buffer could not be obtained.</td>
</tr>
<tr>
<td>X’00000014’</td>
<td>X’00005008’</td>
<td>DFSPOOL storage could not be obtained.</td>
</tr>
<tr>
<td>X’00000014’</td>
<td>X’0000500C’</td>
<td>AWE could not be obtained.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. The following table includes an explanation of the completion codes.

Table 193. Completion codes for the DELETE PGMDESC command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>Command completed successfully for program descriptor.</td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>Program name is invalid, or the wildcard parameter specified does not match any program descriptor names.</td>
</tr>
</tbody>
</table>
Table 193. Completion codes for the DELETE PGMDESC command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>ANOTHER CMD IN PROGRESS</td>
<td>Another command (such as DELETE or UPDATE) is in progress for this program descriptor. This could also mean this command, if the descriptor is specified by more than one specific or wildcard parameter.</td>
</tr>
<tr>
<td>27</td>
<td>REJECTED FOR DEFAULT DESCRIPTOR</td>
<td>DELETE command not allowed for user-defined default descriptor. You must issue an UPDATE command to set another descriptor as the default before deleting this descriptor.</td>
</tr>
<tr>
<td>48</td>
<td>NOT ALLOWED FOR IMS RESOURCE</td>
<td>DELETE command not allowed for IMS-defined descriptor. An example of an IMS-defined descriptor is DFSDSPG1.</td>
</tr>
<tr>
<td>1D7</td>
<td>IMPORT CHANGE LIST ERROR</td>
<td>Descriptor is in the process of being imported from the change list in the IMSRSC repository, or the import from the change list failed. The descriptor cannot be deleted until it is successfully imported.</td>
</tr>
</tbody>
</table>

Examples

The following are examples of the DELETE PGMDESC command:

Example 1 for DELETE PGMDESC command

TSO SPOC input:
DEL PGMDESC NAME(*) OPTION(ALLRSP)

TSO SPOC output:
Response for: DEL PGMDESC NAME(*) OPTION(ALLRSP)
DescName MbrName CC CCText
DESC001 IMS1 0
DESC002 IMS1 0
DESC003 IMS1 0
DESC004 IMS1 0
DESC005 IMS1 0
DFSDSPG1 IMS1 48 NOT ALLOWED FOR IMS RESOURCE
DOPTDESC IMS1 0
FPEDESC IMS1 0
GPSBDESC IMS1 0
PARLDESC IMS1 0
RESDESC IMS1 0
TLSDESC IMS1 27 REJECTED FOR DEFAULT DESCRIPTOR

OM API input:
CMD(DEL PGMDESC NAME(*) OPTION(ALLRSP))

OM API output:
<imsout>
<ctl>
<omname>OM1OM </omname>
Explanation: A DELETE PGMDESC command is issued to delete all program descriptors from an active IMS system. Many program descriptors are successfully deleted, as indicated by the completion code 0. Because the DELETE command attempted to delete all of the program descriptors, OPTION(ALLRSP) is specified to display the successfully deleted program descriptors. Program descriptor TLSDESC fails, because it is the default program descriptor. Program descriptor DFSDSFG1 fails, because it is the IMS-defined program descriptor.
DELETE RTC command

Use the DELETE RTC command to delete Fast Path routing codes.

Subsections:
- "Environment"
- "Syntax"
- "Keywords"
- "Usage notes" on page 361
- "Output fields" on page 361
- "Return, reason, and completion codes" on page 362
- "Examples" on page 363

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

Table 194. Valid environments for the DELETE RTC command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DELETE RTC</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OPTION</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
DELETE RTC NAME(name*) OPTION(ALLRSP)
```

Keywords

The following keywords are valid for the DELETE RTC command:

NAME

Specifies the 1-8 character name of the routing code. Wildcards are supported in the name. Examples of valid names are NAME(*) and NAME(abc*). If the NAME parameter specified is a specific or wildcard name, command responses are returned for all the resource names that are processed. For NAME(*), command responses are returned only for the resource names that resulted in an error. OPTION(ALLRSP) can be specified with NAME(*) to obtain the command responses for all the resource names that are processed.
OPTION
   Specifies additional functions to be performed along with the command.

ALLRSP
   Indicates that the response lines are to be returned for all resources that are
   processed on the command. The default action is to return response lines
   only for the resources that resulted in an error. It is valid only with
   NAME(*). ALLRSP is ignored for other NAME values.

Usage notes

This command can only be issued through the Operations Manager API. This
command applies to DB/DC systems and DCCTL systems. The DELETE RTC
command applies if Fast Path is installed. The DELETE RTC command is not valid
on the XRF alternate, RSR tracker, or FDBR region. The DELETE RTC command is
not valid if online change for MODBLKS is enabled (DFSDFxxx or DFSCGxxx
defined with MODBLKS=OLC or MODBLKS not defined). This command is
recoverable.

Each routing code is deleted individually, unlike the online change process where
either all routing codes are deleted or no routing codes are deleted. The runtime
resource definition for a routing code can only be deleted if the routing code is not
in use. If the routing code is in use, the delete fails. In a sysplex environment with
multiple IMSs, the delete might succeed on some IMSs and fail on others.

The resources remain deleted across an IMS warm start or emergency restart. To
ensure that the resources remain deleted across a cold start, the existing resource
definitions must be exported to a system RDDS and then imported from the RDDS
at cold start. Or, if the IMSRSC repository is enabled, the DELETE DEFN command
must be issued to delete the definition from the repository. If the resource
definitions are to be imported from the MODBLKS data set at cold start instead of
from an RDDS, the resource definitions must be deleted from system definition
and a new MODBLKS data set must be generated.

Output fields

The following table shows the DELETE RTC output fields. The columns in the
table are as follows:

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code.</td>
</tr>
</tbody>
</table>

Table 195. Output fields for the DELETE RTC command
Table 195. Output fields for the DELETE RTC command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the non-zero completion code.</td>
</tr>
<tr>
<td>ERRT</td>
<td>ErrorText</td>
<td>error</td>
<td>Error text that provides diagnostic information. Error text can be returned for a non-zero completion code and further explains the completion code.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>IMSplex member that built the output line.</td>
</tr>
<tr>
<td>RTC</td>
<td>RtcName</td>
<td>RTC</td>
<td>Routing code name.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 196. Return and reason codes for the DELETE RTC command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>Command completed successfully. The command output contains a line for each resource, accompanied by its completion code. If NAME(*) is specified without OPTION(ALLRSP), no output lines are returned. See the completion code table for details.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'0000000C'</td>
<td>Command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code. If NAME(*) is specified without OPTION(ALLRSP), only resources with non-zero completion codes are returned. See the completion code table for details.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'0000000C'</td>
<td>Command was not successful for any of the resources. The command output contains a line for each resource, accompanied by its completion code. See the completion code table for details.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00000010'</td>
<td>Command is not valid on the XRF alternate.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00000010'</td>
<td>Command is not valid on the RSR tracker.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00000010'</td>
<td>No Fast Path defined.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00000010'</td>
<td>Online change phase is in progress.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00000010'</td>
<td>Command is not allowed because online change for MODBLKS is enabled (DFSDFxxx or DFSCGxxx defined with MODBLKS=OLC, or MODBLKS not defined).</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00000014'</td>
<td>DFSOCMD response buffer could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00000014'</td>
<td>DFSPOOL storage could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00000014'</td>
<td>AWE could not be obtained.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. The following table includes an explanation of the completion codes.
### Table 197. Completion codes for the DELETE RTC command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command completed successfully for routing code.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>Routing code name is invalid, or the wildcard parameter specified does not match any routing code names.</td>
</tr>
<tr>
<td>17</td>
<td>ANOTHER CMD IN PROGRESS</td>
<td>Another command (such as DELETE or UPDATE) is in progress for this routing code. This could also mean this command, if the resource is specified by more than one specific or wildcard parameter.</td>
</tr>
<tr>
<td>39</td>
<td>FP=E TRAN FOR RTC EXISTS</td>
<td>Routing code was created by IMS for a Fast Path exclusive transaction and cannot be deleted by a DELETE RTC command. The routing code can only be deleted by a DELETE TRAN command for the Fast Path exclusive transaction.</td>
</tr>
<tr>
<td>73</td>
<td>PROGRAM SCHEDULED</td>
<td>Program is scheduled.</td>
</tr>
<tr>
<td>1D7</td>
<td>IMPORT CHANGE LIST ERROR</td>
<td>Resource is in the process of being imported from the change list in the IMSRSC repository, or the import from the change list failed. The resource cannot be deleted until it is successfully imported.</td>
</tr>
</tbody>
</table>

### Examples

The following are examples of the DELETE RTC command:

**Example 1 for DELETE RTC command**

**TSO SPOC input:**

```
DEL RTC NAME(OLCFR102,GFP1,BADNAME,EMHTX32,EMHTX32)
```

**TSO SPOC output:**

```
Response for: DEL RTC NAME(OLCFR102,GFP1,BADNAME,EMHTX32,EMHTX32)
RtcName MbrName CC CCText
BADNAME IMS1 10 NO RESOURCES FOUND
EMHTX32 IMS1 0
EMHTX32 IMS1 17 ANOTHER CMD IN PROGRESS
GFP1 IMS1 39 FP=E TRAN FOR RTC EXISTS
OLCFR102 IMS1 0
```

**OM API input:**

```
CMD(DEL RTC NAME(OLCFR102,GFP1,BADNAME,EMHTX32,EMHTX32))
```

**OM API output:**

```
<imsout>
<ctl>
<omname>OM10M </omname>
<omvsn>1.3.0</omvsn>
```
Explanation: A DELETE RTC command is issued to delete several Fast Path routing codes from a running IMS system. The delete succeeds for some routing codes, as shown by completion code 0. The delete fails for routing code BADNAME, because no such routing code exists. The delete fails for routing code GFP1, because it was created for a Fast Path exclusive transaction called GFP1 and can only be deleted by a DELETE TRAN NAME(GFP1) command. Routing code EMHTX32 is successfully deleted, but routing code EMHTX32 is specified again, which fails because the DELETE RTC command is already in progress for EMHTX32.

**Related concepts:**

- How to interpret CSL request return and reason codes (System Programming APIs)

**Related tasks:**
DELETE RTCDESC command

Use the DELETE RTCDESC command to delete Fast Path routing code descriptors.

Subsections:
- "Environment"
- "Syntax"
- "Keywords"
- "Usage notes" on page 366
- "Output fields" on page 366
- "Return, reason, and completion codes" on page 367
- "Examples" on page 368

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DELETE RTCDESC</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OPTION</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Syntax

DELETE RTCDESC NAME(name*) OPTION(ALLRSP)

Keywords

The following keywords are valid for the DELETE RTCDESC command:

NAME
Specifies the 1-8 character name of the routing code descriptor. Wildcards are supported in the name. Examples of valid names are NAME(*) and NAME(abc*). If the NAME parameter specified is a specific or wildcard name, command responses are returned for all the descriptor names that are processed. For NAME(*), command responses are returned only for the descriptor names that resulted in an error. OPTION(ALLRSP) can be specified with NAME(*) to obtain the command responses for all the descriptor names that are processed.

OPTION
Specifies additional functions to be performed along with the command.
**ALLRSP**

Indicates that the response lines are to be returned for all descriptors that are processed on the command. The default action is to return response lines only for the descriptors that resulted in an error. It is valid only with NAME(*). ALLRSP is ignored for other NAME values.

**Usage notes**

This command can only be issued through the Operations Manager API. This command applies to DB/DC systems and DCCTL systems. The DELETE RTCDESC command applies if Fast Path is installed. The DELETE RTCDESC command is not valid on the XRF alternate, RSR tracker, or FDBR region. The DELETE RTCDESC command is not valid if online change for MODBLKS is enabled (DFSDFxxx or DFSCGxxx defined with MODBLKS=OLC or MODBLKS not defined). This command is recoverable.

Each descriptor is deleted individually. Individual deletion does not work like online change where either all descriptors are deleted or no descriptors are deleted. Descriptors can be successfully deleted if they are not currently in use. If a descriptor is in use, the delete fails. In a sysplex environment, the delete might succeed on some IMS systems and fail on others. A descriptor is in use if another command is in progress that references the descriptor.

The descriptors remain deleted across an IMS warm start or emergency restart. To ensure they remain deleted across a cold start, the existing descriptor definitions must be exported to an RDDS and then imported from the RDDS at cold start.

The IMS-defined routing code descriptor (DBFDSRT1) cannot be deleted with the DELETE RTCDESC command.

**Output fields**

The following table shows the DELETE RTCDESC output fields. The columns in the table are as follows:

- **Short label**
  - Contains the short label generated in the XML output.
- **Long label**
  - Contains the long label generated in the XML output.
- **Keyword**
  - Identifies keyword on the command that caused the field to be generated. N/A appears for output fields that are always returned. error appears for output fields that are returned only in case of an error.
- **Meaning**
  - Provides a brief description of the output field.

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the non-zero completion code.</td>
</tr>
<tr>
<td>DESC</td>
<td>DescName</td>
<td>RTCDESC</td>
<td>Routing code descriptor name.</td>
</tr>
</tbody>
</table>
### Table 199. Output fields for the DELETE RTCDESC command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERRT</td>
<td>ErrorText</td>
<td>error</td>
<td>Error text that provides diagnostic information. Error text can be returned for a non-zero completion code and further explains the completion code.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>IMSplex member that built the output line.</td>
</tr>
</tbody>
</table>

### Return, reason, and completion codes

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

#### Table 200. Return and reason codes for the DELETE RTCDESC command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>Command completed successfully. The command output contains a line for each descriptor, accompanied by its completion code. If NAME(*) is specified without OPTION(ALLRSP), no output lines are returned. See the completion code table for details.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003000'</td>
<td>Command was successful for some descriptors but failed for others. The command output contains a line for each descriptor, accompanied by its completion code. If NAME(*) is specified without OPTION(ALLRSP), only descriptors with non-zero completion codes are returned. See the completion code table for details.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>Command was not successful for any of the descriptors. The command output contains a line for each descriptor, accompanied by its completion code. See the completion code table for details.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000400C'</td>
<td>Command is not valid on the XRF alternate.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>Command is not valid on the RSR tracker.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004024'</td>
<td>No Fast Path defined.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004120'</td>
<td>Online change phase is in progress.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004300'</td>
<td>Command is not allowed because online change for MODBLKS is enabled (DFSDFxxx or DFSCGxxx defined with MODBLKS=OLC, or MODBLKS not defined).</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005004'</td>
<td>DFSOCMD response buffer could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005008'</td>
<td>DFSPOOL storage could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'0000500C'</td>
<td>AWE could not be obtained.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. The following table includes an explanation of the completion codes.
Table 201. Completion codes for the DELETE RTCDESC command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Command completed successfully for routing code descriptor.</td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>Routing code descriptor name is invalid, or the wildcard parameter specified does not match any routing code descriptor names.</td>
</tr>
<tr>
<td>17</td>
<td>ANOTHER CMD IN PROGRESS</td>
<td>Another command (such as DELETE or UPDATE) is in progress for this routing code descriptor. This could also mean this command, if the descriptor is specified by more than one specific or wildcard parameter.</td>
</tr>
<tr>
<td>27</td>
<td>REJECTED FOR DEFAULT DESCRIPTOR</td>
<td>DELETE command not allowed for user-defined default descriptor. You must issue an UPDATE command to set another descriptor as the default before deleting this descriptor.</td>
</tr>
<tr>
<td>48</td>
<td>NOT ALLOWED FOR IMS RESOURCE</td>
<td>DELETE command not allowed for IMS descriptor. An example of an IMS descriptor is DBFDSRT1.</td>
</tr>
<tr>
<td>1D7</td>
<td>IMPORT CHANGE LIST ERROR</td>
<td>Descriptor is in the process of being imported from the change list in the IMSRSC repository, or the import from the change list failed. The descriptor cannot be deleted until it is successfully imported.</td>
</tr>
</tbody>
</table>

Examples

The following are examples of the DELETE RTCDESC command:

**Example 1 for DELETE RTCDESC command**

**TSO SPOC input:**

```
DEL RTCDESC NAME(*) OPTION(ALLRSP)
```

**TSO SPOC output:**

```
Response for: DEL RTCDESC NAME(*) OPTION(ALLRSP)
DescName MbrName CC CCText
DBFDSRT1 IMS1 48 NOT ALLOWED FOR IMS RESOURCE
DESC001 IMS1 0
DESC002 IMS1 0
DESC003 IMS1 0
DESC004 IMS1 0
DESC005 IMS1 0
RTCDESC1 IMS1 27 REJECTED FOR DEFAULT DESCRIPTOR
```

**OM API input:**

```
CMD(DEL RTCDESC NAME(*) OPTION(ALLRSP))
```

**OM API output:**
Explanation: A DELETE RTCDESC command is issued to delete all routing code descriptors from an active IMS system. Many routing code descriptors are successfully deleted, as indicated by the completion code 0. Because the DELETE command attempted to delete all of the routing code descriptors, OPTION(ALLRSP) is specified to display the successfully deleted routing code descriptors. Routing code descriptor RTCDESC1 fails, because it is the default routing code descriptor. Routing code descriptor DBFDSRT1 fails, because it is the IMS-defined routing code descriptor.

Related concepts:
DELETE TRAN command

Use the DELETE TRAN command to delete transactions.

Subsections:
- “Environment”
- “Syntax”
- “Keywords”
- “Usage notes” on page 371
- “Output fields” on page 371
- “Return, reason, and completion codes” on page 372
- “Examples” on page 374

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

Table 202. Valid environments for the DELETE TRAN command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DELETE TRAN</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NAME</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OPTION</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
DELETE TRAN NAME(name*) OPTION(ALLRSP)
```

Keywords

The following keywords are valid for the DELETE TRAN command:

**NAME**

Specifies the 1-8 character name of the transaction. Wildcards are supported in the name. Examples of valid names are NAME(*) and NAME(abc*). If the NAME parameter specified is a specific or wildcard name, command responses are returned for all the resource names that are processed. For NAME(*), command responses are returned only for the resource names that resulted in an error. OPTION(ALLRSP) can be specified with NAME(*) to obtain the command responses for all the resource names that are processed.

**OPTION**

Specifies additional functions to be performed along with the command.
**ALLRSP**

Indicates that the response lines are to be returned for all resources that are processed on the command. The default action is to return response lines only for the resources that resulted in an error. It is valid only with NAME(*). ALLRSP is ignored for other NAME values.

**Usage notes**

This command can only be issued through the OM API. This command applies to DB/DC systems and DCCTL systems. The DELETE TRAN command is not valid on the XRF alternate, RSR tracker, or FDBR region. The DELETE TRAN command is not valid if online change for MODBLKS is enabled (DFSDFxxx or DFSCGxxx defined with MODBLKS=OLC or MODBLKS not defined). This command is recoverable.

Each transaction is deleted individually, unlike the online change process where either all transactions are deleted or no transactions are deleted. The runtime resource definition for a transaction can only be deleted if the transaction is not in use. If the transaction is in use, the delete fails. In a sysplex environment with multiple IMS systems, the delete might succeed on some IMS systems and fail on others.

The resources remain deleted across an IMS warm start or emergency restart. To ensure that the resources remain deleted across a cold start, the existing resource definitions must be exported to a system RDDS and then imported from the RDDS at cold start. Or, if the IMSRSC repository is enabled, the DELETE DEFN command must be issued to delete the definition from the repository. If the resource definitions are to be imported from the MODBLKS data set at cold start instead of from an RDDS, the resource definitions must be deleted from system definition and a new MODBLKS data set must be generated.

The DELETE TRAN command stops all queuing and scheduling of the transaction.

If the transaction is a Fast Path exclusive transaction, the routing code by the same name is deleted as well.

**Output fields**

The following table shows the DELETE TRAN output fields. The columns in the table are as follows:

<table>
<thead>
<tr>
<th>Short label</th>
<th>Contains the short label generated in the XML output.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long label</td>
<td>Contains the long label generated in the XML output.</td>
</tr>
<tr>
<td>Keyword</td>
<td>Identifies keyword on the command that caused the field to be generated. N/A appears for output fields that are always returned. error appears for output fields that are returned only in case of an error.</td>
</tr>
<tr>
<td>Meaning</td>
<td>Provides a brief description of the output field.</td>
</tr>
</tbody>
</table>
Table 203. Output fields for the DELETE TRAN command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>error</td>
<td>Completion code text that briefly explains the nonzero completion code.</td>
</tr>
<tr>
<td>CONVID</td>
<td>ConvID</td>
<td>TRAAN</td>
<td>Conversation id of conversation associated with transaction that caused the delete to fail with a completion code of C’1A’. This information may be used to exit the conversation, before attempting the delete again.</td>
</tr>
<tr>
<td>ERR</td>
<td>ErrorText</td>
<td>error</td>
<td>Error text that provides diagnostic information. Error text can be returned for a nonzero completion code and further explains the completion code.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>IMSplex member that built the output line.</td>
</tr>
<tr>
<td>LU</td>
<td>LUName</td>
<td>TRAAN</td>
<td>APPC LU name associated with the transaction conversation that caused the delete to fail with a completion code of C’1A’. This information may be used to exit the conversation, before attempting the delete again.</td>
</tr>
<tr>
<td>NODE</td>
<td>NodeName</td>
<td>TRAAN</td>
<td>Node name of static node associated with transaction conversation that caused the delete to fail with a completion code of C’1A’. This information may be used to exit the conversation, before attempting the delete again.</td>
</tr>
<tr>
<td>TMEM</td>
<td>TMember</td>
<td>TRAAN</td>
<td>OTMA tmember name associated with transaction conversation that caused the delete to fail with a completion code of C’1A’. This information may be used to exit the conversation, before attempting the delete again.</td>
</tr>
<tr>
<td>TPIP</td>
<td>TPipe</td>
<td>TRAAN</td>
<td>OTMA tpipe name associated with the transaction conversation that caused the delete to fail with a completion code of C’1A’. This information may be used to exit the conversation, before attempting the delete again.</td>
</tr>
<tr>
<td>TRAN</td>
<td>Trancode</td>
<td>TRAAN</td>
<td>Transaction name.</td>
</tr>
<tr>
<td>USER</td>
<td>UserName</td>
<td>TRAAN</td>
<td>User name of dynamic user associated with the transaction conversation that caused the delete to fail with a completion code of C’1A’. This information may be used to exit the conversation, before attempting the delete again.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.
Table 204. Return and reason codes for the DELETE TRAN command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>Command completed successfully. The command output contains a line for each resource, accompanied by its completion code. If NAME(*) is specified without OPTION(ALLRSP), no output lines are returned. See the completion code table for details.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003000'</td>
<td>Command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code. If NAME(*) is specified without OPTION(ALLRSP), only resources with nonzero completion codes are returned. See the completion code table for details.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>Command was not successful for any of the resources. The command output contains a line for each resource, accompanied by its completion code. See the completion code table for details.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000400C'</td>
<td>Command is not valid on the XRF alternate.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>Command is not valid on the RSR tracker.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004120'</td>
<td>Online change phase is in progress.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004300'</td>
<td>Command is not allowed because online change for MODBLKS is enabled (DFSDFxxx or DFSCGxxx defined with MODBLKS=OLC, or MODBLKS not defined).</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005004'</td>
<td>DFSOCMD response buffer could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005008'</td>
<td>DFSPOOL storage could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'0000500C'</td>
<td>AWE could not be obtained.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. The following table includes an explanation of the completion codes.

Table 205. Completion codes for the DELETE TRAN command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>Command completed successfully for transaction.</td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>Transaction name is invalid, or the wildcard parameter specified does not match any transaction names.</td>
</tr>
<tr>
<td>17</td>
<td>ANOTHER CMD IN PROGRESS</td>
<td>Another command (such as DELETE or UPDATE) is in progress for this transaction or routing code associated with this transaction, if it is Fast Path exclusive. This could also mean this command, if the resource is specified by more than one specific or wildcard parameter.</td>
</tr>
</tbody>
</table>
Table 205. Completion codes for the DELETE TRAN command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>IN CONVERSATION</td>
<td>Transaction is in conversation. The conversation ID and terminal in</td>
</tr>
<tr>
<td></td>
<td></td>
<td>conversation are returned separately. The terminal can be a static</td>
</tr>
<tr>
<td></td>
<td></td>
<td>node, node and user, dynamic user, APPC luname, or OTMA tmember and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tpipe.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Suggested actions: Terminate the conversation.</td>
</tr>
<tr>
<td>4A</td>
<td>IN USE</td>
<td>Transaction is in use. Queuing is in progress, either terminal input or</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a program-to-program switch.</td>
</tr>
<tr>
<td>73</td>
<td>PROGRAM SCHEDULED</td>
<td>Program is scheduled.</td>
</tr>
<tr>
<td>85</td>
<td>SUSPENDED</td>
<td>Transaction is on the suspend queue.</td>
</tr>
<tr>
<td>87</td>
<td>TRAN QUEUEING</td>
<td>Transaction has messages queued (non-shared-queues environment).</td>
</tr>
<tr>
<td>89</td>
<td>TRAN SCHEDULED</td>
<td>Transaction is scheduled.</td>
</tr>
<tr>
<td>B3</td>
<td>ELIGIBLE FOR SCHEDULING</td>
<td>Transaction is eligible for scheduling and cannot be deleted. You may</td>
</tr>
<tr>
<td></td>
<td></td>
<td>need to stop the transaction with an UPDATE TRAN STOP(Q,SCHD) command</td>
</tr>
<tr>
<td></td>
<td></td>
<td>before attempting the DELETE again.</td>
</tr>
<tr>
<td>1D7</td>
<td>IMPORT CHANGE LIST ERROR</td>
<td>Resource is in the process of being imported from the change list in</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the IMSRSC repository, or the import from the change list failed. The</td>
</tr>
<tr>
<td></td>
<td></td>
<td>resource cannot be deleted until it is successfully imported.</td>
</tr>
</tbody>
</table>

Examples

The following are examples of the DELETE TRAN command:

Example 1 for DELETE TRAN command

TSO SPOC input:
DEL TRAN NAME(AOP,BADNAME,APOL*,BAD*,AOP)

TSO SPOC output:
Response for: DEL TRAN NAME(AOP,BADNAME,APOL*,BAD*,AOP)
Trancode  MbrName   CC   CCText
AOP       IMS1       0   
AOP       IMS1       17  ANOTHER CMD IN PROGRESS
APOL11    IMS1       0   
APOL12    IMS1       0   
APOL13    IMS1       0   
APOL14    IMS1       0   
APOL15    IMS1       0   
APOL16    IMS1       0   

374  Commands, Volume 1: IMS Commands A - M
OM API input:
CMD(DEL TRAN NAME(AOP,BADNAME,APOL*,BAD*,AOP))

OM API output:

<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.3.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2006.311 00:04:00.354581</statime>
<statotime>2006.311 00:04:00.355454</statotime>
<staseq>BFADD93C4515645</staseq>
<stoseq>BFADD93C487EF05</stoseq>
<rqsttkn1>USRT01110160400</rqsttkn1>
<rc>0200000C</rc>
<rsn>00003008</rsn>
<rsntxt>None of the clients were successful.</rsntxt>
</ctl>
</imsout>

<cmderr>
<mbr name="IMS1">
<typ>IMS</typ>
<styp>DBDC</styp>
<rc>0000000C</rc>
<rsn>00003004</rsn>
<rsntxt>No requests were successful</rsntxt>
</mbr>
</cmderr>

<cmd>
<master>IMS1</master>
<userid>USRT011</userid>
<verb>DEL</verb>
</cmd>

<cmdrsphdr>
<hdr slbl="TRAN" llbl="Trancode" scope="LCL" sort="a" key="1" scroll="no" len="8" dtype="CHAR" align="left"/>
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" key="2" scroll="no" len="8" dtype="CHAR" align="left"/>
<hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0" scroll="yes" len="4" dtype="INT" align="right" skipb="no"/>
<hdr slbl="CCTXT" llbl="CCText" scope="LCL" sort="n" key="0" scroll="yes" len="*" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="ERRT" llbl="ErrorText" scope="LCL" sort="n" key="0" scroll="yes" len="*" dtype="CHAR" align="left"/>
<hdr slbl="CONVID" llbl="ConvID" scope="LCL" sort="n" key="0" scroll="yes" len="*" dtype="CHAR" align="left"/>
<hdr slbl="NODE" llbl="NodeName" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left"/>
<hdr slbl="USER" llbl="UserName" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left"/>
<hdr slbl="LU" llbl="LUName" scope="LCL" sort="n" key="0" scroll="yes" len="24" dtype="CHAR" align="left"/>
<hdr slbl="MEMM" llbl="TMember" scope="LCL" sort="n" key="0" scroll="yes" len="16" dtype="CHAR" align="left"/>
<hdr slbl="TPIP" llbl="TPipe" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left"/>
</cmdrsphdr>

<cmdrspdata>
<rsp>TRAN(AOP) MBR(IMS1) CC(0)</rsp>
<rsp>
   <TRAN(BADNAME) MBR(IMS1) CC( 10) CCTXT(NO RESOURCES FOUND) /></rsp>
   <TRAN(APOL11) MBR(IMS1) CC( 0) /></rsp>
   <TRAN(BAD*) MBR(IMS1) CC( 10) CCTXT(NO RESOURCES FOUND) /></rsp>
   <TRAN(APOL15) MBR(IMS1) CC( 0) /></rsp>
</cmdrspdata>
</imsout>

**Explanation:** A DELETE TRAN command is issued to delete several transactions from a running IMS system. The delete succeeds for some transactions, as shown by completion code 0. The delete fails for transaction BADNAME, because no such transaction exists. The delete fails for transaction name BAD*, because no transactions start with BAD. Transaction AOP is successfully deleted, but transaction AOP is specified again, which fails because the DELETE TRAN command is already in progress for transaction AOP.

**Related concepts:**
- How to interpret CSL request return and reason codes (System Programming APIs)

**Related tasks:**
- Deleting runtime transaction resource and descriptor definitions with the DELETE command (System Definition)

**Related reference:**
- Chapter 2, “Command keywords and their synonyms,” on page 63

---

**DELETE TRANDESC command**

Use the DELETE TRANDESC command to delete transaction descriptors.

Subsections:
- “Environment”
- “Syntax” on page 377
- “Keywords” on page 377
- “Usage notes” on page 377
- “Output fields” on page 378
- “Return, reason, and completion codes” on page 378
- “Examples” on page 380

**Environment**

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DELETE TRANDESC</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Table 206. Valid environments for the DELETE TRANDESC command and keywords (continued)

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPTION</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
</tbody>
</table>

Syntax

DELETE TRANDESC NAME(name*) OPTION(ALLRSP)

Keywords

The following keywords are valid for the DELETE TRANDESC command:

NAME
Specifies the 1-8 character name of the transaction descriptor. Wildcards are supported in the name. Examples of valid names are NAME(*) and NAME(abc*). If the NAME parameter specified is a specific or wildcard name, command responses are returned for all the descriptor names that are processed. For NAME(*), command responses are returned only for the descriptor names that resulted in an error. OPTION(ALLRSP) can be specified with NAME(*) to obtain the command responses for all the descriptor names that are processed.

OPTION
Specifies additional functions to be performed along with the command.

ALLRSP
Indicates that the response lines are to be returned for all descriptors that are processed on the command. The default action is to return response lines only for the descriptors that resulted in an error. It is valid only with NAME(*). ALLRSP is ignored for other NAME values.

Usage notes

This command can only be issued through the Operations Manager API. This command applies to DB/DC systems and DCCTL systems. The DELETE TRANDESC command is not valid on the XRF alternate, RSR tracker, or FDBR region. The DELETE TRANDESC command is not valid if online change for MODBLKS is enabled (DFSDFxxx or DFSCGxxx defined with MODBLKS=OLC or MODBLKS not defined). This command is recoverable.

Each descriptor is deleted individually. Individual deletion does not work like online change where either all descriptors are deleted or no descriptors are deleted. Descriptors can be successfully deleted if they are not currently in use. If a descriptor is in use, the delete fails. In a sysplex environment, the delete might succeed on some IMS systems and fail on others. A descriptor is in use if another command is in progress that references the command.

The descriptors remain deleted across an IMS warm start or emergency restart. To ensure they remain deleted across a cold start, the existing descriptor definitions must be exported to an RDDS and then imported from the RDDS at cold start.
The DELETE TRANDESC command is not allowed for IMS descriptors that are identified with a definition type of IMS. For DELETE TRANDESC commands, this means IMS transaction descriptor DFSDSTR1.

**Output fields**

The following table shows the DELETE TRANDESC output fields. The columns in the table are as follows:

- **Short label**: Contains the short label generated in the XML output.
- **Long label**: Contains the long label generated in the XML output.
- **Keyword**: Identifies keyword on the command that caused the field to be generated. N/A appears for output fields that are always returned. *error* appears for output fields that are returned only in case of an error.
- **Meaning**: Provides a brief description of the output field.

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td><em>error</em></td>
<td>Completion code text that briefly explains the nonzero completion code.</td>
</tr>
<tr>
<td>DESC</td>
<td>DescName</td>
<td>TRANDESC</td>
<td>Transaction descriptor name.</td>
</tr>
<tr>
<td>ERR</td>
<td>ErrorText</td>
<td><em>error</em></td>
<td>Error text that provides diagnostic information. Error text can be returned for a nonzero completion code and further explains the completion code.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>IMSplex member that built the output line.</td>
</tr>
</tbody>
</table>

**Return, reason, and completion codes**

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>Command completed successfully. The command output contains a line for each descriptor, accompanied by its completion code. If NAME(*) is specified without OPTION(ALLRSP), no output lines are returned. See the completion code table for details.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003000'</td>
<td>Command was successful for some descriptors but failed for others. The command output contains a line for each descriptor, accompanied by its completion code. If NAME(*) is specified without OPTION(ALLRSP), only descriptors with nonzero completion codes are returned. See the completion code table for details.</td>
</tr>
</tbody>
</table>
### Table 208. Return and reason codes for the DELETE TRANDESC command (continued)

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>Command was not successful for any of the descriptors. The command output contains a line for each descriptor, accompanied by its completion code. See the completion code table for details.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000400C'</td>
<td>Command is not valid on the XRF alternate.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>Command is not valid on the RSR tracker.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004120'</td>
<td>Online change phase is in progress.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004300'</td>
<td>Command is not allowed because online change for MODBLKS is enabled (DFSDFxxx or DFSCGxxx defined with MODBLKS=OLC, or MODBLKS not defined).</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005004'</td>
<td>DFSOCMD response buffer could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005008'</td>
<td>DFSPOOL storage could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'0000500C'</td>
<td>AWE could not be obtained.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. The following table includes an explanation of the completion codes.

### Table 209. Completion codes for the DELETE TRANDESC command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command completed successfully for transaction descriptor.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>Transaction descriptor name is invalid, or the wildcard parameter specified does not match any transaction descriptor names.</td>
</tr>
<tr>
<td>17</td>
<td>ANOTHER CMD IN PROGRESS</td>
<td>Another command (such as DELETE or UPDATE) is in progress for this transaction descriptor. This could also mean this command, if the descriptor is specified by more than one specific or wildcard parameter.</td>
</tr>
<tr>
<td>27</td>
<td>REJECTED FOR DEFAULT_DESCRIPTOR</td>
<td>DELETE command not allowed for user-defined default descriptor. You must issue an UPDATE command to set another descriptor as the default before deleting this descriptor.</td>
</tr>
<tr>
<td>48</td>
<td>NOT ALLOWED FOR IMS RESOURCE</td>
<td>DELETE command not allowed for IMS descriptor. An example of an IMS descriptor is DFSDDSTR1.</td>
</tr>
<tr>
<td>1D7</td>
<td>IMPORT CHANGE LIST ERROR</td>
<td>Descriptor is in the process of being imported from the change list in the IMSRSC repository, or the import from the change list failed. The descriptor cannot be deleted until it is successfully imported.</td>
</tr>
</tbody>
</table>
Examples

The following are examples of the DELETE TRANDESC command:

Example 1 for DELETE TRANDESC command

TSO SPOC input:
DEL TRANDESC NAME(*) OPTION(ALLRSP)

TSO SPOC output:
Response for: DEL TRANDESC NAME(*) OPTION(ALLRSP)
DescName MbrName CC CText
CONVDESC IMS1 0
DESC001 IMS1 0
DESC002 IMS1 0
DESC003 IMS1 0
DESC004 IMS1 0
DESC005 IMS1 0
DESC101 IMS1 0
DESC102 IMS1 0
DESC103 IMS1 0
DESC104 IMS1 0
DESC105 IMS1 0
DESC201 IMS1 0
DESC202 IMS1 0
DESC203 IMS1 0
DESC204 IMS1 0
DESC205 IMS1 0
DFSDSTRI IMS1 48 NOT ALLOWED FOR IMS RESOURCE
FPEDESC IMS1 27 REJECTED FOR DEFAULT DESCRIPTOR
FPPDESC IMS1 0
MSCDESC IMS1 0

OM API input:
CMD(DEL TRANDESC NAME(*) OPTION(ALLRSP))

OM API output:
<imsout>
<ctl>
<omname>OM1OM </omname>
<omvsn>1.3.0</omvsn>
<xmlvsn>20 </xmlvsn>
<statime>2006.310 22:43:49.648480</statime>
<stotime>2006.310 22:43:49.650611</stotime>
<staseq>BFAAC1A7EB660302</staseq>
<stoseq>BFAAC1A7EC0837D2</stoseq>
<rqsttkn1>USRT011 10144349</rqsttkn1>
<rc>0200000C</rc>
<rsn>00003008</rsn>
<rsntxt>None of the clients were successful.</rsntxt>
</ctl>
</imsout>
<cmderr>
<mbr name="IMS1 ">
<typ>IMS </typ>
<styp>DBDC </styp>
<rc>00000000</rc>
<rsn>00003004</rsn>
<rsntxt>No requests were successful</rsntxt>
</mbr>
</cmderr>
<cmd>
<master>IMS1 </master>
Explanation: A DELETE TRANDESC command is issued to delete all transaction descriptors from an active IMS system. Many transaction descriptors are successfully deleted, as indicated by the completion code 0. Because the DELETE command attempted to delete all of the transaction descriptors, OPTION(ALLRSP) is specified to display the successfully deleted transaction descriptors. The delete for transaction descriptor FPEDESC fails, because it is the default transaction descriptor. The delete for transaction descriptor DFSDSTR1 fails, because it is the IMS-defined transaction descriptor.

Related concepts: Chapter 23. DELETE commands
How to interpret CSL request return and reason codes (System Programming APIs)

Related reference:
Chapter 2, “Command keywords and their synonyms,” on page 63
Chapter 24. /DEQUEUE command

The /DEQUEUE command with any of the following keywords is used to cancel a message that is being processed: LINE, LTERM, LUNAME, MSNAME, NODE, TRAN, or USER.

Also, a /DEQUEUE command dequeues messages from either the local queues, or in a shared-queues environment, the shared queues. An output message displays the total count of all messages dequeued.

Subsections:

- “Environment”
- “Syntax”
- “Keywords” on page 384
- “Usage notes” on page 388
- “Examples” on page 389

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

Table 210. Valid environments for the /DEQUEUE command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/DEQUEUE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>A0ITKN</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LINE</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTERM</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LUNAME</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSNAME</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTERM</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PURGE</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PURGE1</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUSPEND</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMEM</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPIPE</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNAME</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRAN</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Syntax
The following keywords are valid for the /DEQUEUE command:

AOITOKEN
Dequeues and discards all messages associated with the specified AOI token name.

LINE PTERM
 Cancels the output message currently being sent to the specified physical terminal on the specified communication line.

LTERM
Cancels the output message currently being sent to the specified logical terminal.

/DEQUEUE NODE nodename LTERM is not valid for nodes with users. The user that contains the LTERM must be allocated and the session must be active.

If the PURGE or PURGE1 keyword is specified and the LTERM is associated with a user with DEADQ status, the DEADQ status will be reset.

If the DEADQ status is on, the following command turns it off for the user associated with LTERM ltermname:
/DEQUEUE LTERM ltermname (PURGE/PURGE1)

The DEADQ status is removed by signing the user on or by issuing the /DEQUEUE command to dequeue one or more messages.

Important: Both the USER and the LTERM blocks must exist in either the IMS system or the Resource Manager (RM) resource structure. Otherwise, a DFS189 error message might occur when the /DEQUEUE LTERM ltermname
(PURGE/PURGE1) command is issued for a dynamic LTERM in a shared-queue environment with STM=YES specified. To solve this problem, see the instructions in DFS189 (Messages and Codes).

When the /DEQUEUE LTERM ltermname (PURGE/PURGE1) command is successfully completed, issue a /START USER command to reset the user status so that the user structure can be deleted at the next checkpoint.

**LUNAME TPNAME**

Specifies the LU name and TP name of the LU 6.2 destination from which messages are discarded. A normal (non-qualified) or fully network qualified LUNAME is required for the LUNAME keyword.

**Note:** A fully qualified LU name must be specified in single quotation marks.

Either the PURGE or PURGE1 option must be specified, and the LU 6.2 destination must be stopped and not active; if both actions are not taken, error messages are issued.

In a shared-queues environment, only messages that are owned by the command processing IMS are dequeued. Inflight synchronous output messages are not dequeued. Any stranded synchronous output messages with affinity to the command processing IMS are dequeued.

If you used a side information entry name to place messages on the queues, to dequeue those messages, specify the side information entry name for the LU name and the character string DFSSIDE for the TP name.

**MSNAME**

Cancels the output message currently being sent to the specified MSC link.

Either PURGE or PURGE1 is required for this link. The MSC link must be stopped by the /PSTOP LINK command before issuing the /DEQUEUE MSNAME command.

**NODE**

Cancels the output message currently being sent to the specified VTAM node.

The following command is not valid for nodes with users:

```
/DEQUEUE NODE nodename
/DEQUEUE NODE nodename LTERM ltermname
```

The following command cancels the output message currently being sent to the specified ISC session, and the user must be allocated to the node and the session must be active:

```
/DEQUEUE NODE nodename USER username
```

**Restrictions for using NODE and USER parameters together:**

- Commands with the NODE USER keyword pair are valid only if:
  - The USER is signed on to the NODE
  - In an ISC environment, the USER is allocated to the NODE
  - The nodes and users already exist
- /DEQUEUE NODE USER LTERM commands are valid for ISC and non-ISC nodes and users.
- /DEQUEUE NODE USER PURGE commands and /DEQUEUE NODE USER LTERM PURGE1 commands are valid for ISC, LUP, and 3600 nodes only.
If PURGE or PURGE1 is specified, the node must be stopped and idle. Without PURGE and PURGE1, if an ETO node or an ISC static parallel session, the USER keyword is required.

If the PURGE keyword is specified, and the NODE is associated with a user with DEADQ status, the DEADQ status will be reset.

**PURGE**

Cancels all output messages enqueued to the specified LINE, LTERM, LUNAME, MSNAME, NODE, TMEM, TPIPE, or USER. The PURGE keyword allows cancellation of all output messages enqueued to an LTERM, or to a PTERM without regard to the LTERM. A /DEQUEUE command without PURGE cancels an in-progress output message on the specified terminal and, optionally, LTERM. If the NODE and LTERM keywords have both been supplied, the LTERM must be a valid LTERM of the user currently associated with the node.

Messages cannot be canceled with PURGE if they are destined for the MTO or for terminals or users in response mode or conversation mode. The /DEQUEUE PURGE command does not cancel messages destined for the master terminal operator because the master terminal cannot be stopped, disconnected, or idled. The /EXIT command should be used for a terminal in conversation mode.

If the terminal is a dynamic 3600/FINANCE, SLU P, or ISC terminal, the NODE keyword is valid only if the session is stopped and idle, and the LTERMs are still allocated to the terminal pending message resynchronization. For example, the following command is valid for the allocated user only if the specified ISC session is stopped and idled.

```
/DEQUEUE NODE nodename USER username (LTERM ltermname) PURGE
```

Messages queued to LTERMs associated with users that are not signed on can be purged by specifying the LTERM keyword without the NODE keyword. NODE with the USER keyword applies to ISC sessions and dynamic terminals and is valid only if the user is still allocated to the node. However, the line or node must be stopped and idled.

If USER is specified and the user had DEADQ status, the DEADQ status is removed. If LTERM or NODE is specified and the LTERM or node is associated with a user with DEADQ status, the DEADQ status is removed.

**PURGE1**

Cancels the first message queued to the specified LTERM. The PURGE1 and PURGE keywords are mutually exclusive.

The /DEQUEUE LTERM PURGE1 command removes the first message from the queue. The order of search for messages to be removed is:

1. Fast Path
2. Response mode
3. Exclusive mode messages
4. System messages
5. All other messages

Using a synonym for PURGE1 avoids the potential danger of omitting the trailing digit on PURGE1 and canceling all the messages enqueued. Synonyms for PURGE1 are SINGLE, SNGL, and FIRST.
When PURGE1 is specified, the terminal must be stopped and idle and not in conversation mode. If the message is in the process of being actively sent, The /DEQUEUE command without PURGE1 cancels the message.

**SUSPEND**

Reschedules transactions that have been suspended by IMS. SUSPEND applies to IMS systems sharing data at the block level and to connected external subsystems (not CCTL subsystems). The /DEQUEUE SUSPEND command causes all message-driven transactions that have been suspended to be rescheduled. When a failed IMS system is restarted, the /DEQUEUE SUSPEND command informs the currently running IMS system to reschedule any message-driven transactions on its SUSPEND queue. However, when the failed subsystem has global locks retained and cannot communicate the release of those locks to the other subsystems, the /DEQUEUE SUSPEND command is used to reschedule these message-driven transactions in the other subsystems. This can occur when:

- The still-running IMS has transactions on its SUSPEND queue and the failed IMS has been restarted using the /ERESTART COLDSYS command.
- The still-running IMS terminates before the failed IMS is restarted. Thus, when the failed system is restarted, the other system, which has now terminated, is unable to receive the message to reschedule the transactions on its SUSPEND queue. The operator must issue the /DEQUEUE SUSPEND command to reschedule them.

Another use for the /DEQUEUE SUSPEND command is to release those transactions queued because the installation specified the enqueue region error option in the external subsystem PROCLIB member for a particular subsystem. Transactions will be queued if the subsystem connection terminates in an abnormal fashion (for example, dependent region abend, subsystem abnormal termination).

In a shared-queues environment, a /DEQUEUE SUSPEND command moves all transactions on the Transaction Suspend queue to the Transaction Ready queue and makes them eligible for rescheduling. The “suspend” status for the transactions is also reset locally (on the IMS subsystem that entered the command), but is not reset across the sysplex. To reset the “suspend” status across a sysplex, use the /START TRAN command on each IMS subsystem.

You can also use the /START TRAN command to reschedule a specific transaction that has been suspended.

The /DISPLAY TRAN and /DISPLAY STATUS commands can be used to determine whether a transaction has messages on its suspend queue.

**TMEM TPIPE**

Dequeues messages from the specified IMS Open Transaction Manager Access (OTMA) member and transaction pipe. Using the /DEQ command can make OTMA message resynchronization impossible. If resynchronization is in progress for the specified transaction pipe, IMS rejects the command and issues message DFS2392I.

In a shared-queues environment, only messages that are owned by the command processing IMS are dequeued. Inflight synchronous output messages are not dequeued. Any stranded synchronous output messages with affinity to the command processing IMS are dequeued.
TRAN
Dequeues one or more messages from the transaction specified. The transaction name is a 1- to 8-byte name. The transaction must be stopped for messages to be dequeued.

Restriction: This keyword is valid only in a shared-queues environment.

Recommendation: Stop the transaction on all IMS subsystems in the shared queues group before issuing the /DEQUEUE TRAN command. If you do not, the IMS subsystem that processes the /DEQUEUE could dequeue a message it does not own and that another IMS subsystem might need.

A /DEQUEUE TRAN command does not dequeue messages enqueued for suspended transactions.

In a shared-queues environment, a /DEQUEUE TRAN command can dequeue transaction messages queued to the transaction from APPC or OTMA Clients. The command only dequeues the transaction messages. The APPC or OTMA transaction instance blocks (TIB) created at the IMS system are not deleted and the storage may remain allocated until the next IMS restart. For APPC, the TIB is not released and the APPC conversation (the client) hangs if there is no timeout value specified. The APPCIOT=(x,Y) timeout value for APPC would deallocate the APPC conversation and release the TIB after the timeout limit has been reached.

USER (LTERM)
Dequeues all messages associated with all LTERMs (or a specific) LTERM assigned to that USER. The user must be stopped and not in conversation in order to enter /DEQUEUE USER with PURGE and PURGE1. The /DEQUEUE USER command with PURGE or the /DEQUEUE USER LTERM command without PURGE or PURGE1 requires the LTERM keyword. If a user is signed on, the /DEQUEUE USER LTERM command can be used to cancel an output message that is currently being processed. When the purge options are used, messages destined for the MTO and users in response mode, Fast Path, and conversation cannot be canceled. If the USER and LTERM keywords have both been supplied, the LTERM must be a valid LTERM of the specified USER.

If the user has DEADQ status, the DEADQ status is removed.

Usage notes
The DEQUEUE command dequeues messages from an OTMA transaction pipe. CM0 output messages can be placed on the OTMA tpipe using multiple output queue names. A different queue name is used to queue I/O PCB output messages than is used to queue hold queue messages. In the non-super member environment, a CM0 output message could be on the I/O PCB output queue or the member's tpipe hold queue. In the super member environment, a CM0 output message could be on I/O PCB output queue or the super member hold queue.

If the member specified is a regular member, CM0 output messages are dequeued from the member's tpipe hold queue and the member's I/O PCB output queue. If the member specified is a super member, CM0 output messages are dequeued from the super member's output hold queue. The number of messages dequeued depends on whether PURGE or PURGE1 is specified. In the non-shared-queues environment, if the member specified is a regular member, messages are dequeued from the regular member's hold queue first, then from the regular member's I/O PCB output queue. In the shared-queues environment the order in which messages for the same destination are dequeued is not guaranteed. Hold queue messages
may be dequeued before I/O PCB output messages one time and I/O PCB output messages may be dequeued before hold queue messages the next.

If IMS cold starts and messages are queued to the same tpippe destination following the cold start, a new set of queue names is used to queue I/O PCB output messages and hold queue messages. In the shared-queues environment with super member enabled, all messages queued to a super member, are placed on the shared queues using the same queue name, even after a cold start of IMS. Messages on the super member's output queue do not have affinity to any IMS. They can be dequeued from any IMS in the IMSplex.

This command can be issued to an IMSplex using the Batch SPOC utility.

A /DEQUEUE command with any of the following keywords activates the Message Control Error exit routine, DFSCMUX0, before processing each message: LTERM, LUNAME TPNAME, NODE, or MSNAME. The user exit routine can request IMS to:
- Proceed with the command and purge the message. This is the default action for the Message Control Error exit routine.
- Suppress the command.
- Suppress the command and send an informational message to the entering terminal.
- Route the message to a different destination.

The /DEQUEUE NODE command dequeues messages from the local or shared queues for statically defined terminals. Without PURGE or PURGE1, the message actively being sent is dequeued.

The /DEQUEUE LTERM command dequeues messages from the local or shared queues. The user must be stopped (by a /STOP USER command), and not in conversation, in order to enter /DEQUEUE USER or /DEQUEUE LTERM with PURGE or PURGE1. In a shared queues and ETO environment where the user does not exist, /DEQUEUE LTERM with PURGE or PURGE1 creates a user structure in order to dequeue messages from the shared queues.

Examples

The following are examples of the /DEQUEUE command:

Example 1 for /DEQUEUE command

Entry ET:
/DEQUEUE AOITOKEN ABCDE

Response ET:
DFS058I DEQUEUE COMMAND COMPLETED

Explanation: The messages on AOITOKEN ABCDE are dequeued and discarded.

Example 2 for /DEQUEUE command

Entry ET:
/DEQUEUE LINE 5 PTERM 2
Response ET:
   DFS058I  DEQUEUE COMMAND COMPLETED

Explanation: The message is terminated on successful completion of the current transmission.

*Example 3 for /DEQUEUE command*

Entry ET:
   /DEQUEUE LTERM ABCDE PURGE

Response ET:
   DFS976I 2 MESSAGE(S) PURGED

Explanation: Two messages are dequeued for LTERM ABCDE (the line is stopped and idle as required).

*Example 4 for /DEQUEUE command*

Entry ET:
   /DEQUEUE LTERM ABCDE PURGE1

Response ET:
   DFS058I  DEQUEUE COMMAND COMPLETED

Explanation: The message is dequeued for LTERM ABCDE.

*Example 5 for /DEQUEUE command*

Entry ET:
   /DEQ LUNAME 'NETWORK1.LUNAME1' TPNAME TPNAME1 PURGE

Response ET:
   DFS1952 10:51:35 DESTINATION NOT FOUND

Explanation: An invalid APPC destination was entered.

*Example 6 for /DEQUEUE command*

Entry ET:
   /DEQ LUNAME 'CICSNET.SERVER1' TPNAME DFSASYNC PURGE1

Response ET:
   DFS976I 14:10:25 1 MESSAGE(S) PURGED

Explanation: The message was dequeued from the APPC destination LUNAME CICSNET.SERVER, TPNAME DFSASYNC.

Related reference: Chapter 2, “Command keywords and their synonyms,” on page 63
Chapter 25. /DIAGNOSE commands

Use the /DIAGNOSE SNAP command to retrieve diagnostic information for system resources such as IMS control blocks, user-defined nodes, or user-defined transactions at any time without creating a console dump. Use the /DIAGNOSE SET command to enable or disable diagnostic features such as the logging facility that captures events related to APPC and OTMA synchronous transactions in a shared-queues environment.

The SET and SNAP keywords are mutually exclusive.

Related concepts:

/DIAGNOSE command SNAP function (Diagnosis)

/DIAGNOSE SET command

Use the /DIAGNOSE SET command to enable or disable diagnostic features such as the logging facility that captures events related to APPC and OTMA synchronous transactions in a shared-queues environment.

Subsections:

• “Environment”
• “Syntax”
• “Keywords”
• “Examples” on page 392

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) from which the command can be issued.

Table 211. Valid environments for the /DIAGNOSE SET command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/DIAGNOSE SET</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>AOSLOG</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SYSOUT</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
/DIAGNOSE SET AOSLOG(ON/OFF) SYSOUT(ON/OFF)
```

Keywords

You can use the /DIAGNOSE SET command to change the values of various IMS diagnostic options. The option to change is identified by the command keyword, and the desired state of the option is specified by the keyword value. For detailed information about option processing, see the specific keyword documentation. The SET keyword is mutually exclusive with the SNAP keyword.
The following keywords are valid for the /DIAGNOSE SET command:

**AOSLOG**
Specifies whether events related to APPC and OTMA synchronous transactions in a shared-queues environment are logged. Logged events are written to the OLDS as type X'6701' records.

If AOSLOG(ON) is specified in a non-shared-queues environment or when AOS=N is specified in the DFSDCxxx PROCLIB member, the command is rejected with a DFS2859I message.

**ON** Enables AOS logging.

**OFF** Disables AOS logging.

**SYSOUT**
Enables or disables SYSOUT processing by the Diagnostic Services AWE server.

If enabled, SYSOUT requests that are queued to the Diagnostic Services AWE server by the /DIAGNOSE command SYSOUT option are processed, and /DIAGNOSE SNAP command output is written to a SYSOUT data set. If disabled, SYSOUT requests that are queued to the Diagnostic Services AWE server are rejected.

**ON** Enables SYSOUT processing by the Diagnostic Services AWE server.

**OFF** Disables SYSOUT processing by the Diagnostic Services AWE server.

**Examples**

The following example shows the /DIAGNOSE SET command.

**Entry ET:**
/DIAGNOSE SET AOSLOG(ON)

**Response ET:**
DFS058I DIAGNOSE COMMAND COMPLETED

**Explanation:** The logging of events related to APPC and OTMA synchronous transactions in the shared-queues environment is enabled. The X'6701' records are captured and written to the IMS log.

**Related information:**
[DFS2859I (Messages and Codes)]

**/DIAGNOSE SNAP command**

Use the /DIAGNOSE SNAP command to capture storage information, and then format and display that information on the issuing LTERM. Optionally, the information can be written to the OLDS, trace data sets as type X'6701' records, or a SYSOUT data set. Storage information can be captured for IMS control blocks, user-defined nodes, transactions, programs, and database resources.

**Subsections:**
- "Environment" on page 393
- "Syntax" on page 393
- "Keywords" on page 395
Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) from which the command can be issued.

Table 212. Valid environments for the /DIAGNOSE SNAP command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/DIAGNOSE SNAP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ADDRESS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>AREA</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>BLOCK</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DB</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>JOBNAME</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>LINE</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LINK</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>LTERM</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MODULE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MSNAME</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPTION</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PGM</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>REGION</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>RM</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHOW</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>STRUCTURE</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TRAN</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Syntax

```
/DIAGNOSE SNAP A
```

A:
Keywords

The following keywords are valid for the /DIAGNOSE SNAP command:
ADDRESS
Captures information about a specific area of storage. The address value identifies the area and must specify a hexadecimal value between 0 and 7FFFFFFF.

LENGTH
Specifies the length of the area of storage to capture. The LENGTH parameter is optional and has a default value of 8. If the LENGTH parameter is specified, the length value must be a numeric value from 1 to 65536.

KEY
Specifies the key of the storage to capture. If the KEY parameter is included, the PSW key is changed to the value specified before accessing the storage. The KEY parameter is optional. Valid values for the KEY parameter are 0 and 7.

AREA
Captures control block information for the Fast Path area specified in the areaname parameter. The areaname must be alphanumeric, no longer than 8 characters, and identify a currently defined Fast Path area. Multiple areaname parameters can be specified with each parameter separated by a comma or a blank.

The control blocks that can be captured for a Fast Path area are listed in the following table. Primary control blocks for an area, which are always present and available for capture, are identified by the column labeled “Primary”. Optional control blocks for an area, which might be present and available for capture based on workload and other factors, are identified by the column labeled “Optional”.

The /DIAGNOSE SNAP AREA() command is available in a DB/DC or DBCTL environment where Fast Path is defined.

The DEDB extended area control block (EMAC) is available only in an RSR tracker environment. If the SHOW(ALL) or SHOW(OPT) options are specified in a non-RST tracker environment, the EMAC is ignored. If the SHOW(EMAC) option is specified in a non-tracker environment, a DFS110I error message is issued in response.

Table 213. /DIAGNOSE SNAP AREA() control blocks

<table>
<thead>
<tr>
<th>Name</th>
<th>Block description</th>
<th>Macro</th>
<th>Primary</th>
<th>Optional</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALDS</td>
<td>DEDB Area Name List Entry</td>
<td>DBFAREA</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DMAC</td>
<td>DEDB Area Control Block</td>
<td>DBFDMAC</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ADSC</td>
<td>DEDB Area Data Set Control Block</td>
<td>DBFADSC</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DMHR</td>
<td>DEDB Buffer Header (SDEP)</td>
<td>DBFDMHR</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>EMAC</td>
<td>DEDB Extended Area Control Block</td>
<td>DBFEMAC</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DDIR</td>
<td>Database Directory Block</td>
<td>DFSDDIR</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DMCB</td>
<td>DEDB Master Control Block</td>
<td>DBFDMCB</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>MRMB</td>
<td>DEDB Randomizing Module Block</td>
<td>DBFDMRMB</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
### Table 213. /DIAGNOSE SNAP AREA() control blocks (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Block description</th>
<th>Macro</th>
<th>Primary</th>
<th>Optional</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMSL</td>
<td>Data Space Map List</td>
<td>DBFDMSL</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DSME</td>
<td>Data Space Mapping Entry</td>
<td>DBFDME</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DMAX</td>
<td>DMAC ERE Extension Block</td>
<td>DBFDMHV</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

#### SHOW keyword parameters for the /DIAGNOSE SNAP AREA command

**SHOW**

Used as a filtering mechanism to control which blocks are returned. Using the SHOW() option, a single block, list of blocks, or group of blocks identified by the keyword can be returned. The following example code shows this command option: `/DIAG SNAP AREA(DEDB01D1) SHOW(OPT)`.

If the SHOW() option is omitted from the /DIAGNOSE SNAP AREA() command, only the primary control blocks for the area are captured by default. The SNAP AREA() resource type supports the ALL, PRI, and OPT keywords, and all block names listed in Table 213 on page 396 as parameters to the SHOW() option. Multiple SHOW() option parameters can be specified with each parameter separated by a comma or a blank. A maximum of 16 SHOW() option parameters can be specified.

**ALL**

Captures all control blocks listed in Table 213 on page 396 that are available. Example: `/DIAG SNAP AREA(DEDB01D1) SHOW(ALL)`.

**PRI**

Captures the primary control blocks for the area. Primary control blocks are identified by the Primary column in Table 213 on page 396. Example: `/DIAG SNAP AREA(DEDB01D1) SHOW(PRI)`.

**OPT**

Captures all optional control blocks that are available. Optional control blocks are identified by the Optional column in Table 213 on page 396. Example: `/DIAG SNAP AREA(DEDB01D1) SHOW(OPT)`.

**blockname**

Captures the specified block by block name. Block names are defined in the Name column in Table 213 on page 396. Example: `/DIAG SNAP AREA(DEDB01D1) SHOW(ALDS)`.

**blockname,blockname**

Captures multiple blocks by block name. Example: `/DIAG SNAP AREA(DEDB01D1) SHOW(ALDS,DMAC)`.

**keyword,blockname**

Captures a group of blocks by keyword and individual blocks by block name. Example: `/DIAG SNAP AREA(DEDB01D1) SHOW(PRI,PDIR)`.

**BLOCK**

Captures information for a specific IMS control block. A control block name or ALL is required.

Multiple control block name parameters can be specified with each parameter separated by a comma or a blank.

Valid control block names include:
ALL
Captures information for all valid control blocks currently available.

CATA
Captures information for the Catalog Anchor control block. CATA is available only in a DB/DC or DBCTL environment.

CMDE
Captures information for the Commands SCD Extension control block.

CSCD
Captures storage information for the APPC/OTMA SMQ SCD Extension control block. CSCD is available only in a DB/DC or DCCTL environment.

CSLA
Captures information for the Common Service Layer Anchor control block.

CSVT
Captures information for the Common Callable Services Vector Table control block.

CTLASCB
Captures information for the IMS control region Address Space Control block.

CTLASSB
Captures information for the IMS control region Address Space Secondary control block.

CTLJTCB
Captures information for the IMS control region Job Step Task Control Block.

CTLTCB
Captures information for the IMS control region Primary Task Control Block.

DCCB
Captures information for the Data Communications control block. DCCB is available only in a DB/DC or DCCTL environment.

DFA
Captures information for the Definition Anchor control block.

DGA
Captures information for the Diagnostics Anchor control block.

DGSD
Captures information for the Diagnostic Data Set Structures control block.

DGSW
Captures information for the Diagnose Work Area Storage control block.

EDBT
Captures information for the RSR FP Global DB Tracking control block. EDBT is available only in an IMS system where Fast Path is defined.
ESCD
Captures information for the Extended System Contents Directory control block. ESCD is available only in an IMS system where Fast Path is defined.

FRB
Captures information for the Fast Restart control block. FRB is available only in a DB/DC or DBCTL environment.

GDBT
Captures information for the System RSR Global DB Tracking control block. GDBT is available only in an DB/DC or DBCTL environment.

IRCVECT
Captures information for the Log SVC Vector Table control block.

LCD
Captures information for the Log Control Directory (Journal) control block.

LCDM
Captures information for the Log Control Directory (Monitor) control block.

LSCD
Captures information for the APPC SCD Extension control block. LSCD is available only in a DB/DC or DCCTL environment.

MSCD
Captures information for the MSC SCD Extension control block. MSCD is available only in a DB/DC or DCCTL environment.

MWA
Captures information for the Modify Work Area control block.

PXPARMS
Captures information for the Modify Parameter Anchor control block.

QSCD
Captures information for the Queue Manager SCD Extension control block. QSCD is available only in a DB/DC or DCCTL environment.

RECA
Captures information for the VTAM Receive Any I/O Buffers control blocks. RECA is available only in a DB/DC or DCCTL environment.

Because of the volume of data that can be produced by capturing the VTAM Receive Any I/O Buffers, the RECA option is not included in the BLOCK(ALL) option.

RSR
Captures information for the Remote Site Recovery Anchor control block. RSR is available only in a DB/DC or DBCTL environment.

RWCD
Captures information for the Database Recovery 2 Anchor control block. RWCD is available only in a DB/DC or DBCTL environment.

SCD
Captures information for the System Contents Directory control block.

SDTT
Captures information for the Shutdown Trace Table control block.
SKCB
Captures information for the Stack Control Block.

SQM
Captures information for the Shared Queues Master control block.
SQM is available only in a shared-queues environment.

TIME
Captures information for the Timer Services SCD Extension control block.

TRA
Captures information for the Table Trace control block.

TSCD
Captures information for the OTMA SCD Extension control block.
TSCD is available only in a DB/DC or DCCTL environment.

UXDT
Captures information for the User Exit Definition Table control block.

The following table shows BLOCK() resources listed by the area.

<table>
<thead>
<tr>
<th>Name</th>
<th>Block description</th>
<th>Macro</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMDE</td>
<td>Commands SCD Extension</td>
<td>DFSCMDE</td>
</tr>
<tr>
<td>CSLA</td>
<td>Common Service Layer Anchor Block</td>
<td>DFSCSLA</td>
</tr>
<tr>
<td>CSVT</td>
<td>Callable Services Vector Table</td>
<td>DFSCSVT</td>
</tr>
<tr>
<td>CTLASCB</td>
<td>CTL Address Space Control Block</td>
<td>IHAASCBC</td>
</tr>
<tr>
<td>CTLASSB</td>
<td>CTL Address Space Secondary Block</td>
<td>IHAASSB</td>
</tr>
<tr>
<td>CTLJTCB</td>
<td>CTL Job Step Task Control Block</td>
<td>IKJTCB</td>
</tr>
<tr>
<td>CTLLTCB</td>
<td>CTL Primary Task Control Block</td>
<td>IKJTCB</td>
</tr>
<tr>
<td>DFA</td>
<td>Definition Anchor Block</td>
<td>DFSDFA</td>
</tr>
<tr>
<td>DGA</td>
<td>Diagnostics Anchor Block</td>
<td>DFSDGA</td>
</tr>
<tr>
<td>DGSD</td>
<td>Diagnostic Data Set Structures</td>
<td>DFSDGSWA</td>
</tr>
<tr>
<td>DGSW</td>
<td>Diagnose Work Area Storage</td>
<td>DFSDGSWA</td>
</tr>
<tr>
<td>IRCVEC T</td>
<td>SVC Vector Table</td>
<td>IRCVECT</td>
</tr>
<tr>
<td>LCD</td>
<td>Log Control Directory (Journal)</td>
<td>LCDSECT</td>
</tr>
<tr>
<td>LCDM</td>
<td>Log Control Directory (Monitor)</td>
<td>LCDSECT</td>
</tr>
<tr>
<td>MWA</td>
<td>Modify Work Area</td>
<td>DFSMWA</td>
</tr>
<tr>
<td>PXPARMS</td>
<td>Parameter Anchor Block</td>
<td>PARMBLK</td>
</tr>
<tr>
<td>SCD</td>
<td>System Contents Directory</td>
<td>ISCD</td>
</tr>
<tr>
<td>SDTT</td>
<td>Shutdown Trace Table</td>
<td>DFSSDTT</td>
</tr>
<tr>
<td>SKCB</td>
<td>Stack Control Block</td>
<td>DFSSKCB</td>
</tr>
</tbody>
</table>

Table 214. /DIAGNOSE SNAP BLOCK() - System control blocks
**Table 214. /DIAGNOSE SNAP BLOCK() - System control blocks (continued)**

<table>
<thead>
<tr>
<th>Name</th>
<th>Block description</th>
<th>Macro</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIME</td>
<td>Timer Services SCD Extension</td>
<td>DFSTIME</td>
</tr>
<tr>
<td>TRA</td>
<td>Table Trace Control Block</td>
<td>DFSTRABK</td>
</tr>
<tr>
<td>UXDT</td>
<td>User Exit Definition Table</td>
<td>DFSUSRXD</td>
</tr>
</tbody>
</table>

**Table 215. /DIAGNOSE SNAP BLOCK() - DB control blocks**

<table>
<thead>
<tr>
<th>Name</th>
<th>Block description</th>
<th>Macro</th>
</tr>
</thead>
<tbody>
<tr>
<td>CATA</td>
<td>Catalog Anchor Block</td>
<td>DFS3ACH</td>
</tr>
<tr>
<td>EDBT</td>
<td>RSR FP Global DB Tracking Block</td>
<td>DBFESEDD</td>
</tr>
<tr>
<td>ESCD</td>
<td>Extended System Contents Directory</td>
<td>DBFESCD</td>
</tr>
<tr>
<td>FRB</td>
<td>Fast Restart Block</td>
<td>DFSFRB</td>
</tr>
<tr>
<td>GDBT</td>
<td>RSR Global DB Tracking Block</td>
<td>DFSGDBT</td>
</tr>
<tr>
<td>RSR</td>
<td>Remote Site Recovery Anchor Block</td>
<td>DFSRSRD</td>
</tr>
<tr>
<td>RWCD</td>
<td>Database Recovery 2 Anchor Block</td>
<td>DFSRWC</td>
</tr>
</tbody>
</table>

**Table 216. /DIAGNOSE SNAP BLOCK() - TM control blocks**

<table>
<thead>
<tr>
<th>Name</th>
<th>Block description</th>
<th>Macro</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSCD</td>
<td>APPC/OTMA SMQ SCD Extension</td>
<td>DFSCSCD</td>
</tr>
<tr>
<td>DCCB</td>
<td>Data Communications Control Block</td>
<td>DFSDCB</td>
</tr>
<tr>
<td>LSCD</td>
<td>APPC SCD Extension</td>
<td>DFSLSCD</td>
</tr>
<tr>
<td>MSCD</td>
<td>MSC SCD Extension</td>
<td>DFSMSCD</td>
</tr>
<tr>
<td>QSCD</td>
<td>Queue Manager SCD Extension</td>
<td>DFSQSCD</td>
</tr>
<tr>
<td>RECA</td>
<td>VTAM Receive Any I/O Buffers</td>
<td>BUFVTPRE</td>
</tr>
<tr>
<td>SQM</td>
<td>Shared Queues Master Control Block</td>
<td>DFSQSM</td>
</tr>
<tr>
<td>TSCD</td>
<td>OTMA SCD Extension</td>
<td>DFSTSCD</td>
</tr>
</tbody>
</table>

**DB**

Captures control block information for the database specified in the `dbname` parameter. The `dbname` parameter specified must be alphanumeric, no longer than 8 characters, and identify a currently defined database. Multiple `dbname` parameters can be specified with each parameter separated by a comma or a blank.

The control blocks that can be captured for a database are listed in the following table. Primary control blocks for a database, which are always present and available for capture, are identified by the column labeled “Primary”. Optional control blocks for a database, which might or might
not be present and available for capture depending on workload, database type and other factors, are identified by the column labeled “Optional”.

### Table 217. /DIAGNOSE SNAP DB() control blocks

<table>
<thead>
<tr>
<th>Name</th>
<th>Block description</th>
<th>Macro</th>
<th>Primary</th>
<th>Optional</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDIR</td>
<td>Database Directory Block</td>
<td>DFSDDIR</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DDIREXT</td>
<td>Database Directory Block Extension</td>
<td>DFSDDIR</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RSCX</td>
<td>Resource Extension Block</td>
<td>DFSRSCX</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DYNALMBR</td>
<td>Dynamic Allocate Member</td>
<td>DFSMDA</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DBQLE</td>
<td>Database Quiesce List Entry</td>
<td>DFSDBQQL</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>EEQE</td>
<td>Error Queue Element</td>
<td>DFSSEEQE</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RRE</td>
<td>Residual Recovery Element</td>
<td>DFSRRE</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>TDBC</td>
<td>Tracking Database Control Block</td>
<td>DFSSTDTC</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SDTE</td>
<td>Segment Delta Block Table Entry</td>
<td>DFSSSLDD</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DMB</td>
<td>Data Management Block</td>
<td>DFSDBM</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PSDB</td>
<td>Physical Segment Descriptor Block</td>
<td>DFSDBMB</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SDB</td>
<td>Segment Descriptor Block</td>
<td>DFSDBMB</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>FDB</td>
<td>Field Descriptor Block</td>
<td>DFSFDB</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DMBCPAC</td>
<td>Segment Edit/Compression Block</td>
<td>DFSDBM</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DMBSEC</td>
<td>DMB Secondary List</td>
<td>DFSDBM</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DMBDACD</td>
<td>Randomizer Control Block</td>
<td>DFSDBM</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DMBAMP</td>
<td>Access Method Prefix Block Prefix</td>
<td>DFSDBM</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DCBACBP</td>
<td>Primary DCB/ACB Block</td>
<td>DCBD</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DCBACBS</td>
<td>Overflow DCB/ACB Block</td>
<td>DCBD</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DMBXBLCK</td>
<td>Data Management Exit Block</td>
<td>DFSDBM</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DMBXARRAY</td>
<td>Exit Array Entry Block</td>
<td>DFSDBM</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DMBXT</td>
<td>Exit Description Block</td>
<td>DFSDBM</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DMCB</td>
<td>DEDB Master Control Block</td>
<td>DBFDMCB</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>BHDR</td>
<td>Main Storage Database Header</td>
<td>DBFBMSDB</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

### SHOW keyword parameters for the /DIAGNOSE SNAP DB command

**SHOW**

Specifies which blocks are returned. Using the SHOW() option, a single block, list of blocks, or group of blocks identified by the keyword can be returned. Example: `/DIAG SNAP DB(IVPDB1) SHOW(DDIR)`

If the SHOW keyword is omitted from the /DIAGNOSE SNAP DB command, only the primary control blocks for the database are captured by default.

The SNAP DB() resource type supports the ALL, OPT, and PRI keywords, and all block names listed in Table 217 as parameters for the SHOW keyword. Multiple SHOW parameters can be specified with each parameter separated by a comma or a blank. A maximum of 16 SHOW parameters can be specified.
The effects of the SHOW option on the data captured by the /DIAGNOSE SNAP DB command are described in the following list:

**ALL**
Captures all control blocks listed in Table 217 on page 402 that are available. Example: /DIAG SNAP DB(IVPDB1) SHOW(ALL).

**OPT**
Captures all optional control blocks that are available. Optional control blocks are identified by the Optional column in Table 217 on page 402. Example: /DIAG SNAP DB(IVPDB1) SHOW(OPT).

**PRI**
Captures the primary control blocks for the database. Primary control blocks are identified by the Primary column in Table 217 on page 402. Example: /DIAG SNAP DB(IVPDB1) SHOW(PRI).

**blockname**
Captures the specified block by block name. Block names are defined in the Name column in Table 217 on page 402. Example: /DIAG SNAP DB(IVPDB1) SHOW(DDIR).

**blockname,blockname**
Captures multiple blocks by block name. Example: /DIAG SNAP DB(IVPDB1) SHOW(DDIR,DMCB).

**keyword,blockname**
Captures a group of blocks by keyword and individual blocks by block name. Example: /DIAG SNAP DB(IVPDB1) SHOW(PRI,DDIR).

**Usage notes for the /DIAGNOSE SNAP DB command**
The /DIAGNOSE SNAP DB command is available only in a DB/DC or DBCTL environment.

**LINE**
Captures control block information for the communication line specified in the line# parameter. The line# parameter specified must be numeric, in the range 1 - 1000, and identify a currently defined communication line. Multiple line# parameters can be specified with each parameter separated by a comma or a blank.

The control blocks that can be captured for a communication line are listed in the following table. Primary control blocks for a communication line, which are always present and available for capture, are identified by the column labeled “Primary”. Optional control blocks for a communication line, which might be present and available for capture depending on workload and other factors, are identified by the column labeled “Optional”.

<table>
<thead>
<tr>
<th>Name</th>
<th>Block description</th>
<th>Macro</th>
<th>Primary</th>
<th>Optional</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPF</td>
<td>Event Control Block Prefix</td>
<td>IEPF</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CULE</td>
<td>Common Use List Element Block</td>
<td>DFSCULE</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSPWRK1</td>
<td>Dispatcher Work Area</td>
<td>IDSPWRK</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SAP</td>
<td>Save Area Prefix</td>
<td>ISAP</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SAVEAREA</td>
<td>Save Area Set</td>
<td>REQUATE</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PROLOG</td>
<td>Module Prolog Information</td>
<td>N/A</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CLB</td>
<td>Communication Line Block</td>
<td>ICLI</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

*Table 218. /DIAGNOSE SNAP LINE() control blocks*
SHOW keyword parameters for the /DIAGNOSE SNAP LINE command

SHOW

Used as a filtering mechanism to control which blocks are returned. Using the SHOW() option, a single block, list of blocks, or group of blocks identified by the keyword can be returned. Example: /DIAG SNAP LINE(1)

If the SHOW() option is omitted from the /DIAGNOSE SNAP LINE() command, only the primary control blocks for the communication line are captured by default. The SNAP LINE() resource type supports the ALL, PRI, and OPT keywords, and all block names listed in Table 218 on page 403 as parameters to the SHOW() option. Multiple SHOW() option parameters can be specified with each parameter separated by a comma or a blank. A maximum of 16 SHOW() option parameters can be specified.

ALL
Captures all control blocks listed in Table 218 on page 403 that are available. Example: /DIAG SNAP LINE(1) SHOW(ALL)

PRI
Captures the primary control blocks for the communication line. Primary control blocks are identified by the Primary column in Table 218 on page 403. Example: /DIAG SNAP LINE(9) SHOW(PRI)

OPT
Captures all optional control blocks that are available. Optional
control blocks are identified by the Optional column in Table 218 on page 403. Example: /DIAG SNAP LINE(9) SHOW(OPT)

**blockname**
Captures the specified block by block name. Block names are defined in the Name column in Table 218 on page 403. Example: /DIAG SNAP LINE(1) SHOW(CLB)

**blockname,blockname**
Captures multiple blocks by block name. Example: /DIAG SNAP LINE(1) SHOW(CLB,CTT)

**keyword,blockname**
Captures a group of blocks by keyword and individual blocks by block name. Example: /DIAG SNAP LINE(1) SHOW(PRI,PDIR)

**Usage notes for the /DIAGNOSE SNAP LINE command**
The /DIAGNOSE SNAP LINE command is available in a DB/DC or DCCTL environment.

The SHOW(PROLOG) option displays information about the modules that are associated with the save areas in the chain. The module entry point is obtained from the saved register 15 value of the previous save area. If SHOW(SAVEAREA) is combined with SHOW(PROLOG), the display consists of a save area followed by the related prolog of the module that uses the save area.

The following control blocks are available only in an IMS system where Fast Path is defined.
- ECNT (Extended Communication Name Table)
- EMHB (Expedited Message Handler Block)
- SMB (Scheduler Message Block)
- TIB (APPC Transaction Instance Block)
- YTIB (OTMA Transaction Instance Block)

If the SHOW(ALL) or SHOW(OPT) option is specified in a non-Fast Path environment, these blocks are ignored. If the SHOW(ECNT), SHOW(EMHB), SHOW(SMB), SHOW(TIB), or SHOW(YTIB) option is specified in a non-Fast Path environment, a DFS154I message is issued in response.

UOWE (Unit of Work Table Entry) block is available only in an IMS system where shared queues are defined. If the SHOW(ALL) or SHOW(APP) option is specified in a non-shared-queues environment, UOWE is ignored. If the SHOW(UOWE) option is specified in a non-shared-queues environment, a DFS154I message is issued in response.

TIB (APPC Transaction Instance Block) and YTIB (OTMA Transaction Instance Block) are mutually exclusive; only one is present at any given time. For SHOW() purposes, TIB and YTIB are treated as synonyms. Specifying either TIB or YTIB displays, if available, whichever of the two blocks is present.

The SHOW(RECANY) option displays information about both RAQE (VTAM Receive Any IO Buffer (In)) and RAQERES (VTAM Receive Any IO Buffer (Out)) control blocks.

The SHOW(SA) option is a synonym for the SHOW(SAVEAREA) option.

**LINK** Captures control block information for the logical link specified in the **link#**
The link parameter specified must be numeric, in the range 1 - 936, and identify a currently defined logical link. Multiple link parameters can be specified with each parameter separated by a comma or a blank.

The control blocks that can be captured for a logical link are listed in the following table. Primary control blocks for a logical link, which are always present and available for capture, are identified by the column labeled “Primary”. Optional control blocks for a logical link, which might be present and available for capture depending on workload and other factors, are identified by the column labeled “Optional”.

<table>
<thead>
<tr>
<th>Name</th>
<th>Block description</th>
<th>Macro</th>
<th>Primary</th>
<th>Optional</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPF</td>
<td>Event Control Block Prefix</td>
<td>IEPF</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CULE</td>
<td>Common Use List Element Block</td>
<td>DFSCULE</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DSPWRK1</td>
<td>Dispatcher Work Area</td>
<td>IDSPWRK</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SAP</td>
<td>Save Area Prefix</td>
<td>ISAP</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SAVEAREA</td>
<td>Save Area Set</td>
<td>REQUATE</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PROLOG</td>
<td>Module Prolog Information</td>
<td>N/A</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LLB</td>
<td>Link Line Block</td>
<td>ICLI</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>LTB</td>
<td>Link Terminal Block</td>
<td>ICLI</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CTT</td>
<td>Communication Translate Table</td>
<td>ICLI</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CRB</td>
<td>Communications Restart Block</td>
<td>ICLI</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SPQB</td>
<td>Subpool Queue Block</td>
<td>ICLI</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SPQBEXT</td>
<td>Subpool Queue Extension Block</td>
<td>ICLI</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>EMHB</td>
<td>Expedited Message Handler Block</td>
<td>DBFEMHB</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SMB</td>
<td>Scheduler Message Block</td>
<td>IAPS</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TIB</td>
<td>APPC Transaction Instance Block</td>
<td>DFSTIB</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>YTIB</td>
<td>OTMA Transaction Instance Block</td>
<td>DFSYTIB</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LNB</td>
<td>Link Name Block</td>
<td>ICLI</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>ECNT</td>
<td>Extended Communication Name Table</td>
<td>DBFECNT</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CRTCN</td>
<td>Command CART &amp; 4-Byte Console ID</td>
<td>DFSMCSC</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CCB</td>
<td>Conversational Control Block</td>
<td>ICLI</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CIB</td>
<td>Communication Interface Block</td>
<td>ICLI</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MSGBP</td>
<td>Basic 01/03 Message Prefix</td>
<td>QLOGMSGP</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>UOWE</td>
<td>Unit of Work Table Entry</td>
<td>DFSUOWE</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>INBUF</td>
<td>Input Line Buffer</td>
<td>N/A</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OUTBUF</td>
<td>Output Line Buffer</td>
<td>N/A</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LCB</td>
<td>Link Control Block</td>
<td>LCB</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LXB</td>
<td>Link Extension Block</td>
<td>LXB</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

SHOW keyword parameters for the /DIAGNOSE SNAP LINK command

SHOW

Used as a filtering mechanism to control which blocks are returned. Using the SHOW() option, a single block, list of blocks, or group of blocks identified by the keyword can be returned. The following example code shows this command option: /DIAG SNAP LINK(9)
If the SHOW() option is omitted from the /DIAGNOSE SNAP LINK() command, only the primary control blocks for the logical line are captured by default. The SNAP LINK() resource type supports the ALL, PRI, and OPT keywords, and all block names that are listed in Table 219 on page 406 as parameters to the SHOW() option. Multiple SHOW() option parameters can be specified with each parameter separated by a comma or a blank. A maximum of 16 SHOW() option parameters can be specified.

**ALL**
Captures all control blocks listed in Table 219 on page 406 that are available. Example: /DIAG SNAP LINK(9) SHOW(ALL)

**PRI**
Captures the primary control blocks for the logical line. Primary control blocks are identified by the Primary column in Table 219 on page 406. Example: /DIAG SNAP LINK(9) SHOW(PRI)

**OPT**
Captures all optional control blocks that are available. Optional control blocks are identified by the Optional column in Table 219 on page 406. Example: /DIAG SNAP LINE(9) SHOW(OPT)

**blockname**
Captures the specified block by block name. Block names are defined in the Name column in Table 219 on page 406. Example: /DIAG SNAP LINK(9) SHOW(CLB)

**blockname,blockname**
Captures multiple blocks by block name. Example: /DIAG SNAP LINK(9) SHOW(LLB,CTT)

**keyword,blockname**
Captures a group of blocks by keyword and individual blocks by block name. Example: /DIAG SNAP LINK(9) SHOW(PRI,PDIR)

**Usage notes for the /DIAGNOSE SNAP LINK command**
The /DIAGNOSE SNAP LINK() command is available only in a DB/DC or DCCTL environment.

The SHOW(PROLOG) option displays information about the modules that are associated with the save areas in the chain. The module entry point is obtained from the saved register 15 value of the previous save area. If SHOW(SAVEAREA) is combined with SHOW(PROLOG), the display consists of a save area followed by the related prolog of the module that uses the save area.

The following control blocks are available only in an IMS system where Fast Path is defined.

- ECNT (Extended Communication Name Table)
- EMHB (Expeditied Message Handler Block)
- SMB (Scheduler Message Block)
- TIB (APPC Transaction Instance Block)
- YTIB (OTMA Transaction Instance Block)

If the SHOW(ALL) or SHOW(OPT) option is specified in a non-Fast Path environment, these blocks are ignored. If the SHOW(ECNT),
SHOW(EMHB), SHOW(SMB), SHOW(TIB), or SHOW(YTIB) option is specified in a non-Fast Path environment, a DFS154I message is issued in response.

UOWE (Unit of Work Table Entry) block is available only in an IMS system where shared queues are defined. If the SHOW(ALL) or SHOW(APP) option is specified in a non-shared-queues environment, UOWE is ignored. If the SHOW(UOWE) option is specified in a non-shared-queues environment, a DFS154I message is issued in response.

TIB (APPC Transaction Instance Block) and YTIB (OTMA Transaction Instance Block) are mutually exclusive; only one is present at any given time. For SHOW() purposes, TIB and YTIB are treated as synonyms. Specifying either TIB or YTIB displays, if available, whichever of the two blocks is present.

The SHOW(SA) option is a synonym for the SHOW(SAVEAREA) option.

**LTERM**

Captures control block information for the logical terminal specified in the *ltermname* parameter. The *ltermname* parameter specified must be alphanumeric, no longer than 8 characters, and identify a currently defined logical terminal. Multiple *ltermname* parameters can be specified with each parameter separated by a comma or a blank.

The control blocks that can be captured for logical terminals are listed in the following table. Primary control blocks for a logical terminal, which are always present and available for capture, are identified by the column labeled “Primary”. Optional control blocks for a logical terminal, which might or might not be present and available for capture depending on workload and other factors, are identified by the column labeled “Optional”.

<table>
<thead>
<tr>
<th>Name</th>
<th>Block description</th>
<th>Macro</th>
<th>Primary</th>
<th>Optional</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNT</td>
<td>Communication Name Table (Target)</td>
<td>ICLI</td>
<td>X ¹</td>
<td></td>
</tr>
<tr>
<td>RCNT</td>
<td>Remote Communication Name Table</td>
<td>RCNT</td>
<td>X ²</td>
<td></td>
</tr>
<tr>
<td>LNB</td>
<td>Link Name Block</td>
<td>LNB</td>
<td>X ²</td>
<td></td>
</tr>
<tr>
<td>EPF</td>
<td>Event Control Block Prefix</td>
<td>IEPF</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CULE</td>
<td>Common Use List Element Block</td>
<td>DFSCULE</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DSPWRK1</td>
<td>Dispatcher Work Area</td>
<td>IDSPWRK</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SAP</td>
<td>Save Area Prefix</td>
<td>ISAP</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SAVEAREA</td>
<td>Save Area Set</td>
<td>REQUATE</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PROLOG</td>
<td>Module Prolog Information</td>
<td>N/A</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CLB</td>
<td>Communication Line Block</td>
<td>ICLI</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CTB</td>
<td>Communication Terminal Block</td>
<td>ICLI</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CTT</td>
<td>Communication Translate Table</td>
<td>ICLI</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CRB</td>
<td>Communications Restart Block</td>
<td>ICLI</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SPQB</td>
<td>Subpool Queue Block</td>
<td>ICLI</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SPQBEXT</td>
<td>Subpool Queue Extension Block</td>
<td>ICLI</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>EMHB</td>
<td>Expedited Message Handler Block</td>
<td>DBFEMHB</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SMB</td>
<td>Scheduler Message Block</td>
<td>IAPS</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
### Table 220. /DIAGNOSE SNAP LTERM() control blocks (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Block description</th>
<th>Macro</th>
<th>Primary</th>
<th>Optional</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIB</td>
<td>APPC Transaction Instance Block</td>
<td>DFSTIB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>YTIB</td>
<td>OTMA Transaction Instance Block</td>
<td>DFSYTIB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNT</td>
<td>Communication Name Table</td>
<td>ICLI</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>ECNT</td>
<td>Extended Communication Name Table</td>
<td>DBFECNT</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CRTCN</td>
<td>Command CART &amp; 4-Byte Console ID</td>
<td>DFSMCSC</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CCB</td>
<td>Conversational Control Block</td>
<td>ICLI</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CIB</td>
<td>Communication Interface Block</td>
<td>ICLI</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MSGBP</td>
<td>Basic 01/03 Message Prefix</td>
<td>QLOGMSGP</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>UOWE</td>
<td>Unit of Work Table Entry</td>
<td>DFSUOWE</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>INBUF</td>
<td>Input Line Buffer</td>
<td>N/A</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OUTBUF</td>
<td>Output Line Buffer</td>
<td>N/A</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>RAQE</td>
<td>VTAM Receive Any IO Buffer (In)</td>
<td>BUFVTPRE</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>RAQERES</td>
<td>VTAM Receive Any IO Buffer (Out)</td>
<td>BUFVTPRE</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

1 Primary blocks for a local logical terminal

2 Primary blocks for a remote logical terminal

### SHOW keyword parameters for the /DIAGNOSE SNAP LTERM command

**SHOW**

Specifies which blocks are returned. If the SHOW keyword is omitted from the /DIAGNOSE SNAP LTERM command, only the primary control blocks for the logical terminal are captured by default. The SNAP LTERM() resource type supports the ALL, DEF (or DEFAULT), OPT, PRI, and TAR (or TARGET) keywords, and all block names that are listed in Table 220 on page 408 as parameters for the SHOW keyword. Multiple SHOW parameters can be specified with each parameter separated by a comma or a blank. A maximum of 32 SHOW parameters can be specified.

The effects of the SHOW option on the data that is captured by the /DIAGNOSE SNAP LTERM command are described in the following list:

- **ALL**
  Captures all control blocks listed in Table 220 on page 408 that are available. Example: `/DIAG SNAP LTERM(MTRL) SHOW(ALL)`.

- **DEF**
  Captures information about default blocks for the current logical terminal. DEF, or DEFAULT, is equivalent to the PRI keyword or without any SHOW parameter. Example: `/DIAGNOSE SNAP LTERM(MTRL) SHOW(DEF)`.

- **OPT**
  Captures all optional control blocks that are available. Optional control blocks are identified by the Optional column in Table 220 on page 408. Example: `/DIAG SNAP LTERM(MTRL) SHOW(OPT)`.

- **PRI**
  Captures the primary control blocks for the logical terminal.
Primary control blocks are identified by the Primary column in Table 220 on page 408. Example: /DIAG SNAP LTERM(MTRL) SHOW(PRI).

**TARGET**
Captures the target CNT (Communication Name Table) for a local logical terminal (LTERM). TARGET can be abbreviated as TAR.

If the SHOW(TARGET) option is specified and the only resource specified is a remote logical terminal, a DFS2859I informational message is issued with the following reason text: NO VALID BLOCKS SPECIFIED FOR LTERM(ltermname). If other SHOW() options are included that are applicable to a remote logical terminal, those blocks are displayed, and the TARGET option is ignored.

If the SHOW(TARGET) option is specified and both local and remote logical terminal resources are specified, a DFS2859I message is issued for the remote logical terminal.

Example: /DIAGNOSE SNAP LTERM(MTRL) SHOW(TAR).

**blockname**
Captures the specified block by block name. Block names are defined in the Name column in Table 220 on page 408. Example: /DIAG SNAP LTERM(MTRL) SHOW(CLB).

**blockname,blockname**
Captures multiple blocks by block name. Example: /DIAG SNAP LTERM(MTRL) SHOW(CLB,CTB).

**keyword,blockname**
Captures a group of blocks by keyword and individual blocks by block name. Example: /DIAG SNAP LTERM(MTRL) SHOW(PRI,CTB).

**Usage notes for the /DIAGNOSE SNAP LTERM command**
The /DIAGNOSE SNAP LTERM command is available in a DB/DC or DCCTL environment.

The SHOW(PROLOG) option displays information about the modules that are associated with the save areas in the chain. The module entry point is obtained from the saved register 15 value of the previous save area. If SHOW(SAVEAREA) is combined with SHOW(PROLOG), the display consists of a save area followed by the related prolog of the module that uses the save area.

The following control blocks are available only in an IMS system where Fast Path is defined.
- ECNT (Extended Communication Name Table)
- EMHB (Expedited Message Handler Block)
- SMB (Scheduler Message Block)
- TIB (APPC Transaction Instance Block)
- YTIB (OTMA Transaction Instance Block)

If the SHOW(ALL) or SHOW(OPT) option is specified in a non-Fast Path environment, these blocks are ignored. If the SHOW(ECNT), SHOW(EMHB), SHOW(SMB), SHOW(TIB), or SHOW(YTIB) option is specified in a non-Fast Path environment, a DFS154I message is issued in response.
UOWE (Unit of Work Table Entry) block is available only in an IMS system where shared queues are defined. If the SHOW(ALL) or SHOW(APP) option is specified in a non-shared-queues environment, UOWE is ignored. If the SHOW(UOWE) option is specified in a non-shared-queues environment, a DFS154I message is issued in response.

If the SHOW(RCNT), SHOW(LNB), or SHOW(RCNT,LNB) option is specified and the only resource specified is a local logical terminal, a DFS2859I informational message is issued. If other SHOW() options are included that are applicable to a local logical terminal, those blocks are displayed, and the RCNT or LNB option is ignored.

If the SHOW(RCNT), SHOW(LNB), or SHOW(RCNT,LNB) option is specified and both local and remote logical terminal resources are specified, a DFS2859I message is issued for the local logical terminal.

TIB (APPC Transaction Instance Block) and YTIB (OTMA Transaction Instance Block) are mutually exclusive; only one is present at any given time. For SHOW() purposes, TIB and YTIB are treated as synonyms. Specifying either TIB or YTIB displays, if available, whichever of the two blocks is present.

The SHOW(RECANY) option displays information about both RAQE (VTAM Receive Any IO Buffer (In)) and RAQERES (VTAM Receive Any IO Buffer (Out)) control blocks.

The SHOW(SA) option is a synonym for the SHOW(SAVEAREA) option.

**MODULE**

Returns the entry point address and captures in-storage prolog information about the IMS module specified in the *modname* parameter. The standard IMS module in-storage prolog information contains the module name, product level, assembly date and time, last APAR ID, module maintenance level, BPE version, and release (for BPE-based modules), and copyright statement.

**Note:** The name of the IMS module that appears in the in-storage prolog information might not be the same as the loaded module name if binder options were used to declare a different name for the loaded module.

MODULE(*modname*) enables IBM Software Support representatives to see the maintenance level of the installed software.

**MSNAME**

Captures control block information for the MSNAME specified in the *msname* parameter. The *msname* parameter specified must be alphanumeric, no longer than 8 characters, and identify a currently defined MSNAME. Multiple *msname* parameters can be specified with each parameter separated by a comma or a blank.

The control blocks that can be captured for MSNAMEs are listed in the following table. Primary control blocks for an MSNAME, which are always present and available for capture, are identified by the column labeled “Primary”. Optional control blocks for an MSNAME, which might or might not be present and available for capture depending on workload and other factors, are identified by the column labeled “Optional”.

<table>
<thead>
<tr>
<th>Name</th>
<th>Block description</th>
<th>Macro</th>
<th>Primary</th>
<th>Optional</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNB</td>
<td>Link Name Block (Target)</td>
<td>LNB</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Block description</td>
<td>Macro</td>
<td>Primary</td>
<td>Optional</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------------------------------</td>
<td>-------------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>EPF</td>
<td>Event Control Block Prefix</td>
<td>IEPF</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CULE</td>
<td>Common Use List Element Block</td>
<td>DFSCULE</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSPWRK1</td>
<td>Dispatcher Work Area</td>
<td>IDSPWRK</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SAP</td>
<td>Save Area Prefix</td>
<td>ISAP</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SAVEAREA</td>
<td>SAVE Area Set</td>
<td>REQUATE</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PROLOG</td>
<td>Module Prolog Information</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTB</td>
<td>Link Line Block</td>
<td>ICLI</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CTT</td>
<td>Communication Translate Table</td>
<td>ICLI</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CRB</td>
<td>Communications Restart Block</td>
<td>ICLI</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SPQB</td>
<td>Subpool Queue Block</td>
<td>ICLI</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SPQBEXT</td>
<td>Subpool Queue Extension Block</td>
<td>ICLI</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>EMHB</td>
<td>Expedited Message Handler Block</td>
<td>DBFEMHB</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SMB</td>
<td>Scheduler Message Block</td>
<td>IAPS</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>TIB</td>
<td>APPC Transaction Instance Block</td>
<td>DFSTIB</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>YTIB</td>
<td>OTMA Transaction Instance Block</td>
<td>DFSYTIB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LNB</td>
<td>Link Name Block</td>
<td>ICLI</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ECNT</td>
<td>Extended Communication Name Table</td>
<td>DBFECNT</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CRTCN</td>
<td>Command CART &amp; 4-Byte Console ID</td>
<td>DFSMCS</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CCB</td>
<td>Conversational Control Block</td>
<td>ICLI</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CIB</td>
<td>Communication Interface Block</td>
<td>ICLI</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>MSGBP</td>
<td>Basic 01/03 Message Prefix</td>
<td>QLOGMSGP</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>UOWE</td>
<td>Unit of Work Table Entry</td>
<td>DFSUOWE</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>INBUF</td>
<td>Input link buffer</td>
<td>N/A</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OUTBUF</td>
<td>Output link buffer</td>
<td>N/A</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>LCB</td>
<td>Link Control Block</td>
<td>LCB</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>LXCB</td>
<td>Link Extension Block</td>
<td>LXB</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

**SHOW keyword parameters for the /DIAGNOSE SNAP MSNAME command**

**SHOW**

Specifies which blocks are to be returned. If the SHOW keyword is omitted from the /DIAGNOSE SNAP NODE command, only the primary control blocks for the MSNAME are captured by default. The SNAP MSNAME resource type supports the ALL, PRI, OPT, and TAR (or TARGET) keywords, and all block names that are listed in Table 221 on page 411 as parameters for the SHOW keyword. Multiple SHOW parameters can be specified with each parameter separated by a comma or a blank. A maximum of 32 SHOW parameters can be specified.

The effects of the SHOW option on the data that is captured by the /DIAGNOSE SNAP MSNAME command are described in the following list:
ALL
Captures all control blocks listed in Table 221 on page 411 that are available. Example: /DIAGNOSE SNAP MSNAME(MSN1) SHOW(ALL).

OPT
Captures all optional control blocks that are available. Optional control blocks are identified by the Optional column in Table 221 on page 411. Example: /DIAGNOSE SNAP MSNAME(MSN1) SHOW(OPT).

PRI
Captures the primary control blocks for the MSNAME. Primary control blocks are identified by the Primary column in Table 221 on page 411. Example: /DIAGNOSE SNAP MSNAME(MSN1) SHOW(PRI).

TARGET
Captures the target LNB (Link Name Block) for the MSNAME. TARGET can be abbreviated as TAR. Example: /DIAGNOSE SNAP MSNAME(MTR1) SHOW(TAR).

blockname
Captures the specified block by block name. Block names are defined in the Name column in Table 221 on page 411. Example: /DIAGNOSE SNAP MSNAME(MSN1) SHOW(CLB).

blockname,blockname
Captures multiple blocks by block name. Example: /DIAGNOSE SNAP MSNAME(MSN1) SHOW(CLB,CTB).

keyword,blockname
Captures a group of blocks by keyword and individual blocks by block name. Example: /DIAG SNAP MSNAME(MSN1) SHOW(PRI,CTB).

Usage notes for the /DIAGNOSE SNAP MSNAME command
The /DIAGNOSE SNAP MSNAME command is available only in a DB/DC or DCCTL environment.

The following control blocks are available only in an IMS system where Fast Path is defined.
• ECNT (Extended Communication Name Table)
• EMHB (Expedited Message Handler Block)
• SMB (Scheduler Message Block)
• TIB (APPC Transaction Instance Block)
• YTIB (OTMA Transaction Instance Block)

If the SHOW(ALL) or SHOW(OPT) option is specified in a non-Fast Path environment, these blocks are ignored. If the SHOW(ECNT), SHOW(EMHB), SHOW(SMB), SHOW(TIB), or SHOW(YTIB) option is specified in a non-Fast Path environment, a DFS154I message is issued in response.

UOWE (Unit of Work Table Entry) block is available only in an IMS system where shared queues are defined. If the SHOW(ALL) or SHOW(APP) option is specified in a non-shared-queues environment, UOWE is ignored. If the SHOW(UOWE) option is specified in a non-shared-queues environment, a DFS154I message is issued in response.

TIB (APPC Transaction Instance Block) and YTIB (OTMA Transaction Instance Block) are mutually exclusive; only one is present at any given
time. For SHOW() purposes, TIB and YTIB are treated as synonyms. Specifying either TIB or YTIB displays, if available, whichever of the two blocks is present.

The SHOW(PROLOG) option displays information about the modules that are associated with the save areas in the chain. The module entry point is obtained from the saved register 15 value of the previous save area. If SHOW(SAVEAREA) is combined with SHOW(PROLOG), the display consists of a save area followed by the related prolog of the module that uses the save area.

The SHOW(SA) option is a synonym for the SHOW(SAVEAREA) option.

**NODE**

Captures control block information for the node name specified in the nodename parameter. The nodename parameter specified must be alphanumeric, no longer than 8 characters, and identify a currently defined node name. Multiple nodename parameters can be specified with each parameter separated by a comma or a blank.

The control blocks that can be captured for node names are listed in Table 222. Primary control blocks for a node name, which are always present and available for capture, are identified by the column labeled “Primary”. Optional control blocks for a node name, which might or might not be present and available for capture depending on workload and other factors, are identified by the column labeled “Optional”.

<table>
<thead>
<tr>
<th>Name</th>
<th>Block description</th>
<th>Macro</th>
<th>Primary</th>
<th>Optional</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPF</td>
<td>Event Control Block Prefix</td>
<td>IEPF</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CULE</td>
<td>Common Use List Element Block</td>
<td>DFSCULE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSPWRK1</td>
<td>Dispatcher Work Area</td>
<td>IDSPWRK</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SAP</td>
<td>Save Area Prefix</td>
<td>ISAP</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SAVEAREA</td>
<td>Save Area Set</td>
<td>REQUATE</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PROLOG</td>
<td>Module Prolog Information</td>
<td>N/A</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CLB</td>
<td>Communication Line Block</td>
<td>ICLI</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CTB</td>
<td>Communication Terminal Block</td>
<td>ICLI</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CTT</td>
<td>Communication Translate Table</td>
<td>ICLI</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CRB</td>
<td>Communications Restart Block</td>
<td>ICLI</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SPQB</td>
<td>Subpool Queue Block</td>
<td>ICLI</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SPQBEXT</td>
<td>Subpool Queue Extension Block</td>
<td>ICLI</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>EMHB</td>
<td>Expedited Message Handler Block</td>
<td>DBFEMHB</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SMB</td>
<td>Scheduler Message Block</td>
<td>IAPS</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TIB</td>
<td>APPC Transaction Instance Block</td>
<td>DFSTIB</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>YTIB</td>
<td>OTMA Transaction Instance Block</td>
<td>DFSYTIB</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CNT</td>
<td>Communication Name Table</td>
<td>ICLI</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>ECNT</td>
<td>Extended Communication Name Table</td>
<td>DBFECNT</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CRTCN</td>
<td>Command CART &amp; 4-Byte Console ID</td>
<td>DFSMCSC</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CCB</td>
<td>Conversational Control Block</td>
<td>ICLI</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CIB</td>
<td>Communication Interface Block</td>
<td>ICLI</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MSGBP</td>
<td>Basic 01/03 Message Prefix</td>
<td>QLOGMSGP</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
### Table 222. /DIAGNOSE SNAP NODE() control blocks (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Block description</th>
<th>Macro</th>
<th>Primary</th>
<th>Optional</th>
</tr>
</thead>
<tbody>
<tr>
<td>UOWE</td>
<td>Unit of Work Table Entry</td>
<td>DFSUOWE</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>INBUF</td>
<td>Input Line Buffer</td>
<td>N/A</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OUTBUF</td>
<td>Output Line Buffer</td>
<td>N/A</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RAQE</td>
<td>VTAM Receive Any IO Buffer (In)</td>
<td>BUFVTPRE</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RAQERES</td>
<td>VTAM Receive Any IO Buffer (Out)</td>
<td>BUFVTPRE</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

**SHOW keyword parameters for the /DIAGNOSE SNAP NODE command**

**SHOW**

Specifies which blocks are returned. If the SHOW keyword is omitted from the /DIAGNOSE SNAP NODE command, only the primary control blocks for the node name are captured by default. The SNAP NODE resource type supports the ALL, OPT, and PRI keywords, and all block names that are listed in Table 222 on page 414 as parameters for the SHOW keyword. Multiple SHOW parameters can be specified with each parameter separated by a comma or a blank. A maximum of 32 SHOW parameters can be specified.

The effects of the SHOW option on the data that is captured by the /DIAGNOSE SNAP NODE command are described in the following list:

**ALL**

Captures all control blocks listed in Table 222 on page 414 that are available. Example: `/DIAGNOSE SNAP NODE(L3270A) SHOW(ALL)`.

**OPT**

Captures all optional control blocks that are available. Optional control blocks are identified by the Optional column in Table 222 on page 414. Example: `/DIAGNOSE SNAP NODE(L3270A) SHOW(OPT)`.

**PRI**

Captures the primary control blocks for the node. Primary control blocks are identified by the Primary column in Table 222 on page 414. Example: `/DIAGNOSE SNAP NODE(L3270A) SHOW(PRI)`.

**blockname**

Captures the specified block by block name. Block names are defined in the Name column in Table 222 on page 414. Example: `/DIAGNOSE SNAP NODE(L3270A) SHOW(CLB)`.

**blockname,blockname**

Captures multiple blocks by block name. Example: `/DIAGNOSE SNAP NODE(L3270A,L3270B) SHOW(CLB,CTB)`.

**keyword,blockname**

Captures a group of blocks by keyword and individual blocks by block name. Example: `/DIAG SNAP LTERM(MTRL) SHOW(PRI,CTB)`.

**Usage notes for the /DIAGNOSE SNAP NODE command**

The /DIAGNOSE SNAP NODE command is available only in a DB/DC or DCCTL environment.

The following control blocks are available only in an IMS system where Fast Path is defined.
• ECNT (Extended Communication Name Table)
• EMHB (Expedited Message Handler Block)
• SMB (Scheduler Message Block)
• TIB (APPC Transaction Instance Block)
• YTIB (OTMA Transaction Instance Block)

If the SHOW(ALL) or SHOW(OPT) option is specified in a non-Fast Path environment, these blocks are ignored. If the SHOW(ECNT), SHOW(EMHB), SHOW(SMB), SHOW(TIB), or SHOW(YTIB) option is specified in a non-Fast Path environment, a DFS154I message is issued in response.

UOWE (Unit of Work Table Entry) block is available only in an IMS system where shared queues are defined. If the SHOW(ALL) or SHOW(APP) option is specified in a non-shared-queues environment, UOWE is ignored. If the SHOW(UOWE) option is specified in a non-shared-queues environment, a DFS154I message is issued in response.

TIB (APPC Transaction Instance Block) and YTIB (OTMA Transaction Instance Block) are mutually exclusive; only one is present at any given time. For SHOW() purposes, TIB and YTIB are treated as synonyms. Specifying either TIB or YTIB displays, if available, whichever of the two blocks is present.

The SHOW(PROLOG) option displays information about the modules that are associated with the save areas in the chain. The module entry point is obtained from the saved register 15 value of the previous save area. If SHOW(SAVEAREA) is combined with SHOW(PROLOG), the display consists of a save area followed by the related prolog of the module that uses the save area.

The SHOW(RECANY) option displays information about both RAQE (VTAM Receive Any IO Buffer (In)) and RAQERES (VTAM Receive Any IO Buffer (Out)) control blocks.

The SHOW(SA) option is a synonym for the SHOW(SAVEAREA) option.

OPTION
Specifies the destination for the resource information captured by the SNAP function. The OPTION parameter is optional.

DISPLAY
SNAP output is formatted and displayed on the issuing LTERM. DISPLAY is the default.

You can specify the following keywords with the DISPLAY option:

LIMIT
Specifies a limit for the number of lines of formatted SNAP data to display in response to the command. LIMIT is a subparameter of the DISPLAY option. The LIMIT parameter is optional and has a default value of 9999. The linecount parameter must be numeric and in the range 1 - 9999.

FORMAT
Specifies the format of the output to be produced. The default is FORMAT(LONG). Valid values for the FORMAT() parameter are:

LOC LOCATION
Only the block name, description, and location are displayed.
The complete display is produced, which includes the block name, description, location, and a dump of the complete storage area for the block in both hexadecimal and character format.

OLDS
SNAP data is written to the OLDS.

SYSOUT
SNAP data is queued to the diagnostic asynchronous work element (AWE) service and written to a SYSOUT data set.

You can specify the following keywords with the SYSOUT option:

CLASS
Specifies an output class for the SYSOUT data set. The attributes of each output class are installation-specific and defined during JES initialization. The _sysout_class_ parameter must be a single alphanumeric character A - Z or 0 - 9. Any defined, valid JES output class can be specified. The characteristics of the SYSOUT data set are: DSORG=PS, RECFM=FB, LRECL=80 BLKSIZE=4080. The CLASS parameter is optional and defaults to the default SYSOUT class assigned to the IMS control region.

LIMIT
Specifies a limit for the number of lines of formatted SNAP data to process.

The LIMIT parameter is optional and has a default value of 19999. If specified, the _linecount_ parameter must be numeric and in the range 1 - 99999.

FORMAT
Specifies the format of the output to be produced. The default is FORMAT(LONG). Valid values for the FORMAT() parameter are:

LOC
LOCATION
Only the block name, description, and location are displayed.

LONG
The complete display is produced, which includes the block name, description, location, and a dump of the complete storage area for the block in both hexadecimal and character format.

TRACE
If TRACE is specified, SNAP data is written to the trace data sets.

Important: If you do not issue the /TRACE SET ON TABLE DIAG OPTION LOG command before issuing the /DIAGNOSE command with the TRACE option, the /DIAGNOSE command automatically turns on the DIAG trace tables, writes the output to the trace tables, and then turns off the DIAG trace tables. One disadvantage of this method is that the output from only one /DIAGNOSE command can be written to the trace data sets; that is, each new command overwrites the data from the last command. To capture data from a series of /DIAGNOSE commands in a trace data set, issue the commands in this order:

1. /TRACE SET ON TABLE DIAG OPTION LOG command
PGM Captures control block information for the program specified in the `pgmname` parameter. The `pgmname` parameter specified must be alphanumeric, no longer than eight characters, and identify a currently defined program. Multiple `pgmname` parameters can be specified with each parameter separated by a comma or a blank.

The control blocks that can be captured for a program are listed in the following table. Primary control blocks for a logical line, which are always present and available for capture, are identified by the column labeled “Primary”. Optional control blocks for a logical link, which might be present and available for capture based on workload and other factors, are identified by the column labeled “Optional”.

<table>
<thead>
<tr>
<th>Name</th>
<th>Block description</th>
<th>Macro</th>
<th>Primary</th>
<th>Optional</th>
<th>Work</th>
<th>No Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDIR</td>
<td>Program Directory Block</td>
<td>DFSPDIR</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSCX</td>
<td>Resource Extension Block</td>
<td>DFSRSCX</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTLIST</td>
<td>Intent List</td>
<td>INTLIST</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSB</td>
<td>Program Specification Block</td>
<td>DFSPSB</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PST</td>
<td>Partition Specification Table</td>
<td>IPST</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNT</td>
<td>Communication Name Table</td>
<td>ICLI</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMB</td>
<td>Scheduler Message Block</td>
<td>IAPS</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMBL</td>
<td>Data management Block List</td>
<td>DFSDMBL</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XPCB</td>
<td>Program Communication Block Index Maintenance</td>
<td>DFSPCBS</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB</td>
<td>Program Communication Block</td>
<td>DFSPCBS</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCBX</td>
<td>Program Communication Extension Block</td>
<td>DFSPCBS</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPCB</td>
<td>Program Communication Block Extension</td>
<td>DBFEPBC</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSG6P</td>
<td>Message Prefix (LU62)</td>
<td>DFS62PRE</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSGOP</td>
<td>Message Prefix (OTMA)</td>
<td>DFSYPRE</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSBPRM</td>
<td>User Parameter List Block</td>
<td>IDLI</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WKCDS</td>
<td>Data Capture Segment Work Area</td>
<td>N/A</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WKNIDX</td>
<td>Index Maintenance Work Area</td>
<td>N/A</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WKXIO</td>
<td>Index I/O Work Area</td>
<td>N/A</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WKSEG</td>
<td>Segment Work Area</td>
<td>N/A</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WKOIOA</td>
<td>I/O Work Area</td>
<td>N/A</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WKSSA</td>
<td>Segment Search Argument Work Area</td>
<td>N/A</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WKIFP</td>
<td>Fast Path Control Block Work Area</td>
<td>N/A</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**SHOW keyword parameters for the /DIAGNOSE SNAP PGM command**
SHOW
Specifies which blocks are returned. Using the SHOW() option, a single block, list of blocks, or group of blocks identified by the keyword can be returned. Example: /DIAG SNAP PGM(APOL1)

If the SHOW() option is omitted from the /DIAGNOSE SNAP PGM() command, only the primary control blocks for the program are captured by default. The SNAP PGM() resource type supports the ALL, OPT, PRI, WORK, and NOWORK keywords, and all block names that are listed in Table 223 on page 418 as parameters to the SHOW() option. Multiple SHOW() option parameters can be specified with each parameter separated by a comma or a blank. A maximum of 32 SHOW() option parameters can be specified.

**ALL**
Captures all control blocks listed in Table 223 on page 418 that are available. Example: /DIAG SNAP PGM(APOL1) SHOW(ALL)

**PRI**
Captures the primary control blocks for the program. Primary control blocks are identified by the Primary column in Table 223 on page 418. Example: /DIAG SNAP PGM(APOL1) SHOW(PRI)

**OPT**
Captures all optional control blocks that are available. Optional control blocks are identified by the Optional column in Table 223 on page 418. Example: /DIAG SNAP PGM(APOL1) SHOW(OPT)

**blockname**
Captures the specified block by block name. Block names are defined in the Name column in Table 223 on page 418. Example: /DIAG SNAP PGM(APOL1) SHOW(PDIR)

**blockname,blockname**
Captures multiple blocks by block name. Example: /DIAG SNAP PGM(APOL1) SHOW(PDIR,PSB)

**keyword,blockname**
Captures a group of blocks by keyword and individual blocks by block name. Example: /DIAG SNAP PGM(APOL1) SHOW(PRI,PDIR)

**WORK**
Captures all working storage blocks that are available. Working storage blocks are identified by the Work column in Table 223 on page 418. Example: /DIAG SNAP PGM(APOL1) SHOW(WORK)

**NOWORK**
Captures all non-work control blocks that are available. Non-work control blocks are identified by the No Work column in Table 223 on page 418. Example: /DIAG SNAP PGM(APOL1) SHOW(NOWORK)

**Usage notes for the /DIAGNOSE SNAP PGM command**

EPCB (Program Communication Block Extension) is available only in an IMS system where Fast Path is defined. If the SHOW(ALL) or SHOW(OPT) option is specified in a non-FP environment, the EPCB is ignored. If the SHOW(EPCB) option is specified in a non-FP environment, a DFS154I error message is issued in response.

MSG6P (Message Prefix for LU62) and MSGOP (Message Prefix for OTMA) are mutually exclusive. Only one is present at any point. For SNAP PGM()
SHOW() purposes, the MSG6P and MSGOP are treated as synonyms. Specifying either MSG6P or MSGOP displays, if available, whichever of the two blocks is present.

**REGION**
Captures control block information for the dependent region specified in the `region#` parameter. The `region#` parameter specified must be numeric, in the range 1 - 999, and identify a currently active dependent region. Multiple `region#` parameters can be specified with each parameter separated by a comma or a blank.

The dependent region might also be identified using the SNAP JOBNAME(`jobname`) format of the SNAP REGION() resource type. The `jobname` parameter specified must be alphanumeric, no longer than eight characters, and identify a currently active dependent region. Multiple `jobname` parameters can be specified with each parameter separated by a comma or a blank. The REGION(`region#`) and JOBNAME(`jobname`) formats can both be specified on the same command.

The control blocks that can be captured for a dependent region are listed in the following table. Primary control blocks for a dependent region, which are always present and available for capture, are identified by the column labeled “Primary”. Optional control blocks for a dependent region, which might be present and available for capture based on workload and other factors, are identified by the column labeled “Optional”.

<table>
<thead>
<tr>
<th>Name</th>
<th>Block description</th>
<th>Macro</th>
<th>Primary</th>
<th>Optional</th>
<th>System</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTD</td>
<td>SVC Vector Table Directory Entry</td>
<td>DFSVDIR</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ASCB</td>
<td>MVS Address Space Control Block</td>
<td>IHAASCB</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASSB</td>
<td>MVS Address Space Secondary Block</td>
<td>IHAASSB</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DPDIR</td>
<td>Dependent Region Directory Block</td>
<td>DFSDPDIR</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IWALE</td>
<td>Internal Work Area List Elements Block</td>
<td>DFSIQALE</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LESEP</td>
<td>Local External Entry Table Prefix Block</td>
<td>DFSLESEP</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRAT</td>
<td>DRA Thread Control Block</td>
<td>DFSDRAT</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDT</td>
<td>Identify Table Entry</td>
<td>DFSIDT</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCB</td>
<td>MVS Task Control Block (IDT)</td>
<td>IKJTCB</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCB</td>
<td>Task Control Block (PST)</td>
<td>IKJTCB</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAP</td>
<td>Save Area Prefix block</td>
<td>ISAP</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSPWRK1</td>
<td>Dispatch Block: Work Area Part 1</td>
<td>IDSPWRK</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSPWRK2</td>
<td>Dispatch Block: Work Area Part 2</td>
<td>IDSPWRK</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCB</td>
<td>MVS Task Control Block (CDSP)</td>
<td>IKJTCB</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RB</td>
<td>MVS Associated Request Block (CDSP)</td>
<td>IHARB</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RBP</td>
<td>MVS Associated Request Block Prefix (CDSP)</td>
<td>IHARB</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XSB</td>
<td>MVS Extended Status Block (CDSP)</td>
<td>IHAXSB</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 224. /DIAGNOSE SNAP REGION() control blocks (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Block description</th>
<th>Macro</th>
<th>Primary</th>
<th>Optional</th>
<th>System</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSPWRK1</td>
<td>Dispatcher Block: Work Area Part 1 (home)</td>
<td>IDSPWRK</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSPWRK2</td>
<td>Dispatcher Block: Work Area Part 2 (home)</td>
<td>IDSPWRK</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSPPST</td>
<td>PST Dispatching Control Block</td>
<td>IDSPWRK</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMCI</td>
<td>Cross-Memory Control Block, ITASK Level</td>
<td>DFSXMC</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSVPL</td>
<td>System Service Parameter List Block</td>
<td>DFSSSVPL</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMIB</td>
<td>Directed Message Manager Interface Block</td>
<td>DFSDMIB</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CULE</td>
<td>Common Use List Element Block</td>
<td>DFSCULE</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLLLE</td>
<td>Common Latch List Element Block</td>
<td>DFSCLLE</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSMB</td>
<td>Logging Secondary Master Block</td>
<td>DFSLSMB</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSSIDX</td>
<td>Subsystem Status Index Entry</td>
<td>DFSSSIE</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>LCRE</td>
<td>Local Current Recovery Entry</td>
<td>DFSLCRE</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RRE</td>
<td>Residual Recovery Element Block (LCRE)</td>
<td>DFSRRE</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIB</td>
<td>APPC Transaction Instance Block</td>
<td>DFSITIB</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>YTIB</td>
<td>OTMA Transaction Instance Block</td>
<td>DFSYTIB</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCENTRY</td>
<td>Protected Conversation Task Table Entry</td>
<td>DFSRRSIB</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RRE</td>
<td>Residual Recovery Element Block (PC)</td>
<td>DFSRRE</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PST</td>
<td>Partition Specification Table</td>
<td>IPST</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CNT</td>
<td>Communication Name Table</td>
<td>ICLI</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMB</td>
<td>Scheduler Message Block</td>
<td>IAPS</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SQ PST</td>
<td>Scheduler Queue Element</td>
<td>ISQST</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UOW</td>
<td>Unit of Work Value (QMGR)</td>
<td>DFSUOWE</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UOWE</td>
<td>Unit of Work Table Entry</td>
<td>DFSUOWE</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPFXH</td>
<td>Extended Message Prefix Header</td>
<td>DFSEPFXH</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSGBP</td>
<td>Basic 01/03 Message Prefix</td>
<td>QLOGMSGP</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSGEP</td>
<td>Extended Message Prefix</td>
<td>QLOGMSGP</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDIR</td>
<td>Program Directory Block</td>
<td>DFSPDIR</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSB</td>
<td>Program Specification Block</td>
<td>DFSPSB</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLS</td>
<td>Transaction Level Statistics Area</td>
<td>DFSTLS</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DACCT</td>
<td>DL/1 Call Statistics Area</td>
<td>DFSDACCT</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSCEB</td>
<td>MSC Message Routing Exit Interface Block</td>
<td>DFSMSCEB</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D2AFB</td>
<td>DB2 RRS Attach Facility Interface Block</td>
<td>DFSD2AF</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OLRW</td>
<td>Online Reorganization Work Area Block</td>
<td>DFSOLRW</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISIT</td>
<td>Intersubsystem Interface Table</td>
<td>IPST</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Table 224. /DIAGNOSE SNAP REGION() control blocks (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Block description</th>
<th>Macro</th>
<th>Primary</th>
<th>Optional</th>
<th>System</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIRCA</td>
<td>Interregion Communication Area Block</td>
<td>IRC</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPST</td>
<td>Extended Partition Specification Table</td>
<td>DBFEPT</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSTA</td>
<td>DBCTL Statistics Area Block</td>
<td>DFSSTA</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RRE</td>
<td>Residual Recovery Element Block</td>
<td>DFSRRE</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P62XT</td>
<td>LU 6.2 PST Extension Block</td>
<td>DFSP62XT</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WLM</td>
<td>Workload Manager Work Area Block</td>
<td>DFSWLMWK</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSSMP</td>
<td>RAS System Security Message</td>
<td>DFSRSSMP</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**SHOW keyword parameters for the /DIAGNOSE SNAP REGION command**

**SHOW**

Specifies which blocks are returned. Using the SHOW() option, a single block, list of blocks, or group of blocks identified by the keyword can be returned. Example: /DIAG SNAP REG(1)

If the SHOW() option is omitted from the /DIAGNOSE SNAP REGION() command, only the primary control blocks for the dependent region are captured by default. The SNAP REGION() resource type supports the ALL, PRI, OPT, APP, and SYS keywords, and all block names listed in Table 224 on page 420 as parameters to the SHOW() option.

**ALL**

Captures all control blocks listed in Table 224 on page 420 that are available. Example: /DIAG SNAP REG(1) SHOW(ALL)

**PRI**

Captures the primary control blocks for the region. Primary control blocks are identified by the Primary column in Table 224 on page 420. Example: /DIAG SNAP REG(1) SHOW(PRI)

**OPT**

Captures all optional control blocks that are available. Optional control blocks are identified by the Optional column in Table 224 on page 420. Example: /DIAG SNAP REG(1) SHOW(OPT)

**APP**

Captures all application control blocks that are available. Control blocks that are part of the application group are identified by the Application column in Table 224 on page 420. Example: /DIAG SNAP REG(1) SHOW(APP)

**SYS**

Captures all system control blocks that are available. Control blocks that are part of the system group are identified in the System column in Table 224 on page 420. Example: /DIAG SNAP REG(1) SHOW(SYS)
blockname
Captures the specified block by block name. Block names are defined in the Name column in Table 224 on page 420. Example: /DIAG SNAP REG(1) SHOW(IDT)

blockname,blockname
Captures multiple blocks by block name. Example: /DIAG SNAP REG(1) SHOW(VTD,SAP)

keyword,blockname
Captures a group of blocks by keyword and individual blocks by block name. Example: /DIAG SNAP REG(1) SHOW(SYS,PDIR)

Usage notes for the /DIAGNOSE SNAP REGION command
DRAT (DRA Thread Control Block) is available only in a DBCTL environment. If the SHOW(ALL) or SHOW(SYS) option is specified in a non-DBCTL environment, the DRAT is ignored. If the SHOW(DRAT) option is specified in a non-DBCTL environment, a DFS110I message is issued.

DSTA (DBCTL Statistics Area Block) is available only in a DBCTL environment. If the SHOW(ALL) or SHOW(SYS) option is specified in a non-DBCTL environment, the DSTA is ignored. If the SHOW(DSTA) option is specified in a non-DBCTL environment, a DFS110I message is issued.

EPST (Extended Partition Specification Table) is available only in an IMS system where Fast Path is defined. If the SHOW(ALL) or SHOW(APP) option is specified in a non-Fast Path environment, the EPST is ignored. If the SHOW(EPIST) option is specified in a non-Fast Path environment, a DFS154I message is issued.

TIB (APPC Transaction Instance Block) and YTIB (OTMA Transaction Instance Block) are mutually exclusive. Only one is present at any time. For SNAP REGION() SHOW() purposes, TIB and YTIB are treated as synonyms. Specifying either TIB or YTIB displays whichever of the two blocks is present.

The SNAP JOBNAME(jobname) format of the SNAP REGION() resource type cannot be used to identify a CCTL thread. All CCTL threads have the same job name and the CICS region, and therefore it is impossible to identify the correct thread by the job name.

If multiple regions are started with the same job name, only the first region will be found using the SNAP JOBNAME(jobname) format of the SNAP REGION() resource type.

VTD, ASCB, ASSB, DPDIR, IWALE, LESEP, DRAT, and IDT are not available for an OLR region. If the SHOW(ALL), SHOW(PRI), or SHOW(SYS) option is specified for an OLR region, these blocks are ignored. If any of these blocks are explicitly specified with the SHOW option for an OLR region, a DFS2859I message is issued.

RM
Specifies the scope of the resource search for certain resource types. The RM() parameter is optional and applicable only to the LTERM(), NODE(), and USER() resource types.

Valid values for the RM() parameter are:

YES If YES is specified or the RM() parameter is omitted, a local search is performed for the requested resource. If a local copy of the resource is found, that copy is used. If a local copy of the resource
is not found, and a Resource Manager is available, a second search is performed on the RM for the resource. If a global copy of the resource is found, that copy is used.

**NO** If NO is specified, only a local search for the resource is performed.

**ONLY** If ONLY is specified, only a global search on the Resource Manager is performed. If RM(ONLY) is specified and a Resource Manager is not available, a DFS2859I message is issued with reason text RM(ONLY) INVALID, RM UNAVAILABLE, and the command is not processed.

**SHOW** Specifies which control blocks are captured by the SNAP function. The SHOW parameter is optional. Valid filtering values for the *keyword* and *blockname* parameters are listed in each section that describes a SNAP resource type. SHOW(PRI) is the default.

**STRUCTURE** Captures information about the DFSSQS control block storage for the specified shared queues structure. STRUCTURE(ALL) is the default.

**TRAN** Captures information about the transaction specified in the *tranname* parameter. This keyword captures the SMB data for a specified transaction.

**USER** Captures control block information about the user name specified in the *username* parameter. The *username* parameter specified must be alphanumeric, no longer than 8 characters, and identify a currently defined user name. Multiple *username* parameters can be specified with each parameter separated by a comma or a blank.

The control blocks that can be captured for user names are listed in the following table. Primary control blocks for a user name, which are always present and available for capture, are identified by the column labeled “Primary”. Optional control blocks for a user name, which might or might not be present and available for capture depending on workload and other factors, are identified by the column labeled “Optional”.

<table>
<thead>
<tr>
<th>Name</th>
<th>Block description</th>
<th>Macro</th>
<th>Primary</th>
<th>Optional</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPQB</td>
<td>Subpool Queue Block</td>
<td>ICLI</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>EPF</td>
<td>Event Control Block Prefix</td>
<td>IEPF</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CULE</td>
<td>Common Use List Element Block</td>
<td>DFSCULE</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSPWRK1</td>
<td>Dispatcher Work Area</td>
<td>IDSPWRK</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SAP</td>
<td>Save Area Prefix</td>
<td>ISAP</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SAVEAREA</td>
<td>Save Area Set</td>
<td>REQUATE</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PROLOG</td>
<td>Module Prolog Information</td>
<td>N/A</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CLB</td>
<td>Communication Line Block</td>
<td>ICLI</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CTB</td>
<td>Communication Terminal Block</td>
<td>ICLI</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CTT</td>
<td>Communication Translate Table</td>
<td>ICLI</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CRB</td>
<td>Communications Restart Block</td>
<td>ICLI</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SPQBEVT</td>
<td>Subpool Queue Extension Block</td>
<td>ICLI</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>EMHB</td>
<td>Expedited Message Handler Block</td>
<td>DBFEMHB</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Table 225. /DIAGNOSE SNAP USER() control blocks

424 Commands, Volume 1: IMS Commands A - M
### Table 225. `/DIAGNOSE SNAP USER()` control blocks (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Block description</th>
<th>Macro</th>
<th>Primary</th>
<th>Optional</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMB</td>
<td>Scheduler Message Block</td>
<td>IAPS</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TIB</td>
<td>APPC Transaction Instance Block</td>
<td>DFSTIB</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>YTIB</td>
<td>OTMA Transaction Instance Block</td>
<td>DFSYTIB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNT</td>
<td>Communication Name Table</td>
<td>ICLI</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>ECNT</td>
<td>Extended Communication Name Table</td>
<td>DBFECNT</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CRTCN</td>
<td>Command CART &amp; 4-Byte Console ID</td>
<td>DFSMCSC</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CCB</td>
<td>Conversational Control Block</td>
<td>ICLI</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CIB</td>
<td>Communication Interface Block</td>
<td>ICLI</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MSGBP</td>
<td>Basic 01/03 Message Prefix</td>
<td>QLOGMSGP</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>UOWE</td>
<td>Unit of Work Table Entry</td>
<td>DFSUOWE</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>INBUF</td>
<td>Input Line Buffer</td>
<td>N/A</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OUTBUF</td>
<td>Output Line Buffer</td>
<td>N/A</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>RAQE</td>
<td>VTAM Receive Any IO Buffer (In)</td>
<td>BUFVTPRE</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>RAQERES</td>
<td>VTAM Receive Any IO Buffer (Out)</td>
<td>BUFVTPRE</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

**SHOW keyword parameters for the `/DIAGNOSE SNAP USER` command**

SHOW

Specifies which blocks are returned. If the SHOW keyword is omitted from the `/DIAGNOSE SNAP USER` command, only the primary control blocks for the user name are captured by default. The SNAP USER() resource type supports the ALL, OPT, and PRI keywords, and all block names that are listed in Table 225 on page 424 as parameters for the SHOW keyword. Multiple SHOW parameters can be specified with each parameter separated by a comma or a blank. A maximum of 32 SHOW parameters can be specified.

The effects of the SHOW option on the data that is captured by the `/DIAGNOSE SNAP USER` command are described in the following list:

- **ALL**
  
  Captures all control blocks listed in Table 225 on page 424 that are available. Example: `/DIAGNOSE SNAP USER(IMSUS04) SHOW(ALL)`.

- **OPT**
  
  Captures all optional control blocks that are available. Optional control blocks are identified by the Optional column in Table 225 on page 424. Example: `/DIAGNOSE SNAP USER(IMSUS04) SHOW(OPT)`.

- **PRI**
  
  Captures the primary control blocks for the user. Primary control blocks are identified by the Primary column in Table 225 on page 424. Example: `/DIAGNOSE SNAP USER(IMSUS04) SHOW(PRI)`.

- **blockname**
  
  Captures the specified block by `blockname`. Block names are defined in the Name column in Table 225 on page 424. Example: `/DIAGNOSE SNAP USER(IMSUS04) SHOW(SPBQ)`.
Captures multiple blocks by block name. Example: /DIAGNOSE SNAP USER(IMSUS04) SHOW(SPB,EPF).

Captures a group of blocks by keyword and individual blocks by block name. Example: /DIAG SNAP USER(IMSUS04) SHOW(PRI,EPF).

Usage notes for the /DIAGNOSE SNAP USER command

The /DIAGNOSE SNAP USER command is available only in a DB/DC or DCCTL environment.

The following control blocks are available only in an IMS system where Fast Path is defined.
- ECNT (Extended Communication Name Table)
- EMHB (Expedited Message Handler Block)
- SMB (Scheduler Message Block)
- TIB (APPC Transaction Instance Block)
- YTIB (OTMA Transaction Instance Block)

If the SHOW(ALL) or SHOW(OPT) option is specified in a non-Fast Path environment, these blocks are ignored. If the SHOW(ECNT), SHOW(EMHB), SHOW(SMB), SHOW(TIB), or SHOW(YTIB) option is specified in a non-Fast Path environment, a DFS154I message is issued in response.

UOWE (Unit of Work Table Entry) block is available only in an IMS system where shared queues are defined. If the SHOW(ALL) or SHOW(APP) option is specified in a non-shared-queues environment, UOWE is ignored. If the SHOW(UOWE) option is specified in a non-shared-queues environment, a DFS154I message is issued in response.

TIB (APPC Transaction Instance Block) and YTIB (OTMA Transaction Instance Block) are mutually exclusive; only one is present at any given time. For SHOW() purposes, TIB and YTIB are treated as synonyms. Specifying either TIB or YTIB displays, if available, whichever of the two blocks is present.

The SHOW(PROLOG) option displays information about the modules that are associated with the save areas in the chain. The module entry point is obtained from the saved register 15 value of the previous save area. If SHOW(SAVEAREA) is combined with SHOW(PROLOG), the display consists of a save area followed by the related prolog of the module that uses the save area.

The SHOW(RECANY) option displays information about both RAQE (VTAM Receive Any IO Buffer (In)) and RAQERES (VTAM Receive Any IO Buffer (Out)) control blocks.

The SHOW(SA) option is a synonym for the SHOW(SAVEAREA) option.

Usage notes

One of the key uses for the /DIAGNOSE SNAP MODULE(modname) command is to return the entry point address of a module. With the /DIAGNOSE SNAP MODULE(modname) command, users can determine the entry point address of the target module without having to create a console dump to set an MVS SLIP trap.
Another important use for the /DIAGNOSE SNAP MODULE(modname) command is to extract the prolog information for a module. The prolog information for a module contains information about the current maintenance level of the module on your system. This can be useful to find out if there is any missing maintenance on your module. Establishing a common, or baseline, maintenance level can be useful in diagnosing difficult or complex problems.

Examples

Example 1 for /DIAGNOSE command

Entry ET:
/DIAGNOSE SNAP TRAN(trannname)

Response ET:
DFS058I DIAGNOSE COMMAND COMPLETED

Explanation: Diagnostic information about transaction trannname is captured and written to the IMS log.

Example 2 for /DIAGNOSE command

Entry ET:
/DIAGNOSE SNAP BLOCK(ALL) OPTION(TRACE)

Response ET:
DFS058I DIAGNOSE COMMAND COMPLETED

Explanation: Diagnostic information about IMS control blocks is captured and written to the trace data sets.

Example 3 for /DIAGNOSE command

Entry ET:
/DIAGNOSE SNAP BLOCK(CSCD)OPTION(OLDS)

Response ET:
DFS058I DIAGNOSE COMMAND COMPLETED

Explanation: Diagnostic information about APPC/OTMA SMQ SCD Extension control block is captured and written to the IMS log.

Example 4 for /DIAGNOSE command

Entry ET:
/DIAGNOSE SNAP AREA(00010001)

Response ET:
/DIAGNOSE SNAP STORAGE DISPLAY

Resource: AREA(D0010001)

<table>
<thead>
<tr>
<th>ALDS</th>
<th>DEDB</th>
<th>Area Name List Entry</th>
<th>Loc: 09E0A590</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>C4F0F0F1</td>
<td>F0F0F0F1 09F7E90 09826A30</td>
<td>D0010001..=.....</td>
</tr>
</tbody>
</table>
DMAC
---0000
0010
0020
0030
0040
0050
0060
0070
0080
0090
00A0
00B0
00C0
00D0
00E0
00F0
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
01A0
01B0
01C0
01D0
01E0
01F0
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
02A0
02B0
02D0
02E0
02F0
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
03A0
03B0
03C0
03D0
03E0
03F0
0400
0410

428

DEDB
-------F1F2F1F8
F0F0F0F1
00000000
00000000
00000000
00000000
00000000
01C1000A
000001F6
00000000
06088001
00000000
00000000
00000000
001CB600
00000000
09A5B0FC
00000000
09A5B0FC
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
34142B20
00010000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
09A5B0FC
00000000
00000000
00000000
00000000
00000000
00000000
40404040
40404040
00000000
00000000
00000000

Area Control Block
-------- -------- -------C4C5C4C2 D1F0F0F1 C4F0F0F1
0010213F 2217081F 00000000
000001EF 00008000 00000E5B
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000403 00000000
000F0019 00780002 00000200
000003EA 00000005 00000000
00018000 00000000 01000101
00000001 00000000 00000002
00000000 40000000 00000000
00000000 00000000 09B267A0
00000000 00000000 40404040
000001C7 00000000 00000000
00080600 00000000 0A12F618
00000000 00010000 00000000
00000000 00000000 00000000
00000100 00401800 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
0000FFA6 000001EF 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 25262D2E
D5D6E5FF 00161718 00000000
09A5C090 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
40404040 40404040 40404040
40404040 40404040 40404040
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000

Commands, Volume 1: IMS Commands A - M

Loc: 09B26A30
---------------|1218DEDBJ001D001|
|0001............|
|...............$|
|................|
|................|
|................|
|................|
|.A..............|
|...6............|
|................|
|................|
|........ .......|
|................|
|............
|
|.......G........|
|..............6.|
|.v..............|
|................|
|.v....... ......|
|................|
|................|
|................|
|................|
|................|
|.......w........|
|................|
|................|
|................|
|................|
|................|
|................|
|................|
|................|
|................|
|................|
|................|
|................|
|................|
|................|
|................|
|................|
|................|
|....NOV.........|
|.....v..........|
|................|
|................|
|................|
|................|
|................|
|................|
|................|
|................|
|................|
|.v..............|
|................|
|................|
|................|
|................|
|................|
|....
|
|
|
|
............|
|................|
|................|
|................|


Explanation: Diagnostic information about the primary control blocks for the area is captured, formatted, and displayed on the issuing LTERM.

Example 5 for /DIAGNOSE command

Entry ET:

/DIAGNOSE SNAP AREA(D0010001) SHOW(ALDS)

Response ET:

/DIAGNOSE SNAP STORAGE DISPLAY

Resource: AREA(D0010001)

<table>
<thead>
<tr>
<th>ALDS</th>
<th>DEDB Area Name List Entry</th>
<th>Loc: 09E0A590</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>C4F0F0F1</td>
<td>F0F0F0F1 09BF7E90 09B26A30</td>
</tr>
</tbody>
</table>

Explanation: Diagnostic information about the ALDS control block for the area is captured, formatted, and displayed on the issuing LTERM.

Example 6 for /DIAGNOSE command

Entry ET:

/DIAGNOSE SNAP AREA(D0010001,D0010002) SHOW(ALDS)

Response ET:

/DIAGNOSE SNAP STORAGE DISPLAY

Resource: AREA(D0010001)

<table>
<thead>
<tr>
<th>ALDS</th>
<th>DEDB Area Name List Entry</th>
<th>Loc: 09E0A590</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>C4F0F0F1</td>
<td>F0F0F0F1 09BF7E90 09B26A30</td>
</tr>
</tbody>
</table>

Resource: AREA(D0010002)

<table>
<thead>
<tr>
<th>ALDS</th>
<th>DEDB Area Name List Entry</th>
<th>Loc: 09E0A5A0</th>
</tr>
</thead>
</table>
| 0000 | C4F0F0F1 | F0F0F0F2 09BF7E90 09B26F38 | D0010002..*...?

+10213/152311*
Explanation: Diagnostic information about the ALDS control block for areas D0010001 and D0010002 is captured, formatted, and displayed on the issuing LTERM.

Example 7 for /DIAGNOSE command

Entry ET:
/DIAGNOSE SNAP AREA(D0010001) SHOW(ALDS,ADSC)

Response ET:
/DIAGNOSE SNAP STORAGE DISPLAY

Resource: AREA(D0010001)

ALDS  DEDB Area Name List Entry  Loc: 09E0A590
----  --------------  ------------------  ------------
0000  C4F0F0F1  F0F0F0F1  09BF7E90  09BF26A30

ADSC  DEDB Area Data Set Control Block  Loc: 09A5B0FC
----  ---------------  ------------------  ------------
0000  C4F0F0F1  F0F0F0F1  0904E2E3  C5E2E3D3
0010  48C4F0F0  F1F0F0F0  F1404040  F1404040
0020  40404040  40404040  40404040  40404040
0030  40404040  00000000  08000000  10000000
0040  09B26A30  09A5B040  00000000  E9000000
0050  00000000  00000000  00000000  01CF1380
0060  00000000  00000000  00000000  00000000
0070  00000000  00000000  00000000  00000000
0080  00000000  00000000  00000000  00000000
0090  00000000  00000000  00000000  00000000
00A0  00000000  00000000  00000000  00000000
00B0  00000000  00000000  00000000  00000000

*10213/152558*

Explanation: Diagnostic information about the ALDS and ADSC control blocks for the area is captured, formatted, and displayed on the issuing LTERM.

Example 8 for /DIAGNOSE command

Entry ET:
/DIAGNOSE SNAP MSNAME(LINK31V6) SHOW(PRI)

Response ET:
/DIAGNOSE SNAP STORAGE DISPLAY

Resource: MSNAME(LINK31V6)

LNB  Link Name Block  Loc: 0C67C800
----  ------------------  ------------
0000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000
0010  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000
0020  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000
0030  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000
0040  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000
0050  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000
0060  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000

*12216/072150*

Explanation: Diagnostic information about the primary control blocks for MSNAME LINK31V6 is captured, formatted, and displayed on the issuing LTERM.

Related concepts:
Chapter 26. /DISPLAY commands

Use the IMS /DISPLAY commands to display the processing status of IMS message queues and processing resources.

The /DISPLAY commands can provide helpful information for controlling IMS operations.

These commands can be issued to an IMSplex using the Batch SPOC utility.

The output from a /DISPLAY command consists of headings that describe the display, the information requested, and a time stamp showing Julian date and time, in one of the following two formats:

```
yyddd/hhmmss
yyyyddd/hhmmss
```

You control the time stamp format by specifying the YEAR4= execution parameter.

The value shown in the QCNT column of the command output has different meanings for different commands, as described in individual /DISPLAY command topics.

If the command includes a generic parameter that does not match any existing resource, an error message results.

In an IMSplex, when status is copied to RM at signoff/logoff time, the status (and control blocks if the resource is dynamic) is deleted from the local system. An Automated Operator Interface (AOI) application program that issues a /DISPLAY command will not see some status information that is kept in RM if the IMS system on which the AOI program runs is not using RM services. When a /DISPLAY command is issued for NODE, USER, and LTERM resources from the command master, global status from RM might be displayed. The output of the display command will be dependent on the following guidelines:

**Command master IMS system**
- Displays information from the local system
- Displays information from RM that is not owned, or is owned by a failed system

**Other IMS systems**
Displays information from the local system

**Attention:** Using ALL, generic parameters, the /DISPLAY STATUS command, and the /DISPLAY CONVERSATION command without a specific resource name will result in extensive accesses to the Resource Manager for global information, and their use should be carefully considered.

Subsections:
- “Status and attributes for the /DISPLAY command” on page 435
- “/DISPLAY ACT command” on page 449
- “/DISPLAY AFFIN command” on page 466
- “/DISPLAY AOITKN command” on page 468

© Copyright IBM Corp. 1974, 2016
Status and attributes for the /DISPLAY command

A list of the attributes and status shown in the /DISPLAY command are described in the following table.

Table 226. Attributes and status in the /DISPLAY command

<table>
<thead>
<tr>
<th>Status or attribute</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicates no status for the resource.</td>
<td></td>
</tr>
<tr>
<td>ACCEPT TRAFFIC</td>
<td>OTMA is ready to accept messages from this member.</td>
</tr>
<tr>
<td>ACT MODE</td>
<td>Indicates the mode table name actually used to initiate mode.</td>
</tr>
<tr>
<td>ACTIV</td>
<td>Indicates that this node is in an XRF session, on the active system.</td>
</tr>
<tr>
<td>ACTIVE, A</td>
<td>Indicates one of the following:</td>
</tr>
<tr>
<td></td>
<td>• Conversation in progress.</td>
</tr>
<tr>
<td></td>
<td>• For /DISPLAY MODIFY, the routing code (RTCODE) named is active or that the library is active.</td>
</tr>
<tr>
<td></td>
<td>• The IMS subsystem is the active subsystem.</td>
</tr>
<tr>
<td></td>
<td>• The current XRF surveillance mechanism is active.</td>
</tr>
<tr>
<td></td>
<td>• The OTMA member is in an active z/OS cross-system coupling facility (XCF) group.</td>
</tr>
<tr>
<td></td>
<td>• The secondary master terminal is active.</td>
</tr>
<tr>
<td>ACTIVE-DBCM</td>
<td>Indicates an /DBD or /DBR command is in progress and waiting for the region to terminate before the /DBD or /DBR can complete.</td>
</tr>
<tr>
<td>ACTIVE-RRS</td>
<td>The APPC/OTMA shared queues enablement is active, and z/OS Resource Recovery Services (RRS) is used for communication between front-end and back-end systems for all synchronization levels.</td>
</tr>
<tr>
<td>ACTIVE-RRS/XCF</td>
<td>The APPC/OTMA shared queues enablement is active, and z/OS cross-system coupling facility (XCF) is used for communication between front-end and back-end systems if synchronization level is NONE or CONFIRM. For synchronization level SYNCPOINT, RRS is used for communication between front-end and back-end systems.</td>
</tr>
<tr>
<td>ACTIVE-XCF</td>
<td>The APPC/OTMA shared queues enablement is active, and XCF is used for communication between front-end and back-end if synchronization level is set to NONE or CONFIRM. Transactions of synchronization level SYNCPOINT are queued with affinity to the front-end system.</td>
</tr>
<tr>
<td>ACTV</td>
<td>Indicates, for a logical link, that link startup processing is complete and the line is available for message transfer.</td>
</tr>
<tr>
<td>ALLOC</td>
<td>Indicates that an ISC user is allocated. The node name to which the user is allocated or signed on follows in parentheses.</td>
</tr>
<tr>
<td>ALLOCATION IN PROGRESS</td>
<td>Indicates that a conversation is in the process of being allocated.</td>
</tr>
</tbody>
</table>
### Table 226. Attributes and status in the `/DISPLAY` command (continued)

<table>
<thead>
<tr>
<th>Status or attribute</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALLOCF</td>
<td>Indicates that database allocation failed.</td>
</tr>
<tr>
<td>ALLOCS</td>
<td>Indicates that database allocation was successful.</td>
</tr>
<tr>
<td>AREA</td>
<td>The subset of a DEDB.</td>
</tr>
<tr>
<td>AUTOSR</td>
<td>Indicates a session initiation option of ASR.</td>
</tr>
</tbody>
</table>
| AVAILABLE           | Indicates one of the following:  
  - The OLDS can be reused.  
  - A region is available to schedule an application.  
  - A coupling facility structure is available for use by IMS. |
| AWAITING RESPONSE   | Indicates that an active terminal is waiting for a response. |
| AWAITING SNAPQ      | Indicates that the alternate subsystem is waiting for `/CHE SNAPQ` from the active subsystem. |
| BACKOUT             | Indicates that the OLDS is potentially required for backout or, in the case of a database, there are incomplete backouts that prevent the use of the database. |
| BACKUP              | Indicates that the IMS subsystem is the alternate subsystem. |
| BAL                 | Identifies a transaction eligible for load balancing (for example, with parallel limits specified). The current maximum number of regions that can be simultaneously scheduled to process the transaction follows in parentheses. |
| BCKUP               | Indicates that this node is in an XRF session, on the alternate system. |
| C1INOP, C2INOP, C3INOP, C4INOP | Indicates the inoperable node or terminal component, where C1, C2, C3, and C4 refer to different components as defined by system definition. (See the `/COMPT` and `/RCOMPT` commands for details on how to ready inoperable components.) |
| CANCEL              | Indicates that an APPC connection was stopped by the `/STOP APPC CANCEL` command. |
| CHECK               | Indicates that the OTMA client is using RACF for security verification. |
| CLSER               | Indicates that an error occurred while closing the OLDS. |
| CLSDST              | Indicates that a `/CLSDST` or `/STOP` command has been entered for a VTAM node but has not yet taken effect. This condition can occur because of an outstanding input or output operation that has not completed. The VTAM network operator can issue a z/OS VARY command to clear the condition. |
| COLD                | For an MSC logical link, indicates that link startup processing is not complete.  
  For a SLUP or FINANCE terminal, indicates that the next session initiation is cold (message sequence numbers are initialized to 0.) |
<p>| COMPINOP            | Indicates an inoperable terminal component. For 3270 terminals, this is an indication that either the display or the printer is not ready. |
| CON                 | Indicates that a node is connected, or in session, with IMS. |
| CONN                | Subsystem connection. |</p>
<table>
<thead>
<tr>
<th>Status or attribute</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONN, ACTIVE</td>
<td>Indicates that an application program has established communication with a subsystem.</td>
</tr>
<tr>
<td>CONNECTED</td>
<td>Indicates that IMS is connected to a coupling facility structure.</td>
</tr>
<tr>
<td>CONN IN PROGRESS</td>
<td>Subsystem connection in progress.</td>
</tr>
<tr>
<td>CONVACT, CONV-ACT</td>
<td>Indicates an active conversation on this terminal, node, or user.</td>
</tr>
</tbody>
</table>
| CONVERSATION TERM/USER | Indicates for /DISPLAY MODIFY that the transaction to be changed or deleted or the transaction that references a program or database to be changed or deleted is in conversation. The terminal originating the conversational transaction and the conversation ID are also displayed. The terminal displayed is:  
  - nodename for VTAM terminals  
  - nodename and username if an ETO user is signed on to the node  
  - username for ETO users who signed off while in conversation  
  - lin#-pte# (line and pterm number) for non-VTAM terminals  
  - 1-SC for the system console |
| CONVHLD, CONV-HLD   | Indicates a held conversation on this terminal, node, or user. |
| COPY-PHASE          | Indicates that the CREATE utility is currently in COPY-PHASE for an ADS. |
| CREATED             | Indicates the XCF group has been created, but the OTMA member has not yet connected to it. |
| DB-STOPD            | Indicates that a database used by this program is stopped. |
| /DBD ACTIVE         | A /DBDUMP command is in progress for a database to be changed or deleted. |
| /DBR ACTIVE         | A /DBRECOVERY command is in progress for a database to be changed or deleted. |
| DEACT (DEACTIVATED) | Indicates a physical terminal/node or line has been permanently deactivated. Restart of non-VTAM node requires /STOP DC and /START DC commands. Message DFS2473 in the system console log might contain information regarding the reason this status was set. DFS2473 can occur more than once in the system console log. |
| DEADQ               | Indicates a user with dead letter queues or whose last access time was outside the limit set by the DLQT JCL parameter. The DEADQ status can be removed by signing on the user or entering the /DEQUEUE or /ASSIGN command. |
| DEALLOCATION IN PROGRESS | Indicates that a conversation is in the process of being deallocated. |
| DEQCT               | Number of local message dequeues since the last IMS cold start or, in a shared-queue environment, since the last IMS restart. DEQCT is reset to zero when ENQCT reaches 32768. A DEQCT count can equal the sum of the DEQCTs of multiple destinations (logical terminals or transactions). |
### Table 226. Attributes and status in the /DISPLAY command  (continued)

<table>
<thead>
<tr>
<th>Status or attribute</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISABLED</td>
<td>Indicates APPC/IMS is not known to APPC/z/OS.</td>
</tr>
</tbody>
</table>
| DISCONNECTED        | Indicates one of the following:  
|                     | • A node is not in session.  
|                     | • The OTMA client has disconnected from the XCF group.  
|                     | • IMS is not connected to a coupling facility structure. |
| DQF                 | Indicates a dequeue request for OTMA REPresynch command failed. |
| DYNAMIC             | A transaction was built in a shared-queues environment to enable transaction messages to be enqueued, but the transaction cannot run on the current IMS subsystem. |
| EEQE                | Extended error queue element, indicates that one or more error queue elements are associated with the database. |
| ELIGIBLE FOR        | Indicates that the transaction is eligible for scheduling and cannot be deleted by online change. Stop the transaction before attempting another online change commit. |
| SCHEDULING          | |
| ENABLED             | Indicates that APPC is started. |
| ENQCT               | Number of local message enqueues since the last IMS cold start, or in a shared-queue environment, since the last IMS restart. ENQCT is reset to the number of messages on queue (QCT) when the counter reaches 32768 (QCT = ENQCT - DEQCT). The ENQCT can exceed 32768 if the DEQCT remains zero. The ENQCT will be reset to zero if the counter exceeds 65535. An ENQCT count can equal the sum of the ENQCTs of multiple destinations (logical terminals or transactions). |
| ERE                 | Indicates, for a logical link, that link startup processing is not complete. When the link is started, emergency restart synchronization will be performed, because the previous link shutdown was either not normal or an IMS emergency restart was performed. |
| EXCL                | Indicates a node, terminal, or user is in exclusive mode. |
| FAILED              | Indicates one of the following:  
|                     | • APPC failed to start.  
<p>|                     | • OTMA failed to join the XCF group or the XCF group failed initialization. Check the DFSPBxxx PROCLIB member for the OTMA group name and member name definition. You might have defined an incorrect or duplicate XCF member name for IMS OTMA. |
| FILLING             | Indicates that a log gap is currently being filled. |
| FLOOD               | Indicates that input from the tmember is suppressed because of a message flood condition. |
|                     | Check if the flood was caused by stopped IMS programs or hung regions. Sometimes it could be caused by bad I/O response time. |
| FORCE, FORCES       | Indicates a session initiation option of FORCE. |</p>
<table>
<thead>
<tr>
<th>Status or attribute</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORCE-RRS</td>
<td>The APPC/OTMA shared queues enablement is active, and RRS is used for communication between front-end and back-end systems for all synchronization levels. All transactions are queued without affinity even if one IMS system has the APPC/OTMA shared queues enablement not active.</td>
</tr>
<tr>
<td>FORCE-RRS/XCF</td>
<td>The APPC/OTMA shared queues enablement is active, and XCF is used for communication between front-end and back-end systems if synchronization level is NONE or CONFIRM. For synchronization level SYNCPOINT, RRS is used for communication between front-end and back-end systems. All transactions are queued without affinity even if one IMS system has the APPC/OTMA shared queues enablement not active.</td>
</tr>
<tr>
<td>FORMAT-PHASE</td>
<td>Indicates that the CREATE utility is currently in FORMAT-PHASE for an ADS.</td>
</tr>
<tr>
<td>FULL</td>
<td>Indicates that the OTMA client is using RACF for security verification, including for dependent regions.</td>
</tr>
<tr>
<td>GLOBAL QUEUE COUNT</td>
<td>Indicates that IMS is unable to access global queue counts or obtain storage to query the queue counts.</td>
</tr>
<tr>
<td>GLOBAL QUEUE COUNT</td>
<td>Indicates that IMS is unable to access global queue counts or obtain storage to query the queue counts.</td>
</tr>
<tr>
<td>INTERNAL ERROR</td>
<td>Indicates that IMS is unable to access global queue counts or obtain storage to query the queue counts.</td>
</tr>
<tr>
<td>IC</td>
<td>Indicates that image copy is in progress for that area or database by an HSSP region.</td>
</tr>
<tr>
<td>IDENTIFICATION IN PROGRESS</td>
<td>Indicates that the IMS logger is in the process of identifying to the Transport Manager Subsystem (TMS) but has not yet completed.</td>
</tr>
<tr>
<td>IDENTIFIED</td>
<td>Indicates that an IMS logger has identified to the TMS.</td>
</tr>
<tr>
<td>IDLE</td>
<td>Indicates that no activity of any kind is in progress for a line, node, or logical link. This is a common condition for VTAM node channel-to-channel links, and processor storage-to-processor storage links.</td>
</tr>
<tr>
<td>IDLE-Cxx</td>
<td>When the Multiple Systems Coupling (MSC) TCP/IP link is in IDLE state, asynchronous output might still be in progress and the link is waiting for that response. xx represents the following values:</td>
</tr>
<tr>
<td></td>
<td>X'10'     A response is owed for data.</td>
</tr>
<tr>
<td></td>
<td>X'16'     A response is owed for stop bracket initiation (SBI) or bracket initiation stopped (BIS).</td>
</tr>
<tr>
<td>INACTIVE</td>
<td>The APPC/OTMA shared queues enablement is inactive. If AOS=Y is specified, the global status might change to active if the IMS member that does not support the APPC and OTMA shared queues enablement leaves the shared queues group. A back-end system will still be able to process messages from a front-end system even with status INACTIVE.</td>
</tr>
<tr>
<td>INACTIVE, I</td>
<td>Indicates that the current XRF surveillance mechanism is inactive. For the /DISPLAY MODIFY command, indicates that the library is inactive. The RSR tracking subsystem is idle.</td>
</tr>
<tr>
<td>INOP</td>
<td>Indicates that a terminal or node is inoperable.</td>
</tr>
</tbody>
</table>
Table 226. Attributes and status in the /DISPLAY command (continued)

<table>
<thead>
<tr>
<th>Status or attribute</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN-OVERFLOW</td>
<td>Indicates that a coupling facility structure is in overflow mode.</td>
</tr>
<tr>
<td>INPUT IN PROGRESS</td>
<td>Indicates input in progress for an active terminal.</td>
</tr>
<tr>
<td>INQONLY</td>
<td>Indicates a /DBDUMP command was issued for the database.</td>
</tr>
<tr>
<td>IN SLOWDOWN</td>
<td>Indicates that the OTMA member is experiencing a slowdown because of excessive message traffic or resource constraints. Check the XCF configuration in your environment.</td>
</tr>
<tr>
<td>INUSE, IN USE</td>
<td>Indicates that queuing is in process for this transaction. (either terminal input or program-to-program switch). Also indicates this is the OLDS currently being used.</td>
</tr>
<tr>
<td>INVALID SUBSYSTEM NAME = XXXX</td>
<td>Indicates that a subsystem name was not defined to IMS.</td>
</tr>
<tr>
<td>I/O PREVEN, I/O PREVENT, I/O PREV</td>
<td>Indicates a BMP program that contains GSAM cannot complete scheduling because I/O prevention has not completed. Indicates further I/O requests to data sets are inhibited.</td>
</tr>
<tr>
<td>I/O TOLERATION</td>
<td>Takeover process by which an alternate IMS subsystem ensures database integrity and enables new transaction processing as soon as possible.</td>
</tr>
<tr>
<td>LOCK</td>
<td>Indicates a node, terminal, transaction, program, or database is locked.</td>
</tr>
<tr>
<td>LOOPTEST</td>
<td>Indicates a line or terminal in looptest mode.</td>
</tr>
<tr>
<td>LOST</td>
<td>Indicates that the VTAM LOSTERM EXIT has been scheduled for this node but has not yet been recognized by IMS. At the next interrupt for this node, IMS will interrogate the LOSTERM value. All values, with one exception, result in an immediate CLSDST, or disconnection, from IMS. For the LOSTERM exception, IMS must wait for VTAM to notify IMS (by another LOSTERM) of completion of recovery operation. Indicates an IMS logger's connection to the TMS is gone as a result of TMS or VTAM failure.</td>
</tr>
<tr>
<td>MAX TPIPE</td>
<td>The total number of tpipes reaches the maximum number.</td>
</tr>
<tr>
<td></td>
<td>To resolve this flood condition for TPIPE limit, issue the IMS /CHECKPOINT command three times to clear the unused OTMA TPIPE, or restart IMS. Also, examine your TPIPE limit in the OTMA member descriptor in the DFSYDTx PROCLIB member.</td>
</tr>
<tr>
<td>MESSAGES WAITING</td>
<td>Indicates that there are system messages waiting to be sent, which prevents shutdown from completing.</td>
</tr>
<tr>
<td>MPSTEST, MFST</td>
<td>Indicates a terminal, node, or user in MFSTEST mode.</td>
</tr>
<tr>
<td>MSGS IN QUEUE</td>
<td>Indicates that there are messages in the queue for an active terminal.</td>
</tr>
<tr>
<td>MSG CT</td>
<td>Number of messages on the queue for this destination (calculated by subtracting the DEQCT from ENQCT).</td>
</tr>
<tr>
<td>N/A</td>
<td>Indicates that a link is not assigned or a user is signed on to a static terminal, in which case queues are not applicable.</td>
</tr>
<tr>
<td>Status or attribute</td>
<td>Meaning</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------------------------------------------------------------------------</td>
</tr>
<tr>
<td>NEEDED</td>
<td>Indicates the OLDS that needs to be archived.</td>
</tr>
<tr>
<td>NO ACTIVE CONVERSATION</td>
<td>Indicates that there is no active conversation between a logger and a log router.</td>
</tr>
<tr>
<td>NODE-USR</td>
<td>Node name and user identifier.</td>
</tr>
<tr>
<td>NOIN</td>
<td>Indicates a line or terminal stopped for input.</td>
</tr>
<tr>
<td>NO INPUTTING LINES</td>
<td>Indicates no terminal activity.</td>
</tr>
<tr>
<td>NO LOG ROUTER SG DEFINED</td>
<td>Indicates that there is no Log Router Service Group defined to DBRC.</td>
</tr>
<tr>
<td>NONE</td>
<td>Indicates that the OTMA client is not using RACF for security verification.</td>
</tr>
<tr>
<td>NOOUT</td>
<td>Indicates a line or terminal stopped for output.</td>
</tr>
<tr>
<td>NO OUTPUTTING LINES</td>
<td>Indicates no terminal activity.</td>
</tr>
<tr>
<td>NOQUEUE</td>
<td>Indicates a line or terminal that has had message queuing stopped for message switching.</td>
</tr>
<tr>
<td>NOT CONN</td>
<td>No subsystem connection.</td>
</tr>
<tr>
<td>NOT DEFINED</td>
<td>Indicates the OTMA member has left the XCF group (for example, because of a /STOP OTMA command). Restart the OTMA client to join the XCF group.</td>
</tr>
<tr>
<td>NOT IDENTIFIED</td>
<td>Indicates that an IMS logger is not identified to the TMS.</td>
</tr>
<tr>
<td>NOTIDLE s</td>
<td>Indicates that a logical link is waiting for the completion of a synchronous event. The s represents the following subcodes:</td>
</tr>
<tr>
<td></td>
<td>A Indicates a status of NOTIDLE-POST, which means that an event has completed but the link has not been dispatched to process it.</td>
</tr>
<tr>
<td></td>
<td>B Indicates a status of NOTIDLE-IWAIT, which means the link is waiting for completion of internal I/O.</td>
</tr>
<tr>
<td></td>
<td>Cxx Indicates a status of NOTIDLE-TP WAIT, which means the link is waiting for completion of a TP access method request. The two characters xx indicate the value of the access method operation code. Blanks are displayed if the link is VTAM. For MSC TCP/IP links, xx indicates the following:</td>
</tr>
<tr>
<td></td>
<td>X'20' A response is owed for a restart request.</td>
</tr>
<tr>
<td>NOTINIT</td>
<td>Indicates a database or program for which directory initialization failed or indicates DMB or PSB pool space not large enough to accommodate blocks. Indicates a TRAN that could not be initialized.</td>
</tr>
<tr>
<td>NOTOPEN, NOT-OPEN</td>
<td>Indicates a database, area, line, terminal, or physical link that is not in open status. This status is not applicable to MSDBs.</td>
</tr>
<tr>
<td>NOT USABLE</td>
<td>Indicates a log data set (OLDS) is unusable because of previous error.</td>
</tr>
</tbody>
</table>
Table 226. Attributes and status in the /DISPLAY command (continued)

<table>
<thead>
<tr>
<th>Status or attribute</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRE</td>
<td>Indicates, for a logical link, that link startup processing is not complete. When the link is started, normal restart synchronization will be performed, because the previous link shutdown or IMS restart was normal.</td>
</tr>
<tr>
<td>OFR</td>
<td>Indicates that the database or area is being brought up to the current tracking level with online forward recovery.</td>
</tr>
<tr>
<td>OLR</td>
<td>Indicates that the database has online reorganization in progress</td>
</tr>
<tr>
<td>OPEN</td>
<td>Indicates that the VT AM ACB is open. Indicates an area to be changed or deleted is open.</td>
</tr>
<tr>
<td>OPNDST</td>
<td>Indicates that an OPNDST is in process for this node.</td>
</tr>
<tr>
<td>OUTBOUND</td>
<td>Indicates that the alternate subsystem is APPC-enabled. Also shown on active subsystem when APPC processing cannot start.</td>
</tr>
<tr>
<td>OUTPUT IN PROGRESS</td>
<td>Indicates output in progress for an active terminal.</td>
</tr>
<tr>
<td>PAGE</td>
<td>Indicates an MFS paged message.</td>
</tr>
<tr>
<td>PERMNT ERR</td>
<td>Indicates that there is a permanent error, such as a read error, that prevents a log gap from being filled.</td>
</tr>
<tr>
<td>PLANNED TAKEOVER IN PROGRESS</td>
<td>Indicates all active subsystems being tracked have successfully shut down and the tracker is now in the process of shutting down.</td>
</tr>
<tr>
<td>PRE-OPEN FAILED</td>
<td>Pre-open for ADS failed.</td>
</tr>
<tr>
<td>PREV CLSER</td>
<td>Indicates that the previous OLDS could not be closed because of an I/O error; therefore, this OLDS is required by the Log Recovery utility to correct the condition.</td>
</tr>
<tr>
<td>PRI</td>
<td>Indicates that this node is the primary partner of an ISC session; or, for a link, indicates that it is the primary partner of an MSC-VTAM session.</td>
</tr>
<tr>
<td>PRIMARY MSTR</td>
<td>Indicates that the terminal is the primary master terminal.</td>
</tr>
<tr>
<td>PROFILE</td>
<td>Indicates that the OTMA client is using values in the Security Data section of the message prefix for a transaction.</td>
</tr>
<tr>
<td>PRST</td>
<td>Indicates that a terminal or user is in preset destination mode. The destination trancode or logical terminal name follows in parentheses.</td>
</tr>
<tr>
<td>PSB SCHEDULED</td>
<td>A program that references a database to be changed or deleted is scheduled.</td>
</tr>
<tr>
<td>PSTOPPED (PSTO, PSTOP)</td>
<td>Indicates a line, terminal, transaction, or logical link that has been pstopped. This status can indicate that a different, necessary resource is unavailable. For example, a transaction could show a status of PSTOP because the associated program is not initialized.</td>
</tr>
<tr>
<td>PUR, PURGING</td>
<td>Indicates a transaction, line, or terminal that is purging all of its output.</td>
</tr>
<tr>
<td>QCT</td>
<td>Number of messages on the queue for this destination (calculated by subtracting the DEQCT from ENQCT).</td>
</tr>
<tr>
<td>QERR, QERROR</td>
<td>Indicates that an I/O error occurred on the queue for this LTERM, or remote transaction (MSC).</td>
</tr>
</tbody>
</table>
Table 226. Attributes and status in the /DISPLAY command (continued)

<table>
<thead>
<tr>
<th>Status or attribute</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>QLOCK</td>
<td>Indicates that the LTERM is locked from sending any further output or from receiving input which could create additional output for the same LTERM until the state is reset by a specific request received on the session.</td>
</tr>
<tr>
<td>QSTP</td>
<td>Indicates that transaction queuing is stopped by online change because the transaction is affected by the online change. Online change might be changing or deleting the transaction, or changing or deleting a program, PSB, database, or DMB referenced by the transaction. Transaction queuing is stopped until the online change is committed or aborted.</td>
</tr>
<tr>
<td>QUEUING  ( mn )</td>
<td>Indicates that messages are queued to the transaction to be changed or deleted, and ( mn ) is the number of messages queued.</td>
</tr>
<tr>
<td>QUI</td>
<td>Indicates that a VTAM node has sent a VTAM Quiesce-End-of-Chain indicator to suspend IMS output.</td>
</tr>
</tbody>
</table>
| QUIESCED            | Indicates one of the following:  
  - The OTMA member is temporarily quiesced. Restart the member or OTMA.  
  - The node is stopped.  
  - The database is currently quiesced by a previous UPDATE DB START(QUIESCE) or UPDATE AREA START(QUIESCE) command. |
| QUIESCING           | Indicates that the database is undergoing quiesce by a previous UPDATE DB START(QUIESCE) or UPDATE AREA START(QUIESCE) command. |
| REBLD-INPROG        | Indicates that a CQS structure rebuild is in progress for a structure. |
| RECALL              | Indicates that database or area is in recall. |
| RECD                | The number of messages that are received from the specified node.  
  For static terminals, this is the number of messages that are received since the last IMS cold start, warm start, or emergency restart. The count is not reset when a static terminal logs off or logs on.  
  For dynamic terminals, this is the number of messages that are received since the current user signed on to the dynamic terminal. The count is reset when a user signs off from the dynamic terminal, and following a cold start, warm start, or emergency restart. |
| RECOVERY            | Requests the display of recovery values that pertain to the node or user. For the /DISPLAY DB command, indicates that DRF recovery is in progress for that database. |
| RECOVERY-NEEDED, RECOVERN | Indicates areas that need recovery. |
| RELREQ (NODE)       | Indicates that the VTAM RELREQ exit routine has been driven but IMS is waiting for an operation in progress to complete before releasing the node. |
Table 226. Attributes and status in the /DISPLAY command (continued)

<table>
<thead>
<tr>
<th>Status or attribute</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>REP</td>
<td>Indicates that IMS is waiting for an OTMA REPresynch command from the client.</td>
</tr>
<tr>
<td>REQ</td>
<td>Indicates that IMS is sending an OTMA REQresynch command to the client.</td>
</tr>
<tr>
<td>RESP</td>
<td>Indicates that the node, line, terminal, or user is in input response mode and the response reply message is available for output or in the process of being sent.</td>
</tr>
<tr>
<td>RESPINP, RESP-INP</td>
<td>Indicates the terminal, line, node, or user is in full-function input response mode and the response mode input is still in-doubt; for example, the response reply message is not available for output.</td>
</tr>
<tr>
<td>RESP-INP-FP</td>
<td>Indicates the terminal, line, node, or user is in Fast-Path input response mode and the response mode input is still in-doubt; for example, the response reply message is not available for output.</td>
</tr>
<tr>
<td>RESYNC</td>
<td>Indicates that the positive acknowledgment for an IMS recoverable output message was not received when the connection with the VTAM node was terminated. This message will be subject to resynchronization when the next connection for this node is attempted.</td>
</tr>
<tr>
<td>RNL</td>
<td>Randomizer is not loaded for a DEDB database.</td>
</tr>
<tr>
<td>RSF</td>
<td>Indicates that a reset request failed for an OTMA REPresynch command.</td>
</tr>
<tr>
<td>SCHEDULED</td>
<td>Indicates that a conversation, transaction, or program has been received and queued. For a conversation, this status will be displayed from the time an input message is entered until the output message is dequeued. With /DISPLAY MODIFY, indicates that the named resource (a transaction or program to be changed or deleted, or a program referencing a database to be changed or deleted) is scheduled. With /DISPLAY OLDS, indicates that an archive job had been generated.</td>
</tr>
<tr>
<td>SEC</td>
<td>Indicates that this node is the secondary partner of an ISC session; or, for a link, indicates that it is the secondary partner of an MSC-VTAM session.</td>
</tr>
<tr>
<td>SECOND MSTR</td>
<td>Indicates that the terminal is the secondary master terminal.</td>
</tr>
<tr>
<td>SENDING LOGS</td>
<td>Indicates that a logger has an active conversation with a log router and is sending logs to the tracking site.</td>
</tr>
<tr>
<td>SENT</td>
<td>The number of messages that are sent from the specified node. For static terminals, this is the number of messages sent since the last IMS cold start, warm start, or emergency restart. The count is not reset when a static terminal logs off or logs on. For dynamic terminals, this is the number of messages sent since the current user signed on to the dynamic terminal. The count is reset when a user signs off from the dynamic terminal, and following a cold start, warm start, or emergency restart.</td>
</tr>
<tr>
<td>Status or attribute</td>
<td>Meaning</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------</td>
</tr>
<tr>
<td>SERVER</td>
<td>Indicates that the OTMA client is acting as the server.</td>
</tr>
</tbody>
</table>
| SEVER+FLOOD         | Indicates that the global flood limit was specified in client descriptor or in the /START TMEMBER ALL INPUT command, and IMS has reached this OTMA global message flood limit.  
To resolve the OTMA global flood condition, examine each OTMA client and identify the pending message counts for each client. A client with too many unprocessed messages might have triggered the flood. Examine also any stopped programs and hung regions. |
| SEVERE-ERROR        | Indicates that ADS encountered a severe error. |
| SHUT                | Indicates that normal processing has completed for the node and a VTAM shutdown-complete indicator was returned to IMS. The node can receive IMS output but cannot enter data while in this state. |
| SHUTDOWN-STRCHKPT    | Indicates that CQS will take a structure checkpoint during normal shutdown. |
| SIGN                | Indicates that a terminal or user is signed on to a node under enhanced security. The user signed on to the node is shown in parentheses following SIGN. |
| SIMLOGON            | Indicates that a logon to IMS has been simulated. |
| SMQ BACKEND         | Indicates that this OTMA member has been created at the shared queues back-end IMS to process transaction messages. However, this member has no XCF connection to this IMS. |
| SPND                | Indicates that a transaction had messages on the suspend queue. |
| /STA ACTIVE         | A /START DB command is in progress for a database to be changed or deleted. |
| STARTING            | Shown after /DIS CONV is issued and before the status is set to SCHEDULED. Indicates that a conversation has been received but is not eligible for scheduling to an application program until an end-of-message indication is received. Also shown after /START APPC is issued and before the status is set to ENABLED or FAILED. |
| STATIC              | Indicates that the node, LTERM, or user was defined during system definition. |
| STOP IN PROGRESS    | Indicates a /STOP SUBSYS command is in progress. |
| STOPPED, STO, STOP  | Indicates an area, line, LTERM, LU name, node, terminal, user, OLDS, subsystem, transaction, routing code (RTCODE), OTMA client, program, or database that is stopped. Indicates that a subsystem connection is stopped. Indicates a /STOP SERVGRP command was issued. Indicates that a transaction pipe is stopped. |
| STO-INPUT           | Indicates one of the following:  
• The terminal is stopped with input messages enqueued to the LU name.  
• The OTMA member has been stopped by the IMS command /STOP TMEMBER member-name. No new input from this member will be accepted. |
<table>
<thead>
<tr>
<th>Status or attribute</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>STO-OUTP</td>
<td>Indicates that the terminal is stopped with output message enqueued to the LU name.</td>
</tr>
<tr>
<td>STRCHKPT-INPROG</td>
<td>Indicates that a CQS structure checkpoint is in progress for a structure.</td>
</tr>
<tr>
<td>SUBSYSTEM XXXX NOT DEFINED BUT RECOVERY OUTSTANDING</td>
<td>Indicates that the subsystem was not defined but IMS has outstanding recovery elements.</td>
</tr>
<tr>
<td>SUSPENDED</td>
<td>Indicates that the transaction has been suspended. For /DISPLAY MODIFY, indicates that the transaction to be changed or deleted is on the suspend queue.</td>
</tr>
<tr>
<td>SUSPENDED LOGS</td>
<td>Indicates that a logger has an active conversation with a log router but has suspended sending logs to the tracking site because of resource shortage. The conversation is still intact.</td>
</tr>
<tr>
<td>SYNCHRONIZING, SYN</td>
<td>Indicates that the alternate subsystem is processing a /CHE SNAPQ command from the active subsystem. Indicates that a transaction pipe is being synchronized.</td>
</tr>
<tr>
<td>SYNC P2P</td>
<td>This status is displayed for the OTMA DFSYICAL member, which is created internally to process synchronous program switch requests.</td>
</tr>
<tr>
<td>SYNC P2P+FLOOD</td>
<td>OTMA is experiencing a message flood condition for synchronous program switch. To resolve this message flood for synchronous program switch, the flood limit can be increased by issuing the /START TMEMBER DFSYICAL INPUT higher_flood_limit command.</td>
</tr>
<tr>
<td>SYS CONSOLE</td>
<td>Indicates that the terminal is the system console.</td>
</tr>
<tr>
<td>TAKEOVER IN PROGRESS</td>
<td>Indicates that the alternate subsystem is taking over workload from the active subsystem.</td>
</tr>
<tr>
<td>TAKEOVER REQUESTED</td>
<td>Indicates that the active subsystem has requested a takeover by the alternate subsystem.</td>
</tr>
<tr>
<td>TBR</td>
<td>Indicates that IMS is waiting for an OTMA TBResynch command from the client.</td>
</tr>
<tr>
<td>TERM IN PROGRESS</td>
<td>Indicates an internal termination of the subsystem.</td>
</tr>
<tr>
<td>TERMINATING</td>
<td>Indicates that the application program is being terminated.</td>
</tr>
<tr>
<td>TEST</td>
<td>Indicates a line, node, terminal, or user in test mode.</td>
</tr>
<tr>
<td>TKOTRA</td>
<td>Indicates that a node, line, link, or terminal in an XRF session is to be traced only during takeover, to help diagnose XRF terminal switch problems.</td>
</tr>
<tr>
<td>TMP</td>
<td>Indicates that a transaction pipe is temporary.</td>
</tr>
<tr>
<td>TRA</td>
<td>Indicates that the physical terminal, node, logical link, LU name, transaction, program, or transaction pipe is being traced.</td>
</tr>
<tr>
<td>TRACKING</td>
<td>Indicates that the XRF alternate subsystem is tracking the active subsystem or an RSR tracking subsystem is tracking one or more active subsystems.</td>
</tr>
</tbody>
</table>
Table 226. Attributes and status in the /DISPLAY command (continued)

<table>
<thead>
<tr>
<th>Status or attribute</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNAVAILABLE, UNAVAIL</td>
<td>Indicates an ADS that is unavailable. Indicates that a region is unavailable because an application is using it, even though the application is not currently scheduled. The region is not available to any other application for use. Indicates that there are no records of a log gap at the active site; these records may have been deleted. Indicates that a coupling facility structure is not available for use by IMS.</td>
</tr>
<tr>
<td>UNKNOWN</td>
<td>Indicates that the XCF member has an unknown status.</td>
</tr>
<tr>
<td></td>
<td>Restart OTMA or the OTMA client to join the XCF group.</td>
</tr>
<tr>
<td>UNPLANNED TAKEOVER IN PROGRESS</td>
<td>Indicates an /RTAKEOVER command was entered on the tracking subsystem and an unplanned takeover is in progress.</td>
</tr>
<tr>
<td>USTOP, USTOPPED</td>
<td>Indicates that scheduling of transactions has been stopped because of unavailable data.</td>
</tr>
<tr>
<td>UNSUPPORTED</td>
<td>The APPC/OTMA shared queues enablement is not supported for this member. This status applies only to the local status. The IMS system has been started with AOS=N or AOS=F and RRS=N. This IMS system will never be able to support the APPC/OTMA shared queues enablement.</td>
</tr>
<tr>
<td>VIR</td>
<td>Indicates that the DEDB area has the VSO option.</td>
</tr>
<tr>
<td>Status or attribute</td>
<td>Meaning</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------</td>
</tr>
<tr>
<td>WAIT cond</td>
<td>Indicates that the application program is waiting for the completion of an event. The cond represents the reason for waiting. The cond can be:</td>
</tr>
<tr>
<td>AOI</td>
<td>indicates that an AO application issued a GMSG call with the wait option specified, but there are no messages for the application to retrieve.</td>
</tr>
<tr>
<td>BLOCKMOVER or BLKMVR</td>
<td>indicates that an application control block cannot be loaded because the ACB block mover is busy. The application might be waiting in the block mover because of an IRLM failure.</td>
</tr>
<tr>
<td>CMD/PENDING</td>
<td>indicates that a /DBD command or a /DBR command is in progress.</td>
</tr>
<tr>
<td>INPUT</td>
<td>indicates that the application program is in wait-for-input (WFI) mode.</td>
</tr>
<tr>
<td>INTENT or INTENT/POOL</td>
<td>indicates one of two conditions:</td>
</tr>
<tr>
<td>1.</td>
<td>The application program's intent for a database conflicts with the use of the database by a scheduled program.</td>
</tr>
<tr>
<td>2.</td>
<td>A temporary shortage of DMB, PSB, or PSB work area pool space exists.</td>
</tr>
<tr>
<td>I/O PREVEN</td>
<td>indicates that a BMP region which accesses a GSAM database cannot schedule until I/O prevention has completed.</td>
</tr>
<tr>
<td>MESSAGE</td>
<td>indicates that the application program is in a pseudo wait-for-input mode. The application is scheduled and is waiting for a message.</td>
</tr>
<tr>
<td>POOLSPACE or POOLSP</td>
<td>indicates a temporary shortage of DMB, PSB, or PSB work area pool space exists.</td>
</tr>
<tr>
<td>SWITCHOVER or SWITCH</td>
<td>indicates that the alternate system is tracking the active system.</td>
</tr>
<tr>
<td>SYNCPOINT</td>
<td>indicates that the application in the region is now in sync point.</td>
</tr>
<tr>
<td>WAIT-EPCB POOL</td>
<td>indicates that there is a temporary shortage of EPCB pool space.</td>
</tr>
<tr>
<td>WAIT-RRS/OTMA PC</td>
<td>A program has a protected conversation with an OTMA client.</td>
</tr>
<tr>
<td>WAIT BID</td>
<td>Indicates that the OTMA client is processing a Client-Bid request.</td>
</tr>
<tr>
<td></td>
<td>Start the OTMA client to join the XCF group.</td>
</tr>
</tbody>
</table>
Table 226. Attributes and status in the /DISPLAY command (continued)

<table>
<thead>
<tr>
<th>Status or attribute</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAITING</td>
<td>Indicates that the MPP region is waiting for work. Indicates a log gap is not being filled yet.</td>
</tr>
<tr>
<td>WAIT RESPONSE</td>
<td>Indicates that the OTMA member is processing a message and is waiting for a response from the server. This status code might indicate a potential IMS OTMA error. Contact IBM Software Support.</td>
</tr>
<tr>
<td>WRORRERR</td>
<td>Indicates a write I/O error on the OLDS or a database.</td>
</tr>
</tbody>
</table>

Related tasks:

[Setting DEADQ status time with the DLQT parameter (Communications and Connections)]

/DISPLAY ACT command

Use the /DISPLAY ACT command to display region and DC information associated with an IMS system. The region is scheduled to an application program and the IMS resources are assigned.

Subsections:
- “Environment”
- “Syntax”
- “Keywords”
- “Usage notes” on page 450
- “Output fields” on page 450
- “Examples” on page 458

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

Table 227. Valid environments for the /DISPLAY ACT command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/DISPLAY</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ACT</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DC</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>REGION</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
/DISPLAY ACT DC REGION
```

Keywords

The following keywords are valid for the /DISPLAY ACT command:
DC Displays only the DC subset of the output. The DC portion of the display can include:

- The status of active VTAM ACBs. If MNPS is used for XRF, then both the APPLID ACB and the MNPS ACB are displayed. If MNPS is not active, only the APPLID ACB displays.
- User variable (USERVAR) name if using an XRF. If MNPS is active, USERVAR is invalid and is not displayed. Instead, the MNPS ACB name is displayed.
- VTAM generic resource name (GRSNAME) and its current status.
- The APPC IMS LU name, the APPC connection status, and the APPC timeout value.
- The APPC/OTMA SHARED QUEUE status, the number of RRS TCBs attached and the number of AWEs (work-elements) queued to the RRS TCBs.
- OTMA status.
- The TCP/IP generic resources GENIMSID value and status.
- The number of active LINES receiving input or sending output.
- The number of active NODES receiving input or sending output.
- The number of active LINKS (half sessions) receiving input or sending output.

REGION Displays only the REGION subset of the output. The display consists of active regions.

Usage notes

When you issue the /DISPLAY ACT command from a specific environment, such as DCCTL, only the information that is valid for that environment is displayed.

ACTIVE-XCF, ACTIVE-RRS, and ACTIVE-RRS/XCF have similar values for local and global status.

FORCE-RRS/XCF
The global status is ACTIVE-XCF because FORCE is a local status.

ACTIVE-RRS
Both the local and global status is changed to INACTIVE if RRR becomes unavailable.

ACTIVE-RRS/XCF
Both the local and global status is changed to ACTIVE-XCF if RRS becomes unavailable.

Output fields

If /DISPLAY ACT command is issued, the output for both DC and REGION is displayed.

The following output fields are displayed for the /DISPLAY ACT DC command, and also for the /DISPLAY ACT command (no DC or REGION keyword specified):

OTMA GROUP
Status of the IMS Open Transaction Manager Access (OTMA) group. The status can be either ACT or NOTACTIVE.
Only one OTMA group can be active at one time.

**VTAM ACB**

The status of the VTAM ACB, which can be OPEN, CLOSE PENDING, or CLOSED. The status of LOGONS can be ENABLED or DISABLED. The base IMS LU name and the current APPC connection status are shown if IMS is running with an APPC/MVS-capable operating system.

The following are displayed for the VTAM ACB:

- **APPLID=**
  
  The application identification name for IMS. If MNPS is used with XRF, then it is the APPLID ACB.

- **USERVAR=**
  
  The user name for IMS. Only applicable for XRF-capable or RSR-capable systems.

- **GRSNAME=**
  
  The VTAM generic resource name. Displayed as blanks if no generic resource name exists.

  **Restriction:** IMS displays either the USERVAR or the GRSNAME. For non-XRF or non-RSR subsystems (no USERVAR specified), IMS displays the GRSNAME, which can be blank.

  If the IMS system is XRF, the following fields are appended to the date/time stamp:

  - **RSERename**
    
    Recoverable service element name

  - **System**
    
    ACT or BACKUP

- **MNPS=**
  
  The MNPS ACB name if MNPS is used for XRF.

- **QUEUED RRSWKS**
  
  The number of RRS requests (work elements) currently queued to the RRS TCBs. The work elements might be queued to the RRS TCBs for work from the APPC or OTMA shared message queue function.

- **STATUS**
  
  Status can be one of the following:

  - **AWAITING SNAPQ**
    
    Alternate system awaiting SNAPQ checkpoint from active

  - **SYNCHRONIZING**
    
    Alternate system processing SNAPQ checkpoint

  - **TRACKING**
    
    Alternate system is in process of tracking active system

  - **TAKEOVER REQUESTED**
    
    Alternate system requests a takeover

  - **TAKEOVER IN PROGRESS**
    
    Alternate system in process of taking over workload from active
I/O TOLERATION
New active system in I/O toleration phase of processing prior to becoming a true active system

TCPIP_GENIMSID
The generic IMS ID that is used to participate in an MSC TCP/IP generic resource group. The value shown is the value specified on the GENIMSID parameter of the IMS DFSDCxxx member of the IMS.PROCLIB data set.

TCP/IP generic resources enable remote MSC systems to connect to an IMSplex without having to specify a specific IMS system.

If TCPIP_GENIMSID displays a value, then the following STATUS field displays ACTIVE. If no value is shown, then the STATUS field displays DISABLED.

STATUS
Displays ACTIVE or DISABLED depending on whether a value is displayed in the TCPIP_GENIMSID field.

The following output fields are displayed for the /DISPLAY ACT REGION command, and also for the /DISPLAY ACT command (no DC or REGION keyword specified):

END TIME
The time at which IMS will end this synchronous program switch request.

REGID
Region identifier. For DBCTL, the thread number is displayed.

JOBNAME
The name of the job processing in the region. If no regions of that type exist, the job name is set to MSGRGN, FPRGN, BATCHRGN, or DBTRGN, depending on the region type. DBTRGN is only displayed for systems that support DBT threads.

DBTRGN, BATCHRGN, or FPRGN is displayed for DBCTL.

TYPE
Type of application program processing in the region, or type of region. BMH, BMP, DBRC, DBT, DLS, and FPU are displayed for DBCTL.

The following region/program types can be displayed:

BMH HSSP processing
BMP Batch message processing
BMPE Batch message processing for an external subsystem thread
DBRC DBRC address space
DBT DBCTL address space
DLS DL/I address space
FP Fast Path
FPE Fast Path processing for an external subsystem
FPM Fast Path message-driven program
FPME Fast Path message-driven program for an external subsystem thread
FPU Fast Path utility program
FPUE Fast Path utility program for an external subsystem thread
TP Teleprocessing

TPE Message-driven program for an external subsystem thread

TPI Transaction Program Instance. A CPI Communications driven transaction is running in the region

TRAN The name of the target transaction in the request data of a DL/I ICAL request that initiated a synchronous program switch.

TRAN/STEP Transaction code being processed by region, or NONE, if there are no regions of that type.

PROGRAM Name of the program processing in the region.

DFSCPIC is displayed for CPI Communications driven transaction programs that have not issued a DL/I APSB call to allocate a PSB.

For DBCTL, SB name is displayed.

STATUS Status of the region, which can be one of the following:

ACTIVE-RRS The z/OS Resource Recovery Services (RRS) enablement is active. The synchronous transaction inputs from APPC/OTMA with sync levels of NONE, CONFIRM, and SYNCPT with the RRS indicator are queued onto the shared queue. This status is equivalent to the existing status of ACTIVE and is for a setting combination of AOS=Y and RRS=Y.

ACTIVE-XCF The z/OS cross-system coupling facility (XCF) enablement is active. The synchronous transaction inputs from APPC/OTMA with sync levels of NONE and CONFIRM with the XCF indicator are queued onto the shared queue. This status is for either AOS=X or a setting combination of AOS=B and RRS=N.

ACTIVE-RRS/XCF The RRS enablement and the XCF enablement are both active. The synchronous transaction inputs from APPC/OTMA with sync level of SYNCPT with the RRS indicator are queued onto the shared queue. The synchronous transaction inputs with sync level of NONE and CONFIRM with the XCF indicator are queued onto the shared queue. This status is for a setting combination of AOS=B and RRS=Y.

ACTIVE-DBCMD A /DBD, /DBR, UPD DB STOP(ACCESS), or UPDATE DB STOP(UPDATES) command is in progress and waiting for the region to terminate before the command can complete.

AVAILABLE The active threads are available. The region is available to schedule an application.

FORCE-RRS The synchronous transaction inputs with sync levels of NONE, CONFIRM, and SYNCPT with the RRS indicator are queued onto the shared queue (without any affinity). This status is equivalent to the existing status of FORCE where AOS=F is specified.
FORCE-RRS/XCF
The synchronous transaction inputs with sync level of SYNCPT with the RRS indicator are queued onto the shared queue (without any affinity).

The XCF enablement is also active. The synchronous transaction inputs with sync levels of NONE and CONFIRM with the XCF indicator are queued onto the shared queue.

This status is equivalent to the combination of the existing status of FORCE where AOS=F is specified and the new status ACTIVE-XCF.

The status is for a setting combination of AOS=S. It is equivalent to the combination of the existing status of FORCE where AOS=F is specified and the new status ACTIVE-XCF.

OLR-RUNNING
The region is an IMS system-created BMP region to process the HALDB online reorganization (HALDB OLR) for the partition name. For those regions that have OLR running, the region type is BMP, the job name is the DBD name, the transaction name is the partition name, and the program name is the partition name with a suffix of 0.

OLR-ALTER-INPROG
The region is an IMS system-created BMP region to process the OLR-ALTER for the HALDB database. For those regions that have OLR-ALTER in progress, the region type is BMP, the job name is the DBD name, the transaction name is the partition name, and the program name is the partition name with a suffix of 0.

SCHEDULING
The application program is being scheduled.

TERMINATING
A dependent region or application program is being terminated.

TERM-ABDUMP IN-P
A /STOP REGION ABDUMP command has been issued, an SRB has been scheduled for the region, and abnormal termination is in progress.

TERM-ABDUMP PEND
A /STOP REGION ABDUMP command has been issued, but an abnormal termination SRB has not been scheduled because the region is in an ineligible state.

TERM-ABDUMP SCHD
A /STOP REGION ABDUMP command has been issued and an abnormal termination SRB has been scheduled for the region.

TERM-BCKOUT IN-P
Abnormal termination is in progress and backout processing has been initiated.

TERM-THREAD TERM
Region termination is in progress. For abnormal termination, either a /STOP REGION ABDUMP command was issued or the region encountered an error and terminated independently. For normal termination, either a /STOP REGION command was issued or the application program completed and terminated independently.
TERM-WAIT SYNCPT
Region termination is in progress and the application in the region is in the sync point.

When a dependent region is found in this state, a continuation line is inserted into the display, which shows the recovery unit ID (URID) and the originating IMS system ID (ORIGIN) that are associated with the transaction processing in the dependent region.

TERM-WAIT RRS
Region termination is in progress and the application in the region is in the sync point. This status is displayed when an application has a protected conversation with an OTMA client that is processing a sync point. The sync point can continue after the OTMA client issues either an SRRCMIT or SRRBACK call. This status is also displayed when the application program is part of a cascaded family and is processing a sync point. RRS cascaded transaction support is used by APPC/OTMA SMQ enablement to synchronize the back-end and front-end systems.

When a dependent region is found in this state, a continuation line is inserted into the display, which shows the recovery unit ID (URID) and the originating IMS system ID (ORIGIN) that are associated with the transaction processing in the dependent region.

UNAVAILABLE
An active DBT thread is unavailable. An application is using the region, even though the application is not currently scheduled. This region is therefore not available to any other application.

WAIT-AOI
An AO application issued a GMSG call with the WAITAOI subfunction specified, but there are no messages for the AO application to retrieve.

WAIT-BLOCKMOVER
An application control block cannot be loaded because the ACB block mover is busy. The application might be waiting in the block mover because of an IRLM failure.

WAIT-CALLOUT
The application program in the region is waiting for a response to a synchronous callout or synchronous program switch message.

When a dependent region is found in this state and is waiting for a synchronous callout message, a continuation line is inserted into the display, which shows the target member (TMEM) and the transaction pipe (TPIPE) that are associated with the transaction processing in the dependent region.

When the dependent region is waiting for a synchronous program switch message, the continuation line displays the target transaction code and when the synchronous program switch request will time out. The time value is in the format YYDDD/HHMMSS.

WAIT-CMD/PENDING
A /DBDUMP, /DBRECOVERY, or /START command is in progress.
The status of the MPP region continues to show WAIT-CMD/PENDING until the command completes and the region is rescheduled. To clear a WAIT-CMD/PENDING status without rescheduling the MPP region, issue a /STA DB command against one of the databases in the intent list for the PSB used by the MPP region that failed to initially schedule. Issuing this command drains the scheduler subqueue (SUBQ) 4 and posts all PSTs there, including any suspended MPP regions.

**WAIT-EPCB POOL**

A temporary shortage of EPCB pool space exists.

**WAITING**

The MPP region is waiting for work.

**WAIT-INPUT**

The application program is in WAIT-FOR-INPUT (WFI) mode.

**WAIT-INTENT**

The application program’s intent for a database conflicts with the use of the database by a scheduled program.

**WAIT-INTENT/POOL**

Indicates either the application program’s intent for a database conflicts with the use of the database by a scheduled program, or a temporary shortage of DMB, PSB, or PSB work area pool space exists.

**WAIT-INTENT SCHD**

The IMS transaction scheduler detected an application scheduling intent failure. (For example, Load Balancing.)

**WAIT-I/O PREVEN**

A BMP region that accesses a GSAM database cannot schedule until I/O prevention has completed.

**WAIT-MESSAGE**

The application program is in a pseudo WAIT-FOR-INPUT (WFI) mode. The application is scheduled and is waiting for a message.

**WAIT-POOLSPACE**

A temporary shortage of DMB, PSB, or PSB work area pool space exists.

**WAIT-QSC**

The application program (BMP, MPP, IFP, or DBCTL) is waiting for the quiesced state of a database that it tries to access to be released.

**WAIT-QSN**

The dependent region was placed in a wait state by the Queue Space Notification Exit (DFSQSPC0). If you are using a queue management product with IMS, refer to the product’s documentation for further information on resolving this status.

**WAIT-RRS PC**

The application program has a protected conversation with an OTMA client that is processing a sync point. The sync point can continue after the OTMA client issues either an SRRCMIT or SRRBACK call. Or, the application program is part of a cascaded family and is processing a sync point. APPC/OTMA SMQ Enablement uses RRS cascaded transaction support to synchronize the back-end and the front-end system.
When a dependent region is found in this state, a continuation line is inserted into the display, which shows the recovery unit ID (URID) and the originating IMS system ID (ORIGIN) that are associated with the transaction processing in the dependent region.

**WAIT-SWITCHOVER**
The alternate system is tracking the active system.

**WAIT-SYNCPONIT**
The application in the region is now in SYNC POINT.

When a dependent region is found in this state, a continuation line is inserted into the display, which shows the recovery unit ID (URID) and the originating IMS system ID (ORIGIN) that are associated with the transaction processing in the dependent region.

**WAIT-XCF**
The application program has a standard conversation with an APPC or OTMA client that is processing a sync point. The sync point can continue after the client issues either a positive acknowledgment (ACK) or a negative acknowledgment (NAK). The APPC/OTMA SMQ enablement uses XCF to communicate between the back-end and the front-end IMS systems.

A standard conversation is indicating a synchronous SQ transaction with sync level of NONE or CONFIRM.

**TERM-WAIT XCF**
Region termination is in progress and the application in the region is in the sync point. This status is displayed when an application program has a standard conversation with an APPC or OTMA client that is processing a sync point. The sync point can continue after the client issues either an ACK or NAK. The APPC/OTMA SMQ enablement uses XCF to communicate between the back-end and front-end IMS systems.

When a dependent region is found in this state, a continuation line is inserted into the display. This line shows either the target member (TMEM) and the transaction pipe (TPIPE) for an OTMA client, or the network ID (NETWORKID) and the logic unit name (LUNAME) for an APPC client, and the originating IMS system ID (ORIGIN) that is associated with the transaction processing in the dependent region.

**TMEM**
A 1- to 16-alphanumeric character that displays the OTMA client target member.

**TPIPE** A 1- to 8-alphanumeric character that displays the OTMA output message destination.

**LUNAME**
A 1- to 8-alphanumeric character NETWORK ID concatenated with a 1- to 8-alphanumeric character LU name.

**CLASS**
One of the classes associated with the region. The region can have from one to four classes, whose values range from 1 to 999.
Examples

The examples of the /DISPLAY ACTIVE command are organized into the following three sections:

• "Examples of /DISPLAY ACTIVE"
• "Examples of /DISPLAY ACTIVE DC" on page 462
• "Examples of /DISPLAY ACTIVE REG" on page 464

The following are examples of the /DISPLAY ACT command.

Examples of /DISPLAY ACTIVE

The following series of examples show the output of the /DISPLAY ACTIVE command for various configuration scenarios.

Example 1 for /DISPLAY ACT command

Entry ET:
/DISPLAY ACT

Response ET:

<table>
<thead>
<tr>
<th>REGID</th>
<th>JOBNAME</th>
<th>TYPE</th>
<th>TRAN/STEP</th>
<th>PROGRAM</th>
<th>STATUS</th>
<th>CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSGRGN</td>
<td>TP</td>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BATCHREG</td>
<td>BMP</td>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPRGN</td>
<td>FP</td>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBTRGN</td>
<td>DBT</td>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 IMSMPP0</td>
<td>TPE</td>
<td>DSN8PS DSN8IP13</td>
<td>1, 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BATCHREG</td>
<td>BMP</td>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPRGN</td>
<td>FP</td>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBCR3CTA3</td>
<td>DBRC</td>
<td>DBCR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLI3CTA3</td>
<td>DLS</td>
<td>DLS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTAM ACB OPEN</td>
<td>-LOGONS ENABLED</td>
<td>STATUS=DISABLED</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APPLID=APPL8</td>
<td>GRNAME=</td>
<td>STATUS=DISABLED</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCPIP_GENIMSID=</td>
<td>STATUS=DISABLED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LINE ACTIVE-IN - 1 ACTIV-OUT - 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE ACTIVE-IN - 0 ACTIV-OUT - 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LINK ACTIVE-IN - 0 ACTIV-OUT - 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example 2 for /DISPLAY ACT command

Entry ET:
/DISPLAY A

Response ET:

<table>
<thead>
<tr>
<th>REGID</th>
<th>JOBNAME</th>
<th>TYPE</th>
<th>TRAN/STEP</th>
<th>PROGRAM</th>
<th>STATUS</th>
<th>CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSGRGN</td>
<td>TP</td>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BATCHREG</td>
<td>BMP</td>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPRGN</td>
<td>FP</td>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBTRGN</td>
<td>DBT</td>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 I3YMPP0</td>
<td>TPE</td>
<td>DSN8PS DSN8IP13</td>
<td>1, 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BATCHREG</td>
<td>BMP</td>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPRGN</td>
<td>FP</td>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBCR3CTA3</td>
<td>DBRC</td>
<td>DBCR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLI3CTA3</td>
<td>DLS</td>
<td>DLS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTAM ACB CLOSED</td>
<td>-LOGONS ENABLED</td>
<td>STATUS=DISABLED</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APPLID=APPL8</td>
<td>GRNAME=</td>
<td>STATUS=DISABLED</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCPIP_GENIMSID=</td>
<td>STATUS=DISABLED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LINE ACTIVE-IN - 1 ACTIV-OUT - 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE ACTIVE-IN - 0 ACTIV-OUT - 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LINK ACTIVE-IN - 0 ACTIV-OUT - 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example 3 for /DISPLAY ACT command

Example 3 for /DISPLAY ACT command
### Example 4 for DISPLAY ACT command

**Entry ET:**

```
/DISPLAY A
```

**Response ET:**

```
<table>
<thead>
<tr>
<th>REGID</th>
<th>JOBNAME</th>
<th>TYPE</th>
<th>TRAN/STEP</th>
<th>PROGRAM</th>
<th>STATUS</th>
<th>CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I431MPP</td>
<td>TP</td>
<td>SKS7</td>
<td>DFSDDL7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>IMS1MPP</td>
<td>BMP</td>
<td>REGION</td>
<td>S1S04P01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1431IFP</td>
<td>FPM</td>
<td>TXCDRN07</td>
<td>DDLTRN07</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VTAM ACB OPEN =LOGONS ENABLED
APPLID=APPL8 GRSNAME= STATUS=DISABLED
TCP/IP GENIMSID= STATUS=DISABLED
LINE ACTIVE-IN - 2 ACTIV-OUT - 0
NODE ACTIVE-IN - 0 ACTIV-OUT - 0
LINK ACTIVE-IN - 0 ACTIV-OUT - 0

11041/144425 DFSRSENMM ACTIVE

Explanation: The system is XRF capable so the date time stamp includes the RSE name and system indicator.

Example 5 for DISPLAY ACT command

Entry ET:

```
/DISPLAY A
```

Response ET:

```
<table>
<thead>
<tr>
<th>REGID</th>
<th>JOBNAME</th>
<th>TYPE</th>
<th>TRAN/STEP</th>
<th>PROGRAM</th>
<th>STATUS</th>
<th>CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>I431MPP</td>
<td>TP</td>
<td>SKS7</td>
<td>DFSDDL7</td>
<td>WAIT-INPUT</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1431IFP</td>
<td>FPM</td>
<td>TXCDRN07</td>
<td>DDLTRN07</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VTAM ACB OPEN =LOGONS ENABLED
APPLID=APPL8 GRSNAME= STATUS=DISABLED
TCP/IP GENIMSID= STATUS=DISABLED
LINE ACTIVE-IN - 1 ACTIV-OUT - 0
NODE ACTIVE-IN - 0 ACTIV-OUT - 0
LINK ACTIVE-IN - 0 ACTIV-OUT - 0

*11041/132348* DFSRSENMM ACTIVE

**Explanation:** Transaction TXCDRN18 is waiting for an input message. Program DDLTRN07 currently has no messages to process. Region 1 is in WAIT-FOR-INPUT (WFI) mode.
Explanation: Transaction SKS7 is waiting for an input message. Program DFSDDLT7 currently has no messages to process. Region 2 is in Pseudo Wait-For-Input (PWFI) mode.

Example 6 for /DISPLAY ACT command

Entry ET:
/DISPLAY A

Response ET:
** ** SUBSYSTEM NAME **
SYS3
REGID JOBNAME TYPE TRAN/STEP PROGRAM STATUS CLASS
2 I431MPP TP SKS7 DFSDDLT7 WAIT-MESSAGE 1,3,6,7
3 IMS1BMP BMP REGION SIS04P01
1 I431IFP FPM TXCDRN07 DDLTRN07
R3 DBRC
VTAM ACB OPEN -LOGONS ENABLED
APPLID=APPL8 GRSNAME= STATUS=DISABLED
TCP/IP.Genimsid= STATUS=DISABLED
LINE ACTIVE-IN - 2 ACTIV-OUT - 0
NODE ACTIVE-IN - 0 ACTIV-OUT - 0
LINK ACTIVE-IN - 0 ACTIV-OUT - 0
*11041/144425* DFSRSENM ACTIVE

Explanation: Transaction SKS7 is waiting for an input message. Program DFSDDLT7 currently has no messages to process. Region 2 is in Pseudo Wait-For-Input (WPFI) mode.

Example 7 for /DISPLAY ACT command

Entry ET:
/DISPLAY ACTIVE

Response ET:
REGID JOBNAME TYPE TRAN/STEP PROGRAM STATUS CLASS
1 IMSMPPA TP TPN1 DFSCPIC WAIT-BLOCKMOVER 20, 22, 24, 26
2 IMSMPPB TP TPN2 DFSCPIC 21, 23, 25, 22
3 IMSMPPC TP TPN3 Saapsb1 28, 29, 24, 23
4 IMSMPPD TP TPN4 DFSCPIC WAIT-SYNCPOINT 14, 15, 16, 17
5 IMSMPPF TP TPN5 LU2PGMA WAIT-INPUT 2, 4, 6, 8
VTAM ACB OPEN / APPC LUNAME=IMSLUNME ENABLED -LOGONS ENABLED
APPLID=APPL8 GRSNAME= STATUS=DISABLED
TCP/IP.Genimsid= STATUS=DISABLED
LINE ACTIVE-IN - 2 ACTIV-OUT - 0
NODE ACTIVE-IN - 0 ACTIV-OUT - 0
LINK ACTIVE-IN - 0 ACTIV-OUT - 0
*90332/114253*

Example 8 for /DISPLAY ACT command

Entry ET:
/DISPLAY ACTIVE
Response ET:

REGID JOBNAME TYPE TRAN/STEP PROGRAM STATUS CLASS
MSGRGN TP NONE
BATCHREG BMP NONE
FPRGN FP NONE
DBTRGN DBT NONE
DBRSCHA5 DBRC
DLISCHA5 DLS
VTAM ACB OPEN -LOGONS DISABLED
IMSLU=N/A.N/A APPC STATUS=DISABLED TIMEOUT= 0
APPLID=APPL8 USERVAR=IMS1
TCP/IP GENIMSID= STATUS=DISABLED
LINE ACTIVE-IN - 1 ACTIV-OUT - 0
NODE ACTIVE-IN - 0 ACTIV-OUT - 0
*11000/183050* DFSRSENM ACTIVE

Explanation: The IMS subsystem is both XRF-capable and RSR-capable.

**Example 9 for /DISPLAY ACT command**

Entry ET:

/DISPLAY ACTIVE

Response ET:

REGID JOBNAME TYPE TRAN/STEP PROGRAM STATUS CLASS
1 IMSMPPA TP WAITING 4, 1, 2
2 IMS1BMP BMP REGION SIS04P01 WAIT-AOI
4 IMS2BMP BMP REGION SIS04P02 WAIT-AOI
3 1510MPP TP WAIT-ECB POOL 8, 8, 8, 8
2 IMS3BMP BMP WAIT-ECB POOL
FPRGN FP NONE
DBRC DBRC

VTAM ACB CLOSED
APPLID=APPL8 GRSNAME= STATUS=DISABLED
TCP/IP GENIMSID= STATUS=DISABLED
LINE ACTIVE-IN - 1 ACTIV-OUT - 0
NODE ACTIVE-IN - 0 ACTIV-OUT - 0
*11280/095345*

**Example 10 for /DISPLAY ACTIVE command**

Entry ET:

/DISPLAY ACTIVE

Response ET:

REGID JOBNAME TYPE TRAN/STEP PROGRAM STATUS CLASS
1 I431MPP TP TERMINATING 1, 2, 3, 4
BATCHREG BMP NONE
2 I431IFP FPM NO MSG. DDLTRN07
R3 DBRC
VTAM ACB OPEN -LOGONS ENABLED
APPLID=APPL8 GRSNAME= STATUS=DISABLED
TCP/IP GENIMSID= STATUS=DISABLED
LINE ACTIVE-IN - 1 ACTIV-OUT - 0
NODE ACTIVE-IN - 0 ACTIV-OUT - 0
LINE ACTIVE-IN - 0 ACTIV-OUT - 0
*11041/132348* DFSRSENM ACTIVE

Chapter 26. /DISPLAY commands 461
Explanation: MPP region I431MPP is in the process of terminating because of a /STOP REGION command. Region 1 is in TERMINATING mode.

Examples of /DISPLAY ACTIVE DC

The following series of examples show the output of the /DISPLAY ACTIVE DC command for various configuration scenarios.

Example 1 for /DISPLAY ACTIVE DC command

Entry ET:
/DISPLAY ACTIVE DC

Response ET:
VTAM STATUS AND ACTIVE DC COUNTS
VTAM ACB OPEN - LOGONS ENABLED
IMSLU=SYS1.IMSLUNME STATUS=ENABLED
APPLID=APPL8 USERVAR=IMS1
TCP/IP GENIMSID= STATUS=DISABLED
LINE ACTIVE-IN - 2 ACTIV-OUT - 0
NODE ACTIVE-IN - 0 ACTIV-OUT - 0
LINK ACTIVE-IN - 0 ACTIV-OUT - 0
*11232/114253*

Example 2 for /DISPLAY ACTIVE DC command

Entry ET:
/DISPLAY ACTIVE DC

Response ET:
VTAM STATUS AND ACTIVE DC COUNTS
VTAM ACB CLOSED - LOGONS ENABLED - MNPS ACB
IMSLU=N/A.N/A APPC STATUS=DISABLED TIMEOUT= 0
OTMA GROUP=N/A STATUS=NOTACTIVE
APPC/OTMA SHARED QUEUE STATUS - LOCAL=INACTIVE GLOBAL=INACTIVE
APPC/OTMA RRS MAX TCBS - 2 ATTACHED TCBS - QUEUED RRSWKS - 0
APPLID=APPL8 GRSNAME= STATUS=DISABLED MNPS=APPL1
TCP/IP GENIMSID= STATUS=DISABLED
LINE ACTIVE-IN - 1 ACTIV-OUT - 0
NODE ACTIVE-IN - 0 ACTIV-OUT - 0
LINK ACTIVE-IN - 0 ACTIV-OUT - 0
*11069/143346* DFSRSENMM ACTIVE

Explanation: An XRF system is using MNPS. The MNPS ACB is APPL1, which is open and is accepting logons. The APPLID ACB is APPL8, but it is closed.

Example 3 for /DISPLAY ACTIVE DC command

Entry ET:
/DISPLAY ACTIVE DC

Response ET:
DF50001 VTAM STATUS AND ACTIVE DC COUNTS
DF50001 VTAM ACB OPEN - LOGONS DISABLED
DF50001 IMSLU=N/A.N/A APPC STATUS=DISABLED TIMEOUT= 0
DF50001 OTMA GROUP=N/A STATUS=NOTACTIVE
DF50001 APPC/OTMA SHARED QUEUE STATUS - LOCAL=ACTIVE-XCF GLOBAL=ACTIVE-XCF
DF50001 APPC/OTMA RRS MAX TCBS - 40 ATTACHED TCBS - 1 QUEUED RRSWKS- 0
Example 4 for /DISPLAY ACTIVE DC command showing TCP/IP generic resources

Two examples of the /DISPLAY ACT DC command are shown here. The first example is issued on an IMS system within a TCP/IP generic resource group. The second example is issued on the remote partner IMS system that is connects to the TCP/IP generic resource group.

Entry ET in the TCP/IP generic resource group:
/DISPLAY ACTIVE DC

Response ET in the TCP/IP generic resource group:
VTAM STATUS AND ACTIVE DC COUNTS
VTAM ACB OPEN -LOGONS ENABLED
IMSLU=N/A,N/A APPC STATUS=DISABLED TIMEOUT= 0
OTMA GROUP=N/A STATUS=NOTACTIVE
APPC/OTMA SHARED QUEUE STATUS - LOCAL=INACTIVE GLOBAL=INACTIVE
APPC/OTMA SHARED QUEUES LOGGING=N
APPC/OTMA RRS MAX TCBS - 40 ATTACHED TCBS - 1 QUEUED RRSWKS- 0
APPLID=L6APPL3 GRSNAME= STATUS=DISABLED
TCP/IP_GENIMSID=IMS STATUS=ACTIVE
LINE ACTIVE-IN - 1 ACTIV-OUT - 0
NODE ACTIVE-IN - 0 ACTIV-OUT - 0
LINK ACTIVE-IN - 0 ACTIV-OUT - 0
+11130/230804*

Entry ET in the partner of a TCP/IP generic resource group:
/DISPLAY ACTIVE DC

Response ET in the partner of a TCP/IP generic resource group:
VTAM STATUS AND ACTIVE DC COUNTS
VTAM ACB OPEN -LOGONS ENABLED
IMSLU=N/A,N/A APPC STATUS=DISABLED TIMEOUT= 0
OTMA GROUP=N/A STATUS=NOTACTIVE APPC/OTMA SHARED QUEUE STATUS - LOCAL=INACTIVE
GLOBAL=INACTIVE
APPC/OTMA SHARED QUEUES LOGGING=N
APPC/OTMA RRS MAX TCBS - 40 ATTACHED TCBS - 1 QUEUED RRSWKS- 0
APPLID=L6APPL1 GRSNAME= STATUS=DISABLED
TCP/IP_GENIMSID= IMS STATUS=DISABLED
LINE ACTIVE-IN - 1 ACTIV-OUT - 0
NODE ACTIVE-IN - 0 ACTIV-OUT - 0
LINK ACTIVE-IN - 0 ACTIV-OUT - 0
+11130/231519*

Example 5 for /DISPLAY ACTIVE DC command showing TCP/IP generic resources with XRF

The following example shows the output of the /DISPLAY ACT DC command for a system that is participating in both an XRF complex and in an MSC TCP/IP generic resource group.

In the example, the use of XRF is indicated by the presence of the USERVAR field and the DFSRSENM field. The use of TCP/IP generic resources is indicated by a non-blank value on the TCP/IP_GENIMSID field and a status of ACTIVE.
Entry ET in the TCP/IP generic resource group:
/DISPLAY ACTIVE DC

Response ET in the TCP/IP generic resource group:

<table>
<thead>
<tr>
<th>DFS000I</th>
<th>VTAM STATUS AND ACTIVE DC COUNTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFS000I</td>
<td>VTAM ACB OPEN -LOGONS ENABLED</td>
</tr>
<tr>
<td>DFS000I</td>
<td>IMSLU=N/A.N/A APPC STATUS=DISABLED TIMEOUT= 0</td>
</tr>
<tr>
<td>DFS000I</td>
<td>OTMA GROUP=N/A STATUS=NOTACTIVE</td>
</tr>
<tr>
<td>DFS000I</td>
<td>APPC/OTMA SHARED QUEUE STATUS - LOCAL=UNSUPPORTED GLOBAL=INACTIVE</td>
</tr>
<tr>
<td>DFS000I</td>
<td>APPC/OTMA SHARED QUEUES LOGGING=N</td>
</tr>
<tr>
<td>DFS000I</td>
<td>APPC/OTMA RRS MAX TCBS - 40 ATTACHED TCBS - 2 QUEUED RRSWKS- 0</td>
</tr>
<tr>
<td>DFS000I</td>
<td>APPLID=APPL8 USERVAR=IMS1</td>
</tr>
<tr>
<td>DFS000I</td>
<td>TCPIP_GENIMSID=IMS STATUS=ACTIVE</td>
</tr>
<tr>
<td>DFS000I</td>
<td>LINE ACTIVE-IN - 1 ACTIV-OUT - 0</td>
</tr>
<tr>
<td>DFS000I</td>
<td>NODE ACTIVE-IN - 0 ACTIV-OUT - 0</td>
</tr>
<tr>
<td>DFS000I</td>
<td>LINK ACTIVE-IN - 0 ACTIV-OUT - 0</td>
</tr>
<tr>
<td>DFS000I</td>
<td><em>11201/163416</em> DFSRSENM ACTIVE</td>
</tr>
</tbody>
</table>

Examples of /DISPLAY ACTIVE REG

Example 1 for /DISPLAY ACTIVE REG command

Entry ET:
/DISPLAY ACTIVE REG

Response ET:

<table>
<thead>
<tr>
<th>REGID</th>
<th>JOBNAME</th>
<th>TYPE</th>
<th>TRAN/STEP</th>
<th>PROGRAM</th>
<th>STATUS</th>
<th>CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>MPP13</td>
<td>TP</td>
<td>SHF1</td>
<td>PMVAPZ12</td>
<td>WAIT-QSC</td>
<td>1, 2, 3, 4</td>
</tr>
<tr>
<td>1</td>
<td>MPP12</td>
<td>TP</td>
<td>NQF1</td>
<td>PMVAPZ12</td>
<td>WAIT-QSC</td>
<td>1, 2, 3, 4</td>
</tr>
<tr>
<td></td>
<td>JMPRGN</td>
<td>JMP</td>
<td>NONE</td>
<td>IMS1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BMPI4</td>
<td>SMP</td>
<td>PMVAPZ12</td>
<td>WAIT-QSC</td>
<td>IMS1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JBPRGN</td>
<td>JBP</td>
<td>NONE</td>
<td>IMS1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FPRGN</td>
<td>FP</td>
<td>NONE</td>
<td>IMS1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DBTRGN</td>
<td>DBT</td>
<td>NONE</td>
<td>IMS1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DBRICSAK</td>
<td>DBRC</td>
<td></td>
<td>IMS1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DLIICSAS</td>
<td>DLS</td>
<td></td>
<td>IMS1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><em>08030/132621</em></td>
<td></td>
</tr>
</tbody>
</table>

Explanation: The status of MPPI2, MPPI3, and BMPI4 transactions are shown as WAIT-QSC, which indicates that the database that these transactions are trying to access are in quiesce state and that the transactions are waiting for the UPDATE STOP(QUIESCE) command to be issued to release the quiesce.

Example 2 for /DISPLAY ACTIVE REG command

Entry ET:
/DISPLAY ACTIVE REG

Response ET:

<table>
<thead>
<tr>
<th>REGID</th>
<th>JOBNAME</th>
<th>TYPE</th>
<th>TRAN/STEP</th>
<th>PROGRAM</th>
<th>STATUS</th>
<th>CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MPP1A</td>
<td>TP</td>
<td>APOLL1</td>
<td>APOLL1</td>
<td>WAIT-CALLOUT</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TMEM: HWS1</td>
<td>TPIPE: TPIPE1</td>
</tr>
<tr>
<td></td>
<td>JMPRGN</td>
<td>JMP</td>
<td>NONE</td>
<td>IMS1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>JBPRGN</td>
<td>JBP</td>
<td>NONE</td>
<td>IMS1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BATCHREG</td>
<td>BMP</td>
<td>NONE</td>
<td>IMS1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FPRGN</td>
<td>FP</td>
<td>NONE</td>
<td>IMS1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DBTRGN</td>
<td>DBT</td>
<td>NONE</td>
<td>IMS1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DBRZCSAJ</td>
<td>DBRC</td>
<td>IMS1</td>
<td>IMS1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DLIICSAS</td>
<td>DLS</td>
<td>IMS1</td>
<td>IMS1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><em>08235/173441</em></td>
<td></td>
</tr>
</tbody>
</table>

464 Commands, Volume 1: IMS Commands A - M
Explanation: Message processing program APOL1 is processing transaction APOL11, which is waiting for a response to a synchronous callout request (WAIT-CALLOUT) from transaction pipe TPipe1.

Example 3 for /DISPLAY ACTIVE REG command

Entry ET:
/DISPLAY ACTIVE REG

Response ET:

<table>
<thead>
<tr>
<th>REGID</th>
<th>JOBNAME</th>
<th>TYPE</th>
<th>TRAN/STEP</th>
<th>PROGRAM</th>
<th>STATUS</th>
<th>CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IMSPPA</td>
<td>TPI</td>
<td>APOL11</td>
<td>IMS1</td>
<td>WAIT-RS/PC 1,2,3,4</td>
<td></td>
</tr>
<tr>
<td>URID:</td>
<td>C2D06B6917DE82000000000001010000 ORIGIN: IMS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>IMSPPB</td>
<td>TPI</td>
<td>APOL12</td>
<td>IMS1</td>
<td>TERM-WAIT RRS 1,2,3,4</td>
<td></td>
</tr>
<tr>
<td>URID:</td>
<td>C2D06B6917DE83000000000001010000 ORIGIN: IMS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>IMSPPB</td>
<td>TPI</td>
<td>APOL13</td>
<td>IMS1</td>
<td>WAIT-XCF 1,2,3,4</td>
<td></td>
</tr>
<tr>
<td>TMEM:</td>
<td>HMS1</td>
<td>TPipe: CLIENT01 ORIGIN: IMS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>IMSPPB</td>
<td>TPI</td>
<td>APOL14</td>
<td>IMS1</td>
<td>TERM-WAIT XCF 1,2,3,4</td>
<td></td>
</tr>
<tr>
<td>LUNAME:</td>
<td>IMSNETWK.LU62 IMS1 ORIGIN: IMS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example 4 for /DISPLAY ACTIVE REG command

Entry ET:
/DISPLAY ACTIVE REG

Response ET:

<table>
<thead>
<tr>
<th>REGID</th>
<th>JOBNAME</th>
<th>TYPE</th>
<th>TRAN/STEP</th>
<th>PROGRAM</th>
<th>STATUS</th>
<th>CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MPPA</td>
<td>TP</td>
<td>APOL11</td>
<td>IMS1</td>
<td>WAIT-CALLOUT 1</td>
<td></td>
</tr>
<tr>
<td>TRAN:</td>
<td>SKS1</td>
<td>END TIME: 2010.172 12:45:04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JMPRN</td>
<td>JBP</td>
<td>NONE</td>
<td>IMS1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBTRGN</td>
<td>DBT</td>
<td>NONE</td>
<td>IMS1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPRGN</td>
<td>FP</td>
<td>NONE</td>
<td>IMS1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBRZCSAJ</td>
<td>DBRC</td>
<td>IMS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIZCSAJ</td>
<td>DLS</td>
<td>IMS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>16019/190537</em></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The APOL11 transaction is in the WAIT-CALLOUT state while it waits for a response to a synchronous program switch request. SKS1 is the transaction name that was requested in the ICAL call. The timeout value of the ICAL call was used to calculate the value of the END TIME field.

Related reference:
Chapter 2, “Command keywords and their synonyms,” on page 63
/DISPLAY AFFIN command

Use the /DISPLAY AFFIN command to display the current link or node affinities that an IMS subsystem has within a TCP/IP or VTAM generic resource group.

Subsections:
- “Environment”
- “Syntax”
- “Keywords”
- “Usage notes”
- “Equivalent IMS type-2 commands” on page 467
- “Examples” on page 467

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

Table 228. Valid environments for the /DISPLAY AFFIN command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/DISPLAY AFFIN</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>AFFIN</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NODE</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>LINK</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Syntax

```
/DISPLAY AFFIN [NODE nodename] [LINK link_id | link_range | ALL]
```

Keywords

The following keywords are valid for the /DISPLAY AFFIN command:

**NODE**
Specify one or multiple nodes. You cannot specify generic names such as `nodename*` or ALL.

**LINK**
Specify one or multiple links, a range of links, or ALL. You must specify `link_range` in the form of `link_a-link_b`; for example, 1-3.

Usage notes

This command is valid only when you use TCP/IP or VTAM generic resources.
Equivalent IMS type-2 commands

The following table shows variations of the /DISPLAY AFFIN command and the IMS type-2 commands that perform similar functions.

<table>
<thead>
<tr>
<th>Task</th>
<th>/DISPLAY AFFIN command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
</table>
| Displays TCP/IP generic resource affinities. | /DISPLAY AFFIN LINK links | QUERY MSLINK NAME(linkname | *
| | SHOW(AFFIN)) | |
| Displays VTAM generic resource affinities. | /DISPLAY AFFIN NODE node | QUERY NODE SHOW(AFFIN) |

Examples

The following are examples of the /DISPLAY AFFIN command.

**Example 1 for /DISPLAY AFFIN command**

Entry ET:

/DISPLAY AFFIN NODE NDSL2A1

Response ET:

    NODE   APPLID
    NDSL2A1 APPL9
    *97098/162106*

Explanation: The node has an affinity for APPL ID APPL9.

**Example 2 for /DISPLAY AFFIN command**

Entry ET:

/DISPLAY AFFIN NODE LU37722

Response ET:

    NODE   APPLID
    LU37722 N/A
    *97098/162156*

Explanation: The node has no affinities.

**Example 3 for /DISPLAY AFFIN command**

Entry ET:

/DISPLAY AFFIN LINK 22

Response ET:

    DFS000I   LINK LINKNAME   NODE   APPLID
    DFS000I   22 LNK12T01   IMS1

Explanation: Link 22 has affinity with the current IMS system under the TCP/IP generic resource ID of IMS1.

**Example 4 for /DISPLAY AFFIN command**
Entry ET:
/DISPLAY AFFIN LINK ALL

Response ET:

<table>
<thead>
<tr>
<th>DFS000I LINK</th>
<th>LINKNAME</th>
<th>NODE</th>
<th>APPLID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LNK32V01</td>
<td>L6APPL1</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>LNK32V02</td>
<td>L6APPL1</td>
<td>N/A</td>
</tr>
<tr>
<td>3</td>
<td>LNK32V03</td>
<td>L6APPL1</td>
<td>N/A</td>
</tr>
<tr>
<td>4</td>
<td>LNK31V01</td>
<td>L6APPL3</td>
<td>APPL7</td>
</tr>
<tr>
<td>5</td>
<td>LNK31V05</td>
<td>L6APPL3</td>
<td>APPL7</td>
</tr>
<tr>
<td>6</td>
<td>LNK32V05</td>
<td>L6APPL1</td>
<td>N/A</td>
</tr>
<tr>
<td>7</td>
<td>LNK31T01</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>LNK32T01</td>
<td>IMS1</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>LNK33T01</td>
<td>IMS1</td>
<td></td>
</tr>
</tbody>
</table>

Explanation: Links 4 and 5 to IMS node L6APPL3 have affinity for APPL7 in the IMSplex. Links 1, 2, 3, and 6 are VTAM links to IMS node L6APPL1 and have no affinity. Link 7 is not a VTAM link.

Links 22 and 23 are MSC TCP/IP links that have affinity to the current IMS system within the IMS1 TCP/IP generic resource group.

Related reference:

QUERY NODE command (Commands)

/DISPLAY AOITKN command

Use the /DISPLAY AOITKN command to display all Automated Operator Interface (AOI) tokens in the system.

Subsections:
- “Environment”
- “Syntax”
- “Usage notes”
- “Output fields”
- “Examples” on page 469

Environment

The /DISPLAY AOITKN command is valid in DB/DC, DBCTL, and DCCTL environments.

Syntax

```
/DISPLAY AOITKN
```

Usage notes

If QCT=0 and W-REGID=None, then the AOI token is deleted at the next checkpoint.

Output fields

The following output fields are displayed for each AOI token:
AOITKN
AOI token name.

ENQCT
Total number of messages enqueued. In a shared-queues environment, only shows messages enqueued for the local subsystem.

QCT
Number of messages currently queued to the token and not yet retrieved by the AO application. In a shared-queues environment, only shows messages enqueued for the local subsystem.

SEGS
Number of segments in messages queued (QCT) to the AOI token.

W-REGID
The region IDs of AO applications that issued a GMSG call with the WAITAOI subfunction specified. This AO application is in a wait state, since there are currently no messages for it to retrieve.

Examples

Entry ET:
/DISPLAY AOITKN

Response ET:

<table>
<thead>
<tr>
<th>AOITOKEN</th>
<th>ENQCT</th>
<th>QCT</th>
<th>SEGS</th>
<th>W-REGID</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOITOKN1</td>
<td>4</td>
<td>2</td>
<td>12</td>
<td>NONE</td>
</tr>
<tr>
<td>AOITOKN2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2,4</td>
</tr>
<tr>
<td>AOITOKN3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>NONE</td>
</tr>
<tr>
<td>AOITOKN4</td>
<td>1000000000</td>
<td>1000000000</td>
<td>2147483647</td>
<td>NONE</td>
</tr>
</tbody>
</table>

*/92280/095345*

/DISPLAY APPC command

Use the /DISPLAY APPC command to display inquiries about LU 6.2 related activities, including the current outbound LU if it is different from the base LU.

Subsections:
- "Environment"
- "Syntax"
- "Output fields"
- "Examples" on page 471

Environment

The /DISPLAY APPC command is valid in DB/DC and DCCTL environments.

Syntax

```
/DISPLAY APPC
```

Output fields

The following output fields are displayed for the /DISPLAY APPC command:

IMSLU
The IMSLU is a base IMS LU name. This LU is always a network-qualified
LU name. It is displayed as N/A,N/A if IMS is not connected to APPC/MVS. For example, if status is DISABLED, FAILED, or STARTING, N/A,N/A applies. For the CANCEL status, the field can contain either the LU name or N/A,N/A.

#APPC-CONV
LU 6.2 inbound and outbound conversation count.

SECURITY
RACF security level, which is one of the following:
- CHECK
- FULL
- NONE
- PROFILE

STATUS
The current APPC connection status. The possible values for APPC connection status are:

CANCEL
Shown after the /STOP APPC CANCEL command.

DISABLED
Shown when APPC/IMS is not identified or connected to APPC/MVS.

ENABLED
Shown after successful /START APPC command completion.

FAILED
Shown after unsuccessful /START APPC command.

OUTBOUND
Shown on the XRF alternate system as it tracks the active. It is also shown on the active if IMS is unable to initiate normal APPC processing. For example, the /START APPC command can be reissued to attempt APPC enablement.

PURGING
Shown after the /PURGE APPC command.

STARTING
Shown after the /START APPC is issued and before the status is set to ENABLED or FAILED.

STOPPED
Shown after the /STOP APPC command.

DESIRED
Desired APPC connection status. This status is changed by the /PURGE, /START and /STOP APPC (CANCEL) commands. The possible values for desired APPC connection status are:

CANCEL
Shown after /STOP APPC CANCEL

DISABLED
Shown when APPC/IMS is not identified or connected to the APPC/MVS

ENABLED
Shown after /START APPC
OUTBOUND
Shown on the XRF alternate system as it tracks the active

PURGING
Shown after /PURGE APPC

STOPPED
Shown after /STOP APPC

GRNAME
The IMS/APPC generic LU name (if VTAM Generic Resources is activated).

TYPE  BASE for BASE LU or OUTB for OUTBOUND LU.

Examples

Entry ET:
/DISPLAY APPC

Response ET:

IMSLU  #APPC-CONV  SECURITY  STATUS  DESIRED
IMSLUNME   0  FULL  ENABLED  ENABLED
*90347/114253*

Entry ET:
/DISPLAY APPC

Response ET:

IMSLU  #APPC-CONV  SECURITY  STATUS  DESIRED
IMSLUNME   0  FULL  DISABLED  ENABLED
*90347/114253*

Entry ET:
/DISPLAY APPC

Response ET:

IMSLU  #APPC-CONV  SECURITY  STATUS  DESIRED
SYS1.IMSLUNME   0  FULL  STOPPED  STOPPED
*92232/114253*

/DISPLAY AREA command

Use the /DISPLAY AREA command to display data sets, status conditions, control intervals, and databases associated with an area.

Subsections:

• “Environment” on page 472
• “Syntax” on page 472
• “Keywords and reserved parameters” on page 472
• “Usage notes” on page 473
• “Equivalent IMS type-2 commands” on page 473
• “Output fields” on page 474
• “Examples” on page 475
Environment

The /DISPLAY AREA command is valid in DB/DC and DBCTL environments.

Syntax

```
►► /DISPLAY AREA areaname /DIS ALL IOVF MADSIO NOTOPEN OFR QSC RECALL RECOVERN STOPPED ◄◄
```

Keywords and reserved parameters

The following keywords can be specified for the /DISPLAY AREA command:

**IOVF**

Displays the independent overflow area statistics.

If the /DISPLAY AREA IOVF command is entered on an RSR tracking subsystem, the IOVF statistics might be incorrect.

When the ALL parameter is used with the IOVF keyword (for example, /DIS AREA ALL IOVF), performance can be affected depending on the number and size of areas involved. If large areas, large numbers of areas, or both are involved, the control region can appear to be stopped while processing this command.

Areas are selected for display based on the attributes specified. For example, /DISPLAY AREA STOPPED only displays the areas that are currently stopped. The attribute display format is the same as the standard AREA display. Attributes generally correspond to the conditions displayed for areas. Any exceptions are flagged in the following list.

The attributes are reserved parameters for the /DISPLAY AREA command and cannot be used to name areas. The following list describes the attributes that can be used with the AREA keyword:

**MADSIO**

Displays the areas that are currently in a long busy condition or are in long busy recovery mode.

**NOTOPEN**

Displays the areas that have yet to be opened.

**OFR**

Displays the areas that are being brought up to the current tracking level with online forward recovery.
QSC
Displays the Fast Path DEDB areas that are currently quiesced by a previous
UPDATE DB START(QUIESCE) or UPDATE AREA START(QUIESCE)
command.

RECALL
Displays the areas that are in recall.

RECOVERN
Displays the areas that need recovery. This parameter corresponds to the area
condition RECOVERY-NEEDED.

STOPPED
Displays the areas that are currently stopped.

Usage notes

If an IMS Fast Path utility is active when the /DISPLAY AREA command is issued,
the following output line is displayed:
UTILITY XXXX PVTTOT# YY PVTAVL# ZZ IMSID:SSSS TTTT

or
UTILITY: XXXX IMSID:SSSS

The output values represent:
• XXXX - the active utility name or VSO function
• YY - the total number of private buffers available to the utility
• ZZ - the number of unused private buffers available to the utility
• SSSS - the IMSID of the IMS system on which the utility is active
• TTTT - the IMSID of the IMS system on which the display was issued

The following IMS Fast Path utilities, VSO functions, and IBM DBTOOL utility can
be displayed:
• DA00 (DBFDA00, DEDB Alter utility)
• HSSP (High Speed Sequential Processing utility)
• HSRE (DBFUHDR0, High Speed Reorganization utility)
• MDL0 (DBFUMDL0, SDEP Delete utility)
• MSC0 (DBFUMSC0, SDEP Scan utility)
• MRI0 (DBFUMRI0, DEDB Create utility)
• MMH0 (DBFUMMH0, DEDB Compare utility)
• PRLD (VSO Preload is active)
• TOOL (an IBM DBTOOL Online utility)

Equivalent IMS type-2 commands

The following table shows variations of the /DISPLAY AREA command and the
IMS type-2 commands that perform similar functions.

<table>
<thead>
<tr>
<th>Task</th>
<th>/DISPLAY AREA command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays information about an area.</td>
<td>/DISPLAY AREA</td>
<td>QUERY AREA</td>
</tr>
</tbody>
</table>
Output fields

The following output fields are displayed for the /DISPLAY AREA command:

**AREANAME**
Name of the Fast Path DEDB area.

**DDNAME**
Names of the data sets that contain that area.

**CONDITIONS**
Status conditions associated with the area or ADS.
Status conditions associated with the area include:

- **IC**
  HSSP image copy is currently active on the area.

- **MADSIO**
  The areas is currently in a long busy condition or long busy recovery mode.

- **NOTOPEN**
  The area has yet to be opened. This will be done when first call is issued to the area.

- **RECALL**
  Area is in recall.

- **RECOVERY-NEEDED**
  The area has been marked RECOVERY-NEEDED. The Database Recovery utility needs to be run to restore this area.

- **STOPPED**
  The area is in STOPPED status. All access to it is prohibited. This can be changed with the /START command.

- **VIR**
  The area is a VSO area.

- **PREO**
  The area is defined to be preopened during IMS initialization.

- **PREL**
  The area is defined to be preloaded during IMS initialization.

- **QUIESCED**
  The Fast Path DEDB area named on the command is currently quiesced by a previous UPDATE DB START(QUIESCE) or UPDATE AREA START(QUIESCE) command.

- **QUIESCING**
  The Fast Path DEDB area named on the command is currently undergoing quiesce by a previous UPDATE DB START(QUIESCE) or UPDATE AREA START(QUIESCE) command.

Status conditions associated with the ADS include the following:

- **COPY-PHASE**
  The CREATE utility is currently in the COPY phase on this ADS. The CREATE utility must complete before anything can be done with this ADS.

- **FORMAT-PHASE**
  The CREATE utility is currently in the FORMAT phase on this ADS. The CREATE utility must complete before anything can be done with this ADS.
PRE-OPEN FAILED
XRF PREOPEN was not successful for this ADS.

RECALL
Area is in Recall.

SEVERE-ERROR
This ADS has had a severe I/O error (write error to second CI, in
which Fast Path keeps its control information).

UNAVAILABLE
This ADS has been marked unavailable, probably because of I/O
errors. (EQE REMAIN = 0).

EQECT
Specifies the count of I/O errors for the area.

TOTAL SEQ DEPENDENT
Total control intervals defined for sequential dependent space.

UNUSED SEQ DEPENDENT
Unused control intervals for sequential dependent space.

TOTAL DIRECT ADDRESSABLE
Total control intervals defined for direct addressable space.

UNUSED DIRECT ADDRESSABLE
Unused control intervals for direct addressable space.

DBNAME
Database name.

EEQECT
Count of write error EEQE for this area.

IOVF
Independent overflow area statistics.

These statistics are only displayed if IOVF is specified on the /DIS AREA
command (/DIS AREA ALL IOVF or /DIS AREA areaname IOVF). If the
IOVF parameter is not specified on the /DIS AREA command, N/A
appears in the display output.

Examples
The following are examples of the /DISPLAY AREA command.

Example 1 for /DISPLAY AREA command

Entry ET:
/DIS AREA db21ar1 db21ar3 db21ar6 IOVF

Response ET:

<table>
<thead>
<tr>
<th>AREANAME</th>
<th>DDNAME</th>
<th>EQECT</th>
<th>TOTAL UNUSED</th>
<th>TOTAL UNUSED</th>
<th>DBNAME</th>
<th>EEQECT</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB21AR1</td>
<td>N/A</td>
<td>13</td>
<td>11</td>
<td>74</td>
<td>74-CI</td>
<td>DEDBJN21</td>
<td>999</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td>VIR, PREO, PREL</td>
</tr>
<tr>
<td>DB21AR1B</td>
<td>10</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DB21AR1C</td>
<td>10</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DB21AR3</td>
<td>N/A</td>
<td>13</td>
<td>11</td>
<td>74</td>
<td>56-CI</td>
<td>DEDBJN21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chapter 26. /DISPLAY commands 475
Explanation: DIR ADDRESSABLE means Independent Overflow part.

**Example 2 for /DISPLAY AREA command**

Entry ET:
/.DIS AREA ALL

Response ET:

<table>
<thead>
<tr>
<th>AREANAME</th>
<th>EQECT</th>
<th>TOTAL UNUSED</th>
<th>TOTAL UNUSED</th>
<th>DBNAME</th>
<th>EQECT</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDNAME</td>
<td>REMAIN</td>
<td>SEQ</td>
<td>DEPENDENT</td>
<td></td>
<td>DIR</td>
<td>ADDRESSABLE</td>
</tr>
</tbody>
</table>

DB21AR0	N/A	17	15	74	N/A	DEDBJN21 999	VIR, PREO, PREL
DB21AR0	10	N/A	N/A	N/A	N/A	DEDBJN21 N/A	
DB21AR1	N/A	13	11	74	N/A	DEDBJN21	VIR, PREO
DB21AR1	10	N/A	N/A	N/A	N/A	DEDBJN21 N/A	
DB21AR1B	10	N/A	N/A	N/A	N/A	DEDBJN21 N/A	
DB21AR1C	10	N/A	N/A	N/A	N/A	DEDBJN21 N/A	
DB21AR10	N/A	17	15	74	N/A	DEDBJN21	VIR, PREO, PREL
DB21AR10	10	N/A	N/A	N/A	N/A	DEDBJN21 N/A	
DB21AR11	N/A	133	131	74	N/A	DEDBJN21	VIR
DB21AR11	10	N/A	N/A	N/A	N/A	DEDBJN21 N/A	
DB21AR2	N/A	19	17	74	0-UW	DEDBJN21	VIR, PREO, PREL
DB21AR2							
DB21AR2	10	N/A	N/A	N/A	N/A	DEDBJN21 N/A	
DB21AR3	N/A	13	11	74	N/A	DEDBJN21	PREO
DB21AR3	10	N/A	N/A	N/A	N/A	DEDBJN21 N/A	
DB21AR3B	10	N/A	N/A	N/A	N/A	DEDBJN21 N/A	
DB21AR4	N/A	N/A	N/A	N/A	N/A	DEDBJN21	STOPPED, NOTOPEN
DB21AR5	N/A	N/A	N/A	N/A	N/A	DEDBJN21	STOPPED, NOTOPEN
DB21AR6	N/A	N/A	N/A	N/A	N/A	DEDBJN21	STOPPED, NOTOPEN
DB21AR7	N/A	N/A	N/A	N/A	N/A	DEDBJN21	NOTOPEN
DB21AR8	N/A	N/A	N/A	N/A	N/A	DEDBJN21	NOTOPEN
DB21AR9	N/A	N/A	N/A	N/A	N/A	DEDBJN21	NOTOPEN

*93076/173254*

Explanation: DIR ADDRESSABLE means Independent Overflow part.

**Example 3 for /DISPLAY AREA command**

Entry ET:
/DIS AREA db11ar4

Response ET:

<table>
<thead>
<tr>
<th>AREANAME</th>
<th>EQECT</th>
<th>TOTAL UNUSED</th>
<th>TOTAL UNUSED</th>
<th>DBNAME</th>
<th>EQECT</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDNAME</td>
<td>REMAIN</td>
<td>SEQ</td>
<td>DEPENDENT</td>
<td></td>
<td>DIR</td>
<td>ADDRESSABLE</td>
</tr>
</tbody>
</table>

| DB21AR4  | N/A   | N/A          | N/A          | N/A    | N/A   | DEDBJN21 999 | STOPPED, NOTOPEN, RECOVERY |
| *97136/173254* |

Explanation: RECOVERY means this Fast Path area is undergoing recovery with the Online Recovery Service.

**Example 4 for /DISPLAY AREA command**

Entry ET:
/DIS AREA DB21AR0

Response ET:

<table>
<thead>
<tr>
<th>AREANAME</th>
<th>EQECT</th>
<th>TOTAL</th>
<th>UNUSED</th>
<th>TOTAL</th>
<th>UNUSED</th>
<th>DBNAME</th>
<th>EEQECT</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB21AR0</td>
<td>N/A</td>
<td>29</td>
<td>28</td>
<td>74</td>
<td>0-UW</td>
<td>DEDBJN21 0</td>
<td>VIR, PREO, PRL</td>
<td>SYS3</td>
</tr>
<tr>
<td>DDNAME</td>
<td>REMAIN</td>
<td>SEQ</td>
<td>DEPENDENT</td>
<td>DIR</td>
<td>ADDRESSABLE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AXYZ01</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>FPDBXYZ</td>
<td>0</td>
<td>QUIESCED</td>
</tr>
</tbody>
</table>

Explanation: The IMS Fast Path utility, HSSP, is active on IMSID=IMS2.

Example 5 for /DISPLAY AREA command

Entry ET:
/DIS AREA QSC

Response ET:

<table>
<thead>
<tr>
<th>AREANAME</th>
<th>EQECT</th>
<th>TOTAL</th>
<th>UNUSED</th>
<th>TOTAL</th>
<th>UNUSED</th>
<th>DBNAME</th>
<th>EEQECT</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AXYZ01</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Explanation: This is an example of displaying databases that have the status of quiesced.

Related concepts:
- DEDB area design guidelines (Database Administration)

Related reference:
- QUERY AREA command (Commands)

/DISPLAY ASMT command

Use the /DISPLAY ASMT command to display resource assignments.

Subsections:
- “Environment”
- “Syntax” on page 478
- “Keywords” on page 478
- “Equivalent IMS type-2 commands” on page 480
- “Examples” on page 480

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

Table 231. Valid environments for the /DISPLAY ASMT command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/DISPLAY ASMT</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LINK</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LINE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Table 231. Valid environments for the /DISPLAY ASMT command and keywords (continued)

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTERM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MSNAME</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSPLINK</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SYSID</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>USER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

The following keywords are valid for the /DISPLAY ASMT command:

Keywords

The following keywords are valid for the /DISPLAY ASMT command:
LINE PTERM
The logical terminal names associated with the specified line and physical terminal.

LINK
The physical link, SYSIDs, and logical link paths assigned to the specified logical link.

LTERM
The communication line and physical terminal or node and component associated with the specified logical terminal name. When using ISC or a dynamic terminal, the displayed output for a logical terminal assigned to the VTAM pool shows the assigned node, if any, and the user name. The LTERM parameter can be generic.

MSNAME
The physical link and logical link assigned to the specified logical link path.

MSPLINK
The type, address, and logical link associated with the specified physical link. For MSC with TCP/IP or VTAM, MSPLINK also displays the maximum number of allowed sessions and the identifier used by the remote IMS system. For TCP/IP physical links, the command output displays the IMS ID of the remote IMS system. For VTAM physical links, the output displays the VTAM node name of the remote IMS system.

If logons are stopped for a physical link that is used for MSC TCP/IP generic resources, the status of the link displays as PSTOPGEN.

NODE
The logical terminal names associated with the specified node. When using ISC, the displayed output shows at least one line of information for each half-session of the node, shows whether the half-session is active, and shows whether LTERMs are assigned. If the half-session is active, the user identifier is displayed. If no LTERMs are assigned, NONE is indicated. The USER keyword is valid for ISC nodes and non-ISC nodes with signed-on users. The NODE parameter can be generic.

Restrictions for using NODE and USER parameters together:
- Commands with the NODE USER keyword pair are valid only if:
  - The USER is signed on to the NODE
  - In an ISC environment, the USER is allocated to the NODE
  - The nodes and users exist
- /DISPLAY ASMT commands with NODE USER keyword pair are valid for ISC and non-ISC nodes and users.

SYSID
The physical link, logical link, and logical link path assignments associated with the specified system identification.

USER
All the USER structures and USERIDs that match the parameter specified. These are the following:
- The USER field shows the USER structure name. N/A appears for all static USERIDs signed on to static nodes.
- The USERID field displays the RACF USERID that was used to sign on to the node. N/A appears if a USER structure is not associated with a node. In this case, the USER structure exists to hold status or has
messages inserted to it. If no messages or status exist, the USER structure is deleted at the next checkpoint.

- The node name and logical terminal names are displayed if the user is allocated to a node or signed on to a node.
- For ISC sessions, the ID field shows the other half session qualifier.

The USER parameter can be generic.

**Equivalent IMS type-2 commands**

The following table shows variations of the /DISPLAY ASMT command and the IMS type-2 commands that perform similar functions.

<table>
<thead>
<tr>
<th>Task</th>
<th>/DISPLAY ASMT command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays input and output components.</td>
<td>/DISPLAY ASMT LTERM <em>ltermname</em></td>
<td>QUERY LTERM SHOW(COMPONENT)</td>
</tr>
<tr>
<td>Displays the node associated with the lterm.</td>
<td>/DISPLAY ASMT LTERM <em>ltermname</em></td>
<td>QUERY LTERM SHOW(NODE)</td>
</tr>
<tr>
<td>Displays the user associated with the lterm.</td>
<td>/DISPLAY ASMT LTERM <em>ltermname</em></td>
<td>QUERY LTERM SHOW(USER)</td>
</tr>
<tr>
<td>Displays the attributes of an MSC logical link</td>
<td>/DISPLAY ASMT MSPLINK <em>msplinkname</em></td>
<td>QUERY MSPLINK SHOW(ALL)</td>
</tr>
<tr>
<td>Displays the attributes of an MSC physical link</td>
<td>/DISPLAY ASMT MSPLINK <em>msplinkname</em></td>
<td>QUERY MSPLINK SHOW(ALL)</td>
</tr>
<tr>
<td>Displays assigned lterms.</td>
<td>/DISPLAY ASMT NODE <em>node</em></td>
<td>QUERY NODE SHOW(LTERM)</td>
</tr>
<tr>
<td>Displays the user associated with the node.</td>
<td>/DISPLAY ASMT NODE <em>node</em></td>
<td>QUERY NODE SHOW(USER)</td>
</tr>
<tr>
<td>Displays the other half-session qualifier ID of the ISC node.</td>
<td>/DISPLAY ASMT USER <em>user</em></td>
<td>QUERY USER SHOW(ID)</td>
</tr>
<tr>
<td>Displays assigned lterms.</td>
<td>/DISPLAY ASMT USER <em>user</em></td>
<td>QUERY USER SHOW(LTERM)</td>
</tr>
<tr>
<td>Displays the node.</td>
<td>/DISPLAY ASMT USER <em>user</em></td>
<td>QUERY USER SHOW(NODE)</td>
</tr>
<tr>
<td>Displays the user ID.</td>
<td>/DISPLAY ASMT USER <em>user</em></td>
<td>QUERY USER SHOW(USERID)</td>
</tr>
<tr>
<td>Displays the user.</td>
<td>/DISPLAY ASMT USER <em>user</em></td>
<td>QUERY USERID SHOW(USER)</td>
</tr>
</tbody>
</table>

**Examples**

The following are examples of the /DISPLAY ASMT command.

**Example 1 for /DISPLAY ASMT command**

Entry ET:

```
/DISPLAY ASMT LINE 2 PTERM ALL
```

Response ET:

```
TERMINAL
 2-1 IN -L2740S2
 OUT - L2740S1, L2740S2
 90295/130910
```

Entry ET:
/DISPLAY ASMT LINE 4 PTERM 1, 2

Response ET:
TERMINAL
  4-1 IN - L2740SM1
  OUT- L2740SM1
  4-2 IN - L2740SM2
  OUT- L2740SM2
*90295/130328*

Example 2 for /DISPLAY ASMT command

Entry ET:
/DISPLAY ASMT LINK ALL

Response ET:
LINK PLINK SIDR SIDL MSNAME
  1 BLCB1CTC 1  4 SYSTEM2A
  1  5 SYSTEM2B
  3  6 FRESNO
  2 BLCB2BSC 21 23 BOSTON
  22 24 ALBANY
  3 BLCB1MTM 19 20 TEST1
*90280/072935*

Example 3 for /DISPLAY ASMT command

Entry ET:
/DISPLAY ASMT LTERM DIALQ1 INQUIRY1 L2740S1 MASTER WTOR

Response ET:
LTERM IN-TERMINAL OUT-TERMINAL USER
  DIALQ1 11- 1 11- 1
  INQUIRY1 5- 1 5- 1
  L2740S1 3- 1 3- 1
  MASTER 3- 1 3- 1
  WTOR 1- SC 1- SC
*90295/130657*

Entry ET:
/DISPLAY ASMT LTERM L1 L2 L3

Response ET:
LTERM IN-TERMINAL OUT-TERMINAL USER
  L1 14- 1 14- 1
  L2 NODEA -1 NODEA -1 A
  L3 N/A -1 N/A -1 B
*90231/143059*

Entry ET:
/DISPLAY ASMT LTERM ALL

Response ET:
LTERM IN-TERMINAL OUT-TERMINAL USER
  CRDPUNCH 14- 1 14- 1
  DIALQ1 11- 1 11- 1
  DIALQ2 12- 1 12- 1
  DIALQ3 13- 1 13- 1
  INQUIRY1 5- 1 5- 1
Example 4 for /DISPLAY ASMT command

Entry ET:

/DISPLAY ASMT MSNAME ALL

Response ET:

<table>
<thead>
<tr>
<th>LINK</th>
<th>PLINK</th>
<th>SIDR</th>
<th>SIDL</th>
<th>MSNAME</th>
<th>IMS1</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>32</td>
<td>3</td>
<td>LINK23B4</td>
<td>IMS1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>PLNK12V</td>
<td>20</td>
<td>10</td>
<td>LINK12V1</td>
<td>IMS1</td>
</tr>
<tr>
<td>N/A</td>
<td>35</td>
<td>3</td>
<td>LINK23U2</td>
<td>IMS1</td>
<td></td>
</tr>
<tr>
<td>N/A</td>
<td>28</td>
<td>3</td>
<td>ELINK211</td>
<td>IMS1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PLNK12V</td>
<td>31</td>
<td>11</td>
<td>LINK13B3</td>
<td>IMS1</td>
</tr>
<tr>
<td>10</td>
<td>PLNK12V</td>
<td>266</td>
<td>2036</td>
<td>LINK13V</td>
<td>IMS1</td>
</tr>
<tr>
<td>10</td>
<td>PLNK12V</td>
<td>256</td>
<td>1012</td>
<td>LINK12V</td>
<td>IMS1</td>
</tr>
<tr>
<td>2</td>
<td>PLNK12C</td>
<td>33</td>
<td>13</td>
<td>LINK13C2</td>
<td>IMS1</td>
</tr>
<tr>
<td>10</td>
<td>PLNK12V</td>
<td>80</td>
<td>300</td>
<td>LINK13X</td>
<td>IMS1</td>
</tr>
<tr>
<td>11</td>
<td>PLNK12V</td>
<td>40</td>
<td>9</td>
<td>LINK12V2</td>
<td>IMS1</td>
</tr>
<tr>
<td>3</td>
<td>PLNK12M</td>
<td>34</td>
<td>14</td>
<td>LINK13M2</td>
<td>IMS1</td>
</tr>
<tr>
<td>12</td>
<td>PLNK13V</td>
<td>38</td>
<td>18</td>
<td>LINK13V2</td>
<td>IMS1</td>
</tr>
<tr>
<td>7</td>
<td>N/A</td>
<td>43</td>
<td>44</td>
<td>ELINK124</td>
<td>IMS1</td>
</tr>
<tr>
<td>N/A</td>
<td>36</td>
<td>3</td>
<td>LINK23V1</td>
<td>IMS1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PLNK12V</td>
<td>21</td>
<td>11</td>
<td>LINK12B1</td>
<td>IMS1</td>
</tr>
<tr>
<td>1</td>
<td>PLNK12V</td>
<td>22</td>
<td>12</td>
<td>LINK12B2</td>
<td>IMS1</td>
</tr>
<tr>
<td>10</td>
<td>PLNK12V</td>
<td>90</td>
<td>500</td>
<td>LINK12Y</td>
<td>IMS1</td>
</tr>
<tr>
<td>5</td>
<td>N/A</td>
<td>26</td>
<td>16</td>
<td>ELINK120</td>
<td>IMS1</td>
</tr>
<tr>
<td>1</td>
<td>PLNK12V</td>
<td>32</td>
<td>12</td>
<td>LINK13B4</td>
<td>IMS1</td>
</tr>
<tr>
<td>N/A</td>
<td>8</td>
<td>3</td>
<td>LINK21V3</td>
<td>IMS1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>N/A</td>
<td>51</td>
<td>41</td>
<td>ELINK1MS</td>
<td>IMS1</td>
</tr>
<tr>
<td>3</td>
<td>PLNK12M</td>
<td>24</td>
<td>14</td>
<td>LINK12M1</td>
<td>IMS1</td>
</tr>
<tr>
<td>N/A</td>
<td>266</td>
<td>3</td>
<td>LINK23V</td>
<td>IMS1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>N/A</td>
<td>35</td>
<td>15</td>
<td>LINK13U2</td>
<td>IMS1</td>
</tr>
<tr>
<td>N/A</td>
<td>31</td>
<td>3</td>
<td>LINK23B3</td>
<td>IMS1</td>
<td></td>
</tr>
<tr>
<td>N/A</td>
<td>43</td>
<td>3</td>
<td>ELINK224</td>
<td>IMS1</td>
<td></td>
</tr>
<tr>
<td>N/A</td>
<td>80</td>
<td>3</td>
<td>LINK23X</td>
<td>IMS1</td>
<td></td>
</tr>
<tr>
<td>N/A</td>
<td>37</td>
<td>3</td>
<td>LINK23V</td>
<td>IMS1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>N/A</td>
<td>27</td>
<td>17</td>
<td>ELINK121</td>
<td>IMS1</td>
</tr>
<tr>
<td>N/A</td>
<td>33</td>
<td>3</td>
<td>LINK23C2</td>
<td>IMS1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>N/A</td>
<td>25</td>
<td>15</td>
<td>LINK12U1</td>
<td>IMS1</td>
</tr>
<tr>
<td>N/A</td>
<td>34</td>
<td>3</td>
<td>LINK23M2</td>
<td>IMS1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>N/A</td>
<td>29</td>
<td>19</td>
<td>ELINK122</td>
<td>IMS1</td>
</tr>
<tr>
<td>N/A</td>
<td>29</td>
<td>3</td>
<td>ELINK222</td>
<td>IMS1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>PLNK12C</td>
<td>23</td>
<td>13</td>
<td>LINK12C1</td>
<td>IMS1</td>
</tr>
<tr>
<td>10</td>
<td>PLNK12V</td>
<td>36</td>
<td>16</td>
<td>LINK13V1</td>
<td>IMS1</td>
</tr>
<tr>
<td>7</td>
<td>N/A</td>
<td>42</td>
<td>45</td>
<td>ELINK123</td>
<td>IMS1</td>
</tr>
<tr>
<td>16</td>
<td>LKV1TSTB</td>
<td>93</td>
<td>3</td>
<td>PTH3TSTB</td>
<td>IMS1</td>
</tr>
</tbody>
</table>

*90295/160953*

Example 5 for /DISPLAY ASMT command
The following example displays information about MSC physical link assignments. The output is displayed in tabular format. Each logical link assigned to a physical link is displayed on a single row. The attributes of the physical links are displayed in columns.

In the output of the /DISPLAY ASMT MSPLINK command:

**LINK**  The link number of the logical link that is assigned to the physical link.

**PLINK**  The name of the physical link.

**TYPE**  The physical link type.

**ADDR**  The address of the physical link. ADDR applies to VTAM and CTC only.

**MAXSESS**  The maximum number of logical links or sessions that can be assigned to the physical link.

**NODE**  The identifier of the remote IMS system.

  For VTAM physical links, NODE is the node name of the remote IMS system. For TCP/IP physical links, NODE is the IMSID of the remote IMS system.

Entry ET:

```
/DISPLAY ASMT MSPLINK ALL
```

Response ET:

```
<table>
<thead>
<tr>
<th>LINK</th>
<th>PLINK</th>
<th>TYPE</th>
<th>ADDR</th>
<th>MAXSESS</th>
<th>NODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFS0001</td>
<td>3</td>
<td>PLNK12M</td>
<td>MTM</td>
<td>****</td>
<td></td>
</tr>
<tr>
<td>DFS0001</td>
<td>9</td>
<td>PLNK12MA</td>
<td>MTM</td>
<td>****</td>
<td></td>
</tr>
<tr>
<td>DFS0001</td>
<td>2</td>
<td>PLNK12C</td>
<td>CTC</td>
<td>0211</td>
<td></td>
</tr>
<tr>
<td>DFS0001</td>
<td>N/A</td>
<td>PLNK12MU</td>
<td>MTM</td>
<td>****</td>
<td></td>
</tr>
<tr>
<td>DFS0001</td>
<td>N/A</td>
<td>PLNK12CU</td>
<td>CTC</td>
<td>****</td>
<td></td>
</tr>
<tr>
<td>DFS0001</td>
<td>1</td>
<td>PLNK12V</td>
<td>VTAM</td>
<td>00000000</td>
<td>3</td>
</tr>
<tr>
<td>DFS0001</td>
<td>10</td>
<td>PLNK12V</td>
<td>VTAM</td>
<td>00000000</td>
<td>3</td>
</tr>
<tr>
<td>DFS0001</td>
<td>11</td>
<td>PLNK12V</td>
<td>VTAM</td>
<td>00000000</td>
<td>3</td>
</tr>
<tr>
<td>DFS0001</td>
<td>28</td>
<td>PLNK12V</td>
<td>VTAM</td>
<td>00000000</td>
<td>3</td>
</tr>
<tr>
<td>DFS0001</td>
<td>N/A</td>
<td>PLNK12VU</td>
<td>VTAM</td>
<td>****</td>
<td>1</td>
</tr>
<tr>
<td>DFS0001</td>
<td>12</td>
<td>PLNK13V</td>
<td>VTAM</td>
<td>00000000</td>
<td>5</td>
</tr>
<tr>
<td>DFS0001</td>
<td>13</td>
<td>PLNKSON1</td>
<td>VTAM</td>
<td>00000000</td>
<td>1</td>
</tr>
<tr>
<td>DFS0001</td>
<td>14</td>
<td>PLNKSON2</td>
<td>VTAM</td>
<td>00000000</td>
<td>2</td>
</tr>
<tr>
<td>DFS0001</td>
<td>15</td>
<td>PLNKSON3</td>
<td>VTAM</td>
<td>00000000</td>
<td>2</td>
</tr>
<tr>
<td>DFS0001</td>
<td>16</td>
<td>PLNK12MB</td>
<td>MTM</td>
<td>****</td>
<td></td>
</tr>
<tr>
<td>DFS0001</td>
<td>17</td>
<td>PLNK13MB</td>
<td>MTM</td>
<td>****</td>
<td></td>
</tr>
<tr>
<td>DFS0001</td>
<td>18</td>
<td>PLNK12CB</td>
<td>CTC</td>
<td>****</td>
<td></td>
</tr>
<tr>
<td>DFS0001</td>
<td>19</td>
<td>PLNK13CB</td>
<td>CTC</td>
<td>****</td>
<td></td>
</tr>
<tr>
<td>DFS0001</td>
<td>20</td>
<td>PLNK12VB</td>
<td>VTAM</td>
<td>00000000</td>
<td>2</td>
</tr>
<tr>
<td>DFS0001</td>
<td>21</td>
<td>PLNK13VB</td>
<td>VTAM</td>
<td>00000000</td>
<td>2</td>
</tr>
<tr>
<td>DFS0001</td>
<td>22</td>
<td>PLNK12TA</td>
<td>TCP/IP</td>
<td>****</td>
<td>2</td>
</tr>
<tr>
<td>DFS0001</td>
<td>23</td>
<td>PLNK12TA</td>
<td>TCP/IP</td>
<td>****</td>
<td>2</td>
</tr>
<tr>
<td>DFS0001</td>
<td>24</td>
<td>PLNK13TA</td>
<td>TCP/IP</td>
<td>****</td>
<td>2</td>
</tr>
<tr>
<td>DFS0001</td>
<td>N/A</td>
<td>11130/232948</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

**Example 6 for /DISPLAY ASMT command**

Entry ET:

```
/DISPLAY ASMT NODE NLU1 NLUT65 NLUT6P
```

Chapter 26. /DISPLAY commands 483
Response ET:

<table>
<thead>
<tr>
<th>NODE</th>
<th>USER</th>
<th>LTERM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NLU1</td>
<td></td>
<td>I/O- L1 , L2</td>
</tr>
<tr>
<td>NLU65</td>
<td></td>
<td>I/O- L3</td>
</tr>
<tr>
<td>NLU6P</td>
<td>A</td>
<td>I/O- L5 , L6</td>
</tr>
<tr>
<td>NLU6P</td>
<td>N/A</td>
<td>I/O- NONE</td>
</tr>
<tr>
<td>NLU6P</td>
<td>C</td>
<td>I/O- L7</td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>04008/113126</em></td>
</tr>
</tbody>
</table>

Entry ET:

/DISPLAY ASMT NODE NLU6P USER C

Response ET:

<table>
<thead>
<tr>
<th>NODE</th>
<th>USER</th>
<th>LTERM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NLU6P</td>
<td>C</td>
<td>I/O- L7</td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>04008/113126</em></td>
</tr>
</tbody>
</table>

Entry ET:

/DISPLAY ASMT NODE ALL

Response ET:

<table>
<thead>
<tr>
<th>NODE</th>
<th>USER</th>
<th>LTERM</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT3275</td>
<td></td>
<td>I/O- VT3275 , VT3275P</td>
</tr>
<tr>
<td>CT3277A</td>
<td></td>
<td>I/O- VT3270A</td>
</tr>
<tr>
<td>CT3277B</td>
<td></td>
<td>I/O- VT3270B</td>
</tr>
<tr>
<td>CT3277C</td>
<td></td>
<td>I/O- VT3270C</td>
</tr>
<tr>
<td>CT3277D</td>
<td></td>
<td>I/O- VT3270P1</td>
</tr>
<tr>
<td>CT3277E</td>
<td></td>
<td>I/O- VT3270P2</td>
</tr>
<tr>
<td>L3270A</td>
<td></td>
<td>I/O- VT3270L1</td>
</tr>
<tr>
<td>L3270B</td>
<td></td>
<td>I/O- VT3270L2</td>
</tr>
<tr>
<td>L3284A</td>
<td></td>
<td>I/O- VT3270P3</td>
</tr>
<tr>
<td>W612</td>
<td></td>
<td>I/O- W610JP , W610D6 , W610FP</td>
</tr>
<tr>
<td>W613</td>
<td></td>
<td>I/O- W620JP , W620D6 , W620PB , W620M6</td>
</tr>
<tr>
<td>FCBOX1</td>
<td></td>
<td>I/O- W6CIT</td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>04008/113126</em></td>
</tr>
</tbody>
</table>

Example 7 for /DISPLAY ASMT command

Entry ET:

/DISPLAY ASMT SYSID ALL

Response ET:

<table>
<thead>
<tr>
<th>LINK</th>
<th>PLINK</th>
<th>SIDR</th>
<th>SIDL</th>
<th>MSNAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BLCB1CTC</td>
<td>1</td>
<td>4</td>
<td>SYSTEM2A</td>
</tr>
<tr>
<td>1</td>
<td>BLCB1CTC</td>
<td>2</td>
<td>5</td>
<td>SYSTEM2B</td>
</tr>
<tr>
<td>1</td>
<td>BLCB1CTC</td>
<td>3</td>
<td>6</td>
<td>FREDSNO</td>
</tr>
<tr>
<td>3</td>
<td>BLCB1MTM</td>
<td>19</td>
<td>20</td>
<td>TEST1</td>
</tr>
<tr>
<td>2</td>
<td>BLCB2BSC</td>
<td>21</td>
<td>23</td>
<td>BOSTON</td>
</tr>
<tr>
<td>2</td>
<td>BLCB2BSC</td>
<td>22</td>
<td>24</td>
<td>ALBANY</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><em>90280/072821</em></td>
</tr>
</tbody>
</table>

Entry ET:

/DISPLAY ASMT SYSID ALL

Response ET:

<table>
<thead>
<tr>
<th>LINK</th>
<th>PLINK</th>
<th>SIDR</th>
<th>SIDL</th>
<th>MSNAME</th>
<th>IMS1</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>8</td>
<td>3</td>
<td>LINK21V3</td>
<td>IMS1</td>
<td></td>
</tr>
<tr>
<td>N/A</td>
<td>28</td>
<td>3</td>
<td>ELINK211</td>
<td>IMS1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>N/A</td>
<td>29</td>
<td>19</td>
<td>ELINK122</td>
<td>IMS1</td>
</tr>
<tr>
<td>1</td>
<td>PLNK12V</td>
<td>31</td>
<td>11</td>
<td>LINK1383</td>
<td>IMS1</td>
</tr>
</tbody>
</table>

484 Commands, Volume 1: IMS Commands A - M
1 PLNK12V 32 12 LINK13B4 IMS1
2 PLNK12C 33 13 LINK13C2 IMS1
3 PLNK12M 34 14 LINK13M2 IMS1
4 N/A 35 15 LINK13U2 IMS1
10 PLNK12V 36 16 LINK13V1 IMS1
    N/A 37 3 LINK23V2 IMS1
12 PLNK13V 38 18 LINK13V2 IMS1
    7 N/A 43 44 ELINK124 IMS1
    6 N/A 51 41 ELINK13 IMS1
10 PLNK12V 80 300 LINK13X IMS1
10 PLNK12V 266 2036 LINK13V IMS1
*97258/170653*

Entry ET:
/DISPLAY ASMT SYSID 22 23 24

Response ET:
LINK PLINK SIDR SIDL MSNAME
  2 BLCB2BSC 22 24 ALBANY
  23 IS LOCAL
24 IS LOCAL
*90280/072902*

*Example 8 for /DISPLAY ASMT command*

Entry ET:
/DISPLAY ASMT USER A B C D

Response ET:
USER ID NODE
A CICSA NLUT6P I/O- L1 , L2
B           I/O- L3
C CICSB NLUT6P I/O- L4
D           I/O- NONE
*90229/083059*

Entry ET:
/DISPLAY ASMT USER IMSUS01 IMSUS02

Response ET:
USER USERID ID NODE
IMSUS01 IMSUS01 DTSLU201 I/O- IMSUS01
N/A IMSUS01 L3270A I/O- T3270LA
N/A IMSUS02 L3270B I/O- T3270LB
DT327002 IMSUS02 DT327002 I/O- DT327002
*92350/112229*

Entry ET:
/DISPLAY ASMT USER IMSUS01*

Response ET:
USER USERID ID NODE
IMSUS01C N/A I/O- NONE
IMSUS01D N/A I/O- NONE
IMSUS01 IMSUS01 DTSLU201 I/O- IMSUS01
N/A IMSUS01 L3270A I/O- T3270LA
*92350/113904*

Entry ET:
/DISPLAY ASMT USER ALL
Response ET:

<table>
<thead>
<tr>
<th>USER</th>
<th>USERID</th>
<th>ID</th>
<th>NODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA13</td>
<td></td>
<td></td>
<td>I/O- CA1SP3T1, CA1SP3T2</td>
</tr>
<tr>
<td>IMSUS01C</td>
<td>N/A</td>
<td></td>
<td>I/O- NONE</td>
</tr>
<tr>
<td>IMSUS01D</td>
<td>N/A</td>
<td></td>
<td>I/O- NONE</td>
</tr>
<tr>
<td>LU6SPA</td>
<td>N/A</td>
<td></td>
<td>LU6NDPF I/O- LU6LTPA1</td>
</tr>
<tr>
<td>LU6SPB</td>
<td>N/A</td>
<td></td>
<td>I/O- LU6LTPB1, LU6LTPB2</td>
</tr>
<tr>
<td>DT327002</td>
<td>IMSUS02</td>
<td></td>
<td>I/O- DT327002</td>
</tr>
<tr>
<td>IMSUS03</td>
<td>IMSUS03</td>
<td></td>
<td>DTSLU601 I/O- IMSUS03</td>
</tr>
<tr>
<td>IMSUS01</td>
<td>IMSUS01</td>
<td></td>
<td>DTSLU201 I/O- IMSUS01</td>
</tr>
<tr>
<td>IMSUS05</td>
<td>N/A</td>
<td></td>
<td>I/O- NONE</td>
</tr>
<tr>
<td>N/A</td>
<td>IMSUS02</td>
<td></td>
<td>L3270B I/O- T3270LB</td>
</tr>
<tr>
<td>N/A</td>
<td>IMSUS01</td>
<td></td>
<td>L3270A I/O- T3270LA</td>
</tr>
<tr>
<td>N/A</td>
<td>IMSUS04</td>
<td></td>
<td>L3270C I/O- T3270LC</td>
</tr>
</tbody>
</table>

*92350/114845*

Example 9 for /DISPLAY ASMT command: ISC TCP/IP nodes

In the following examples, the nodes that are shown in the command output are ISC TCP/IP nodes.

Entry ET:

/DIS ASMT NODE CICS

Response ET:

<table>
<thead>
<tr>
<th>NODE</th>
<th>USER</th>
<th>LTERM</th>
</tr>
</thead>
<tbody>
<tr>
<td>CICS</td>
<td>IMSUS01</td>
<td>I/O- IMSUS01</td>
</tr>
</tbody>
</table>

*12062/122917* IMS1

Entry ET:

/DIS ASMT USER IMSUS01

Response ET:

<table>
<thead>
<tr>
<th>USER</th>
<th>USERID</th>
<th>ID</th>
<th>NODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSUS01</td>
<td>N/A</td>
<td></td>
<td>IMSUS01 CICS I/O- IMSUS01</td>
</tr>
</tbody>
</table>

*12062/122949* IMS1

Entry ET:

/DIS ASMT LTERM IMSUS01

Response ET:

<table>
<thead>
<tr>
<th>LTERM</th>
<th>IN-TERMINAL</th>
<th>OUT-TERMINAL</th>
<th>USER</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSUS01</td>
<td>CICS -1</td>
<td>CICS -1</td>
<td>IMSUS01</td>
</tr>
</tbody>
</table>

*12062/123336* IMS1

Related reference:

- QUERY LTERM command (Commands)
- QUERY NODE command (Commands)
- QUERY USER command (Commands)
- QUERY USERID command (Commands)
- QUERY MSPLINK command (Commands)
- QUERY MSPLINK command (Commands)
Use the /DISPLAY CCTL command to display all coordinator controllers that are connected to DBCTL along with the pseudorecovery token, recovery token, region ID, PSB name, and status.

Restriction: The /DISPLAY CCTL command does not support the ODBA interface to IMS DB. To display status information about units of work for protected resources that are managed by z/OS Resource Recovery Services, use the /DISPLAY UOR command.

Subsections:
- “Environment”
- “Syntax”
- “Keywords”
- “Output fields” on page 488
- “Examples” on page 488

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

Table 233. Valid environments for the /DISPLAY CCTL command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/DISPLAY</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ACTIVE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CCTL</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>INDOUBT</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Syntax

```
/DISPLAY CCTL
```

Keywords

The following keywords are valid for the /DISPLAY CCTL command:

- `ALL | cctlname`
  - Specifies the coordinator controllers to be displayed.
  - `ALL` Displays all coordinator controllers that are connected to IMS.
  - `cctlname` Specifies the name of the coordinator controller. You can specify one or more coordinator controller names.
ACTIVE | INDOUBT
Mutually exclusive, optional keywords that you use to specify the type of threads to be displayed.

ACTIVE
Displays all currently active threads that are associated with either the specified coordinator controller name (cctlname) or with all coordinator controllers.

INDOUBT
Displays all in-doubt threads that are associated with either the specified coordinator controller name (cctlname) or with all coordinator controllers.

Output fields
Coordinator controllers that are attached to IMS show a status of ATTACHED.

The status of active threads can be any of the following:
- ACTIVE
- ACTIVE-DBCMD
- AVAILABLE
- TERM
- UNAVAIL
- W-BLMVR
- W-INTENT
- W-POOLSP
- W-SWITCH

The status of in-doubt threads is always displayed as INDOUBT.

Examples
The following are examples of the /DISPLAY CCTL command.

Example 1 for /DISPLAY CCTL command
Entry ET:
/DISPLAY CCTL

Response ET:
CCTL   STATUS
CICS1  *89067/114857*

Example 2 for /DISPLAY CCTL command
Entry ET:
/DISPLAY CCTL ALL

Response ET:
CCTL PSEUDO-RTKN RECOVERY-TOKEN REGID PSBNAME STATUS
CICS1

0000000000000000 3 ATTACHED
0000000000000000 2 AVAILABLE
0000000000000000 1 AVAILABLE

*89067/113236*

Example 3 for /DISPLAY CCTL command

Entry ET:
/DISPLAY CCTL CICS1

Response ET:

CCTL PSEUDO-RTKN RECOVERY-TOKEN REGID PSBNAME STATUS
CICS1

9FFA9568FF94301 3 BMP255 ACTIVE
9FFA956B7AE24E00 2 BMP255 ACTIVE
0000000000000000 1 AVAILABLE

*89067/113251*

Example 4 for /DISPLAY CCTL command

Entry ET:
/DISPLAY CCTL CICS1 ACTIVE

Response ET:

CCTL PSEUDO-RTKN RECOVERY-TOKEN REGID PSBNAME STATUS
CICS1

9FFA967C26D9802 2 BMP255 ACTIVE
9FFA967AC9E802 1 BMP255 ACTIVE

*89067/114557*

Example 5 for /DISPLAY CCTL command

Entry ET:
/DISPLAY CCTL CICS1 INDOUBT

Response ET:

CCTL PSEUDO-RTKN RECOVERY-TOKEN REGID PSBNAME STATUS
CICS1

000100C0 9FFA956B7AE24E00 BMP255 INDOUBT
00010040 9FFA9568FF94301 BMP255 INDOUBT

*89067/113413*

Related reference:
"Status and attributes for the /DISPLAY command” on page 435

/DISPLAY CONV command

Use the /DISPLAY CONV command to display all BUSY and HELD conversations in the IMS system if no other keywords or parameters are specified.

Subsections:

• “Environment” on page 490
• “Syntax” on page 490
• “Keywords and reserved parameters” on page 490
• “Usage notes” on page 491
Environment

The /DISPLAY CONV command is valid in DB/DC and DCCTL environments.

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

Table 234. Valid environments for the /DISPLAY CONV command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/DISPLAY CONV</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CONV</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LINE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NODE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>USER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

Keywords and reserved parameters

The following keywords and reserved parameters are valid for the /DISPLAY CONV command:

**BUSY** The conversations currently active for the system or active for a specific node, line and physical terminal, or user.

**HELD** The conversations currently held in the system or held from a specific node, line and physical terminal, or user.

**LINE** All conversations for the specified communication line are displayed.

**NODE** All conversations for the specified node are displayed. If the NODE keyword is used and the node is an ISC node, information for all
applicable sessions of the parallel session node is displayed. For dynamic terminals, the conversations of the currently associated user are displayed. The NODE parameter can be generic.

PTERM
All conversations for the specified physical terminal are displayed.

USER All conversations that apply to the specified user are displayed. The USER parameter can be generic.

Usage notes

/DISPLAY CONVERSATION is accepted as a valid command from an IMS terminal because CONVERSATION is a valid synonym of CONV.

When ISC is used with parallel sessions, one line of information for each session in a conversation is displayed. The user name is also displayed.

Attention: In an IMSplex, use of the /DISPLAY CONV command without a specific resource name will result in extensive accesses to the Resource Manager for global information, and its use should be carefully considered.

For an IMS conversational transaction issued from an LU 6.2 application program, the /DISPLAY CONV command shows the LU name and user ID (if available) of the LU 6.2 conversation along with the IMS conversation ID and status.

For an IMS conversational transaction issued from an OTMA client, the /DISPLAY CONV command shows the TMEMBER and TPIPE name in addition to the IMS conversation ID and status.

On an IMS XRF alternate system, where TMEMBER and TPIPE name information is not available, the literal 'UNKNOWN.OTMA' is displayed instead of the TMEMBER and TPIPE names associated with the conversation.

Equivalent IMS type-2 commands

The following table shows variations of the /DISPLAY CONV command and the IMS type-2 commands that perform similar functions.

<table>
<thead>
<tr>
<th>Task</th>
<th>/DISPLAY CONV command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays nodes with active or held conversations.</td>
<td>/DISPLAY CONV</td>
<td>QUERY NODE STATUS(CONV)</td>
</tr>
<tr>
<td>Displays users with active or held conversations.</td>
<td>/DISPLAY CONV</td>
<td>QUERY USER STATUS(CONV)</td>
</tr>
<tr>
<td>Displays IMS conversation information for a particular node.</td>
<td>/DISPLAY CONV NODE node</td>
<td>QUERY NODE SHOW(CONV)</td>
</tr>
<tr>
<td>Displays IMS conversation information for a particular user.</td>
<td>/DISPLAY CONV USER user</td>
<td>QUERY USER SHOW(CONV)</td>
</tr>
</tbody>
</table>

Output fields

The following output fields are displayed for the /DISPLAY CONV command:

ID A 4-byte conversation ID, which is unique for each user and terminal.
STATUS
Conversation status. The status can be ACTIVE, HELD, or SCHEDULED.

TERMINAL
Physical device with which the conversation is associated. This can be a non-VTAM device/pterms, a VTAM node, an ISC node, an APPC luname, or an OTMA tmember/tpipe.

USER The user signed on to a dynamic VTAM node, or the subpool associated with an ISC node, or the user ID for an LU 6.2 conversation.

Examples

Entry ET:
/DISPLAY CONV

Response ET:
TERMINAL USER ID STATUS
NO CONVERSATIONS
*91113/182917*

Entry ET:
/DISPLAY CONV

Response ET:

TERMINAL USER ID STATUS
11- 2 0001 HELD
4- 2 0002 ACTIVE, SCHEDULED
11- 4 0001 HELD
2- 1 0001 HELD
5- 1 0002 ACTIVE
*91115/135706*

Entry ET:
/DISPLAY CONV

Response ET:

TERMINAL USER ID STATUS
LUNAME1 USERID1 0001 ACTIVE
DT327001 IMSUS01 0005 ACTIVE
LUNAME2 0002 ACTIVE,SCHEDULED
LUNAME3 USERID4 0003 ACTIVE,SCHEDULED
LUNAME1 USERID4 0004 SCHEDULED
*90332/114253*

Entry ET:
/DISPLAY CONV BUSY

Response ET:

TERMINAL USER ID STATUS
NO BUSY CONVERSATIONS
*91113/182959*

Entry ET:
/DISPLAY CONV BUSY

Response ET:
TERMINAL USER ID STATUS
2- 1  0001 ACTIVE, SCHEDULED
4- 2  0010 ACTIVE, SCHEDULED
4- 1  0011 ACTIVE, SCHEDULED
*91113/192021*

Entry ET:
/DISPLAY CONV BUSY LINE 4 PTERM ALL

Response ET:
TERMINAL USER ID STATUS
4- 2  0001 ACTIVE, SCHEDULED
4- 1  0002 ACTIVE, SCHEDULED
*91113/192101*

Entry ET:
/DISPLAY CONV BUSY

Response ET:
TERMINAL USER ID STATUS
4- 2  0001 ACTIVE
4- 1  0002 ACTIVE, SCHEDULED
*9223/114253*

Entry ET:
/DISPLAY CONV HELD

Response ET:
TERMINAL USER ID STATUS
NO HELD CONVERSATIONS
*91113/183022*

Entry ET:
/DISPLAY CONV HELD NODE NSLUTP6

Response ET:
TERMINAL USER ID STATUS
NSLUTP6 SPOOLA 0007 HELD
NSLUTP6 SPOOLC 000A HELD
*91113/183033*

Related reference:

QUERY NODE command (Commands)
QUERY USER command (Commands)

(DISPLAY CPLOG command

Use the /DISPLAY CPLOG command to display the value of the IMS execution parameter, CPLOG. CPLOG specifies the number of system log records between system-generated checkpoints.

Subsections:
• “Environment” on page 494
• “Syntax” on page 494
Environment

The /DISPLAY CPLOG command is valid in DB/DC, DBCTL, and DCCTL environments.

Syntax

```
►► /DISPLAY CPLOG
 /DISPLA
 Y
```

/DISPLAY CQS command

Use the /DISPLAY CQS command to display information about the Common Queue Server (CQS), including the CQS job name, version number, and current status. Valid status conditions are CONNECTED and DISCONNECTED.

Subsections:
- “Environment”
- “Syntax”
- “Examples”

Environment

The /DISPLAY CQS command is valid in DB/DC and DCCTL environments.

This command is valid only in a shared-queues environment.

Syntax

```
►► /DISPLAY CQS
 /DIS
```

Examples

Entry ET:

```
/DISPLAY CQS
```

Response ET:

```
JOBNAME VERS# STATUS
CQS1 1.1 CONNECTED
95200/170817
```

Explanation: IMS is connected to the Common Queue Server, CQS1.

/DISPLAY DB command

Use the /DISPLAY DB command to display the status of the specified databases. If a specified database is a DEDB, the associated DEDB areas are also displayed.

The /DISPLAY DB command can be used on HALDB databases.

Subsections:
- “Environment” on page 495
Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

Table 236. Valid environments for the /DISPLAY DB command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/DISPLAY</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DB</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>BKERR</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Syntax

Keywords and reserved parameters

The following keywords can be specified for the /DISPLAY DB command:

**BKERR**

Displays the error queue elements associated with a DL/I or DEDB database. It also displays incomplete backouts preventing the use of a DL/I database.

**OLR**

The /DISPLAY DB OLR command displays the status of a specified partition locally; that is, the status is only from the IMS where the command was issued.
The /DISPLAY DB OLR command returns OLR information and status of all partitions that have HALDB online reorganization (OLR) cursor-active status. The following information is returned:

**RATE**  The rate at which the HALDB OLR is running, from 1 to 100

**BYTES**  The total number of bytes moved to the output data sets

**SEGMENT**  The total number of segments moved to the output data sets

**ROOTS**  The total number of roots moved to the output data sets

**STARTTIME**  The local time the OLR was first started

**STATUS**  HALDB OLR status. One or more of the following statuses are returned:

- **RUNNING** - OLR is running.
- **WAITLOCK** - OLR is waiting for a lock.
- **WAITRATE** - OLR is waiting because of an intentional delay. This intentional delay occurred because a value of less than 100 was specified for the RATE parameter.
- **OPTDEL** - Output data sets are deleted at the end of OLR.
- **OPTNODEL** - Output data sets are not deleted at the end of OLR.
- **RESUMED** - OLR is resumed at this IMS after being stopped for some reason such as a TERMINATE OLREORG command or a user abend.
- **OPTREL** - Ownership of the OLR is released if IMS terminates.
- **OPTNOREL** - Ownership of the OLR is retained if IMS terminates.
- **NOTOWNED** - OLR is not owned by this IMS.

The /DISPLAY DB OLR command can be issued to obtain the above information for an OLR that has been stopped for some reason such as a TERMINATE OLREORG command or a user abend. The data associated with the terminated OLR is maintained and provided under any of the following conditions:

- The TERMINATE OLR command is issued.
- Abnormal OLR termination occurs (for example, DFS2971W message is issued)
- IMS is normally shut down.

**Note:** If the partition or HALDB master has been taken offline with a /DBR command, or if IMS has been restarted to resume the OLR and the OLR ownership is requested before IMS restart, the status will not be available through the /DISPLAY DB OLR command until the OLR is resumed. The status, however, can be obtained through the LIST.DB or LIST.RECON command.

The OLR attribute cannot be specified on the /DISPLAY DB command with any other attribute such as STOPPED or ALLOC. If additional attributes are specified, the command is rejected and message DFS0135 is displayed. If a /DISPLAY DB OLR command is issued on an RSR tracker or an XRF alternate, the message, DFS1321 - ALL PARAMETERS ARE INVALID is displayed.
Attributes are reserved parameters for the /DISPLAY DB command and cannot be used to name databases. Attributes listed with the following table can be used with the DB keyword. Databases are selected for display based on the attribute or attributes specified. The attribute display format is the same as the standard DB display. Attributes usually correspond to the conditions displayed for databases.

Table 237. /DISPLAY DB command attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALLOCF</td>
<td>Displays the databases whose allocation failed.</td>
</tr>
<tr>
<td>ALLOCS</td>
<td>Displays the databases whose allocation was successful.</td>
</tr>
<tr>
<td>BACKOUT</td>
<td>Displays the databases with incomplete backouts, which prevent the use of the databases.</td>
</tr>
<tr>
<td>EEQE</td>
<td>Displays the databases that are associated with one or more error queue elements.</td>
</tr>
<tr>
<td>INQONLY</td>
<td>Displays the databases for which a /DBDUMP command was issued.</td>
</tr>
<tr>
<td>LOCK</td>
<td>Displays the databases that are locked.</td>
</tr>
<tr>
<td>NOTINIT</td>
<td>Displays the databases for which directory initialization failed.</td>
</tr>
<tr>
<td>NOTOPEN</td>
<td>Displays the databases that are not in open status. This status is not applicable to MSDBs.</td>
</tr>
<tr>
<td>OFR</td>
<td>Displays the databases that are currently being recovered by online forward recovery (OFR). <strong>Note:</strong> The OFR attribute is valid only when issued from an RSR tracking subsystem.</td>
</tr>
<tr>
<td>OLR</td>
<td>Displays the databases that have online reorganization in progress. <strong>Restriction:</strong> The OLR attribute cannot be entered with any other attribute.</td>
</tr>
<tr>
<td>QSC</td>
<td>Displays the databases that have the status of quiesced or quiescing.</td>
</tr>
<tr>
<td>RECALL</td>
<td>Displays the databases that are in recall.</td>
</tr>
<tr>
<td>STOPPED</td>
<td>Displays the databases that are stopped.</td>
</tr>
</tbody>
</table>
Usage notes

If you use the /DISPLAY command to identify OLRs that are terminated using the TERMINATE OLREORG command, it does not report status for partitions that have not been authorized. Alternately, use the commands QUERY OLREORG STATUS (NOTOWNED) with ROUTE(*) on the command request, and /RMLIST DBRC='DB DBD(partname)'. If all systems on the PLEX show status NOTOWNED, and the DBRC database record shows an OLR active cursor, then OLR has been terminated.

When you enter this command, the database name can be an existing non-HALDB, a HALDB master, or a HALDB partition. A command against a HALDB partition operates exactly like a command against a non-HALDB except for the /START DB and the UPDATE DB START(ACCESS) command. A HALDB partition is not allocated during the command unless it was previously authorized but not allocated, the OPEN keyword was specified, or the partition has EEQEs. The partition is allocated at first reference.

The HALDB partition reflects conditions such as STOPPED, LOCKED, or NOTOPEN. When a HALDB partition is stopped, it must be explicitly started again. Commands with the keyword ALL and commands against a HALDB master do not change the STOPPED and LOCKED indicators in each HALDB partition.

When the command target is a HALDB master, processing acts on all HALDB partitions. For example, if the IMS command is /DBR on the HALDB master, all of the HALDB partitions are closed, deallocated, and deauthorized. Only the HALDB master displays STOPPED (each HALDB partition does not display STOPPED unless it was itself stopped). If a /DBR command was issued against a HALDB master, the display output of a /DISPLAY DB command shows the HALDB master (as STOPPED), but does not display the status of the partitions.

Each partition inherits the access limitations of its HALDB master. If the /DBD command is issued against a HALDB master, all of its partitions close. A subsequent reference to any of the partitions results in the partition opening for input, although the partition’s access might be UPDATE or EXCLUSIVE. The DBRC authorization state reflects the limited access.

Equivalent IMS type-2 commands

The following table shows variations of the /DISPLAY DB command and the IMS type-2 commands that perform similar functions.

<table>
<thead>
<tr>
<th>Task</th>
<th>/DISPLAY DB command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays the status of a database.</td>
<td>/DISPLAY DB dbname1 ...dbnameN</td>
<td>QUERY DB</td>
</tr>
<tr>
<td></td>
<td>ALL</td>
<td></td>
</tr>
</tbody>
</table>

Output fields

The following output fields are displayed for the /DISPLAY DB command:

- **DB** Name of the database.
- **TYPE** Type of database:
  - DL/I
- DEDB
- DHISNDX (refers to Fast Path secondary index databases)
- MSNR (refers to MSDB non-related databases)
- MSRD (refers to MSDB-related dynamic databases)
- MSRF (refers to MSDB-related fixed databases)
- PHIDAM
- PHDAM
- PSINDEX
- PART
- blank (if the database status is NOTINIT)

**TOTAL SEQ DEPEND**
Total control intervals defined for sequential dependent space, which applies to areas associated with DEDBs. This column appears only if Fast Path is installed.

**UNUSED SEQ DEPEND**
Unused control intervals for sequential dependent space. This column appears only if Fast Path is installed.

**TOTAL DIRECT ADDRESS**
Total control intervals for independent overflow part of direct addressable space, which applies to areas associated with DEDBs. This column appears only if Fast Path is installed.

**UNUSED DIRECT ADDRESS**
Total unused control intervals for independent overflow part of a direct addressable space, which applies to areas associated with DEDBs. This column appears only if Fast Path is installed. This IOVF count is updated on a timed basis, with a default timer of 2 hours.

**ACC**
Type of access to the database, which can be one of the following:
- RO  Read only
- RD  Read
- UP  Update
- EX  Exclusive

**CONDITIONS**
Status conditions of the database, which can be one or more of the following:
- ALLOCF
- ALLOCS
- BACKOUT
- EEQE
- INQONLY
- LOCK
- NOTINIT
- NOTOPEN
- OFR
- OLR
- QUIESCED
- QUIESCING
• RECALL
• RECOVERY
• RNL
• STOPPED

The /DISPLAY DB command with the BKERR keyword displays error queue elements associated with a DL/I database and displays incomplete backouts.

The following output fields are displayed by the /DISPLAY DB command with the BKERR keyword:

DATABASE
Name of the database with error queue elements or backout pending data.

ERROR DD
DDNAME of the data set with the error queue element

TYPE Type of error queue element, which is one of the following:

BACK PSB
PSB needing backout

BLOCK
OSAM block number or VSAM CI RBA

DATE Date

IDT In-doubt

IDT+WRT
In-doubt and write error

IDT+IOT
In-doubt and I/O toleration

IOT I/O toleration

IOT/VSO I/O toleration for VSO areas

PRM DBRC permanent

RD Read error

TIME Time

USE DBRC user created

WRT Write error

BLOCK
The /DISPLAY DB command with BKERR does not display individual RBAs for I/O tolerated non-SDEP CIs of a DEDB area defined with the Virtual Storage Option (VSO). Instead, a single entry with a value of 00000001 is displayed; the EEQE type is set to IOT/VSO. I/O tolerated SDEP CIs for the area are displayed individually by RBA.

The EEQE information might not be current if the database is registered with DBRC and is not open, because IMS updates EEQE information from DBRC when the database is opened.
Examples

The following are examples of the /DISPLAY DB command.

Example 1 for /DISPLAY DB command

Entry ET:

/DISPLAY DB ALL

Response ET:

<table>
<thead>
<tr>
<th>DATABASE</th>
<th>TYPE</th>
<th>TOTAL</th>
<th>UNUSED</th>
<th>TOTAL</th>
<th>UNUSED</th>
<th>ACC</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD41M702</td>
<td>DL/I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DD41M803</td>
<td>DL/I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>DEDB</td>
<td>SEQ</td>
<td>DEPEND</td>
<td>DIRECT</td>
<td>ADDR</td>
<td>EX</td>
<td>NOTOPEN</td>
</tr>
<tr>
<td>DB21AR0</td>
<td>AREA</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>NOTOPEN</td>
</tr>
<tr>
<td>DB21AR1</td>
<td>AREA</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>NOTOPEN</td>
</tr>
<tr>
<td>DB21AR2</td>
<td>AREA</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>NOTOPEN</td>
</tr>
<tr>
<td>DB21AR3</td>
<td>AREA</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>NOTOPEN</td>
</tr>
<tr>
<td>DB21AR4</td>
<td>AREA</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>NOTOPEN</td>
</tr>
<tr>
<td>DB21AR5</td>
<td>AREA</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>NOTOPEN</td>
</tr>
<tr>
<td>DB21AR6</td>
<td>AREA</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>NOTOPEN</td>
</tr>
<tr>
<td>DB21AR7</td>
<td>AREA</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>NOTOPEN</td>
</tr>
<tr>
<td>DB21AR8</td>
<td>AREA</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>NOTOPEN</td>
</tr>
<tr>
<td>DB21AR9</td>
<td>AREA</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>NOTOPEN</td>
</tr>
<tr>
<td>DB21AR10</td>
<td>AREA</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>NOTOPEN</td>
</tr>
<tr>
<td>DB21AR11</td>
<td>AREA</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>NOTOPEN</td>
</tr>
<tr>
<td>DEDBWK22</td>
<td>DEEB</td>
<td>SEQ</td>
<td>DEPEND</td>
<td>DIRECT</td>
<td>ADDR</td>
<td>EX</td>
<td>NOTOPEN</td>
</tr>
<tr>
<td>DB22AR0</td>
<td>AREA</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>NOTOPEN</td>
</tr>
<tr>
<td>DB22AR1</td>
<td>AREA</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>NOTOPEN</td>
</tr>
<tr>
<td>DEDBWK23</td>
<td>DEEB</td>
<td>SEQ</td>
<td>DEPEND</td>
<td>DIRECT</td>
<td>ADDR</td>
<td>EX</td>
<td>NOTOPEN</td>
</tr>
<tr>
<td>DB23AR0</td>
<td>AREA</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>NOTOPEN</td>
</tr>
<tr>
<td>DB23AR1</td>
<td>AREA</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>NOTOPEN</td>
</tr>
<tr>
<td>DIMSRN01</td>
<td>DL/I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIMSRN02</td>
<td>DL/I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIMSRN03</td>
<td>DL/I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
*89184/142639*

Explanation: An I/O toleration error queue element exists for database DD41M803 on a newly created active system in an XRF environment.

Following an /UNLOCK SYSTEM command on the above system, the /DISPLAY DB DD41M803 BKERR command would yield the following display:

<table>
<thead>
<tr>
<th>DATABASE</th>
<th>DD41M803</th>
<th>ERROR DD</th>
<th>TYPE</th>
<th>BLOCK</th>
<th>IOT</th>
<th>0000003F</th>
</tr>
</thead>
</table>
*90135/161902*

Example 2 for /DISPLAY DB command

Entry ET:

/DISPLAY DB DD41M803 BKERR

Response ET:

DATABASE
DD41M803
ERROR DD TYPE BLOCK
DD41M803 IOT 0000003F
*90135/161902*

Explanation: An I/O toleration error queue element exists for database DD41M803 on a newly created active system in an XRF environment.

Following an /UNLOCK SYSTEM command on the above system, the /DISPLAY DB DD41M803 BKERR command would yield the following display:

DATABASE
DD41M803
NO EEQE OR INCOMPLETE BACKOUT INFORMATION AVAILABLE
*90135/163508*
/DIS DB BE3ORDER BE3PARTS.

Response ET:

<table>
<thead>
<tr>
<th>DATABASE</th>
<th>TYPE</th>
<th>TOTAL UNUSED</th>
<th>TOTAL UNUSED</th>
<th>ACC</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE3ORDER</td>
<td>DL/I</td>
<td></td>
<td></td>
<td>EX</td>
<td>STOPPED, LOCK, NOTOPEN, RECALL</td>
</tr>
<tr>
<td>BE3PARTS</td>
<td>DL/I</td>
<td></td>
<td></td>
<td>EX</td>
<td>NOTOPEN, RECALL</td>
</tr>
<tr>
<td><em>94277/124039</em></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example 3 for /DISPLAY DB command

Entry ET:

/DIS DB RECALL.

Response ET:

<table>
<thead>
<tr>
<th>DATABASE</th>
<th>TYPE</th>
<th>TOTAL UNUSED</th>
<th>TOTAL UNUSED</th>
<th>ACC</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE3ORDER</td>
<td>DL/I</td>
<td></td>
<td></td>
<td>EX</td>
<td>STOPPED, LOCK, NOTOPEN, RECALL</td>
</tr>
<tr>
<td>BE3PARTS</td>
<td>DL/I</td>
<td></td>
<td></td>
<td>EX</td>
<td>NOTOPEN, RECALL</td>
</tr>
<tr>
<td>IVPDB1</td>
<td>DL/I</td>
<td></td>
<td></td>
<td>UP</td>
<td>STOPPED, LOCK, NOTOPEN, RECALL</td>
</tr>
<tr>
<td>IVPDB2</td>
<td>DL/I</td>
<td></td>
<td></td>
<td>UP</td>
<td>NOTOPEN, RECALL</td>
</tr>
<tr>
<td><em>94277/124119</em></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example 4 for /DISPLAY DB command

Entry ET:

/DISPLAY DB DEDBJN2 BKERR

Response ET:

<table>
<thead>
<tr>
<th>DATABASE</th>
<th>TYPE</th>
<th>BLOCK</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDBJN2</td>
<td>ERROR DD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DB21AR0</td>
<td>IOT</td>
</tr>
<tr>
<td></td>
<td>DB21AR0</td>
<td>IOT/VS0</td>
</tr>
<tr>
<td></td>
<td>DB21AR1</td>
<td>IOT</td>
</tr>
<tr>
<td></td>
<td>DB21AR1</td>
<td>IOT/VS0</td>
</tr>
</tbody>
</table>

Explanation: The /DISPLAY DB command with the BKERR keyword does not display individual RBAs for I/O tolerated non-SDEP CIs of a DEDB area defined with the Virtual Storage Option (VSO). Instead, a single entry with a value of 00000001 is displayed and the EEQE type is set to IOT/VS0. I/O tolerated SDEP CIs for the area are displayed individually by RBA.

Example 5 for /DISPLAY DB command

Entry ET:

/DISPLAY DB OFR

Response ET:

<table>
<thead>
<tr>
<th>DATABASE</th>
<th>TYPE</th>
<th>TOTAL UNUSED</th>
<th>TOTAL UNUSED</th>
<th>ACC</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE2PCUST</td>
<td>DL/I</td>
<td></td>
<td></td>
<td>EX</td>
<td>ALLOCS OFR</td>
</tr>
<tr>
<td>BE3ORDER</td>
<td>DL/I</td>
<td></td>
<td></td>
<td>EX</td>
<td>ALLOCS OFR</td>
</tr>
<tr>
<td>BE3ORDX</td>
<td>DL/I</td>
<td></td>
<td></td>
<td>EX</td>
<td>ALLOCS OFR</td>
</tr>
<tr>
<td>BE3PARTS</td>
<td>DL/I</td>
<td></td>
<td></td>
<td>EX</td>
<td>ALLOCS OFR</td>
</tr>
<tr>
<td>BE3PSID1</td>
<td>DL/I</td>
<td></td>
<td></td>
<td>EX</td>
<td>ALLOCS OFR</td>
</tr>
<tr>
<td><em>91240/132406</em></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SYS3</td>
</tr>
</tbody>
</table>

Example 6 for /DISPLAY DB command
If a full function database data set is undergoing recovery with Online Recovery Service, the output of the /DISPLAY DB command includes this information in the command response.

Entry ET:
/DISPLAY DB DD41M702

Response ET:

<table>
<thead>
<tr>
<th>DATABASE</th>
<th>TYPE</th>
<th>TOTAL UNUSED</th>
<th>TOTAL UNUSED</th>
<th>ACC</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD41M702</td>
<td>DL/I</td>
<td></td>
<td></td>
<td></td>
<td>STOPPED, LOCK, NOTOPEN RECOVERY</td>
</tr>
</tbody>
</table>

*97184/142639*

**Example 7 for /DISPLAY DB command**

Display the HALDB master for the PHIDAM database called PARTMAST.

Entry ET:
/DIS DB PARTMAST

Response ET:

<table>
<thead>
<tr>
<th>DATABASE</th>
<th>TYPE</th>
<th>TOTAL UNUSED</th>
<th>TOTAL UNUSED</th>
<th>ACC</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARTMAST</td>
<td>PHIDAM</td>
<td></td>
<td></td>
<td></td>
<td>UP</td>
</tr>
<tr>
<td>PART1</td>
<td>PART</td>
<td></td>
<td></td>
<td></td>
<td>ALLOCS</td>
</tr>
<tr>
<td>PART2</td>
<td>PART</td>
<td></td>
<td></td>
<td></td>
<td>NOTOPEN</td>
</tr>
<tr>
<td>PART3</td>
<td>PART</td>
<td></td>
<td></td>
<td></td>
<td>STOPPED</td>
</tr>
</tbody>
</table>

*99166/092514*

**Example 8 for /DISPLAY DB command**

Display the HALDB partition for PHIDAM PART2.

Entry ET:
/DIS DB PART2

Response ET:

<table>
<thead>
<tr>
<th>DFS000I</th>
<th>DATABASE</th>
<th>TYPE</th>
<th>TOTAL UNUSED</th>
<th>TOTAL UNUSED</th>
<th>ACC</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFS000I</td>
<td>PARTMAST</td>
<td>PHIDAM</td>
<td></td>
<td></td>
<td></td>
<td>UP</td>
</tr>
<tr>
<td>DFS000I</td>
<td>PART2</td>
<td>PART</td>
<td></td>
<td></td>
<td></td>
<td>NOTOPEN</td>
</tr>
</tbody>
</table>

*99166/092737*

**Example 9 for /DISPLAY DB command**

Display output for an online reorganization with ownership retention. If ownership is not retained during a termination, OPTREL is replaced with OPTNOREL.

Entry ET:
/DIS DB OLR

Response ET:

<table>
<thead>
<tr>
<th>DATABASE</th>
<th>PART</th>
<th>RATE</th>
<th>BYTES</th>
<th>SEG</th>
<th>ROOTS</th>
<th>STARTTIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBHDOJ01</td>
<td>PDHDOJB</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>07295/143354</td>
</tr>
<tr>
<td>WAITRATE, OPTNOREL</td>
<td>DBHDOJ01</td>
<td>PDHDOJA</td>
<td>3330</td>
<td>17</td>
<td>1</td>
<td>07295/143354</td>
</tr>
</tbody>
</table>
WAITRATE, OPTDEL, OPTREL
DBHDOJ01 PDHDOJC 1 1400 5 2 07295/143354
WAITLOCK, OPTNODEL
*07295/143358*

Explanation: Issue the /DISPLAY DB OLR command to obtain information about all HALDB online reorganizations that are running in cursor-active status. The following information is returned:

- Master database name
- Partition name
- OLR rate
- Number of bytes moved
- Number of segments moved
- Number of roots moved
- Start time of the OLR when it was first started
- Status of the progress of OLR
- OLR inactive data set option
- Date/Time stamp when the command was processed
- OLR options, including whether OLR ownership is released if IMS terminates before completing the reorganization
- OLR wait status, if any

**Note:** For partitions in NOTOWNED status, if the OLR statistics information is unavailable, only the master database name, partition name, and status are displayed.

**Example 10 for /DISPLAY DB command**

Entry ET:

/DISPLAY DB QSC

Response ET:

<table>
<thead>
<tr>
<th>DATABASE</th>
<th>TYPE</th>
<th>TOTAL UNUSED</th>
<th>TOTAL UNUSED</th>
<th>ACC</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTODB</td>
<td>DL/I</td>
<td></td>
<td></td>
<td>UP</td>
<td>NOTOPEN, QUIESCING</td>
</tr>
<tr>
<td>DBHIDJO3</td>
<td>PHIDAM</td>
<td></td>
<td></td>
<td>UP</td>
<td></td>
</tr>
<tr>
<td>POHIDJC</td>
<td>PART</td>
<td></td>
<td></td>
<td>UP</td>
<td>NOTOPEN, QUIESCED</td>
</tr>
<tr>
<td>DBOHIDKS</td>
<td>PHIDAM</td>
<td></td>
<td></td>
<td>UP</td>
<td>QUIESCED</td>
</tr>
<tr>
<td>POHIDKA</td>
<td>PART</td>
<td></td>
<td></td>
<td>UP</td>
<td>NOTOPEN, ALLOCS, QUIESCED</td>
</tr>
<tr>
<td>POHIDKB</td>
<td>PART</td>
<td></td>
<td></td>
<td>UP</td>
<td>NOTOPEN, QUIESCED</td>
</tr>
<tr>
<td>POHIDKC</td>
<td>PART</td>
<td></td>
<td></td>
<td>UP</td>
<td>NOTOPEN, QUIESCED</td>
</tr>
<tr>
<td>POHIDKD</td>
<td>PART</td>
<td></td>
<td></td>
<td>UP</td>
<td>NOTOPEN, QUIESCED</td>
</tr>
<tr>
<td>DBOVLFPC</td>
<td>DL/I</td>
<td></td>
<td></td>
<td>UP</td>
<td>NOTOPEN, QUIESCING</td>
</tr>
</tbody>
</table>

Explanation: Issue the /DISPLAY DB QSC command to obtain information about all databases that have the status of quiesced or quiescing.

**Example 11 for /DISPLAY DB command**

In this example, TYPE is set to DHISNDX for a HISAM or a SHISAM secondary index database.

Entry ET:

/DISPLAY DB ALL

Response ET:
**Explaination:** DBHDOJ01 is a PHDAM database with four partitions: PDHDOJA, PDHDOJB, PDHDOJC, and PDHDOJD. DEDBJN24 is a DEDB database with three areas: DB24A000, DB24A001, and DB24A239. DEHSJX24 is a HISAM or a SHISAM secondary index database. The local access of each database is UPDATE.

**Related reference:**
- “Status and attributes for the /DISPLAY command” on page 435
- Parameter descriptions for IMS procedures (System Definition)
- QUERY DB command (Commands)

**/DISPLAY DBD command**

Use the /DISPLAY DBD command to display, for databases that are being accessed, their type, the PSBs accessing them, and the type of access.

Subsections:
- “Environment”
- “Syntax”
- “Equivalent IMS type-2 commands”
- “Examples” on page 506

**Environment**

The /DISPLAY DBD command is valid in DB/DC and DBCTL environments.

**Syntax**

```
/DISPLAY DBD dbdname
```

**Equivalent IMS type-2 commands**

The following table shows variations of the /DISPLAY DBD command and the IMS type-2 commands that perform similar functions.

<table>
<thead>
<tr>
<th>Task</th>
<th>/DISPLAY DBD command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays the programs being accessed by databases.</td>
<td>/DISPLAY DBD <em>dbdname</em></td>
<td>QUERY DB NAME(<em>dbname</em>)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SHOW(PGM)</td>
</tr>
</tbody>
</table>
Examples

Entry ET:

/DISPLAY DBD MSDBLM01 MSDBLM02 MSDBLM03 MSDBLM04

Response ET:

<table>
<thead>
<tr>
<th>DBD-NAME</th>
<th>TYPE</th>
<th>PSB-NAME</th>
<th>ACCESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSDBLM01</td>
<td>MSDB</td>
<td>DDLTL06</td>
<td>R/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DDLTL07</td>
<td>R/W</td>
</tr>
<tr>
<td>MSDBLM02</td>
<td>MSDB</td>
<td>DDLTL06</td>
<td>R/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DDLTL07</td>
<td>R/W</td>
</tr>
<tr>
<td>MSDBLM03</td>
<td>MSDB</td>
<td>DDLTL06</td>
<td>R/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DDLTL07</td>
<td>R/W</td>
</tr>
<tr>
<td>MSDBLM04</td>
<td>MSDB</td>
<td>DDLTL06</td>
<td>R/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DDLTL07</td>
<td>R/W</td>
</tr>
</tbody>
</table>

*91068/110958*

Related reference:

QUERY DB command (Commands)

/DISPLAY DESC command

Use the /DISPLAY DESC command to display LU 6.2 descriptors. All specified values are displayed, as are defaults/blanks for values not specified in the descriptor.

Subsections:

- “Environment”
- “Syntax”
- “Output fields”
- “Examples” on page 507

Environment

The /DISPLAY DESC command is valid in DB/DC and DCCTL environments.

Syntax

```
/DISPLAY DESC descriptor ALL
```

Output fields

The following output fields are displayed for the /DISPLAY DESC command:

- **DESC** Name of the descriptor.
- **LUNAME** LU name value in the descriptor. The network-qualified LU name is optional for the LUNAME keyword.
- **MODE** VTAM LOGON mode table entry value in the descriptor.
OUTBNDLU
Shows which local-LU will be used for APPC outbound processing when the descriptor is used.

SIDE  APPC z/OS side table entry value in the descriptor.

SYNCELEVEL
APPC synchronous level in the descriptor; either NONE or CONFIRM.

TPNAME
TP name value in the descriptor. If the tpname is too long, a + is appended at the end, and the rest is continued on a second line.

TYPE  APPC conversation type value in the descriptor; it is either BASIC or MAPPED.

Examples

Entry ET:
/DISPLAY DESC ALL

Response ET:

```
DESC LUNAME MODE SIDE SYNCELEVEL TYPE OUTBNDLU
LU62DES1 NID2.LUNAME4 ALPHA SIDENME1 CONFIRM MAPPED MYLU02
TPNAME: ACCOUNT

LU62DES2 LUNAME7 BETHA SIDENME2 NONE BASIC
TPNAME: APPLEG980123456789012345
+92232/114253*
```

/DISPLAY FDR command

Use the /DISPLAY FDR command to display the current status for IMS Fast Database Recovery regions.

IMS rejects this command if the active IMS subsystem is not connected to a Fast Database Recovery region.

Subsections:
- “Environment”
- “Syntax”
- “Output fields”
- “Examples” on page 508

Environment

The /DISPLAY FDR command is valid in DB/DC and DBCTL environments.

Syntax

```
/DISPLAY FDR
```

Output fields

The following output fields are displayed for the /DISPLAY FDR command:
FDR-REGION
Status of the Fast Database Recovery region to which the IMS subsystem is connected. The status can be ACTIVE or NO_ACTIVE.

GROUPNAME
The z/OS cross-system coupling facility (XCF) group name specified in the DFSFDRxx member of IMS.PROCLIB.

TIMEOUT
The failure-detection timeout value specified in the DFSFDRxx member or set by a /CHANGE FDR command.

Examples

Entry ET:
/DISPLAY FDR

Response ET:
FDR-REGION GROUPNAME TIMEOUT
ACTIVE FDBRSYS3 055
*96232/114253*

/DISPLAY FPV command

Use the /DISPLAY FPV command to display the areas loaded into a z/OS data space or coupling facility. That is, those areas that have been specified with the virtual storage option (VSO) are displayed with this command.

Subsections:
• “Environment”
• “Syntax”
• “Output fields”
• “Examples” on page 509

Environment

The /DISPLAY FPV command is valid in DB/DC and DBCTL environments.

Syntax

```
/DISPLAY FPV
```

Output fields

Each data space is displayed, along with each of the areas that reside in the data space. All numbers shown are in decimal values.

The following output fields are displayed by the /DISPLAY FPV command:

**DATASPACE**
Data space number.

**MAXSIZE(4K)**
Maximum available size, in 4 KB blocks. This is the amount of space available in the data space for user data.
AREANAME
Name of the area located in the data space or in the coupling facility.

AREASIZE(4K)
Actual storage available for a particular area, in 4 KB blocks. The actual space usage can be significantly less than what is reserved if a VSO dataspace is not preloaded.

OPTION
A data space option (which can be DREF) or an area option (which can be PREL or PREO). Area options are defined to DBRC with the INIT.DBDS or CHANGE.DBDS command.

STRUCTURE
Name of the coupling facility structure allocated for this area.

ENTRIES
Number of area CIs in the structure.

CHANGED
Number of area CIs in the structure that have been updated. IMS writes these updated CIs to DASD (and resets this value) when you enter any of the following commands:
- /CHECKPOINT
- /STOP AREA
- /VUNLOAD

AREACI#
Total number of area CIs that can be loaded into the structure.

POOLNAME
Name of the private buffer pool used by the area.

Examples

Entry ET:
/DISPLAY FPV

Response ET:
DATASPACE MAXSIZE(4K) AREANAME AREASIZE(4K) OPTION
001      524188
         DB21AR1     76 PREO
         DB21AR11    152
000      524188
         DREF
         DB21AR0     19 PREO, PREL
         DB21AR10    19 PREO, PREL
         DB21AR2     38 PREO, PREL

*93076/173254*

Entry ET:
/DISPLAY FPV

Response ET:
DATASPACE MAXSIZE(4K) AREANAME AREASIZE(4K) OPTION
000      524263
         DREF
         DB21AR4     167 PREO, PREL
         DB21AR2     42 PREO, PREL
001      524263
         DB21AR3     84 PREO
         DB21AR1     84

Chapter 26. /DISPLAY commands  509
Explanation: Each area using a multi-area structure is listed individually with its own statistics. Column AREACI# displays the total number of CIs in the root addressable part. This is the total number of CIs loaded into the structure if the entire Area was preloaded.

/DISPLAY HSB command

Use the /DISPLAY HSB command to display the system-related information in an Extended Recovery Facility (XRF) environment.

If the command is entered on the active system, information about the active system is displayed. If the command is entered on the alternate system, information about both systems is displayed.

Subsections:

- "Environment" on page 511
- "Syntax" on page 511
Environment

The /DISPLAY HSB command is valid in DB/DC and DCCTL environments.

Syntax

```
/DISPLAY HSB
```

Output fields

The following output fields are displayed for the /DISPLAY HSB command:

**RSENAME**
Recoverable service element name.

**STATUS**
System entering command (ACTIVE or BACKUP).

**MODETBL**
Indication of whether (IOT) or not (blank) the system is in I/O toleration mode. This field is displayed only if the command is entered on the active system.

**PHASE**
Displays only if the command is entered on the alternate system; indicates the phase of the alternate system. The following phases can be displayed:

- **INIT**  Initialization phase
- **SYN**  Processing SNAPQ checkpoint
- **TRK**  Tracking active system
- **TKO**  Taking over workload from active

**IMS-ID**
IMS identifier of system entering command.

**VTAM UVAR**
VTAM generic name.

**ACT-ID**
IMS identifier of active system; field is displayed only if the command is entered on the alternate system.

**LOG-TIME**
Time associated with the log record currently being read by the alternate system in the process of tracking the active system. The length of time the alternate system lags behind the active system in reading the log is the difference between the current time, as shown by the time stamp, and the log time. Some of this time difference might be caused by differences in the synchronization of the clocks of the processors.

**SURVEILLANCE**
Indicates one of the following surveillance mechanisms:

- **LNK**  IMS ISC link
LOG  IMS system log
RDS  IMS restart data set

INTERVAL
The surveillance interval, in seconds, for the specific surveillance mechanism

TIMEOUT
The surveillance timeout value, in seconds, for the specific surveillance mechanism

STATUS
The status of the specific surveillance mechanism (ACTIVE or INACTIVE).

TAKEOVER CONDITIONS
The following takeover conditions may apply:

ALARM
The alarm on the alternate processor will be sounded when takeover is requested.

AUTO
Automatic takeover is in effect. Following the display line of ALARM, AUTO, or both, the takeover conditions specified on the SWITCH control statement of the DFSHSBxx PROCLIB member are shown. (xx is the SUF= parameter of the IMS procedure.) There are two groups per line and each group is separated by an asterisk. Each group can include one or more of the following:

VTAM
VTAM TPEND exit

LNK  IMS ISC link
LOG  IMS system log
RDS  IMS restart data set

Examples

Entry ET (Active System):
/DISPLAY HSB

Response ET:

<table>
<thead>
<tr>
<th>RSENAME</th>
<th>STATUS</th>
<th>MODE</th>
<th>IMS-ID</th>
<th>VTAM</th>
<th>UVAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFSRSENM</td>
<td>ACTIVE</td>
<td>IMSA</td>
<td>USERVAR1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SURVEILLANCE INTERVAL</td>
<td>TIMEOUT</td>
<td>STATUS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOG</td>
<td>10</td>
<td>99</td>
<td>ACTIVE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LNK</td>
<td>3</td>
<td>9</td>
<td>ACTIVE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RDS</td>
<td>10</td>
<td>99</td>
<td>ACTIVE</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>89340/094236</em></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Entry ET (Active System - MNPS environment):
/DISPLAY HSB

Response ET:

<table>
<thead>
<tr>
<th>RSENAME</th>
<th>STATUS</th>
<th>MODE</th>
<th>IMS-ID</th>
<th>MNPS NAME</th>
<th>USERVAR1</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFSRSENM</td>
<td>ACTIVE</td>
<td>IMSA</td>
<td>USERVAR1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SURVEILLANCE INTERVAL</td>
<td>TIMEOUT</td>
<td>STATUS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
/DISPLAY HSSP command

Use the /DISPLAY HSSP command to display information about the current HSSP (high-speed sequential processing) activities.

Subsections:
- “Environment”
- “Syntax”
- “Output fields” on page 514
- “Examples” on page 514

Environment

The /DISPLAY HSSP command is valid in DB/DC and DBCTL environments.

Syntax

/DISPLAY HSSP

Chapter 26. /DISPLAY commands  513
Output fields

The following output fields are displayed for the /DISPLAY HSSP command:

**RGN**  Region ID as displayed in the /DISPLAY ACTIVE command (three digit PST number)

**TYP**  Region type (BMP only)

**JOBNAME**  Job name

**PSB**  Program Specification Block name

**DB**  Database name

**AREAS-OPTIONS**  Information on the SETO statement:

- **AREA**  Area name
- **PCB**  Information on whether the named area has updated intent.
- **PROCOPT**  Whether PROCOPT H is specified.
- **IC**  Image Copy in process.
- **UPD**  Information on whether the area is updated, which is one of the following:
  - **N**  The PCB has no update intent on the named area.
  - **Y**  The PCB has update intent on the named area.

**OPTION**  Information on the execution

- **IC**  Image Copy in process

Examples

Entry ET (Active System):

/ DISPLAY HSSP

Response ET:

RGN TYP JOBNAME PSB DATABASE AREAS-OPTIONS SYS3
1 BMP CSSP020B BMPFPE02 DEDBJN21 IC=(1,C) SYS3
*89122/094325* SYS3

/ DISPLAY LINE command

The /DISPLAY LINE command, when followed by a valid line number or ALL, displays the status and queue counts for the specified communication line or lines and physical terminal.

The queue count for /DISPLAY LINE is reset to zero after an IMS cold start.

Subsystems:
- "Environment" on page 515
- "Syntax" on page 515
- "Keywords" on page 515
Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/DISPLAY</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LINE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>QCNT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PTERM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

Keywords

The following keywords are valid for the /DISPLAY LINE command:

QCNT

Specifies that global queue count information is to be displayed. If QCNT is not specified, local queue counts are displayed; when it is specified, no local queue counts are displayed.

This keyword is valid only in a shared-queues environment.
PTERM
Is used to refer to a relative physical terminal. Valid parameters are number corresponding to the relative position of the terminal on the line. When used without the LINE keyword on the /DISPLAY command, valid parameters are physical terminal attributes.

Reserved parameters

Lines are selected for display based on the attributes specified. Attributes that can be used with the LINE keyword are shown in the following table. The attribute display format is the same as the standard LINE display. The attributes correspond to the conditions displayed for lines. For example, /DISPLAY LINE LOOPTEST displays all lines that are currently in looptest mode.

Table 241. /DISPLAY LINE command attributes

<table>
<thead>
<tr>
<th>DEACT</th>
<th>IDLE</th>
<th>LOOPTEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOIN</td>
<td>NOOUT</td>
<td>NOQUEUE</td>
</tr>
<tr>
<td>NOTOPEN</td>
<td>PSTOPPED</td>
<td>PUR</td>
</tr>
<tr>
<td>RESP</td>
<td>RESPINP</td>
<td>STOPPED</td>
</tr>
<tr>
<td>TKOTRA</td>
<td>TRA</td>
<td></td>
</tr>
</tbody>
</table>

DEACT
Displays the lines that have been permanently deactivated. Message DFS2473 in the system console log might contain information regarding the reason this status was set. DFS2473 can occur more than once in the system console log.

IDLE
Displays the lines for which no activity of any kind is in progress for them.

LOOPTEST
Displays the lines that are in looptest mode.

NOIN
Displays the lines that are stopped for input.

NOOUT
Displays the lines that are stopped for output.

NOQUEUE
Displays the lines that have had message queuing stopped for message switching.

NOTOPEN
Displays the lines that are not in open status.

PSTOPPED
Displays the lines that have been stopped by the /PSTOP command. This status might indicate that a different, necessary resource is unavailable.

PUR
Displays the lines that are purging all of their output.

RESP
Displays the lines that are in input response mode and the response reply message is available for output or in the process of being sent.

RESPINP
Displays the lines that are in full-function input response mode and the response mode input is still in-doubt; for example, the response reply message is not available for output.
STOPPED
Displays the lines that are stopped.

TKOTRA
Displays the lines that are to be traced only during takeover to help diagnose XRF terminal switch problems.

TRA
Displays the lines that are being traced.

Usage notes
In a shared-queues environment, use the QCNT keyword to obtain the current message queue counts on the shared queues structure. The local queue counts (ENQCT, DEQCT, and QCT) value that is returned on this command when the QCNT keyword is not specified represents the messages being processed by the IMS system where this command is issued. Do not use local queue counts for queue evaluation purposes.

Output fields
The following output fields are displayed by the /DISPLAY LINE command.
- LIN/PTE
- TYPE
- ADDR
- RECD
- ENQCT
- DEQCT
- QCT
- SENT
- Status
  - IDLE
  - NOTOPEN
  - STOPPED
  - COMPINOP

Examples
Entry ET:
/DISPLAY LINE 1, 3, 10

Response ET:

<table>
<thead>
<tr>
<th>LINE</th>
<th>TYPE</th>
<th>ADDR</th>
<th>RECD</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
<th>SENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CONSOLE</td>
<td>****</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>3270 R</td>
<td>0C9</td>
<td>43</td>
<td>51</td>
<td>43</td>
<td>8</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td><em>85098/141118</em></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Entry ET:
/DISPLAY LINE ALL

Response ET:

<table>
<thead>
<tr>
<th>LINE</th>
<th>TYPE</th>
<th>ADDR</th>
<th>RECD</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
<th>SENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CONSOLE</td>
<td>****</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>3270 R</td>
<td>0C9</td>
<td>43</td>
<td>51</td>
<td>43</td>
<td>8</td>
<td>79</td>
</tr>
<tr>
<td>3</td>
<td>3270 L</td>
<td>****</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>STOPPED</td>
</tr>
<tr>
<td>4</td>
<td>3270 L</td>
<td>1234</td>
<td>20</td>
<td>22</td>
<td>20</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>RDR/PTR</td>
<td>****</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>STOPPED</td>
</tr>
<tr>
<td>6</td>
<td>RDR/PTR</td>
<td>****</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>STOPPED</td>
</tr>
</tbody>
</table>
Entry ET:
/DISPLAY LINE 5 PTERM ALL

Response ET:

<table>
<thead>
<tr>
<th>LINE</th>
<th>TYPE</th>
<th>ADDR</th>
<th>RECD</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
<th>SENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-</td>
<td>1</td>
<td>3270 R</td>
<td>404081</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>5-</td>
<td>2</td>
<td>3270 R</td>
<td>C14081</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>5-</td>
<td>3</td>
<td>3270 R</td>
<td>C1C181</td>
<td>40</td>
<td>30</td>
<td>28</td>
<td>2</td>
</tr>
<tr>
<td>5-</td>
<td>4</td>
<td>3270 R</td>
<td>C1C281</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5-</td>
<td>5</td>
<td>3270 R</td>
<td>C1C381</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5-</td>
<td>6</td>
<td>3270 R</td>
<td>C1C481</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>
*85098/141244*

Entry ET:
/DISPLAY LINE PSTOPPED, PUR

Response ET:

<table>
<thead>
<tr>
<th>LINE</th>
<th>TYPE</th>
<th>ADDR</th>
<th>RECD</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
<th>SENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3270 R</td>
<td>****</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>0</td>
<td>33</td>
</tr>
<tr>
<td>18</td>
<td>3270 R</td>
<td>022</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>
*85098/141412*

/DISPLAY LINK command

The /DISPLAY LINK command, when followed by a valid link number or ALL, displays the status and queue counts for the specified logical link.

The queue count for the /DISPLAY LINK command is reset to zero after an IMS cold start.

In addition, the /DISPLAY LINK command shows if the logical link is assigned to a physical link and the partner identification that is assigned to it during system definition.

Subsections:
- “Environment”
- “Syntax” on page 519
- “Keywords” on page 519
- “Usage notes” on page 519
- “Output fields” on page 520
- “Examples” on page 520

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/DISPLAY</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Table 242. Valid environments for the /DISPLAY LINK command and keywords (continued)

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINK</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MODE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OPTION</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>QCNT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```plaintext
 ►► /DISPLAY LINK
 ▼ ▼
 /DIS link# ALL
 MODE
 OPTION
 BUFSIZE
 ▼
 link# QCNT
```

Keywords

The following keywords are valid for the /DISPLAY LINK command:

**MODE**
Displays various modes in which VTAM terminals can operate.

**OPTION**
Specifies the following:

- **BUFSIZE**
  Displays the link parameters such as the link number, link name, bandwidth, buffer size, and the link status.

- **QCNT**
  Specifies that global queue count information is to be displayed. If QCNT is not specified, local queue counts are displayed; when it is specified, no local queue counts are displayed.

  This count represents the message counts of messages that can be processed by the IMS system where the command is issued. This count includes messages that can be processed by any IMS system (messages with no affinity), plus messages that can be processed by the IMS system where the command is issued (messages with an affinity to the IMS system that issued the command).

  This keyword is valid only in a shared-queues environment.

Usage notes

The /DISPLAY LINK link# MODE command, when entered from the primary IMS system, displays in the ACT MODETBL field the mode table name from the /RESTART command or LOGON exit. The same field does not display on the secondary IMS system.

**Note:** N/A is displayed by /DISPLAY LINK ALL MODE for non-VTAM MSC links.

In a shared-queues environment, use the QCNT keyword to obtain the current message queue counts on the shared queues structure. The local queue counts
(ENQCT, DEQCT, and QCT) value that is returned on this command when the QCNT keyword is not specified represents the messages being processed by the IMS system where this command is issued. Do not use local queue counts for queue evaluation purposes.

**Output fields**

The following output fields are displayed by the /DISPLAY LINK command:

**ACT MODETBL**
Mode table name actually used to initiate the session. This name is displayed only if the MODE keyword is specified and only while the session is active. The field is blank at normal session termination.

**BUFSIZE**
Link buffer size. The link buffer size is displayed only if the OPTION BUFSIZE keyword is specified.

**DEF MODETBL**
Default mode table name set by system definition or /CHANGE command. This name can be overridden with the /RESTART command or, for non-IMS session initiations, the LOGON exit. This name is displayed only if the MODE keyword is specified.

**DEQCT**
Count of messages dequeued.

**ENQCT**
Count of messages enqueued.

**LINK**
Logical link number.

**LINKNAME**
Name of the logical link. The link name is displayed only if the OPTION BUFSIZE keyword is specified on the /DISPLAY LINK command.

**PARTNER**
The identification specified during IMS system definition for this multiple system partnership.

**QCT**
The current count of messages queued.

**RECD**
Count of messages received.

**SENT**
Count of messages sent.

**STATUS**
Displays the link status.

**Examples**

The following are example of the /DISPLAY LINK command.

**Example 1 for /DISPLAY LINK command**

Entry ET:

```
/DISPLAY LINK ALL
```

Response ET:

```
<table>
<thead>
<tr>
<th>LINK</th>
<th>PARTNER</th>
<th>RECD</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
<th>SENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AB</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>AC</td>
<td>8</td>
<td>21</td>
<td>12</td>
<td>9</td>
<td>12</td>
</tr>
</tbody>
</table>
```
Example 2 for /DISPLAY LINK command

Entry ET:

/DISPLAY LINK 1 3

Response ET:

<table>
<thead>
<tr>
<th>LINK PARTNER</th>
<th>RECQ</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
<th>SENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 AB</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0 IDLE</td>
</tr>
<tr>
<td>3 AD</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0 PSTOPPED IDLE</td>
</tr>
</tbody>
</table>

*91293/171240*

Example 3 for /DISPLAY LINK command

Entry ET:

/DISPLAY LINK ALL MODE

Response ET:

<table>
<thead>
<tr>
<th>LINK PARTNER</th>
<th>DEF</th>
<th>MODETBL ACT</th>
<th>MODETBL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 AB</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2 AC</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>3 AD</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>4 AE</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>5 AK</td>
<td>MSC12V</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>6 AL</td>
<td>MS12V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*90280/072548*

Explanation: N/A is displayed in the mode table name fields of non-VTAM MSC links. MSC12V and MS12V are mode table names defined at system definition or established using the /CHA command.

Example 4 for /DISPLAY LINK command

Entry ET:

/DISPLAY LINK 10 OPTION BUFSIZE

Response ET:

<table>
<thead>
<tr>
<th>DFS000I</th>
<th>LINK</th>
<th>LINKNAME</th>
<th>BUFSIZE</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFS000I</td>
<td>10</td>
<td>LNK12V02</td>
<td>4096</td>
<td>IDLE ACTV PRI FORCE TRA BANDWIDTH</td>
</tr>
</tbody>
</table>

*06108/153639*

Explanation: The link buffer size of 4096 and the bandwidth status are displayed.

Example 5 for /DISPLAY LINK command

The following two examples show the output of the /DISPLAY LINK command when a link uses TCP/IP as the physical link type. TCP/IP link types always use MSC bandwidth mode, so in the second example, BANDWIDTH indicates that the bandwidth mode is used by the link.

Entry ET:

/DIS LINK 4
Response ET:

<table>
<thead>
<tr>
<th>DFS000I</th>
<th>LINK</th>
<th>PARTNER</th>
<th>RECD</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
<th>SENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFS000I</td>
<td>4 TA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>PSTOPPED IDLE COLD</td>
</tr>
</tbody>
</table>

Entry ET:

/DIS LINK 4 OPTION BUFSIZE

Response ET:

<table>
<thead>
<tr>
<th>DFS000I</th>
<th>LINK</th>
<th>LINKNAME</th>
<th>BUFSIZE</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFS000I</td>
<td>4</td>
<td>LNK12T01</td>
<td>8192</td>
<td>PSTOPPED IDLE COLD BANDWIDTH</td>
</tr>
</tbody>
</table>

**/DISPLAY LTERM command**

Use the /DISPLAY LTERM command to display status and queue counts for the specified logical terminal name.

Subsections:
- “Environment”
- “Syntax”
- “Keywords” on page 523
- “Usage notes” on page 523
- “Equivalent IMS type-2 commands” on page 524
- “Output fields” on page 524
- “Examples” on page 524

**Environment**

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

Table 243. Valid environments for the /DISPLAY LTERM command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/DISPLAY</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>EMHQ</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>LTERM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>QCNT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

**Syntax**
Keywords

The following keywords can be specified for the /DISPLAY LTERM command:

**EMHQ**

Specifies that global queue count information on the Expedited Message Handler Queues (EMHQ) displays when both EMHQ and QCNT are specified. If EMHQ is specified, QCNT must also be specified. This keyword is only valid in a shared-queues environment.

**QCNT**

Specifies that global queue count information is to be displayed. If QCNT is not specified, local queue counts are displayed; when it is specified, no local queue counts are displayed. If QCNT is specified and EMHQ is not, global queue count information on the shared message queues (MSGQ) is displayed.

This count represents the message counts of messages that can be processed by the IMS system where the command is issued. This count includes messages that can be processed by any IMS system (messages with no affinity), plus messages that can be processed by the IMS system where the command is issued (messages with an affinity to the IMS system that issued the command).

IMS does not check if the specified name is a valid LTERM in the IMS subsystem on which the command is entered.

The /DISPLAY LTERM ALL QCNT command displays all of the LTERMs on the shared queues with a global queue count.

This command does not display queue counts for Fast Path output messages for the NODE unless EMHQ and QCNT are specified.

This keyword is only valid in a shared-queues environment.

For IMS subsystems in a shared-queues environment with the time control option, TCO, enabled, **AFFIN** has been added to the queue names of TCO LTERMs. When the /DISPLAY LTERM DFSTCFI QCNT command is issued, the queue count of messages for the DFSTCFI LTERM pertains to the TCO LTERM on the local IMS subsystem. The queue count is zero prior to adding **AFFIN** to the queue names.

Usage notes

The LTERM parameter can be generic where the generic parameter specifies lterms that already exist.

/DISPLAY LTERM ALL does not display lterms in alphabetical order.

In a shared-queues environment, there are certain situations that cause an LTERM message to be retrieved from the global queue and moved to the local queue, but the message has not been delivered. If this occurs, the global queue count is zero and you need to display the local queue to see the output message.

In a shared-queues environment, use the QCNT keyword to obtain the current message queue counts on the shared queues structure. The local queue counts (ENQCT, DEQCT, and QCT) value that is returned on this command when the QCNT keyword is not specified represents the messages being processed by the IMS system where this command is issued. Do not use local queue counts for queue evaluation purposes.
Equivalent IMS type-2 commands

The following table shows variations of the /DISPLAY LTERM command and the IMS type-2 commands that perform similar functions.

Table 244. Type-2 equivalents for the /DISPLAY LTERM command.

<table>
<thead>
<tr>
<th>Task</th>
<th>/DISPLAY LTERM command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays logical link path for remote</td>
<td>/DISPLAY LTERM ltermname</td>
<td>QUERY LTERM SHOW(MSNAME)</td>
</tr>
<tr>
<td>lterms.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Displays the lterm message queue count.</td>
<td>/DISPLAY LTERM ltermname</td>
<td>QUERY LTERM SHOW(QCNT)</td>
</tr>
<tr>
<td></td>
<td>/DISPLAY LTERM ltermname QCNT</td>
<td></td>
</tr>
<tr>
<td>Displays status of the lterm.</td>
<td>/DISPLAY LTERM ltermname</td>
<td>QUERY LTERM SHOW(STATUS)</td>
</tr>
<tr>
<td>Displays queue count in the EMH queues.</td>
<td>/DISPLAY LTERM ltermname QCNT EMHQ</td>
<td>QUERY LTERM SHOW(EMHQ)</td>
</tr>
</tbody>
</table>

Output fields

The status displayed can be one of the following:

- LOCK
- PSTOP
- PUR
- QERR
- QLOCK
- STATIC
- STOP

Examples

The following are examples of the /DISPLAY LTERM command.

Example 1 for /DISPLAY LTERM command

Entry ET:

/DISPLAY LTERM DIALQ1 INQUIRY1 L2740S1 L2740SM1 MASTER WTOR

Response ET:

<table>
<thead>
<tr>
<th>LTERM</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIALQ1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>INQUIRY1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L2740S1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>STOP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2740SM1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>STOP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MASTER</td>
<td>12</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>STOP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WTOR</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*90295/123755*

Example 2 for /DISPLAY LTERM command

Entry ET:

/DISPLAY LTERM ALL

Response ET:
LTERM ENQCT DEQCT QCT
DSPLY1 0 0 0
DSPLY2 0 0 0
DSPLY3 0 0 0
MASTER 8 8 0
WTOR 0 0 0
2740AA1 0 0 0
2740AA2 0 0 0
2740AA3 0 0 0
2740C1 0 0 0
2740C2 0 0 0
2740SM1 2 2 0 STOP
2740SM2 2 2 0 STOP
2740S1 1 1 0
2740S2 1 1 0 QERR
LU6A 1 1 0 QLOCK
*91276/125448*

Example 3 for /DISPLAY LTERM command

Entry ET:
/DISPLAY LTERM LTERMA LTERM123 ABCD QCNT

Response ET:
LTERM GBLQCT
LTERMA 1000000000
LTERM123 25
ABCD 0
*95200/170817*

Example 4 for /DISPLAY LTERM command

Entry ET:
/DISPLAY LTERM EMHQ QCNT

(one user is on the queue)

Response ET:
LTERM GBLQCT
FPE0001 1
*98203/145857*

Example 5 for /DISPLAY LTERM command

Entry ET:
/DIS LTERM ALL QCNT EMHQ

Response ET:
LTERM GBLQCT SYS3
IMSU501 1 SYS3
IMSU502 1 SYS3
*04310/132048*
SYS3

Related reference:
"Status and attributes for the /DISPLAY command" on page 435

QUERY LTERM command (Commands)
/DISPLAY LUNAME command

Use the /DISPLAY LUNAME command to display information about a specific LU 6.2 application program.

After restart and any checkpoint, only LU 6.2 resources with status or messages queued are displayed.

If you use a side information entry name to place messages on queues, specify the side information entry name for the LU name and the character string DFFSIDE for the TP name to display those messages.

Subsections:
- “Environment”
- “Syntax”
- “Keywords”
- “Usage notes” on page 527
- “Output fields” on page 527
- “Examples” on page 528

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

Table 245. Valid environments for the /DISPLAY LUNAME command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/DISPLAY</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>INPUT</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>LUNAME</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OUTPUT</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>QCNT</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TPNAME</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

Keywords

The following keywords are valid for the /DISPLAY LUNAME command:
LUNAME
The LU name of the LU 6.2 application program about which you want to display information.

INPUT
Displays the count of LU 6.2 inbound conversations and synchronous outbound activities for the specified LU names and their status.

/DISPLAY LUNAME INPUT can indicate that a command such as the /STO LU ALL INPUT command or the /TRACE SET ON LU ALL INPUT command was entered before the display that applies to all future LU 6.2 inbound conversations.

OUTPUT
Displays the count of asynchronous output messages that are being enqueued and dequeued for the LU name and the count of LU 6.2 asynchronous outbound conversations for that LU name.

The /DISPLAY LUNAME OUTPUT command can indicate that a command such as the /STO LU ALL OUTPUT command or the /TRACE SET ON LU ALL OUTPUT command was entered that applies to all future LU 6.2 outbound conversations.

QCNT
Displays the number of output messages on the global queue for the specified LU name. QCNT specifies that global queue count information is to be displayed. Local queue counts are not displayed.

This count represents the message counts of messages that can be processed by the IMS system where the command is issued. This count includes messages that can be processed by any IMS system (messages with no affinity), plus messages that can be processed by the IMS system where the command is issued (messages with an affinity to the IMS system that issued the command).

The /DISPLAY LUNAME QCNT form of the command is only valid in a shared-queues environment.

TPNAME
Displays the number of asynchronous output messages being enqueued and dequeued and their status.

If the LU name includes a network identifier, you must specify the network-qualified LU name when using the TPNAME keyword. A network-qualified LU name refers to a different resource than a non-qualified LU name.

Usage notes
In a shared-queues environment, use the QCNT keyword to obtain the current message queue counts on the shared queues structure. The local queue counts (ENQCT, DEQCT, and QCT) value that is returned on this command when the QCNT keyword is not specified represents the messages being processed by the IMS system where this command is issued. Do not use local queue counts for queue evaluation purposes.

Output fields
The following output fields are displayed for the /DISPLAY LUNAME command:
LUNAME
LU name of the LU 6.2 application program

#APPC-CONV
The number of LU 6.2 inbound conversations

ENQCT
Total number of messages enqueued on this LU name. In a shared-queues environment, only shows messages enqueued for the local subsystem.

DEQCT
Total number of messages dequeued from this LU name. In a shared-queues environment, only shows messages dequeued for the local subsystem.

QCT
Total number of messages still in the queue. In a shared-queues environment, only shows messages enqueued for the local subsystem.

CONVCT
Number of LU 6.2 asynchronous outbound conversations.
Status can be stopped (STO), traced (TRA), or stopped and traced.
The CONVCT output field only applies if the OUTPUT keyword was specified.

GBLQCNT
The total number of APPC output messages on the global queue. The global queue count includes messages that were placed on the global queue prior to the latest cold start of the owning IMS. Synchronous and asynchronous APPC output messages are included in the global queue count.

AFFINITY
The IMSID (or the first seven bytes of the RSENAME if XRF capable) of the IMS to which the output messages have affinity.

Status
The status displayed can be none, stopped (STO), traced (TRA), or both stopped and traced. The status information does not have a header.

Examples

Entry ET:
/DISPLAY LU luname1 luname2 INPUT

Response ET:

<table>
<thead>
<tr>
<th>LUNAME</th>
<th>#APPC-CONV</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUNAME1</td>
<td>15 TRA</td>
</tr>
<tr>
<td>LUNAME2</td>
<td>5</td>
</tr>
</tbody>
</table>

*90332/114253*

Entry ET:
/DISPLAY LU luname1 luname3 BADLUNME OUTPUT

Response ET:

<table>
<thead>
<tr>
<th>LUNAME</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
<th>CONVCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUNAME1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>LUNAME3</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

BADLUNME IS INVALID
*90332/114253*
Entry ET:
/DISPLAY LU LUNAME1 TPNAME TPNAME1 BADTPNME

Response ET:

<table>
<thead>
<tr>
<th>LUNAME/TPNAME</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUNAME1</td>
<td>0</td>
<td>0</td>
<td>0 STO</td>
</tr>
<tr>
<td>-TPNAME1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BADTPNME IS INVALID</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*90332/114253*

Entry ET:
/DISPLAY LU LUNAME1 TPNAME ALL OUTPUT

Response ET:

<table>
<thead>
<tr>
<th>LUNAME/TPNAME</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUNAME1</td>
<td>0</td>
<td>0</td>
<td>0 STO</td>
</tr>
<tr>
<td>-TPNAME1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-TPNAME7890123456+</td>
<td>5</td>
<td>3</td>
<td>2 TRA,STO</td>
</tr>
</tbody>
</table>

789END

| DFSSIDE   | 2     | 2     | 0     |

*90332/114253*

Entry ET:
/DISPLAY LU LUNAME2 TPNAME ALL

Response ET:

<table>
<thead>
<tr>
<th>LUNAME/TPNAME</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUNAME/SO</td>
<td>0</td>
<td>0</td>
<td>0 STO</td>
</tr>
<tr>
<td>NO TPNAM(E) ASSOCIATED WITH LUNAME</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*90332/114253*

Entry ET:
/DISPLAY LU 'network1.luname1' luname3 'nid2.luname4' OUTPUT

Response ET:

<table>
<thead>
<tr>
<th>NETWORK1.LUNAME1</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
<th>CONVCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

LUNAME3

<table>
<thead>
<tr>
<th>LUNAME3</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
<th>CONVCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

NID2.LUNAME4

<table>
<thead>
<tr>
<th>NID2.LUNAME4</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
<th>CONVCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*92232/114253*

Entry ET:
/DISPLAY LU 'network1.luname1' TPNAME tpname1 badtpnme

Response ET:

<table>
<thead>
<tr>
<th>NETWORK1.LUNAME1</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>-TPNAME1</td>
<td>0</td>
<td>0</td>
<td>0 STO</td>
</tr>
<tr>
<td>-BADTPNME IS INVALID</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*92232/114253*

Entry ET:
/DISPLAY LU ALL INPUT

Response ET

<table>
<thead>
<tr>
<th>LUNAME</th>
<th>#APPC-CONV</th>
</tr>
</thead>
<tbody>
<tr>
<td>NET1.LU1</td>
<td>0 STO,TRA</td>
</tr>
<tr>
<td>NET2.LU1</td>
<td>0</td>
</tr>
<tr>
<td>LU3</td>
<td>0 STO,TRA</td>
</tr>
</tbody>
</table>

Chapter 26. /DISPLAY commands 529
NET4.LU3 0 STO
NET5.LU5 0 TRA
FUTURE INPUT: STO, TRA
*93069/114435*

Entry ET:
/ DISPLAY LU ALL OUTPUT

Response ET:

<table>
<thead>
<tr>
<th>LUNAME</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
<th>CONVCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NET1.LU1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>STO</td>
</tr>
<tr>
<td>NET2.LU1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>TRA</td>
</tr>
<tr>
<td>LU3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>STO, TRA</td>
</tr>
<tr>
<td>NET4.LU3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>TRA</td>
</tr>
<tr>
<td>NET5.LU5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>STO</td>
</tr>
</tbody>
</table>
FUTURE OUTPUT: STO, TRA
*93069/114435*

Entry ET:
/ DISPLAY LU L62MVS1 LUI CTA73 QCNT

Response ET:

<table>
<thead>
<tr>
<th>LUNAME</th>
<th>GBLQCT</th>
<th>AFFINITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEBVMU00.CTA73</td>
<td>8</td>
<td>SYS3</td>
</tr>
<tr>
<td>L62MVS1</td>
<td>22</td>
<td>SYS3</td>
</tr>
<tr>
<td>CTA73</td>
<td>6</td>
<td>SYS3</td>
</tr>
<tr>
<td>NTWKA.CTA73</td>
<td>16</td>
<td>SYS3</td>
</tr>
<tr>
<td>L62MVS1</td>
<td>26</td>
<td>IMS2</td>
</tr>
<tr>
<td>NTWKA.CTA73</td>
<td>4</td>
<td>IMS2</td>
</tr>
<tr>
<td>LU1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
*03202/143132*

Entry ET:
/ DIS LU CTA73 TPNAME ALL QCNT

Response ET:

<table>
<thead>
<tr>
<th>LUNAME/TPNAME</th>
<th>GBLQCT</th>
<th>AFFINITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEBVMU00.CTA73 -DFASYNC</td>
<td>8</td>
<td>SYS3</td>
</tr>
<tr>
<td>CTA73</td>
<td>6</td>
<td>SYS3</td>
</tr>
<tr>
<td>23456789012345678901234567890123456789012345678901234567890123456789</td>
<td>IMS2</td>
<td></td>
</tr>
<tr>
<td>NTWKA.CTA73 -TP100</td>
<td>4</td>
<td>IMS2</td>
</tr>
<tr>
<td>-TP100</td>
<td>16</td>
<td>SYS3</td>
</tr>
<tr>
<td><em>03202/143204</em></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Entry ET:
/ DIS LU LU100 TPNAME TP100 TP300 TP200 QCNT

Response ET:

<table>
<thead>
<tr>
<th>LUNAME/TPNAME</th>
<th>GBLQCT</th>
<th>AFFINITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTWK2.LU100 -TP100</td>
<td>8</td>
<td>IMS2</td>
</tr>
<tr>
<td>NTWK1.LU100 -TP100</td>
<td>8</td>
<td>IMS2</td>
</tr>
<tr>
<td>-TP200</td>
<td>10</td>
<td>IMS2</td>
</tr>
<tr>
<td>LU100 -TP300</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
*03202/143201*
/DISPLAY MASTER command

Use the /DISPLAY MASTER command to display the logical terminal name and the line and physical terminal number associated with the master terminal.

If the 3270 master terminal capability was generated during IMS system definition, the logical terminal name, line, and physical terminal number of the secondary master terminal are also displayed.

Subsections:
- “Environment”
- “Syntax”
- “Equivalent IMS type-2 commands”
- “Examples”

Environment

The /DISPLAY MASTER command is valid in DB/DC and DCCTL environments.

Syntax

```
/DISPLAY MASTER
```

Equivalent IMS type-2 commands

The following table shows variations of the /DISPLAY MASTER command and the IMS type-2 commands that perform similar functions.

<table>
<thead>
<tr>
<th>Task</th>
<th>/DISPLAY MASTER command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays the primary and secondary master terminal.</td>
<td>/DISPLAY MASTER</td>
<td>QUERY LTERM STATUS(MTO,SMTO)</td>
</tr>
</tbody>
</table>

Examples

Entry ET:
```
/DISPLAY MASTER
```

Response ET:
Use the /DISPLAY MODIFY command to display online change status for this IMS, which is participating in a local or global online change.

The command displays the following information:

- Online change libraries
- Work in progress for resources to be deleted or changed by a /MODIFY COMMIT or a INITIATE OLC PHASE(PREPARE) command
- Resources to be added, changed, and deleted by a /MODIFY COMMIT or an INITIATE OLC PHASE(COMMIT) command

Subsections:

- “Environment”
- “Syntax” on page 533
- “Keywords” on page 533
- “Usage notes” on page 535
- “Equivalent IMS type-2 commands” on page 535
- “Output fields” on page 535
- “Examples” on page 540

**Environment**

The /DISPLAY MODIFY command is valid in DB/DC, DBCTL, and DCCTL environments.

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

**Table 247. Valid environments for the /DISPLAY MODIFY command and keywords**

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/DISPLAY</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MODIFY</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ADDS</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ALL</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CHNGS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DBS</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DELS</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DMS</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FMS</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MODS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PDS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PSS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Table 247. Valid environments for the /DISPLAY MODIFY command and keywords (continued)

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCS</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TRS</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

**Syntax**

```
/DISPLAY MODIFY
```

**Keywords**

The following keywords are valid for the /DISPLAY MODIFY command:

- `<blanks>`
  Displays the status of online change libraries.

- **ADDS**
  Displays the resources to be added by online change. Each display line contains a resource type, resource name, and a status of ADDED. The resource type can be: DATABASE, DMB, FORMAT, PROGRAM, PSB, RT CODE, or TRAN.

- **ALL**
  Displays the status of online change libraries and any work in progress for database, program, routing code, or transaction resources to be deleted or changed by the /MODIFY COMMIT or the INITIATE OLC PHASE(COMMIT) command.
  For DBCTL, transactions do not apply. For DCCTL, databases do not apply.

- **CHNGS**
  Displays the resources to be changed by online change. Each display line contains a resource type, resource name, and a status of CHANGED. Resource type can be: DATABASE, DMB, FORMAT, PROGRAM, PSB, RT CODE, or TRAN.

- **DBS**
  Displays the databases to be changed or deleted with work in progress that would prevent /MODIFY COMMIT from succeeding. If DBS is specified with the ADDS, CHNGS, DELS, or MODS parameters, the databases in MODBLKS to be added, changed, or deleted display. Each display line contains a resource type of DATABASE, the database name, and a status of ADDED, CHANGED, or DELETED.
DELS
Displays the resources to be deleted by online change. Each display line contains a resource type, resource name, and a status of DELETED. The resource type can be: DATABASE, DMB, FORMAT, PROGRAM, PSB, RT CODE, or TRAN.

DMS
If DMS is specified with the ADDS, CHNGS, DELS, or MODS parameters, the DMBs in ACBLIB to be added, changed, or deleted display as ADDED, CHANGED, or DELETED.

If the status of the associated database in MODBLKS is ADDED, DMS displays a DMB as ADDED. If the status of the associated database in MODBLKS is DELETED, DMS displays a DMB as DELETED.

FMS
If FMS is specified with the ADDS, CHNGS, DELS, or MODS parameters, the MFS formats to be added, changed, or deleted in FMTLIB display. Each display line contains a resource type of FORMAT, the format name, and a status of ADDED, CHANGED, or DELETED.

MODS
Displays the resource to be modified by online change, which are resources to be added, changed, and deleted. Each display line contains the resource type, resource name, and a status of ADDED, CHANGED, or DELETED. The resource type can be: DATABASE, DMB, FORMAT, PROGRAM, PSB, RT CODE, or TRAN.

/DISPLAY MODIFY MODS shows all of the resources to be added, changed, or deleted by /MODIFY COMMIT, which is equivalent to the output from /MODIFY PREPARE with the LTERM keyword specified.

PDS
Displays the programs to be changed or deleted in MODBLKS with work in progress that would prevent a /MODIFY COMMIT or an INITIATE OLC PHASE(COMMIT) command from succeeding. If PDS is specified with the ADDS, CHNGS, DELS, or MODS parameters, the programs in MODBLKS to be added, changed, or deleted display. Each display line contains a resource type of PROGRAM, the program name, and a status of ADDED, CHANGED, or DELETED.

PSS
If PSS is specified with the ADDS, CHNGS, DELS, or MODS parameters, the PSBs in ACBLIB to be added, changed, or deleted display as ADDED, CHANGED, or DELETED.

If the status of the associated program in MODBLKS is ADDED, PSS displays a PSB as ADDED. If the status of the associated program in MODBLKS is DELETED, PSS displays a PSB as DELETED.

RCS
Displays the routing codes to be changed or deleted in MODBLKS with work in progress that would prevent a /MODIFY COMMIT or an INITIATE OLC PHASE(COMMIT) command from succeeding. If RCS is specified with the ADDS, CHNGS, DELS, or MODS parameters, RTCODEs in MODBLKS to be added, changed, or deleted display.

TRS
Displays the transactions to be changed or deleted in MODBLKS with work in progress that would prevent a /MODIFY COMMIT or an INITIATE OLC
PHASE(COMMIT) command from succeeding. If TRS is specified with the ADDS, CHNGS, DELS, or MODS parameters, transactions in MODBLKS to be added, changed, or deleted display.

Usage notes

The /DISPLAY MODIFY command with one or more keywords (not including ALL) is only valid if IMS is in the MODIFY PREPARE state, which means that a /MODIFY PREPARE command or an INITIATE OLC PHASE(PREPARE) command completed successfully.

If IMS cannot access the global queue counts, IMS displays the GLOBAL QUEUE COUNT INTERNAL ERROR status. If IMS cannot obtain sufficient storage to query global queue counts, IMS displays the GLOBAL QUEUE COUNT STORAGE ERROR status. In either case, online change will fail if there are global queue counts for resources being changed or deleted.

For an IMS that has online change for MODBLKS disabled and no MODBLKS data sets are included in the IMS JCL, no information about active and inactive MODBLKS data sets is displayed.

Equivalent IMS type-2 commands

The following table shows variations of the /DISPLAY MODIFY command and the IMS type-2 commands that perform similar functions.

<table>
<thead>
<tr>
<th>Task</th>
<th>/DISPLAY MODIFY command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays work in progress for runtime resource definitions that would cause a DELETE, /MODIFY COMMIT, INITIATE OLC PHASE(COMMIT), or UPDATE command to change resource definitions to fail.</td>
<td>/DISPLAY MODIFY ALL</td>
<td>QUERY DB NAME(dbname) SHOW(WORK)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QUERY PGM NAME(pgmname) SHOW(WORK)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QUERY RTC NAME(rtcde) SHOW(WORK)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QUERY TRAN NAME(traname) SHOW(WORK)</td>
</tr>
</tbody>
</table>

Output fields

The online change libraries are described in the output in the following order: the word “LIBRARY”, the library name, the library status displayed as A for active, I for inactive, or U for unallocated, and the data set in which the library resides. If the ACBLIB data sets are allocated by JCL, the status displayed for each library is displayed as A for active or I for inactive. It is followed by the DD names and data set names that make up the library. If the ACBLIB data sets are allocated by DFSMDA, the status of the inactive ACBLIB data sets is displayed as U for unallocated. The data set names displayed are those specified in the DFSMDA member for that ACBLIB DD statement.

Status information is displayed for the following libraries:

- IMSACBA and IMSACBB
- FORMATA and FORMATB
- MODBLKSA and MODBLKSB
The following output fields are displayed for the /DISPLAY MODIFY command.

**Resource type**
Resource type can be LIBRARY, DATABASE, PROGRAM, RTCODE, or TRAN.

**Resource name**
The name of the library, database, program, routing code, or transaction.

**Status**
Status of the resource or data set name, for a library.

The following status terms are displayed by the /DISPLAY MODIFY command:

**ACTIVE**
The routing code rtcode is active.

**ADDED**
One of the following:
- The database, DMB, MFS format, program, PSB, Fast Path routing code (RTCODE), or transaction resource is to be added by online change.
- The DMB already exists in ACBLIB and its associated database is to be added to MODBLKS, making the database usable.
- The PSB already exists in ACBLIB and its associated program is to be added to MODBLKS, making the program usable.

**AREAS OPEN:**
A DEDB database has open areas. One or more lines listing the open areas follow this line.

**CHANGED**
One of the following:
- The database, DMB, MFS format, program, PSB, Fast Path routing code (RTCODE), or transaction resource is to be changed by online change. The prepare command has stopped queuing to transactions affected by the online change. Affected transactions are rejected from an input terminal until the online change is committed or aborted. Program-to-program switches are not rejected. Commit will fail for the resource to be changed, if it has work in progress.
- The program is not to be changed, but is associated with a PSB whose JAVA attribute is to be changed. The program is treated as if it is to be changed, because a PSB scheduling attribute is changing.
- The routing code is not to be changed, but references a PSB that is to be deleted. The routing code is treated as if it is to be changed, because it will no longer be usable.
- The transaction is not to be changed, but references a PSB that is to be deleted. The transaction is treated as if it is to be changed, because it will no longer be usable.

**CHANGED (DSID CHANGED)**
The area is to be changed and the data set ID (area number) is to be changed.

*Attention:* Actions must be taken to prevent damage to the area.

See [The online change function, DEDBs, and Availability of IFP and MPP Regions (Database Administration)](commands_volume_1_ims_commands_a-m)
CHANGED (TIMESTAMP ONLY)
The PSB is to be changed, but only the time stamp is to be changed. The PSB is considered to be affected by the online change, even though nothing is really changing.

CONVERSATION TERM/USER
The transaction to be changed or deleted or the transaction referencing a program or database to be changed or deleted is in conversation. The terminal originating the conversational transaction and the conversation ID are also displayed.

The terminal information displayed is:
- nodename for VTAM terminals
- nodename and username if an ETO user is signed on to the node
- username for ETO users that signed off while in conversation
- lin#-pte# (line and pterm number) for IMS-supported terminals
- 1-SC for the system console

CONVERSATION LUNAME
An APPC logical unit originated the conversational transaction that is to be changed or deleted or that references a program or database to be changed or deleted. The LUNAME and conversation ID are also displayed. The LUNAME information is in the format of luname, or networkid.luname, if networkid-qualified.

CONVERSATION TMEM/TPIP
An OTMA tmember/tpipe originated a conversational transaction that is to be changed or deleted or that references a program or database to be changed or deleted. The tmember, tpipe and conversation ID are also displayed. The tmember and tpipe information is in the format of tmember.tpipe, where the tmember name can be up to 8 characters.

DATABASE IN USE
The database is in use by one or more active regions referencing the database.

/DBD ACTIVE
A /DBDUMP command is in progress for a database to be changed or deleted.

/DBR ACTIVE
A /DBRECOVERY command is in progress for a database to be changed or deleted.

/DBR OR /STOP IN PROGRESS
A /DBRECOVERY command or /STOP command is in progress for a DEDB database.

DBR NEEDED FOR PARTITION
A /DBRECOVERY command must be issued for the DB partition before the database can be changed or deleted by online change

DELETED
One of the following:
- The database, DMB, MFS format, program, PSB, Fast Path routing code (RTCODE), or transaction resource is to be deleted
by online change. The prepare command has stopped queuing to transactions affected by the online change. Affected transactions are rejected from an input terminal until the online change is committed or aborted. Program-to-program switches are not rejected. Commit will fail for the resource to be deleted, if it has work in progress.

- The DMB is not to be changed, but references a database that is to be deleted. The DMB is treated as if it is to be deleted, because IMS will no longer have any information about the DMB.
- The PSB is not to be changed, but references a program that is to be deleted. The PSB is treated as if it is to be deleted, because IMS will no longer have any information about the PSB.

**ELIGIBLE FOR SCHEDULING**
The transaction is eligible for scheduling and cannot be deleted or changed by online change. The transaction itself is being changed or deleted, or the program it references is being changed. Stop the transaction before attempting another online change commit. If the only thing being changed is the PSB associated with the program that the transaction references, the transaction might not need to be stopped.

**IN USE**
Queuing is in progress for this transaction (either terminal input or program-to-program switch).

**NOT CHANGED (DMB CHANGED ONLY)**
The PSB is not to be changed, but references a DMB that is to be changed or deleted. The PSB is considered to be affected by the online change, where commit will fail for work in progress.

**NOT CHANGED (PDIR/PSB CHANGE ONLY)**
One of the following:
- The routing code is not to be changed, but references a PDIR or PSB that is to be changed. The routing code is considered to be affected by the online change, where commit will fail for work in progress.
- The transaction is not to be changed, but references a PSB that is to be changed. This status does not apply to PSB attribute changes that affect scheduling, such as the JAVA attribute. The transaction is not affected by online change, so commit will succeed even if there is work in progress.

**NOT OPEN, BUT DBR NEEDED ON TRACKER**
The database is not open, but the area can be open, so the database needs to be taken offline by use of the /DBRECOVERY command. This can happen if the area is not stopped and the database is not open and prepared to be online changed on a tracker environment. The area can be open if log records type 5701 or 5950 are routed to the RSR tracking IMS from the active IMS while online change is in progress. It is then required that the database be taken offline in the case of database level change. The tracking suspend point (Suspended Log Sequence Number) is registered in the RECON data set when the area is stopped. After the online change committed successfully, and when the /STA AREA command is
entered, the online forward recovery (OFR) will open the area and
all log records from the suspended point will be applied to the
area.

PSB SCHEDULED
A program referencing a database to be changed or deleted is
scheduled.

QUEUING m
Messages are queued to the transaction or program; m is the
number of messages queued. Global queue counts represent the
number of messages on the coupling facility list structure for the
transaction or program.

Q STRUCTURE IS UNAVAILABLE
The queue structure is unavailable. IMS is unable to check the
global queue count for transactions to be added, changed, or
deleted. Commit is not permitted to proceed. The structure may be
unavailable for one of the following reasons:
• CQS is unavailable.
• The MSGQ structure failed and it has not been rebuilt yet.
• CQS lost connectivity to the MSGQ structure.

RANDOMIZER: rndmname
A DEDB database that has no work in progress lists the
randomizer name (rndmname). The randomizer display lines are
information only, not work in progress that would prevent online
change commit from succeeding.

This line is followed by a line with the randomizer name and
status of LOADED or NOT LOADED.

If the randomizer is shared by one or more DEDBs, another line is
displayed with 'DEDBS SHARING RANDOMIZER:' followed by
the randomizer name. Online change will not delete a randomizer
that is shared by other DEDBs. This line is followed by one line for
each DEDB sharing the same randomizer.

RECOVERY IN PROGRESS
A /RECOVER START command is in progress to recover one or
more databases with the database recovery service.

SAME (DSID CHANGED)
The area is not to be changed, but the data set ID (area number) is
to be changed.

Attention: Actions must be taken to prevent damage to the area.
See |The online change function, DEDBs, and Availability of IFP|
and MPP Regions (Database Administration)

SCHEDULED
The named resource (a transaction or program to be changed or
deleted, or a program referencing a database to be changed or
deleted) is scheduled.

SUSPENDED
The transaction to be changed or deleted is on the suspend queue.

Work in progress for resources to be deleted or changed causes the /MODIFY
COMMIT command to fail. You must wait for the work in progress to complete, or
force it to complete (for example, by issuing a command), before issuing /MODIFY COMMIT. The following table lists the resource type, resource name, and the status displays for work in progress that would prevent the /MODIFY COMMIT command from completing successfully:

Table 249. Work in progress for resources that prevent a successful /MODIFY COMMIT

<table>
<thead>
<tr>
<th>Resource type</th>
<th>Resource name</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATABASE</td>
<td>dbname</td>
<td>AREAS OPEN: /DBD ACTIVE /DBR ACTIVE /DBR OR /STOP IN PROGRESS DATABASE IN USE DBR NEEDED FOR PARTITION nnnn PSB SCHEDULED RANDOMIZER: rndmname RECOVERY IN PROGRESS</td>
</tr>
<tr>
<td>AREA</td>
<td>areaname</td>
<td>OPEN RECOVERY IN PROGRESS</td>
</tr>
<tr>
<td>PROGRAM</td>
<td>pgmname</td>
<td>SCHEDULED QUEUING nn GLOBAL QUEUE COUNT INTERNAL ERROR GLOBAL QUEUE COUNT STORAGE ERROR</td>
</tr>
<tr>
<td>RTCODE</td>
<td>rttcode</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>TRAN</td>
<td>tranname</td>
<td>IN USE QUEUING nn SCHEDULED SUSPENDED CONVERSATION TERM/USER nodename ID= nnnn nodename username ID= nnnn username ID= nnnn lin#-pte# ID= nnnn 1- SC ID= nnnn</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLOBAL QUEUE COUNT INTERNAL ERROR GLOBAL QUEUE COUNT STORAGE ERROR ELIGIBLE FOR SCHEDULING</td>
</tr>
</tbody>
</table>

In a shared-queues environment, /DISPLAY MODIFY only shows local work in progress, except for the TRAN QUEUING status and the PROGRAM QUEUING status, for which this command shows the sum of local and global queue counts. That is, /DISPLAY MODIFY does not show whether there is work in progress for other IMS subsystems sharing the message queues. If the /DISPLAY MODIFY command shows no work in progress for the IMS subsystem which the command was issued, a /MODIFY COMMIT command can be issued for that IMS subsystem.

**Examples**

The following are examples of the /DISPLAY MODIFY command.

**Example 1 for /DISPLAY MODIFY command**

In these examples for /DISPLAY MODIFY, /MODIFY PREPARE has already succeeded.

Entry ET:
/DISPLAY MODIFY ALL

Response ET:
LIBRARY IMSACBA (A) OLC.ACBLIB.ALL
LIBRARY FORMATA (I) IMSQA.FMT1
LIBRARY MODBLKSA (A) I41RT542.CMODBLKS
LIBRARY IMSACBB (I) OLC.ACBLIB.ALL
LIBRARY FORMATB (A) IMSQA.FMT1
LIBRARY MODBLKSB (I) I41RT542.CMODBLKS
DATABASE OLCDB088 /DBR ACTIVE
DATABASE OLCDB101 PSB SCHEDULED
PROGRAM OLCPB021 SCHEDULED
PROGRAM OLCPB109 SCHEDULED
RTCODE OLCRC056 ACTIVE
TRAN OLCBT105 QUEUING 1
TRAN CDEBTRN5 CONVERSATION TERM/USER 4- 2 ID= 0009
TRAN OLCBT109 SCHEDULED
TRAN CDEBTRN8 CONVERSATION TERM/USER L3270D ID= 0002
TRAN OLCBT111 QUEUING 5
TRAN CDEBTRN2 CONVERSATION TERM/USER DYNT0001 IMSUS01 ID= 0005
TRAN CDEBTRN3 CONVERSATION TERM/USER 12- 1 ID= 0008
TRAN CDEBTRN1 CONVERSATION TERM/USER IMSUS12 ID= 0001
DISPLAY MODIFY COMPLETE
*93336/093025*

Entry ET:
/DISPLAY MODIFY DBS

Response ET:
DATABASE CALENDER AREAS OPEN:
  AREA FEBRUARY
  AREA APRIL
  AREA JULY
  AREA AUGUST
  AREA SEPTEMBER
  AREA OCTOBER
  AREA DECEMBER
DATABASE CALENDER RANDOMIZER: RMOD3
DEDBS SHARING RANDOMIZER: RMOD3
DATABASE DEDBJN21 RANDOMIZER: RMOD3
RMOD3 NOT LOADED
DATABASE DEDBJN22 RANDOMIZER: RMOD5
RMOD5 NOT LOADED
DISPLAY MODIFY COMPLETE *95299/161529*

Entry ET:
/DISPLAY MODIFY TRS

Response ET:
TRAN OLCFT112 QUEUING 2
TRAN OLCFT115 QUEUING 23
PROGRAM OLCFP115 QUEUING 1
TRAN CDEBTRN8 GLOBAL QUEUE COUNT INTERNAL ERROR
TRAN OLCFT116 QUEUING 6
DISPLAY MODIFY COMPLETE *96193/135935*

Explanation: Work is in progress that will cause online change to fail, because several transactions and a FP program have a global queue count on the shared queues. The global queue count for transaction CDEBTRN8 could not be determined because of an internal error.

Example 2 for /DISPLAY MODIFY command
Entry ET:
/DISPLAY MODIFY MODS

Response ET:

```
DFS000I FORMAT OC01_FF02A _O ADDED
DFS000I FORMAT OC01_FF02B _O ADDED
DFS000I FORMAT 0C7F_FN01A _O CHANGED
DFS000I FORMAT 0C7F_FN01B _O CHANGED
DFS000I FORMAT 0C7F_FF04A _O DELETED
DFS000I FORMAT MF04E DELETED
DFS000I DATABASE OLCDB101 ADDED
DFS000I DATABASE OLCDB102 ADDED
DFS000I DATABASE OLCDB103 ADDED
DFS000I DATABASE OLCDB104 ADDED
DFS000I DATABASE OLCDB105 ADDED
DFS000I DATABASE OLCDB106 ADDED
DFS000I DATABASE OLCDB107 ADDED
DFS000I DATABASE OLCDB108 ADDED
DFS000I DATABASE OLCDB109 ADDED
DFS000I DATABASE OLCDB110 ADDED
DFS000I DATABASE OLCDB111 ADDED
DFS000I DMB OLCDB101 ADDED
DFS000I DMB OLCDB102 ADDED
DFS000I AREA D824A000 CHANGED
DFS000I DMB OLCDB105 DELETED
DFS000I PROGRAM OLCFP107 ADDED
DFS000I PROGRAM OLCFP108 ADDED
DFS000I PROGRAM OLCFP109 ADDED
DFS000I PROGRAM OLCFP110 CHANGED
DFS000I PROGRAM OLCFP111 CHANGED
DFS000I PROGRAM OLCBP105 DELETED
DFS000I PROGRAM OLCBP106 DELETED
DFS000I PSB OLCFP107 ADDED
DFS000I PSB OLCFP108 ADDED
DFS000I PSB OLCBP105 DELETED
DFS000I PSB CDEBS CHANGED
DFS000I RT CODE OLCT108 ADDED
DFS000I RT CODE OLCT119 CHANGED
DFS000I RT CODE OLCTR117 DELETED
DFS000I TRAN OLCFT108 ADDED
DFS000I TRAN OLCTBG17 ADDED
DFS000I TRAN CDEBS DELETED
DFS000I TRAN CDEBS DELETED
DFS000I TRAN CONV31X DELETED
DFS000I DISPLAY MODIFY COMPLETE *98356/094452* SYS3
```

Explanation: Displays resources to be modified (added, changed, or deleted) by online change.

**Example 3 for /DISPLAY MODIFY command**

Entry ET:
/DISPLAY MODIFY ALL

Response ET:

```
LIBRARY IMSACBA (A) IMSTESTG.DELTALIB
 (A) IMSTESTL.TNUC2
 (A) IMSTESTG.IMS61RC.ACBLIB
 (A) IMSTESTG.IMS61R.ACBLIB
LIBRARY FORMATA (A) IMSTESTG.MFS.OVERRIDE.FORM
 (A) IMSTESTG.MFS.FORMAT
```

542 Commands, Volume 1: IMS Commands A - M
Explanation: In this example:

- DEDB databases DEDBJN21, DEDBJN22, and DEDBJN23 have undergone Online Change.
- After a database line for DEDBS displays, a line follows containing randomizer status (loaded or not loaded).
- After the randomizer status displays, a line might follow containing DEDBS SHARING RANDOMIZER; this line is followed by DEDB lines listing the DEDBs that share the randomizer.

**Example 4 for /DISPLAY MODIFY command**

Entry ET:

/DISPLAY MODIFY ALL

Response ET:

LIBRARY IMSACBA
(A) IMSACBA
LIBRARY MODBLKSA
(A) MODBLKSA
LIBRARY IMSACBB
(I) IMSACBB
(I) IMSACBB
(I) IMSACBB
LIBRARY FORMATB
(I) FORMATB
LIBRARY MODBLKSB
(I) MODBLKSB
DATABASE DEDBJN21
NOT OPEN, BUT DBR NEEDED ON TRACKER (1)
Explanation: The DEDB database DEDBJN21 is prepared to be online changed on a tracker environment. If the AREA is not stopped and the database is not open, the AREA can be open if log records type 5701 or 5950 are routed to the RSR tracking IMS from the active IMS while Online Change is in progress. It is then required that the database be taken offline by use of the /DBRECOVERY command in the case of database level change. The tracking suspend point (Suspended Log Sequence Number) is registered in RECON when the AREA is stopped. After the online change committed successfully, and when the /STA AREA command is entered, the Online Forward Recovery will open the AREA and all log records from the suspended point will be applied to the AREA.

Example 5 for /DISPLAY MODIFY command

Entry ET:

/DISPLAY MODIFY ALL

Response ET:

LIBRARY IMSACBA (A) IMSTESTG.DELTA1
(A) IMSTESTG.IMS10AC.ACBLIB1
(A) IMSTESTG.IMS10A.ACBLIB1
LIBRARY FORMATA (A) IMSTESTG.MFS.FORMAT1
(A) IMSTESTG.MFS.FORMAT2
(A) IMSQA.FMT1
LIBRARY MODBLKSA (A) IMSBLD.I10ATS17.COMBLKS1
LIBRARY IMSACBB (U) IMSTESTG.DELTA2
(U) IMSTESTG.IMS10AC.ACBLIB2
(U) IMSTESTG.IMS10A.ACBLIB2
LIBRARY FORMATB (I) IMSTESTG.MFS.FORMAT3
(I) IMSTESTG.MFS.FORMAT4
(I) IMSQA.FMT1
LIBRARY MODBLKSB (I) IMSBLD.I10ATS17.COMBLKS2
DISPLAY MODIFY COMPLETE *07003/110121* SYS3

TSO SPOC output:

MGRNAME MESSAGES

-------- ---------------------
SYS3 LIBRARY IMSACBA (A) IMSTESTG.DELTA1
SYS3 (A) IMSTESTG.IMS10AC.ACBLIB1
SYS3 (A) IMSTESTG.IMS10A.ACBLIB1
SYS3 LIBRARY FORMATA (A) IMSTESTG.MFS.OVERRIDE.FORMAT1
SYS3 (A) IMSTESTG.MFS.FORMAT1
SYS3 (A) IMSQA.FMT1
SYS3 LIBRARY MODBLKSA (A) IMSBLD.I10ATS17.COMBLKS1
SYS3 LIBRARY IMSACBB (U) IMSTESTG.DELTA2
SYS3 (U) IMSTESTG.IMS10AC.ACBLIB2
SYS3 (U) IMSTESTG.IMS10A.ACBLIB2
SYS3 LIBRARY FORMATB (I) IMSTESTG.MFS.OVERRIDE.FORMAT2
SYS3 (I) IMSTESTG.MFS.FORMAT2
SYS3 (I) IMSQA.FMT2
SYS3 LIBRARY MODBLKSB (I) IMSBLD.I10ATS17.COMBLKS2
SYS3 DISPLAY MODIFY COMPLETE *07003/114249* SYS3
Explanation: In this example, IMSACBA is the active ACBLIB; IMSACBB is the inactive ACBLIB. The inactive ACBLIB data sets are displayed even though they are not allocated. The “U” indicates that they are unallocated.

**Example 6 for /DISPLAY MODIFY command**

Entry ET:

/DISPLAY MODIFY ALL

Response ET:

```
DFS0001 LIBRARY IMSACBA (A) IMSTESTG.DELTALIB
DFS0001 (A) IMSTESTG.IMS10AC.ACBLIB
DFS0001 (A) IMSTESTG.IMS10A.ACBLIB
DFS0001 LIBRARY FORMATA (A) IMSTESTG.MFS.FORMAT1
DFS0001 (A) IMSTESTG.MFS.FORMAT2
DFS0001 (A) IMSQA.FMT1
DFS0001 LIBRARY MODBLKSA (A) IMSBLD.I10ATS17.COMBLKS1
DFS0001 LIBRARY IMSACBB () NO DFSMDA MEMBER
DFS0001 LIBRARY FORMATB (I) IMSTESTG.MFS.FORMAT3
DFS0001 (I) IMSTESTG.MFS.FORMAT4
DFS0001 (I) IMSQA.FMT1
DFS0001 LIBRARY MODBLKSB (I) IMSBLD.I10ATS17.COMBLKS1
DFS0001 DISPLAY MODIFY COMPLETE *07003/110121* SYS3
```

Explanation: In this example, IMSACBA is the active ACBLIB; IMSACBB is the inactive ACBLIB. The inactive ACBLIB data sets are displayed even though they are not allocated. The “U” indicates that they are unallocated.

**Example 7 for /DISPLAY MODIFY command**

The following example shows an online HALDB database, DBVHDJ05, that is currently being altered.

Entry ET:

/DISPLAY MODIFY DBS

TSO SPOC output:

```
MbrName Messages
-------- ---------------------
IMS1 DATABASE DBOHIDK5 DBR NEEDED FOR PARTITION
IMS1 DATABASE DBVHDJ05 ALTER INCOMPLETE
IMS1 DATABASE DBVHDJ05 4 PSBS SCHEDULED
IMS1 DATABASE DBVHDJ05 DATABASE IN USE
```

Related tasks:

- The online change function, DEDBs, and Availability of IFP and MPP Regions (Database Administration)

Related reference:

- “Status and attributes for the /DISPLAY command” on page 435

- QUERY DB command (Commands)
- QUERY PGM command (Commands)
- QUERY RTC command (Commands)
- QUERY TRAN command (Commands)
/DISPLAY MSNAME command

Use the /DISPLAY MSNAME command to display the queue counts for the specified logical link path. Generic parameters are supported for the MSNAME keyword.

Subsections:
- "Environment"
- "Syntax"
- "Keywords"
- "Usage notes" on page 547
- "Examples" on page 547

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

Table 250. Valid environments for the /DISPLAY MSNAME command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/DISPLAY</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MSNAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>QCNT</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Syntax

```
/DISPLAY MSNAME msname

/DISPLAY MSNAME msname+QCNT

/DISPLAY MSNAME msname ALL
```

Keywords

The following keyword can be specified for the /DISPLAY MSNAME command:

**QCNT**

Specifies that global queue count information is to be displayed. If QCNT is not specified, local queue counts are displayed; when it is specified, no local queue counts are displayed.

This count represents the message counts of messages that can be processed by the IMS system where the command is issued. This count includes messages that can be processed by any IMS system (messages with no affinity), plus messages that can be processed by the IMS system where the command is issued (messages with an affinity to the IMS system that issued the command).

This keyword is valid only in a shared-queues environment.
Usage notes

In a shared-queues environment, use the QCNT keyword to obtain the current message queue counts on the shared queues structure. The local queue counts (ENQCT, DEQCT, and QCT) value that is returned on this command when the QCNT keyword is not specified represents the messages being processed by the IMS system where this command is issued. Do not use local queue counts for queue evaluation purposes.

Examples

Entry ET:
/DISPLAY MSNAME ALL

Response ET:

<table>
<thead>
<tr>
<th>MSNAME</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
<th>IMS1</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSTEM2A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IMS1</td>
</tr>
<tr>
<td>SYSTEM2B</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IMS1</td>
</tr>
<tr>
<td>FRESNO</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IMS1</td>
</tr>
<tr>
<td>BOSTON</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IMS1</td>
</tr>
<tr>
<td>ALBANY</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IMS1</td>
</tr>
<tr>
<td>TEST1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IMS1</td>
</tr>
<tr>
<td><em>91350/053859</em></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Entry ET:
/DISPLAY MSNAME ALL

Response ET:

<table>
<thead>
<tr>
<th>MSNAME</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
<th>IMS1</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINK23B4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>DYNAMIC IMS1</td>
</tr>
<tr>
<td>LINK12V1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IMS1</td>
</tr>
<tr>
<td>LINK23U2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>DYNAMIC IMS1</td>
</tr>
<tr>
<td>ELINK211</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>DYNAMIC IMS1</td>
</tr>
<tr>
<td>LINK13B3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IMS1</td>
</tr>
<tr>
<td>LINK13V</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IMS1</td>
</tr>
<tr>
<td>LINK12V</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IMS1</td>
</tr>
<tr>
<td>LINK13C2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IMS1</td>
</tr>
<tr>
<td>LINK13X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IMS1</td>
</tr>
<tr>
<td>LINK12V2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IMS1</td>
</tr>
<tr>
<td>LINK13M2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IMS1</td>
</tr>
<tr>
<td>LINK13V2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IMS1</td>
</tr>
<tr>
<td>ELINK124</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IMS1</td>
</tr>
<tr>
<td>LINK23V1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>DYNAMIC IMS1</td>
</tr>
<tr>
<td>LINK12B1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IMS1</td>
</tr>
<tr>
<td>LINK12B2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IMS1</td>
</tr>
<tr>
<td>LINK12Y</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IMS1</td>
</tr>
<tr>
<td>ELINK120</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IMS1</td>
</tr>
<tr>
<td>LINK13B4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IMS1</td>
</tr>
<tr>
<td>LINK21V3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>DYNAMIC IMS1</td>
</tr>
<tr>
<td>ELINK1MS</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IMS1</td>
</tr>
<tr>
<td>LINK12M1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IMS1</td>
</tr>
<tr>
<td>LINK23V</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>DYNAMIC IMS1</td>
</tr>
<tr>
<td>LINK13U2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IMS1</td>
</tr>
<tr>
<td>LINK23B3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>DYNAMIC IMS1</td>
</tr>
<tr>
<td>ELINK224</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>DYNAMIC IMS1</td>
</tr>
<tr>
<td>LINK23X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>DYNAMIC IMS1</td>
</tr>
<tr>
<td>LINK23V2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>DYNAMIC IMS1</td>
</tr>
<tr>
<td>ELINK121</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IMS1</td>
</tr>
<tr>
<td>LINK23C2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>DYNAMIC IMS1</td>
</tr>
<tr>
<td>LINK12U1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IMS1</td>
</tr>
<tr>
<td>LINK23M2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>DYNAMIC IMS1</td>
</tr>
<tr>
<td>ELINK122</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IMS1</td>
</tr>
</tbody>
</table>
The /DISPLAY NODE command, when followed by a valid node name or ALL, displays status, queue counts, and number of messages sent to and received from the specified node.

Subsections:
- “Environment”
- “Syntax”
- “Keywords” on page 550
- “Usage notes” on page 552
- “Equivalent IMS type-2 commands” on page 553
- “Output fields” on page 553
- “Examples” on page 554

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

Table 251. Valid environments for the /DISPLAY NODE command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/DISPLAY</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>EMHQ</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QCNT</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECOVERY</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Syntax
Attributes:
Keywords

The following keywords can be specified for the /DISPLAY NODE command:

MODE
Displays the mode table names that are associated with the specified nodes.

EMHQ
Specifies that global queue count information on the Expedited Message Handler Queues (EMHQ) displays when both EMHQ and QCNT are specified. If EMHQ is specified, QCNT must also be specified. This keyword is valid only in a shared-queues environment.

QCNT
Specifies that global queue count information is to be displayed. If QCNT is not specified, local queue counts are displayed; when it is specified, no local queue counts are displayed. If QCNT is specified and EMHQ is not, global queue count information on the shared message queues (MSGQ) is displayed. This count represents the message counts of messages that can be processed by the IMS system where the command is issued. This count includes messages that can be processed by any IMS system (messages with no affinity), plus
messages that can be processed by the IMS system where the command is issued (messages with an affinity to the IMS system that issued the command).

IMS does not check if the specified name is a valid LTERM in the IMS subsystem on which the command is entered.

This command does not display queue counts for Fast Path output messages for the NODE unless EMHQ and QCNT are specified.

This keyword is valid only in a shared-queues environment.

RECOVERY
The /DISPLAY NODE|USER RECOVERY command can be used to display the recovery values that pertain to the node or user. The recovery values may be displayed from the local control blocks, if available, or from values saved for the node or user in the Resource Manager, if resource information is being kept in Resource Manager, and the node or user is defined to have its status kept in Resource Manager.

Attributes
Reserved parameters for the /DISPLAY NODE command and cannot be used to name nodes.

Attributes listed in "Keywords and reserved parameters" on page 472 for the /DISPLAY AREA command can be used with the NODE keyword. Nodes are selected for display based on the attribute or attributes specified. The attribute display format is the same as the standard NODE display. Attributes usually correspond to the conditions displayed for nodes. Any exceptions are flagged in the following list.

For example, /DISPLAY NODE TRACE displays all nodes that are currently being traced. Following is a list of the attributes that can be specified with the NODE keyword.

- ACTIV
- AUTOSR (Corresponds to the NODE conditions ASR)
- BCKUP
- CLSDST
- CON
- CONVACT (Corresponds to the NODE condition CONV-ACT)
- CONVHLD (Corresponds to the NODE condition CONV-HLD)
- C1INOP
- C2INOP
- C3INOP
- C4INOP
- DEACT
- EXCL
- FORCES (Corresponds to the NODE condition FORCE)
- IDLE
- INOP
- LOCK
- LOST
- MFST
- OPNDST
- PAGE
Note: The /DISPLAY NODE RESPINP command returns all nodes that have RESP-INP and RESP-INP-FP status.

N/A is displayed by the /DISPLAY NODE ALL MODE command for VTAM 3270 nodes.

Usage notes

In a shared-queues environment, use the QCNT keyword to obtain the current message queue counts on the shared queues structure. The local queue counts (ENQCT, DEQCT, and QCT) value that is returned on this command when the QCNT keyword is not specified represents the messages being processed by the IMS system where this command is issued. Do not use local queue counts for queue evaluation purposes.

When using ISC, the output for a parallel-session node shows one line of information for each session of the node whether the node is active or not and whether logical terminals are assigned or not. If a session is active, the user identifier (preceded by a dash) and the status and queue counts are displayed on a subsequent line. The /DISPLAY NODE command displays queue counts up to a maximum of 32 KB. The queue count for the /DISPLAY NODE command is reset to zero when sessions are not active, or when a signed-on user issues /SIGN OFF.

The USER keyword is valid for ISC nodes with users or dynamic nodes with signed on users. The NODE parameter can be generic where the USER keyword is not present. The generic parameter specifies nodes that already exist. A status of STATIC is displayed for nodes defined to IMS by way of system definition. STATIC is also supported as an attribute parameter. Static nodes are used with the /DISPLAY NODE command in the same way that dynamic nodes are used.

The /DISPLAY NODE command shows signed on users, where the user ID follows the status SIGN in parentheses.

Restrictions for using NODE and USER parameters together:
• Commands with the NODE USER keyword pair are valid only if:
  – The USER is signed on to the NODE
  – In an ISC environment, the USER is allocated to the NODE
  – The nodes and users already exist
• /DISPLAY NODE USER commands are valid for ISC and non-ISC nodes and users.

Equivalent IMS type-2 commands

The following table shows variations of the /DISPLAY NODE command and the IMS type-2 commands that perform similar functions.

<table>
<thead>
<tr>
<th>Task</th>
<th>/DISPLAY NODE command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays VTAM connection identifier (CID).</td>
<td>/DISPLAY NODE node</td>
<td>QUERY NODE SHOW(CID)</td>
</tr>
<tr>
<td>Displays send/receive message counts.</td>
<td>/DISPLAY NODE node</td>
<td>QUERY NODE SHOW(COUNT)</td>
</tr>
<tr>
<td>Displays preset destination.</td>
<td>/DISPLAY NODE node</td>
<td>QUERY NODE SHOW(PRESET)</td>
</tr>
<tr>
<td>Displays queue count.</td>
<td>/DISPLAY NODE node QCNT</td>
<td>QUERY NODE SHOW(QCNT)</td>
</tr>
<tr>
<td>Displays status for a particular node.</td>
<td>/DISPLAY NODE node</td>
<td>QUERY NODE SHOW(STATUS)</td>
</tr>
<tr>
<td>Displays terminal type.</td>
<td>/DISPLAY NODE node</td>
<td>QUERY NODE SHOW(TYPE)</td>
</tr>
<tr>
<td>Displays user ID.</td>
<td>/DISPLAY NODE node</td>
<td>QUERY NODE SHOW(USERID)</td>
</tr>
<tr>
<td>Displays user.</td>
<td>/DISPLAY NODE node</td>
<td>QUERY NODE SHOW(USER)</td>
</tr>
<tr>
<td>Displays VTAM mode table names.</td>
<td>/DISPLAY NODE node MODE</td>
<td>QUERY NODE SHOW(MODETBL)</td>
</tr>
<tr>
<td>Displays message queue count in the Expedited Message Handler (EMH) queues.</td>
<td>/DISPLAY NODE node QCNT EMHQ</td>
<td>QUERY NODE SHOW(EMHQ)</td>
</tr>
<tr>
<td>Displays owner IMSID in RM resource structure.</td>
<td>/DISPLAY NODE node RECOVERY</td>
<td>QUERY NODE SHOW(OWNER)</td>
</tr>
<tr>
<td>Displays status recovery information.</td>
<td>/DISPLAY NODE node RECOVERY</td>
<td>QUERY NODE SHOW(RECOVERY)</td>
</tr>
</tbody>
</table>

Output fields

The output fields displayed for the /DISPLAY NODE command include the following:

**NODE-USR**
Node name and user identifier.

**TYPE**
Type of node.

**DEF MODETBL**
Default mode table name set by way of system definition or logon descriptor or /CHANGE command. This name can be overridden using the /OPNDST command or the LOGON exit for non-IMS session initiations.
ACT MODETBL
Mode table name actually used to initiate the session. This name is only displayed while the session is active. The field is blank at normal session termination.

OWNER
The IMS ID (RSEname if an XRF system) of the IMS system that currently owns this resource. If the resource is not currently owned, this field will be displayed as NONE.

SRM
The scope of recovery for a resource, and from where the end-user significant status is maintained and recovered.

CONV
Frequently changes for a resource, and thus there are performance considerations related to maintaining end-user significant status. The installation can tell IMS how to recover end-user significant status by specifying the level of recovery for each status. Shown for each resource is the level of recovery for each end-user significant status.

STSN
Frequently changes for a resource, and thus there are performance considerations related to maintaining end-user significant status. The installation can tell IMS how to recover end-user significant status by specifying the level of recovery for each status. Shown for each resource is the level of recovery for each end-user significant status.

FPATH
Frequently changes for a resource, and thus there are performance considerations related to maintaining end-user significant status. The installation can tell IMS how to recover end-user significant status by specifying the level of recovery for each status. Shown for each resource is the level of recovery for each end-user significant status.

Examples
The following are examples of the /DISPLAY NODE command.

Example 1 for /DISPLAY NODE command

Entry ET:
/DISPLAY NODE DTSU+ LUP1 ENDS01 LU6NDPA LU6NDPH

Response ET:

<table>
<thead>
<tr>
<th>NODE-USR</th>
<th>TYPE</th>
<th>CID</th>
<th>RECD</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
<th>SENT</th>
<th>SYS3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DTSU002</td>
<td>SLUP</td>
<td>01000003</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>SIGN(IMSUS05)</td>
<td>IDLE CON</td>
</tr>
<tr>
<td>DTSU202</td>
<td>SLUZ</td>
<td>010000CB</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>SIGN(IMSUS02)</td>
<td>IDLE CON</td>
</tr>
<tr>
<td>DTSU063</td>
<td>LUT6</td>
<td>010000C7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>SIGN(IMSUS04)</td>
<td>IDLE PRI</td>
</tr>
<tr>
<td>DTSU205</td>
<td>SLU2</td>
<td>010000A5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>SIGN(IMSUS14)</td>
<td>IDLE CON-ACT CON</td>
</tr>
<tr>
<td>DTSU204</td>
<td>SLU2</td>
<td>010000A4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>SIGN(IMSUS13)</td>
<td>IDLE CON EXC</td>
</tr>
<tr>
<td>DTSU203</td>
<td>SLU2</td>
<td>010000A3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>SIGN(IMSUS12)</td>
<td>PRST(WTOR )</td>
</tr>
<tr>
<td>LUP1</td>
<td>SLUP</td>
<td>010000CD</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>SIGN(IMSUS08)</td>
<td>IDLE CON STATIC</td>
</tr>
<tr>
<td>ENDS01</td>
<td>SLUZ</td>
<td>010000A6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>SIGN(IMSUS08)</td>
<td>IDLE CON STATIC</td>
</tr>
</tbody>
</table>
Explanation: User IMSUS05 is signed on to dynamic node DTSLU002. User IMSUS02 is signed on to dynamic node DTSLU202. User IMSUS04 is allocated to ISC node DTSLU603. User IMSUS14 is signed on to dynamic node DTSLU205 and has an active conversation. User IMSUS13 is signed on to dynamic node DTSLU204 and is in exclusive mode. User IMSUS12 is signed on to dynamic node DTSLU203 and has a preset destination of LTERM WTOR and is in MFS test mode. Static node LUP1 is logged on. User IMSUS08 is signed on to static node ENDS01. Users LU6SPG, CA12, and CA11 are allocated to static ISC node LU6NDPA, which means node LU6NDPA has 3 active parallel sessions. User CA14 is allocated to static ISC node LU6NDPH, which means node LU6NDPH has one active parallel session.

Example 2 for /DISPLAY NODE command

Entry ET:

/DISPLAY NODE NSLUTP1 NSLUTP6 NPLUTP6

Response ET:

<table>
<thead>
<tr>
<th>NODE-USR</th>
<th>TYPE</th>
<th>CID</th>
<th>RECD</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
<th>SENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSLUTP1</td>
<td>SLU1</td>
<td>00000000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NSLUTP6</td>
<td>LUT6</td>
<td>00000000</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>NPLUTP6</td>
<td>LUT6</td>
<td>00000000</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>-A</td>
<td></td>
<td>00000000</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>-B</td>
<td></td>
<td>00000000</td>
<td>10</td>
<td>25</td>
<td>13</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>-N/A</td>
<td></td>
<td>00000000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-C</td>
<td></td>
<td>00000000</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

*90229/083059*

Entry ET:

/DISPLAY NODE ALL

Response ET:

<table>
<thead>
<tr>
<th>NODE-USR</th>
<th>TYPE</th>
<th>CID</th>
<th>RECD</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
<th>SENT</th>
<th>SYS3</th>
</tr>
</thead>
<tbody>
<tr>
<td>WRIGHT</td>
<td>SLU2</td>
<td>00000000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IDLE</td>
</tr>
<tr>
<td>LUNS01</td>
<td>NTO</td>
<td>00000000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IDLE</td>
</tr>
<tr>
<td>WS12</td>
<td>FIN</td>
<td>00000000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IDLE</td>
</tr>
<tr>
<td>VR3275A1</td>
<td>3277</td>
<td>00000000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IDLE</td>
</tr>
<tr>
<td>VR3286A1</td>
<td>3286</td>
<td>00000000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IDLE</td>
</tr>
<tr>
<td>LUP1</td>
<td>SLUP</td>
<td>00000000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IDLE</td>
</tr>
<tr>
<td>Q3290A</td>
<td>SLU2</td>
<td>00000000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IDLE</td>
</tr>
<tr>
<td>LU6FP02</td>
<td>LUT6</td>
<td>00000000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IDLE</td>
</tr>
<tr>
<td>LU6NDPA</td>
<td>LUT6</td>
<td>-N/A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IDLE</td>
</tr>
<tr>
<td>-N/A</td>
<td></td>
<td>00000000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IDLE</td>
</tr>
<tr>
<td>NDNTOXA1</td>
<td>NTO</td>
<td>00000000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ASR</td>
</tr>
<tr>
<td>ND3287A1</td>
<td>SLU1</td>
<td>00000000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ASR</td>
</tr>
<tr>
<td>ND3287A2</td>
<td>SLU1</td>
<td>00000000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IDLE</td>
</tr>
<tr>
<td>ND3287A3</td>
<td>SLU1</td>
<td>00000000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IDLE</td>
</tr>
<tr>
<td>ND3287A4</td>
<td>SLU1</td>
<td>00000000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ASR</td>
</tr>
<tr>
<td>ND5L52A1</td>
<td>SLU2</td>
<td>00000000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ASR</td>
</tr>
</tbody>
</table>
Example 3 for /DISPLAY NODE command

The following commands illustrate the use of /DISPLAY to monitor changes in the mode table values for a node.

Entry ET:

/DISPLAY NODE LUTYPEP1 MODE

Response ET:

NODE-USR TYPE DEF MODETBL ACT MODETBL
LUTYPEP1 SLUP DEFRESP
*90179/100206*

Explanation: DEFRESP is the mode table name defined for node LUTYPEP1 at system definition. The session is not active so the ACT MODETBL field is blank.

Entry ET:

/OPN NODE LUTYPEP1

Response ET:

DF5058I OPNDST COMMAND COMPLETED

Entry ET:

/DISPLAY NODE LUTYPEP1 MODE.

Response ET:

NODE-USR TYPE DEF MODETBL ACT MODETBL
LUTYPEP1 SLUP DEFRESP DEFRESP
*90179/100508*
Explanation: A mode table name was not specified with the /OPNDST command so the default value defined at system definition was used to initiate the session.

Entry ET:

/CLS NODE LUTYPEP1

Response ET:

DFS058I CLSDST COMMAND COMPLETED

Entry ET:

/DISPLAY NODE LUTYPEP1 MODE

Response ET:

NODE-USR TYPE ACT MODETBL
LUTYPEP1 SLUP DEFRESP
*90179/100630*

Explanation: Active mode table name displays as blank at normal session termination.

Entry ET:

/OPN NODE LUTYPEP1 MODE ALPHA.

Response ET:

DFS058I OPNDST COMMAND COMPLETED

Entry ET:

/DISPLAY NODE LUTYPEP1 MODE

Response ET:

NODE-USR TYPE ACT MODETBL
LUTYPEP1 SLUP DEFRESP ALPHA
*90179/100805*

Explanation: The mode table name specified with the /OPNDST command (ALPHA) is used to initiate the session. The default value specified at system definition (DEFRESP) is overridden by the /OPNDST command.

**Example 4 for /DISPLAY NODE command**

The following example shows the display of all nodes with the automatic session restart designation.

Entry ET:

/DISPLAY NODE AUTOSR

Response ET:

<table>
<thead>
<tr>
<th>NODE-USR TYPE</th>
<th>CID</th>
<th>RECD</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
<th>SENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS12</td>
<td>FIN</td>
<td>00000000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NODE0005</td>
<td>FIN</td>
<td>00000000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NODE0006</td>
<td>FIN</td>
<td>00000000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NODE0007</td>
<td>FIN</td>
<td>00000000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NTO1UNS</td>
<td>NTO</td>
<td>00000000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NTO2741</td>
<td>NTO</td>
<td>00000000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LU6NODE2</td>
<td>LUT6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example 5 for /DISPLAY NODE command

Entry ET:
/DISPLAY NODE NODE1 NODE2 QCNT

Response ET:
NODE GBLQCT
NODE1 100000
NODE2 25
*95200/170817*

Entry ET:
/DISPLAY NODE NODE1 USER USER1 USER2 QCNT

Response ET:
NODE/USER GBLQCT
NODE1
-USER1 10
-USER2 0
*95200/170817*

Example 6 for /DISPLAY NODE command

Entry ET:
/DISPLAY NODE FPEN0001 EMHQ QCNT

Response ET:
LTERM GBLQCT
FPEN0001 0
*98203/143542*

Example 7 for /DISPLAY NODE command

Entry ET:
/DISPLAY NODE DTSLU* DTSLU202 L3270A RECOVERY

Response ET:

Example 8 for /DISPLAY NODE command: ISC TCP/IP nodes

In the following example, the value TCP in the TYPE column of the command response indicates that the node CIC4 is an ISC TCP/IP node. The string of
asterisks in the CID column indicates that a VTAM connection identifier (CID) is not applicable to the ISC TCPIP terminal. Two parallel sessions (users) are shown on the node: CIC4U07 and CIC4U08.

Entry ET:

/ DISPLAY NODE CIC4

Response ET:

<table>
<thead>
<tr>
<th>NODE-USR</th>
<th>TYPE</th>
<th>CID</th>
<th>RECD</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
<th>SENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIC4</td>
<td>TCP</td>
<td>-CIC4U07</td>
<td>******</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-CIC4U08</td>
<td>******</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Related reference:

“Status and attributes for the /DISPLAY command” on page 435

QUERY NODE command (Commands)

/ DISPLAY OASN SUBSYS command

Use the /DISPLAY OASN SUBSYS command to display the outstanding recovery units (Origin Application Schedule Numbers) associated with the external subsystem (not CCTL subsystem) specified by the SUBSYS keyword.

The OASN is assigned by IMS when it schedules an application into a dependent region. The OASN, coupled with the IMS ID, becomes the recovery token for units of work distributed to other subsystems.

Subsections:

• “Environment”
• “Syntax”
• “Examples” on page 560

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>Command / Keywords</th>
<th>Command / Keywords</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB/DC</td>
<td>DB/DC</td>
<td>DB/DC</td>
</tr>
<tr>
<td>DBCTL</td>
<td>DBCTL</td>
<td>DBCTL</td>
</tr>
<tr>
<td>DCCTL</td>
<td>DCCTL</td>
<td>DCCTL</td>
</tr>
</tbody>
</table>

Syntax

```plaintext
/>DISPLAY OASN SUBSYS subsysname
```
Examples

Entry ET:
   /DISPLAY OASN SUBSYS ALL

Response ET:
   SUBSYS OASN
   SSTR 0000000001
   *90207/095627*

/DISPLAY OLDS command

Use the /DISPLAY OLDS command to display the system logging status.

The ddnames for the online log data sets that are currently online are listed in the sequence used. That is, the one currently being used is listed first, with the one most recently used listed next, and so on. OLDS status information is displayed with each ddname. The meanings of these status messages is provided. In the case of dual logging, two lines of status output are displayed per OLDS ID; the first for the primary OLDS and the second for the secondary OLDS.

Subsections:
• “Environment”
• “Syntax”
• “Keywords”
• “Usage notes” on page 561
• “Output fields” on page 562
• “Examples” on page 562

Environment

The /DISPLAY OLDS command is valid in DB/DC, DBCTL, and DCCTL environments.

Syntax

```
/DISPLAY OLDS [INUSE] [BACKOUT] [ERROR] [STOPPED] [ALL]
```

Keywords

The following keywords can be specified for the /DISPLAY OLDS command. These keywords specify selection criteria used to select which OLDS are to be included in the display output. All these keywords are optional. If none are specified, ALL is the default action. When multiple keywords are specified, an OLDS that satisfies any one of the specified criteria is included in the output.

ALL
   Displays status of each online OLDS.

INUSE
   Displays current output OLDS.
BACKOUT
Displays OLDS that contains dynamic backout data for currently active PSTs.

ERROR
Displays OLDS that have encountered error conditions.

STOPPED
Displays stopped OLDS.

Usage notes

/DISPLAY OLDS shows the percentage of the OLDS used (shown under % FULL in the output) and the rate at which it is being filled (shown under RATE in the output). The RATE is the average number of blocks written to the current OLDS since the last /DISPLAY OLDS was issued. If no blocks were written, the RATE is 0, or, if elapsed time is 0, the previous RATE will be displayed.

When the archive status of an OLDS is scheduled or started and DBRC has generated the JCL for the archive job, the archive job name will be included in the output.

Following the detailed OLDS data set information, the dual OLDS state (DUAL, DEGRADED DUAL, NONDEGRADABLE DUAL or SINGLE) and the WADS recording state (DUAL, SINGLE, or NO) are displayed. Also, the DDNAMEs of all available WADS are displayed. The DDNAMEs of the current WADS are preceded by an asterisk (*).

The SLDSREAD status is also displayed. If SLDSREAD ON is displayed, IMS is enabled to retrieve both SLDS and OLDS data. If SLDSREAD OFF is displayed, IMS is not enabled to retrieve SLDS data.

If the backout of one or more active dependent regions would require the SLDS (all of the region's log records are not available from the OLDS), the following text is displayed in front of the SLDSREAD ON or SLDSREAD OFF character string: SLDS REQUIRED FOR BACKOUT - RGN nnnnn, where nnnnn is the region number of the dependent region that owns the oldest record required for backout.

If there are one or more active dependent regions that could potentially require backout, but the SLDS is not required, the following text is displayed: OLDS REQUIRED FOR BACKOUT - RGN nnnnn, where nnnnn is the region number of the dependent region that owns the oldest record required for backout.

An OLDS that is stopped or had an I/O error is dynamically deallocated after it is no longer needed for backout.

The /DISPLAY OLDS command also shows the following fields:

BSN Represented a block of data that is written to the OLDS.

LSN Represents an individual log record. An underscore is printed to separate the two halves of the 8-byte LSN for readability even though the LSN does not contain an underscore.

You can use the LSN and BSN values to determine whether they are approaching their finite limits. The limit for the BSN is X'FFFFFFFF' and the limit for the LSN is X'FFFFFFFF_FFFFFFFF'.
Restriction: Under the dual logging environment, the number of primary OLDS and secondary OLDS must be the same; otherwise, the status of the OLDS is incorrect.

Output fields

The /DISPLAY OLDS command shows one of the following as the archive status of each OLDS:

NEEDED
This OLDS needs to be archived. It cannot be reused for output logging until it has been archived.

SCHEDULED
An archive job has been generated for this OLDS.

STARTED
A job to archive this OLDS has started execution.

AVAILABLE
Either this OLDS is empty or it has been archived. It can be reused for output logging.

The /DISPLAY OLDS command also shows the following status information for OLDS:

IN USE
This is the current output log OLDS. The display line for this OLDS also has an asterisk (*) in the left margin.

STOPPED
/STOP command entered for this OLDS or the OLDS is being internally stopped because of write errors.

WRT-ERR
A write I/O error occurred on this OLDS data set.

CLSE
An error occurred when closing this data set. The Log Recovery utility can be used to correct this condition.

PREV CLSER
The previous OLDS could not be closed because of an I/O error and this OLDS is required by the Log Recovery utility to correct the condition.

NOT USABLE
This data set is not being used for logging. When operating in “Degraded Dual” state, the other data set in this OLDS pair was used for output but this data set was not used because of a previous data set error.

BACKOUT
This OLDS is potentially required for backout.

Examples

Entry ET:
/DISPLAY OLDS

Response ET:

<table>
<thead>
<tr>
<th>OLDS-DDNAME</th>
<th>FULL RATE</th>
<th>ARCH-JOB</th>
<th>ARCH-STATUS</th>
<th>OTHER-STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>*DFSOLP02</td>
<td>8</td>
<td>0</td>
<td>IN USE</td>
<td></td>
</tr>
<tr>
<td>DFSOLP01</td>
<td></td>
<td></td>
<td>AVAILABLE</td>
<td></td>
</tr>
<tr>
<td>DFSOLP00</td>
<td></td>
<td></td>
<td>AVAILABLE</td>
<td></td>
</tr>
</tbody>
</table>
Use the /DISPLAY OTMA command to display the current status for IMS Open Transaction Manager Access (OTMA) clients and servers.

Subsections:
- “Environment”
- “Syntax”
- “Usage notes”
- “Output fields”
- “Examples” on page 565

Environment

The /DISPLAY OTMA command is valid in DB/DC and DCCTL environments.

Syntax

```bash
/DISPLAY OTMA
```

Usage notes

This command is functionally equivalent to the /DISPLAY TMEMBER ALL command.

If a super member is defined, information about the super member is also displayed. Because a super member does not interface with z/OS cross-system coupling facility (XCF), the XCF_STATUS field is left blank. Because super members do not process input messages, OTMA security authorization is not performed. The SECURITY field is also left blank.

Output fields

This command displays the following output fields:

**ACEEAGE**

The accessor environment element (ACEE) aging value for the OTMA client. This value is used to perform the refresh for cached OTMA ACEEs for all user IDs.

**DRUEXIT**

The name of any OTMA Destination Resolution exit routine that is associated with the tmember.

**GROUP/MEMBER**

Each member in each XCF group. The server is always the first member that is displayed.
INPT  The maximum number of input messages from this tmember that can be waiting at the same time to be processed. This value is primarily used for send-then-commit or CM1 messages.

MAXTP
The maximum TPIPE limit that is specified in the OTMA client descriptor. If the MAXTP parameter is specified for DFSOTMA in the OTMA client descriptor, the MAXTP limit is displayed for the OTMA server. If there are one or more OTMA clients with the MAXTP limit defined and MAXTP is not specified for DFSOTMA, the highest limit defined among the members is displayed for the OTMA server.

SECURITY
The security status for each member or server. The security status can be one of the following:
- NONE
- CHECK
- FULL
- PROFILE

SMEM
The name of the super member.

TIB
For an OTMA target member (tmember), the current number of input messages from this tmember that IMS is processing. For an OTMA server, the total number of input messages from all tmembers that IMS is processing plus the reserved message blocks for message processing. This value is primarily used for send-then-commit or CM1 messages.

For the OTMA internal member DFSYICAL, this field shows the number of IMS regions that are waiting for responses to synchronous program switch requests.

T/O The timeout value for OTMA to wait for an ACK or NACK for an OTMA output message.

TPCNT
The maximum TPIPE count for each OTMA client.

For an OTMA client other than the IMS server, this field indicates the current TPIPE count for that member. For the IMS server, this field indicates the global TPIPE limit, which is the highest TPIPE limit set for the OTMA clients. IMS displays a nonzero value only when the MAXTP= keyword is specified for this member in the OTMA client descriptor DFSYDTx member of the IMS PROCLIB data set. If the MAXTP= keyword is not specified for any of the members in the OTMA client descriptor, the TPCNT field of the IMS server member is zero.

USER-STATUS
The user status for each member. The status can be one of the following:
- ACCEPT TRAFFIC
- DISCONNECTED
- FLOOD
- IN SLOWDOWN
- MAX TPIPE
- SERVER
- SERVER+FLOOD
The XCF status for each member. The status can be one of the following:

- **ACTIVE**
- **CREATED**
- **FAILED**
- **NOT DEFINED**
- **QUIESCED**
- **STO-INPUT**
- **UNKNOWN**

### Examples

The following are examples of the `/DISPLAY OTMA` command.

#### Example 1 for `/DISPLAY OTMA` command

**Entry ET:**

```
/ DISPLAY OTMA
```

**Response ET:**

```
GROUP/MEMBER XCF-STATUS USER-STATUS SECURITY TIB INPT SMEM
 DRUEXIT T/O
HARRY
-IMS1 ACTIVE SERVER FULL
-IMS1 N/A
-HWS001 ACTIVE ACCEPT TRAFFIC FULL 0 0 SM01
-HWS001 HWSYDRU0 5
-SM01 SUPER MEMBER SM01
-SM01 N/A
-MQS001 ACTIVE ACCEPT TRAFFIC FULL 0 0
-MQS001 MQSYDRU0 10
```

Explanation: The `/DISPLAY OTMA` command can be issued to display the status of IMS server and members. This command is functionally equivalent to the `/DIS TMEMBER ALL` command. The member information is displayed in random order. In the previous example, HARRY is the XCF group name for IMS and its OTMA clients. IMS1 is the server member running with OTMA activated. HWS001 and MQS001 are OTMA client members. The SM01 is an OTMA super member for asynchronous output messages. Each OTMA client has two-line status information.

#### Example 2 for `/DISPLAY OTMA` command

**Entry ET:**

```
/ DISPLAY OTMA
```

**Response ET:**
Example 3 for /DISPLAY OTMA Command

Entry ET:

/DISPLAY OTMA

Response ET:

<table>
<thead>
<tr>
<th>GROUP/MEMBER</th>
<th>XCF-STATUS</th>
<th>USER-STATUS</th>
<th>SECURITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOANG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-APPL8</td>
<td>NOT DEFINED</td>
<td>SERVER</td>
<td>FULL</td>
</tr>
<tr>
<td>-CLIENT1</td>
<td>ACTIVE</td>
<td>ACCEPT TRAFFIC</td>
<td></td>
</tr>
</tbody>
</table>
*94165/165753*

Explanation: The /DISPLAY OTMA command can be issued to display the status for OTMA clients and servers. This command is functionally equivalent to the /DIS TMEMBER ALL command. The member information is displayed in random order.

Example 4 for /DISPLAY OTMA command

Entry ET:

/DISPLAY OTMA

Response ET:

<table>
<thead>
<tr>
<th>GROUP/MEMBER</th>
<th>XCF-STATUS</th>
<th>USER-STATUS</th>
<th>SECURITY</th>
<th>TIB</th>
<th>INPT</th>
<th>SMEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>HARRY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-HWS001</td>
<td>ACTIVE</td>
<td>ACCEPT TRAFFIC</td>
<td>FULL</td>
<td>0</td>
<td>0</td>
<td>SM01</td>
</tr>
<tr>
<td>-HWS002</td>
<td>ACTIVE</td>
<td>ACCEPT TRAFFIC</td>
<td>FULL</td>
<td>0</td>
<td>0</td>
<td>SM01</td>
</tr>
<tr>
<td>-SM01</td>
<td>SUPER MEMBER</td>
<td></td>
<td>SM01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-HWS003</td>
<td>ACTIVE</td>
<td>ACCEPT TRAFFIC</td>
<td>FULL</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
*09121/172200*

Explanation: The /DISPLAY OTMA command can be issued to display the ACEE aging value for the OTMA client or member. OTMA uses this value to determine if a cached ACEE for a user ID needs to be refreshed. In this example, the aging value for HWS1 is 3600 seconds, and the aging value for HWS2 is 7200 seconds. Any cached ACEE that only HWS1 uses has an aging value of 3600 seconds, and any cached ACEE that only HWS2 uses has an aging value of 7200 seconds. If a cached ACEE is used by both HWS1 and HWS2, the aging value is 3600 seconds, which is the lowest value between 3600 and 7200 seconds. Because no aging value is specified for HWS3, IMS always creates a non-cached ACEE for users from HWS3.

Example 5 for /DISPLAY OTMA command

Entry ET:

/DISPLAY OTMA
Response ET:

<table>
<thead>
<tr>
<th>GROUP/MEMBER</th>
<th>XCF-STATUS</th>
<th>USER-STATUS</th>
<th>SECURITY</th>
<th>TIB</th>
<th>INPT</th>
<th>SMEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>XCFGRP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-IMS1</td>
<td>ACTIVE</td>
<td>SERVER</td>
<td>FULL</td>
<td>0</td>
<td>8000</td>
<td></td>
</tr>
<tr>
<td>-IMS1</td>
<td>N/A</td>
<td>200</td>
<td>3000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-HWS1</td>
<td>ACTIVE</td>
<td>MAX TPIPE</td>
<td>FULL</td>
<td>0</td>
<td>5000</td>
<td></td>
</tr>
<tr>
<td>-HWS1</td>
<td></td>
<td>200</td>
<td>1000</td>
<td>999999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-HWS2</td>
<td>ACTIVE</td>
<td>ACCEPT TRAFFIC</td>
<td>FULL</td>
<td>0</td>
<td>5000</td>
<td></td>
</tr>
<tr>
<td>-HWS2</td>
<td></td>
<td>200</td>
<td>500</td>
<td>999999</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Explanation: In this example, the TPCNT field indicates the current TPIPE count for each member. For the IMS server, this field indicates the global TPIPE limit, which is the highest TPIPE limit set for the OTMA clients. MAX TPIPE indicates that the TPIPE count for the OTMA client has reached the limit set. This status is cleared when the global TPIPE count falls below 50%.

Example 6 for /DISPLAY OTMA command

Entry ET:

/DISPLAY OTMA

Response ET:

<table>
<thead>
<tr>
<th>GROUP/MEMBER</th>
<th>XCF-STATUS</th>
<th>USER-STATUS</th>
<th>SECURITY</th>
<th>TIB</th>
<th>INPT</th>
<th>SMEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>XCFGRP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-IMS1</td>
<td>ACTIVE</td>
<td>SERVER+FLOOD</td>
<td>FULL</td>
<td>11000</td>
<td>10000</td>
<td></td>
</tr>
<tr>
<td>-IMS1</td>
<td>N/A</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-HWS001</td>
<td>ACTIVE</td>
<td>ACCEPT TRAFFIC</td>
<td>FULL</td>
<td>3000</td>
<td>5000</td>
<td></td>
</tr>
<tr>
<td>-HWS001</td>
<td></td>
<td>120</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-DFSYICAL</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In this example, IMSXCFGP is the XCF group name for IMS and its OTMA clients. The server member name for OTMA is IMS1. HWS001 and DFSYICAL are the names of the OTMA client members. The DFSYICAL member is an internal OTMA client that processes synchronous program switch requests initiated by DL/I ICAL calls from application programs. The DFSYICAL member has the USER-STATUS of SYNC P2P. The TIB field for the DFSYICAL member shows that there are 10 IMS regions waiting for responses to DL/I ICAL synchronous program switch requests. The HWS001 member is a standard OTMA client member, connected via XCF, that has 20 active messages. The total TIB for this IMS system is 30. None of the members are using an OTMA Destination Resolution exit routine.

Example 7 for /DISPLAY OTMA command

Entry ET:

/DISPLAY OTMA

Response ET:

<table>
<thead>
<tr>
<th>GROUP/MEMBER</th>
<th>XCF-STATUS</th>
<th>USER-STATUS</th>
<th>SECURITY</th>
<th>TIB</th>
<th>INPT</th>
<th>SMEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>XCFGRP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-IMS1</td>
<td>ACTIVE</td>
<td>SERVER+FLOOD</td>
<td>FULL</td>
<td>11000</td>
<td>10000</td>
<td></td>
</tr>
<tr>
<td>-IMS1</td>
<td>N/A</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-HWS1</td>
<td>ACTIVE</td>
<td>ACCEPT TRAFFIC</td>
<td>FULL</td>
<td>3000</td>
<td>5000</td>
<td></td>
</tr>
<tr>
<td>-HWS1</td>
<td></td>
<td>120</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-HWS2</td>
<td>ACTIVE</td>
<td>ACCEPT TRAFFIC</td>
<td>FULL</td>
<td>3000</td>
<td>5000</td>
<td></td>
</tr>
</tbody>
</table>
The /DISPLAY OTMA command can be issued to display the active OTMA messages (TIB) in the system and in each OTMA client. The flood limit (INPT) for the entire system and each OTMA client can also be displayed. In this example, because the global flood limit of the system is set to 10000, the total active OTMA messages (3000 + 3000 + 4000) is 11000, which is over the global limit. The USER-STATUS shows SERVER+FLOOD to indicate that the global flood limit was specified in client descriptor or in the /START TMEMBER ALL INPUT command, and IMS has reached this OTMA global flood limit. The applications that use OTMA clients HWS1, HWS2, and HWS3 must reroute the OTMA transaction to a different IMS. All the new input transactions from all the OTMA clients are rejected with OTMA sense code x’0030’ and reason code x’0002’.

Related reference:
"/DISPLAY TMEMBER command" on page 631

/DISPLAY OVERFLOWQ command

Use the /DISPLAY OVERFLOWQ command to display a list of queue names that are in overflow mode for those coupling facility list structures specified (for the STRUCTURE keyword) that are in overflow mode.

It also displays the queue type of the resource for each queue.

Subsections:

- "Environment"
- "Syntax"
- "Keywords" on page 569
- "Usage notes" on page 569
- "Output fields" on page 569
- "Examples" on page 570

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/DISPLAY OVERFLOWQ</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>STRUCTURE</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Syntax
Keywords

The following keywords can be specified for the /DISPLAY OVERFLOWQ command:

STRUCTURE
   Specifies the primary coupling facility list structures to be displayed.

Usage notes

If a specified structure is not defined, the overflow structure name is displayed as NOT-DEFINED.

Queue names displayed might not be defined to the IMS subsystem on which this command is issued. If a queue type is not defined, the type is displayed as UNKNOWN, and the queue name is displayed as the 16-byte queue name (with the queue type as the first byte).

This command is valid only in a shared-queues environment.

If there are OTMA output messages that have been moved to the overflow structure, the /DISPLAY OVERFLOWQ command displays information about those messages. Instead of displaying the queue name that was used to queue the OTMA output messages, the character string 'TMSTMP-' is displayed. If the messages are queued to a regular member, the IMS ID of the IMS subsystem to which the messages have affinity is displayed following the 'TMSTMP-' string. If the messages are queued to a super member, the field following the 'TMSTMP-' string is left blank because output messages queued to a super member do not have affinity to any IMS subsystem. If the command is entered on a system where the TMEMBER and TPIPE are defined, the TMEMBER and TPIPE names are displayed. If the command is entered on a system where the TMEMBER and TPIPE are not defined, the character string 'UNKNOWN' is placed in the TMEMBER and TPIPE fields.

Output fields

The following output fields are displayed by the /DISPLAY OVERFLOWQ command:

APPC   The resource type on the overflow structure is an APPC outbound queue. The first eight bytes of the resource name displayed is the unique constant TMSTMP-. The next four bytes are the IMS ID of the IMS subsystem that has the LUNAME and TPNAME defined. If you issue the /DISPLAY OVERFLOWQ command on the system on which the LUNAME and TPNAME are defined, then the LUNAME and TPNAME also display. When LUNAME and TPNAME cannot be located on the system on which they’re defined, UNKNOWN appears under the LUNAME and TPNAME headings in the display output.

BALGRP The resource type on the overflow structure is a Fast Path PSB name. The resource name displayed is the Fast Path PSB name.

LTERM The resource type on the overflow structure is an LTERM. The resource name displayed is the LTERM name.
OTMA
The resource type on the overflow structure is an OTMA outbound queue. The first eight bytes of the resource name displayed is the unique constant TMSTMP-. The next four bytes are the IMS ID of the IMS subsystem that has the TMEMBER and TPIPE defined. If you issue the /DISPLAY OVERFLOWQ command on the system on which the TMEMBER and TPIPE are defined, then the TMEMBER and TPIPE are also displayed.

When LUNAME and TPNAME cannot be located on the system on which they’re defined, UNKNOWN appears under the LUNAME and TPNAME headings in the display output.

REMOTE
The resource type on the overflow structure is a remote LTERM, remote transaction, or an MSNAME. The resource name displayed is the remote LTERM name, remote transaction name, or the msname.

SUSPENDTRAN
The resource type on the overflow queue is a suspended transaction and the messages are on the suspend queue. The resource name displayed is the transaction name. If the transaction that is suspended is a serial transaction, or if local affinity has been set for a non-serial transaction, the first eight bytes displayed are the transaction name and the last seven bytes represent the IMS ID of the subsystem that enqueued the message.

SERIALTRAN
The resource type on the overflow queue is a serial transaction. The first eight bytes of the resource name are the transaction name and the last seven bytes represent the IMS ID of the IMS subsystem that inserted the message for the transaction.

TRANSACTION
The resource type on the overflow queue is a transaction. The resource name displayed is the transaction name. If local affinity has been set for the transaction, the first eight bytes displayed are the transaction name and the last seven bytes represent the IMS ID of the IMS subsystem that enqueued the message.

UNKNOWN
The resource type of the resource on the overflow queue is not known to this IMS subsystem. The 16 byte resource name is displayed.

Examples
The following are examples of the /DISPLAY OVERFLOWQ command:

Example 1 for /DISPLAY OVERFLOWQ command

Entry ET:
/DISPLAY OVERFLOWQ STRUCTURE ALL

Response ET:
<table>
<thead>
<tr>
<th>STRUC-RSCNAME</th>
<th>OFLSTRUC-RSCNAME</th>
<th>LUNAME-TMEMBER</th>
<th>TPNAME-TPIPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSMSG001</td>
<td>IMSMSG0010FLW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRANSACTION</td>
<td>TRANA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTERM</td>
<td>LTERMX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUSPENDTRAN</td>
<td>TRANA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APPC</td>
<td>TMSTMP- IMSA</td>
<td>LUNAME1</td>
<td>TPNAME1</td>
</tr>
<tr>
<td>SERIALTRAN</td>
<td>TRANABC IMSA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APPC</td>
<td>TMSTMP- IMSA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example 2 for /DISPLAY OVERFLOWQ command

Entry ET:
/DIS OVERFLOWQ STRUCTURE ALL

Response ET:
STRUC-RSCTYPE OFLSTRUC-RSCNAME LUNAME-TMEMBER TPNAME-TPIPE
IMSEMHQ01 IS NOT IN OVERFLOW MODE
IMSEMHQ01 IMSEMHQ01FLW
BALGRP DDLTRN14
*04302/165656*

Example 3 for /DISPLAY OVERFLOWQ command

Entry ET:
/DIS OVERFLOWQ STRUCTURE IMSEMHQ01

Response ET:
STRUC-RSCTYPE OFLSTRUC-RSCNAME LUNAME-TMEMBER TPNAME-TPIPE
IMSEMHQ01 IMSEMHQ01FLW
BALGRP DDLTRN14
*04302/165834*

Example 4 for /DISPLAY OVERFLOWQ command

Entry ET:
/DISPLAY OVERFLOWQ STRUCTURE AL

Response ET:
STRUC-RSCTYPE OFLSTRUC-RSCNAME LUNAME-TMEMBER TPNAME-TPIPE
IMSEMHQ01 IMSEMHQ01FLW
OTMA TMSTMP- SM01 TPIPE1
OTMA TMSTMP- UNKNOWN UNKNOWN
OTMA TMSTMP- SYS3 HWS003 TPIPE1
IMSEMHQ01 IS NOT IN OVERFLOW MODE

Explanation: This example shows that messages queued to TPIPE1 of super member SM01 have been moved to the overflow structure. Messages queued to TPIPE1 of regular member HWS003 have also been moved to the overflow structure. Messages for a TMEMBER or TPIPE that is unknown to the IMS that processed the command have also been moved to the overflow structure.
Use the /DISPLAY PGM command to display the status of programs.

Subsections:
- "Environment"
- "Syntax"
- "Usage notes"
- "Equivalent IMS type-2 commands"
- "Output fields"
- "Examples" on page 573

Environment
The /DISPLAY PGM command is valid in DB/DC, DBCTL, and DCCTL environments.

Syntax

```
/DISPLAY PGM pgmname
```

Usage notes
For DBCTL, this command displays the status of BMP programs, DEDB utilities, and CCTL PSBs. Because DBCTL has no knowledge of CICS programs, their status is not displayed.

Equivalent IMS type-2 commands
The following table shows variations of the /DISPLAY PGM command and the IMS type-2 commands that perform similar functions.

<table>
<thead>
<tr>
<th>Task</th>
<th>/DISPLAY PGM command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays information about</td>
<td>/DISPLAY PGM pgmname</td>
<td>QRY PGM NAME(pgmname)</td>
</tr>
<tr>
<td>a program</td>
<td></td>
<td>SHOW(ALL)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QUERY PGM NAME(pgmname)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SHOW(TRAN)</td>
</tr>
</tbody>
</table>

Output fields
The status displayed can be one of the following:

- DB-STOPD
- I/O PREVEN
- LOCK
- NOTINIT
- STOPPED
- TRA
Examples

Entry ET:
/DISPLAY PGM APOL1 DBFSAMP3 BMP255

Response ET:

<table>
<thead>
<tr>
<th>PROGRAM</th>
<th>TRAN</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>APOL1</td>
<td>APOL11</td>
<td>TP</td>
</tr>
<tr>
<td></td>
<td>APOL12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>APOL13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>APOL14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>APOL15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>APOL16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>APOL17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>APOL18</td>
<td></td>
</tr>
<tr>
<td>DBFSAMP3</td>
<td>FPSAMP1</td>
<td>FPM</td>
</tr>
<tr>
<td>BMP255</td>
<td>TRAN255</td>
<td>BMP</td>
</tr>
<tr>
<td></td>
<td>TXCD255</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TXCD255W</td>
<td></td>
</tr>
<tr>
<td><em>90288/140450</em></td>
<td>SYS3</td>
<td></td>
</tr>
</tbody>
</table>

Entry ET:
/DISPLAY PGM ALL

Response ET:

<table>
<thead>
<tr>
<th>PROGRAM</th>
<th>TRAN</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD2TP</td>
<td>TSTAD2A</td>
<td>TP</td>
</tr>
<tr>
<td></td>
<td>TSTAD2R1</td>
<td></td>
</tr>
<tr>
<td>APOL1</td>
<td>APOL11</td>
<td>TP</td>
</tr>
<tr>
<td></td>
<td>APOL12</td>
<td></td>
</tr>
<tr>
<td>A3270</td>
<td>A3270</td>
<td>TP</td>
</tr>
<tr>
<td></td>
<td>3270S</td>
<td></td>
</tr>
<tr>
<td>BMAAJK41</td>
<td>BHE4</td>
<td>TP</td>
</tr>
<tr>
<td></td>
<td>NQE4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SHE4</td>
<td></td>
</tr>
<tr>
<td>BMP255</td>
<td>TRAN255</td>
<td>BMP</td>
</tr>
<tr>
<td></td>
<td>NOTINIT</td>
<td></td>
</tr>
<tr>
<td>BTAJK01</td>
<td>BMP</td>
<td>NOTINIT</td>
</tr>
<tr>
<td>BTPJ01</td>
<td>BMP</td>
<td>NOTINIT</td>
</tr>
<tr>
<td>BTPJK11</td>
<td>BMP</td>
<td>NOTINIT</td>
</tr>
<tr>
<td>BTPJK21</td>
<td>BMP</td>
<td>NOTINIT</td>
</tr>
<tr>
<td>BTGJK01</td>
<td>BMP</td>
<td>NOTINIT</td>
</tr>
<tr>
<td>BTGJK11</td>
<td>BMP</td>
<td>NOTINIT</td>
</tr>
<tr>
<td>BTOJK01</td>
<td>BMP</td>
<td>NOTINIT</td>
</tr>
<tr>
<td>BTRJK05</td>
<td>BMP</td>
<td>NOTINIT</td>
</tr>
<tr>
<td>CPGM1V0</td>
<td>CONV11V0</td>
<td>TP</td>
</tr>
<tr>
<td></td>
<td>CONV12V0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CONV13V0</td>
<td></td>
</tr>
<tr>
<td>DBF#FP0</td>
<td>FPU</td>
<td></td>
</tr>
<tr>
<td>DBFSAMP3</td>
<td>FPSAMP1</td>
<td>FPM</td>
</tr>
<tr>
<td>DBFSAMP4</td>
<td>FPSAMP2</td>
<td></td>
</tr>
<tr>
<td>DBFSA22</td>
<td>TP1</td>
<td>FPM</td>
</tr>
<tr>
<td>DBFSA99</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td>DCLECHOS</td>
<td>DCL</td>
<td></td>
</tr>
<tr>
<td>DDLTPB04</td>
<td>TXCDBP04</td>
<td>FPM</td>
</tr>
<tr>
<td>DDLTPB05</td>
<td>TXCDBP05</td>
<td>FPM</td>
</tr>
<tr>
<td>DDLTPB06</td>
<td>TXCDBP06</td>
<td>FPM</td>
</tr>
<tr>
<td>DDLTPB07</td>
<td>TXCDBP07</td>
<td>FPM</td>
</tr>
<tr>
<td>DDLTPB08</td>
<td>TXCDBP08</td>
<td></td>
</tr>
<tr>
<td>DDLTPB09</td>
<td>TXCDBP09</td>
<td></td>
</tr>
<tr>
<td>V2MPPA02</td>
<td>V2MRP01</td>
<td>TP</td>
</tr>
<tr>
<td></td>
<td>V2MRP02</td>
<td></td>
</tr>
<tr>
<td>V2MPPC01</td>
<td>V2NS01</td>
<td>TP</td>
</tr>
<tr>
<td></td>
<td>V2RS02</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 26. /DISPLAY commands 573
/DISPLAY POOL command

Use the /DISPLAY POOL command to display processor storage utilization statistics for the various IMS storage pools.

Subsections:
- "Environment"
- "Syntax"
- "Usage notes" on page 575
- "Equivalent IMS type-2 commands" on page 578
- "Abbreviations used in the /DISPLAY POOL command" on page 578
- "Examples" on page 584

Environment

The /DISPLAY POOL command is valid in DB/DC, DBCTL, and DCCTL environments.

Syntax
Usage notes

When the /DISPLAY POOL command is issued from a specific environment (such as DBCTL), only the information that is valid for that environment is displayed.

Certain storage utilization statistics can be obtained with the DL/I STAT call.

Control block table (CBT) pools are defined in DFSCBT00 and are grouped into classes for the purposes of the /DISPLAY POOL command. All CBT pools are valid in all environments.

For a list of all of the IMS CBT pools with a brief description of each, see [IMS Control Block Table (CBT) Pools (Diagnosis)](chapter).

The classes and corresponding parameters are:

- **CBT** This displays storage for all CBT pools. Use of this operand generates a large amount of display output.
- **DBB** This displays database-related storage.
- **DCC** This displays storage associated with DC.
DEP  This displays storage associated with the dependent region structure. This parameter is not supported for an RSR tracking subsystem.

DISP  This displays dispatcher-related storage.

FP  This displays Fast Path-related storage.

GEN  This displays storage that has no particular functional association.

OSAM  This displays OSAM-related storage.

SUM  This displays summary statistics for each of the above storage classes.

A CBT class display shows information for each pool in that class. The amount of storage displayed for these pools might change, because the storage is obtained as needed and can be freed when not in use. In addition, a summary of the total current global and local storage in the class and in all CBT pools is displayed.

If SUM is specified, a summary of the total current local and global storage for each CBT class is displayed.

For the following storage pools, the amount of storage obtained is specified during system definition or by way of EXEC statement overrides in the IMS procedure JCL.

DBAS  Database buffer pools (includes VSAM buffer pools if VSAM is in the system, and also includes buffer space used by sequential buffering).

Statistics for VSAM local shared resource pools are displayed in the order in which the pools are defined. For each local shared resource pool, the statistics of each subpool are displayed in ascending order by buffer size. The smallest buffers are displayed first and the largest buffers are displayed last. If an index subpool exists in the shared resource pool, its statistics follow the data subpool statistics. Index statistics are also displayed in ascending order by buffer size.

Headings for VSAM subpools include the pool ID of the local shared resource pool. They also indicate whether the subpool is a data subpool (type D) or an index subpool (type I).

The output from issuing the /DIS POOL DBAS command is equivalent to the output from issuing the type-2 QUERY POOL TYPE(DBAS) SHOW(STATISTICS) command.

DBWP  Database working pool.

DMBP  Data management block pool.

EPCB  Fast Path PCB extension pool for MPPs.

FPDB  Fast Path database buffer pool.

MAIN  Working storage pool.

MFP  Message format block pool.

PSBP  Program specification block pool. This parameter is not supported for an RSR tracking subsystem.

PSBW  Program specification block work area. This parameter is not supported for an RSR tracking subsystem.
**QBUF** Message queue buffer pool. Parameter QBUF can also be used to indicate how close the system is to automatic shutdown because of message queue buildup. The statistics displayed for each data set are:

- The maximum number of records available before initiation of automatic shutdown. This value is defined by the SHUTDWN parameter of the MSGQUEUE macro. This value is not the total number of records available in the data set.
- The number of records currently in use.
- The percentage of records currently in use to records available before initiation of automatic shutdown. When the value described in this item reaches 100%, an internal checkpoint DUMPQ will automatically be initiated. The number of records in the queue data set might continue to increase during the checkpoint DUMPQ, resulting in percentages greater than 100 being displayed.
- In a shared-queues environment, two additional lines of output are displayed: the current buffer in-use count and the buffer in-use high water mark.

The following table shows the environments (DB/DC, DBCTL, or DCCTL) in which each storage pool is valid. If a pool is not valid in an environment, it will not appear when /DISPLAY POOL ALL is issued.

*Table 256. Storage pools and their environments*

<table>
<thead>
<tr>
<th>Storage pools</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOIP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CESS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CIOP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CMDP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DBAS</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBWP</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DMBP</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DYNP</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>EMHB</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>EPCB</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>FPDB</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPWP</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIOP</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LUMC</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LUMP</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAIN</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MFP</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSBP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PSBW</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>QBUF</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Note:** When the /DISPLAY POOL ALL command is specified for an RSR tracking subsystem, the following pools are not included: DEP, DYNP, LUMC, LUMP, PSBP, PSBW.
Equivalent IMS type-2 commands

The following table shows variations of the /DISPLAY POOL command and the IMS type-2 commands that perform similar functions.

<table>
<thead>
<tr>
<th>Task</th>
<th>/DISPLAY POOL command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays processor storage utilization statistics for OSAM and VSAM database buffer pools.</td>
<td>/DISPLAY POOL DBAS</td>
<td>QUERY POOL TYPE(DBAS) SHOW(STATISTICS)</td>
</tr>
</tbody>
</table>

Abbreviations used in the /DISPLAY POOL command

The following lists indicate the abbreviations used in the /DISPLAY POOL command for each pool and subpool.

**CBT pool display**

NAME  
Storage pool name

SP  
Associated MVS user number

CURR  
The current bytes allocated to the pool

MAX  
Maximum size in bytes that the pool ever reached

GETS  
Number of GETMAINs issued

FREES  
Number of FREEMAINs issued

**Message queue pool**

BFRS  
Number of processor storage queue buffers. In a shared queues environment, the number of buffers can be dynamically expanded from the number originally defined. This field displays the number of buffers currently available.

SIZE  
Usable size of one queue buffer, excluding the buffer prefix

ENQ  
Number of message enqueues

DEQ  
Number of message dequeues

CAN  
Number of canceled messages

WAIT  
Number of I/O waits issued

I/O  
Number of I/O operations. In a shared-queues environment, it is the sum of CQSPUTs and CQSREADs.

ERR  
Number of I/O errors

**Message format pool**

SIZE  
Pool size

SPACE  
Maximum amount of free space

DIRS  
Space used by MFS Dynamic Directory

REQ1  
Number of block requests from pool
I/O  Number of fetch I/O operations
DIR  Number of directory I/O operations
WAIT Number of immediate fetch I/O operations
FREE Amount of free space currently in the pool
ERR  Number of I/O errors

Database buffer pools

The database buffer pool display consists of the OSAM buffer pool and, if VSAM
is in the system, the VSAM buffer subpool. The display also includes information
about the buffer space used by sequential buffering within the online IMS
subsystem. The information about the sequential buffering buffer space includes:

MAX Maximum amount of space available for sequential buffering
FREE Amount of currently free space for sequential buffering
CUR The current bytes allocated to the pools for sequential buffering
HIGH Highest amount of space ever used in this run for sequential buffering

OSAM buffer subpool

This topic contains Product-sensitive Programming Interface information.

Statistics for each OSAM subpool are displayed separately. The final display
provides the statistical summation for all the OSAM subpools in all the shared
resource pools.

SIZE Buffer pool size
REQ1 Number of block requests
REQ2 Number of requests satisfied in the pool plus new blocks created
READ Number of read requests issued
BISAM Number of BISAM reads issued plus QISAM SETLs
WRITES Number of OSAM writes issued
KEYC Number of retrieve by key calls number
LCYL Number of OSAM format logical cylinder requests
PURG Number of synchronization calls received
OWNRR Number of release ownership requests
ERRORS Number of permanent errors now in the pool and largest number of
permanent errors during this run

VSAM buffer subpool

This topic contains Product-sensitive Programming Interface information.
Statistics for each VSAM subpool are displayed separately. The final display provides the statistical summation for all the VSAM subpools in all the shared resource pools.

**BSIZE**  The size of the buffers in this VSAM subpool

**POOLID**
Local shared resource pool ID

**TYPE**  The subpool type: I (Index) or D (Data)

**RRBA**  Number of retrieval requests by RBA

**RKEY**  Number of retrieval requests by key

**BFALT**
Number of logical records altered

**NREC**  Number of new VSAM logical records created

**SYNPTS**
Number of system checkpoint requests

**NMBUFS**
Number of buffers in this VSAM subpool

**VRDS**  Number of VSAM control interval reads (OVFLO indicates that the total overflowed a 4-byte field; that is, the total exceeded 4,294,967,295)

**FOUND**
Number of control intervals VSAM found in the subpool through lookaside (OVFLO indicates that the total overflowed a 4-byte field; that is, the total exceeded 4,294,967,295)

**VWTS**
Number of VSAM control interval writes

**ERRORS**
Total number of permanent errors now in the pool and total number of permanent errors in this run

The BSIZE value in the final display is ALL.

*Enhanced OSAM buffer subpool*

This topic contains Product-sensitive Programming Interface information.

Each OSAM subpool is displayed separately. The final display provides the statistical summation for all the OSAM subpools.

**ID**
The 4-character POOLID provided at subpool definition time

**BSIZE**
The size of the buffers in this OSAM subpool

**NBUF**
Number of buffers for this subpool

**FX=**
The fix options for this subpool. Y/N indicates whether the DATA BUFFER PREFIX/DATA BUFFERS are fixed.

**LCTREQ**
Number of LOCATE-type calls for this subpool

**ALTREQ**
Number of buffer alter calls for this subpool. This count includes NEW BLOCK and BYTALT calls.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PURGRQ</td>
<td>Number of PURGE calls for this subpool</td>
</tr>
<tr>
<td>FNDIPL</td>
<td>Number of LOCATE-type calls, for this subpool, where data is already in the OSAM pool</td>
</tr>
<tr>
<td>BFSRCH</td>
<td>Number of buffers searched by all LOCATE-type calls for this subpool</td>
</tr>
<tr>
<td>RDREQ</td>
<td>Number of READ I/O requests for this subpool</td>
</tr>
<tr>
<td>BFSTLW</td>
<td>Number of single block writes initiated by buffer steal routine for this subpool</td>
</tr>
<tr>
<td>PURGWR</td>
<td>Number of buffers written by purge</td>
</tr>
<tr>
<td>WBSYID</td>
<td>Number of LOCATE calls, for this subpool, that waited because of busy ID</td>
</tr>
<tr>
<td>WBSYWR</td>
<td>Number of LOCATE-type calls, for this subpool, that waited because of busy writing</td>
</tr>
<tr>
<td>WBSYRD</td>
<td>Number of LOCATE-type calls, for this subpool, that waited due to busy buffer reading</td>
</tr>
<tr>
<td>WRLSEO</td>
<td>Number of buffer steal or purge requests, for this subpool, that waited for ownership to be released.</td>
</tr>
<tr>
<td>WNOBFR</td>
<td>Number of buffer steal requests, for this subpool, that waited because no buffers were available to be stolen</td>
</tr>
<tr>
<td>ERRORS</td>
<td>Total number of I/O errors for this subpool, or the number of the buffers locked in the pool because of write errors for this subpool</td>
</tr>
<tr>
<td>CFREAD</td>
<td>Number of blocks read from CF.</td>
</tr>
<tr>
<td>CFEXPC</td>
<td>Number of blocks expected but not read.</td>
</tr>
<tr>
<td>CFWRPR</td>
<td>Number of blocks written to CF (prime).</td>
</tr>
<tr>
<td>CFWRCH</td>
<td>Number of blocks written to CF (changed).</td>
</tr>
<tr>
<td>STGCLF</td>
<td>Number of blocks not written (STG CLS full).</td>
</tr>
<tr>
<td>XVIINV</td>
<td>Number of XI buffer-invalidate calls.</td>
</tr>
<tr>
<td>XICLCT</td>
<td>Number of buffers found invalidated by XI on VECTOR call.</td>
</tr>
</tbody>
</table>
SBSEQR
   Number of immediate (SYNC) sequential reads (SB stat).

SBANTR
   Number of anticipatory reads (SB stat).

For the summary totals, the POOLID is not shown. BSIZE is set to ALL. NBUF indicates the total number of buffers in the pool. The FX= field is replaced by OSM=, which shows the total size of the OSAM buffer pool.

Enhanced VSAM buffer subpool

This topic contains Product-sensitive Programming Interface information.

Each VSAM subpool is displayed separately. The final display provides the statistical summation for all the VSAM subpools.

ID     The 4-character POOLID provided at subpool definition time
BSIZE  The size of the buffers in this VSAM subpool
TYPE   identifies the subpool as containing INDEX or DATA buffer
FX=    Number of options for this subpool. Y/N is used to indicate whether the INDEX BUFFERS/DATA BUFFER PREFIX/ DATA BUFFERS are fixed.
RRBA   Number of retrieval requests by RBA
RKEY   Number of retrieval requests by KEY
BFALT  Number of logical records altered
NREC   Number of new VSAM logical records created
SYNC PT Number of system checkpoint (synchronization point) requests
NBUFS  Number of buffers in this VSAM subpool
VRDS   Number of VSAM control interval reads (OVERFLOW indicates that the total overflowed a 4-byte field; that is, the total exceeded 4,294,967,295)
FOUND  Number of control intervals VSAM found in the subpool through looksaside (OVERFLOW indicates that the total overflowed a 4-byte field; that is, the total exceeded 4,294,967,295)
VWTS   Number of VSAM control interval writes
HSR-S  Number of successful VSAM reads from Hiperspace™ buffers
HSW-S  Number of successful VSAM writes to Hiperspace buffers
HS NBUFS Number of Hiperspace buffers defined for this subpool
HS R/W-FAIL Number of failed VSAM reads/writes from or to Hiperspace buffers. This indicates the number of times a VSAM READ/WRITE request from or to Hiperspace resulted in DASD I/O.
ERRORS
Number of permanent write errors now in the subpool, or the largest
number of errors in this execution

The BSIZE value in the final display is the total size of all the VSAM subpool
buffers. BSIZE is set to ALL. For the summary totals, the POOLID is not shown.
The TYPE and FX= fields are replaced by VS=, which is the total size of the VSAM
subpool in virtual storage, and HS=, which is the total size of the VSAM subpool
in Hiperspace.

Fast Path database buffer pool

AVAIL
Number of available page-fixed database buffers

WRITING
Number of page-fixed database buffers being written to disk, including the
buffers being filled with sequential dependent segments

PGMUSE
Number of page-fixed buffers allocated to PSTs

UNFIXED
Number of available buffers for starting a new region

POOLNAME
Name of the private buffer pool for the area. This name is specified in the
VSPEC member.

CISIZE
Control interval size of the private pool for the area.

PBUF Size allocated for the primary pool (specified in the VSPEC member).

SBUF Size allocated for the secondary pool (specified in the VSPEC member).

MAX Maximum number of buffers for the private pool (specified in the VSPEC
member).

CURRENT Total number of buffers currently in the pool, including both primary and
secondary allocations.

LK Y indicates that buffer lookaside is active for the pool; N indicates that it is
not.

HITS Percentage of searches of the pool for which a buffer was found. Only
displayed for lookaside pools.

VALID Percentage of times a buffer found in the pool had valid data. An Invalid
buffer is read from DASD and the pool copy is replaced. Only displayed
for lookaside pools.

You use the percentages displayed for HITS and VALID together.

Example: If HITS is 40%, and VALID is 75%, a buffer was found in the
pool 40% of the time, and of that 40%, 75% of the buffers found had valid
data, that is, 30% of the HITS had valid data. So, IMS had to read data
from DASD approximately 70% of the time.

PSBP, DMBP, PSBW, DBWP, EPCB, and MAIN buffer pools

SIZE pool size
FREE amount of currently free space

HIGH Highest amount of space ever used in this run

**AOIP, CESS, CIOP, CMDP, DYNP, EMHB, FPWP, HIOP, LUMC, and LUMP buffer pools**

During the execution of IMS, the AOIP, CESS, CIOP, CMDP, DYNP, EMHB, FPWP, HIOP, LUMC, and LUMP buffer pools can dynamically expand and contract.

Internally, each dynamic pool has one or more blocks of storage that are not contiguous, each divided into fixed-length buffers. By obtaining new blocks and releasing unused blocks, a buffer pool can expand or contract during the execution of IMS. The number of blocks needed for each pool depends on several factors such as the number of buffer requests from the pool, buffer size, and block size.

**SIZE** Pool size

**HIGH** Maximum size since last checkpoint

**LIMIT** Upper expansion limit

**OVERFLOW** Size of the oversized chain

### Examples

The following are examples of the `/DISPLAY POOL` command.

For a list of all of the IMS CBT pools with a brief description of each, see [IMS Control Block Table (CBT) Pools (Diagnosis)](#).

#### Example 1 for `/DISPLAY POOL` command

Entry ET:

```
/DISPLAY POOL ALL
```

Response ET:

```
<table>
<thead>
<tr>
<th>NAME</th>
<th>SP#</th>
<th>CURR</th>
<th>MAX</th>
<th>GETS</th>
<th>FREES</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOSB</td>
<td>228</td>
<td>28K</td>
<td>28K</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>GI0B</td>
<td>228</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OSWA</td>
<td>228</td>
<td>8K</td>
<td>8K</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>GOWA</td>
<td>228</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PST</td>
<td>231</td>
<td>52K</td>
<td>56K</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>DPST</td>
<td>231</td>
<td>40K</td>
<td>44K</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>SAP</td>
<td>231</td>
<td>132K</td>
<td>132K</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>GQM</td>
<td>231</td>
<td>16K</td>
<td>16K</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>LQM</td>
<td>0</td>
<td>324K</td>
<td>324K</td>
<td>81</td>
<td>0</td>
</tr>
<tr>
<td>D1WA</td>
<td>228</td>
<td>8K</td>
<td>8K</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>DL2W</td>
<td>0</td>
<td>8K</td>
<td>8K</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>D2Z</td>
<td>231</td>
<td>4K</td>
<td>4K</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>QSAV</td>
<td>231</td>
<td>4K</td>
<td>16K</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>VRPL</td>
<td>231</td>
<td>16K</td>
<td>16K</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>LSAV</td>
<td>0</td>
<td>808K</td>
<td>808K</td>
<td>201</td>
<td>1</td>
</tr>
<tr>
<td>AWE</td>
<td>231</td>
<td>112K</td>
<td>112K</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>PDIR</td>
<td>231</td>
<td>36K</td>
<td>36K</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>DDIR</td>
<td>231</td>
<td>28K</td>
<td>28K</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>LCRE</td>
<td>241</td>
<td>4K</td>
<td>4K</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>PCIB</td>
<td>0</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SIDX</td>
<td>241</td>
<td>4K</td>
<td>4K</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>RRER</td>
<td>241</td>
<td>4K</td>
<td>4K</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
```
Chapter 26. /DISPLAY commands 585
<table>
<thead>
<tr>
<th>Command</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>enqueue</td>
<td>6 DEQ 6 CAN 30 WAIT 0 1/0 15 ERR 0</td>
</tr>
<tr>
<td>QBKLS:</td>
<td>MAX # RECORDS AVAIL 1332 CUR IN USE 3 = 0 %</td>
</tr>
<tr>
<td>SMSGQ:</td>
<td>MAX # RECORDS AVAIL 5940 CUR IN USE 4 = 0 %</td>
</tr>
<tr>
<td>LMSGQ:</td>
<td>MAX # RECORDS AVAIL 1350 CUR IN USE 4 = 0 %</td>
</tr>
<tr>
<td>MESSAGE FORMAT POOL:</td>
<td>SIZE 49152 SPACE 48576 DIRS 9011</td>
</tr>
<tr>
<td>REQ:</td>
<td>2 I/O 2 DIR 4</td>
</tr>
<tr>
<td>WAIT:</td>
<td>2 FREE 48432 ERR 0</td>
</tr>
</tbody>
</table>

**Sequential Buffering:** Status = NOT INIT

**OSAM DB Buffer Pool:**

<table>
<thead>
<tr>
<th>ID</th>
<th>BSIZE</th>
<th>NBUF</th>
<th>1000 FX=</th>
<th>Y/Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCTRQ</td>
<td>1765296</td>
<td>NEWBLK</td>
<td>0</td>
<td>ALTREQ 340800</td>
</tr>
<tr>
<td>PURGQ</td>
<td>39371</td>
<td>FNDIPL 1370897</td>
<td>BFSRCH</td>
<td>1987604</td>
</tr>
<tr>
<td>RDREQ</td>
<td>378355</td>
<td>BFSTLW</td>
<td>0</td>
<td>PURGWR 150284</td>
</tr>
<tr>
<td>WBSYID</td>
<td>1431</td>
<td>WBSYWWR</td>
<td>0</td>
<td>WBSYRD 0</td>
</tr>
<tr>
<td>WRLSEO</td>
<td>296</td>
<td>WNOBFRR</td>
<td>0</td>
<td>ERRORS 00000/00000</td>
</tr>
</tbody>
</table>

**OSAM DB Buffer Pool:**

<table>
<thead>
<tr>
<th>ID</th>
<th>BSIZE</th>
<th>NBUF</th>
<th>100 FX=</th>
<th>Y/Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCTRQ</td>
<td>228000</td>
<td>NEWBLK</td>
<td>0</td>
<td>ALTREQ 6896</td>
</tr>
<tr>
<td>PURGQ</td>
<td>0</td>
<td>FNDIPL 204190</td>
<td>BFSRCH</td>
<td>316566</td>
</tr>
<tr>
<td>RDREQ</td>
<td>23891</td>
<td>BFSTLW</td>
<td>0</td>
<td>PURGWR 0</td>
</tr>
<tr>
<td>WBSYID</td>
<td>0</td>
<td>WBSYWWR</td>
<td>0</td>
<td>WBSYRD 0</td>
</tr>
<tr>
<td>WRLSEO</td>
<td>0</td>
<td>WNOBFRR</td>
<td>0</td>
<td>ERRORS 00000/00000</td>
</tr>
</tbody>
</table>

**OSAM DB Buffer Pool:**

<table>
<thead>
<tr>
<th>ID</th>
<th>BSIZE</th>
<th>NBUF</th>
<th>12K FX=</th>
<th>Y/Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCTRQ</td>
<td>83282</td>
<td>NEWBLK</td>
<td>0</td>
<td>ALTREQ 68195</td>
</tr>
<tr>
<td>PURGQ</td>
<td>4384</td>
<td>FNDIPL 70743</td>
<td>BFSRCH</td>
<td>81395</td>
</tr>
<tr>
<td>RDREQ</td>
<td>7622</td>
<td>BFSTLW</td>
<td>0</td>
<td>PURGWR 6118</td>
</tr>
<tr>
<td>WBSYID</td>
<td>0</td>
<td>WBSYWWR</td>
<td>0</td>
<td>WBSYRD 0</td>
</tr>
<tr>
<td>WRLSEO</td>
<td>0</td>
<td>WNOBFRR</td>
<td>0</td>
<td>ERRORS 00000/00000</td>
</tr>
</tbody>
</table>

**VSAM Buffer Pool:**

<table>
<thead>
<tr>
<th>ID</th>
<th>BSIZE</th>
<th>D TYPE</th>
<th>FX=N/Y/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>RRBA</td>
<td>0</td>
<td>RKEY</td>
<td>0</td>
</tr>
<tr>
<td>NRNC</td>
<td>0</td>
<td>SYNC PT</td>
<td>29446</td>
</tr>
<tr>
<td>VRDS</td>
<td>1253</td>
<td>FOUND</td>
<td>0</td>
</tr>
<tr>
<td>HSR-S</td>
<td>0</td>
<td>HS-S</td>
<td>0</td>
</tr>
<tr>
<td>HS R/W-FAIL</td>
<td>00000/00000</td>
<td>ERRORS 00000/00000</td>
<td></td>
</tr>
</tbody>
</table>

**VSAM Buffer Pool:**

<table>
<thead>
<tr>
<th>ID</th>
<th>BSIZE</th>
<th>D TYPE</th>
<th>FX=N/Y/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>RRBA</td>
<td>370</td>
<td>RKEY</td>
<td>187583</td>
</tr>
<tr>
<td>NRNC</td>
<td>10750</td>
<td>SYNC PT</td>
<td>29446</td>
</tr>
<tr>
<td>VRDS</td>
<td>145632</td>
<td>FOUND</td>
<td>0</td>
</tr>
<tr>
<td>HSR-S</td>
<td>0</td>
<td>HS-S</td>
<td>50</td>
</tr>
<tr>
<td>HS R/W-FAIL</td>
<td>00000/00000</td>
<td>ERRORS 00000/00000</td>
<td></td>
</tr>
</tbody>
</table>

**VSAM Buffer Pool:**

<table>
<thead>
<tr>
<th>ID</th>
<th>BSIZE</th>
<th>D TYPE</th>
<th>FX=N/Y/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>RRBA</td>
<td>7375</td>
<td>RKEY</td>
<td>6704</td>
</tr>
<tr>
<td>NRNC</td>
<td>0</td>
<td>SYNC PT</td>
<td>29446</td>
</tr>
<tr>
<td>VRDS</td>
<td>7362</td>
<td>FOUND</td>
<td>0</td>
</tr>
<tr>
<td>HSR-S</td>
<td>0</td>
<td>HS-S</td>
<td>0</td>
</tr>
<tr>
<td>HS R/W-FAIL</td>
<td>00000/00000</td>
<td>ERRORS 00000/00000</td>
<td></td>
</tr>
</tbody>
</table>

**VSAM Buffer Pool:**

<table>
<thead>
<tr>
<th>ID</th>
<th>BSIZE</th>
<th>VS= 5800K</th>
<th>HS= 200K</th>
</tr>
</thead>
<tbody>
<tr>
<td>RRBA</td>
<td>7745</td>
<td>RKEY</td>
<td>194287</td>
</tr>
<tr>
<td>NRNC</td>
<td>10752</td>
<td>SYNC PT</td>
<td>29446</td>
</tr>
<tr>
<td>VRDS</td>
<td>154247</td>
<td>FOUND</td>
<td>0</td>
</tr>
<tr>
<td>HSR-S</td>
<td>0</td>
<td>HS-S</td>
<td>50</td>
</tr>
<tr>
<td>HS R/W-FAIL</td>
<td>00000/00000</td>
<td>ERRORS 00000/00000</td>
<td></td>
</tr>
</tbody>
</table>

**DMBP Buffer Pool:**

<table>
<thead>
<tr>
<th>SIZE</th>
<th>200K</th>
<th>FREE</th>
<th>200K</th>
<th>HIGH</th>
<th>0K</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSBP Buffer Pool:</td>
<td>SIZE</td>
<td>80K</td>
<td>FREE</td>
<td>80K</td>
<td>HIGH</td>
</tr>
<tr>
<td>DPSB Buffer Pool:</td>
<td>SIZE</td>
<td>160K</td>
<td>FREE</td>
<td>160K</td>
<td>HIGH</td>
</tr>
</tbody>
</table>

**CIOP Buffer Pool:**

| SIZE | 200K | FREE | 200K | HIGH | 0K |

586 Commands, Volume 1: IMS Commands A - M
Example 2 for /DISPLAY POOL command

Entry ET:
/DISPLAY POOL AOIP

Response ET:
AOIP BUFFER POOL:
SIZE 32K HIGH 32K LIMIT NONE OVERFLOW 0K
*92280/095545*

Example 3 for /DISPLAY POOL command

For a list of all of the IMS CBT pools with a brief description of each, see IMS Control Block Table (CBT) Pools (Diagnosis).

Entry ET:
/DISPLAY POOL CBT

Response ET:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SP#</th>
<th>CURR</th>
<th>MAX</th>
<th>GETS</th>
<th>FREES</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOSB</td>
<td>228</td>
<td>20K</td>
<td>20K</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>GIOB</td>
<td>228</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OSWA</td>
<td>228</td>
<td>8K</td>
<td>8K</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>GOWA</td>
<td>228</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PST</td>
<td>231</td>
<td>52K</td>
<td>56K</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>DPST</td>
<td>231</td>
<td>40K</td>
<td>44K</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>SAP</td>
<td>231</td>
<td>28K</td>
<td>28K</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Command</td>
<td>Vol</td>
<td>Size</td>
<td>Count</td>
<td>Value</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-----</td>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>GQMW 231</td>
<td>12K</td>
<td>12K</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>LQMW 0</td>
<td>40K</td>
<td>40K</td>
<td>10</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>DINW 228</td>
<td>8K</td>
<td>8K</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>DL2W 0</td>
<td>8K</td>
<td>8K</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>DG2W 231</td>
<td>4K</td>
<td>4K</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>QSAV 231</td>
<td>4K</td>
<td>12K</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>VRPL 231</td>
<td>16K</td>
<td>16K</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>LSAV 0</td>
<td>68K</td>
<td>72K</td>
<td>17</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>AME 231</td>
<td>12K</td>
<td>12K</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PDIN 231</td>
<td>36K</td>
<td>36K</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>DDIN 231</td>
<td>28K</td>
<td>28K</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>LCRE 241</td>
<td>4K</td>
<td>4K</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PCIB 0</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SIDX 241</td>
<td>4K</td>
<td>4K</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>RRE 241</td>
<td>4K</td>
<td>4K</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SMB 231</td>
<td>61K</td>
<td>61K</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>BCPT 231</td>
<td>4K</td>
<td>4K</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>GESE 241</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>EPST 231</td>
<td>144K</td>
<td>144K</td>
<td>20</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>IDT 241</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>DBRC 231</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>TTAB 231</td>
<td>184K</td>
<td>184K</td>
<td>46</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>E2S 241</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>FNCB 231</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>TCBT 231</td>
<td>4K</td>
<td>4K</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>CMWU 231</td>
<td>8K</td>
<td>8K</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>FSRB 228</td>
<td>4K</td>
<td>4K</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>KLS 0</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>IRLM 231</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>STRT 231</td>
<td>52K</td>
<td>52K</td>
<td>13</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>BQEL 231</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>USMU 229</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>RCTE 231</td>
<td>3K</td>
<td>3K</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SLOG 231</td>
<td>4K</td>
<td>4K</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ADSC 228</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>FPCR 231</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>AESL 231</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>XPST 231</td>
<td>16K</td>
<td>16K</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>BXQE 231</td>
<td>16K</td>
<td>16K</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SRBC 228</td>
<td>8K</td>
<td>8K</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>MSGP 241</td>
<td>4K</td>
<td>4K</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>LPS 251</td>
<td>8K</td>
<td>8K</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>CULE 231</td>
<td>152K</td>
<td>152K</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>RPST 241</td>
<td>4K</td>
<td>4K</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>VTCB 251</td>
<td>305K</td>
<td>305K</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>RECA 0</td>
<td>19K</td>
<td>19K</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>GSAV 231</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>FEIB 231</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>IEQE 0</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>LS6X 231</td>
<td>4K</td>
<td>4K</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>XI24 241</td>
<td>4K</td>
<td>4K</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>STAT 241</td>
<td>4K</td>
<td>4K</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>EQEL 241</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>TT24 231</td>
<td>24K</td>
<td>24K</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>LGWA 231</td>
<td>104K</td>
<td>104K</td>
<td>26</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>VWA 231</td>
<td>8K</td>
<td>8K</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>LGWX 0</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>LQB 251</td>
<td>104K</td>
<td>104K</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>RCNT 251</td>
<td>4K</td>
<td>4K</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>DDRE 0</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>CCB 0</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>LGND 251</td>
<td>8K</td>
<td>8K</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>USRD 251</td>
<td>4K</td>
<td>4K</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>LS24 0</td>
<td>2K</td>
<td>2K</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>GS24 231</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>CLLE 231</td>
<td>60K</td>
<td>64K</td>
<td>16</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>QMBA 0</td>
<td>8K</td>
<td>8K</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Example 4 for /DISPLAY POOL command

Entry ET:

/DISPLAY POOL CIOP SPAP HIOP CESS EMHB FPWP LUMP LUMC

Response ET:

CIOP BUFFER POOL:
SIZE 16K HIGH 96K LIMIT 999K OVERFLOW 0K
SPAP BUFFER POOL:
SIZE 0K HIGH 0K LIMIT 9999K OVERFLOW 0K
HIOP BUFFER POOL:
SIZE 128K HIGH 128K LIMIT 9999K OVERFLOW 0K
CESS BUFFER POOL:
POOL IS NOT AVAILABLE FOR STATISTICS
EMHB BUFFER POOL:
SIZE 0K HIGH 0K LIMIT 9999K OVERFLOW 0K
FPWP BUFFER POOL:
SIZE 0K HIGH 0K LIMIT 9999K OVERFLOW 0K
LUMP BUFFER POOL:
SIZE 32K HIGH 32K LIMIT NONE OVERFLOW 0K
LUMC BUFFER POOL:
SIZE 0K HIGH 32K LIMIT NONE OVERFLOW 0K

Example 5 for /DISPLAY POOL command

Entry ET:

/DISPLAY POOL DBAS

Response ET:

SEQUENTIAL BUFFERING: STATUS = NOT INIT
MAX N.A. FREE N.A. CURR 0K HIGH 0K
OSAM DB BUFFER POOL: ID BSIZE 2K NBUF 4 FX=N/N
LCTREQ 0 NEWBLK 0 ALTREQ 0
PURGRQ 0 FNDIPL 0 BFSRCH 0
RDREQ 0 BFSTLW 0 PURGWR 0
WBSYID 0 WBSYWR 0 WBSYRD 0
WRLSEO 0 WNOBFR 0 ERRORS 00000/00000
OSAM DB BUFFER POOL: ID BSIZE 6K NBUF 4 FX=N/N
LCTREQ 0 NEWBLK 0 ALTREQ 0
PURGRQ 0 FNDIPL 0 BFSRCH 0
RDREQ 0 BFSTLW 0 PURGWR 0
WBSYID 0 WBSYWR 0 WBSYRD 0
WRLSEO 0 WNOBFR 0 ERRORS 00000/00000
OSAM DB BUFFER POOL: ID BSIZE 8K NBUF 4 FX=N/N
LCTREQ 0 NEWBLK 0 ALTREQ 0
PURGRQ 0 FNDIPL 0 BFSRCH 0

Chapter 26. /DISPLAY commands 589
Example 6 for /DISPLAY POOL command

Entry ET:
/DISPLAY POOL DBB

Response ET:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SP#</th>
<th>CURR</th>
<th>MAX</th>
<th>GETS</th>
<th>FREES</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDIR</td>
<td>231</td>
<td>36K</td>
<td>36K</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>DDIR</td>
<td>231</td>
<td>28K</td>
<td>28K</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>SMB</td>
<td>231</td>
<td>61K</td>
<td>61K</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>BQEL</td>
<td>231</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IEQE</td>
<td>0</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EQEL</td>
<td>241</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DDRE</td>
<td>0</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CLASS</td>
<td>DBB</td>
<td>GLBL</td>
<td>125K</td>
<td>LCL</td>
<td>0K</td>
</tr>
<tr>
<td>CBT POOLS</td>
<td>GLBL</td>
<td>1187K</td>
<td>LCL</td>
<td>662K</td>
<td></td>
</tr>
</tbody>
</table>

Example 7 for /DISPLAY POOL command

Entry ET:
/DISPLAY POOL DCC

Response ET:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SP#</th>
<th>CURR</th>
<th>MAX</th>
<th>GETS</th>
<th>FREES</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCIB</td>
<td>0</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VTCB</td>
<td>251</td>
<td>305K</td>
<td>305K</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RECA</td>
<td>0</td>
<td>19K</td>
<td>19K</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Example 8 for /DISPLAY POOL command

Entry ET:
/DISPLAY POOL FPDB

Response ET:
POOLNAME   CISIZE  PBUF  SBUF  MAX  CURRENT  LK  HITS  VALID
V$CFSTRUCTURE1  04096  0010  0001  0005  0020 N 000% NA
POOL4     04096  0001  0001  0005  0001 Y NA NA

Example 9 for /DISPLAY POOL command

Entry ET:
/DISPLAY POOL MFP

Response ET:
MESSAGE FORMAT POOL: SIZE 49152 SPACE 48576 DIRS 9011
REQ1   2 I/O 2 DIR 4
WAIT  2 FREE 48432 ERR 0

Example 10 for /DISPLAY POOL command

Entry ET:
/DISPLAY POOL MFP CIOP MAIN

Response ET:
MESSAGE FORMAT POOL: SIZE 49152 SPACE 48576 DIRS 9011
REQ1   2 I/O 2 DIR 4
WAIT  2 FREE 48432 ERR 0
CIOP BUFFER POOL:
SIZE   96K HIGH 96K LIMIT 999K OVERFLOW 0K
MAIN BUFFER POOL:
SIZE   40K FREE 40K HIGH 5K

Example 11 for /DISPLAY POOL command

Entry ET:
/DISPLAY POOL MFP STAT

Response ET:
Example 12 for /DISPLAY POOL command

Entry ET:
/DISPLAY POOL PSBP

Response ET:
PSBP BUFFER POOL:
SIZE 80K FREE 80K HIGH 0K
DPSB BUFFER POOL:
SIZE 160K FREE 160K HIGH 0K

Example 13 for /DISPLAY POOL command

Entry ET:
/DISPLAY POOL QBUF

Response ET:
MESSAGE QUEUE POOL: BFRS/SIZE 20/2112 SYS3
ENQ 18 DEQ 18 CAN 52 WAIT 0 I/O 15 ERR 0
QBLKS: MAX # RECORDS AVAIL 5 CUR IN USE 3 = 60%
SMSGQ: MAX # RECORDS AVAIL 262167 CUR IN USE 4 = 0%
LMSGQ: MAX # RECORDS AVAIL 524293 CUR IN USE 2 = 0%

Explanation: This example shows the /DISPLAY POOL QBUF command output in a non-shared-queues environment.

Example 14 for /DISPLAY POOL command

Entry ET:
/DISPLAY POOL QBUF STAT

Response ET:
QBUF BUFFER POOL:
0054 00000000 0000005E 00000126 00000001 00000000 00000000 00000007 00000008
0074 00000008 00000000 00000000 00000000 00000000 00000000 00000000 00000000
0094 00000000 00000000 00000000 00000019 00000323 00000000 00000013 00000013
00B4 00000035 00000003 00000004 00000002

Example 15 for /DISPLAY POOL command

Entry ET:
/DISPLAY POOL SUM

Response ET:
CBT POOLS GLBL 1187K LCL 662K
CLASS = OSAM GLBL 28K LCL 0K
CLASS = GEN GLBL 724K LCL 54K
CLASS = DEP GLBL 216K LCL 0K
CLASS = DISP GLBL 88K LCL 128K
Example 16 for /DISPLAY POOL command

Entry ET:

/DISPLAY POOL QBUF

Response ET:

MESSAGE QUEUE POOL: BFRS/SIZE 480/2520
ENQ 255 DEQ 2 CAN 82 WAIT 0 I/O 28 ERR 0
QBLKS: MAX # RECORDS AVAIL 50176 CUR IN USE 3 = 0 %
SMSQ: MAX # RECORDS AVAIL 52416 CUR IN USE 0 = 0 %
LMSGQ: MAX # RECORDS AVAIL 20160 CUR IN USE 254 = 1 %
CUR BUFFER INUSE COUNT 379
BUFFER INUSE HIGH WATER MARK 379 I

Explanation: This example shows the /DIS POOL QBUF command output in a shared-queues environment.

Related concepts:

- Monitoring VSAM buffers (Database Administration)

Related reference:

- QUERY POOL command (Commands)

/DISPLAY PSB command

Use the /DISPLAY PSB command to display the status of PSBs, which transactions these PSBs are processing, any routing code associated with the transactions, the databases being accessed, and the type of access.

Subsections:

- “Environment”
- “Syntax”
- “Usage notes” on page 594
- “Equivalent IMS type-2 commands” on page 594
- “Examples” on page 594

Environment

The /DISPLAY PSB command is valid in DB/DC, DBCTL, and DCCTL environments.

Syntax
Usage notes

For HSSP PSBs, the letter H is appended to the access intent under the ACCESS heading.

For DBCTL, the status of CCTL PSBs is displayed.

Equivalent IMS type-2 commands

The following table shows variations of the /DISPLAY PSB command and the IMS type-2 commands that perform similar functions.

<table>
<thead>
<tr>
<th>Task</th>
<th>/DISPLAY PSB command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays transactions, routing codes, and databases associated with a PSB.</td>
<td>/DISPLAY PSB psbname</td>
<td>QUERY PGM NAME(pgmname) SHOW(DB)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QUERY PGM NAME(pgmname) SHOW(RTC)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QUERY PGM NAME(pgmname) SHOW(TRAN)</td>
</tr>
</tbody>
</table>

Examples

Entry ET:

/DISPLAY PSB DDLTLM06 DDLTLM07

Response ET:

<table>
<thead>
<tr>
<th>PSB-NAME</th>
<th>TRANCODE</th>
<th>RTCODE</th>
<th>DBD-NAME</th>
<th>ACCESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDLTLM06</td>
<td>TXCDLM06</td>
<td>TXCDLM06</td>
<td>MSDBLM01</td>
<td>R/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSDBLM02</td>
<td>R/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSDBLM03</td>
<td>R/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSDBLM01</td>
<td>R/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSDBLM04</td>
<td>R/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSDBLM04</td>
<td>R/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSDBLM05</td>
<td>R/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSDBLM05</td>
<td>R/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSDBLM06</td>
<td>R/O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSDBLM04</td>
<td>R/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSDBLM04</td>
<td>R/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSDBLM05</td>
<td>R/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSDBLM05</td>
<td>R/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSDBLM06</td>
<td>R/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSDBLM06</td>
<td>R/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSDBLM07</td>
<td>R/W</td>
</tr>
</tbody>
</table>

*91068/111601*

Related reference:

QUERY PGM command (Commands)
/DISPLAY PTERM command

Use the /DISPLAY PTERM command to display physical terminals with specific attributes. The /DISPLAY PTERM command can be specified without an associated LINE keyword on /DISPLAY when PTERM is used with the special “attribute” parameter.

Subsections:
- “Environment”
- “Syntax”
- “Usage notes”
- “Examples” on page 596

Environment

The /DISPLAY PTERM command is valid in DB/DC and DCCTL environments.

Syntax

```
/DISP[LAY] PTERM
```

Usage notes

Physical terminals are selected for display based on the attribute or attributes specified. The attribute display format is the same as the standard LINE/PTERM display. Attributes usually correspond to the conditions displayed for line/physical terminals.

The attributes that can be specified with the PTERM keyword are listed in the following table. For example, /DISPLAY PTERM TRACE displays all physical terminals that are currently being traced.
Table 259. /DISPLAY PTERM command attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPINOP</td>
<td>CONVACT (Corresponds to the NODE condition CONV-ACT)</td>
</tr>
<tr>
<td>CONVHLD</td>
<td>EXCL</td>
</tr>
<tr>
<td>INOP</td>
<td>LOCK</td>
</tr>
<tr>
<td>LOOPTEST</td>
<td>MFSTEST</td>
</tr>
<tr>
<td>NOIN</td>
<td>NOOUT</td>
</tr>
<tr>
<td>NOQUEUE</td>
<td>NOTOPEN</td>
</tr>
<tr>
<td>PAGE</td>
<td>PRST</td>
</tr>
<tr>
<td>PSTOPPED</td>
<td>PUR</td>
</tr>
<tr>
<td>RESP</td>
<td>RESPINP</td>
</tr>
<tr>
<td>SIGN</td>
<td>STOPPED</td>
</tr>
<tr>
<td>TEST</td>
<td>TKOTRA</td>
</tr>
<tr>
<td>TRA</td>
<td></td>
</tr>
</tbody>
</table>

Examples

This example shows the display of all physical terminals that are being traced.

Entry ET:

/DISPLAY PTERM TRA

Response ET:

LIN/PTYPE TYPE ADDR RECD ENQCT DEQCT QCT SENT IMS1
2-1 RDR/PTR **** 0 0 0 0 0 STOPPED INOP NOTOPEN TRA
*13128/111659*

/DISPLAY Q command

Use the /DISPLAY Q command to display the message queues according to classes and priority levels.

Subsections:

- “Environment”
- “Syntax” on page 597
- “Keywords” on page 597
- “Examples” on page 597

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

Table 260. Valid environments for the /DISPLAY Q command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/DISPLAY</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>BALGRP</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CLASS</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Q</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PRIORITY</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Table 260. Valid environments for the /DISPLAY Q command and keywords (continued)

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRANSACTION</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
►► /DISPLAY
►► /DIS

- CLASS cls#
- BALGRP
- PRIORITY prty#
- ALL
- QCNT
- TRANSACTION
```

Keywords

The following keywords can be specified for the /DISPLAY Q command:

**BALGRP**
Displays queue counts of the Fast Path load balancing group queues.

**CLASS**
Displays queues for specified classes.

**PRIORITY**
Displays queues for specified priorities.

**QCNT**
Specifies that global queue count information is to be displayed for Fast Path load balancing groups. If QCNT is not specified, only local queue counts are displayed; when it is specified, no local queue counts are displayed.

This keyword is valid only in a shared-queues environment.

**TRANSACTION**
Displays queues for transactions that are ready to run. DFSCPIC is displayed as psbname for CPI Communications driven transactions that have not issued a DL/I call to allocate a PSB.

Combinations of the CLASS, PRIORITY, and TRANSACTION keywords enable classes, priority levels within classes, transactions within priority levels, and message counts to be displayed on an as-needed basis.

Examples

The following are examples of the /DISPLAY Q command.

**Example 1 for /DISPLAY Q command**

Entry ET:
```
/DISPLAY Q
```

Response ET:
**Explanation:** In a shared-queues environment, the DEQ COUNT column shows the number of messages processed by the local IMS. This can be a message that is entered by the local IMS system or a sharing IMS system in the IMSplex.
Response ET:

```
CLS PTY MSG CT TRAN CT
4 10 18 3
*90253/1104016
```

Entry ET:

```
/DISPLAY Q CLASS 4 PRIORITY 10
```

Response ET:

```
CLS PTY MSG CT TRAN CT
4 10 18 3
90309/122418
```

Entry ET:

```
/DISPLAY Q TRANSACTION
```

Response ET:

```
CLS PTY MSG CT TRAN PSBNAME
3 10 3 CLOSE DFSSAM05
4 10 2 ADDPART DFSSAM04
4 10 4 PART DFSSAM02
5 7 1 ADDINV DFSSAM04
5 10 5 DLETINV DFSSAM04
90243/110324
```

Entry ET:

```
/DISPLAY Q CLASS 3 5 TRANSACTION
```

Response ET:

```
CLS PTY MSG CT TRAN PSBNAME
3 10 3 CLOSE DFSSAM05
5 7 1 ADDINV DFSSAM04
5 10 5 DLETINV DFSSAM04
90243/110332
```

Entry ET:

```
/DISPLAY Q CLASS 4 PRIORITY 10 11 TRANSACTION
```

Response ET:

```
CLS PTY MSG CT TRAN PSBNAME
4 10 2 ADDPART DFSSAM04
4 10 4 PART DFSSAM02
90243/110343
```

Entry ET:

```
/DISPLAY Q CLASS 1 2 3 PRIORITY 1
```

Response ET:

```
CLS PTY MSG CT TRAN CT
1 1 2 1
2 1 2 1
3 1 4 1
90253/104321
```

*Example 2 for /DISPLAY Q command*
/DISPLAY QUEUE TRANSACTION

Response ET:

<table>
<thead>
<tr>
<th>CLS</th>
<th>PTY</th>
<th>MSG</th>
<th>CT</th>
<th>TRAN</th>
<th>PSBNAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>5</td>
<td>2</td>
<td>TPN1</td>
<td>DFSCPIC</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>5</td>
<td>TPN2</td>
<td>SAAPSB1</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3</td>
<td>7</td>
<td>TPN3</td>
<td>SAAPSB2</td>
<td></td>
</tr>
</tbody>
</table>

*90332/114253*

/DISPLAY QCNT command

Use the /DISPLAY QCNT command to display global queue information for the specified resource type.

The resource type can be APPC, BALGRP, LTERM, OTMA, REMOTE, or TRANSACTION. This command displays all the queues for the resource type with at least one message whose message age is greater than the message age value specified.

The /DISPLAY QCNT OTMA command displays the global queue counts for all OTMA outbound queues, including those messages that are queued on a transaction pipe that is defined to a super member. Instead of displaying the queue name that was used to queue the OTMA output messages, the character string 'TMSTMP-' is displayed. If the member is a regular member, the IMS ID of the IMS to which the messages have affinity is displayed following the 'TMSTMP-' character string. If the member is a super member, the IMS ID field is left blank since messages queued to the super member do not have affinity to any IMS.

This count represents the message counts of messages that can be processed by the IMS system where the command is issued. This count includes messages that can be processed by any IMS system (messages with no affinity), plus messages that can be processed by the IMS system where the command is issued (messages with an affinity to the IMS system that issued the command).

Subsections:
- “Environment”
- “Syntax” on page 601
- “Keywords” on page 601
- “Usage notes” on page 602
- “Equivalent IMS type-2 commands” on page 602
- “Output fields” on page 602
- “Examples” on page 603

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/DISPLAY</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>APPC</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>BALGRP</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Table 261. Valid environments for the /DISPLAY QCNT command and keywords (continued)

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTERM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MSGAGE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OTMA</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QCNT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>REMOTE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TRANSACTION</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
/DISPLAY QCNT
```

Keywords

The following list describes the resource types allowed:

**APPC**
- Specifies that global information for all APPC outbound queues is to be displayed.
  - For messages that are placed on the shared queues using a side information entry name, the side information entry name is returned in the LUNAME field and the character string, DFSSIDE, is returned in the TPNAME field.

**BALGRP**
- Specifies that global information for LTERMs and MSNAMEs is to be displayed.

**LTERM**
- Specifies that global information for LTERMs and MSNAMEs is to be displayed.

**MSGAGE**
- Specifies the message age in number of days (0-365). Only those queues with messages older than or equal to the value are displayed. The resource name and the time when the message was placed on the shared queues are displayed.
  - If you specify MSGAGE 0, all resources (queues) are displayed.

**OTMA**
- Specifies that global information for all OTMA outbound queues is to be displayed.

**REMOTE**
- Specifies that global information for remote transactions and remote LTERMs is to be displayed.
TRANSACTION
Specifications that global information for transactions is to be displayed, not including transactions that are suspended.

Usage notes
This command is valid only in a shared-queues environment.

Recommendation: When you issue this command, IMS reads every message for the resource type. To minimize the performance impact, issue this command only when necessary.

Equivalent IMS type-2 commands
The following table shows variations of the /DISPLAY QCNT command and the IMS type-2 commands that perform similar functions.

Table 262. Type-2 equivalents for the /DISPLAY QCNT command

<table>
<thead>
<tr>
<th>Task</th>
<th>/DISPLAY QCNT command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays lterms with messages that are older than the specified age (shared queues).</td>
<td>/DISPLAY QCNT LTERM MSGAGE x QUERY LTERM MSGAGE(x)</td>
<td></td>
</tr>
</tbody>
</table>

Output fields
The output fields are displayed by the /DISPLAY QCNT command:

**QUEUENAME**
1-8 byte queue name.
If the output is the result of a /DISPLAY QCNT APPC MSGAGE or a /DISPLAY QCNT OTMA MSGAGE command, the value displayed for the queue name is the character string 'TMSTMP' followed by the IMSID (or the first seven bytes of the RSENAME if XRF capable) of the IMS to which the output messages have affinity.

**QCNT-TOTAL**
Total count of messages on the queue.

**QCNT-AGED**
Count of messages with a message age greater than or equal to the message age specified. This count does not include messages whose age is less than the message age specified.

**TSTMP-OLD**
The time stamp of the oldest message for the queue name on the shared queue.

**TSTMP-NEW**
The time stamp of the newest message for the queue name on the shared queue.

Note: The time stamp is the time when the message is put on the shared queues by CQS. These time stamps can be used to select records from the CQS log or the IMS log. Because this is a CQS generated time stamp, it might not correspond to the time stamp for the same message on the IMS log as logging a message in IMS and logging the same message in CQS are separate events.
Examples

The following are examples of the /DISPLAY QCNT command.

Example 1 for the /DISPLAY QCNT command

Entry ET:

/DISPLAY QCNT LTERM MSGAGE 5

Response ET:

<table>
<thead>
<tr>
<th>QUEUENAME</th>
<th>QCNT-TOTAL</th>
<th>QCNT-AGED</th>
<th>TSTMP-OLD</th>
<th>TSTMP-NEW</th>
</tr>
</thead>
<tbody>
<tr>
<td>TESTLITEA</td>
<td>1</td>
<td>1</td>
<td>95280/132006</td>
<td>95280/132006</td>
</tr>
<tr>
<td>LTERMABC</td>
<td>4</td>
<td>4</td>
<td>95274/083000</td>
<td>95275/091836</td>
</tr>
<tr>
<td>LTERMMA</td>
<td>100</td>
<td>100</td>
<td>95275/080000</td>
<td>95281/212224</td>
</tr>
</tbody>
</table>

*95290/132006*

Example 2 for the /DISPLAY QCNT command

Entry ET:

/DIS QCNT APPC MSGAGE 0

Response ET:

<table>
<thead>
<tr>
<th>QUEUENAME</th>
<th>QCNT-TOTAL</th>
<th>QCNT-AGED</th>
<th>TSTMP-OLD</th>
<th>TSTMP-NEW</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMSTMP- SYS3</td>
<td>16</td>
<td>16</td>
<td>02192/080833</td>
<td>02192/080928</td>
</tr>
<tr>
<td>LUNAME: L62MVS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPNAME: TPNAME123</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMSTMP- IMS2</td>
<td>12</td>
<td>12</td>
<td>02192/080620</td>
<td>02192/080658</td>
</tr>
<tr>
<td>LUNAME: NETWKID.L62IMS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPNAME: ABCDEFGHIJKLMNOPQRSTUVWXYZ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*02192/081543*

Example 3 for the /DISPLAY QCNT command

Entry ET:

/DISPLAY QCNT TRANSACTION MSGAGE 5

Response ET:

<table>
<thead>
<tr>
<th>QUEUENAME</th>
<th>QCNT-TOTAL</th>
<th>QCNT-AGED</th>
<th>TSTMP-OLD</th>
<th>TSTMP-NEW</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRANA</td>
<td>20</td>
<td>20</td>
<td>95200/132006</td>
<td>95200/132006</td>
</tr>
<tr>
<td>TRANBBBB</td>
<td>4</td>
<td>4</td>
<td>95274/083000</td>
<td>95275/091836</td>
</tr>
<tr>
<td>TRANSACA</td>
<td>220</td>
<td>220</td>
<td>95275/080000</td>
<td>95281/212224</td>
</tr>
<tr>
<td>TRANSDDD</td>
<td>13</td>
<td>0</td>
<td>95290/101455</td>
<td>95290/101456</td>
</tr>
<tr>
<td>TRANSEE</td>
<td>55</td>
<td>13</td>
<td>95277/152118</td>
<td>95290/114317</td>
</tr>
</tbody>
</table>

*95290/132006*

Example 4 for the /DISPLAY QCNT command

Entry ET:

/DIS QCNT OTMA MSGAGE 0

Response ET:

<table>
<thead>
<tr>
<th>QUEUENAME</th>
<th>QCNT-TOTAL</th>
<th>QCNT-AGED</th>
<th>TSTMP-OLD</th>
<th>TSTMP-NEW</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMSTMP- SYS3</td>
<td>24</td>
<td>24</td>
<td>05038/083745</td>
<td>05038/083745</td>
</tr>
<tr>
<td>TMEMBER: HWS003</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPIPE: TPIPE1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMSTMP-</td>
<td>2</td>
<td>2</td>
<td>05038/084022</td>
<td>05038/084022</td>
</tr>
<tr>
<td>TMEMBER: SM01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPIPE: TPIPE1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMSTMP-</td>
<td>5</td>
<td>5</td>
<td>05038/092537</td>
<td>05038/092537</td>
</tr>
</tbody>
</table>

Chapter 26. /DISPLAY commands 603
Explanation: In this example, 24 messages are queued on TPIPE1 for member HWS003. For super member SM01, two messages are queued on TPIPE1, five messages are queued on TPIPE, and sixteen messages are queued on TPIPE3.

Example 5 for the /DISPLAY QCNT command

Entry ET:
/DIS QCNT LTERM MSGAGE 0 EMHQ

Response ET:

<table>
<thead>
<tr>
<th>QUEUE</th>
<th>QCNT</th>
<th>QCNT-AGED</th>
<th>TSTMP-OLD</th>
<th>TSTMP-NEW</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYS3</td>
<td>1</td>
<td>1</td>
<td>04309/103912</td>
<td>04309/103912</td>
</tr>
<tr>
<td>IMSUS01</td>
<td>1</td>
<td>1</td>
<td>04309/105127</td>
<td>04309/105127</td>
</tr>
<tr>
<td><em>04310/132127</em></td>
<td>1</td>
<td>1</td>
<td>04309/105127</td>
<td>04309/105127</td>
</tr>
</tbody>
</table>

Related reference:

QUERY LTERM command (Commands)

/DISPLAY RECOVERY command

Use the /DISPLAY RECOVERY command to display the recovery process in progress.

It also displays the list of database data sets and areas being recovered by an online database recovery service. The database data sets and areas are displayed as part of a recovery list, which is a set of database data sets, areas, or both processed by an online database recovery service in a single recovery instance. The /DISPLAY RECOVERY command also shows the status of one or all of the recovery lists that exist.

Subsections:
- “Environment”
- “Syntax” on page 605
- “Keywords” on page 605
- “Usage notes” on page 605
- “Recovery list information” on page 605
- “Recovery progress information” on page 606
- “Recovery list entry information” on page 607
- “Output fields” on page 607
- “Examples” on page 607

Environment

The /DISPLAY RECOVERY command is valid in DB/DC and DBCTL environments.
Syntax

/DISPLAY RECOVERY
   ALL
   RCVTOKEN token

Keywords

The following keywords can be specified for the /DISPLAY RECOVERY command:

ALL
   An optional parameter that displays all the recovery list information and the recovery progress information. No recovery list entry information is displayed.

RCVTOKEN
   An optional parameter that displays the recovery token associated with the specific recovery list. The recovery list information and recovery progress information for the specific list display with the recovery list entry information, including the database data set and areas contained in the recovery list.

   token
   Specifies the unique recovery token associated with the recovery list. This token can be up to eight characters in length. If RCVTOKEN is specified, token must be supplied.

Usage notes

If an online database recovery service is executing in an IMS DB/DC control region, the /DISPLAY RECOVERY command can be issued from LTERMs, automated operator (AO) application programs, the IMS Master Terminal (MTO), or the z/OS master console and secondary console.

If an online database recovery service is running in an IMS DBCTL region, the /DISPLAY RECOVERY command can be issued by programs using the IMS DBCTL AOI or the z/OS master console and secondary console.

Recovery list information

This section displays the status of one or more recovery lists. The status includes the following information:

TOKEN
   This shows the recovery list token. If /DIS RECOVERY ALL is issued and no recovery lists exist, NO LISTS is displayed. If IMS is unable to obtain recovery list information from the recovery facility, UNA.VAIL is displayed.

STATUS
   The current status of the recovery list. The status is one of the following:

   FORMING
      A /RECOVER START command has not been issued.

   STARTED
      A /RECOVER START command has been issued. Recovery processing started but has not completed.

   UNKNOWN
      No list with the given token can be found.
STOPPING
A /REC STOP ALLENT command was issued.

ERROR
The choices are ABORT or CONT. These are the action options in case an error is encountered.

REC TYPE
Indicates the type of recovery being processed. The type is one of the following:
- FULL: A full recovery is processing.
- TSR: A time stamp recovery is processing. This occurs when RCVTIME was specified on the /RECOVER START command, but PITR was not specified.
- PITR: A time-stamp recovery is processing with the point-in-time recovery (PITR) option. This occurs when RCVTIME is specified on the /RECOVER START command with PITR.
- N/A: Recovery has not been started. The type is undefined.

PROC
The values that may appear reflect the recovery progress in two phases of processing: reading log data sets and restoring image copy data. The format of the entries are as follows:
- nnnn of mmmm LOGS READ
- nnnn of mmmm RESTORED
- COMPLETE - this state will only appear for a few seconds following the completion of restoration of the last DBDS and termination of the recovery list.
- NOT STARTED - The recovery list is ready for processing or for additional updates.
- routing time - if an online database recovery service is being used.

IC#
Indicates the primary image copy will be used if an image copy is to be used during recovery.

SOURCE
The primary copy as contained in the RECON is used for recovery.

Recovery progress information

This section displays status of the recovery in progress, if there is one. The section is omitted if no recovery is in progress. The status includes the following information:
- TOKEN: The recovery list token.
- LAST PROCESSED: The time stamp of the last log record processed by the recovery. The time is displayed in local time.
- RCVTIME: The RCVTIME value specified on the /RECOVER START command or N/A if none was specified. The time is displayed in local time.
Recovery list entry information

This section displays the list of database data sets and areas in the given recovery list. The status includes the following information:

**DATABASE DATA SET**
For full function, this is the DB name and DD name of the database data set. For Fast Path, it is the area name. If there are multiple area data sets for the area, the string '(MADS)' will also be displayed.

**START OPTION**
This shows the start option that was specified on the /RECOVER ADD or /RECOVER START command or taken from the system default. The values can be STALOCAL, STAGLOBAL, or OFFLINE.

**STATUS**
This indicates the status of the database data set or area. The status can be one of the following:

- **FAILED**
  An error occurred for this database data set or area during recovery.

- **STOPPED**
  A /RECOVER STOP command was entered to stop recovery processing for the database data set or area.

- **NORMAL**
  Recovery is in progress or pending for the database data set or area.

- **INVALID**
  DBRC no longer contains information about this database data set or area.

**AUTH SSID**
A list of SSIDs that are still authorized to the database data set or area. NONE displays if no IMS is authorized to the database data set or area. If recovery is in progress, N/A displays.

**Output fields**

The /DISPLAY RECOVERY command output is divided into three sections.

- Recovery List Information
- Recovery Progress Information
- Recovery List Entry Information

**Examples**

The following are examples of the /DISPLAY RECOVERY command.

*Example 1 for /DISPLAY RECOVERY command*

In this example, a /DISPLAY RECOVERY command is issued before a /RECOVER START for RCVTOKEN RECOV1 is issued.

Entry ET:

```
/DISPLAY RECOVERY RCVTOKEN RECOV1
```
Example 2 for /DISPLAY RECOVERY command

In Example 2, a /DISPLAY RECOVERY command is issued before a /RECOVER START for RCVTOKEN RECOV1 is issued. Some of the database data sets in the recovery list are still authorized to two IMS systems.

Entry ET:

/DISPLAY RECOVERY RCVTOKEN RECOV1

Response ET:

**** RECOVERY LIST INFORMATION ***********************
TOKEN STATUS ERROR- REC TYPE PROC IC# SOURCE
RECOV1 FORMING N/A N/A N/A N/A
**** RECOVERY LIST ENTRY INFORMATION *********************
DATABASE DATA SET START OPTION STATUS AUTH SSID
DB23AR1 STAGLOBAL NORMAL NONE
DB23AR2 OFFLINE NORMAL NONE
DB23AR3 STAGLOBAL NORMAL NONE
DB23AR4 STALOCAL NORMAL NONE
DB23AR5 STALOCAL NORMAL NONE
DHVNTZ02 HIDAM STAGLOBAL NORMAL IMS1 IMS2
DIVNTZ02 DBHVSAM1 OFFLINE NORMAL IMS1 IMS2
DXVNTZ02 XDLBT04I STALOCAL NORMAL IMS1 IMS2
*03127/153515*

Example 3 for /DISPLAY RECOVERY command

In this example, a /DISPLAY RECOVERY command is issued after a /RECOVER START RCVTOKEN RECOV1 ERRORCONT command was issued when the IMS Database Recovery Facility is the recovery product being used. In this case, all logs have been processed and three of the eight data sets have been restored.

Entry ET:

/DISPLAY RECOVERY RCVTOKEN RECOV1

Response ET:

**** RECOVERY LIST INFORMATION ***********************
TOKEN STATUS ERROR- REC TYPE PROC IC# SOURCE
RECOV1 FORMING N/A N/A N/A N/A
**** RECOVERY LIST ENTRY INFORMATION *********************
DATABASE DATA SET START OPTION STATUS AUTH SSID
DB23AR1 STAGLOBAL NORMAL IMS1 IMS2
DB23AR2 OFFLINE NORMAL IMS1 IMS2
DB23AR3 STAGLOBAL NORMAL IMS1 IMS2
DB23AR4 STALOCAL NORMAL IMS1 IMS2
DB23AR5 STALOCAL NORMAL IMS1 IMS2
DHVNTZ02 HIDAM STAGLOBAL NORMAL IMS1 IMS2
DIVNTZ02 DBHVSAM1 OFFLINE NORMAL IMS1 IMS2
DXVNTZ02 XDLBT04I STALOCAL NORMAL IMS1 IMS2
*03127/153515*
Example 4 for /DISPLAY RECOVERY command

In the following example, a /DISPLAY RECOVERY command is issued after a /RECOVER START ERRORCONT command was issued. Also a /RECOVER STOP command was issued for DHVNTZ02, and DB23AR2 failed during a recovery.

Entry ET:
/DISPLAY RECOVERY RCVTOKEN RECOV1

Response ET:

**** RECOVERY LIST INFORMATION *********************
TOKEN         STATUS  ERROR- REC TYPE  PROC  IC#  SOURCE
RECOV1        STARTED  CONT  FULL  RTDB  0    PRI

**** RECOVERY PROGRESS INFORMATION *********************
TOKEN         PROGRESS INFORMATION  RCVTIME
RECOV1        2000.251  07:57:00.3  N/A

**** RECOVERY LIST ENTRY INFORMATION *********************
DATABASE DATA SET  START OPTION  STATUS  AUTH  SSID
DB23AR1        STAGLOBAL  NORMAL  N/A
DB23AR2        OFFLINE     FAILED  N/A
DB23AR3        STAGLOBAL  NORMAL  N/A
DB23AR4        STALOCAL   NORMAL  N/A
DB23AR5        STALOCAL   NORMAL  N/A
DHVNTZ02       HIDAM     STAGLOBAL STOPPED N/A
DIVNTZ02       DBHVSAM1 OFFLINE  NORMAL  N/A
DXVNTZ02       XDLBT04I STALOCAL NORMAL  N/A  *03127/153515*

Example 5 for /DISPLAY RECOVERY command

In this example, a /DISPLAY RECOVERY ALL command is issued after three lists are created using the IMS Database Recovery Facility recovery product. In this case, the IMS Database Recovery Facility has processed 76 of the 126 logs that will need to be read. One of the lists (RECOV2) is undergoing TSR.

Entry ET:
/DISPLAY RECOVERY ALL

Response ET:

**** RECOVERY LIST INFORMATION *********************
TOKEN         STATUS  ERROR- REC TYPE  PROC  IC#  SOURCE
RECOV1        FORMING   N/A     N/A     N/A     N/A
RECOV2        STARTED  CONT  TSR  RTDB  0    PRI
RECOV3        FORMING   N/A     N/A     N/A     N/A

**** RECOVERY PROGRESS INFORMATION *********************
TOKEN         PROGRESS INFORMATION  RCVTIME
RECOV2        0076 OF 0125 LOGS READ  2003.127 08:30:00.0

**** RECOVERY LIST ENTRY INFORMATION *********************
DATABASE DATA SET  START OPTION  STATUS  AUTH  SSID
DB23AR1        STAGLOBAL  NORMAL  N/A
DB23AR2        OFFLINE     NORMAL  N/A
DB23AR3        STAGLOBAL  NORMAL  N/A

Chapter 26. /DISPLAY commands  609
Example 6 for /DISPLAY RECOVERY command

In this example, a /DISPLAY RECOVERY command is issued after three lists are created. No other parameters are specified.

Entry ET:
/DISPLAY RECOVERY ALL

Response ET:

**** RECOVERY LIST INFORMATION ***********************
TOKEN STATUS ERROR-REC TYPE PROC IC# SOURCE
RECOV1 FORMING N/A N/A N/A N/A
RECOV2 FORMING N/A N/A N/A N/A
RECOV3 FORMING N/A N/A N/A N/A
*03127/153515*

Example 7 for /DISPLAY RECOVERY command

In this example, a /DISPLAY RECOVERY ALL command is issued when no recovery lists exist.

Entry ET:
/DISPLAY RECOVERY ALL

Response ET:

**** RECOVERY LIST INFORMATION ***********************
TOKEN STATUS ERROR-REC TYPE PROC IC# SOURCE
*03127/153515*

**** RECOVERY LIST INFORMATION ***********************
TOKEN STATUS ERROR-REC TYPE PROC IC# SOURCE
NO LISTS
*03127/153515*

Example 8 for /DISPLAY RECOVERY command

In this example, a /DISPLAY RECOVERY RCVTOKEN RECOV3 is issued when the RCVTOKEN does not exist.

Entry ET:
/DISPLAY RECOVERY RCVTOKEN RECOV3

Response ET:

**** RECOVERY LIST INFORMATION ***********************
TOKEN STATUS ERROR-REC TYPE PROC IC# SOURCE
**** RECOVERY LIST INFORMATION ***********************
TOKEN STATUS ERROR-REC TYPE PROC IC# SOURCE
RECOV3 UNKNOWN N/A N/A *03127/153515*
/DISPLAY RTCODE command

Use the /DISPLAY RTCODE command to display the status of Fast Path routing codes, the PSB using the routing code, and the region, if any.

Subsections:
• “Environment”
• “Syntax”
• “Equivalent IMS type-2 commands”
• “Output fields”
• “Examples”

Environment

The /DISPLAY RTCODE command is valid in DB/DC and DCCTL environments.

Syntax

![Syntax diagram]

Equivalent IMS type-2 commands

The following table shows variations of the /DISPLAY RTC command and the IMS type-2 commands that perform similar functions.

<table>
<thead>
<tr>
<th>Task</th>
<th>/DISPLAY RTC command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays information about one or more Fast Path routing codes.</td>
<td>/DISPLAY RTC rtcname1...rtcnamen</td>
<td>QUERY RTC NAME(rtcname1,...rtcnamen</td>
</tr>
<tr>
<td></td>
<td>ALL</td>
<td>SHOW(ALL)</td>
</tr>
</tbody>
</table>

Output fields

The status displayed can be one of the following:

NOTINIT
NOTSCHED
STOPPED

Examples

Entry ET:

/Display RTCODE ALL

Response ET:

<table>
<thead>
<tr>
<th>RCTCODE</th>
<th>PROGRAM</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCL</td>
<td>EMHP5B</td>
<td>NOTSCHED,STOPPED</td>
</tr>
<tr>
<td>EMHC0BOL</td>
<td>EMHC0BOL</td>
<td>NOTSCHED,STOPPED</td>
</tr>
<tr>
<td>EMHPLI</td>
<td>EMHPLI</td>
<td>NOTSCHED,STOPPED</td>
</tr>
</tbody>
</table>
Related reference:
- QUERY RTC command (Commands)

### /DISPLAY SHUTDOWN STATUS command

Use the /DISPLAY SHUTDOWN STATUS command to display system activity during a shutdown type of checkpoint.

Subsections:
- "Environment"
- "Syntax"
- "Usage notes"
- "Output fields" on page 613
- "Examples" on page 615

### Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/DISPLAY</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SHUTDOWN STATUS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>STATUS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

### Syntax

```
/DISPLAY SHUTDOWN STATUS
```

### Usage notes

When issuing the /DISPLAY SHUTDOWN STATUS command from a specific environment (such as DBCTL), only the information that is valid for that environment is displayed. For example, in a DBCTL environment, only the number of IMS threads is displayed.

In an LU 6.2 environment, the /DISPLAY SHUTDOWN STATUS command indicates the dependent regions that have active CPI Communications driven transaction programs. These regions must be terminated before shutdown is completed. In addition, the command also displays LU 6.2 conversations that hang the shutdown processing.

In a shared-queues environment, the /DISPLAY SHUTDOWN STATUS command displays the CQS job name that needs to be restarted if IMS shutdown hangs because CQS is inactive.
If a /DISPLAY SHUTDOWN STATUS command is issued while a database is being recovered with the Online Recovery Services, the response DB RECOVERY IN PROGRESS is returned in addition to the other responses. The /DISPLAY SHUTDOWN STATUS command displays a line with the count of active and indoubt ODBA threads that are active.

One of the following commands can be used to close the VTAM node:
- /CHECKPOINT (except simple checkpoint)
- /CLSDST
- /IDLE NODE (only after a /CLDST command has been tried first)
- /QUIESCE (for session type 6 nodes only)
- /STOP NODE

The /STOP DC command or the /CHECKPOINT (other than simple checkpoint) command can be issued to close the VTAM ACB.

If a checkpoint purge is in progress and messages are in the output queues, an orderly shutdown can be initiated by entering the /CLSDST command or the /STOP command. This allows termination after the next output message is sent, but might be insufficient for display terminals or terminals in input mode. If a node is hung, the following can be done:
1. A /CLSDST FORCE command can be issued.
2. If that fails, then the /IDLE command can be issued.

If any messages are queued for PTERM1 (system console) or the master terminal, they must be requested and received before the purge is completed. The /STOP and /IDLE commands are ineffective against these terminals. When using ISC parallel sessions, one line of information is displayed for each applicable session of the node. The user name is also displayed.

In addition to /DISPLAY SHUTDOWN STATUS command, use the following commands to get more information during shutdown:
- Use /DISPLAY CCTL command for all coordinator controllers.
- Use /DISPLAY UOR command for displaying status information about units of work for protected resources that are managed by z/OS Resource Recovery Services (RRS).

**Output fields**

The status displayed when the /DISPLAY SHUTDOWN STATUS command is issued can include the following information:

```
COMMIT x TMEMBER=membername TPIPE=tpipename
```

The commit mode for the transaction and which OTMA client (member) and TPIPE is currently in progress and thus preventing completion of shutdown. COMMIT x can be either of the following:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Commit-Then-Send</td>
</tr>
<tr>
<td>1</td>
<td>Send-Then-Commit</td>
</tr>
</tbody>
</table>

**Master Terminal Status**

The following text is displayed for the primary master, secondary master, or system console:
ACTIVE indicates the terminal is in the following states:

OPERABLE
ALLOWING INPUT
ALLOWING OUTPUT
NOT STOPPED FOR QUEUEING
NOT LOCKED
NOT IN TEST MODE

MESSAGES WAITING indicates that there are system messages (Q3) waiting to be sent, thus preventing shutdown from completing.

**MSG-IN x MSG-OUT y**

The message totals, where x is the total number of input messages and y is the total number of output messages.

**ONLINE CHANGE IN PROGRESS**

Online change was initiated with the /MODIFY PREPARE command or the INITIATE OLC PHASE(PREPARE) command.

**OTMA PHASE=x**

The current phase of IMS Open Transaction Manager Access (OTMA) processing. The shutdown phases are:

1. OTMA shutdown processing has begun.
2. Dependent regions have terminated. DFS1970 messages have been sent to OTMA clients for all inflight Send-then-Commit (commit mode 1) transactions.
3. OTMA is waiting for termination of all client-processing-related activities.
4. OTMA shutdown is complete.

**SYSTEM PURGING**

The checkpoint is the result of a /CHECKPOINT PURGE command.

**TERMINAL USER STATUS**

The header for the portion of the display output that shows active terminals, whose status can be one of the following:

- INPUT IN PROCESS
- OUTPUT IN PROCESS
- AWAITING RESPONSE
- XX MSGS IN QUEUE

If there is no terminal activity, the status can be one of the following:

- NO INPUTTING LINES
- NO OUTPUTTING LINES

If the system-defined MSC LNB is active, the following message is displayed:

- LINK SYS OUTPUT IN PROCESS

**xx MSG PROCESSING REGION(S) ACTIVE**

Where xx is the number of BMP, TP, and FP regions that are active. If the checkpoint has already been posted, this is the only status displayed.

For DBCTL, a count of active CCTL threads is included.
*** ODBA THREADS, yyy INDOUBT ODBA THREADS ACTIVE
Where xxx is the number of active ODBA threads and yyy is number of indoubt ODBA threads active in the system

xxxxxxxx PROCESSING REGION(S) ACTIVE
Active regions, where xxxxxxx is one of the following types:
- BMP MSG
- TP MSG
- FP

If status of a line or link shows input or output in progress and immediate shutdown is desired, the /IDLE command can be used.

Examples
The following are examples of the /DISPLAY SHUTDOWN STATUS command.

Example 1 for /DISPLAY SHUTDOWN STATUS command

Entry ET:
/DISPLAY SHUTDOWN STATUS

Response ET:
DFS134 SHUTDOWN CHECKPOINT NOT IN PROGRESS,
CANNOT PROCESS COMMAND

Entry ET:
/DISPLAY SHUTDOWN STATUS

Response ET:
SYSTEM PURGING
TERMINAL USER STATUS
5-  1  INPUT IN PROCESS
5-  2  INPUT IN PROCESS
11-  1  OUTPUT IN PROCESS
TERMINAL USER STATUS
LINK 10  OUTPUT IN PROCESS
  MSG-IN 2  MSG-OUT 2
MASTER ACTIVE
*91111/222226*

Entry ET:
/DISPLAY SHUTDOWN STATUS

Response ET:
TERMINAL USER STATUS
NSLUTP6  SPOOLA  AWAITING RESPONSE
NSLUTP6  SPOOLB  5 MSGS IN QUEUE
NSLUTP6  SPOOLC  INPUT IN PROCESS
NSLUTP6  SPOOLD  OUTPUT IN PROCESS
*91111/222226*

Example 2 for /DISPLAY SHUTDOWN STATUS command

Entry ET:
/DISPLAY SHUTDOWN STATUS
Response ET:

TERMINAL USER STATUS
  5-  1   INPUT IN PROCESS
  5-  2   INPUT IN PROCESS
 11-  1   OUTPUT IN PROCESS

TERMINAL USER STATUS
LINK 10 OUTPUT IN PROCESS
  MSG-IN  2   MSG-OUT  2

MASTER ACTIVE
CPI TRAN TRNCODE1 ACTIVE IN REGID 1
CPI TRAN TRNCODE2 ACTIVE IN REGID 4
IMSLU=L62IMS  #APPC-CONV=     8 ENABLED

LUNAME STATUS
LUNAME1     3 CONVERSATIONS(S) IN PROCESS
LUNAME1     1 OUTPUT IN PROCESS
LUNAME2     4 CONVERSATIONS(S) IN PROCESS

*90332/114253*

Entry ET:

/DISPLAY SHUTDOWN STATUS

Response ET:

TERMINAL SUBPOOL STATUS
  5-  1   INPUT IN PROCESS
  5-  2   INPUT IN PROCESS
 11-  1   OUTPUT IN PROCESS

TERMINAL SUBPOOL STATUS
LINK 10 OUTPUT IN PROCESS
  MSG-IN  2   MSG-OUT  2

MASTER ACTIVE
CPI TRAN TRNCODE1 ACTIVE IN REGID 1
CPI TRAN TRNCODE2 ACTIVE IN REGID 4
IMSLU=SYS1.IMSLUNME  #APPC-CONV=     8 ENABLED

LUNAME STATUS
NETWORK1.LUNAME1  3 CONVERSATION(S) IN PROCESS
NETWORK2.LUNAME1  1 OUTPUT IN PROCESS
NID2.LUNAME2     4 CONVERSATION(S) IN PROCESS

*92232/114253*

Example 3 for /DISPLAY SHUTDOWN STATUS command

Entry ET:

/DISPLAY SHUTDOWN STATUS

Response ET:

TERMINAL USER STATUS
  1-  1   INPUT IN PROCESS

TERMINAL USER STATUS
NO OUTPUTTING LINES
  MSG-IN  1   MSG-OUT  0

MASTER ACTIVE
OTMA PHASE=2
COMMIT 0 TMEMBER=CLIENT1  TPIPE=TPIPE1

*94298/174604*

Example 4 for /DISPLAY SHUTDOWN STATUS command

Entry ET:

/DISPLAY SHUTDOWN STATUS

Response ET:
/DISPLAY STATUS command

Use the /DISPLAY STATUS command to display the output for all the IMS resources.

Subsections:
- “Environment”
- “Syntax” on page 618
- “Usage notes” on page 618
- “Equivalent IMS type-2 commands” on page 619
- “Output fields” on page 620
- “Examples” on page 621

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/DISPLAY</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CLASS</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DATABASE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LINE</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>LINK</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LTERM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Example 5 for /DISPLAY SHUTDOWN STATUS command

Entry ET:

/DISPLAY SHUTDOWN STATUS

Response ET:

TERMINAL USER STATUS
1- 1 INPUT IN PROCESS
TERMINAL USER STATUS
NO OUTPUTTING LINES
  MSG-IN 1 MSG-OUT 0
PRIMARY MSTR SECOND MSTR ACTIVE, MESSAGES WAITING
IMSLU=N/A.N/A #APPC-CONV= 0 DISABLED
OTMA PHASE=0
0 ODBA THREADS, 1 INDOUBT ODBA THREADS ACTIVE
*06031/135629*

Example 5 for /DISPLAY SHUTDOWN STATUS command

Entry ET:

/DISPLAY SHUTDOWN STATUS

Response ET:

TERMINAL USER STATUS
1- 1 INPUT IN PROCESS
TERMINAL USER STATUS
LINK SYS OUTPUT IN PROCESS
  MSG-IN 1 MSG-OUT 1
MASTER ACTIVE
IMSLU=L62IMS #APPC-CONV= 3 PURGING
LUNAME STATUS
IMSNES.L62MVS1 3 CONVERSATION(S) IN PROCESS
OTMA PHASE=0
*04292/112920*

/DISPLAY STATUS command

Use the /DISPLAY STATUS command to display the output for all the IMS resources.

Subsections:
- “Environment”
- “Syntax” on page 618
- “Usage notes” on page 618
- “Equivalent IMS type-2 commands” on page 619
- “Output fields” on page 620
- “Examples” on page 621

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/DISPLAY</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CLASS</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DATABASE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LINE</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>LINK</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LTERM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Table 265. Valid environments for the /DISPLAY STATUS command and keywords (continued)

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUNAME</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSNAME</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROGRAM</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PTERM</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTCODE</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STATUS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TMEMBER</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRANSACTION</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Syntax

```
/DISPLAY STATUS
```

Usage notes

Any combination of the indicated keywords can be used to display the associated resources. If no exceptional conditions are found for any of the resources specified by the individual keywords, STATUS UNRESTRICTED is displayed.

For Fast Path databases, the /DISPLAY STATUS DATABASE command shows the area and ADS exceptions as well as the database status. Each area with exceptions is displayed on a separate line after the database line. Each ADS with exceptions is displayed on a separate line after the area line.

The /DISPLAY STATUS USER command provides the status of a user. The ALLOC status is followed by the node name to which the user is allocated or signed onto in parenthesis.

**Attention:** In an IMSplex, if NODE, LTERM, or USER is specified with the /DISPLAY STATUS command, it will result in extensive accesses to the Resource Manager for global information, and their use should be carefully considered.
In a DBCTL environment, /DISPLAY STATUS displays only database and program information.

In a DCCTL environment, /DISPLAY STATUS does not display database information.

For /DISPLAY STATUS TRANSACTION, DFSCPIC is displayed as the PSB name for CPI Communications driven transactions that have not issued a DL/I APSB call to allocate a PSB.

A status of NOINIT will appear in the output of a /DISPLAY STATUS TRANSACTION command when IMS is unable to initialize a transaction resource during restart processing.

For a DB/DC RSR tracking subsystem, /DISPLAY STATUS displays only DATABASE, LINE, LTERM, NODE, PTERM, and USER information.

The /DISPLAY STATUS DATABASE and /DISPLAY STATUS commands show the status of online forward recovery (OFR) for those databases in an RSR tracking subsystem that have OFR in progress.

The /DISPLAY STATUS LUNAME command can indicate that a command such as /STO LUNAME ALL INPUT or /STO LUNAME ALL OUTPUT was entered before the /DISPLAY that applies to all future LU 6.2 inbound or outbound conversations.

The /DISPLAY STATUS TMEMBER command displays the IMS Open Transaction Manager Access (OTMA) transaction pipes that are stopped. If a transaction pipe is not stopped, its status is UNRESTRICTED. The command output includes information about stopped transaction pipes that are defined to super members and the super member name if a super member is used to manage the hold queue of a regular member.

**Equivalent IMS type-2 commands**

The following table shows variations of the /DISPLAY STATUS command and the IMS type-2 commands that perform similar functions.

<table>
<thead>
<tr>
<th>Task</th>
<th>/DISPLAY STATUS command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays information about databases with the specified status.</td>
<td>/DISPLAY STATUS DB</td>
<td>QUERY DB STATUS(ALLOCF, ALLOCS,BACKOUT,EEQE, LOCK,NOTINIT,NOTOPEN, OFR,OLR,OPEN,RECALL,RECOV, RNL,STOSCHD,STOUTPD)</td>
</tr>
<tr>
<td>Displays status.</td>
<td>/DISPLAY STATUS LTERM</td>
<td>QUERY LTERM SHOW(STATUS)</td>
</tr>
<tr>
<td>Displays logical terminals with specified status.</td>
<td>/DISPLAY STATUS LTERM</td>
<td>QUERY LTERM STATUS(status) SHOW(STATUS)</td>
</tr>
<tr>
<td>Displays nodes with specified status.</td>
<td>/DISPLAY STATUS NODE</td>
<td>QUERY NODE STATUS(status)</td>
</tr>
<tr>
<td>Displays all programs that have status and what that status is.</td>
<td>/DISPLAY STATUS PGM</td>
<td>QUERY PGM STATUS(DB-NOTAVL, IOPREV,LOCK,NOTINIT, STOSCHD,TRACE)</td>
</tr>
</tbody>
</table>
Table 266. Type-2 equivalents for the /DISPLAY STATUS command (continued)

<table>
<thead>
<tr>
<th>Task</th>
<th>/DISPLAY STATUS command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays all Fast Path routing codes that have status and what that status is.</td>
<td>/DISPLAY STATUS RTC</td>
<td>QUERY RTC STATUS(ACTIVE,NOTINIT, NOTSCHD,STO)</td>
</tr>
<tr>
<td>Displays information about transactions with the specified status.</td>
<td>/DISPLAY STATUS TRANSACTION TRANCODER NAME(tranname) STATUS (IOPREV,LCK,QERR,SUSPEND, STO,Q,STOSCHD,USTO)</td>
<td></td>
</tr>
<tr>
<td>Displays users with specified status.</td>
<td>/DISPLAY STATUS USER</td>
<td>QUERY USER STATUS(status)</td>
</tr>
</tbody>
</table>

Output fields

IMS resources that can be listed by the /DISPLAY STATUS command include resources in the states listed in the following table. The /DISPLAY STATUS command displays only conditions that require operator intervention.

Table 267. /DISPLAY STATUS resource states displayed

<table>
<thead>
<tr>
<th>Resource</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLASS</td>
<td>STOPPED</td>
</tr>
<tr>
<td>DATABASE</td>
<td>ALLOC, BACKOUT, EEQE, INQONLY, LOCK, NOTINIT, NOTOPEN</td>
</tr>
<tr>
<td>DATABASE ADS</td>
<td>PRE-OPEN FAILED, SEVERE-ERROR, UNAVAILABLE, COPY-PHASE, FORMAT-PHASE</td>
</tr>
<tr>
<td>DATABASE AREA</td>
<td>RECOVERY NEEDED, STOPPED</td>
</tr>
<tr>
<td>LINE</td>
<td>IDLE, NOIN, NOOUT, NOQUEUE, NOTOPEN, PSTOPPED, PUR, RESP, RESP-INP, STOPPED</td>
</tr>
<tr>
<td>LINK</td>
<td>ACTV, COLD, ERE, IDLE, NOTIDLE-A, NOTIDLE-B, NOTIDLE-Cxx, NOTOPEN, NRE, N/A, PSTOPPED</td>
</tr>
<tr>
<td>LTERM/MSNAME</td>
<td>LOCK, PSTOPPED, PUR, QERROR, QLOCK, STOPPED</td>
</tr>
<tr>
<td>LUNAME</td>
<td>STO, STO-INP, STO-OUTP</td>
</tr>
<tr>
<td>NODE</td>
<td>CLSDST, CONV-HLD, C1INOP, C2INOP, C3INOP, C4INOP, DEACTIVATED, DISCONNECTED, FORCE, INOP, LOCK, LOST, OPNDST, QUIESCED, RESP, RESP-INP, RESP-INP-FP, RESYNC, SHUT, STOPPED</td>
</tr>
<tr>
<td>PROGRAM</td>
<td>DB-STOPD, I/O PREVENT, LOCK, NOTINIT, STOPPED</td>
</tr>
<tr>
<td>PTERM</td>
<td>COMPINOP, CONV-HLD, EXCL, INOP, LOCK, LOOPTEST, NOIN, NOTOPEN, NOOUT, NOQUEUE, PSTOPPED, PUR, RESP, RESP-INP, STOPPED, TEST</td>
</tr>
<tr>
<td>RTCODE</td>
<td>NOTINIT, STOPPED</td>
</tr>
<tr>
<td>TMEMBER</td>
<td>STO</td>
</tr>
<tr>
<td>TRAN</td>
<td>LOCK, NOTINIT, PSTOPPED, PUR, QERROR, QSTP, SPND, STOPPED, USTOPPED</td>
</tr>
<tr>
<td>USER</td>
<td>CONV-HLD, DEADQ, RESP, RESP-INP, RESP-INP-FP, STOPPED</td>
</tr>
</tbody>
</table>
Examples

The following are examples of the /DISPLAY STATUS command.

Example 1 for /DISPLAY STATUS command

Entry ET:
/DISPLAY STATUS

Response ET:

**TRAN****PSBNAME
STATUS UNRESTRICTED
**DATABASE**
BMACC1 NOTOPEN,NOTINIT,STOPPED
DEDB01
-AREA01 RECOVERY-NEEDED
DEDEB03
-AREA02
ADS01 PRE-OPEN FAILED
DEDB04 NOTOPEN,STOPPED
-AREA01 RECOVERY-NEEDED
ADS01 UNAVAILABLE
**PROGRAM***
HIMASN01 STOPPED
SWITCH STOPPED
**NODE****
CT3275 DISCONNECTED
CT3277A DISCONNECTED
CT3277B SHUT
W612 DISCONNECTED
**LINE******
4 STOPPED,IDLE
5 STOPPED,IDLE,NOTOPEN
8 STOPPED,IDLE
10 STOPPED,IDLE,NOTOPEN
**PTERM*****
3 1 INOP, STOPPED
3 2 INOP, STOPPED
4 2 INOP, PSTOPPED
5 1 INOP, STOPPED
5 2 INOP, STOPPED
6 1 INOP, STOPPED
**LTERM*****
LU6A STOPPED
VA01 QLOCK
**CLASS*****
2 STOPPED
**RTCODE****
STATUS UNRESTRICTED
**LINK******
1 PSTOPPED,IDLE,NOTOPEN
3 PSTOPPED,IDLE,COLD
4 PSTOPPED,IDLE,N/A
5 PSTOPPED,IDLE,NOTOPEN
**MSNAME****
STATUS UNRESTRICTED
**USER******
STATUS UNRESTRICTED
**LUNAME**TPNAME****
STATUS UNRESTRICTED
*92198/132223*

Example 2 for /DISPLAY STATUS command
Entry ET:
/DISPLAY STATUS DATABASE

Response ET:

**DATABASE**
DEDB01
-AREA01  STOPPED
DEDB02
-AREA02  NOTOPEN
-AREA03
-ADS03  PRE-OPEN FAILED
DEDB03
-AREA05  STOPPED,NOTOPEN
  ADS03  PRE-OPEN FAILED
  ADS08  UNAVAILABLE
DEDB04  STOPPED
DEDB05  NOTOPEN,NOTINIT
-AREA01  STOPPED
-AREA08  STOPPED,NOTOPEN
DEDB06  STOPPED
-AREA03
  ADS03  UNAVAILABLE
DEDB0777  NOTOPEN,LOCK
-AREA0555  STOPPED,NOTOPEN
  ADS0333  SEVERE ERROR
  ADS0888  UNAVAILABLE

*90263/092128*

Example 3 for /DISPLAY STATUS command

Entry ET:
/DISPLAY STATUS LUNAME

Response ET:

**LUNAME/TPNAME**
LU2
 -TPN2  STO
LU5
 -TPNAME1234567890+  STO
   1234567890
LU3  STO-INP
LU4  STO-OUTP
LU1  STO-INP, STO-OUTP

*95229/155100*

Entry ET:
/DISPLAY STATUS LUNAME

Response ET:

**LUNAME/TPNAME**
LU2  STO-INP, STO-OUTP
 -TPN2  STO
LU5  STO-INP, STO-OUTP
 -TPN5  STO
 -TPNAME1234567890+  STO
   1234567890
LU3  STO-INP, STO-OUTP
LU4  STO-INP, STO-OUTP
LU1  STO-INP, STO-OUTP
FUTURE INPUT:  STO
FUTURE OUTPUT:  STO

*95229/155146*
Example 4 for /DISPLAY STATUS command

Entry ET:
/DISPLAY STATUS NODE

Response ET:
**NODE*****
NLUTP6S  DISCONNECTED
NLU1     STOPPED, DISCONNECTED
NLUTP6P
-A      HELD
-N/A    STOPPED, DISCONNECTED
-E      FORCE
-C
*90231/040059*

Entry ET:
/DISPLAY STATUS RTCODE

Response ET:
**RTCODE****
DCL      STOPPED
EMHCOBOL STOPPED
EMHPLI   STOPPED
EMHTX    STOPPED
TXCDBP04 STOPPED
TXCDBP05 STOPPED
TXCDBP06 STOPPED
*91068/114900*

Example 5 for /DISPLAY STATUS command

Entry ET:
/DISPLAY STATUS TMEMBER

Response ET:
**TMEMBER/TPIPE**
CLIENT1  -TPIPE1  STO
*94168/095431*

Example 6 for /DISPLAY STATUS command

Entry ET:
/DISPLAY STATUS TRANSACTION

Response ET:
**TRAN****PSBNAME
TPN4    DFSCPIC  PUR
TPN5    DFSCPIC  STOPPED
TPN6    DFSCPIC  I/O PREVEN
TPN7    DFSCPIC  USTOPPED
TRAN1   LU2PGM1  PSTOPPED
TRAN2   LU2PGM2  PSTOPPED
*90332/114253*

Example 7 for /DISPLAY STATUS command

Entry ET:
/DISPLAY STATUS TMEMBER

Response ET:
**TMEMBER/TPIPE**
HWS001
- TPIPE1  STO  SM01
- TPIPE3  STO  SM01
SM01
- TPIPE1  STO  SM01
- TPIPE2  STO  SM01
- TPIPE3  STO  SM01
HWS003
- TPIPE1  STO  *05049/095431*

Example 8 for /DISPLAY STATUS command

Entry ET:
/DISPLAY STATUS CLASS

Response ET:
R 24,/DISPLAY STATUS CLASS
IEE6001  REPLY TO 24 IS;/DISPLAY STATUS CLASS
DFS000I  **CLASS*****  IMS1
DFS000I  255  STOPPED  IMS1
DFS000I  *15306/163251*  IMS1
25 DFS996I  *IMS READY*  IMS1

Explanation: HWS001 is a regular member whose hold queue output is managed by super member SM01. HWS001 has two transaction pipes that are stopped. SM01 is a super member with three transaction pipes that are stopped. HWS003 also has a stopped transaction pipe. HWS003 is a regular member that manages its own hold queue output.

Related reference:
“Status and attributes for the /DISPLAY command” on page 435

/DISPLAY STRUCTURE command

Use the /DISPLAY STRUCTURE command to display the status of one or more coupling facility list queue structures used by IMS. This command displays the queue structure name, type, and status.

Subsections:
- “Environment” on page 625
- “Syntax” on page 625
- “Usage notes” on page 625
Environment

The /DISPLAY STRUCTURE command is valid in DB/DC and DCCTL environments.

Syntax

```
/DISPLAY STRUCTURE structurename
```

Usage notes

This command is valid only in a shared-queues environment.

Output fields

The following output fields are displayed for the /DISPLAY STRUCTURE command:

**STATUS**

The status conditions that can be displayed. Possible status values are:

- **AVAILABLE**
  The structure is available to be used by IMS.

- **CONNECTED**
  IMS is connected to the structure.

- **DISCONNECTED**
  IMS is not connected to the structure.

- **IN-OVERFLOW**
  The structure is in overflow mode.

- **REBLD-INPROG**
  A rebuild is in progress for the structure.

- **SHUTDOWN-STRCHKPT**
  A structure checkpoint will be taken by CQS for the structure during a CQS normal shutdown.

- **STRCHKPT-INPROG**
  A structure checkpoint is in progress for the structure.

- **UNAVAILABLE**
  The structure is not available to be used by IMS.

**STRUCTURE NAME**

Indicates the name of the list structure.

**TYPE**

Returns the list structure type, which can be either of the following:

- **MSGQ**
  Indicates a MSQG primary or overflow structure.
EMHQ

Indicates an EMHQ primary or overflow structure.

Examples

Entry ET:
/DISPLAY STRUCTURE ALL

Response ET:

```
<table>
<thead>
<tr>
<th>STRUCTURE NAME</th>
<th>TYPE</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSGQ1</td>
<td>MSGQ</td>
<td>CONNECTED, AVAILABLE, SHUTDOWN-STRCHKPT</td>
</tr>
<tr>
<td>EMHQ1</td>
<td>EMHQ</td>
<td>CONNECTED, AVAILABLE, IN-OVERFLOW</td>
</tr>
</tbody>
</table>
95200/170817
```

Entry ET:
/DISPLAY STRUCTURE MSGQ111 EMHQ1

Response ET:

```
<table>
<thead>
<tr>
<th>STRUCTURE NAME</th>
<th>TYPE</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSGQ111</td>
<td></td>
<td>IS INVALID</td>
</tr>
<tr>
<td>EMHQ1</td>
<td>EMHQ</td>
<td>DISCONNECTED</td>
</tr>
</tbody>
</table>
95201/121800
```

/DISPLAY SUBSYS command

Use the /DISPLAY SUBSYS command to display information about an external subsystem that is not a coordinator controller (CCTL) subsystem.

Subsections:
- “Environment”
- “Syntax”
- “Usage notes”
- “Output fields” on page 627
- “Examples” on page 628

Environment

The /DISPLAY SUBSYS command is valid in DB/DC, DBCTL, and DCCTL environments.

Syntax

```
/DISPLAY SUBSYS subsysname
```

Usage notes

When used without the OASN keyword, the SUBSYS keyword displays the status of the connection between IMS and the external subsystem (not CCTL), as well as all application programs communicating with the external subsystem (not CCTL). The OASN keyword is used with the SUBSYS keyword to display all OASNs associated with the specified external subsystem. The external subsystem is not a
CCTL subsystem. See “/DISPLAY OASN SUBSYS command” on page 559 for more information.

Output fields

Subsystem status terms can be generated by the /DISPLAY SUBSYS command. Dependent region status terms can be generated by the /DISPLAY SUBSYS or /DISPLAY ACTIVE command.

Subsystem status terms

**CONN**
The IMS control region has successfully completed a host system IDENTIFY request to the external subsystem, making the two subsystems aware of each other's existence so they can begin a normal dialog.

**NOT CONN**
The external subsystem is in an idle state; that is, the external subsystem has not been the object of the /STOP SUBSYS command, or the external subsystem initialization exit indicated not to issue the IDENTIFY REQUEST (connect)

**CONN IN PROGRESS**
The connection process for the specified subsystem is in progress

**STOPPED**
The specified subsystem has been successfully stopped using the /STOP SUBSYS command and all region connections to the specified external subsystem have been terminated

**STOP IN PROGRESS**
The /STOP SUBSYS command is in progress. Before it successfully completes, all active connections to the specified subsystem from all IMS regions must be quiesced.

**TERM IN PROGRESS**
An internal termination of the subsystem connection is underway. This type of termination was instigated by IMS abnormal condition processing, an external subsystem exit, or the external subsystem (the error message The exact reason). IMS shutdown will not cause this condition.

**INVALID SUBSYSTEM NAME = XXXX**
The specified subsystem name has not been defined in the IMS subsystem PROCLIB member

**SUBSYSTEM XXXX NOT DEFINED BUT RECOVERY OUTSTANDING**
The specified subsystem name has not been defined to IMS in the external subsystem PROCLIB member, but IMS still has outstanding recovery elements from a previous execution when the indicated subsystem was known

The command recognition character will also be displayed for the external subsystem.

**START-AF**
The specified subsystem that is attached by the DB2 z/OS Resource Recovery Services (RRS) attachment facility has been successfully started by using the /START command, and dependent region connections to this system will be permitted.
STOP-AF
The specified subsystem which was attached by the DB2 z/OS Resource Recovery Services (RRS) attachment facility has been successfully stopped by using the /STOP command, and no more dependent region connections to this system will be permitted.

Dependent region status terms

CONN
An IMS dependent region has successfully completed a host system IDENTIFY request to the external subsystem as a result of an application having been scheduled into the dependent region. In an MPP, the application does not have to issue an external subsystem call to cause a connection.

CONN, ACTIVE
An IMS application program has established communication with an external subsystem (for example, has issued at least one external subsystem call). At this point a thread exists between the IMS application program and the external subsystem.

The absence of a PSB name for a thread indicates that a connection to the external subsystem exists but an application program is not currently occupying the region. The presence or absence of an LTERM name indicates whether a region is message driven.

LTERM is the name of the terminal. LUNAME is displayed in place of LTERM when the originating terminal is LU6.2 or OTMA unless the LUNAME information is in transition, in which case, the literal UNKNOWN will be displayed.

Examples

The following are examples of the /DISPLAY SUBSYS command.

Example 1 for /DISPLAY SUBSYS command

Entry ET:
/DISPLAY SUBSYS ALL

Response ET:

SUBSYS  CRC  REGID  PROGRAM  LTERM  STATUS

1 DDLTM17 PTERM01 CONN, ACTIVE
2 DDLTM06 PTERM02 CONN

*89202/065933*

Example 2 for /DISPLAY SUBSYS command

Entry ET:
/DISPLAY SUBSYS XXX1 XXX3

Response ET:

SUBSYS  CRC  REGID  PROGRAM  LTERM  STATUS
XXX1   1      ?      ?      ?      CONN
XXX3   3      ?      ?      ?      CONN

*90083/154241*
/DISPLAY SYSID TRANSACTION command

Use the /DISPLAY SYSID TRANSACTION command to display the IDs of the local and remote systems associated with the transaction. Values displayed for the local and remote IDs can range from 1 to 2036.

Subsections:
- “Environment”
- “Syntax”
- “Examples”

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

Table 268. Valid environments for the /DISPLAY SYSID TRANSACTION command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/DISPLAY</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SYSID</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TRANSACTION</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
/DISPLAY SYSID TRANSACTION tranname ALL
```

Examples

Entry ET:

```
/DISPLAY SYSID TRANSACTION SKS1 SKS2 SKS3 SKS4
```

Response ET:

```
TRAN PSBNAME RID LID
SKS1 DFSDDLT1 21 11
SKS2 DFSDDLT2 NA 11
SKS3 DFSDDLT3 NA 11
SKS4 DFSDDLT4 32 12
89184/142436
```

/DISPLAY TIMEOVER command

Use the /DISPLAY TIMEOVER command to display all nodes that have been waiting for a response for a longer time than specified in the /TRACE SET ON TIMEOUT command.

Subsections:
- “Environment” on page 630
- “Syntax” on page 630
Environment

The `/DISPLAY TIMEOVER` command is valid in DB/DC and DCCTL environments.

Syntax

```bash
/DISPLAY TIMEOVER time#
```

Keywords

The following keywords can be specified for the `/DISPLAY TIMEOVER` command:

- **time#**
  - Specifies the time period in minutes. This parameter is required. The number of minutes must be between 1 and 60.

Usage notes

If no nodes are found that have been waiting longer than `time#` minutes, then the message `NO NODE WITH TIMEOVER time# FOUND` is displayed. An error message is displayed and the command is rejected if the timeout trace facility failed during IMS initialization. User names are displayed for ISC nodes, but non-ISC nodes show N/A.

Examples

Entry ET:

```
/DISPLAY TIMEOVER 10
```

Response ET:

```
<table>
<thead>
<tr>
<th>NODE</th>
<th>USER</th>
<th>TYPE</th>
<th>LAST OUTPUT</th>
<th>START TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLU1A</td>
<td>N/A</td>
<td>SLU1</td>
<td>88118/095914</td>
<td></td>
</tr>
<tr>
<td>LU6NDC</td>
<td>LU6PC</td>
<td>LUT6</td>
<td>88118/095921</td>
<td></td>
</tr>
<tr>
<td>SLU1C</td>
<td>N/A</td>
<td>SLU1</td>
<td>88118/095929</td>
<td></td>
</tr>
<tr>
<td>SLUIB</td>
<td>N/A</td>
<td>SLU1</td>
<td>88118/095937</td>
<td></td>
</tr>
<tr>
<td>SLUID</td>
<td>N/A</td>
<td>SLU1</td>
<td>88118/095943</td>
<td></td>
</tr>
<tr>
<td>LU6NDA</td>
<td>LU6PA</td>
<td>LUT6</td>
<td>88118/095949</td>
<td></td>
</tr>
</tbody>
</table>
```

Example for ISC TCP/IP terminals

Entry ET:

```
/DISPLAY TIMEOVER 10
```

Response ET:

```
<table>
<thead>
<tr>
<th>NODE</th>
<th>USER</th>
<th>LINK#</th>
<th>TYPE</th>
<th>LAST OUTPUT</th>
<th>START TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>CICS</td>
<td>IMSUS01</td>
<td>N/A</td>
<td>TCP</td>
<td>12088/171914</td>
<td></td>
</tr>
</tbody>
</table>
```

630 Commands, Volume 1: IMS Commands A - M
Use the /DISPLAY TMEMBER command to display the current target member status for IMS Open Transaction Manager Access (OTMA) clients and servers.

Subsections:
- “Environment”
- “Syntax”
- “Keywords”
- “Usage notes” on page 633
- “Output fields” on page 633
- “Examples” on page 637

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

Table 269. Valid environments for the /DISPLAY TMEMBER command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/DISPLAY QCNT</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TMEMBER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TPIPE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
/DISPLAY

/DIS

/TMEMBER
```

Keywords

The following keywords can be specified for the /DISPLAY TMEMBER command.

QCNT

The /DISPLAY TMEMBER command with the QCNT parameter specifies that global queue count information is to be displayed. If the member specified is a
super member, global queue count information is displayed for the super member. If the member specified is a regular member whose hold queue output is managed by a super member, the name of the super member is displayed along with the global queue count information for the regular member.

This count represents the message counts of messages that can be processed by the IMS system where the command is issued. This count includes messages that can be processed by any IMS system (messages with no affinity), plus messages that can be processed by the IMS system where the command is issued (messages with an affinity to the IMS system that issued the command).

The /DISPLAY TMEMBER QCNT form of the command is valid only in a shared-queues environment.

**TPIPE**

The /DISPLAY TMEMBER TPIPE command can be issued to display transaction pipe status for a member. If the member specified is a super member, transaction pipe status is displayed for the super member. If the member specified is a regular member whose hold queue output is managed by a super member, the name of the super member is displayed along with the queue count information.

The tpipe name can be ended with a generic character (*). This generic form of tpipe name can also be used with QCNT or SYNC keywords. The tpipe name with a generic character cannot be mixed with other tpipe names. The valid formats for using a tpipe name with the generic character are:

```
/DIS TMEMBER membername TPIPE tpipe*
/DIS TMEMBER membername TPIPE tpipe* QCNT
/DIS TMEMBER membername TPIPE tpipe* SYNC
```

**QCNT**

The /DISPLAY TMEMBER TPIPE command with the QCNT parameter specifies that global queue count information is to be displayed. If the member specified is a super member, global queue count information is displayed for the transaction pipes associated with the super member. If the member specified is a regular member whose hold queue output is managed by a super member, the name of the super member is displayed along with the global queue count information.

The /DISPLAY TMEMBER TPIPE QCNT form of the command is valid only in a shared-queues environment.

**SYNC**

The /DISPLAY TMEMBER TPIPE SYNC command displays:
- The number of active synchronous callout messages
- The number of synchronous callout messages waiting for response
- The resume tpipe option
- The resume tpipe mode
- The tpipe status

The /DISPLAY TMEMBER TPIPE SYNC command can be considered as a superset of the /DISPLAY TMEMBER TPIPE command.

**OUTPUT**

The /DISPLAY TMEMBER TPIPE OUTPUT command can be used to display the output counts for both primary and holdq queues when the OTMA client is holdq-capable (for example, IMS Connect). This parameter
is ignored for clients that are not holdq-capable (such as IBM MQ) and when IMS has shared queues enabled.

**Important:** Specifying the OUTPUT parameter can double the number of lines for the display. Take care when using the ALL or masked TPIPE names for TMEMBERs with a large number of TPIPEs.

The OUTPUT parameter is mutually exclusive with the SYNC and QCNT parameters.

**Usage notes**

The /DISPLAY TMEMBER command includes five variations: /DISPLAY TMEMBER QCNT, /DISPLAY TMEMBER TPIPE, /DISPLAY TMEMBER TPIPE QCNT, /DISPLAY TMEMBER TPIPE SYNC and /DISPLAY TMEMBER TPIPE OUTPUT.

In a shared-queues environment, use the QCNT keyword to obtain the current message queue counts on the shared queues structure. The local queue counts (ENQCT, DEQCT, and QCT) value that is returned on this command when the QCNT keyword is not specified represents the messages being processed by the IMS system where this command is issued. Do not use local queue counts for queue evaluation purposes.

**Output fields**

The following output fields are displayed for the /DISPLAY TMEMBER command:

**DEQCT**
Total number of messages that are dequeued from the OTMA tpipe for this member. If the OTMA hold queue is used for a client that is capable of the OTMA hold queue, such as IMS Connect, the number of the messages in the hold queue of this tpipe is also included. In a shared-queues environment, this field shows only the messages dequeued for the local subsystem.

**DRUEXIT**
The name of any OTMA Destination Resolution exit routine associated with the tmember.

**ENQCT**
Total number of messages that are enqueued on the OTMA tpipe for this member. If the OTMA hold queue is used for a client that is capable of the OTMA hold queue, such as IMS Connect, the number of the messages in the hold queue of this tpipe is also included. In a shared-queues environment, this field shows only the messages enqueued for the local subsystem.

**GROUP/MEMBER**
Each member in each z/OS cross-system coupling facility (XCF) group.

When you issue /DISPLAY TMEMBER ALL, the server is always the first member displayed.

**INPT**
The maximum concurrent input message count for this member that can be waiting at the same time to be processed. If the YTIBs reach the INPT value, an OTMA FLOOD condition exists and the subsequent input messages from the member will be rejected.
MODE
The resume tpipe mode, which can be one of the following:
- S - Synchronous callout messages
- B - Both asynchronous messages and synchronous callout messages
- A - Asynchronous messages

NO-COT
The current number of ICAL messages received for this tpipe. If the number is greater than or equal to 65535, it will be reset to 1.

OPT
The resume tpipe option, which can be one of the following:
- N - No auto flow of messages. When a client issues a resume tpipe call and no message is present, the resume tpipe call ends.
- S - Single message. When a client issues a resume tpipe call, if multiple messages are present, only one message is retrieved. If no message is present, the call ends.
- A - Auto flow of messages. The client retrieves one message at a time. If no messages exist in the tpipe, the client waits for subsequent messages from the hold queue.
- W - Single message with wait option. The client will retrieve only one message. If there are no messages in the hold queue, the client will wait until a message arrives, then the call ends. Only one message is retrieved regardless of how many messages are in the hold queue.

This option is specified in the IRM_F5 field of the IRM prefix in the messages that are sent to IMS Connect.

QCT
Total number of messages that are still in the queue for OTMA tpipe for this member. If the OTMA hold queue is used for a client that is capable of the OTMA hold queue, such as IMS Connect, the number of the messages in the hold queue of this tpipe is also included. In a shared-queues environment, this field shows only the messages enqueued for the local subsystem.

RTQ
The number of queued resume tpipe requests to be processed. This field is displayed only for the command issued with the SYNC keyword.

SECURITY
The security status for each member or server
The security status can be one of the following:
- NONE
- CHECK
- FULL
- PROFILE

SYNCOT
The number of active synchronous callout messages.

TIB
The number of current input messages processed by OTMA for this member. This number will be incremented when a new transaction is received, and it will be decremented after OTMA enqueues a CM0 input transaction or OTMA completes a CM1 transaction. There are cases where orphaned transaction instance blocks (YTIBs) are created. These YTIBs will not be deleted until IMS is cold started.

TPCNT
The maximum TPIPE count for each OTMA member. For an OTMA member other than the IMS server, this field indicates the current TPIPE count for that member. For the IMS server, this field indicates the global
TPIPE limit, which is the highest TPIPE limit set for the OTMA members. IMS displays a nonzero value only when the MAXTP= keyword is specified for this member in the OTMA client descriptor DFSYDTx member of the IMS PROCLIB data set. If the MAXTP= keyword is not specified for any of the members in the OTMA client descriptor, the TPCNT field of the IMS server member will be zero.

T/O The timeout value for OTMA send-then-commit message responses.

USER-STATUS
The user status for each member.

The status can be one of the following:
• ACCEPT TRAFFIC
• DISCONNECTED
• IN SLOWDOWN
• MAX TPIPE: MAX TPIPE indicates that the OTMA member's TPIPE count has reached the limit set. This status is cleared when the global TPIPE count falls below 50%.
• SERVER
• SUPER MEMBER
• WAIT BID
• WAIT RESPONSE

If the member specified is a regular member whose member name is displayed as part of the command output. If the member specified is a super member, the character string 'SUPER MEMBER' is displayed for the user status. Since a super member does not interface with XCF, the XCF-STATUS field is left blank. Since super members do not process input messages, OTMA security authorization is not performed.

XCF-STATUS
The XCF status for each member.

The status can be one of the following:
• ACTIVE
• CREATED
• FAILED
• FLOOD
• NOT DEFINED
• QUIESCED
• STO-INPUT
• UNKNOWN

If the server leaves the XCF group (for example, because of a /STOP OTMA command), then the XCF status is displayed as NOT DEFINED.

The output from the /DISPLAY TMEMBER QCNT or /DISPLAY TMEMBER TPIPE QCNT command includes the following:

AFFINITY
The IMSID (or the first 7 bytes of the RSENAME, if XRF capable) of the IMS to which the output messages have affinity.

GBLQCT
The total number of OTMA output messages on the global queue. The
global queue count includes messages that were placed on the global queue before the latest cold start of the owning IMS. Synchronous and asynchronous OTMA output messages are included in the global queue count. Messages on an OTMA asynchronous hold queue for IMS Connect are also included in the global queue count.

**MEMBER/PIPE**

OTMA member name. If the TPIPE keyword is specified, the transaction pipe name is also displayed. The first line displays the OTMA member name. The second and subsequent lines display the names of the transaction pipes associated with the OTMA member.

One of the following status terms is displayed for the /DISPLAY TMEMBER command specified with the TPIPE keyword:

- **DQF** Dequeue request for OTMA REPresynch command failed.
- **FLOOD** Input from this tmember is suppressed because of a message flood condition.
- **HLDQ** Queue counts for the holdq queue.
- **INPCT** The current number of input messages received for this tpipe.
- **PMRY** Queue counts for the primary queue.
- **REP** IMS is waiting for an OTMA REPresynch command from the client.
- **REQ** IMS is sending an OTMA REQresynch command to the client.
- **RSF** Reset request failed for an OTMA REPresynch command.
- **STO** The transaction pipe is stopped.
- **STO-INPUT** Input from this tmember is stopped.
- **SYN** The transaction pipe is being synchronized.
- **TBR** IMS is waiting for an OTMA TBResynch command from the client.
- **TMP** The transaction pipe is temporary.
- **TRA** The transaction pipe is being traced.

- **WAIT_A** The transaction pipe is waiting for an ACK or NAK for a commit-then-send (CM0) output response.
- **WAIT_H** The transaction pipe is waiting for an ACK or NAK for a commit-then-send (CM0) output response from the asynchronous hold queue.
- **WAIT_R** The transaction pipe is waiting for an ACK or NAK response to a commit-then-send (CM0) output message that was sent to a remote IMS system through a TCP/IP connection managed by IMS Connect.
- **WAIT_S** The transaction pipe is waiting for an ACK or NAK for a synchronous callout message.
Examples

The following are examples of the /DISPLAY TMEMBER command.

Example 1 for /DISPLAY TMEMBER command

Entry ET:

/DISPLAY TMEMBER ALL

Response ET:

<table>
<thead>
<tr>
<th>GROUP/MEMBER</th>
<th>XCF-STATUS</th>
<th>USER-STATUS</th>
<th>SECURITY</th>
<th>TIB</th>
<th>INPT</th>
<th>SMEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>HARRY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMS1</td>
<td>ACTIVE</td>
<td>SERVER</td>
<td>FULL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HWS001</td>
<td>ACTIVE</td>
<td>ACCEPT TRAFFIC</td>
<td>FULL</td>
<td>0</td>
<td>0</td>
<td>SM01</td>
</tr>
<tr>
<td>SM01</td>
<td></td>
<td>SUPER MEMBER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MQS001</td>
<td>ACTIVE</td>
<td>ACCEPT TRAFFIC</td>
<td>FULL</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Explanation: The /DISPLAY TMEMBER ALL command can be issued to display the current status of IMS server and members. This command is functionally equivalent to the /DIS OTMA command. The member information is displayed in random order. In the above example, HARRY is the XCF group name for IMS and its OTMA members. IMS1 is the server running with OTMA activated. HWS001 and MQS001 are OTMA client members. The SM01 is an OTMA super member for asynchronous output messages. Each OTMA member has two-line status information.

Example 2 for /DISPLAY TMEMBER command

Entry ET:

/DISPLAY TMEMBER MQS001

Response ET:

<table>
<thead>
<tr>
<th>GROUP/MEMBER</th>
<th>XCF-STATUS</th>
<th>USER-STATUS</th>
<th>SECURITY</th>
<th>TIB</th>
<th>INPT</th>
<th>SMEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>MQS001</td>
<td>ACTIVE</td>
<td>ACCEPT TRAFFIC</td>
<td>FULL</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>MQS001</td>
<td>MQSYDRU0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Explanation: In the above example, MQS001 is an OTMA member without using super member function. There are two-line status information for the MQS001.

Example 3 for /DISPLAY TMEMBER command

Entry ET:

/DISPLAY TMEMBER HWS001 HWS002 HWS003

Response ET:

<table>
<thead>
<tr>
<th>GROUP/MEMBER</th>
<th>XCF-STATUS</th>
<th>USER-STATUS</th>
<th>SECURITY</th>
<th>TIB</th>
<th>INPT</th>
<th>SMEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>HWS001</td>
<td>ACTIVE</td>
<td>ACCEPT TRAFFIC</td>
<td>FULL</td>
<td>0</td>
<td>0</td>
<td>SM01</td>
</tr>
<tr>
<td>HWS001</td>
<td>HWSYDRU0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HWS002</td>
<td>ACTIVE</td>
<td>ACCEPT TRAFFIC</td>
<td>FULL</td>
<td>0</td>
<td>0</td>
<td>SM01</td>
</tr>
<tr>
<td>HWS002</td>
<td>HWSYDRU1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HWS003</td>
<td>ACTIVE</td>
<td>ACCEPT TRAFFIC</td>
<td>FULL</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>HWS003</td>
<td>HWSYDRU2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
**Explanation:** In the above example, HWS001, HWS002 and HWS003 are all regular OTMA members. OTMA hold queue output for HWS001 and HWS002 is managed by super member SM01. HWS003 manages its own OTMA hold queue output without using the super member.

**Example 4 for /DISPLAY TMEMBER command**

Entry ET:

```
/DISPLAY TMEMBER HWS001 SM01
```

Response ET:

```
GROUP/MEMBER XCF-STATUS USER-STATUS SECURITY TIB INPT SMEM
HWS001 ACTIVE ACCEPT TRAFFIC FULL 0 0 SM01
SM01 SUPER MEMBER SM01
```

**Explanation:** HWS001 is a regular member whose hold queue output is managed by super member SM01. SM01 is a super member. The XCF-STATUS field and the SECURITY field are left blank. The super member name is repeated in the SMEM field.

**Example 5 for /DISPLAY TMEMBER command**

Entry ET:

```
/DISPLAY TMEMBER CLIENT1 TPIPE ALL
```

Response ET:

```
MEMBER/TPIPE ENQCT DEQCT QCT STATUS
CLIENT1
 -TPIPE1 0 0 0 TRA,STO
 -TPIPE2 2 2 0 TRA,STO
 -TPIPE3 1 0 1 TRA,STO
94165/170756
```

**Example 6 for /DISPLAY TMEMBER command**

Entry ET:

```
/DIS TMEMBER CLIENT1 QCNT
```

Response ET:

```
MEMBER/TPIPE GBLQCT AFFINITY
CLIENT1
 34 SYS3
03203/124035
```

**Example 7 for /DISPLAY TMEMBER command**

Entry ET:

```
/DIS TMEMBER CLIENT1 TPIPE TPIPE3 TPIPE1 QCNT
```

Response ET:

```
MEMBER/TPIPE GBLQCT AFFINITY
CLIENT1
 -TPIPE3 16 SYS3
 -TPIPE1 8 SYS3
03202/143253
```

**Example 8 for /DISPLAY TMEMBER command**
Entry ET:
/DIS TMEMBER CLIENT1 TPIPE ALL QCNT

Response ET:
MEMBER/TPIPE  GBLQCT  AFFINITY
CLIENT1
-TPIPE3  16  SYS3
-TPIPE2  16  SYS3
-TPIPE1  2  SYS3
*03202/143253*

Example 9 for /DISPLAY TMEMBER command

Entry ET:
/DIS TMEMBER HWS001 QCNT

Response ET:
MEMBER/TPIPE  GBLQCT  AFFINITY  SMEM
HWS001  1  SYS3  SM01
*03203/124035*

Explanation: HWS001 is a regular member whose hold queue output is managed by super member SM01. There is one CM0 output message on the OTMA output queue for member HWS001. That message has affinity to SYS3. The /DIS TMEMBER QCNT command can be issued with the super member name (SM01) specified as the member name to determine the number of messages on the super member’s output queue.

Example 10 for /DISPLAY TMEMBER command

Entry ET:
/DIS TMEMBER SM01 QCNT

Response ET:
MEMBER/TPIPE  GBLQCT  AFFINITY  SMEM
SM01  46  SM01
*03203/124035*

Explanation: SM01 is a super member. There are 46 CM0 output messages on the output queue for SM01. These messages do not have affinity to any IMS subsystem. Any member whose hold queue output is managed by SM01 can retrieve the output messages.

Example 11 for /DISPLAY TMEMBER command

Entry ET:
/DISPLAY TMEMBER HWS003 TPIPE TPIPE1

Response ET:
MEMBER/TPIPE  ENQCT  DEQCT  QCT  STATUS  SMEM
HWS003
-TPIPE1  3  2  1  TRA

Explanation: HWS003 is a regular member that manages its own hold queue output. There is one output message queued for TPIPE1. This message is either on the I/O PCB output queue or the hold queue.
Example 12 for /DISPLAY TMEMBER command

Entry ET:
/DISPLAY TMEMBER HWS001 TPIPE TPIPE1

Response ET:
MEMBER/TPIPE ENQCT DEQCT QCT STATUS SMEM
HWS001 0 0 0 TRA SM01
-TPIPE1

Explanation: HWS001 is a regular member whose hold queue output is managed by super member SM01. There are no output messages queued to HWS001, but there might be some messages queued to the hold queue of super member SM01.

Example 13 for /DISPLAY TMEMBER command

Entry ET:
/DISPLAY TMEMBER SM01 TPIPE TPIPE1 TPIPE2

Response ET:
MEMBER/TPIPE ENQCT DEQCT QCT STATUS SMEM
SM01 SM01
-TPIPE1 3 2 1 TRA
-TPIPE2 2 2 0 TRA

Explanation: SM01 is a super member with transaction pipes defined for TPIPE1 and TPIPE2. Local queue count information is displayed for TPIPE1 and TPIPE2. There is one output message on the hold queue for TPIPE1.

Example 14 for /DISPLAY TMEMBER command

Entry ET:
/DISplays member TMember SM01 TPIPE ALL QCNT

Response ET:
MEMBER/TPIPE GBLQCT AFFINITY SMEM
SM01 SM01
-TPIPE1 2 *
-TPIPE2 5 *
-TPIPE3 16 *
*03202/143253*

Explanation: SM01 is a super member. There are 23 CM0 output messages on the output queues for SM01. Two messages are queued for TPIPE1, five for TPIPE2 and sixteen for TPIPE3. These messages do not have affinity to any IMS subsystem. Any member whose hold queue output is managed by super member SM01 can retrieve the output messages.

Example 15 for /DISPLAY TMEMBER command

Entry ET:
/DISplays member TMember HWS1 TPIPE ALL SYNC

Response ET:
(MMR/TPIPE ENQCT DEQCT QCT INPCT OPT MODE
HWS1)
Explanation: HWS1 is a regular member with a transaction pipe defined for TPIPE1. The resume tpipe call is to retrieve only synchronous callout messages from the hold queue ("S" for MODE). The request message (from the hold queue) has been sent to the client, IMS Connect, which in turn will send the message to the application client as a result of the resume tpipe call with MODE of "S" and OPT of "W". This accounts for the count of 1 under the column heading SYNCOT. The count of 1 under the column heading NO-COT indicates that the accumulated ICAL count for this OTMA tpipe is 1. Because OTMA is waiting for ACK or NAK, WAIT_S is displayed under column heading STATUS.

To extend the processing, assuming that the client application sends an ACK, the WAIT_S under column heading STATUS will no longer be displayed, and the count of 1 under column heading NO-COT will still be displayed. This output indicates that OTMA has processed one ICAL message for the IMS callout application. Once the OTMA has received the message response and passed it back to the IMS callout application, SYNCOT will show 0, and NO-COT will still show 1. And, when OTMA has completed processing the message response, the resume tpipe call ends, and the output display should show OPT='-', MODE='-', SYNCOT=0, NO-COT=1, and STATUS=' '.

The number of queued tpipe requests is 1.

Entry ET:
/DISPLAY TMEMBER HWS1 TPIPE TPIPE1

Response ET:

<table>
<thead>
<tr>
<th>MEMBER/TPIPE</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
<th>INPCT</th>
<th>STATUS</th>
<th>SMEM</th>
<th>IMS1</th>
</tr>
</thead>
<tbody>
<tr>
<td>HWS1 TPIPE1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>WAIT_S</td>
<td>IMS1</td>
<td></td>
</tr>
</tbody>
</table>

Explanation: TPIPE1 is waiting for a NAK or ACK for a synchronous callout message.

**Example 16 for /DISPLAY TMEMBER command**

Entry ET:
/DISPLAY TMEMBER HWS1

Response ET:

<table>
<thead>
<tr>
<th>GROUP/MEMBER</th>
<th>XCF-STATUS</th>
<th>USER-STATUS</th>
<th>SECURITY</th>
<th>TIB</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPT SMEM</td>
<td>DRUXIT</td>
<td>T/O TPCNT ACEEAGE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XCFGRP1</td>
<td>ACTIVE</td>
<td>MAX TPIPE</td>
<td>FULL</td>
<td>0</td>
</tr>
<tr>
<td>HWS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPIPE1</td>
<td>0</td>
<td>0</td>
<td>1000</td>
<td>999999</td>
</tr>
</tbody>
</table>

Explanation: In this example, the TPCNT field indicates the current TPIPE count for member HWS1. MAX TPIPE indicates that the TPIPE count for the OTMA member HWS1 has reached the limit set. This status is cleared when the global TPIPE count falls below 50%.
**Example 17 for /DISPLAY TMEMBER command**

Entry ET:

/DISPLAY TMEMBER HWS1

Response ET:

<table>
<thead>
<tr>
<th>XCF-STATUS</th>
<th>USER-STATUS</th>
<th>SECURITY</th>
<th>TIB</th>
<th>DRUEXIT</th>
<th>T/O</th>
<th>TPCNT</th>
<th>ACEEAGE</th>
<th>MAXTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROUP/MEMBER</td>
<td>INPT SMEM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XCFGRP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-HWS1</td>
<td>ACTIVE</td>
<td>ACCEPT</td>
<td>TRAFFIC FULL</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-HWS1</td>
<td>200 500 120 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Explanation: In this example, the TPCNT field indicates that the current TPIPE count for member HWS1 is 500 and that there is no MAX TPIPE limit set for this member in the OTMA client descriptor.

**Example 18 for /DISPLAY TMEMBER command**

Entry ET:

/DISPLAY TMEMBER HWS2

Response ET:

<table>
<thead>
<tr>
<th>XCF-STATUS</th>
<th>USER-STATUS</th>
<th>SECURITY</th>
<th>TIB</th>
<th>DRUEXIT</th>
<th>T/O</th>
<th>TPCNT</th>
<th>ACEEAGE</th>
<th>MAXTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROUP/MEMBER</td>
<td>INPT SMEM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XCFGRP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-HWS2</td>
<td>ACTIVE</td>
<td>ACCEPT</td>
<td>TRAFFIC FULL</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-HWS2</td>
<td>200 500 120 10000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Explanation: In this example, the TPCNT field indicates that the current TPIPE count for member HWS2 is 500 and that there is a MAX TPIPE limit of 10000 set for this member.

**Example 19 for /DISPLAY TMEMBER command**

Entry ET:

/DIS TMEM HWS1 TPIPE ALL

Response ET:

<table>
<thead>
<tr>
<th>MEMBER/PIPE</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
<th>INPCT</th>
<th>STATUS</th>
<th>SMEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFS0001</td>
<td>HWS1</td>
<td></td>
<td></td>
<td></td>
<td>PMRY</td>
<td></td>
</tr>
<tr>
<td>DFS0001</td>
<td>-9999</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>DFS0001</td>
<td>-CLIENT02</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>DFS0001</td>
<td>-CLIENT01</td>
<td>8</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

**Example 20 for /DISPLAY TMEMBER command**

Entry ET:

/DIS TMEM HWS1 TPIPE ALL OUTPUT

Response ET:

<table>
<thead>
<tr>
<th>MEMBER/PIPE</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
<th>INPCT</th>
<th>STATUS</th>
<th>SMEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFS0001</td>
<td>HWS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFS0001</td>
<td>-CLIENT03</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1 PMRY</td>
<td></td>
</tr>
<tr>
<td>DFS0001</td>
<td>-CLIENT03</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0 HLDQ</td>
<td></td>
</tr>
</tbody>
</table>
Example 21 for /DISPLAY TMEMBER command

Entry ET:
/DIS TMEM HWS1 TPIPE CLIENT* OUTPUT

Response ET:

<table>
<thead>
<tr>
<th>DFS000I</th>
<th>MEMBER/TPIPE</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
<th>INPCT</th>
<th>STATUS</th>
<th>SMEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFS000I</td>
<td>HWS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFS000I</td>
<td>-CLIENT02</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>PMRY</td>
<td></td>
</tr>
<tr>
<td>DFS000I</td>
<td>-CLIENT02</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>HLDQ</td>
<td></td>
</tr>
<tr>
<td>DFS000I</td>
<td>-CLIENT01</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>PMRY</td>
<td></td>
</tr>
<tr>
<td>DFS000I</td>
<td>-CLIENT01</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>HLDQ</td>
<td></td>
</tr>
</tbody>
</table>

Related reference:
"Status and attributes for the /DISPLAY command" on page 435
"/DISPLAY OTMA command" on page 563

/DISPLAY TRACE command

Use the /DISPLAY TRACE command to display the status and options of the current IMS traces. TRACE must be followed by one or more keywords or by the ALL parameter. There is no default.

Subsections:
- "Environment"
- "Syntax" on page 644
- "Keywords" on page 644
- "Usage notes" on page 645
- "Equivalent IMS type-2 commands" on page 645
- "Output fields" on page 645
- "Examples" on page 646

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

Table 270. Valid environments for the /DISPLAY TRACE command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/DISPLAY</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>EXIT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LINE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LINK</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LUNAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MONITOR</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NODE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OSAMGTF</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PI</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Chapter 26. /DISPLAY commands 643
Table 270. Valid environments for the /DISPLAY TRACE command and keywords (continued)

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROGRAM</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PSB</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TABLE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TCO</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TIMEOUT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TMEMBER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TRACE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TRANSACTION</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TRAP</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XTRC</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
/DISPLAY TRACE
```

Keywords

The following keywords are valid for the /DISPLAY TRACE command:

**ALL**

In a DBCTL system, ALL displays only DB-related traces. It does not show DC-related traces such as LINE, LUNAME, LINK, NODE, TRANSACTION, TRAP, or TIMEOUT.

In a DCCTL system, ALL displays only DC-related traces. It does not show DB-related traces such as OSAMGTF or PI.

For a DB/DC RSR tracking subsystem, ALL displays only LINE, NODE, PSB, TABLE, and TRAP information.
The display shows which external data set is active and whether the OLDS is being traced for trace logging. The command also indicates whether XTRC is usable and the status of the XTRC data sets.

For other keywords, see the descriptions for corresponding output fields under “Output fields.”

Usage notes

The /DISPLAY TRACE ALL and /DISPLAY TRACE TMEMBER commands can be used to display IMS OTMA transaction pipes that are currently being traced for a OTMA client. The command output includes transaction pipes that are defined to super members. The super member name is displayed if the member is a super member or if the member is a regular member whose hold queue output is managed by a super member.

Equivalent IMS type-2 commands

The following table shows variations of the /DISPLAY TRACE command and the IMS type-2 commands that perform similar functions.

<table>
<thead>
<tr>
<th>Task</th>
<th>/DISPLAY TRACE command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays nodes with trace status.</td>
<td>/DISPLAY TRACE NODE</td>
<td>QUERY NODE STATUS(TRACE)</td>
</tr>
</tbody>
</table>

Output fields

The following output fields are displayed by the /DISPLAY TRACE command:

EXIT Displays user exit tracing. Currently, only tracing for the DFSMSCE0 user exit is supported. The following table lists the display exit entry points.

<table>
<thead>
<tr>
<th>Task</th>
<th>/DISPLAY TRACE command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRDI</td>
<td>LRIN</td>
<td>LRLT</td>
</tr>
<tr>
<td>PRCH</td>
<td>PRGU</td>
<td>PRIS</td>
</tr>
<tr>
<td>TRBT</td>
<td>TROT</td>
<td>TRVT</td>
</tr>
</tbody>
</table>

Note: The display indicates the status of each exit entry point. If the status is ON, the trace is active for the selected entry point. If the status is OFF, the trace is inactive for the selected entry point. If the status is N/A, the specified DFSMSCE0 trace entry point does not exist in the IMS.

LINE The relative line number and line type of all traced lines.

LINK The link number and link partner for all logical links.

LUNAME All LU 6.2 application programs that are being traced.

OSAMGTF Whether the OSAM Buffer Trace facility is active or inactive.

MONITOR The status of the IMS Monitor, and if active, the options that are specified for it.

NODE The VTAM or ISC TCP/IP node name and the node type. If the node is
defined for a parallel session, each traced user of that node is displayed. If the users are not active, an N/A is displayed.

**PI** The status of the program isolation trace, and if active, the status of the options and the volume level.

**PROGRAM**
The traced program name.

**PSB** The PSB name and trace option for each traced PSB.

**TABLE**
The trace status, logging status, total number of entries in each trace table, and the volume level.

For a DL/I trace, the volume level is displayed in the subcategories.

For an RSR tracking subsystem, TABLE does not show information about the LUMI, QMGR, RETR, SCHD, SQTT, or SUBS table traces.

In an IMSplex, the OCMD, RM, and SCI table traces are included in the table traces displayed.

**TCO** Displays whether tracing is active for the Time Controlled Operation (TCO).

**TIMEOUT**
The status of the IMS VTAM I/O Timeout Detection Facility, including the specifications given when the /TRACE SET ... TIMEOUT command was issued. The /DISPLAY TRACE TIMEOUT command will show active or inactive status, the timeout value in minutes, and the action to be taken when timeout occurs (AUTO, MSG, or no action). Option and Timeout values will be displayed only when the facility is active.

**TMEMBER**
The IMS Open Transaction Manager Access (OTMA) transaction pipes that are currently being traced for the OTMA client.

**TRANSACTION**
The name of the transaction and the applicable PSB name for each trace.

**TRAP** The trap that is currently set, either 1 or 2; that trap is enabled for MFS serviceability aids.

**XTRC** External trace status. Whether XTRC is usable and the status of the XTRC data sets are also displayed.

**Examples**

The following are examples of the /DISPLAY TRACE command.

**Example 1 for /DISPLAY TRACE command**

Entry ET:

```plaintext
/DISPLAY TRACE ALL
```

Response ET:

```plaintext
IMS ACTIVE TRACES
LINE TYPE
1 CONSOLE
4 3270 R
```
Example 2 for /DISPLAY TRACE command

Entry ET:
/DISPLAY TRACE LINE LINK NODE

Response ET:
IMS ACTIVE TRACES

LINE TYPE
  1 CONSOLE
  30 3270 R
  30 3270 R

LINK PARTNER
  4 RF

NODE TYPE USERS
  L3270A 3277
  LU6NPA LUT6 N/A N/A N/A
LEVEL: 4 MODULE: ALL
+90290/143519+
Example 3 for /DISPLAY TRACE command

Entry ET:
/DISPLAY TRACE LUNAME

Response ET:
IMS ACTIVE TRACES

<table>
<thead>
<tr>
<th>LUNAME</th>
<th>TPNAME</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LUNAME3</td>
<td>TPNAME1</td>
<td>OUTPUT</td>
</tr>
<tr>
<td>LUNAME3</td>
<td>TPNAME7890123456+</td>
<td>OUTPUT</td>
</tr>
<tr>
<td>LUNAME4</td>
<td></td>
<td>INPUT</td>
</tr>
</tbody>
</table>

*90332/114253*

Entry ET:
/DISPLAY TRACE LUNAME

Response ET:
IMS ACTIVE TRACES

<table>
<thead>
<tr>
<th>LUNAME/TPNAME</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NET1.LU1/TPN1</td>
<td>INP</td>
</tr>
<tr>
<td>NET2.LU1/TPN2</td>
<td>OUTP</td>
</tr>
<tr>
<td>LU3/TPN3</td>
<td>OUTP, OUTP</td>
</tr>
<tr>
<td>NET4.LU3/TPN4</td>
<td>OUTP</td>
</tr>
<tr>
<td>NET5.LU5</td>
<td>INP</td>
</tr>
</tbody>
</table>

*93069/114435*

Example 4 for /DISPLAY TRACE command

Entry ET:
/DISPLAY TRACE OSAMGTF

Response ET:
IMS ACTIVE TRACES
OSAMGTF TRACE IS INACTIVE
*92107/090819

Entry ET:
/TRACE SET ON OSAMGTF

Response ET:
DFS058I 09:08:32 TRACE COMMAND COMPLETED

Entry ET:
/DISPLAY TRACE OSAMGTF

Response ET:
IMS ACTIVE TRACES
OSAMGTF TRACE IS ACTIVE
*92107/090841*
Example 5 for /DISPLAY TRACE command

Entry ET:
/DISPLAY TRACE MONITOR

Response ET:
IMS ACTIVE TRACES
MONITOR IS ACTIVE: LA SCHD APMQ APDB
   APDB dbname/partition-name/area-name ...
   REGION reg# ... region-name ...
   INTERVAL #seconds EXPIRING hh:mm:ss.tt
*98029/114114*

Example 6 for /DISPLAY TRACE command

Entry ET:
/TRACE SET ON TABLE QMGR
/TRACE SET ON TABLE SQTT
/DISPLAY TRACE TABLE

Response ET:
IMS ACTIVE TRACES  SYS3S Volume  SYS3
SYS3 N/A 12B/PST N/A  SYS3
TABLE TRACE LOGGING ENTRIES VOLUME SYS3
RETR ON N/A 12B/PST N/A  SYS3
DL/I OFF 2268 SYS3
   DL/I ON N/A HIGH SYS3
   LOCK ON N/A HIGH SYS3
   PI OFF N/A SYS3
LATC ON OFF 3024 MEDIUM SYS3
DISP ON OFF 1260 MEDIUM SYS3
SCHD ON OFF 630 MEDIUM SYS3
SUBS OFF OFF 504 OFF SYS3
DLOG ON OFF 756 MEDIUM SYS3
FAST OFF OFF 252 OFF SYS3
STRG ON OFF 1260 MEDIUM SYS3
IDCO OFF OFF 2268 OFF SYS3
LUMI OFF OFF 1512 OFF SYS3
OTMT OFF OFF 1008 OFF SYS3
QMGR ON OFF 1008 MEDIUM SYS3
ORTT OFF OFF 1008 OFF SYS3
OCMD OFF OFF 1008 OFF SYS3
CSLT OFF OFF 1008 OFF SYS3
RMT OFF OFF 1512 OFF SYS3
MSC OFF OFF 1260 OFF SYS3
FPTT OFF OFF 1008 OFF SYS3
DIAG ON OFF 8064 MEDIUM SYS3
ODBA ON OFF 1008 MEDIUM SYS3
SECT OFF OFF 1008 OFF SYS3
*04197/152006*  SYS3

Example 7 for /DISPLAY TRACE command

Entry ET:
/DISPLAY TRACE TCO

Response ET:
IMS ACTIVE TRACES
TCO IS NOT ACTIVE
*89100/170509*
Example 8 for /DISPLAY TRACE command

Entry ET:
/DISPLAY TRACE TIMEOUT

Response ET:
IMS ACTIVE TRACES
VTAM I/O TIMEOUT FACILITY IS INACTIVE
*89033/170200*

Example 9 for /DISPLAY TRACE command

Entry ET:
/DISPLAY TRACE TIMEOUT

Response ET:
IMS ACTIVE TRACES
VTAM I/O TIMEOUT FACILITY IS ACTIVE
  OPTION = NONE  TIMEOUT VALUE = 0
*89110/131429*

Example 10 for /DISPLAY TRACE command

Entry ET:
/DISPLAY TRACE TIMEOUT

Response ET:
IMS ACTIVE TRACES
VTAM I/O TIMEOUT FACILITY IS ACTIVE
  OPTION = AUTO  TIMEOUT VALUE = 10
*89033/170200*

Example 11 for /DISPLAY TRACE command

Entry ET:
/DISPLAY TRACE TIMEOUT

Response ET:
IMS ACTIVE TRACES
VTAM I/O TIMEOUT FACILITY IS ACTIVE
  OPTION = MSG  TIMEOUT VALUE = 60
*89033/131630*

Example 12 for /DISPLAY TRACE command

Entry ET:
/DISPLAY TRACE TMEMBER

Response ET:
Example 13 for /DISPLAY TRACE command

Entry ET:
/DISPLAY TRACE XTRC

Response ET:
IMS ACTIVE TRACES

IMS EXTERNAL TRACE IS USABLE
SYS3
XTRC DDNAME ALLOC STATUS
DFSTRA01 DYN UNALLOCATED CLOSED
DFSTRA02 DYN UNALLOCATED CLOSED
DFSTRA0T DYN UNALLOCATED CLOSED

*91091/124215*

Example 14 for /DISPLAY TRACE command

Entry ET:
/DIS TRACE EXIT

Response ET:
55/DIS TRACE EXIT

IEE600I REPLY TO 55 IS;/DIS TRACE EXIT
DF50001 IMS ACTIVE TRACES IMS3
DF50001 IMS3
DF50001 EXIT FUNC STATUS IMS3
DF50001 DFSMSCEO TRBT ON IMS3
DF50001 DFSMSCEO TRVT ON IMS3
DF50001 DFSMSCEO TR62 OFF IMS3
DF50001 DFSMSCEO TROT OFF IMS3
DF50001 DFSMSCEO LRTR ON IMS3
DF50001 DFSMSCEO LRLT ON IMS3
DF50001 DFSMSCEO LRD1 ON IMS3
DF50001 DFSMSCEO LRIN ON IMS3
DF50001 DFSMSCEO PRCH ON IMS3
DF50001 DFSMSCEO PRIS N/A IMS3
DF50001 DFSMSCEO PRGU ON IMS3
DF50001 +99096/103002+ IMS3
56 DF5996I *IMS READY* IMS3

Response ET:
39/DIS TRACE EXIT
IEE600I REPLY TO 39 IS;/DIS TRACE EXIT
DF50001 IMS ACTIVE TRACES IMS3
DF50001 IMS3
DF50001 EXIT FUNC STATUS IMS3
DF50001 DFSMSCEO TRBT N/A IMS3
DF50001 DFSMSCEO TRVT N/A IMS3
DF50001 DFSMSCEO TR62 N/A IMS3
DF50001 DFSMSCEO TROT N/A IMS3
DF50001 DFSMSCEO LRTR N/A IMS3
DF50001 DFSMSCEO LRLT N/A IMS3
Example 15 for /DISPLAY TRACE Command

Entry ET:
/DISPLAY TRACE TMEMBER

Response ET:
IMS ACTIVE TRACES

<table>
<thead>
<tr>
<th>TMEMBER/TPipe</th>
<th>Type</th>
<th>SMEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>HWS001</td>
<td>SM01</td>
<td>TRA</td>
</tr>
<tr>
<td>SM01</td>
<td>SM01</td>
<td>TRA</td>
</tr>
<tr>
<td>HWS003</td>
<td>TRA</td>
<td></td>
</tr>
</tbody>
</table>

*05049/095325*

Explanation: HWS001 is a regular member whose hold queue output is managed by super member SM01. HWS001 has one transaction pipe that is being traced. SM01 is a super member with two transaction pipes that are being traced. HWS003 also has a transaction pipe that is being traced. HWS003 is a regular member that manages its own hold queue output.

Example 16 for /DISPLAY TRACE command

Entry ET:
/DISPLAY TRACE TABLE

Response ET:
IMS ACTIVE TRACES SYS3S Volume SYS3

<table>
<thead>
<tr>
<th>TABLE</th>
<th>TRACE</th>
<th>LOGGING ENTRIES</th>
<th>VOLUME</th>
</tr>
</thead>
<tbody>
<tr>
<td>RETR</td>
<td>ON</td>
<td>N/A</td>
<td>SYS3</td>
</tr>
<tr>
<td>DL/I</td>
<td>OFF</td>
<td>2268</td>
<td>SYS3</td>
</tr>
<tr>
<td>DL/I</td>
<td>ON</td>
<td>HIGH</td>
<td>SYS3</td>
</tr>
<tr>
<td>LOCK</td>
<td>ON</td>
<td>HIGH</td>
<td>SYS3</td>
</tr>
<tr>
<td>PI</td>
<td>OFF</td>
<td></td>
<td>SYS3</td>
</tr>
<tr>
<td>LATC</td>
<td>ON</td>
<td>OFF</td>
<td>3024</td>
</tr>
<tr>
<td>DISP</td>
<td>ON</td>
<td>OFF</td>
<td>1260</td>
</tr>
<tr>
<td>SCHD</td>
<td>ON</td>
<td>OFF</td>
<td>630</td>
</tr>
<tr>
<td>SUBS</td>
<td>OFF</td>
<td>OFF</td>
<td>504</td>
</tr>
<tr>
<td>DLOG</td>
<td>ON</td>
<td>OFF</td>
<td>756</td>
</tr>
<tr>
<td>FAST</td>
<td>OFF</td>
<td>OFF</td>
<td>252</td>
</tr>
<tr>
<td>STRG</td>
<td>ON</td>
<td>OFF</td>
<td>1260</td>
</tr>
<tr>
<td>IDC0</td>
<td>OFF</td>
<td>OFF</td>
<td>2268</td>
</tr>
<tr>
<td>LUMI</td>
<td>OFF</td>
<td>OFF</td>
<td>1512</td>
</tr>
<tr>
<td>OTMT</td>
<td>OFF</td>
<td>OFF</td>
<td>1008</td>
</tr>
<tr>
<td>QMGR</td>
<td>OFF</td>
<td>OFF</td>
<td>1008</td>
</tr>
<tr>
<td>ORTT</td>
<td>OFF</td>
<td>OFF</td>
<td>1008</td>
</tr>
<tr>
<td>OCMD</td>
<td>OFF</td>
<td>OFF</td>
<td>1008</td>
</tr>
<tr>
<td>CSLT</td>
<td>OFF</td>
<td>OFF</td>
<td>1008</td>
</tr>
<tr>
<td>RRST</td>
<td>OFF</td>
<td>OFF</td>
<td>1512</td>
</tr>
<tr>
<td>NSCT</td>
<td>OFF</td>
<td>OFF</td>
<td>1260</td>
</tr>
</tbody>
</table>

Commands, Volume 1: IMS Commands A - M
Example 17 for /DISPLAY TRACE command

The following example shows the output returned for ISC TCP/IP nodes.

Entry ET:
/DISPLAY TRACE TABLE

Response ET:
IMS ACTIVE TRACES

<table>
<thead>
<tr>
<th>NODE</th>
<th>TYPE</th>
<th>USERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CICS</td>
<td>TCP</td>
<td>IMSUS01</td>
</tr>
<tr>
<td>LU6NPA</td>
<td>TCP</td>
<td>LU6SPA</td>
</tr>
</tbody>
</table>

LEVEL: 4  MODULE: ALL

Related reference:
QUERY NODE command (Commands)

/DISPLAY TRACKING STATUS command

In an RSR complex, use the /DISPLAY TRACKING STATUS command to display the status of a tracking subsystem. The /DISPLAY TRACKING STATUS command is valid on active and RSR tracking subsystems.

Subsections:
- “Environment”
- “Syntax”
- “Output fields: /DISPLAY TRACKING STATUS on an active subsystem” on page 654
- “Output fields: /DISPLAY TRACKING STATUS on a tracking subsystem” on page 656
- “Examples” on page 661

Environment

The /DISPLAY TRACKING STATUS command is valid in DB/DC, DBCTL, and DCCTL environments.

Syntax

```
/DISP
/DS
/TRE
/STA
```
Output fields: /DISPLAY TRACKING STATUS on an active subsystem

/DISPLAY TRACKING STATUS on an active subsystem displays the following:

- Subsystem IMSID
- The global service group (GSG)
- The service group (SG)
- The service group status
- The status of the conversation with log router

/DISPLAY TRACKING STATUS on an active subsystem shows the following information:

ACTIVE SUBSYSTEM
The IMSID, global service group, service group, and service group status of the active subsystem

IMSID
The IMSID of the active subsystem.

GSG-NAME
The 1- to 8-character global service group (GSG) name. The global service group is the collection of all IMS subsystems in an RSR complex (such as online IMS, utilities, and so on) that access a particular set of databases. An active subsystem can only be defined as part of one global service group.

SG-NAME
The name of the service group (SG) of which the active subsystem is a part. The service group name is 1 to 8 characters long.

SG-STATUS
The service group status, which can be one of the following:

IDENTIFICATION IN PROGRESS
An the IMS logger is in the process of identifying to the Transport Manager Subsystem (TMS) but has not yet completed.

IDENTIFIED
The IMS logger has identified to the TMS. A status of IDENTIFIED appears as long as the logger is connected or identified to the TMS. This status also appears after a /START SERVGRP command.

LOST
The IMS logger’s connection to the TMS is gone because of TMS or VTAM failure.

NO LOG ROUTER SG DEFINED
There is an error and logger has no knowledge of a log router with which to communicate. There is no Log Router Service Group defined to DBRC.

NOT IDENTIFIED
The IMS logger has never identified to the TMS (that is, is in its initial state) or the IMS logger has not been able to identify since the most recent /STOP SERVGRP command.

STOPPED
The /STOP SERVGRP command was issued. If there is an active conversation, /STOP SERVGRP causes it to be terminated.
At each OLDS switch, the logger no longer attempts to establish a conversation with the log router. Logs are no longer sent to the tracking subsystem. A /START SERVGRP command is required to undo the STOPPED condition.

**ACTIVE'S CONVERSATIONS WITH LOG ROUTERS**
Status of the conversations between the active and tracking subsystems.

**SG-NAME**
The name of the service group (SG) of which the tracking subsystem is a part.

**RECORDS-NOT-SENT**
The number of log records that have not yet been sent to the tracker. The number of records is a number in the form of \( nnnK \), where \( K \) represents 1024 records. The number is rounded off to the nearest \( K \). If the number of records exceeds 999K, then \( >999K \) is displayed.

This field applies only if the conversation status is SENDING LOGS. Otherwise, N/A is displayed.

**CONVERSATION STATUS**
The conversation status, which can be one of the following:

- **ACCEPT IN PROGRESS**
  A log router is in the process of accepting a conversation request, but has not yet allocated the conversation.

- **ALLOCATION IN PROGRESS**
  Indicates a conversation is in the process of being allocated.

- **DEALLOCATION IN PROGRESS**
  A conversation is in the process of being deallocated.

- **NO ACTIVE CONVERSATION**
  Indicates there is no active conversation between the logger and the log router. Although there is no conversation, the logger does know about the log router.

  At each OLDS switch, the logger will attempt to establish a conversation with the log router until it is successful. A /START SERVGRP command can be issued to cause the logger to attempt to establish a conversation with the log router before the next OLDS switch.

- **SENDING LOGS**
  The logger has an active conversation with the log router and is sending logs to the tracking site.

- **SUSPENDED LOGS**
  The logger has an active conversation with the log router but has suspended sending logs to the tracking site because of resource shortage. The conversation is still intact.
Output fields: /DISPLAY TRACKING STATUS on a tracking subsystem

When issued on a tracking subsystem, /DISPLAY TRACKING STATUS displays the following:

- Subsystem IMSID
- Readiness level
- Global service group (GSG)
- Service group (SG)
- Service group status
- Tracking status
- Tracking activity
- Gaps
- Isolated log sender status
- Online forward recovery (OFR) status
- The current and restart milestone indexes
- DL/I tracking status
- Fast Path tracking status

/DISPLAY TRACKING STATUS shows the same information for an IMS DB/DC tracking subsystem or a DBCTL tracking subsystem.

/DISPLAY TRACKING STATUS on a tracker shows the following information:

**TRACKING SUBSYSTEM**

The following tracking subsystem information is displayed:

**IMSID**

The IMSID of the tracking subsystem. The IMSID is 1 to 4 characters long.

**READINESS-LEVEL**

The readiness level of the tracking subsystem, which is either RECOVERY or DATABASE.

**GSG-NAME**

The global service group (GSG) name. The GSG is the collection of all IMS subsystems in an RSR complex, such as online IMS, utilities, and so on, which access a particular set of databases. A tracking subsystem tracks only one global service group. The global service group name is 1 to 8 characters long.

**SG-NAME**

The 1- to 8-character service group (SG) name.

**SG-STATUS**

The service group status, which can be IDENTIFIED, NOT IDENTIFIED, or STOPPED.

**IDENTIFIED**

The tracking subsystem has identified to the TMS, and can establish conversations with active loggers and isolated log sender (ILS) instances. IDENTIFIED appears as long as the tracking subsystem is connected or identified to the TMS.
NOT IDENTIFIED
The tracking subsystem has not attempted to identify to the TMS.
NOT IDENTIFIED is the initial state.

STOPPED
The tracking subsystem is not identified to the TMS. This status can be the result of any of the following: a /STOP SERVGRP command entered from the tracking subsystem, an unsuccessful attempt to identify, or termination of the TMS.

TRACKING STATUS
The status of the tracking subsystem, which can be one of the following:

INACTIVE
The tracking subsystem is idle. The tracking subsystem has completed all tracking work and has received no more log records from the active subsystems it tracks.

For example, a status of INACTIVE appears if the active subsystems have shut down and the tracking subsystem has completed its tracking work.

TRACKING
The tracking subsystem is tracking one or more active subsystems and has tracking work to do.

PLANNED TAKEOVER REQUESTED
One of the active subsystems being tracked issued an /RTAKEOVER command, notified the tracker, and shut down. As soon as all of the active systems in the GSG have shut down, all log gaps have been filled, and log routing has completed, the tracking subsystem will shut down for the planned remote takeover.

PLANNED TAKEOVER IN PROGRESS
An /RTAKEOVER command was entered on the active subsystem and all of the active subsystems being tracked have successfully shut down. The tracking subsystem is in the process of shutting down for the planned remote takeover. The tracking subsystem must shut down before active subsystems can be started at the new active site.

UNPLANNED TAKEOVER IN PROGRESS
An /RTAKEOVER command was entered on the tracking subsystem. The tracking subsystem will shut down for the unplanned remote takeover after it has completed routing received log data.

NUMBER OF ACTIVE SUBSYSTEMS
The number of active subsystems currently being tracked. It is followed by an integer.

TRACKING ACTIVITY
Status of the conversations between the tracker and the loggers of the active subsystems being tracked. The following information is displayed for each active subsystem being tracked:

NAME
The IMSID of the subsystem being tracked or the jobname for batch or batch backout being tracked. Subsystem names are 1 to 4 characters long. Job names are 1 to 8 characters long.
If the active subsystems are XRF-capable, the subsystem name displayed includes a hyphen and the one-character HSBID.

**Example:** The XRF alternate for IMSA would be displayed as IMSA-2.

**TYPE** Type of subsystem, which can be ONLINE, ACTIVE, BATCH, or BBO (batch backout):

**ONLINE**
An online (not batch) subsystem that has not sent data to the tracking subsystem. The subsystem might be an active subsystem that has not completed restart or it might be an XRF alternate subsystem.

**ACTIVE**
An online (not batch) subsystem that has sent data to the tracking subsystem.

**BATCH**
A batch subsystem that has sent data to the tracking subsystem.

**BBO** A batch backout job that has sent data to the tracking subsystem.

**RECEIVED-LOG**
The universal coordinated time of the last log record received from the subsystem, BATCH job, or BBO job. The time stamp is of the format $hhmmss$, where $hh$ represents hours, $mm$ represents minutes, and $ss$ represents seconds. RECEIVED-LOG does not apply to conversations with XRF-alternate subsystems, in which case N/A is displayed.

**ROUTED-LOG**
The universal coordinated time of the last log routed by the log router. The time stamp is of the format $hhmmss$, where $hh$ represents hours, $mm$ represents minutes, and $ss$ represents seconds. ROUTED-LOG does not apply to conversations with XRF-alternate subsystems, in which case N/A is displayed.

**NOT-ROUTED**
The number of log records that have been received by the tracker but not yet routed by the log router. The number is in the format $nnnK$, where $K$ represents 1024 log records. The number is rounded off to the nearest $K$. If this number exceeds 999K, then >999K is displayed. NOT-ROUTED does not apply to conversations with XRF-alternate subsystems, in which case N/A is displayed.

**STATUS**
The tracking status. If a conversation exists between the tracking subsystem and the active IMS, the status field contains CONV-ACT. If there is no conversation, the status field is left blank.

**GAPS** The status of gaps between the tracker and the active subsystems, BATCH jobs, or BBO jobs. One line is displayed for each gap associated with an active subsystem.

If the gap information is not known to the tracking subsystem, the PRILOG token associated with the gap is displayed as “MISSING LOG, PRILOG TOKEN=”. The following gap information is displayed:
NAME
The IMSID of the active system for which there is a gap, or the jobname of the BATCH or BBO job for which there is a gap.

In an XRF environment, the NAME is the RSENAME rather than the IMSID.

LOG-SEQ-FIRST
The log sequence number, in hexadecimal, of the first log record in the gap

IN-GAP
The number of records, in decimal, that are in the gap. The number is of the form nnnK, where K represents 1024 records. The number is rounded off to the nearest K. If this number exceeds 999K, then >999K is displayed.

RECEIVED
The number of records, in decimal, that have been received. The number is of the form nnnK, where K represents 1024 records. The number is rounded off to the nearest K. If this number exceeds 999K, then >999K is displayed.

NOT-ROUTED
The number of log records, in decimal, that have not been routed for the oldest gap. The number is of the form nnnK, where K represents 1024 records. If this number exceeds 999K, then >999K is displayed. This number does not apply to gaps other than the oldest one.

STATUS
The status of the gap, which is one of the following:

FILLING
The gap is currently being filled.

WAITING
The gap is not being filled yet. For example, the gap might be waiting to be filled if there are not enough conversations to send the log records, or a batch job is still running.

PERMNT ERR
There is a permanent error, such as a read error, that prevents this gap from being filled.

UNAVAIL
The log data needed to fill the gap is not available at the active site. The log or log data sets might have been deleted.

ISOLATED LOG SENDER STATUS
Status of isolated log sender conversations.

SYSTEM NAME OF TRANSPORT MANAGER SUBSYSTEM
If the tracking subsystem has a conversation with an isolated log sender, the system name of the TMS to which the isolated log sender is identified is displayed.

NUMBER OF CONVERSATIONS
Number of conversations with this instance of isolated log sender.
ONLINE FORWARD RECOVERY STATUS
The following online forward recovery (OFR) status is displayed:

NUMBER OF STREAMS BEING PROCESSED
Number of OFR processes initiated. The online forward recoveries are processed one at a time.

OFR ROUTING TIME
The latest close time of any log data set that has been or is currently being read for OFR.

MILESTONE INDEX STATUS
The following milestone information is displayed:

CURRENT MILESTONE INDEX
The current milestone index.

RESTART MILESTONE INDEX
The restart milestone index.

DLI TRACKING STATUS
Status of DL/I database tracking.

TRACKING PSTs
Number of DL/I database tracking PSTs currently in use. The number can be from 0 to 255.

USAGE OF TRACKING PSTs
Average percent usage of DLI database tracking PSTs currently in use

BACKLOG OF REDO RECORDS IN DATASPACE
The backlog number of redo records in the data space. The backlog is a measure of how well the tracker is keeping up with the workload. The backlog is a number in the form of \( nnnK \), where \( K \) represents 1024 redo records. The number is rounded off to the nearest \( K \). If the number of redo records exceeds 999K, then \( >999K \) is displayed.

FP TRACKING STATUS
Status of Fast Path database tracking.

TRACKING PSTs
Number of FP database tracking PSTs and the reason the PSTs are invoked. The number of tracking PSTs can be from 0 to 255. The reason the PSTs are invoked can be one of the following and only appears if there are one or more PSTs:

AREAWRITE
The PSTs are invoked by a write request for a specific area.

MILESTONE
The PSTs are invoked by milestone processing.

THRESHOLD
The PSTs are invoked by threshold write.

CURRENT LOG VOLUME IN DATASPACE
The current log volume in Fast Path tracking data space. This number can be from 0 to \( nnnnnnnK \), where \( K \) represents 1024 log records. The maximum possible number is 2000000K (two gigabytes). The number is rounded off to the nearest \( K \).
MAX LOG VOLUME IN DATASPACE

Maximum log volume in Fast Path tracking data space. This number can be from 0 to \textit{nnnnnnn}K, where \textit{K} represents 1024 log records. The maximum possible number is 2000000K (two gigabytes). The number is rounded off to the nearest \textit{K}.

Examples

The following are examples of the /DISPLAY TRACKING STATUS command.

\textbf{Example 1 for /DISPLAY TRACKING STATUS command}

The following is an example of a /DISPLAY TRACKING STATUS entered from a tracking subsystem in Los Angeles. The two active systems in San Jose are named IMSA and IMSC. IMSA has an XRF alternate named IMSB. IMSC has an XRF alternate named IMSD. The Coordinated Universal Time is 23:32:09. The local Los Angeles time is 15:32:09. OFR is also in progress and has started processing log data up through 14:11:34 local time.

Entry ET:

\texttt{/DIS TRACKING STATUS}

Response ET:

\begin{verbatim}
**** TRACKING SUBSYSTEM ****************************
IMSID READINESS-LEVEL GSG-NAME SG-NAME SG-STATUS
IMST RECOVERY IMSGSG1 STLSITE2 IDENTIFIED
**** TRACKING STATUS: TRACKING
NUMBER OF ACTIVE SUBSYSTEMS: 4
**** TRACKING ACTIVITY ****************************
NAME TYPE RECEIVED-LOG ROUTED-LOG NOT-ROUTED STATUS
IMSD ONLINE N/A N/A N/A CONV-ACT
IMSC ACTIVE 15:31:00 15:29:54 2K CONV-ACT
IMSB ONLINE N/A N/A N/A CONV-ACT
IMSA ACTIVE 15:31:10 15:29:47 3K CONV-ACT
**** GAPS ****************************
NAME LOG-SEQ-FIRST IN-GAP RECEIVED NOT-ROUTED STATUS
IMSC 0000000000007D31 2K 0K N/A N/A WAITING
**** ISOLATED LOG SENDER STATUS ****************************
SYSTEM NAME OF TRANSPORT MANAGER SUBSYSTEM: TMPAR
NUMBER OF CONVERSATIONS: 1
**** ONLINE FORWARD RECOVERY STATUS ****************************
NUMBER OF STREAMS BEING PROCESSED: 0
OFR ROUTING TIME: 2002.090 14:11:34
**** MILESTONE INDEX STATUS ****************************
CURRENT MILESTONE INDEX: 38
RESTART MILESTONE INDEX: 37
**** DLI TRACKING STATUS ****************************
TRACKING PSTS: 0
USAGE OF TRACKING PSTS: 0%
BACKLOG OF REDO RECORDS IN DATASPACE: 0K
**** FP TRACKING STATUS ****************************
TRACKING PSTS: 0
CURRENT LOG VOLUME IN DATASPACE: 0K
MAX LOG VOLUME IN DATASPACE: 0K
*02090/153209*
\end{verbatim}

\textbf{Example 2 for /DISPLAY TRACKING STATUS command}

The following is an example of a /DISPLAY TRACKING STATUS command entered on an active system IMSC, located in San Jose.
Entry ET:

/DIS TRACKING STATUS

Response ET:

**** ACTIVE SUBSYSTEM *********************************************************
IMSID GSG-NAME SG-NAME SG-STATUS
IMSC ACCTGRP1 SITESJ IDENTIFIED
**** ACTIVE'S CONVERSATIONS WITH LOG ROUTERS *********************************************************
IMSID RECORDS-NOT-SENT
IMST 1K SENDING LOGS
*91317/150416*

/DISPLAY TRAN command

Use the /DISPLAY TRAN command to display the status of transactions.

Subsections:
- "Environment"
- "Syntax"
- "Keywords"
- "Usage notes" on page 663
- "Equivalent IMS type-2 commands" on page 664
- "Output fields" on page 664
- "Examples" on page 665

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

Table 273. Valid environments for the /DISPLAY TRAN command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/DISPLAY</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>QCNT</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRAN</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Syntax

![Diagram](image)

Keywords

The following keyword can be specified for the /DISPLAY TRAN command:
QCNT

Specifies that global queue count information is to be displayed. If the QCNT keyword is not specified, local queue counts are displayed. The QCNT keyword is valid only in a shared-queues environment.

IMS does not check that the specified name is a valid transaction in the IMS subsystem on which the command is entered.

The /DIS TRAN tranname QCNT command returns the count of messages on the shared-queue structure for transaction tranname. The message count includes the messages that can be processed by any IMS (messages with no affinity), plus messages that can be processed only by the IMS where the /DIS TRAN command was entered (messages with affinity to the IMS that issued the command). Thus, a /DIS TRAN tranname QCNT command that is routed to several IMS subsystems in an IMSplex environment might show different queue counts on different IMS subsystems if there are messages on the shared-queue structure that are queued with affinity to an IMS.

The /DISPLAY TRAN ALL QCNT command displays all the transactions on the shared queues with a global queue count. This command returns one line for each transaction that has messages queued to the global (non-affinity) queue on the shared queue structure. This line shows the number of messages that are queued to the global queue of that transaction and indicates the messages that can be processed by any IMS. Additionally, the /DIS TRAN ALL QCNT command returns one line for each transaction that has messages queued with affinity to an IMS in the IMSplex. This line shows the number of messages queued with affinity, as well as the IMSID of the IMS to which they have affinity.

On the IMS where this message will be processed, you might need to register this transaction for affinity message processing by entering a type-1 /START TRAN tranname AFFINITY command or a type-2 UPDATE TRAN NAME(tranname) START(SCHD) OPTION(AFFIN) command.

For the AFFINITY status, the type-1 command can display messages on the shared queues that have affinity, but not the local AFFINITY status of the transaction (trancode) name in IMS. To query the affinity status of a transaction, use a type-2 QUERY TRAN STATUS(AFFIN) command or a QUERY TRAN NAME(tranname) SHOW(STATUS) command.

Usage notes

The TRAN keyword parameter can be generic.

IMS Open Transaction Manager Access (OTMA) supports an architected format for the output from the /DISPLAY TRAN command. The architected output is returned to the OTMA client, not to an IMS operator.

In a shared-queues environment, use the QCNT keyword to obtain the current message queue counts on the shared queues structure. The local queue counts (ENQCT, DEQCT, and QCT) value that is returned on this command when the QCNT keyword is not specified represents the messages being processed by the IMS system where this command is issued. Do not use local queue counts for queue evaluation purposes.
Equivalent IMS type-2 commands

The following table shows variations of the /DISPLAY TRAN command and the IMS type-2 commands that perform similar functions.

Table 274. Type-2 equivalents for the /DISPLAY TRAN command

<table>
<thead>
<tr>
<th>Task</th>
<th>/DISPLAY TRAN command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays information about a transaction.</td>
<td>/DISPLAY TRAN tranname</td>
<td>QUERY TRAN NAME(tranname) SHOW(ALL)</td>
</tr>
<tr>
<td>Displays all of the transactions.</td>
<td>/DISPLAY TRAN ALL</td>
<td>QUERY TRAN SHOW(ALL)</td>
</tr>
<tr>
<td>Displays all of the transactions on the shared queues with a global queue count.</td>
<td>/DISPLAY TRAN tranname QCNT</td>
<td>QUERY TRAN NAME(tranname) SHOW(QCNT)</td>
</tr>
</tbody>
</table>

Output fields

The /DISPLAY TRAN command displays the transaction name, class (CLS), current priority (CP), normal priority (NP), local priority (LP), local enqueue queue count (ENQCT), local queue count (QCT), limit count (LCT), processing limit count (PLCT), parallel limit count (PARLM), the number and size of output segments for a specified transaction code (SESZ, SEGNO), and the number of regions the transaction is currently scheduled in (RC), all on the first line.

The next two indented lines show the PSB name associated with the transaction and the status. DFSCPIC is displayed as the PSB name for CPI Communications driven transactions that have not issued a DL/I APSB call to allocate a PSB.

Fast Path exclusive transaction codes have only the transaction code and class returned, where the class is displayed as FPE. The queue counts are not shown because Fast Path processing bypasses the IMS message queues.

Fast Path potential transactions have two lines returned, the first line with the transaction code and class, where the class is displayed as FPP, and the second line with the transaction information.

For remote transactions, the class column is displayed as RMT.

The status displayed can be one of the following:

- BAL
- DYNAMIC
- I/O PREV
- LOCK
- NOTINIT
- PST0P
- PUR
- QERR
- QSTP
- SPND
- STOP
- TRA
- USTOP

A status of NOTINIT appears in the output of a /DISPLAY TRAN command when IMS is unable to initialize a transaction resource during restart processing.
The /DISPLAY TRAN command also displays I/O prevention when a BMP program containing GSAM cannot complete scheduling.

The /DISPLAY TRAN QCNT count command returns the global queue counts from shared queues and any affinity of messages on the IMS shared queues.

**Examples**

The following are examples of the /DISPLAY TRAN command.

**Example 1 for /DISPLAY TRAN command**

Entry ET:

```
/DISPLAY TRAN ALL
```

Response ET:

```
<table>
<thead>
<tr>
<th>TRAN</th>
<th>CLS</th>
<th>ENQCT</th>
<th>QCT</th>
<th>LCT</th>
<th>PLCT</th>
<th>CP</th>
<th>NP</th>
<th>LP</th>
<th>SEGSZ</th>
<th>SEGNO</th>
<th>PARLM</th>
<th>RC</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPN1</td>
<td>22</td>
<td>14</td>
<td>7</td>
<td>5</td>
<td>0</td>
<td>8</td>
<td>5</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>PSBNAME: DFSCPIC</td>
<td></td>
</tr>
<tr>
<td>TPN2</td>
<td>23</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>STATUS: PUR</td>
<td></td>
</tr>
<tr>
<td>TPN2</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>PSBNAME: DFSCPIC</td>
<td></td>
</tr>
<tr>
<td>STATUS: STOP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRN1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>5</td>
<td>8</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PSBNAME: LU2PGM1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRN2</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>65535</td>
<td>65535</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PSBNAME: LU2PGM2</td>
<td></td>
</tr>
<tr>
<td>STATUS: PSTOP</td>
<td></td>
</tr>
<tr>
<td>90332/114253</td>
<td></td>
</tr>
</tbody>
</table>
```

**Example 2 for /DISPLAY TRAN command**

Entry ET:

```
/DISPLAY TRAN SKS1 SKS2 SKS3 SKS4 SKS5 SKS6 SKS7
```

Response ET:

```
<table>
<thead>
<tr>
<th>TRAN</th>
<th>CLS</th>
<th>ENQCT</th>
<th>QCT</th>
<th>LCT</th>
<th>PLCT</th>
<th>CP</th>
<th>NP</th>
<th>LP</th>
<th>SEGSZ</th>
<th>SEGNO</th>
<th>PARLM</th>
<th>RC</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKS1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>65535</td>
<td>65535</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>PSBNAME: DFSDDLT1</td>
<td></td>
</tr>
<tr>
<td>STATUS: TRA</td>
<td></td>
</tr>
<tr>
<td>SKS2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>65535</td>
<td>65535</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>PSBNAME: DFSDDLT2</td>
<td></td>
</tr>
<tr>
<td>SKS3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>65535</td>
<td>65535</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>PSBNAME: DFSDDLT3</td>
<td></td>
</tr>
<tr>
<td>STATUS: STOP,TRA</td>
<td></td>
</tr>
<tr>
<td>SKS4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>65535</td>
<td>65535</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>PSBNAME: DFSDDLT4</td>
<td></td>
</tr>
<tr>
<td>STATUS: STOP</td>
<td></td>
</tr>
<tr>
<td>SKS5</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>65535</td>
<td>65535</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>PSBNAME: DFSDDLT5</td>
<td></td>
</tr>
<tr>
<td>SKS6</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>65535</td>
<td>65535</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>PSBNAME: DFSDDLT6</td>
<td></td>
</tr>
<tr>
<td>STATUS: BAL(2)</td>
<td></td>
</tr>
<tr>
<td>SKS7</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>65535</td>
<td>65535</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>PSBNAME: DFSDDLT7</td>
<td></td>
</tr>
<tr>
<td>STATUS: BAL(2)</td>
<td></td>
</tr>
<tr>
<td>89184/142345</td>
<td></td>
</tr>
</tbody>
</table>
```

**Example 3 for /DISPLAY TRAN command**
Entry ET:
/DISPLAY TRAN TRANA TRANB TRANC QCNT

Response ET:
      TRAN      GBLQCT
      TRANA        0
      TRANB       1000
      TRANC        45
      *95200/170817*

Example 4 for /DISPLAY TRAN command

Entry ET:
/DISPLAY TRAN ALL QCNT

Response ET:
      TRAN      GBLQCT      AFFINITY
      TRAN1234    1524    IMS1
      TRAN1234     3     IMSA
      TRAN1234     14
      *00305/103034*

Explanation: This example command receives multiple lines of output for a transaction, TRAN1234. The output shows there are 1524 messages for the transaction that have an affinity to execute on IMS1. A transaction might have an affinity if it were an APPC, OTMA, or serial transaction. If an output line shows no affinity, like the example output line with a GBLQCNT of 14, then there could be a single IMS system indicated, or multiple IMS systems that have messages that contribute to the GBLQCNT.

Example 5 for /DISPLAY TRAN command

Entry ET:
/DISPLAY TRAN ALL QCNT

Response ET:
      DFS000I   TRAN      GBLQCT      AFFINITY
      DFS000I   APOL12          1
      DFS000I   APOL12          1    IMS1

Explanation: This example shows two messages queued to transaction APOL12. One message has affinity to IMS1. The other message does not.

Related reference:
“Status and attributes for the /DISPLAY command” on page 435

/DISPLAY UOR command

Use the /DISPLAY UOR command to display status information about IMS units of recovery (UORs) for protected resources on the z/OS Resource Recovery Services (RRS) platform.

Subsections:
- “Environment” on page 667
- “Syntax” on page 667
Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

**Table 275. Valid environments for the /DISPLAY UOR command and keywords**

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/DISPLAY</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ACTIVE</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>INDOUBT</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UOR</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Syntax

```
.DISPLAY UOR
```

**Keywords**

The following keywords are valid for the /DISPLAY UOR command:

**ALL**
- Displays active and indoubt UORs. ALL is the default.

**ACTIVE**
- Displays only active UORs.

**INDOUBT**
- Displays only UORs that were indoubt when they were terminated. Indoubt UORs identify residual work that needs resolution.

**p strengthtokn**
- If you specify the 6-byte pseudorecovery token of the protected UOR, this command displays information about the requested UOR.

Output fields

The following output fields are displayed by the /DISPLAY UOR command:

**EID**
- The identifier of a work request across multiple connected distributed systems coordinated by the Encina toolkit. This data appears on a separate line of output if it is available.

**IMS-RECTOKN**
- The IMS recovery token that uniquely identifies the IMS portion of the UOR.
LUWID
The identifier of a work request across multiple distributed systems connected by LU 6.2 conversations. This data appears on a separate line of output if it is available.

PSBNAME
The IMS PSB scheduled for this UOR.

P-TOKEN
The IMS pseudorecovery token, which can be used in subsequent commands to refer to this particular UOR. This token only displays for indoubt UORs (status RI). Use this token for subsequent /DISPLAY UOR and /CHANGE UOR commands.

RRS-URID
The unique identifier for a protected unit of recovery (of which IMS work is part). z/OS Resource Recovery Services (RRS) generates and maintains this data.

ST
Status of the UOR, which can be one of the following:
A  Active; work is inflight.
B  Active; work is being backed out.
C  Active; work is being committed.
E  Active; work is in cleanup phase.
I  Active; work is indoubt, awaiting phase 2 action.
RI  Residual indoubt; indoubt UOR from a prior IMS execution or a dependent-region abend.

WID
The identifier of a work request across multiple distributed systems that are not associated with a LUWID, EID, or XID task. This data is provided only for the /DIS UOR ACTIVE command, and appears on a separate line of output.

XID
X/Open identifier (XID). One possible work identifier for a distributed transaction used by a communications resource manager that uses X/Open distributed transaction processing model.

Examples

Example 1 for /DISPLAY UOR command

Entry ET:
/DISPLAY UOR

Response ET:
ST  P-TOKEN  PSBNAME  RRS-URID  IMS-TOKEN
A   DB0VLFPB  AF3499A27E3E298000000401010000 SYS1  0000000400000002
EID=000181222768AC10098B70268346
C   DB0VLFPB  AF1124A27E10238000000501020000 SYS1  0000000700000002
EID=0002A355490210A108538121766899670
RI  00010120  PLAPJK02  1234567890123456789012345678901234567890123456789012
EID=0001C35549021DB0176523121445797320
*96337/145345*

Example 2 for /DISPLAY UOR command

Entry ET:
/DISPLAY UOR ACTIVE

Response ET:
ST P-TOKEN PSBNAME RRS-URID IMS-TOKEN
A PLAPJK01 AF3278A27EC3E2980000000402010000 SYS1 0000000400000002
LUWID=OEIMSNET.L62IMS1999E359820810001
*96338/091642*

Example 3 for /DISPLAY UOR command

Entry ET:
/DISPLAY UOR INDOUBT

Response ET:
ST P-TOKEN PSBNAME RRS-URID IMS-TOKEN
RI 00010040 DBOVLFFC 98766883421097867890123456789012 SYS1 0000008300000001
LUWID=OEIMSNET.L62IMS1763E3583304010001
RI 00010120 PLAPJK02 AF34A6307EC4E2980000000201010000 SYS1 0000002700000001
LUWID=OEIMSNET.L62IMS1438E339103810001
*96336/113502*

Example 4 for /DISPLAY UOR command

Entry ET:
/DISPLAY UOR 010140

Response ET:
ST P-TOKEN PSBNAME RRS-URID IMS-TOKEN
RI 00010140 PLAPJK02 AF34A6307EC4E2980000000201010000 SYS1 0000002700000001
LUWID=OEIMSNET.L62IMS1999E359820810001
*96340/111544*

Example 5 for /DISPLAY UOR command

Entry ET:
/DIS UOR

Response ET:
ST P-TOKEN PSBNAME RRS-URID IMS-RECTOKN
A STLDDL14 B6626FF77EB82000000000101010000 SYS3 00000001000
XID=RRMS0000002200000000000000000000000000000000000000000000000
0000000000
*01246/150749*

Example 6 for /DISPLAY UOR command

Entry ET:
/DIS UOR ACTIVE

Response ET:
ST P-TOKEN PSBNAME RRS-URID IMS-RECTOKN
A APOL1 C59FF3967DE43000000000201030000 IMS2
00000030000000
DF50001 WID=0A43D048NATIVE_CASCADED.TRAN IMS2
DF50001 *10062/173908* IMS2

Chapter 26. /DISPLAY commands 669
/DISPLAY USER command

Use the /DISPLAY USER command to display all of the user structures and the user IDs that match the parameter or attribute specified.

Subsections:
- "Environment"
- "Syntax" on page 671
- "Keywords and reserved parameters" on page 671
- "Usage notes" on page 673
- "Equivalent IMS type-2 commands" on page 673
- "Examples" on page 674

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

Table 276. Valid environments for the /DISPLAY USER command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/DISPLAY</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>AUTOLOGON</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>EMHQ</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>QCNT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>RECOVERY</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>USER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Syntax

```
/DISPLAY USER
 username
 -username*
 RECOVERY
 -RECOVERY
 AUTOLOGON
 -AUTOLOGON
 QCNT
 -QCNT
 EMHQ
 -EMHQ
 ALLOC
 -ALLOC
 CONVACT
 -CONVACT
 CONVHLD
 -CONVHLD
 DEADQ
 -DEADQ
 EXCL
 -EXCL
 MFST
 -MFST
 PRST
 -PRST
 RESP
 -RESP
 RESPINP
 -RESPINP
 STATIC
 -STATIC
 STOPPED
 -STOPPED
 TEST
 -TEST
```

Keywords and reserved parameters

The following keywords can be specified for the /DISPLAY USER command:

**AUTOLOGON**
- Displays the current autologon information for the specified user. The autologon information can be changed dynamically with the /CHANGE command.

**EMHQ**
- Specifies that global queue count information on the Expedited Message Handler Queues (EMHQ) displays when both EMHQ and QCNT are specified. If EMHQ is specified, QCNT must also be specified. This keyword is valid only in a shared-queues environment.

**QCNT**
- Specifies that global queue count information is to be displayed. If QCNT is not specified, local queue counts are displayed; when it is specified, no local queue counts are displayed. If QCNT is specified and EMHQ is not, global queue count information on the shared message queues (MSGQ) is displayed. This count represents the message counts of messages that can be processed by the IMS system where the command is issued. This count includes messages that can be processed by any IMS system (messages with no affinity), plus messages that can be processed by the IMS system where the command is issued (messages with an affinity to the IMS system that issued the command).

IMS does not check if the specified name is a valid LTERM in the IMS subsystem on which the command is entered.

This command does not display queue counts for Fast Path output messages for the NODE unless EMHQ and QCNT are specified.
This keyword is valid only in a shared-queues environment.

**RECOVERY**

The `/DISPLAY NODE | USER RECOVERY` command can be used to display the recovery values that pertain to the node or user. The recovery values may be displayed from the local control blocks, if available, or from values saved for the node or user in the Resource Manager, if resource information is being kept in Resource Manager, and the node or user is defined to have its status kept in Resource Manager. The recovery information displayed with this command are:

- IMS owner
- The IMS ID (RSEname if an XRF system) of the IMS system that currently owns this resource. If the resource is not currently owned, this field will be displayed as NONE.
- The scope of recovery for a resource, and from where the end-user significant status is maintained and recovered.
- End-user significant status
- The following status are end-user significant status for nodes and users.
  - Conversation
  - STSN
  - Fast Path

These are status that frequently change for a resource, and thus there are performance considerations related to maintaining end-user significant status. The installation can tell IMS how to recover end-user significant status by specifying the level of recovery for each status. Shown for each resource is the level of recovery for each end-user significant status.

**username**

Specifies either a user structure name or a RACF user ID.

"Attributes" are reserved parameters for the `/DISPLAY USER` command and cannot be used to name users. Any one attribute can be used with the USER keyword. Users are selected for display based on the attribute or attributes specified. The attribute display format is the same as the standard USER display. Attributes usually correspond to the conditions displayed for users.

Following is a list of the attributes that can be specified with the USER keyword:

- ALLOC
- CONVACT
- CONVHLD
- DEADQ
- EXCL
- MFST
- PRST
- RESP
- RESPINP
- STATIC
- STOPPED
- TEST

RESPINP shows users with RESP-INP and RESP-INP-FP status.
Usage notes

The USER parameter can be generic when the generic parameter specifies users that already exist.

The following information is displayed:

- The USER field shows the user structure name. N/A appears for all user IDs signed on to static nodes.
- The USERID field shows the RACF user ID that was used to sign on to the node. N/A appears if a user structure is not associated with a node. In that case, the user structure exists to hold status or has messages inserted to it. If no messages or status exist, the user structure is deleted at the next checkpoint.
- The node name appears if the user is allocated to a node or signed on to a node.
- The cumulative queue counts for enqueues, dequeues, and number of items still on the queue for the specified users is displayed. The cumulative counts include all LTERM associated with the specified users, whether the LTERM are allocated to a node or not.
  - For non-ISC static users, queue counts are displayed as N/A, since non-ISC static users are not associated with queues.
- STOPPED or ALLOC is displayed to show whether the user LTERM are assigned to a node (ALLOC) or the user is stopped (STO).

User IDs can only be used as parameters with the /DISPLAY USER command and the /SIGN ON command. In other commands that support the USER keyword, the user structure name, not the user ID, must be used.

The ALLOC status is followed by the node name (in parentheses) to which the user is allocated or signed on to.

The use of DEADQ with the /DISPLAY USER command shows all users that have queues marked as dead letter queues. When all the messages are purged by the /DEQUEUE command, the DEADQ status is removed. After all the messages have been purged and the status removed, then the user structure is deleted at the next simple checkpoint.

In a shared-queues environment, use the QCNT keyword to obtain the current message queue counts on the shared queues structure. The local queue counts (ENQCT, DEQCT, and QCT) value that is returned on this command when the QCNT keyword is not specified represents the messages being processed by the IMS system where this command is issued. Do not use local queue counts for queue evaluation purposes.

Equivalent IMS type-2 commands

The following table shows variations of the /DISPLAY USER command and the IMS type-2 commands that perform similar functions.

<table>
<thead>
<tr>
<th>Task</th>
<th>/DISPLAY USER command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays preset destination.</td>
<td>/DISPLAY USER user</td>
<td>QUERY USER SHOW(PRESET)</td>
</tr>
<tr>
<td>Displays node.</td>
<td>/DISPLAY USER user</td>
<td>QUERY USER SHOW(NODE)</td>
</tr>
<tr>
<td>Displays status for a particular user.</td>
<td>/DISPLAY USER user</td>
<td>QUERY USER SHOW(STATUS)</td>
</tr>
</tbody>
</table>
Table 277. Type-2 equivalents for the /DISPLAY USER command (continued).

<table>
<thead>
<tr>
<th>Task</th>
<th>/DISPLAY USER command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays user ID.</td>
<td>/DISPLAY USER user</td>
<td>QUERY USER SHOW(USERID)</td>
</tr>
<tr>
<td>Displays status of a particular user ID.</td>
<td>/DISPLAY USER user</td>
<td>QUERY USERID SHOW(STATUS)</td>
</tr>
<tr>
<td>Displays user.</td>
<td>/DISPLAY USER user</td>
<td>QUERY USERID SHOW(USER)</td>
</tr>
<tr>
<td>Displays autologon parameters.</td>
<td>/DISPLAY USER user AUTOLOGON</td>
<td>QUERY USER SHOW(AUTOLOGON)</td>
</tr>
<tr>
<td>Displays queue count.</td>
<td>/DISPLAY USER user</td>
<td>QUERY USER SHOW(QCNT)</td>
</tr>
<tr>
<td></td>
<td>/DISPLAY USER user QCNT</td>
<td></td>
</tr>
<tr>
<td>Displays message queue count in the Expedited Message Handler (EMH) queues.</td>
<td>/DISPLAY USER user QCNT EMHQ</td>
<td>QUERY USER SHOW(EMHQ)</td>
</tr>
<tr>
<td>Displays status recovery information.</td>
<td>/DISPLAY USER user</td>
<td>QUERY USER SHOW(RECOVERY)</td>
</tr>
<tr>
<td>Displays owner IMSID in RM resource structure.</td>
<td>/DISPLAY USER user</td>
<td>QUERY USER SHOW(OWNER)</td>
</tr>
</tbody>
</table>

**Examples**

The following are examples of the /DISPLAY USER command.

**Example 1 for /DISPLAY USER command**

Entry ET:

/DISPLAY USER IMSUS01 IMSUS02

Response ET:

```
USER USERID ENQCT DEQCT QCT
IMSUS01 IMSUS01 1 1 0 ALLOC(DTSLU201) CONV-HLD
N/A IMSUS01 N/A N/A N/A ALLOC(L3270A) STATIC
N/A IMSUS02 N/A N/A N/A ALLOC(L3270B) STATIC
DT327002 IMSUS02 0 0 0 ALLOC(DT327002)
92350/112229
```

Entry ET:

/DISPLAY USER USER1 USER2 USER3 QCNT

Response ET:

```
USERID USER GBLQCT
N/A USER1 25
USER2 USER2A 0
USER2 USER2B 10
USER3 IMSUSR3A 40
95200/170817
```

Entry ET:

/DISPLAY USER IMSUS01*

Response ET:
### Example 2 for /DISPLAY USER command

**Entry ET:**

```
/DISPLAY USER ABC100 EMHQ QCNT
```

**One user is on the queue.**

**Response ET:**

```
14.42.46 57/DIS USER ABC100 QCNT EMHQ.
14.42.46 IEE600I REPLY TO 57 IS;/DIS USER ABC100 QCNT EMHQ.
14.42.46 J0800110 DFS0001 USER GBLQCT IMS1
14.42.46 J0800110 DFS0001 ABC100 0 IMS1
14.42.46 J0800110 DFS0001 *98203/144246* IMS1
```

### Example 3 for /DISPLAY USER command

**Entry ET:**

```
/DISPLAY USER IMSUS01 IMSUS02 IMSUS03 AUTOLOGON.
```

**Response ET:**

```
USER NODE MODE DESC ID
IMSSUS01 N/A N/A N/A N/A
IMSSUS02 N/A N/A N/A N/A
IMSSUS03 N/A N/A N/A N/A
```

**Entry ET:**

```
/CHANGE USER IMSUS01 AUTOLOGON DT327001 MODE LU032NT4.
```

**Response ET:**

```
DFS058I CHANGE COMMAND COMPLETED
```

**Entry ET:**

```
/CHANGE USER IMSUS02 AUTOLOGON DTSLU601 MODE LU6NEGPS ID IMSID2.

Response ET:
DFS058I CHANGE COMMAND COMPLETED

Entry ET:
/CHANGE USER IMSUS03 AUTOLOGON DT327001 LOGOND DFS3270 MODE LU032NT4.

Response ET:
DFS058I CHANGE COMMAND COMPLETED

Entry ET:
/DISPLAY USER IMSUS01 IMSUS02 IMSUS03 AUTOLOGON.

Response ET:
USER NODE MODE DESC ID
IMSSUS01 DT327001 LU032NT4 N/A N/A
IMSSUS02 DTSLU601 LU6NEGPS N/A IMSID2
IMSSUS03 DT327001 LU032NT4 DFS3270 N/A
+99243/083309*

Example 4 for /DISPLAY USER RECOVERY command

Entry ET:
/DISPLAY USER IMSUS* IMSUS03 LU6SPG RECOVERY

Response ET:
USER OWNER SRM CONV STSN FPATH
IMSSUS05 IMSA GLOBAL Y Y Y
IMSSUS01 IMSA LOCAL Y Y Y
IMSSUS03 IMSB GLOBAL Y N N
LU6SPG IMSA LOCAL Y Y Y
+99248/134730*

Related reference:
"Status and attributes for the /DISPLAY command" on page 435

QUERY USER command (Commands)
QUERY USERID command (Commands)
Chapter 27. /END command

The /END command terminates all special operating modes established through the prior entry of an /EXCLUSIVE, /TEST, or /LOOPTEST command.

/END NODE | USER does not reset TEST mode. Only the same terminal that is in TEST mode can reset the TEST mode (using /END without the NODE or USER keywords).

Subsections:
• “Environment”
• “Syntax”
• “Keywords”
• “Usage notes” on page 678
• “Example” on page 678

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

Table 278. Valid environments for the /END command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/END</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LINE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NODE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PTERM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>USER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

►►/END

 LINE—line#—PTERM—pterm#
 NODE—nodename— USER—username

Keywords

The following keywords are valid for the /END command:

LINE
 Specifies the communication line for which special operating modes are terminated.

NODE
 Specifies the VTAM node for which special operating modes are terminated.
/END NODE is not valid for ISC nodes with users or nodes that were dynamically created. /END NODE USER only applies to ISC sessions and affects the half-session allocated to username.

Restrictions for using NODE and USER parameters together:
- Commands with the NODE USER keyword pair are valid only if:
 - The USER is signed on to the NODE
 - In an ISC environment, the USER is allocated to the NODE
 - The nodes and users already exist
- /END NODE USER commands are valid for ISC and non-ISC nodes and users.

USER

Without the NODE keyword, USER specifies the dynamic user for which special operating modes are terminated. The named user must exist in IMS, must be dynamic, and must not be signed on to a node. When /END USER is issued against a temporary user, which was created solely to retain status that is now reset, the temporary user is deleted at the next simple checkpoint.

Usage notes

The /END NODE command applies to dynamic nodes in addition to static nodes because MFSTEST mode is associated with dynamic nodes as well as dynamic users. The /END NODE command and the /END NODE USER command reset MFSTEST mode at the node level. The /END USER command resets MFSTEST at the user level. The /END command with no keywords resets MFSTEST at the node level for static terminals (they have no user level) and at the user level for dynamic terminals. The /END NODE USER command supports static and dynamic ISC sessions. When the /END NODE command or the /END NODE USER command is used for a dynamic node, only MFSTEST is reset. Exclusive mode can only be reset for a dynamic resource with the /END USER command. If global resource information is kept in Resource Manager, MFSTEST mode is reset globally and locally. If global resource information is not kept in Resource Manager, MFSTEST mode is reset locally.

The /END command with no keywords operates on the entering terminal with a signed on user. The /END command with no keywords is not supported through the OM API in an IMSplex.

This command can be issued to an IMSplex using the Batch SPOC utility.

Example

Entry ET:

/END

Response ET:

DFS058I END COMMAND COMPLETED

Explanation: All modes that previously existed are ended.
Chapter 28. /ERESTART command

Use the /ERESTART command, which is a multisegment command, to perform a manual restart of an IMS XRF alternate system and to restart IMS any time the system was not terminated with an orderly /CHECKPOINT shutdown.

Three conditions that result in the need for an emergency restart are:
- Abnormal termination of IMS
- Abnormal termination of z/OS
- Forced termination of IMS by using the z/OS MODIFY command

Subsections:
- "Environment"
- "Syntax" on page 680
- "Keywords" on page 681
- "Usage notes" on page 686
- "Examples" on page 687

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

Table 279. Valid environments for the /ERESTART command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/ERESTART</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>BACKUP</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BUILDQ</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHECKPOINT</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CMDAUTH</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMDAUTHE</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COLDBASE</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>COLDCOMM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>COLDSYS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>FORMAT</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MULTSIGN</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NOBMP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NOCMDAUTH</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NOCMDAUTHE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NOTRANAUTH</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NOUSER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OPTION</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>OVERRIDE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SNGLSIGN</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Table 279. Valid environments for the /ERESTART command and keywords (continued)

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRANAUTH</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>USER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

Manual restart of an XRF alternate system

Use this command only after the active system issues message DFS3804I.

Restart of IMS following loss of virtual storage only

Restart of IMS following loss of virtual storage and message queue data set integrity

The message queues have not been dumped to the system log since the most recent cold start.

Restart of IMS following /ERESTART failure of the database component
Restart of IMS following /ERESTART failure of communication component

```
/ERESTART
/ER
/OPTION
/SYNCPLEX
/COLDCOMM
/NOBMP
/OVERRIDE
```

Restart of IMS following /ERESTART failure of both the database and communication components

```
/ERESTART
/ER
/OPTION
/SYNCPLEX
/COLDSYS
/OVERRIDE
```

Keywords

The following keywords are valid for the /ERESTART command:

BACKUP

Indicates that the control region is an alternate system in an XRF environment. This command is required when performing manual restart.

BUILDQ

Is required for any restart from a failure in which message queue data set integrity was lost. When a checkpoint other than checkpoint 0 is specified, the checkpoint must be one at which the message queues were dumped to the system log. Message queue data set integrity has been lost if one or more of the data sets have been reallocated or reformatted. If a checkpoint is not specified, IMS selects the appropriate checkpoint from which to start.

If an /ERESTART BUILDQ command fails, and then you issue the /ERESTART CHECKPOINT 0, /ERESTART COLDCOMM, or /ERESTART COLDSYS command, messages in local queues are lost. However, IMS Message Requeuer (MRQ) can be used to recover local message queues.
In a shared-queues environment, the BUILDQ keyword is ignored because the message queue data sets are not used.

CHECKPOINT
CHECKPOINT is an optional keyword that identifies whether the restart should use the latest cold start system checkpoint that was taken by the IMS subsystem. If you do not specify this keyword, IMS determines the correct system checkpoint to use. If you do specify this keyword, you can specify only CHECKPOINT 0 to use the latest cold start system checkpoint.

CMDAUTH
Specifies that both signon (user identification verification) and command authorization for static and ETO terminals are in effect at the end of the emergency restart. (Command authorization is same as specifying RCF=S on the startup parameter.)

To specify CMDAUTH, you must specify RCF=A|Y|T|C|S as an initialization EXEC parameter.

CMDAUTHE
Specifies that command authorization for ETO terminals (same as RCF=S on the startup parameter) is in effect at the end of the emergency restart. CMDAUTHE also resets command authorization for static terminals, if it was set.

To specify CMDAUTHE, you must specify RCF=A|Y|T|C|S as an initialization EXEC parameter.

COLDBASE
Indicates a cold start of the database component, while performing an emergency restart of the communications component.

- If this keyword is used, you are responsible for the recovery of the databases. The Fast Path areas will not be redone and no backouts of inflight DL/I databases will be performed. If in-doubts exist, a batch backout run with the cold start option will backout inflight DL/I data. This will place both DL/I and Fast Path data in the aborted state.
- If this keyword is not used, the database component will be warm started.

If IMS is enabled to use the repository, IMS calls Resource Manager (RM) at the end of COLDBASE processing to read the change list, if one exists, for the IMS. The IMS change list is maintained by RM and is built if the IMPORT command with the SCOPE(ALL) keyword is issued while the IMS system is down. IMS imports the stored resource definitions from the repository for the resources and descriptors in the change list. The resources and descriptors in the change list are quiesced and not available for use until the stored resource definitions are imported from the repository. The change list for the IMS is deleted at the end of COLDBASE processing.

COLDCOMM
Indicates a cold start of the data communication component, while an emergency restart of the database component is being performed. This includes recovering Fast Path DEDBs, reloading MSDBs, backing out inflight changes to DL/I databases, and maintaining all existing indoubt data. COLDCOMM is used to get the DC network reinstated as soon as possible while databases are being recovered. As a result of COLDCOMM, all of the messages on the local message queue will be lost; inflight messages in shared queues are moved to the cold queue for later recovery. If this keyword is not used, the data communication component will be restarted.
If IMS is enabled to use the repository, IMS calls RM at the end of COLDCOMM processing to read the change list, if one exists, for the IMS. The IMS change list is maintained by RM and is built if the IMPORT command with the SCOPE(ALL) keyword is issued while the IMS is down. IMS imports the stored resource definitions from the repository for the resources and descriptors in the change list. The resources and descriptors in the change list are quiesced and not available for use until the stored resource definitions are imported from the repository. The change list for the IMS is deleted at the end of COLDCOMM processing.

COLDSYS
Indicates a cold start of both the database and the data communication components. An /ERE COLDSYS command differs from a /NRE CHECKPOINT 0 command in function, but the COLDSYS keyword is equivalent to, and replaces, the /NRE CHECKPOINT 0 DETACH command. The COLDSYS keyword is the newer syntax.

The use of the COLDSYS keyword causes the release of database authorizations for DBCTL SHARECTL (full DBRC data sharing) and releases any locks held by the subsystem in IRLM. This is the required form of cold start following a failure when using DBRC SHARECTL.

The SGN=, TRN=, and RCF= startup parameters can be overridden by the /ERESTART COLDSYS command using the keywords shown in the following table. This table lists the keywords and the startup parameters that those keywords can override and a brief description.

<table>
<thead>
<tr>
<th>Table 280. Security keywords and their startup parameter equivalents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keyword</td>
</tr>
<tr>
<td>CMDAUTH</td>
</tr>
<tr>
<td>CMDAUTHE</td>
</tr>
<tr>
<td>MULTSIGN</td>
</tr>
<tr>
<td>NOCMDAUTH</td>
</tr>
<tr>
<td>NOCMDAUTHE</td>
</tr>
<tr>
<td>NOTRANAUTH</td>
</tr>
<tr>
<td>NOUSER</td>
</tr>
<tr>
<td>SNGLSIGN</td>
</tr>
<tr>
<td>TRANAUTH</td>
</tr>
<tr>
<td>USER</td>
</tr>
</tbody>
</table>

Note:
1. Valid only with the /ERESTART COLDSYS command.
If AUTOIMPORT=REPO or AUTOIMPORT=AUTO is specified and IMS is enabled to use the repository, the stored resource definitions are read from the repository during COLDSYS processing. The IMS change list is not processed during /ERE COLDSYS processing because all the resource definitions are imported as part of COLDSYS processing. If one exists, the change list in RM for the IMS being restarted with COLDSYS is deleted.

FORMAT

Specifies which queues or data sets should be formatted as part of the restart process when:

- A message queue or data set I/O error occurs.
- The size of a message queue or data set is to be changed.
- A message queue or data set is to be reallocated.
- Allocation of the WADS changes.

When queues or data sets must be formatted as part of the restart process, specify one or more of the following:

- **SM** Short-message queue
- **LM** Long-message queue
- **QC** Control record data set (QBLKs)
- **RS** Restart data set
- **WA** Write ahead data set
- **MD** MSDB dump data set (valid only for backup)
- **ALL** All message queues (SM and LM) and data sets (QC, WA, and RS). For DBCTL, this supports RS and WA only.

Any combination of SM, LM, QC, WA, MD, and RS can be specified; for example, FORMAT LM RS. When you specify ALL, do not specify SM, LM, QC, WA, MD, or RS.

In a shared-queues environment, the LM, SM, and QC parameters are ignored because the message queue data sets are not used. If you specify ALL, IMS does not attempt to format the message queue data sets.

The following table shows the environments in which the parameters are valid.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QC</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>WA</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALL</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

If the WADS must be reformatted during emergency restart, the ALL parameter can be used. IMS first closes the OLDS from the WADS and then reformats the WADS. If you generally use the ALL parameter during restart, do not be concerned that the WADS will not be available to close the OLDS.
MULTSIGN
Permits multiple signons for each user ID.

In an IMSplex with Resource Manager and a resource structure, if MULTSIGN conflicts with the single user signon definition for the IMSplex, a warning message is issued.

NOBMP
Specifies no backout of BMP updates occurs and all affected databases and programs are stopped.

If NOBMP is not specified, all updates made subsequent to the last commit point invoked by the active BMP programs are backed out of the database as part of the restart process.

NOBMP is ignored if no BMP programs were active at the time of the system failure.

NOCMDAUTH
Resets command authorization on static and ETO terminals.

NOCMDAUTH
Resets command authorization for static and ETO terminals. The command authorization is reset for static terminals because the command authorization for static terminals cannot exist without the command authorization for ETO terminals.

NOTRANAUTH
Turns off transaction authorization. NOTRANAUTH is not the opposite of TRANAUTH. TRANAUTH sets transaction authorization and also turns on signon (user identification verification).

If you specify NOTRANAUTH, it will be rejected with an error message if TRN=F was specified as a JCL EXEC parameter.

NOUSER
Specifies that none of the following is in effect at the end of the emergency restart:
- Transaction authorization
- User identification verification
- Command authorization

OPTION
Specifies parameters that are in effect for the execution of the restart process.

The valid parameters for this keyword are as follows:

SYNCPLEX
Synchronize the startup of IMS systems after a multi-IMS failure. The option SYNCPLEX is entered on all the IMS systems that are to be synchronized. At the end of the restart process, the write to operator with replay (WTOR) message, DFS3067A, is issued. Once all of the IMS Systems are at this WTOR, they are now synchronized and can resume normal processing. The operator replies to the WTOR on each IMS and normal processing resumes.

OVERRIDE
Is required only to restart the system after failure of power, machine, z/OS, or DBRC where IMS abnormal termination was unable to mark the DBRC subsystem record in RECON as abnormally terminated. IMS emergency restart will abort with message DFS0618A when DBRC indicates that the subsystem is currently active and that neither the OVERRIDE keyword nor the BACKUP
keyword is present on the /ERESTART command. If there is any doubt about
the status of an IMS system at restart time, the OVERRIDE keyword should
not be used.

Attention: Use of the OVERRIDE keyword on a currently running IMS
system can lead to database and system integrity problems.

SNGLSIGN
Permits a single signon for each user ID.

In an IMSplex with Resource Manager and a resource structure, if SNGLSIGN
conflicts with the single user signon definition for the IMSplex, a warning
message is issued.

TRANAUTH
Specifies both transaction authorization and user identification verification,
with or without RACF.

To specify TRANAUTH, you must specify RCF=A|Y|T|C|S as an initialization EXEC parameter.

USER
Specifies user identification verification. User identification verification means
that signon is required by static terminals. This keyword has no effect on ETO
terminals because they are always required to sign on. User identification
verification can be forced on by TRANAUTH or CMDAUTH.

To specify USER, you must specify RCF=A|Y|T|C|S as an initialization EXEC parameter.

Usage notes

This command can be issued to an IMSplex by using the Batch SPOC utility.

For an /ERESTART command restart, the base security definition is created:
- From the IMS system definition and the EXECUTE parameter specifications,
 when the COLDSYS keyword is specified.
- From the IMS checkpoint data, when the COLDSYS keyword is not specified.

To override the security definitions, specify the COLDSYS keyword and the
security keywords on the COLDSYS keyword.

The format for /ERESTART depends on whether the IMS system is an XRF
alternate system. If the system is not an alternate system, the format also depends
on the type of system failure that is associated with the termination and whether
the message queues have been dumped to the system log since the most recent
cold start.

All /ERESTART formats require an EOM indication to denote end-of-message; an
EOS indication must be included for all segments that precede the last segment.

With Fast Path, the /ERESTART command loads the latest MSDB checkpoint data
set and applies all MSDB changes up to the latest complete commit point.
/ERESTART also ensures that DEDB updates created between the restart
checkpoint and the latest complete commit point are applied. If the DEDB updates
are not applied, they are queued for output. Output messages not acknowledged
or not transmitted are also queued for output.
When IMS is initialized, the system parameters that are used for this initialization can come from the IMS system generation, from a PROCLIB member, or from EXEC statements that can override both the defaults and the PROCLIB members. Therefore, message DFS1929I is displayed showing the system parameters used for this particular initialization. The system parameters are also written to the job log.

When the /ERESTART command is issued without any keywords or with the COLDBASE or COLDCOMM keyword, IMS processes the system log during emergency restart processing to build runtime resource definitions from the log. The stored resource definitions from the RDDS or the IMSRSC repository are not used during emergency restart processing to build runtime resource definitions.

If IMS is enabled to use the repository, IMS calls Resource Manager (RM) at the end of emergency restart to read the change list for the IMS. The IMS change list is maintained by RM and is built if the IMPORT command with the SCOPE(ALL) keyword is issued while the IMS is down.

If a change list exists for the IMS that is being restarted, the database, program, transaction, and routing code resources and descriptors in the IMS change list and that apply to the IMS environment are quiesced and are not available for use until the stored resource definitions are imported from the repository.

After the IMS log is processed, IMS imports the stored resource definitions from the repository for the database, program, transaction, and routing code resources and descriptors in the IMS change list. It then applies the changes to the runtime resource and descriptor definitions in the IMS.

For the resources or descriptors that are in the IMS change list and that do not exist in IMS, the runtime resource definitions are created from the stored resource definitions in the repository. For the resource or descriptors that exist in IMS, the runtime resource definitions are updated with the stored resource definitions from the repository. The change list for the IMS is deleted at the end of the emergency restart.

Examples

The following are examples of the /ERESTART command:

Example 1 for /ERESTART command

All system data sets are intact.

Entry ET:

/ERESTART.

Response ET:

DFS058I (time stamp) ERESTART COMMAND IN PROGRESS
DFS680I USING CHKPT 85200/123456
DFS994I *CHKPT 85201/110117**SIMPLE*

Explanation: The restart is being performed from checkpoint 85200/123456, which was selected by IMS. If IMS contained active BMPs when the system failed, checkpoint 85200/123456 is the checkpoint that allows backout of all updates made by each active BMP since its latest system checkpoint. A simple checkpoint is written on the system log. The checkpoint number is 85201/110117.
Example 2 for /ERESTART command

Message queues are in error.

Entry ET:
/ERESTART BUILDQ.

Response ET:
DF$058I (time stamp) ERESTART COMMAND IN PROGRESS
DF$680I USING CHKPT 85119/074811
DF$994I *CHKPT *85120/192021**SIMPLE*

Explanation: IMS is restarted at 192021 (time) on 85120 (** date) from the most recent DUMPQ or SNAPQ checkpoint, 85119/074811. A simple checkpoint is written on the system log. The checkpoint number is 85120/192021.

The message queues from checkpoint 85119/074811 are loaded.

If BMP programs were active when the system failed, all updates invoked by the BMP programs are backed out.

Example 3 for /ERESTART command

Small and large message queues were reallocated. The message queues have been dumped at least once since the most recent cold start.

Entry ET:
/ERESTART BUILDQ FORMAT SM LM.

Response ET:
DF$058I (time stamp) ERESTART COMMAND IN PROGRESS
DF$680I USING CHKPT 85201/070348
DF$994I *CHKPT *85204/010203**SIMPLE*

Explanation: IMS is restarted at 010203 (time) on 85204 (Julian date). A simple checkpoint was written on the system log. The checkpoint number is 85204/010203.

The large and small message queue data sets are reformatted.

The message queues are loaded from checkpoint 85201/070348.

If BMP programs were active when the system failed, all updates invoked by the BMP programs are backed out.

Example 4 for /ERESTART command

Message queues in error or data sets reallocated and the message queues have not been dumped since the most recent cold start.

Entry ET:
/ERESTART BUILDQ FORMAT ALL NOBMP.

Response ET:
Explanation: IMS is restarted at 235959 (time) on 85121 (Julian date) from the checkpoint taken during cold start 85045/112140. A simple checkpoint is written on the system log. The checkpoint number is 85121/235959.

All message queues and data sets are reformatted.

The message queues from the system log were loaded.

BMP programs that were active when the system failed are stopped, as are the databases updated by them.

Example 5 for /ERESTART command

The following two figures show formatted master screens for active and backup IMS master terminals in an XRF environment.

The /ERESTART BACKUP command was entered on the master terminal of the XRF IMS system IMSB. During the synchronization phase, the alternate system requested a SNAPQ checkpoint from the active system. The /ERESTART BACKUP is currently complete and alternate system IMSB is now tracking active system IMSA.

Figure 4. IMS formatted master for the alternate system
02/05/15 14:26:40 RSENAME: DFSRSEMM ACTIVE
IMSA
DFS3499I ACTIVE DNNAMES: MOUBLKSA IMSACBA FORMATA MODSTAT ID: 11
DFS3804I LAST CHKPT ID VALID FOR RESTART: 85135/141619-BUILDQ: 85135/141619

DFS994I COLD START COMPLETED.
DFS3830 14:16:23 NO DEFERRED PAGE FIXING WAS DONE
DFS3856I REQSYNC WAS PROCESSED TO TAKE SNAPQ CHKPT.
DFS994I *CHKPT 85135/14269***SNAPQ**
DFS3499I ACTIVE DNNAMES: MOUBLKSA IMSACBA FORMATA MODSTAT ID: 11

MASTER MESSAGE WAITING PASSWORD:

Figure 5. IMS formatted master for the active system

Related concepts:

- Synchronizing IMS restart after a multiple IMS system failure (System Administration)
- Shutting down an IMS system that uses dynamic resource definition (Operations and Automation)

Related reference:

“Commands recovered during emergency restart” on page 29
“How to enter IMS commands” on page 2
Chapter 13, “/CHECKPOINT command,” on page 153
Chapter 29. /EXCLUSIVE command

Use the /EXCLUSIVE command to put a terminal into exclusive mode. This command, without keywords, is valid from a terminal with a signed on user.

The LINE PTERM and NODE keywords are only valid for output-only terminals. For a dynamically created user, the exclusive mode status is remembered across signons.

Subsections:
- “Environment”
- “Syntax”
- “Keywords”
- “Usage notes” on page 692
- “Examples” on page 692

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/EXCLUSIVE</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>LINE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NODE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PTERM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>USER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
/EXCLUSIVE
 LINE line# PTERM pterm# 
 NODE nodename
 USER username
```

Keywords

The following keywords are valid for the /EXCLUSIVE command:

LINE

Specifies the communication line to be put into exclusive mode. The /DISPLAY LINE line# PTERM pterm# command identifies a terminal in exclusive mode.

NODE

Specifies that the static VTAM node be put into exclusive mode. This command is not valid for nodes that were dynamically created.

USER

Specifies that the dynamic user be put into exclusive mode. If the user does
not exist in IMS, it and its associated LTERM will be created to remember the
exclusive status. If /EXCLUSIVE USER is issued against an existing user, the
user must be dynamic.

Usage notes

Exclusive mode restricts the output received by the terminal affected:

- A regular input/output terminal in exclusive mode only receives messages
 transmitted in response to transactions entered from that physical terminal.
- An output-only terminal in exclusive mode receives messages transmitted in
 response to transactions entered into its associated input logical terminals.

Except for an IMS system message responding to an error condition, all other
output for a terminal in exclusive mode remains queued for later transmission. The
queued output is transmitted after exclusive mode is reset with the /END
command or a /START command.

In an IMSplex, if global resource information is kept in Resource Manager, the
/EXCLUSIVE command sets a global exclusive status for the resource. If global
resource information is not kept in Resource Manager, the /EXCLUSIVE command
sets the status.

This command can be issued to an IMSplex using the Batch SPOC utility.

The /END command is used to get a terminal out of exclusive mode.

Examples

The following are examples of the /EXCLUSIVE command:

Example 1 for /EXCLUSIVE command

Entry ET:

_/EXCLUSIVE

Response ET:

DFS058I EXCLUSIVE COMMAND COMPLETED

Explanation: No messages are sent to this terminal other than application program
output resulting directly from transaction input.

Example 2 for /EXCLUSIVE command

Entry ET:

_/EXCLUSIVE USER alpha

Response ET:

DFS058I EXCLUSIVE COMMAND COMPLETED
Chapter 30. /EXIT command

Use the /EXIT command to end conversations between users and application programs.

The conversation can be either active or in hold status at the time /EXIT is entered. Depending upon the conversational processing options selected for the IMS system, the application program might or might not be notified of the conversation termination.

Subsections:
- “Environment”
- “Syntax”
- “Keywords”
- “Usage notes” on page 694
- “Examples” on page 695

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

Table 283. Valid environments for the /EXIT command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/EXIT</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CONVERSATION</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LINE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LUNAME</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PTERM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TMEMBER TPIPE</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

The following keywords are valid for the /EXIT command:
CONVERSATION
Terminates the specified conversation. The conversation is terminated whether it was active or held. The conversation identifier (conv#) must be specified as a 4-digit number, including leading zeros.

LINE PTERM
Terminates the conversation on the physical terminal specified, regardless of whether the conversation was active or held. The line specified must be in stopped and idle status.

LUNAME
Terminates the IMS conversation and the APPC conversation on the specified luname. In an IMSplex environment, /EXIT LUNAME needs to be issued on the IMS that owns the conversation. Within an IMS system, the conversation ID is unique.

NODE
Terminates the conversation on the node specified, regardless of whether the conversation was active or held. The node specified must be stopped or idle. This form of the command does not support dynamic nodes or LU 6.2 nodes defined with users.

The NODE USER combination applies only to the specified half-session of the ISC parallel session node allocated to USER. The half-session must have been stopped and idled. The command must be issued from a terminal or node other than the one in the conversation.

Restrictions for using NODE and USER parameters together:
• Commands with the NODE USER keyword pair are valid only if:
 – The USER is signed on to the NODE
 – In an ISC environment, the USER is allocated to the NODE
 – The nodes and users already exist
• /EXIT (CONV) NODE USER commands are valid for ISC, LUP, and 3600 nodes only.

TMEMBER TPIPE
Terminates the IMS conversation on the specified tmembername tiplineame. In an IMSplex environment, /EXIT TMEMBER TPIPE must be issued on the IMS that owns the conversation. Within an IMS system, the conversation ID is unique.

USER
Terminates the conversation associated with the specified user. The user must not be signed on to a node. The user must be dynamic.

Usage notes
Transactions that are queued for processing when the /EXIT command is issued are discarded. If a transaction is being processed or was sent to a remote system for processing when /EXIT is issued, the command is still processed; however, the conversation will be terminated, but the conversational transaction will still be issued. When the conversational response is received, the Conversational Abnormal Termination exit (DFSCONE0) is called, and the response message is queued to the response terminal.

The /EXIT command with no keywords can only be used if the conversation is active.
If global resource information is kept in Resource Manager (RM), /EXIT NODE or /EXIT USER terminates the conversation in RM. If global resource information is not kept in RM, /EXIT NODE or /EXIT USER terminates a conversation on the IMS where the /EXIT command is entered or routed to by the OM SPOC.

This command can be issued to an IMSplex using the Batch SPOC utility.

/EXIT is not valid from an LU 6.2 device or OTMA device. DEALLOCATE the APPC conversation after receiving all output from an iteration. When the /EXIT command specifies only the CONVERSATION keyword, the command can be entered only from the terminal that owns the conversation.

Examples

The following are examples of the /EXIT command:

Example 1 for /EXIT command

Entry ET:
/EXIT

Response ET:
 DFS058I EXIT COMMAND COMPLETED

Explanation: The active and not held conversation associated with the entering terminal is terminated.

Example 2 for /EXIT command

Entry ET:
/EXIT

Response ET:
 DFS576I EXIT COMPLETED, TRANSACTION DISCARDED

Explanation: /EXIT processing found the conversational transaction enqueued for an application or transmission across an MSC link, but it has not yet been scheduled for processing. The transaction has been discarded.

Example 3 for /EXIT command

Entry ET:
/EXIT

Response ET:
 DFS577I EXIT COMPLETED, TRANSACTION STILL ACTIVE

Explanation: /EXIT processing found the conversational transaction had been or is in the process of being transmitted across an MSC link.

Example 4 for /EXIT command

Entry ET:
/EXIT CONVERSATION 0001
Response ET:
 DFS058I EXIT Command Completed

Explanation: The active or held conversation (0001) is terminated if the terminal is in conversation.

Example 5 for /EXIT command

Entry ET:
 /EXIT Conversation 0001 Line 10 PTERM 2

Response ET:
 DFS058I EXIT Command Completed

Explanation: Used from another PTERM or master terminal when a PTERM in conversation is "locked," waiting for a response. /EXIT CONVERSATION should be used before a /START LINE command that resets all conversations active on the line.
Chapter 31. EXPORT command

Use the EXPORT command to export runtime resource and descriptor definitions from the online IMS system to a resource definition data set (RDDS) or the IMSRSC repository as stored resource definitions.

The resource and descriptor definitions can then be:

- Added to IMS dynamically through the IMPORT command
- Imported from an RDDS during an IMS cold start
- Imported from the repository during an IMS cold start, or an IMS warm start or emergency restart for changed list processing

The resource and descriptor definitions are read from the repository during processing of the QUERY xxx SHOW(DEFN) command.

Subsections:
- “Environment”
- “Syntax”
- “Keywords” on page 699
- “Usage notes” on page 706
- “Output fields” on page 709
- “Return, reason, and completion codes” on page 710
- “Examples” on page 714

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXPORT</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DEFN</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>ENDTIME</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPTION</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>RDDSDSN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SET</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>STARTTIME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TARGET</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TYPE</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
EXP EXP DEFN TARGET(RDDS) A
EXP EXP DEFN TARGET(REPO) B
```
Keywords

The following keywords are valid for the EXPORT command:

DEFN
 Specifies that resource and descriptor definitions are to be exported.

ENDTIME
 Specifies the end time until which new and modified runtime resource
definitions are to be gathered to be exported to the repository. ENDTIME is the
local time and is specified in the following format:

 yyyy.ddd hh:mm:ss.ms.th

 where yyyy.ddd is required, and the rest of the parameters (hh, mm, ss, ms, and
 th) are optional and default to 0.

When the ENDTIME keyword is specified, all the resource definitions that
have either a create time stamp or an update time stamp less than the
ENDTIME value specified are exported to the repository. If the TYPE, NAME,
or STARTTIME keyword is specified with ENDTIME, the resource definitions
that match all the specified keywords are exported to the repository.

If ENDTIME is not specified, all the resources that are found that match the
STARTTIME, NAME, and TYPE keywords are exported to the repository.

Note: Consideration must be taken in specifying the ENDTIME value when
there is a change in time for the Daylight Saving Time.

NAME()
 Specifies the 1-8 character name of a resource or descriptor. Wildcards can be
specifed in the name. The name is a repeatable parameter. If the NAME
parameter specified is a specific name or a wildcard, command responses are
returned for all the resource names that are processed. NAME is an optional
parameter, and if not specified, it defaults to NAME(*). For NAME(*),
command responses are returned only for the resource and descriptor names
that resulted in an error. OPTION(ALLRSP) can be specified with NAME(*) to
obtain the command responses for all of the resource and descriptor names
that are processed.

OPTION()
 Specifies additional functions to be performed along with the command.

 ALLRSP
 Indicates that response lines are to be returned for all resources and
descriptors that are processed by the command. If NAME(*) is specified,
the default action is to return response lines only for the resources and descriptors that resulted in an error. OPTION(ALLRSP) can be used with NAME(*) to request response lines for all resources and descriptors processed by the command. If a name value other than NAME(*) is specified, the default action is to return a response line for all resources and descriptors processed by the command. If OPTION(ALLRSP) is specified with a name value other than NAME(*), the ALLRSP parameter is ignored.

For HALDB databases, only the definition of the HALDB master database is exported. HALDB partition definitions are not exported, because the partition definitions are maintained in the RECON data set. OPTION(ALLRSP) does not include the partitions definitions in the output and therefore does not flag them with a nonzero completion code.

When coding the Destination Creation exit routine (DFSINSX0), the user can indicate whether the definitions for transaction and program resources created by the exit should be exported. Transaction and program resource definitions that are not exported are not included in the OPTION(ALLRSP) output.

IMS resources such as the Fast Path utility (DBF#FPU0) and the IMS defined descriptors (DBFDST1, DFSDSDB1, DFDSFPG1, and DFSDSTR1) are not exported. OPTION(ALLRSP) does not include these resources and descriptors in the output and therefore does not flag them with a nonzero completion code.

APPEND
Indicates that the resource and descriptor definitions are to be appended to the end of the specified RDDS data set. If OPTION(NOCHECK) is not specified, validity checking is done to ensure that the IMS performing the export is the same IMS that previously exported definitions to the RDDS. The APPEND option is valid only when exporting to a non-system RDDS.

APPEND is mutually exclusive with OVERWRITE. If APPEND results in multiple definitions for the same resource in the RDDS, IMS uses the definition that was exported most recently when the definitions are imported.

CHANGESONLY
Specifies that the runtime resource definitions with changes (resources and descriptors that are created or updated) since the last successful export are to be exported to be hardened in the repository. OPTION(CHANGESONLY) is supported only for TARGET(REPO).

The list of the names of the resources that are to be exported to the repository can also be provided on the command input. If a list of resource names is specified, the resources that have changes (creates or updates) since the last successful export are exported to the repository. If the specified resource does not have any changes, a completion code is returned for that resource. The export is completed for all other resources that have changes.

A list of the names of the resources that are exported to the repository is returned on the command response.

When NAME(*) is specified with OPTION(CHANGESONLY), it is treated as if OPTION(ALLRSP) was specified; all resource names that are exported to the repository are returned on the command response. If no resource
names have any changes when NAME(*) is specified, no resources are exported and the command results in an error reason code.

NOCHECK
Indicates that no ID checking is to be done when definitions are appended to an RDDS. If OPTION(NOCHECK) is specified, the IMS performing the export can be a different IMS than the one that performed the previous export. The NOCHECK option is valid only when exporting to a non-system RDDS. NOCHECK is mutually exclusive with OVERWRITE and can be specified only if APPEND is specified.

OVERWRITE
Indicates that the resource and descriptor definitions are to overwrite any existing definitions in the RDDS. APPEND is mutually exclusive with OVERWRITE. OVERWRITE is the default and the only valid option when exporting to a system RDDS.

RDDSDSN(dsname)
An optional keyword that is used to specify the name of a non-system RDDS to which resource and descriptor definitions are to be exported. When the RDDSDSN() keyword is omitted from the EXPORT command, the definitions are written to the system RDDS that contains the oldest data. The data set name specified in the RDDSDSN() keyword cannot be the name of any of the system RDDSs defined in the DYNAMIC_RESOURCES section of the DFSDFxxx PROCLIB member. If a set of system data sets is not defined in the DYNAMIC_RESOURCES section of the DFSDFxxx PROCLIB member, the RDDSDSN() keyword is required on the EXPORT command.

If using the RDDSDSN() keyword to specify a specific data set, care should be taken when routing the EXPORT command by using Operations Manager (OM) routing. If the command is routed to multiple IMS systems in the IMSplex, only the IMS selected as the command master will process the command.

The data set specified for the RDDSDSN() keyword must be a physical sequential (DSORG=PS) BSAM data set. The data set must exist and be cataloged. When creating and allocating the RDDS data set, ensure that an end-of-file (EOF) mark is placed at the beginning of the data set. Failure to do so can produce unpredictable results. To place an EOF mark at the beginning of the data set, use program IEBGENER. The sample job skeleton DFSRDDAL, which is in the IMS.SDFSSLIB data set, can be used for this step. An alternative method of allocating the RDDS data sets is to use the ALLOCATE function of ISPF utilities. The ALLOCATE function places an EOF mark correctly at the beginning of the data set. Do not use program IEFBR14 to allocate the RDDS data sets, because IEFBR14 does not place an EOF mark at the beginning of the data set.

IMS allocates the RDDS with DISP=OLD during the export process. If you attempt to allocate a new data set by using JCL in one step of a job and then try to issue the EXPORT command by using the batch SPOC in another step of the same job, the batch export will fail with return code 10 (environment error) and reason code 4118 (data set allocate error), followed by message DFS2503W with error reason code 210 (data set is allocated to another job). This is because IMS cannot obtain an exclusive enqueue on the newly allocated RDDS.

Generation data group (GDG) data sets are not fully supported for RDDSs. Relative generation numbers cannot be used when specifying an RDDS name. For example, if you specify RDDSDSN(IMS.EXP.GDG(0)) or RDDSDSN(IMS.EXP.GDG(+1)), the EXPORT command will fail with message
DFS2503W and error reason code 35C (invalid parm specified in text unit).
Specifying the absolute generation number for a GDG data set does work. For example, RDDSDSN(IMS.EXP.GDG.G0001V00) can be specified.

SET
Specifies what actions are to be set.

IMSID
Specifies one or more IMS IDs whose IMS resource lists are to be updated by the EXPORT command.

An IMS resource list is a list of resource or descriptor names that is used to define the resources for an IMS system. IMS resource lists reside in the repository and are used during IMS cold start to identify all the resource and descriptor definitions that are to be read during the IMS cold start.

For each IMS system defined in the repository, one IMS resource list is created for each resource type defined for the IMS:
- Databases
- Database descriptors
- Programs
- Program descriptors
- Routing codes
- Routing code descriptors
- Transactions
- Transaction descriptors

When a resource definition is written to the repository for an IMS, the resource name is added to the appropriate IMS resource list if it does not already exist in the list. If an IMS resource list does not exist for that IMS and resource type, an IMS resource list for that IMS and resource type is created, and the resource name is added to it.

For example, if the EXPORT DEFN TARGET(REPO) NAME(TRANABC) TYPE(TRAN) SET(IMSID(IMS1,IMS2,IMS3)) command is issued, the IMS resource lists for each IMS ID specified (IMS1, IMS2, and IMS3) might be updated along with the resource definition for transaction TRANABC. If TRANABC is not already in the transaction resource list for an IMS system, it is added to the list. If no transactions have been defined for the IMS, the IMS resource list for transactions is created for the IMS, and TRANABC is added to the list. If TRANABC is already in the resource list for the IMS, the resource list is not updated.

The IMSID value specified on the EXPORT command identifies the IMS resource lists that are to be created or updated when a stored resource definition is created or updated in the repository.

The IMSID value can be a specific IMS ID, a list of specific IMS IDs, a wildcard name of *, or a wildcard name with * or %. The IMSID must be a 1- to 4-alphanumeric character value, and can include any of the following special characters: # $ % * @

If the IMSID specified is a wildcard name other than *, the IMS resource lists for those IMS systems whose names match the IMSID wildcard name will be updated. The list of IMS IDs whose IMS resource lists are updated is returned in command output. If the repository is empty and there are no resource definitions in the repository, the EXPORT command fails.

IMSID(*) indicates that the IMS resource lists for all IMS systems defined in the repository are to be updated with the resource names of the exported definitions. In other words, the resource definitions being
exported will belong to all IMS systems that currently have resource
definitions in the repository. If the repository is empty and there are no
resource definitions in the repository, the EXPORT command fails.

The IMSID value can also be specified as a list of one or more IMS IDs of
the IMS systems for which the resource lists must be updated. When one
or more IMS IDs are specified, only the IMS resource lists for the specified
IMS IDs are updated in the repository. If the IMS resource lists for the IMS
IDs specified do not exist, the IMS resource lists are created.

The IMSID value that is specified does not have to belong to an active IMS
in the IMSplex. The IMSID of an IMS that is yet to be started can be
specified.

When exporting definitions for a new IMS, you must issue the EXPORT
command with a specific IMSID value to create resource definitions in the
repository. When a specific IMSID value is specified, the IMS resource list
is created for IMS even if the IMS is currently not registered to RM. If the
resource definitions are created for an IMS in error, you can use the
DELETE DEFN command with the FOR(imsid) option to delete the
resource definitions and the IMS resource lists.

If SET(IMSID()) is not specified, the IMSID value defaults to the IMS ID of
the command master IMS. An IMS resource list is created for the command
master IMS if one does not exist. You are required to route or direct the
command to each IMS by using the ROUTE keyword.

STARTTIME

Specifies the start time from which all new and modified runtime resource
definitions are to be gathered and exported to the repository. STARTTIME is
the local time and is specified in the following format:

```
yyyy.ddd hh:mm:ss.ms.th
```

where `yyyy.ddd` is required, and the rest of the parameters (`hh`, `mm`, `ss`, `ms`, and
`th`) are optional and default to 0.

When the STARTTIME keyword is specified, all the resource definitions that
have either a create time stamp or an update time stamp greater than or equal
to the STARTTIME specified will be exported to the repository. If the
ENDTIME, TYPE, or NAME keyword is specified with STARTTIME, the
resource definitions that match all the specified keywords are exported to the
repository.

The list of the resource names that are exported to the repository is provided
on the command output.

When NAME(*) is specified with the STARTTIME keyword with or without
the ENDTIME keyword, it is treated as if OPTION(ALLRSP) was specified,
and all resource names that are exported to the repository are returned on the
command response. If no resource names have any changes when NAME(*) is
specified, no resources are exported, and the command results in an error
reason code.

Consideration for daylight saving time: Consideration must be taken in
specifying the STARTTIME parameter when there is a change in time for the
Daylight Saving Time in regard to the current local time. For the spring time
adjustment, time is adjusted forward by one hour at 2:00 a.m. If you want to
export all the resources that have changed since 12:30 a.m. (before the time
change), you would have to specify STARTTIME of 1:30 a.m. on the command
because 12:30 a.m. (before time change) corresponds to 1:30 a.m. (after time change). For the fall time adjustment, time is adjusted backward by one hour at 2:00 a.m. If you want to export all resources that have changed since 12:30 a.m. (before the change), you would have to enter a STARTTIME of 11:30 p.m. on the prior day because 12:30 a.m. (before time change) corresponds to 11:30 p.m. (after time change).

TARGET()

Specifies where resource and descriptor definitions are to be exported.

RDDS

Specifies that resource and descriptor definitions are to be exported to an RDDS. If the RDDSDSN() keyword is not used to specify the name of a non-system RDDS, the system RDDS with the oldest data is used.

Even when IMS is enabled to use the repository, you can use the EXPORT DEFN TARGET(RDDS) command to export runtime resource and descriptor definitions to a system RDDS or a non-system RDDS if the RDDS is defined.

REPO

Indicates that the runtime resource definitions of the resource names specified on the NAME keyword are to be exported to the IMSRSC repository. Only the resource definitions of the resource names that match the NAME keyword are created or updated in the repository. If the resource definition does not exist in the repository, it is created. If the resource definition exists in the repository, it is replaced. TARGET(REPO) is valid only when IMS is enabled to use the repository.

A repository can maintain resource and descriptor definitions for up to 64 IMS systems in an IMSplex.

All resource definitions are exported to the repository as a single unit of work (UOW). If any resource results in an error being written to the repository, no resource definitions are written.

The system-defined descriptors are not exported to the repository. The HALDB partition databases are not exported to the repository when TYPE(ALL) or TYPE(DB) is specified.

If any RM CSLRUPD request errors are returned for the EXPORT command, you must check to see if there are any in-doubts. If the error is before the UOW is committed, all updates to the repository are backed out. If the failure is during UOW commit and if the repository primary data set is updated, the UOW is committed. You must issue the QUERY xxx SHOW(DEFN) commands to verify if the changes are hardened in the repository, and if not, reissue the EXPORT command.

The EXPORT DEFN TARGET(REPO) command is processed only by the IMS that has been selected as the command master. All other IMS systems that receive the command return an IRSN_NOTMSTR return and reason code. In a cloned IMS configuration, the EXPORT command can be issued with SET(IMSID(*)) so that the exported definitions are written to the repository and all the IMS resource lists in the repository are updated. If a resource name does not exist in an IMS resource list and SET(IMSID(*)) is specified, the resource name is added to the IMS resource list. In a non-cloned IMS configuration, issue the EXPORT command to each IMS individually so that each IMS acts as the command master and exports its own resource and descriptor definitions. In this case, the EXPORT command with the
default SET(IMSID()) keyword can be issued and the same command will be routed to each IMS in the IMSplex.

When an FP(E) transaction is created in the repository by the EXPORT DEFN command, the routing code for the FP(E) transaction will also be created in the repository by RM.

Recommendations:

- Avoid issuing the EXPORT DEFN command with TARGET(REPO) NAME(*) TYPE(ALL) during peak hours because exporting all the resource definitions to the repository can incur a larger than normal command response time. However, while the resource definitions are being written to the repository, there is no impact to other work in IMS.

- In order to avoid incurring performance overhead of accessing resources in the repository that have not been updated, export to the repository only those resources that have been updated. If you do not know the names of the resources that have been updated recently and need to be exported, you can issue the EXPORT command with the STARTTIME keyword so that you can export all resources that have been updated since a specific time.

During the EXPORT DEFN TARGET(REPO) command processing, resource validation is performed in RM as follows:

- When a new transaction or routing code definition is added to the repository, resource validation checking is done to ensure that a definition for the associated program either exists in the repository or is being added to the repository with the EXPORT command.

- When an existing program, transaction, or routing code definition is updated in the repository, resource validation checking is done to ensure that the attributes being updated do not conflict with the attributes of any associated resource definitions. For example, if the transaction is modified to FP(E), a check is done to ensure that the associated program is defined as FP exclusive.

TYPE()

Specifies the type of resource or descriptor definitions to export.

- **ALL**
 - Specifies that all definitions for all resource and descriptor types (DB, DBDESC, PGM, PGMDESC, RTC, RTCDESC, TRAN, and TRANDESC) are to be exported.

- **ALLDESC**
 - Specifies that all definitions for all descriptor types (DBDESC, PGMDESC, RTCDESC, and TRANDESC) are to be exported. TYPE(ALLDESC) is not valid when exporting to a system RDDS or when exporting from an IMS that does not have DRD enabled.

- **ALLRSC**
 - Specifies that all definitions for all resource types (DB, PGM, RTC, and TRAN) are to be exported. TYPE(ALLRSC) is not valid when exporting to a system RDDS.

- **DB**
 - Specifies that one or more database definitions are to be exported. TYPE(DB) is not valid when exporting to a system RDDS. If TYPE(DB) is specified on a DCCTL system, completion code 10 (“NO RESOURCES FOUND”) is returned.
DBDESC
Specifies that one or more database descriptor definitions are to be exported. TYPE(DBDESC) is not valid when exporting to a system RDDS or when exporting from an IMS that does not have DRD enabled. If TYPE(DBDESC) is specified on a DCCTL system, completion code 10 ("NO RESOURCES FOUND") is returned.

PGM
Specifies that one or more program definitions are to be exported. TYPE(PGM) is not valid when exporting to a system RDDS.

PGMDESC
Specifies that one or more program descriptor definitions are to be exported. TYPE(PGMDESC) is not valid when exporting to a system RDDS or when exporting from an IMS that does not have DRD enabled.

RTC
Specifies that one or more routing code definitions are to be exported. TYPE(RTC) is not valid when exporting to a system RDDS. If TYPE(RTC) is specified on a DBCTL system, completion code 10 ("NO RESOURCES FOUND") is returned.

RTCDESC
Specifies that one or more routing code descriptor definitions are to be exported. TYPE(RTCDESC) is not valid when exporting to a system RDDS or when exporting from an IMS that does not have DRD enabled. If TYPE(RTCDESC) is specified on a DBCTL system, completion code 10 ("NO RESOURCES FOUND") is returned.

TRAN
Specifies that one or more transaction definitions are to be exported. TYPE(TRAN) is not valid when exporting to a system RDDS. If TYPE(TRAN) is specified on a DBCTL system, completion code 10 ("NO RESOURCES FOUND") is returned.

TRANDESC
Specifies that one or more transaction descriptor definitions are to be exported. TYPE(TRANDESC) is not valid when exporting to a system RDDS or when exporting from an IMS that does not have DRD enabled. If TYPE(TRANDESC) is specified on a DBCTL system, completion code 10 ("NO RESOURCES FOUND") is returned.

Usage notes
The EXPORT command can be issued through TSO SPOC, IBM Management Console for IMS and DB2 for z/OS, the Manage Resources options in the IMS Applications menu, or other user-written programs that issue commands through OM API. These commands can also be issued to an IMSplex by using the Batch SPOC utility.

Important: Commands such as CREATE, DELETE, EXPORT, IMPORT, and UPDATE, which affect the definitional attributes of resources and descriptors, are not allowed while the EXPORT command is in progress.

The EXPORT DEFN TARGET(RDDS) command writes resource and descriptor definitions either to the data set specified by the RDDSDSN() keyword or, if the RDDSDSN() keyword is omitted, to the system RDDS containing the oldest data. A system RDDS is one of the RDDS data sets defined with the RDDSDSN= parameter in the DYNAMIC_RESOURCES section of the DFSDFxxx PROCLIB.
member. A system RDDS contains all of the resource and descriptor definitions for a single IMS. If using automatic import or automatic export, each IMS must have its own set of system RDDS data sets. When exporting to a system RDDS, all of the IMS resource and descriptor definitions must be exported. When exporting to a non-system RDDS, all or some of the IMS resource and descriptor definitions can be exported.

The EXPORT DEFN TARGET(REPO) command writes resource and descriptor definitions to the IMSRSC repository. The repository contains all of the resource and descriptor definitions for all IMS systems in the IMSplex that share the repository. When exporting to the repository, all or some of the IMS resource and descriptor definitions can be exported. During export to the repository, you can specify, by using the SET(IMSID()) keyword, a list of the IMS systems in the IMSplex to which the resource definitions must be defined. The specified resource definitions and the corresponding IMS resource lists in the repository are either updated or created. For more information about IMS resource lists, see the description for the SET(IMSID()) keyword.

The EXPORT DEFN TARGET(REPO) command does not delete resource definitions from the repository. To delete resource definitions from the repository, issue the DELETE DEFN command.

To check the contents of the repository, issue the QUERY DB | DBDESC | PGM | PGMDESC | RTC | RTCDESC | TRAN | TRANDESC commands with the SHOW(DEFN,GLOBAL), SHOW(IMSID), or SHOW(DEFN,IMSID,GLOBAL) keyword. If the repository is empty and contains no resource definitions, the QUERY command fails.

When exporting to a system RDDS, all definitions in the system RDDS are overwritten with the definitions being exported. When exporting to a non-system RDDS, the user has the option of overwriting the existing definitions with the new definitions, or appending the new definitions to the end of the data set. When the APPEND option is used, all of the definitions that meet the criteria specified on the EXPORT command are exported and appended to the existing definitions in the RDDS. If the export results in multiple definitions for the same resource in the RDDS, the last definition written to the RDDS is the definition used by the IMPORT command when creating the runtime resource definition for the resource or descriptor.

Definitions for IMS resources such as the Fast Path utility (DBF#FPU0) and the descriptors defined by IMS (DBFDSRT1, DFSDSDB1, DFSDSPG1, and DFSDSTR1) cannot be exported to the RDDS or the repository.

The EXPORT command is not allowed on the XRF alternate, RSR tracker, or FDBR region. Export to a system RDDS is allowed only in a DRD environment (DFSDFxxx or DFSCGxxx defined with MODBLKS=DYN). Export to a non-system RDDS is allowed in a non-DRD environment (DFSDFxxx or DFSCGxxx defined with MODBLKS=OLC, or MODBLKS not defined); however, descriptors do not exist and cannot be exported.

The EXPORT command is defined as ROUTE=ALL to OM. When the EXPORT command is issued, OM routes the EXPORT command to all active IMS systems (or to all IMS systems specified in the ROUTE list if the ROUTE parameter is specified on the CSLOMCMC or CSLOMI request) that have registered interest in the command. The EXPORT command is processed as follows by the IMS systems that receive the command:
When exporting to a system RDDS, the EXPORT command is processed by all IMS systems that receive the command. Each IMS that receives the command exports its resource and descriptor definitions to its own system RDDS. The system RDDSs are not shared among IMS systems, so all IMS systems that receive the command can process the command simultaneously without data set contention.

When exporting to a non-system RDDS, the EXPORT command is treated as if the command was defined to OM as ROUTE=ANY. OM selects one IMS to be the command master. The command master IMS exports its resource and descriptor definitions to the specified non-system RDDS. All non-master IMS systems that receive the command return without exporting any definitions with an “IMS not master” return and reason code to OM. The export to the non-system RDDS is processed by only one IMS to avoid data set contention and to prevent the resource and descriptor definitions from being overwritten if the RDDS is shared between IMS systems.

When exporting to the repository, the EXPORT command is treated as if the command was defined to OM as ROUTE=ANY. OM selects one IMS to be the command master. The command master IMS exports its resource and descriptor definitions to the repository. All non-master IMS systems that receive the command return without exporting any definitions with an "IMS not master” return and reason code to OM.

If the EXPORT command is to be processed by a specific IMS, the EXPORT command must be routed to that IMS.

Recommendation: When exporting to a non-system RDDS, each IMS should export its definitions to a unique data set. If one RDDS is shared between systems, the resource and descriptor definitions written by one IMS might be overwritten by another IMS.

Considerations for Fast Path exclusive transactions and their associated routing codes: When a definition for a Fast Path exclusive transaction is exported to the repository, the definition for the associated routing code is automatically created or updated in the repository if the routing code definition is not exported at the same time.

The export process fails if all of the following conditions are met:

- A Fast Path exclusive transaction definition is exported to the repository without its associated routing code definition
- The transaction definition is being created for the IMS
- A routing code definition with the same name already exists in the repository
- Either the PGM value or the INQ value in the routing code definition is different from the PGM or INQ value in the new transaction definition

If a Fast Path exclusive transaction definition is exported to the repository without its associated routing code definition and a definition for the transaction already exists in the repository for the IMS and either the PGM value or the INQ value is being updated, the PGM value, the INQ value, or both are automatically updated in the associated routing code definition.

If a routing code definition is exported to the repository without an associated transaction definition, the export process fails if the routing code already exists in the repository for the IMS and the routing code definition in the repository is associated with a Fast Path exclusive transaction definition.
Output fields

When TARGET(RDDS) is specified, message DFS3404I is returned by each IMS that processes the EXPORT command. It indicates whether all, some, or none of the specified resource or descriptors were successfully exported. It also contains the name of the data set to which the resource or descriptor definitions were exported. Each DFS3404I message is encapsulated in a single set of <msg> </msg> XML tags.

When TARGET(REPO) is specified, the EXPORT command results in message DFS3406I, which indicates that the export to the repository was successful, or DFS3407E, which indicates that the export was not successful. These messages include the repository name and repository type. If the export to the repository is not successful due to a CSLRPUPD error, the DFS3407E message contains the CSLRPUPD request return code and reason code. The CSLRPUPD return and reason codes are described in the CSLRRR macro.

In addition to the message, command response output is also returned in XML tag structure. The following table shows the EXPORT response output fields. The columns in the table are as follows:

Short label
Contains the short label generated in the XML output.

Long label
Contains the long label generated in the XML output.

Keyword
Identifies keyword on the command that caused the field to be generated. The value error appears for output fields that are returned only in the case of an error. N/A (not applicable) appears for output fields that are always returned.

Meaning
Provides a brief description of the output field.

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the nonzero completion code.</td>
</tr>
<tr>
<td>ERRT</td>
<td>ErrorText</td>
<td>N/A</td>
<td>The error text that describes the error completion code.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>IMSplex member that built the output line.</td>
</tr>
<tr>
<td>NAME</td>
<td>Name</td>
<td>NAME</td>
<td>The name of the resource or descriptor definition that was created or updated in the repository, or the name of the IMS resource list that was created or updated in the repository.</td>
</tr>
<tr>
<td>TYPE</td>
<td>Type</td>
<td>TYPE</td>
<td>The resource or descriptor type, which can be DB, DBDESC, PGM, PGMDESC, RTC, RTCDESC, TRAN, or TRANDESC; or LIST for IMS resource lists.</td>
</tr>
</tbody>
</table>
Return, reason, and completion codes

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 286. Return and reason codes for the EXPORT command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>Command completed successfully. The command output contains a line for each resource, accompanied by its completion code. If NAME(*) is specified without OPTION(ALLRSP), no output lines are returned. See the completion code table for details.</td>
</tr>
<tr>
<td>X'00000004'</td>
<td>X'00000000'</td>
<td>The EXPORT command was not processed on the IMS system, because the IMS system is not the command master. No resource information is returned.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00000000'</td>
<td>Unable to determine the export data set name. The RDDSDSN() keyword was not specified on the command, and there are no system RDDSs defined.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00000000'</td>
<td>The data set specified for the RDDSDSN() keyword is a system RDDS.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00000000'</td>
<td>OPTION(overwrite) is mutually exclusive with OPTION(append).</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00000000'</td>
<td>A value other than NAME() was specified. NAME() is required when exporting to a system RDDS.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00000000'</td>
<td>A value other than TYPE(ALL) was specified. TYPE(ALL) is required when exporting to a system RDDS.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00000000'</td>
<td>OPTION(append) is not allowed when exporting to a system RDDS.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00000000'</td>
<td>OPTION(nocheck) can be specified only if OPTION(append) is specified.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00000000'</td>
<td>Invalid STARTTIME value.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00000000'</td>
<td>TARGET(RDDS) and OPTION(CHANGESONLY) conflict.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00000000'</td>
<td>TARGET(RDDS) and SET(IMSID()) conflict.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00000000'</td>
<td>TARGET(RDDS) and STARTTIME conflict.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00000000'</td>
<td>TARGET(RDDS) and ENDTIME conflict.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00000000'</td>
<td>TARGET(REPO) and OPTION(APPEND) conflict.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00000000'</td>
<td>TARGET(REPO) and RDDSDSN conflict.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00000000'</td>
<td>Either an invalid ENDTIME value was specified or the ENDTIME value specified was less than or equal to the STARTTIME value specified.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00000000'</td>
<td>RM resource validation error.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00000000'</td>
<td>Command was successful for some resources but failed for others. The command output contains a line for each resource, accompanied by its completion code. If NAME(*) is specified without OPTION(ALLRSP), output lines are only returned for resources with nonzero completion codes.</td>
</tr>
</tbody>
</table>
Table 286. Return and reason codes for the EXPORT command (continued)

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>Command was not successful for any of the resources. The command output contains a line for each resource, accompanied by its completion code. See the completion code table for details.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004004'</td>
<td>No CQS address space.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000400C'</td>
<td>Command is not valid on the XRF alternate.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>Command is not valid on the RSR tracker.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004018'</td>
<td>No resource structure, or resource structure is not available.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004100'</td>
<td>Resource structure is full.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004104'</td>
<td>No RM address space.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004108'</td>
<td>No SCI address space.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004114'</td>
<td>Unable to access the RDDS. The RDDS is either a system RDDS or the data set specified with the RDDSDSN() keyword.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004118'</td>
<td>Unable to allocate the RDDS. The RDDS is either a system RDDS or the data set specified with the RDDSDSN() keyword.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000411C'</td>
<td>The EXPORT command was issued to append definitions to an RDDS, but the RDDS contains invalid data.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004120'</td>
<td>Online change phase is in progress.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004130'</td>
<td>Command is not allowed, because online change for MODBLKS is enabled (DFSDFxxx or DFSCGxxx defined with MODBLKS=OLC, or MODBLKS not defined) and an RDDS was not specified with the RDDSDSN() keyword.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004300'</td>
<td>None of the system RDDSs defined in the DFSDFxxx PROCLIB member are available for export.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004302'</td>
<td>The RDDS is full. No more definitions can be written to the RDDS.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000432C'</td>
<td>Invalid value is specified for the TYPE() keyword. ALLDESC, DBDESC, PGMDESC, RTCDESC and TRANDESC are not allowed if online change for MODBLKS is enabled (DFSDFxxx or DFSCGxxx defined with MODBLKS=OLC, or MODBLKS not defined).</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004330'</td>
<td>None of the system RDDSs defined in the DFSDFxxx PROCLIB member are available for export.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004334'</td>
<td>The RECFM of the RDDS is not VB.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004338'</td>
<td>Invalid RDDS block size. The RDDS must be defined with a block size 4096 - 32760.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000433C'</td>
<td>The RDDS specified with the RDDSDSN() keyword contains definitions written by another IMS. If new definitions are to be appended to the RDDS by a different IMS, OPTION(NOCHECK) must be specified.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004500'</td>
<td>IMS is not enabled to use the repository.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004502'</td>
<td>Repository is not available.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004504'</td>
<td>Repository spare recovery is in progress.</td>
</tr>
</tbody>
</table>
Table 286. Return and reason codes for the EXPORT command (continued)

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000010'</td>
<td>X'00004505'</td>
<td>No IMS resource list. This return code can be returned if the EXPORT command with SET(IMSID()) is issued and the repository is empty. The SET(IMSID()) keyword cannot be processed because there are no IMS resource lists in the repository. Issue the EXPORT command again by specifying a list of IMS IDs, or issue the EXPORT command again without SET(IMSID()) so that the command defaults to the command master IMS.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004505A'</td>
<td>Repository Server is being shut down.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004506'</td>
<td>Repository access denied.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004507'</td>
<td>Repository maximum put length exceeded.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004508'</td>
<td>RM data version is lower than the IMS data version.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004509'</td>
<td>RM failed to define some of the internal fields related to the IMSRSC repository.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000450A'</td>
<td>Repository Server is not available.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000450B'</td>
<td>Repository Server is busy.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000450C'</td>
<td>RM failed to define some of the internal fields related to the IMSRSC repository.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005000'</td>
<td>IMODULE GETSTOR error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005004'</td>
<td>DFSCMND response buffer could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005008'</td>
<td>DFSPOOL storage could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005010'</td>
<td>Unable to obtain latch.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005018'</td>
<td>Unable to obtain a 64-bit buffer.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005100'</td>
<td>IMODULE GETMAIN error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005104'</td>
<td>RM request error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005110'</td>
<td>Unexpected CQS error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005110'</td>
<td>Repository error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'0000551C'</td>
<td>A request to update the repository was rejected. Either a corrupted resource list was detected, or the update request was rejected to prevent a corruption of the resource list. Contact IBM Software Support. Send in the output from the command in error, a dump of the local RM address space where the command executed or the dump of all RM address spaces in the IMSplex. Also, send a copy of the IMSRSC repository RID and RMD data sets.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005FFF'</td>
<td>The EXPORT command could not be processed because of an internal error.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. The following table includes an explanation of the completion codes.
<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command completed successfully for this resource or resource descriptor.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>Resource or descriptor was not found, or the wildcard parameter specified does not match any resource or descriptor names.</td>
</tr>
<tr>
<td>2E</td>
<td>NOT ALLOWED FOR RESOURCE</td>
<td>Export of resource or descriptor definition is not allowed. The definitions for IMS defined resources and HALDB partitions cannot be exported.</td>
</tr>
<tr>
<td>36</td>
<td>FP=E/FP=N PGM CONFLICT</td>
<td>The transaction is defined as Fast Path exclusive FP(E), and the program is defined as non-Fast Path FP(N).</td>
</tr>
<tr>
<td>39</td>
<td>FP=E TRAN FOR RTC EXISTS</td>
<td>The routing code definition is being updated, but the routing code is associated with a Fast Path exclusive FP(E) transaction.</td>
</tr>
<tr>
<td>3E</td>
<td>FP=N/FP=E PGM CONFLICT</td>
<td>The transaction is defined as non-Fast Path FP(N), and the program is defined as Fast Path exclusive FP(E).</td>
</tr>
<tr>
<td>3F</td>
<td>FP=P/BMPTYPE=Y CONFLICT</td>
<td>The transaction is defined as Fast Path potential FP(P), and the program is defined as program type batch BMPTYPE(Y).</td>
</tr>
<tr>
<td>40</td>
<td>PARLIM/ SCHDTYPE=SERIAL CONFLICT</td>
<td>The transaction is defined with a PARLIM value other than 65535, and the program is defined as SCHDTYPE(SERIAL).</td>
</tr>
<tr>
<td>48</td>
<td>NOT ALLOWED FOR IMS RESOURCE</td>
<td>Command not allowed for IMS descriptors or IMS resources. DFSDB1, DFSDBPGL, DBFDSRT1, and DFSDSTR1 are examples of IMS descriptors. DBF#FPU0 is an example of an IMS resource.</td>
</tr>
<tr>
<td>59</td>
<td>MSC KEYWORD/FP=E PGM CONFLICT</td>
<td>The transaction is defined as remote, but the program is defined as Fast Path exclusive.</td>
</tr>
<tr>
<td>5F</td>
<td>INVALID CHARACTERS IN NAME</td>
<td>Resource or descriptor name contains an invalid character.</td>
</tr>
<tr>
<td>67</td>
<td>NO PGM DEFINED</td>
<td>No program is defined. A program name is required for non-remote transaction definitions and routing code definitions. This error should not occur if the definition was created by a valid export or by a utility supplied by IBM.</td>
</tr>
<tr>
<td>6A</td>
<td>FP=P/FP=E PGM CONFLICT</td>
<td>The transaction is defined as Fast Path potential FP(P), and the program is defined as Fast Path exclusive FP(E).</td>
</tr>
<tr>
<td>6D</td>
<td>INVALID PROGRAM NAME</td>
<td>The program referenced by the transaction or routing code is not defined in the repository for the IMS or being exported for the IMS. A program definition is required for non-remote transaction and routing code definitions.</td>
</tr>
</tbody>
</table>
Table 287. Completion codes for the EXPOR command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>7A</td>
<td>RTC/FP=N PGM CONFLICT</td>
<td>The program is defined as non-Fast Path FP(N), and a routing code definition that references the program either exists in the repository or is being exported.</td>
</tr>
<tr>
<td>90</td>
<td>INTERNAL ERROR</td>
<td>Resource or descriptor definition was not exported because of an internal error.</td>
</tr>
<tr>
<td>94</td>
<td>RM REQUEST ERROR</td>
<td>An RM request error occurred. The resource definition was not exported.</td>
</tr>
<tr>
<td>B5</td>
<td>ROUTING CODE ALREADY EXISTS</td>
<td>A routing code with the same name as the transaction already exists in the repository for the IMS, but either the program name or the INQ value is different. The transaction definition cannot be exported for the IMS.</td>
</tr>
<tr>
<td>121</td>
<td>RESOURCE HAS NO CHANGE</td>
<td>The resource name specified has no changes since the last export.</td>
</tr>
<tr>
<td>149</td>
<td>STARTTIME/ENDTIME MISMATCH</td>
<td>The resource name specified does not match the specified STARTTIME or ENDTIME value.</td>
</tr>
<tr>
<td>14D</td>
<td>INVALID CHARACTERS IN IMSID</td>
<td>The IMSID value contains an invalid character.</td>
</tr>
<tr>
<td>1D0</td>
<td>NOT DONE DUE TO ERROR</td>
<td>An error resulted in the command not being processed for the resource name in the response line. The resource name that had the error will show the error that was encountered. All other resource names will have 1D0 completion code because the export is aborted due to one error. All members are exported as a single unit of work.</td>
</tr>
<tr>
<td>1D1</td>
<td>NO REPOSITORY DEFINED</td>
<td>No repository is defined.</td>
</tr>
<tr>
<td>1D2</td>
<td>RM VALIDATION ERROR</td>
<td>RM validation error.</td>
</tr>
<tr>
<td>1D3</td>
<td>MEMBER NOT FOUND</td>
<td>The specified resource name is not found.</td>
</tr>
<tr>
<td>1D4</td>
<td>MEMBER IN USE</td>
<td>The specified resource name is in use.</td>
</tr>
<tr>
<td>1D5</td>
<td>NO IMS RESOURCE LIST</td>
<td>No IMS resource list.</td>
</tr>
<tr>
<td>1D6</td>
<td>REPOSITORY ERROR</td>
<td>Repository error.</td>
</tr>
<tr>
<td>1D7</td>
<td>IMPORT CHANGE LIST ERROR</td>
<td>Resource or descriptor is in the process of being imported from the change list in the IMSRSC repository, or the import from the change list failed. The resource or descriptor cannot be exported until it is successfully imported.</td>
</tr>
</tbody>
</table>

Examples

The following are examples of the EXPORT command:

Example 1 for EXPORT command

TSO SPOC input:
Export Definition Target (RDDS)

TSO SPOC output:

Log for: EXPORT DEFN TARGET(RDDS)

IMSplex : PLEX1
Routing :
Start time : 2007.074 12:40:02.30
Stop time : 2007.074 12:40:03.32
Return code . . . : 00000000
Reason code . . . : 00000000
Reason text . . . :
Command master . . : IMS2

MbrName Messages
-------- -----------------------
IMS1 DFS3404I EXPORT COMMAND COMPLETE FOR ALL , DSN=IMSPLEX1.IMS1.RDDS1.DEFN
IMS2 DFS3404I EXPORT COMMAND COMPLETE FOR ALL , DSN=IMSPLEX1.IMS2.RDDS3.DEFN

Explanation: The EXPORT command is routed to two IMS systems: IMS1 and IMS2. Each IMS exports all of its database, program, routing code, and transaction resource and descriptor definitions to its own system RDDS. Because OPTION(ALLRSP) is not specified, the list of exported resources is not returned.

Note: Each DFS3404I message is encapsulated in a single set of `<msg>` </msg> tags and is shown on the same TSO SPOC screen as the return and reason codes. If the message does not fit on one screen, you might have to scroll to the right to view the entire message.

Example 2 for EXPORT command

TSO SPOC input:

EXPORT DEFN TARGET(RDDS) RDDSDSN(IMSPLEX1.IMS2.RDDS.DEFN) OPTION(ALLRSP)

TSO SPOC output:

Name Type MbrName CC
DBDFLT DBDESC IMS2 0
DEDBJN01 DB IMS2 0
PGMDFLT PGMDESC IMS2 0
CDEBS PGM IMS2 0
RTCDFLT RTCDESC IMS2 0
SMQFP5A RTC IMS2 0
TRANDFLT TRANDESC IMS2 0
CDEBTRN1 TRAN IMS2 0

When the PF4 key is pressed, the following is displayed:

Log for: EXPORT DEFN TARGET(RDDS) RDDSDSN(IMSPLEX1.IMS2.RDDS.DEFN) OPTION(ALLRSP)

IMSplex : PLEX1
Routing :
Start time : 2007.074 12:40:02.30
Stop time : 2007.074 12:40:03.32
Return code . . . : 00000000
Reason code . . . : 00000000
Reason text . . . :
Command master . . : IMS2

MbrName Messages
-------- -----------------------
IMS2 DFS3404I EXPORT COMMAND COMPLETE FOR ALL , DSN=IMSPLEX1.IMS2.RDDS.DEFN
Explanation: The EXPORT command is routed to IMS2. IMS2 exports all of its database, program, routing code, and transaction resource and descriptor definitions to RDDS IMSPLEX1.IMS2.RDDS.DEFN. Because OPTION(ALLRSP) is specified, the list of exported resources is returned.

Example 3 for EXPORT command

TSO SPOC input:

```
EXPORT DEFN TARGET(RDDS) TYPE(ALL) NAME(*) OPTION(ALLRSP)
```

TSO SPOC output:

```
Name  Type  MbrName  CC  CCText
PART  DB    IMS2    0
PARTMAST  DB  IMS2    0
PGMD01  PGM  IMS2    0
RTC001  RTC  IMS2    0
TRND01  TRAN  IMS2   0
TRND11  TRAN  IMS2   0
TRND123 TRAN  IMS2   0
TRND01  TRANDESC  IMS2  0
```

When the PF4 key is pressed, the following is displayed:
Log for: EXPORT DEFN TARGET(RDDS) TYPE(ALL) NAME(*) OPTION(ALLRSP)

```
IMSpex . . . . : PLEX1
Routing . . . .:
Start time . . . : 2007.074 12:40:02.30
Stop time . . . : 2007.074 12:40:03.32
Return code . . : 0200000C
Reason code . . : 00003000
Reason text . . : At least one request successful
Command master . . : IMS2

<table>
<thead>
<tr>
<th>MbrName</th>
<th>Return Code</th>
<th>Reason Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMS1</td>
<td>00000010</td>
<td>00004330</td>
<td>No system RDDSs are available</td>
</tr>
</tbody>
</table>

Explanation: The EXPORT command is routed to two IMS systems: IMS1 and IMS2. IMS1 attempts to export its resource and descriptor definitions to a system RDDS, but none of the system RDDSs are available for export. IMS2 successfully exports its resource and descriptor definitions to RDDS IMSPLEX1.IMS2.RDDS.DEFN.

Example 4 for EXPORT command

TSO SPOC input:

```
EXPORT DEFN TARGET(RDDS) TYPE(DB, DBDESC, TRAN, TRANDESC, PGM, PGMDESC) NAME(PART*, TRND*, PGMD*) RDDSDSN(IMSPLEX1.IMS2.RDDS.DEFN)
```

TSO SPOC output:

```
Name Type MbrName CC CCText
PGMD* PGM IMS2 0 NO RESOURCES FOUND
PART DB IMS2 0
PARTMAST DB IMS2 0
```
When the PF4 key is pressed, the following is displayed:

Log for . . . : EXPORT DEFN TARGET(RDDS) TYPE(DB, DBDESC, TRAN, ... More:

IMSplex . . . . : PLEX1
Routing . . . . :
Start time . . . : 2011.124 09:36:06.09
Stop time . . . : 2011.124 09:36:06.17
Return code . . : 0200000C
Reason code . . : 0000300C
Reason text . . . : The command completed with warning(s).
Command master . . : IMS2

<table>
<thead>
<tr>
<th>MbrName</th>
<th>Return Code</th>
<th>Reason Code</th>
<th>Reason text</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMS2</td>
<td>0000000C</td>
<td>00003000</td>
<td>At least one request successful</td>
</tr>
<tr>
<td>IMS1</td>
<td>00000004</td>
<td>00010000</td>
<td>IMS not master, cmd ignored</td>
</tr>
</tbody>
</table>

OM API input:

CMD(EXPORT DEFN TARGET(RDDS) TYPE(DB, DBDESC, TRAN, TRANDESC, PGM, PGMDESC)
NAME(PART*, TRAN*, PGM*) RDDDSN(IMSPLEX1.IMS2.RDDS.DEFN))

OM API output:

<imsout>
<ctl><omname>OM1OM </omname><omvsn>1.5.0</omvsn><xmlvsn>20 </xmlvsn><statime>2011.124 16:36:06.112826</statime><stotime>2011.124 16:36:06.171441</stotime><staseq>C7B85E23C774F3FA</staseq><stoseq>C7B85E23D94B927E</stoseq><rqsttkn1>USRT011 10091756</rqsttkn1><rc>0200000C</rc><rsn>0000300C</rsn><rsntxt>The command completed with warning(s).</rsntxt></ctl><cmderr><mbr name="IMS2 ">
<typ>IMS </typ><styp>DBDC </styp><rc>0000000C</rc><rsn>00003000</rsn><rsntxt>At least one request successful</rsntxt></mbr><mbr name="IMS1 ">
<typ>IMS </typ><styp>DBDC </styp><rc>00000004</rc><rsn>00001000</rsn><rsntxt>IMS not master, cmd ignored</rsntxt></mbr></cmderr><cmd>
Explanation: The EXPORT command is routed to two IMS systems: IMS1 and IMS2. Because the data set is a non-system RDDS, only the IMS that is selected as the command master can process the command. OM selects IMS2 as the command master. IMS2 exports a set of resource and descriptor definitions whose names match the PART* and TRND* wildcard values. No resources or descriptors were found matching the PGMD* wildcard value. IMS1 does not process the command because it is not the command master.

Example 5 for EXPORT command

TSO SPOC input:
EXPORT DEFN TARGET(RDDS) TYPE(ALL) NAME(*)

TSO SPOC output:
Log for . . . : EXPORT DEFN TARGET(RDDS) TYPE(ALL) NAME(*)

IMSplex . . . . . : PLEX1
Routing . . . . . : IMS1
Return code . . . : 0200000C
Reason code . . . : 00003004
Reason text . . . : No requests were successful.
Command master. . . : IMS1

<table>
<thead>
<tr>
<th>MbrName</th>
<th>Return Code</th>
<th>Reason Code</th>
<th>Reason Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMS1</td>
<td>00000008</td>
<td>0000211F</td>
<td>No system RDDSs defined, rddsdsn() required</td>
</tr>
</tbody>
</table>

OM API input:
CMD(EXPORT DEFN TARGET(RDDS) TYPE(ALL) NAME(*))

OM API output:

<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20</xmlvsn>
<staseq>C7B8A25066BA8BF2</staseq>
<stoseq>C7B8A250666E37072</stoseq>
<rqsttkn1>USRRT011 10142257</rqsttkn1>
<rc>0200000C</rc>
<rsn>00003004</rsn>
<rsnmsg>CSLN024I</rsnmsg>
<rsntxt>No requests were successful.</rsntxt>
</ctl>
</cmderr>
</cmd>

Explanation: The EXPORT command is sent to IMS1. There are no system RDDSs defined in DFSDFxxx PROCLIB member of IMS1, and the RDDSDSN() keyword was not specified on the EXPORT command. The EXPORT command cannot be processed.

Example 6 for EXPORT command

TSO SPOC input:
EXPORT DEFN TARGET(REPO) NAME(*) TYPE(ALL) SET(IMSID(*))

TSO SPOC output:
Log for . . . : EXPORT DEFN TARGET(REPO) NAME(*) TYPE(ALL) SET(IMS1(*)) More: >
IMSplex . . . . . : PLEX1
Routing . . . . . . : IMS1

Chapter 31. EXPORT command 719
Return code . . . : 00000000
Reason code . . . : 00000000
Reason text . . . :
Command master . . : IMS1

MbrName Messages
-----------------------
IMS1 DFS3406I EXPORT COMMAND COMPLETE FOR ALL, REPOTYPE=IMSRSC, REPONAME=IMS_REPOS

OM API input:
CMD(EXPORT DEFN TARGET(REPO) NAME(*) TYPE(ALL) SET(IMSID(*)))

OM API output:
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2011.124 05:16:24.395621</statime>
<stotime>2011.124 05:16:28.150725</stotime>
<staseq>C7B7CA45F4365B32</staseq>
<stoseq>C7B7CA49B8FC5C3A</stoseq>
<rqsttkn1>USRT011 10221624</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
</cmd>
<mbr name="IMS1">
<msg>DFS3406I EXPORT COMMAND COMPLETE FOR ALL, REPOTYPE=IMSRSC, REPONAME=IMS_REPOS</msg>
</mbr>
</msgdata>
</imsout>

Explanation: All the runtime resource definitions for all the database, transaction, program, routing code resources and descriptors from IMS are exported to the repository as the stored resource definitions for all IMS systems in the IMSplex. The command is processed by the command master IMS, IMS1. The IMS resource lists for all IMS systems defined to use the repository are updated. The IMS resource lists that have been updated are also returned on the command response.

Example 7 for EXPORT command

TSO SPOC input:
EXPORT DEFN TARGET(REPO) NAME(TRANA,DBA,RTCA,PGMA) TYPE(ALL) SET(IMSID(IMS1,IMS3))

TSO SPOC output:
Response for: EXPORT DEFN TARGET(REPO) NAME(TRANA,DBA,RTCA,PGMA) TYPE(ALL) SET(IMSID(IMS1,IMS3))

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>MbrName</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBA</td>
<td>DB</td>
<td>IMS1</td>
<td>0</td>
</tr>
<tr>
<td>IMS1</td>
<td>LIST</td>
<td>IMS1</td>
<td>0</td>
</tr>
<tr>
<td>IMS3</td>
<td>LIST</td>
<td>IMS1</td>
<td>0</td>
</tr>
<tr>
<td>PGMA</td>
<td>PGM</td>
<td>IMS1</td>
<td>0</td>
</tr>
<tr>
<td>RTCA</td>
<td>RTC</td>
<td>IMS1</td>
<td>0</td>
</tr>
<tr>
<td>TRANA</td>
<td>TRAN</td>
<td>IMS1</td>
<td>0</td>
</tr>
</tbody>
</table>
When the PF4 key is pressed, the following is displayed:

Log for . . : EXPORT DEFN TARGET(REPO) NAME(TRANA,RTCA,PMA) More:  >

<table>
<thead>
<tr>
<th>Module</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSplex</td>
<td>DFS3406I EXPORT COMMAND COMPLETE FOR ALL, REPOTYPE=IMSRSC, REPONAME=IMS_REPOS</td>
</tr>
</tbody>
</table>

OM API input:

```xml
<om><cmdcmd><cmd><master>IMS1</master><userid>USRT011</userid><verb>EXP</verb><kwd>DEFN</kwd><input>EXP NM TRANA,RTCA,PGMA TYPE(ALL) SET(IMSID(IMS1,IMS3))</input></cmd><cmdrsphdr><hdr slbl="NAME" lбл="Name" scope="LCL" sort="a" key="2" scroll="no" len="8" dtype="CHAR" align="left" />
<hdr slbl="TYPE" lбл="Type" scope="LCL" sort="a" key="1" scroll="no" len="8" dtype="CHAR" skipb="yes" align="left" />
<hdr slbl="MBR" lбл="MbrName" scope="LCL" sort="a" key="3" scroll="no" len="16" dtype="CHAR" align="left" />
<hdr slbl="CC" lбл="CC" scope="LCL" sort="n" key="0" scroll="yes" len="4" dtype="INT" align="right" skipb="no" />
<hdr slbl="CCTXT" lбл="CCText" scope="LCL" sort="n" key="0" scroll="yes" len="*" dtype="CHAR" skipb="yes" align="left" />
<hdr slbl="ERRT" lбл="ErrorText" scope="LCL" sort="n" key="0" scroll="yes" len="*" dtype="CHAR" skipb="yes" align="left" />
</cmdrsphdr><cmdrspdata><rsp>NAME(DBA) TYPE(DB) MBR(IMS1) CC(0)</rsp><rsp>NAME(PGMA) TYPE(PGM) MBR(IMS1) CC(0)</rsp><rsp>NAME(RTCA) TYPE(RTC) MBR(IMS1) CC(0)</rsp><rsp>NAME(TRANA) TYPE(TRAN) MBR(IMS1) CC(0)</rsp><rsp>NAME(IMS1) TYPE(LIST) MBR(IMS1) CC(0)</rsp><rsp>NAME(IMS3) TYPE(LIST) MBR(IMS1) CC(0)</rsp></cmdrspdata><msgdata><mbr name="IMS1 "></mbr></msgdata></cmd></om>

Chapter 31. EXPORT command 721
Explanation: The runtime resource definitions for the database named DBA, transaction named TRANA, program named PGMA, and routing code named RTCA are exported to the repository as the stored resource definitions for IMS1 and IMS3.

The command is processed by the command master IMS. In this case, only IMS2 processed the command.

The IMS resource lists for IMS systems IMS1 and IMS3 are updated and available for those IMS systems to import runtime resource definitions. The IMS resource list for the command master IMS2 is not updated in the repository because it is not specified in the SET(IMSID()) keyword.

This example shows how to use the EXPORT command to update the IMS resource list for another IMS in the IMSplex.

Example 8 for EXPORT command

TSO SPOC input:
EXPORT DEFN TARGET(REPO) NAME(*) TYPE(PGM,PGMDESC,TRAN,TRANDESC)
SET(IMSID(*))

TSO SPOC output:
Log for . . : EXPORT DEFN TARGET(REPO) NAME(*) TYPE(PGM,PGMDESC... More: +>

IMSplex : PLEX1
Routing : IMS2
Stop time . . . : 2011.124 14:05:50.27
Return code . . . : 0200000C
Reason code . . . : 00003008
Reason text . . . : None of the clients were successful.
Command master. . . : IMS2

<table>
<thead>
<tr>
<th>MbrName</th>
<th>Return Code</th>
<th>Reason Code</th>
<th>Reason text</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMS2</td>
<td>00000010</td>
<td>0000450B</td>
<td>Repository Server is not available</td>
</tr>
</tbody>
</table>

MbrName Messages
-------- -----------------------
IMS2 DFS3407E EXPORT COMMAND COMPLETE FOR NONE, REQUEST=CSLRPUPOD, RC=03000014, RSN=00005508, ERRORTEXT=, MBR=RSC, REPOTYPE=IMSRSC, REPONAME=IMS_REPOS

OM API input:
CMD(EXPORT DEFN TARGET(REPO) NAME(*) TYPE(PGM,PGMDESC,TRAN,TRANDESC)
SET(IMSID(*))

OM API output:
<imsout>
<ctl>
<omname>OM1OM </omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20 </xmlvsn>
<statime>2011.124 21:05:50.248438</statime>
<stotime>2011.124 21:05:50.270743</stotime>
<staseq>C7B89E7CD31F676E</staseq>
<stoseq>C7B89E7CD891703C</stoseq>
<rqsttkn1>USRT011 10140550</rqsttkn1>
<rc>0200000C</rc>
<rsn>00003008</rsn>
<rsnmsg>CSLN054I</rsnmsg>
<rsntxt>None of the clients were successful.</rsntxt>
</ctl>
<cmderr>
<mbr name="IMS2">
<typ>IMS</typ>
<styp>DBDC</styp>
<rc>00000010</rc>
<rsn>0000450B</rsn>
<rsntxt>Repository Server is not available</rsntxt>
</mbr>
</cmderr>
<cmd>
<master>IMS2</master>
<userid>USRT011</userid>
<verb>EXP</verb>
<kwd>DEFN</kwd>
<input>EXPORT DEFN TARGET(REPO) NAME(*) TYPE(PGM,PGMDESC,TRAN,TRANDESC) SET(IMSID(*))</input>
</cmd>
<msgdata>
<mbr name="IMS2">
<msg>DFS3407E EXPORT COMMAND COMPLETE FOR NONE, REQUEST=CSLRPUPD, RC=03000014, RSN=00005508, ERRORTEXT=, MBR=RSC, REPOTYPE=IMSRSC, REPONAME=IMS_REPOS</msg>
</mbr>
</msgdata>
</imsout>

Explanation: The export of the program and transaction resources and descriptors to the repository failed because the Repository Server was not available. The CSLRPUPD return and reason codes of 03000014/00005508 indicates that the Repository Server is not available. See the CSLRRR macro for a description of the return code and reason code.

Example 9 for EXPORT command

TSO SPOC input:

`EXPORT DEFN TARGET(REPO) NAME(ABA,PGMA,RTCA,TRAN) TYPE(ALL) SET(IMSID(*)) OPTION(ALLRSP)`

TSO SPOC output:

Response for: `EXPORT DEFN TARGET(REPO) NAME(ABA,PGMA,RTCA,TRAN)`

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>MbrName</th>
<th>CC</th>
<th>CCText</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB</td>
<td>DB</td>
<td>IMS2</td>
<td>100</td>
<td>NOT DONE DUE TO ERROR</td>
</tr>
<tr>
<td>IMS1</td>
<td>LIST</td>
<td>IMS2</td>
<td>100</td>
<td>NOT DONE DUE TO ERROR</td>
</tr>
<tr>
<td>IMS2</td>
<td>LIST</td>
<td>IMS2</td>
<td>100</td>
<td>NOT DONE DUE TO ERROR</td>
</tr>
<tr>
<td>IMS3</td>
<td>LIST</td>
<td>IMS2</td>
<td>100</td>
<td>NOT DONE DUE TO ERROR</td>
</tr>
<tr>
<td>PGMA</td>
<td>PGM</td>
<td>IMS2</td>
<td>100</td>
<td>NOT DONE DUE TO ERROR</td>
</tr>
<tr>
<td>RTCA</td>
<td>RTC</td>
<td>IMS2</td>
<td>100</td>
<td>NOT DONE DUE TO ERROR</td>
</tr>
<tr>
<td>TRANA</td>
<td>TRAN</td>
<td>IMS2</td>
<td>67</td>
<td>NO PGM DEFINED</td>
</tr>
</tbody>
</table>

When the PF4 key is pressed, the following is displayed:

Log for . . . : `EXPORT DEFN TARGET(REPO) NAME(ABA,PGMA,RTCA,TRAN)` More: +-

IMSpelix : PLEX1
Routing : IMS2
Return code: 0200000C
Reason code: 00003008
Reason text: None of the clients were successful.
Command master: IMS2

<table>
<thead>
<tr>
<th>MbrName</th>
<th>Return</th>
<th>Reason</th>
<th>Reason text</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMS2</td>
<td>0000000C</td>
<td>00003004</td>
<td>No requests were successful</td>
</tr>
</tbody>
</table>

MbrName Messages

IMS2 DFS3407E EXPORT COMMAND COMPLETE FOR NONE, REQUEST=CSLRPUPD,
RC=0300000C, RSN=0000300A, ERRORTEXT=00000000 03000008 00002514 00000000
00000000 00000000, MBR=RSC, REPOTYPE=IMSRSC, REPONAME=IMS_REPOS

OM API input:
CMD(EXPORT DEFN TARGET(REPO) NAME(DBA,PGMA,RTCA,TRANA) TYPE(ALL)
SET(IMSID(+)) OPTION(ALLRSP))

OM API output:
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20</xmlvsn>
<stotime>2011.124 11:32:17.187129</stotime>
<staseq>C7B87C2A54FEDBEC</staseq>
<stoseq>C7B87C2A909390F0</stoseq>
<rqsttkn1>USRT011 10113216</rqsttkn1>
<r>0200000C</r>
<rnsn>00003008</rnsn>
<rnsntxt>None of the clients were successful.</rnsntxt>
</ctl>
</cmderr>
</cmd>
<cmd>
<mbr name="IMS2">
<typ>IMS</typ>
<stdp>DBDC</stdp>
<r>0200000C</r>
<rnsn>00003008</rnsn>
<rnsntxt>No requests were successful</rnsntxt>
</mbr>
</cmderr>
</cmd>
<cmd>
<master>IMS2</master>
</cmd>
<cmd>
<userid>USRT011</userid>

</cmd>
</cmderr>
</cmd>
</imsout>
Explanation: The export of the program, transaction, database, and routing code resource definitions to the repository failed because the definition for the program referenced by TRANA does not exist in the repository and is not being exported. A completion code of 1D0, Not done due to error, is returned for all members being updated in the repository except the one that failed. If the error is due to a resource, MBR=RSC is set in the DFS3407E message.

Example 10 for EXPORT command

TSO SPOC input:

```plaintext
EXPORT DEFN TARGET(REPO) NAME(DBA,PGMA,RTCA,TRANA) TYPE(ALL) SET(IMSID(IM1*)) OPTION(ALLRSP)
```

TSO SPOC output:

Response for: EXPORT DEFN TARGET(REPO) NAME(DBA,PGMA,RTCA,TRAN...

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>MbrName</th>
<th>CC</th>
<th>CCText</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBA</td>
<td>DB</td>
<td>IMS2</td>
<td>1D0</td>
<td>NOT DONE DUE TO ERROR</td>
</tr>
<tr>
<td>IM1*</td>
<td>LIST</td>
<td>IMS2</td>
<td>1D5</td>
<td>NO IMS RESOURCE LIST</td>
</tr>
<tr>
<td>PGMA</td>
<td>PGM</td>
<td>IMS2</td>
<td>1D0</td>
<td>NOT DONE DUE TO ERROR</td>
</tr>
<tr>
<td>RTCA</td>
<td>RTC</td>
<td>IMS2</td>
<td>1D0</td>
<td>NOT DONE DUE TO ERROR</td>
</tr>
<tr>
<td>TRANA</td>
<td>TRAN</td>
<td>IMS2</td>
<td>1D0</td>
<td>NOT DONE DUE TO ERROR</td>
</tr>
</tbody>
</table>

When the PF4 key is pressed, the following is displayed:

Log for . . . : EXPORT DEFN TARGET(REPO) NAME(DBA,PGMA,RTCA,TRAN... More: +>

<table>
<thead>
<tr>
<th>MbrName</th>
<th>Messages</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMS2</td>
<td>DFS3407E EXPORT COMMAND COMPLETE FOR NONE, REQUEST=CSLRPUDP, RC=0300000C, RSN=00003004, ERRORTEXT=, MBR=RSC, REPOTYPE=IMSRSC, REPONAME=IMS_REPOS</td>
</tr>
</tbody>
</table>

OM API input:

```plaintext
OM API input:

CMD(EXPORT DEFN TARGET(REPO) NAME(DBA,PGMA,RTCA,TRANA) TYPE(ALL) SET(IMSID(IM1*)) OPTION(ALLRSP))
```
OM API output:

Explanation: The export of the program, transaction, database, and routing code resource definitions to the repository failed because there are no IMS resource lists in the repository the match the wildcard value IM1*. A completion code of 1D0, Not done due to error, is returned for all the members being updated in the repository except the one that failed. MBR=LST indicates that the error is for an IMS resource list.

Related concepts: How to interpret CSL request return and reason codes (System Programming APIs)
CSL RM, IMS, and Repository Server termination (System Administration)
IMSRSC repository administration (System Administration)
Resource definition data sets (System Definition)

Related reference:
Chapter 2, “Command keywords and their synonyms,” on page 63
Chapter 32. /FORMAT command

Use the /FORMAT command to cause a specific format to be displayed on a physical terminal using the IMS Message Format Service (MFS).

The displayed format is used by IMS in processing the next input from the formatted terminal.

Subsections:
- "Environment"
- "Syntax"
- "Keywords"
- "Usage notes" on page 730
- "Example" on page 730

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keyword can be issued.

Table 288. Valid environments for the /FORMAT command and keyword

<table>
<thead>
<tr>
<th>Command / Keyword</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/FORMAT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LTERM</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Syntax

```
/FORMAT modname
/FORM LTERM ltermname data
```

Keywords

The following keywords are valid for the /FORMAT command:

- **modname**
 Specifies the name of the message output descriptor (MOD) to be used to format the terminal.

- **LTERM**
 Specifies the name of the logical terminal to be formatted. LTERM is required when a terminal other than the input terminal is to be formatted. If LTERM is not specified, the input physical terminal must have at least one LTERM assigned.

 If the *ltermname* does not exist, an attempt is made to create the lterm and associated user structure. The command creates this structure by queueing the format and data, if any exists, to the terminal as if it were a message. This process is similar to a message switch, a message insert, or a /BROADCAST LTERM, all of which queue a message to an LTERM.

 The format request is rejected if the specified LTERM is:
- Assigned to a physical terminal that is not supported by MFS
- In line-response mode or exclusive mode
- Involved in an active conversation
- An input-only terminal
- Not the alternate master in an XRF system
- A remote LTERM

In an IMSplex, /FORMAT LTERM can be used to queue a format to an LTERM that is not active or that is active on any IMS in the IMSplex.

data

Is a string consisting of 1 to 8 characters to be inserted into the output message created for the terminal being formatted. Since MFS treats the data as application program output data, the data string can be used to select a logical page (LPAGE) within the requested MOD. The way the selection is performed is determined by the requested MOD's LPAGE definitions.

Usage notes

Using a password with the /FORMAT command is not valid.

The /FORMAT command, where an IMS-supplied default *modname* is used, is not effective for a 3270 master terminal that uses the MFS master terminal formatting option.

Recommendation: If a format is lost during a conversation, do not use the /FORMAT command to restore the format. Instead, enter a /HOLD command followed by a /RELEASE command to display the first physical page of the current message and restore the format.

Example

Remote Terminal entry:

```
/FORMAT DFSMO4
/BROADCAST LTERM WTOR (eos)
this is segment 1 (eos)
this is segment 2 (eos)
this is segment 3 (eom)
```

Response ET:

```
DFS058I  BROADCAST COMMAND COMPLETED
```

Response RT:

```
THIS IS SEGMENT 1
THIS IS SEGMENT 2
THIS IS SEGMENT 3
```

Explanation: The remote terminal is first formatted by the /FORMAT command, where default format DFSMO4 supports the input of 4 segments. This is followed by /BROADCAST with four segments.
Chapter 33. /HOLD command

Use the /HOLD command to suspend and save a currently active conversation.

Subsections:
- “Environment”
- “Syntax”
- “Usage notes”
- “Example”

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) from which the command can be issued.

Table 289. Valid environments for the /HOLD command

<table>
<thead>
<tr>
<th>Command</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/HOLD</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
/HOLD
```

Usage notes

The IMS response to /HOLD provides a conversation identification that must be used later when the held conversation is resumed (/RELEASE command) or terminated (/EXIT).

In an IMSplex, if global resource information is kept in Resource Manager, /HOLD suspends and saves the active conversation globally in Resource Manager. If global resource information is not kept in Resource Manager, /HOLD suspends and saves the active conversation locally.

Example

Entry ET:

```
/HOLD
```

Response ET:

```
DFS999I  HELD CONVERSATION ID IS 0001
```

Explanation: The active conversation is saved and is assigned an identification of 0001.
Chapter 34. /IDLE command

The /IDLE command is used to immediately terminate input from, or output to, physical terminals assigned to the lines, logical links, or nodes specified in the command.

Partially processed input messages on the lines specified in the command are discarded. Output messages being sent are returned to the message queues for later transmission.

This command can be issued to an IMSplex using the Batch SPOC utility.

Subsections:
- “Environment”
- “Syntax”
- “Keywords” on page 734
- “Examples” on page 736

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

Table 290. Valid environments for the /IDLE command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/IDLE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LINE</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>LINK</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NODE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NOSHUT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

© Copyright IBM Corp. 1974, 2016
Keywords

The following keywords are valid for the /IDLE command:

LINE
Specifies the communication line to be immediately terminated.

/IDLE does not apply to the system console line, the master terminal line, or the secondary master terminal line. If these lines are specified, a DFS058 COMMAND COMPLETED EXCEPT LINE X message is returned. If the master terminal is assigned to a line that must be idle, the master terminal must be reassigned to a different line before /IDLE is specified.

NOSHUT
Immediately terminates input to and output from 3270 remote non-VTAM lines without a checkpoint shutdown. /IDLE cannot be entered before a checkpoint unless the NOSHUT keyword is included in the command. NOSHUT is only valid if IMS is not in the process of shutting down and is mutually exclusive with the NODE parameter. When /IDLE LINE line# NOSHUT is entered, the 3270 remote non-VTAM lines must be stopped or process stopped. A DFS058 COMMAND COMPLETED EXCEPT LINE X message is returned if the command is entered and one of the following conditions exists:
- The line is the master terminal line or system console line, including the secondary master terminal line.
- The line is not stopped or process stopped.
- The line is not a 3270 remote non-VTAM line.
- The line is not open.
- The line is deactivated by IMS.

If the line specified with the NOSHUT keyword belongs to a line group, the input and output for all lines within the group are immediately terminated. If the line belonging to the line group has the master terminal assigned to it, the /IDLE LINE line# NOSHUT command is rejected.

To restart the lines idled by the /IDLE LINE line# NOSHUT command, either the /START LINE or /RSTART LINE command must be entered.

LINK
Specifies the logical link from which input, or to which output, is to be terminated. (No input messages are lost with /IDLE LINK.)

If a checkpoint shutdown is not in progress, only MSC VTAM links are valid. All non-MSC VTAM links require a shutdown checkpoint in progress. IMS returns a DFS058 IDLE COMMAND COMPLETED EXCEPT LINK X message if one of the following conditions exists:
- The link is idled already.
- The link is not connected.
- The link cannot be opened.
- A shutdown checkpoint is not in progress (for non-MSC VTAM links).

For MSC TCP/IP logical links that are active, the /IDLE LINK command immediately terminates the link. The /IDLE LINK command is similar to the /PSTOP LINK FORCE command because the /PSTOP LINK FORCE command also immediately terminates a TCP/IP logical link that is active. However, the /IDLE LINK command is processed only during IMS shutdown, whereas the /PSTOP LINK FORCE can be processed at any time.
IMS performs the following actions when it processes the /IDLE LINK command for an active TCP/IP link:

1. Terminates the link in the IMS system where the command is issued.
2. Notifies the local IMS Connect instance to clean up the send socket.
3. Issues the DFS2169I DISCONNECTION COMPLETED ON LINK informational message.
4. Places the link in PSTOPPED ERE IDLE status.

An /IDLE LINK link# command internally causes issuing of the VTAM command:

\[
\text{VARY NET,TERM,TYPE=FORCE,NOTIFY=NO,SCOPE=ALL,LU1=xxxxxxxx,LU2=yyyyyyyy}
\]

All logical links, assigned to the same physical link, associated with the named logical link (link#) will be stopped. That is, all parallel sessions on the same physical link will be stopped. The /RESTART LINK command is used to reactivate links or sessions.

The /IDLE LINK link# command should not be used as the first attempt to stop the link. If the MSC link appears to be hung, the IMS operator should:

1. First attempt to stop the link with the IMS /PSTOP command.
2. If this fails, display the link session status through VTAM, using the VTAM command:

\[
\text{D NET,ID=xxxxxxxx}
\]

or the VTAM command:

\[
\text{D NET,SESSIONS,LIST=ALL}
\]

3. If the link session is still active (STATUS=ACTIV), terminate it with the /IDLE LINK command or the VTAM command:

\[
\text{VARY NET,TERM,TYPE=FORCE,LU1=xxxxxxxx}
\]

Note: All parallel sessions associated with the link will be terminated.

NODE

Specifies the VTAM node to which output is to be terminated, or from which input is to be terminated. The master terminal only can be idled when specifically named.

If the /IDLE NODE nodename command is entered for an ISC node defined with users, all half-sessions of the specified node are affected.

An /IDLE NODE ALL command causes the VTAM command VARY NET,INACT, to be issued to all nodes still connected to IMS, except the master terminal.

If the /IDLE NODE command is entered prior to IMS entering shutdown, the /ACT command can be entered to reactivate the node in VTAM. If the /IDLE NODE command is entered while in IMS shutdown, a VARY NET,ACT command might have to be entered directly to VTAM. However, before using the /IDLE command, a /CLSDST and then a /CLSDST FORCE command should be tried.

The node parameter can be generic. The generic parameter specifies nodes that already exist.
Examples

The following are examples of the /IDLE command:

Example 1 for /IDLE command

Entry ET:
 /IDLE LINE 14 24

Response ET:
 DFS058I IDLE COMMAND COMPLETED

Explanation: The I/O on lines 14 and 24 is forced to terminate.

Example 2 for /IDLE command

Entry ET:
 /IDLE LINE 4 NOSHUT

Response ET:
 DFS058I IDLE COMMAND COMPLETED

Explanation: The I/O on line 4, which is a 3270 remote non-VTAM line, is forced to terminate.

Example 3 for /IDLE command

Entry ET:
 /IDLE LINK 2

Response ET:
 DFS058I IDLE COMMAND COMPLETED

Explanation: The input/output on logical link 2 is forced to terminate.

Example 4 for /IDLE command

Entry ET:
 /IDLE NODE ABC

Response ET:
 DFS058I IDLE COMMAND COMPLETED

Explanation: A VARY NET, INACT command is executed that will cause the IMS VTAM LOSTERM exit to be entered with an indication that the session has been terminated.
Chapter 35. IMPORT command

Use the IMPORT command to create resource and descriptor definitions or replace existing resource and descriptor definitions in an online IMS system by using the definitions in a resource definition data set (RDDS) or the IMSRSC repository.

The IMPORT command can be issued through TSO SPOC, IBM Management Console for IMS and DB2 for z/OS, the Manage Resources options in the IMS Applications menu, or any user-written programs that issue commands through OM API. These commands can also be issued to an IMSplex by using the Batch SPOC utility.

Subsections:
- “Environment”
- “Syntax”
- “Keywords” on page 739
- “Usage notes” on page 744
- “Output fields” on page 746
- “Return and reason codes” on page 748
- “Completion codes” on page 750
- “Examples” on page 759

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

Table 291. Valid environments for the IMPORT command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMPORT</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DEFN</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>OPTION</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>RDDDSNSN</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SCOPE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SOURCE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TYPE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

IMPORT IMP DEFN SOURCE(RDDS) A

A:
@@ Commands, Volume 1: IMS Commands A - M

A1:

```
NAME(*),
   OPTION(ABORT, ALLRSP, UPDATE),
   ALLRSP, UPDATE,
   NAME(name),
   OPTION(ABORT, UPDATE)
```

B:

```
TYPE(ALL),
   ALLDESC, ALLRC, DB, DBDESC, PGM, PGMDESC, RTC, RTCDESC, TRAN, TRANDESC
```
Keywords

The following keywords are valid for the IMPORT command:

DEFN
A required keyword.

FOR()
Specifies which IMS systems in the IMS sysplex are to participate in the IMPORT process. A system in the IMS sysplex that is not listed in the FOR() option may have its resources impacted as well.

IMSID()
Specifies the list of IMS IDs for which the resource is to be refreshed.

The IMSID value can be a specific IMS ID or a list of specific IMS IDs.

You can specify one or more IMS IDs.

The IMS ID specified on the FOR(IMSID()) keyword must be an IMS that exists within the IMSplex. The IMS specified might be active or down when the command is issued.

NAME()
Specifies the 1-8 character name of a resource or descriptor for which you are importing a definition from either an RDDS or the repository. Wildcards can be specified in the name. The name is a repeatable parameter. If the NAME parameter specified is a specific name or a wildcard, command responses are returned for all the resource names that are processed. NAME is an optional parameter, and if not specified, it defaults to NAME(*). For NAME(*), command responses are returned only for the resource and descriptor names that resulted in an error. OPTION(ALLRSP) can be specified with NAME(*) to obtain the command responses for all of the resource and descriptor names that are processed.

OPTION()
Specifies additional functions to be performed along with the command.

You can specify the following options:

ABORT
Processes the definitions specified as a group. If an error occurs while processing any of the resource or descriptor definitions, the IMPORT command fails and none of the resource or descriptor definitions are imported.

If option ABORT is not specified and an error occurs while processing a particular resource or resource descriptor, that resource or descriptor is not imported. Import processing continues with the next resource or descriptor definition.
Important: Commands such as CREATE, DELETE, EXPORT, IMPORT, and UPDATE, which affect the definitional attributes of resources and descriptors, are not allowed while the IMPORT OPTION(ABORT) command is in progress.

ALLRSP

Indicates that a response is to be returned for all resources and descriptors that are processed by this command. If NAME(*) is specified, the default action is to return a response only for the resources and descriptors that result in an error.

OPTION(ALLRSP) can be used with NAME(*) to request a response for all resources and descriptors processed by this command. If a name value other than NAME(*) is specified, the default action is to return a response for all resources and descriptors processed by the command. If OPTION(ALLRSP) is specified with a name value other than NAME(*) the ALLRSP parameter is ignored.

UPDATE

Indicates that if the definition being imported is for a resource or descriptor that already exists in IMS, the imported definition should be used to replace the existing runtime resource or descriptor definition. If the definition being imported is for a resource or descriptor that does not exist, the imported definition should be used to create the runtime resource or descriptor definition. If the UPDATE option is not specified and a runtime definition already exists for the resource or descriptor, the import of the resource or descriptor definition fails.

In most cases, the affected resource must not be in use when the IMPORT OPTION(UPDATE) command is entered. If the resource is in use, the import of the stored definition fails. The following transaction attributes can be updated if the transaction is in use: CLASS, LCT, LPRI, NPRI, MAXRGN, PARLIM, PLCT, PLCTTIME, SEGNO, SEGSZ, and TRANSTAT. The following program attribute can be updated while the program is in use: TRANSTAT.

To minimize the likelihood that the import of a resource definition will fail, do the following steps before issuing the IMPORT command:

1. Stop the resource.
2. Query the resource to check for work in progress.
3. Complete the work, if any.

If the imported definition is for a resource or descriptor that already exists in IMS, the import time stamp in the existing runtime definition is replaced with the time the IMPORT command was received by OM. If one or more of the attributes in the existing runtime definition are different from the attributes in the imported definition, the update time stamp is also updated with the time the IMPORT command was received by OM. The access and create time stamps in the existing runtime definition are unchanged.

If the imported definition is for a resource or descriptor that does not exist in IMS, the import time stamp in the newly created runtime definition is set to the time the IMPORT command was received by OM. The create time stamp is obtained from the imported definition and stored in the new runtime definition.

If the imported definition is for a descriptor that has DEFAULT(N) defined and the runtime descriptor is the current default descriptor, the default
value is not updated. The runtime descriptor remains the default descriptor. Other attributes are updated, but the default value remains unchanged. To change the default descriptor so that it is no longer the default descriptor, you must update another descriptor to be the default descriptor. If the imported definition has DEFAULT(Y) defined, the updated runtime descriptor becomes the current default descriptor.

The DEFNTYPE of a newly created definition is set to IMPORT. The DEFNTYPE is set to IMPORT when an existing definition is replaced with a new definition.

When the ABORT option is also specified, the definitions are imported as a group. If an error occurs while processing any of the resource or descriptor definitions, the IMPORT command fails and none of the resource or descriptor definitions are imported.

If the ABORT option is not specified and an error occurs while processing a resource or descriptor definition, the resource or descriptor is not imported. Import processing continues with the next resource or descriptor definition. In an IMSplex environment, the IMPORT command might succeed on some IMS systems and fail on others.

RDDS(dsname)
Specifies an optional RDDS from which resource and descriptor definitions are to be imported. The data set specified can be either a system RDDS or a non-system RDDS. If the RDDS keyword is not specified, resource and descriptor definitions are imported from the most current system RDDS. If RDDS system data sets are not defined in the DFSDFxxx PROCLIB member, the RDDS keyword is required on the IMPORT command.

SCOPE
Indicates the scope of the IMPORT DEFN SOURCE(REPO) command and whether any action is to be taken in Resource Manager (RM), along with the IMS systems that receive the command. The IMS systems that receive the command are identified by the ROUTE keyword on the OM API (such as TSO SPOC or Batch SPOC).

Recommendation: Specify ROUTE(ALL) so that all active IMS systems that have the resources defined will receive the command. If a ROUTE list is specified, the command is processed only by the IMS systems that are on the list. Other active IMS systems that have the resources defined but not on the ROUTE list will not be synchronized with the repository because they do not receive the command.

ALL
Indicates that the runtime resource definitions of the resource and descriptor names specified on the IMPORT command apply to all the IMS systems to which the resources and descriptors are defined in the repository.

When an IMPORT DEFN SOURCE(REPO) SCOPE(ALL) command is issued, resource definitions for the specified resource and descriptor names are read from the IMSRSC repository and imported at all active systems that receive the IMPORT command.

If SCOPE(ALL) is specified and an IMS system to which the resources and descriptors are defined is not active, the command master IMS calls RM to create or update an IMS change list in the repository with a list of the resource and descriptor names being imported. The resource definitions of all the resource names in the IMS change list are imported at warm or
emergency restart so that the IMS is synchronized with all other IMS systems in the IMSplex. If a change list is created in the repository, a response line is returned on the IMPORT command for each resource name in the change list with the IMSID of the IMS for which the change list is created, along with the import type (IMPTYPE) of the change list.

Note: A change list is created only if the command master IMS is IMS Version 13 or later and the RM that processes change list requests is at V13 (1.6) level or higher.

If the IMPORT DEFN SCOPE(ALL) command is issued without the OPTION(UPDATE) keyword and routed to an IMS system that has one or more resources or descriptors already defined, the IMPORT command results in a nonzero return code. The import might be successful at other active IMS systems, and the command might be successful in creating the change list in the IMSRSC repository for inactive IMS systems.

To avoid a nonzero return code and reason code from the IMPORT DEFN SCOPE(ALL) command, do one of the following:

- Specify the IMPORT DEFN SCOPE(ALL) command with the OPTION(UPDATE) keyword and route it to all IMS systems (ROUTE(*))
- Route the IMPORT DEFN SCOPE(ALL) command to active IMS systems in which the resource or descriptors do not exist

ACTIVE
Indicates that the runtime resource definitions of the resource and descriptor names specified on the IMPORT command apply only to the active IMS systems to which the resources and descriptors are defined in the repository.

If an IMS system to which the resources and descriptors are defined is not active, that IMS does not obtain the resource definitions during warm or emergency restart because change lists are not created with the SCOPE(ACTIVE) keyword. To synchronize runtime resource definitions in all IMS systems in the IMSplex, you must issue the IMPORT command manually.

SOURCE()
Specifies the source of the resource and descriptor definitions to be imported.

RDDS
Specifies that resource and descriptor definitions are to be imported from an RDDS. If a data set name is not specified on the command with the RDDSDSN() keyword, the most current system RDDS is used.

Even if IMS is enabled with the repository, import from system RDDSSs is allowed if the system RDDSSs are defined. If the system RDDSSs are defined and AUTOEXPORT is enabled, IMS continues to export resource and descriptor definitions automatically to the system RDDSSs at system checkpoints even if IMS is enabled with the repository. You must take an action to remove the RDDSSs from IMS. Import from a non-system RDDS is also valid when IMS is enabled to use the repository.

REPO
Indicates that the runtime resource definitions of the resource names specified on the NAME keyword are to be imported from the stored resource definitions in the repository. SOURCE(REPO) is valid only when IMS is enabled to use the repository.
The IMPORT command does not import resource and descriptor definitions from the repository if the resource or descriptor names do not exist in the IMS resource list for the IMS in the repository. You must first add the resource and descriptor names to the IMS resource list for the IMS before issuing the IMPORT command at the IMS. An EXPORT command with the SET(IMSID()) option can be used to add the resource definitions to an IMS resource list in the repository.

The resource definitions are imported from the repository and created in IMS if the resource definitions do not exist on the local IMS. If the resource definitions exist at the local IMS and OPTION(UPDATE) is specified, the resource definitions are replaced in the local IMS system.

TYPE()

Specifies the type of resource or descriptor definition to import.

You can specify the following resource types:

ALL

ALL specifies that all types of resource and descriptor definitions (DB, DBDESC, PGM, PGMDESC, RTC, RTCDESC, TRAN, and TRANDESC) are to be imported. ALL is the only valid value when importing from a system RDDS.

ALLDESC

ALLDESC specifies that all definitions for all descriptor types (DBDESC, PGMDESC, RTC, and TRANDESC) are to be imported. TYPE(ALLDESC) is not valid when importing from a system RDDS.

ALLRSC

ALLRSC specifies that all definitions for all resource types (DB, PGM, RTC, and TRAN) are to be imported. TYPE(ALLRSC) is not valid when importing from a system RDDS.

DB

DB specifies that one or more database definitions are to be imported. TYPE(DB) is not valid when importing from a system RDDS.

DBDESC

DBDESC specifies that one or more database descriptor definitions are to be imported. TYPE(DBDESC) is not valid when importing from a system RDDS.

PGM

PGM specifies that one or more program definitions are to be imported. TYPE(PGM) is not valid when importing from a system RDDS.

PGMDESC

PGMDESC specifies that one or more program descriptor definitions are to be imported. TYPE(PGMDESC) is not valid when importing from a system RDDS.

RTC

RTC specifies that one or more route code definitions are to be imported. TYPE(RTC) is not valid when importing from a system RDDS.

RTCDESC

RTCDESC specifies that one or more route code descriptor definitions are to be imported. TYPE(RTCDESC) is not valid when importing from a system RDDS.
TRAN
TRAN specifies that one or more transaction definitions are to be imported. TYPE(TRAN) is not valid when importing from a system RDDS.

TRANDESC
TRANDESC specifies that one or transaction descriptor definitions are to be imported. TYPE(TRANDESC) is not valid when importing from a system RDDS.

Usage notes

The IMPORT command can be issued only through the Operations Manager (OM) API. This command applies to DB/DC, DBCTL and DCCTL systems. The IMPORT command is not valid on the XRF alternate, RSR tracker, or FDBR region.

The command is valid only in a DRD environment (MODBLKS=DYN specified in either the DFSDFxxx or DFSCGxxx PROCLIB member).

The IMPORT command is defined as ROUTE=ALL to OM. When the IMPORT command is issued, OM routes the IMPORT command to all active IMS systems (or to all IMS systems specified in the route list if the ROUTE parameter is specified on the CSLOMCMD or CSLOMI request) that have registered interest in the command. All IMS systems that receive the command attempt to process the IMPORT command and import the resource definitions from the specified source. If you want the IMPORT command to be processed by a specific IMS, the ROUTE parameter must be used to direct the IMPORT command to the specific IMS.

If the definition is for a resource or descriptor that is unknown to IMS, the IMS creates the internal control blocks that are needed to manage the resource. If the definition is for a resource or descriptor that exists in IMS and OPTION(UPDATE) is not specified, the definition is not imported. If the definition is for a resource or descriptor that exists in IMS and OPTION(UPDATE) is specified, the definition is imported and the existing runtime resource or descriptor definition is replaced with the attributes from the imported definition.

If the SOURCE(RDDS) keyword is specified for the IMPORT command, resource and descriptor definitions are created from or replaced by definitions from the system RDDS with the most current resource and descriptor definitions, or they are imported from an RDDS specified with the RDDSDSN() keyword on the IMPORT command. The RDDS specified with the RDDSDSN() keyword can be a system RDDS or a non-system RDDS. A system RDDS is one of the RDDSs defined with the RDDSDSN= parameter in the DYNAMIC_RESOURCES section of the DFSDFxxx PROCLIB member. A system RDDS contains all of the resource and descriptor definitions for a single IMS. If using automatic import or automatic export, each IMS must have its own set of system RDDSs.

If an RDDS contains multiple definition instances for the same resource or descriptor, the last definition instance imported is the definition used to create the resource or descriptor.

The definitions for IMS-defined resources, such as the Fast Path utility (DBF#FPU0) and the IMS-defined descriptors (DBFDSRT1, DFSDSDB1, DFSDSPG1 and DFSDSTR1), cannot be exported or imported. IMS-defined resources and descriptors are created at IMS restart. If the name of an IMS-defined resource or descriptor is specified in the NAME() parameter, the import of the resource or
descriptor definition fails with a completion code of 48 and a completion code text of “NOT ALLOWED FOR IMS RESOURCE”.

Rules and restrictions that apply to the IMPORT command: The IMPORT command imports resource and descriptor definitions from an RDDS or the repository and uses the definitions to create the runtime resource and descriptor definitions in the online IMS system. Therefore, the same rules and restrictions that apply to the CREATE commands for databases, programs, routing codes, and transactions also apply to the IMPORT command. For example, when importing a transaction definition, the definition for the program referenced by the transaction must either be imported at the same time, or the program must already be defined in the online IMS. The definitional attributes of the transaction must correspond to the definitional attributes of the program. The only exception is the CREATE DB command for a HALDB master database. The CREATE DB command for a HALDB master database creates the runtime resource definitions for both the HALDB master database and its associated HALDB partition databases. The IMPORT command for a HALDB master database creates the runtime resource definition for the HALDB master database only. The runtime resource definitions for the HALDB partition databases must be created with either a /START DB or UPDATE DB START(ACCESS) command for the HALDB master database.

The runtime resource and descriptor definitions that are created by the IMPORT command exist in the online system until IMS terminates, unless they are deleted using a DELETE command. They are recoverable across an IMS warm start or emergency restart. To preserve the resource and descriptor definitions across a cold start, export the definitions to an RDDS or the repository before IMS terminates, and then import the stored definitions from the RDDS or the repository back into IMS either during cold start processing by using the automatic import function or, once IMS is up and running, by using the IMPORT command.

Runtime resource and descriptor definitions are lost if IMS is cold started (/NRE CHKPT 0 or /ERE COLDSYS), unless an automatic import from the current system RDDS or the repository is done during cold start.

When a transaction resource definition is imported from either an RDDS or the repository and a new runtime definition is created, the current priority (CPRI) is initialized to the normal priority (NPRI). When a transaction resource definition is imported from either an RDDS or the repository and an existing runtime definition is updated, the CPRI value is not updated.

When OPTION(ABORT) is not specified, IMPORT, EXPORT, and automatic export are processed serially. CREATE, DELETE, and UPDATE commands, which do not affect the imported resources, can run in parallel with the IMPORT command.

HALDB considerations

The IMPORT command creates runtime resource and descriptor definitions in an online IMS system from definitions that have been exported to an RDDS or the repository. Whereas HALDB master database definitions can be exported to an RDDS or the repository, HALDB partition definitions cannot be exported to an RDDS or the repository. If the definition for a HALDB master database is imported, the IMPORT command creates only runtime resource definitions for the HALDB master database; it does not create runtime resource definitions for the associated HALDB partitions. A completion code of “D” is returned for the HALDB master database and the completion code text of “RSC NEEDS STA DB ON HALDB MASTER” is returned.
After a HALDB master database is imported, you must issue a /START DB or UPDATE DB command on the HALDB master database to build its associated partition structures.

- /START DB HALDB_master
- UPDATE DB NAME(HALDB_master) START(ACCESS)

MSDB considerations

Like a CREATE DB command for an MSDB database, an IMPORT command for an MSDB database creates runtime resource definitions for the MSDB. If a CREATE DB or IMPORT command creates one or more MSDB databases, the MSDB resource control blocks are logged in the checkpoint log records. However, the MSDB databases cannot be used and they are not written to the MSDB checkpoint data sets (MSDBCpx) until they are loaded into online storage either at the next IMS cold start, or IMS warm start with MSDBLOAD (/NRESTART MSDBLOAD) from the MSDBINIT data set.

Like the UPDATE DB command, an IMPORT command that changes runtime resource definition attributes such as the RESIDENT attribute is rejected for MSDBs and DEDBs. An IMPORT command that changes the access type of an MSDB is also rejected.

If IMS is warm-started without MSDBLOAD (/NRESTART) or is emergency restarted (/ERESTART) without loading MSDB databases from the MSDBINIT data set, a new message, DFS2608W MSDBS NOT AVAILABLE - NO MSDBCXX DATA SET NAMES FOUND IN CHECKPOINT, is issued at IMS warm or emergency restart. IMS continues to run with no MSDB databases available until MSDB databases are loaded from the MSDBINIT data set during a subsequent cold start or warm restart with MSDBLOAD (/NRESTART MSDBLOAD).

Output fields

When SOURCE(RDDS) is specified, message DFS3405I is returned by each IMS that processes the IMPORT command. It indicates whether all, some, or none of the specified resource or descriptor definitions were imported. It also contains the name of the data set from which the resource or descriptor definitions were imported. Each DFS3405I message is encapsulated in a single set of <msg> </msg> XML tags.

When SOURCE(REPO) is specified, the IMPORT command results in message DFS3406I, which indicates that the import from the repository was successful, or DFS3407E, which indicates that the import was not successful. These messages include the repository name and repository type. If the import from the repository is not successful because of a CSLRPQRY error, the DFS3407E message consists of the CSLRPQRY request return code and reason code. The CSLRPQRY return and reason codes are described in the CSLRRR macro.

In addition to the message, command response output is also returned in XML tag structure. The following table shows the IMPORT response output fields. The columns in the table are as follows:

Short label
- Contains the short label generated in the XML output.

Long label
- Contains the long label generated in the XML output.
Keyword

Identifies keyword on the command that caused the field to be generated. N/A (not applicable) appears for output fields that are always returned. The value error appears for output fields that are returned only in the case of an error.

Meaning

Provides a brief description of the output field.

Table 292. Output fields for the IMPORT command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC</td>
<td>N/A</td>
<td>Completion code.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>CCText</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the nonzero completion code.</td>
</tr>
<tr>
<td>IMPTYPE</td>
<td>ImpType</td>
<td>N/A</td>
<td>Import type of the resource or descriptor. One of the following values might be set:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CREATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Indicates that a resource or descriptor definition is imported and a new resource or descriptor is created.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UPDATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Indicates that the attributes of an existing runtime resource or descriptor definition are updated by the import.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CHGLIST</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Indicates that the command master IMS is creating or updating the IMS change list for one or more IMS systems that are down.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Indicates that the command master IMS created or updated the IMS change list for the IMS whose IMSID is in the IMSid column. The change list has been created or updated because the IMS is down and the IMPORT DEFN SCOPE(ALL) command is specified.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(blank)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Indicates that a resource or descriptor definition is not imported due to an error, or that none of the attributes of an existing resource or descriptor definition are changed by the import.</td>
</tr>
<tr>
<td>IMSID</td>
<td>IMSid</td>
<td>SCOPE(ALL)</td>
<td>IMSID of the IMS that is down and whose change list is updated with this resource. If the change list does not exist, it is created.</td>
</tr>
<tr>
<td>MBR</td>
<td>MbrName</td>
<td>N/A</td>
<td>IMSplex member that built the output line.</td>
</tr>
<tr>
<td>NAME</td>
<td>Name</td>
<td>NAME</td>
<td>Descriptor or resource name.</td>
</tr>
</tbody>
</table>
Table 292. Output fields for the IMPORT command (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Long label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLDDEF</td>
<td>OldDefault</td>
<td>N/A</td>
<td>Old default descriptor name if this descriptor was made the default by the IMPORT command. The old default descriptor is no longer the default.</td>
</tr>
<tr>
<td>TYPE</td>
<td>Type</td>
<td>TYPE</td>
<td>Type of resource or descriptor, which can be DB, DBDESC, PGM, PGMDESC, RTC, RTCDESC, TRAN, or TRANDESC.</td>
</tr>
</tbody>
</table>

Return and reason codes

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 293. Return and reason codes for the IMPORT command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>Command completed successfully. If NAME() is not specified (or defaulted to), the command output contains a line for each resource, accompanied by its completion code. If NAME() is specified and OPTION(ALLRSP) is not specified, no output lines are returned. If NAME(*) is specified and OPTION(ALLRSP) is specified, output lines are returned for each resource or descriptor definition imported.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000211F'</td>
<td>Unable to determine the import data set name. The RDDSDSN() keyword was not specified on the command, and there are no system RDDSs defined.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002138'</td>
<td>Values other than NAME(*) and TYPE(ALL) were specified, and either the RDDSDSN() keyword was not specified or the data set specified with the RDDSDSN() keyword is a system RDDS.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002139'</td>
<td>A value was specified for the RDDSDSN keyword, but SOURCE(RDDS) was not specified.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000214E'</td>
<td>SOURCE(RDDS) and the SCOPE() keyword conflict.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003000'</td>
<td>Command was successful for some resource definitions but failed for others. If OPTION(ALLRSP) is specified, the command output contains a line for each resource, accompanied by its completion code. If OPTION(ALLRSP) is not specified, output lines are only returned for resources with nonzero completion codes.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>Command was not successful for any of the resource definitions. The command output contains a line for each resource, accompanied by its completion code.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004004'</td>
<td>No CQS address space.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004100'</td>
<td>Resource structure is full.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004104'</td>
<td>No RM address space.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004108'</td>
<td>No SCI address space.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000400C'</td>
<td>Command is not valid on the XRF alternate.</td>
</tr>
</tbody>
</table>
Table 293. Return and reason codes for the IMPORT command (continued)

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>Command is not valid on the RSR tracker.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004018'</td>
<td>No resource structure exists, or resource structure is not available.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000401C'</td>
<td>Command is not valid on the FDBR region.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004038'</td>
<td>No requests were processed. OPTION(ABORT) was specified on the IMPORT command, and the number of database definitions to be imported exceeds 32K.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004114'</td>
<td>Unable to access the RDDS. The RDDS is either the system RDDS with the most current data or the data set specified with the RDDSDSN() keyword.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004118'</td>
<td>Unable to allocate the RDDS. The RDDS is either the system RDDS with the most current data or the data set specified with the RDDSDSN() keyword.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000411C'</td>
<td>The RDDS from which the definitions are to be imported contains invalid data.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004120'</td>
<td>Online change phase is in progress.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004124'</td>
<td>The IMPORT command is rejected, because a process of a similar type is in progress. Possible commands in progress are /DISPLAY MODIFY, CREATE DB, or DELETE DB commands. Wait until the other process completes and issue the IMPORT command again.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004300'</td>
<td>Command is not allowed, because online change for MODBLKS is enabled (DFSDFxxx or DFSCGxxx defined with MODBLKS=OLC, or MODBLKS not defined).</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004500'</td>
<td>IMS is not enabled with the repository.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004502'</td>
<td>Repository not available</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004504'</td>
<td>Repository spare recovery is in progress.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004505'</td>
<td>No IMS resource list exists, or no resources for the resource type exist in the IMS resource list.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004507'</td>
<td>Repository access was denied.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004508'</td>
<td>Repository maximum put length exceeded.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004509'</td>
<td>RM data version is lower than the IMS data version.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000450A'</td>
<td>Repository Server (RS) is being shut down.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000450B'</td>
<td>RS is not available.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000450C'</td>
<td>RS is busy.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000450D'</td>
<td>RM failed to define some of the internal fields related to the IMSRSC repository.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005000'</td>
<td>The IMPORT command was terminated, because IMODULE GETSTOR storage could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005004'</td>
<td>DFSOCMD response buffer could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005008'</td>
<td>DFSPOOL storage could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'0000500C'</td>
<td>AWE could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005010'</td>
<td>Unable to obtain latch.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005018'</td>
<td>Unable to obtain a 64-bit buffer.</td>
</tr>
</tbody>
</table>
Table 293. Return and reason codes for the IMPORT command (continued)

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000014'</td>
<td>X'00005100'</td>
<td>RM request error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005104'</td>
<td>Unexpected CQS error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005108'</td>
<td>SCI request error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005110'</td>
<td>Repository error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005115'</td>
<td>Import from the IMSRSC repository change list is in progress. Reissue</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the command after the change list processing is complete.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'0000551C'</td>
<td>A request to read data from the repository was rejected because a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>corrupted resource list was detected. The IMPORT DEFN command is</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rejected because the resource list is not usable. Contact IBM Software</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Support. Send in the output from the command in error, a dump of the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>local RM address space where the command executed or the dump of all</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RM address spaces in the IMSplex. Also, send a copy of the IMSRSC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>repository RID and RMD data sets.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005FFF'</td>
<td>The IMPORT command could not be processed because of an internal error.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as completion codes. The following table includes an explanation of the completion codes.

Completion codes

Table 294. Completion codes for the IMPORT command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>RESOURCE NEEDS ONLINE CHANGE</td>
<td>Command completed successfully for resource or descriptor definition.</td>
</tr>
<tr>
<td>6</td>
<td>RSC PSB, NOT DMB, NEED OLC</td>
<td>The database definition was imported, but an online change is needed if</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the database is to be used.</td>
</tr>
<tr>
<td>7</td>
<td>RSC PSB, NOT DMB, NEED OLC</td>
<td>The database definition was imported, but the ACB found in ACBLIB is</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a PSB, not a DMB. An online change is needed if the database is to be</td>
</tr>
<tr>
<td></td>
<td></td>
<td>used.</td>
</tr>
<tr>
<td>9</td>
<td>NO IMPORT - OPTION ABORT</td>
<td>The resource or descriptor definition was not imported. An error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>occurred importing one or more resource or descriptor definitions and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OPTION(ABORT) was specified.</td>
</tr>
<tr>
<td>A</td>
<td>NO IMPORT - SAME RSC FOUND LATER</td>
<td>There were multiple definitions for the same resource or descriptor on</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the RDDS. The last instance of the resource or descriptor definition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>on the RDDS was used to create the resource or descriptor.</td>
</tr>
<tr>
<td>D</td>
<td>RSC NEEDS STA DB ON HALDB MASTER</td>
<td>The HALDB master database definition was imported. In order to create</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the database partitions a /STA DB or UPD DB START(ACCESS) command on</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the master HALDB is required.</td>
</tr>
<tr>
<td>Completion code</td>
<td>Completion code text</td>
<td>Meaning</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>E</td>
<td>IMPORT CANNOT SET DEFLT DESC</td>
<td>The descriptor definition was imported, but the descriptor could not be made the default descriptor as defined.</td>
</tr>
<tr>
<td>F</td>
<td>GLOBAL STATUS NOT APPLIED</td>
<td>The resource definition was imported, but global status could not be applied to the resource.</td>
</tr>
<tr>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>Resource or descriptor name is invalid, or the wildcard parameter specified does not match any resource names.</td>
</tr>
<tr>
<td>11</td>
<td>RESOURCE ALREADY EXISTS</td>
<td>The resource or descriptor being imported already exists. No import was done.</td>
</tr>
<tr>
<td>16</td>
<td>INVALID CLASS VALUE</td>
<td>The transaction class value is invalid. The transaction definition was not imported. This should not occur if the definition was created by a valid export or by an IBM-supplied utility.</td>
</tr>
<tr>
<td>17</td>
<td>ANOTHER CMD IN PROGRESS</td>
<td>Another command (such as DELETE PGM or UPDATE PGM) is in progress for the program referenced by the transaction or routing code definition being imported.</td>
</tr>
<tr>
<td>19</td>
<td>CMTMODE=MULT/WFI=Y CONFLICT</td>
<td>Wait-for-input WFI(Y) option conflicts with commit mode CMTMODE(MULT). The transaction definition was not imported. This should not occur if the definition was created by a valid export or by an IBM-supplied utility.</td>
</tr>
<tr>
<td>1A</td>
<td>IN CONVERSATION</td>
<td>Transaction is in conversation. The conversation ID and the terminal in conversation are returned separately. The terminal can be a static node, node and user, dynamic user, APPC luname, or OTMA tmember and tpipe.</td>
</tr>
<tr>
<td>1B</td>
<td>CONV=Y/CMTMODE=MULT CONFLICT</td>
<td>Conversation option CONV(Y) conflicts with commit mode CMTMODE(MULT). The transaction definition was not imported. This should not occur if the definition was created by a valid export or by an IBM-supplied utility.</td>
</tr>
<tr>
<td>1E</td>
<td>CONV=N/SPASZ/SPATRUNC CONFLICT</td>
<td>Non-conversation CONV(N) option conflicts with conversation attributes SPASZ > 0 or SPATRUNC. The transaction definition was not imported. This should not occur if the definition was created by a valid export or by an IBM-supplied utility.</td>
</tr>
<tr>
<td>1F</td>
<td>CONV=Y/RECOVER=N CONFLICT</td>
<td>Conversation CONV(Y) option conflicts with recovery RECOVER(N) option. The transaction definition was not imported. This should not occur if the definition was created by a valid export or by an IBM-supplied utility.</td>
</tr>
<tr>
<td>Completion code</td>
<td>Completion code text</td>
<td>Meaning</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>21</td>
<td>CONV=Y REQUIRES SPASZ/SPATRUNC</td>
<td>Conversation CONV(Y) option requires conversation attributes SPASZ and SPATRUNC. The transaction definition was not imported. This should not occur if the definition was created by a valid export or by a utility supplied by IBM.</td>
</tr>
<tr>
<td>22</td>
<td>CPI-C TRAN ALREADY EXISTS</td>
<td>CPI-C transaction already exists by the same name. The transaction definition was not imported.</td>
</tr>
<tr>
<td>29</td>
<td>DOPT=Y/RESIDENT=Y CONFLICT</td>
<td>Dynamic DOPT(Y) option conflicts with resident RESIDENT(Y) option. The program definition was not imported. This should not occur if the definition was created by a valid export or by an IBM-supplied utility.</td>
</tr>
<tr>
<td>2A</td>
<td>DOPT=Y/PARALLEL CONFLICT</td>
<td>Dynamic DOPT(Y) option conflicts with parallel schedule SCHDTYPE(PARALLEL) option. The program definition was not imported. This should not occur if the definition was created by a valid export or by an IBM-supplied utility.</td>
</tr>
<tr>
<td>2B</td>
<td>INVALID EDITRTN NAME</td>
<td>EDITRTN name is invalid. The transaction definition was not imported. This should not occur if the definition was created by a valid export or by an IBM-supplied utility.</td>
</tr>
<tr>
<td>2C</td>
<td>MAX 255 EDIT ROUTINES EXCEEDED</td>
<td>Transaction definition to be imported specifies a new edit routine name, which exceeds the limit of 255 edit routines. The transaction definition was not imported.</td>
</tr>
<tr>
<td>2D</td>
<td>INVALID EMHBSZ VALUE</td>
<td>EMH buffer size EMHBSZ value is invalid. The transaction definition was not imported. This should not occur if the definition was created by a valid export or by an IBM-supplied utility.</td>
</tr>
<tr>
<td>2F</td>
<td>FP=E/BMPTYPE=Y CONFLICT</td>
<td>Fast Path exclusive FP(E) option conflicts with BMP type BMPTYPE(Y). The program definition was not imported. This should not occur if the definition was created by a valid export or by an IBM-supplied utility.</td>
</tr>
<tr>
<td>31</td>
<td>NOT ALLOWED FOR A DEDB</td>
<td>The resident attribute in the imported database definition differs from the resident attribute in the runtime resource definition. The resident option of a DEDB cannot be changed.</td>
</tr>
<tr>
<td>32</td>
<td>NOT ALLOWED FOR AN MSDB</td>
<td>The resident attribute in the imported database definition differs from the resident attribute in the runtime resource definition. The resident option of an MSDB cannot be changed.</td>
</tr>
<tr>
<td>35</td>
<td>FP=E/EDITRTN CONFLICT</td>
<td>Fast Path exclusive FP(E) option conflicts with edit routine EDITRTN. The transaction definition was not imported. This should not occur if the definition was created by a valid export or by an IBM-supplied utility.</td>
</tr>
</tbody>
</table>
Table 294. Completion codes for the IMPORT command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>FP=E/FP=N PGM CONFLICT</td>
<td>Fast Path exclusive FP(E) option conflicts with program defined as non-Fast Path FP(N). The transaction definition was not imported.</td>
</tr>
<tr>
<td>37</td>
<td>FP=E/LANG=JAVA CONFLICT</td>
<td>Fast Path exclusive FP(E) option conflicts with Java language LANG(JAVA) option. The program definition was not imported. This should not occur if the definition was created by a valid export or by an IBM-supplied utility.</td>
</tr>
<tr>
<td>39</td>
<td>FP=E TRAN FOR RTC EXISTS</td>
<td>The routing code was created by IMS for a Fast Path exclusive transaction and cannot be updated with an IMPORT command. The attributes of the routing code can be updated with an UPDATE TRAN command or an IMPORT command that updates the Fast Path exclusive transaction.</td>
</tr>
<tr>
<td>3A</td>
<td>FP=E OR P/MSC KEYWORD CONFLICT</td>
<td>Fast Path exclusive FP(E) or Fast Path potential FP(P) conflicts with MSC MSNAME or SIDR/SIDL value. The transaction definition was not imported. This should not occur if the definition was created by a valid export or by an IBM-supplied utility.</td>
</tr>
<tr>
<td>3B</td>
<td>FP/MSGTYPE=MULTSEG CONFLICT</td>
<td>Fast Path exclusive FP(E) or Fast Path potential FP(P) conflicts with multiple segment MSGTYPE(MULTSEG) option. The transaction definition was not imported. This should not occur if the definition was created by a valid export or by an IBM-supplied utility.</td>
</tr>
<tr>
<td>3C</td>
<td>MAXRGN/ PARLIM=65535 CONFLICT</td>
<td>The maximum region count MAXRGN value conflicts with the parallel limit count PARLIM value 65535, which disables parallel processing. MAXRGN>0 is not allowed with PARLIM(65535). The transaction definition was not imported. This should not occur if the definition was created by a valid export or by an IBM-supplied utility.</td>
</tr>
<tr>
<td>3D</td>
<td>FP=N/EMHBSZ GT 0 CONFLICT</td>
<td>Non-Fast Path FP(N) conflicts with Fast Path attribute EMHBSZ>0. The transaction definition was not imported. This should not occur if the definition was created by a valid export or by an IBM-supplied utility.</td>
</tr>
<tr>
<td>3E</td>
<td>FP=N/FP=E PGM CONFLICT</td>
<td>Non-Fast Path FP(N) option conflicts with program defined as Fast Path exclusive FP(E). The transaction definition was not imported.</td>
</tr>
<tr>
<td>3F</td>
<td>FP=P/BMPTYPE=Y CONFLICT</td>
<td>Fast Path potential FP(P) option conflicts with program defined as BMP type BMPTYPE(Y). The transaction definition was not imported.</td>
</tr>
</tbody>
</table>
Table 294. Completion codes for the IMPORT command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>PARLIM/ SCHEDTYPE=SERIAL</td>
<td>PARLIM value is something other than 65535 and the program is defined as SCHEDTYPE(SERIAL). The transaction definition was not imported.</td>
</tr>
<tr>
<td></td>
<td>CONFLICT</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>FP=E OR P/RECOVER=N CONFLICT</td>
<td>Fast Path exclusive FP(E) or Fast Path potential FP(P) option conflicts with recovery RECOVER(N) option. The transaction definition was not imported. This should not occur if the definition was created by a valid export or by an IBM-supplied utility.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>FP=E OR P/RESP=N CONFLICT</td>
<td>Fast Path exclusive FP(E) or Fast Path potential FP(P) option conflicts with response mode RESP(N) option. The transaction definition was not imported. This should not occur if the definition was created by a valid export or by an IBM-supplied utility.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>GPSB=Y/DOPT=Y CONFLICT</td>
<td>Generated PSB GPSB(Y) option conflicts with the dynamic DOPT(Y) option. The program definition was not imported. This should not occur if the definition was created by a valid export or by an IBM-supplied utility.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>TRANSACTION BUSY</td>
<td>The IMPORT command cannot be processed for the resource because the transaction is currently being scheduled.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>INVALID SIDR VALUE</td>
<td>Remote system ID SIDR value is invalid. The transaction definition was not imported.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>GPSB=N/LANG CONFLICT</td>
<td>Generated PSB option N GPSB(N) conflicts with the language option LANG(). The program definition is not imported. This should not occur if the definition was created by a valid export or by an IBM-supplied utility.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>GPSB=Y/RESIDENT=Y CONFLICT</td>
<td>Generated PSB GPSB(Y) option conflicts with the resident RESIDENT(Y) option. The program definition is not imported. This should not occur if the definition was created by a valid export or by an IBM-supplied utility.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>NOT ALLOWED FOR IMS RESOURCE</td>
<td>Command is not allowed for IMS descriptors or IMS resources. DFSDDDB1, DFSDDPG1, DBFDSRT1, and DFSDEST1 are examples of IMS descriptors. DBF#FPU0 is an example of an IMS resource.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>INQ=N/RECOVER=N CONFLICT</td>
<td>Inquiry INQ(N) option conflicts with recover RECOVER(N) option. The transaction definition was not imported. This should not occur if the definition was created by a valid export or by an IBM-supplied utility.</td>
</tr>
<tr>
<td>Completion code</td>
<td>Completion code text</td>
<td>Meaning</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>4A</td>
<td>IN USE</td>
<td>Transaction is in use. Queuing is in progress, either terminal input or a program-to-program switch.</td>
</tr>
<tr>
<td>4B</td>
<td>INVALID LCT VALUE</td>
<td>Limit count LCT value is invalid. The transaction definition was not imported. This should not occur if the definition was created by a valid export or by an IBM-supplied utility.</td>
</tr>
<tr>
<td>4D</td>
<td>INVALID LPRI INVALID</td>
<td>Limit priority LPRI value is invalid. The transaction definition was not imported. This should not occur if the definition was created by a valid export or by an IBM-supplied utility.</td>
</tr>
<tr>
<td>4E</td>
<td>LTERM ALREADY EXISTS</td>
<td>An LTERM already exists by the same name. The transaction definition was not imported.</td>
</tr>
<tr>
<td>4F</td>
<td>INVALID MAXRGN VALUE</td>
<td>Maximum region count value is invalid. The transaction definition was not imported. This should not occur if the definition was created by a valid export or by an IBM-supplied utility.</td>
</tr>
<tr>
<td>51</td>
<td>NO RESOURCE STRUCTURE</td>
<td>The resource structure is not available. The resource could not be registered with RM. The resource definition was not imported.</td>
</tr>
<tr>
<td>52</td>
<td>RESOURCE STRUCTURE FULL</td>
<td>The resource structure is full. The resource could not be registered with RM. The resource definition was not imported.</td>
</tr>
<tr>
<td>55</td>
<td>NO FAST PATH INSTALLED</td>
<td>Fast Path is not installed. The resource or descriptor definition was not imported.</td>
</tr>
<tr>
<td>58</td>
<td>IMS NOT REGISTERED TO RM</td>
<td>IMS is not registered to RM.</td>
</tr>
<tr>
<td>59</td>
<td>MSC KEYWORD/FP=E PGM CONFLICT</td>
<td>MSC MSNAME or SIDR/SIDL value conflicts with program defined as Fast Path exclusive FP(E). The transaction definition was not imported.</td>
</tr>
<tr>
<td>5A</td>
<td>INVALID MSNAME</td>
<td>MSNAME is invalid. The transaction definition was not imported.</td>
</tr>
<tr>
<td>5B</td>
<td>MSNAME ALREADY EXISTS</td>
<td>An MSNAME with the same name exists. The transaction definition was not imported.</td>
</tr>
<tr>
<td>5E</td>
<td>MULTSEG/RESP=Y CONFLICT</td>
<td>Serial SERIAL(Y) option conflicts with maximum region count MAXRGN > 0 value. The transaction definition was not imported. This should not occur if the definition was created by a valid export or by an IBM-supplied utility.</td>
</tr>
<tr>
<td>5F</td>
<td>INVALID CHARACTERS IN NAME</td>
<td>Resource or descriptor name is invalid because it contains an invalid character. The resource or descriptor definition was not imported.</td>
</tr>
<tr>
<td>Completion code</td>
<td>Completion code text</td>
<td>Meaning</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td>61</td>
<td>DFSBCB STORAGE ERROR</td>
<td>DFSBCB storage error. Could not get storage for DDIR, PDIR, RCTE, or SMB control block. The resource or descriptor definition was not imported.</td>
</tr>
<tr>
<td>64</td>
<td>GETSTOR STORAGE ERROR</td>
<td>DFSPOOL storage error. Could not get storage from the CMDP pool. The resource or descriptor was not imported.</td>
</tr>
<tr>
<td>65</td>
<td>DMB POOL STORAGE ERROR</td>
<td>DMB pool storage error. The command failed because of DMB pool storage request failure.</td>
</tr>
<tr>
<td>67</td>
<td>NO PGM DEFINED</td>
<td>No program PGM() defined. PGM() is required for transactions that are not remote REMOTE(N) and for routing codes. The definition was not imported. This should not occur if the definition was created by a valid export or by an IBM-supplied utility.</td>
</tr>
<tr>
<td>68</td>
<td>INVALID NPRI VALUE</td>
<td>Normal priority NPRI value is invalid. The transaction definition was not imported. This should not occur if the definition was created by a valid export or by an IBM-supplied utility.</td>
</tr>
<tr>
<td>69</td>
<td>INVALID PARLIM VALUE</td>
<td>Parallel limit count PARLIM value is invalid. The transaction definition was not imported. This should not occur if the definition was created by a valid export or by an IBM-supplied utility.</td>
</tr>
<tr>
<td>6A</td>
<td>FP=P/FP=E PGM CONFLICT</td>
<td>Fast Path potential FP(P) transaction definition conflicts with program already defined as Fast Path exclusive FP(E). The transaction definition was not imported.</td>
</tr>
<tr>
<td>6B</td>
<td>PARLIM/SERIAL=Y CONFLICT</td>
<td>Serial SERIAL(Y) option conflicts with parallel limit PARLIM value. The transaction definition was not imported. This should not occur if the definition was created by a valid export or by an IBM-supplied utility.</td>
</tr>
<tr>
<td>6C</td>
<td>NOT ALLOWED FOR HALDB PARTITION</td>
<td>When processing a database definition, the IMPORT command attempted to change the resident attribute of a HALDB partition. HALDB partition definitions are not exported to an RDDS or the IMSRSC repository. When the database definition was exported, the database must not have been a HALDB partition.</td>
</tr>
<tr>
<td>6D</td>
<td>INVALID PROGRAM NAME</td>
<td>Program specified does not exist. The transaction or route code definition was not imported.</td>
</tr>
<tr>
<td>73</td>
<td>PROGRAM SCHEDULED</td>
<td>Program is scheduled.</td>
</tr>
<tr>
<td>75</td>
<td>INVALID PLCTTIME VALUE</td>
<td>Parallel limit count time is invalid. The transaction definition was not imported. This should not occur if the definition was created by a valid export or by a utility supplied by IBM.</td>
</tr>
<tr>
<td>Completion code</td>
<td>Completion code text</td>
<td>Meaning</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>77</td>
<td>DEPENDENT REGIONS ACTIVE</td>
<td>One or more dependent regions are scheduled against the database, or one or more areas are open. The DEDB cannot be updated.</td>
</tr>
<tr>
<td>79</td>
<td>REMOTE/SIDR/SIDL/MSNAME CONFLICT</td>
<td>Remote REMOTE(Y) option requires MSC MSNAME or SIDR/SIDL value. The transaction definition was not imported. This should not occur if the definition was created by a valid export or by an IBM-supplied utility.</td>
</tr>
<tr>
<td>7A</td>
<td>RTC/FP=N PGM CONFLICT</td>
<td>The program specified is defined as non-Fast Path FP(N). The route code definition was not imported.</td>
</tr>
<tr>
<td>7E</td>
<td>INVALID SPASZ VALUE</td>
<td>SPA size is invalid. The transaction definition was not imported. This should not occur if the definition was created by a valid export or by an IBM-supplied utility.</td>
</tr>
<tr>
<td>83</td>
<td>INVALID SIDL VALUE</td>
<td>Local system ID SIDL value is invalid. The transaction definition was not imported.</td>
</tr>
<tr>
<td>85</td>
<td>SUSPENDED</td>
<td>Transaction is on the suspend queue.</td>
</tr>
<tr>
<td>87</td>
<td>TRAN QUEUEING</td>
<td>Transaction has messages queued in a non-shared-queues environment.</td>
</tr>
<tr>
<td>89</td>
<td>TRAN SCHEDULED</td>
<td>Transaction is scheduled.</td>
</tr>
<tr>
<td>8A</td>
<td>WILDCARD PARAMETER NOT SUPPORTED</td>
<td>Resource or descriptor name is invalid because it contains a wildcard parameter. The definition was not imported. This should not occur if the definition was created by a valid export or by an IBM-supplied utility.</td>
</tr>
<tr>
<td>90</td>
<td>INTERNAL ERROR</td>
<td>An IMS internal error occurred. The definition was not imported.</td>
</tr>
<tr>
<td>93</td>
<td>RESERVED NAME</td>
<td>Resource or descriptor name is reserved. For example, name starts with DFS (except for DFSSAMxx or DFSIVPxx), or is an IMS reserved name such as BASICEDT or WTOR. The definition was not imported. This should not occur if the definition was created by a valid export or by an IBM-supplied utility.</td>
</tr>
<tr>
<td>94</td>
<td>RM REQUEST ERROR</td>
<td>An RM request error occurred. The resource could not be registered with RM. The resource definition was not imported.</td>
</tr>
<tr>
<td>97</td>
<td>DOPT=Y/LANG CONFLICT</td>
<td>The program was defined as DOPT(Y) and a language other than Java was defined. The program definition was not imported. This should not occur if the definition was created by a valid export or by an IBM-supplied utility.</td>
</tr>
<tr>
<td>98</td>
<td>CQS REQUEST ERROR</td>
<td>A CQS request error occurred. The resource could not be registered with RM. The resource definition was not imported.</td>
</tr>
<tr>
<td>Completion code</td>
<td>Completion code text</td>
<td>Meaning</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------------------</td>
<td>--</td>
</tr>
<tr>
<td>B0</td>
<td>RESOURCE DEFINITION ERROR</td>
<td>The resource exists as another resource type in the RM structure. The resource definition was not imported.</td>
</tr>
<tr>
<td>B3</td>
<td>TRAN ELIGIBLE FOR SCHEDULING</td>
<td>Transaction is eligible for scheduling and cannot be updated. You might need to stop the transaction with an UPDATE TRAN STOP(Q,SCHD) command before attempting the import again.</td>
</tr>
<tr>
<td>B5</td>
<td>ROUTING CODE ALREADY EXISTS</td>
<td>Transaction update failed because the Fast Path exclusive FP(E) option conflicts with a routing code that already exists by that transaction name.</td>
</tr>
<tr>
<td>B6</td>
<td>LATCH ERROR</td>
<td>Unable to obtain latch. The resource or descriptor definition was not imported.</td>
</tr>
<tr>
<td>B9</td>
<td>LANG REQUIRED</td>
<td>Program is defined as GPSB(Y) but a language LANG() value was not defined. The program definition was not imported. This should not occur if the definition was created by a valid export or by an IBM-supplied utility.</td>
</tr>
<tr>
<td>BA</td>
<td>NOT ALLOWED FOR MRQ PSB</td>
<td>An attribute was defined that is not supported for the MRQ PSB. The program definition was not imported. This should not occur if the definition was created by a valid export or by an IBM-supplied utility.</td>
</tr>
<tr>
<td>BC</td>
<td>MAX 32767 DB EXCEEDED</td>
<td>32767 databases already exist. A maximum of 32767 databases are allowed. The database definition was not imported.</td>
</tr>
<tr>
<td>BD</td>
<td>INVALID DB ACCESS TYPE</td>
<td>The database access type is invalid. The database definition was not imported. This should not occur if the definition was created by a valid export or by an IBM-supplied utility.</td>
</tr>
<tr>
<td>BE</td>
<td>INVALID CPRI VALUE</td>
<td>The current priority CPRI value is invalid. The transaction definition was not imported. This should not occur if the definition was created by a valid export or by an IBM-supplied utility.</td>
</tr>
<tr>
<td>D6</td>
<td>DATABASE IN USE</td>
<td>Database in use. The DEDB cannot be changed because the DEDB is in use in a region.</td>
</tr>
<tr>
<td>DE</td>
<td>ACBLIB READ FAILURE</td>
<td>An error occurred trying to read ACBLIB. The definition was not imported.</td>
</tr>
<tr>
<td>E1</td>
<td>DB MUST BE STOPPED AND OFFLINE</td>
<td>The database must be stopped and taken offline in order for the attribute to be changed. You might need to issue a /DBR DB command or an UPDATE DB STOP(ACCESS) command to stop the database and take it offline before issuing the IMPORT DEFN command.</td>
</tr>
</tbody>
</table>
Table 294. Completion codes for the IMPORT command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>E2</td>
<td>PARALLEL DB OPEN NOT COMPLETE</td>
<td>Restart parallel DB open is not complete. The command is not processed because the restart parallel DB open is not complete for the database.</td>
</tr>
<tr>
<td>140</td>
<td>NO TRAN INPUT EDIT RTN TBL</td>
<td>An edit routine was defined for the transaction, but an edit routine table was never built. The transaction definition was not imported.</td>
</tr>
<tr>
<td>141</td>
<td>LOAD FOR EDIT ROUTINE FAILED</td>
<td>An edit routine was defined for the transaction, but the edit routine could not be loaded. The transaction definition was not imported.</td>
</tr>
<tr>
<td>143</td>
<td>NO IMPORT - FPE TRAN ERROR</td>
<td>The routing code is associated with a Fast Path exclusive transaction. An error occurred importing the transaction, so the routing code definition was not imported.</td>
</tr>
<tr>
<td>144</td>
<td>NO STORAGE FOR RM REG TRAN LIST</td>
<td>No storage was available to build the list of transactions to register with RM. The transaction definition was not imported.</td>
</tr>
<tr>
<td>145</td>
<td>MESSAGE IN PROGRESS ACROSS LINK</td>
<td>Transaction update failed because a message for the transaction is in progress across the MSC link.</td>
</tr>
<tr>
<td>1D1</td>
<td>NO REPOSITORY DEFINED</td>
<td>No repository is defined.</td>
</tr>
<tr>
<td>1D4</td>
<td>REPOSITORY MEMBER IN USE</td>
<td>The repository member for the specified resource is in use.</td>
</tr>
<tr>
<td>1D6</td>
<td>REPOSITORY ERROR</td>
<td>Repository error.</td>
</tr>
<tr>
<td>1D8</td>
<td>CHANGE LIST IN USE</td>
<td>The IMPORT DEFN SOURCE(REPO) command could not be completed because the change list for an IMS is in use and not accessible to be updated. If it is a residual change list, issue the DELETE DEFN TARGET(REPO) TYPE(CHGLIST) command to delete the change list and then retry the command, or issue the IMPORT command with the SCOPE(ACTIVE) keyword. If the IMS whose change list is not accessible is being restarted, issue the IMPORT command again.</td>
</tr>
</tbody>
</table>

Examples

The following are examples of the IMPORT command:

Example 1 for IMPORT command

TSO SPOC input:

```
IMPORT DEFN SOURCE(RDDS)  RDDSASN(IMSPLEX1.RDDS.DEFN)
```

TSO SPOC output:
Log for: IMPORT DEFN SOURCE(RDDS) RDDSDSN(IMSPLEX1.RDDS.DEFN)

IMSplex : PLEX1
Routing :
Start time : 2007.074 12:40:02.30
Stop time : 2007.074 12:40:03.32
Return code : 00000000
Reason code : 00000000
Reason text :
Command master . . : IMS2

MbrName Messages
--------- -----------------------
IMS1 DFS3405I IMPORT COMMAND COMPLETE FOR ALL, DSN=IMSPLEX1.RDDS.DEFN
IMS2 DFS3405I IMPORT COMMAND COMPLETE FOR ALL, DSN=IMSPLEX1.RDDS.DEFN

Explanation: The IMPORT command is routed to two IMS systems: IMS1 and IMS2. Each IMS successfully imports all of the resource and descriptor definitions from RDDS IMSPLEX1.RDDS.DEFN. Because OPTION(ALLRSP) is not specified, the list of imported resources is not returned.

Note: Each DFS3405I message is encapsulated in a single set of <msg> </msg> tags and is shown on the same TSO SPOC screen as the return and reason codes. If the message does not fit on one screen, you might need to scroll right to view the entire message.

Example 2 for IMPORT command

TSO SPOC input:
IMPORT DEFN SOURCE(RDDS) RDDSDSN(IMSPLEX1.RDDS.DEFN) OPTION(ALLRSP)

TSO SPOC output:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>MbrName</th>
<th>CC ImpType</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDBJN01</td>
<td>DB</td>
<td>IMS2</td>
<td>0 CREATE</td>
</tr>
<tr>
<td>DBDFLT</td>
<td>DBDESC</td>
<td>IMS2</td>
<td>0 CREATE</td>
</tr>
<tr>
<td>CDEBS</td>
<td>PGM</td>
<td>IMS2</td>
<td>0 CREATE</td>
</tr>
<tr>
<td>PGMDFLT</td>
<td>PGMDESC</td>
<td>IMS2</td>
<td>0 CREATE</td>
</tr>
<tr>
<td>SMQFP5A</td>
<td>RTC</td>
<td>IMS2</td>
<td>0 CREATE</td>
</tr>
<tr>
<td>RTCDFLT</td>
<td>RTCDESC</td>
<td>IMS2</td>
<td>0 CREATE</td>
</tr>
<tr>
<td>CDEBTRN1</td>
<td>TRAN</td>
<td>IMS2</td>
<td>0 CREATE</td>
</tr>
<tr>
<td>TRANDFLT</td>
<td>TRANDESC</td>
<td>IMS2</td>
<td>0 CREATE</td>
</tr>
</tbody>
</table>

When the PF4 key is pressed, the following is displayed:

Log for: IMPORT DEFN SOURCE(RDDS) RDDSDSN(IMSPLEX1.RDDS.DEFN) OPTION(ALLRSP)

IMSplex : PLEX1
Routing : IMS2
Start time : 2007.074 12:40:02.30
Stop time : 2007.074 12:40:03.32
Return code : 00000000
Reason code : 00000000
Reason text :
Command master . . : IMS2

MbrName Messages
--------- -----------------------
IMS2 DFS3405I IMPORT COMMAND COMPLETE FOR ALL, DSN=IMSPLEX1.RDDS.DEFN

Explanation: The IMPORT command is sent to IMS2. All resources from RDDS IMSPLEX1.RDDS.DEFN are imported successfully by IMS2. Because OPTION(ALLRSP) is specified, a list of imported resources is returned.
Example 3 for IMPORT command

TSO SPOC input:

```
IMPORT DEFN SOURCE(RDDS) RDDSDSN(IMSPLEX1.RDDS.DEFN) OPTION(ALLRSP)
```

TSO SPOC output:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>MbrName</th>
<th>CC</th>
<th>CCText</th>
<th>ImpType</th>
</tr>
</thead>
<tbody>
<tr>
<td>PART</td>
<td>DB</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td>CREATE</td>
</tr>
<tr>
<td>PART</td>
<td>DB</td>
<td>IMS2</td>
<td>0</td>
<td></td>
<td>CREATE</td>
</tr>
<tr>
<td>PARTMAST</td>
<td>DB</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td>CREATE</td>
</tr>
<tr>
<td>PARTMAST</td>
<td>DB</td>
<td>IMS2</td>
<td>0</td>
<td></td>
<td>CREATE</td>
</tr>
<tr>
<td>TESTDB</td>
<td>DB</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td>CREATE</td>
</tr>
<tr>
<td>TESTDB</td>
<td>DB</td>
<td>IMS2</td>
<td>0</td>
<td></td>
<td>CREATE</td>
</tr>
<tr>
<td>TRND01</td>
<td>TRAN</td>
<td>IMS1</td>
<td>6D</td>
<td>INVALID PROGRAM NAME</td>
<td>CREATE</td>
</tr>
<tr>
<td>TRND01</td>
<td>TRAN</td>
<td>IMS2</td>
<td>0</td>
<td></td>
<td>CREATE</td>
</tr>
<tr>
<td>TRND11</td>
<td>TRAN</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td>CREATE</td>
</tr>
<tr>
<td>TRND11</td>
<td>TRAN</td>
<td>IMS2</td>
<td>0</td>
<td></td>
<td>CREATE</td>
</tr>
<tr>
<td>TRND123</td>
<td>TRAN</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td>CREATE</td>
</tr>
<tr>
<td>TRND123</td>
<td>TRAN</td>
<td>IMS2</td>
<td>0</td>
<td></td>
<td>CREATE</td>
</tr>
<tr>
<td>TRND01</td>
<td>TRANDESC</td>
<td>IMS1</td>
<td>0</td>
<td>CREATE</td>
<td></td>
</tr>
<tr>
<td>TRND01</td>
<td>TRANDESC</td>
<td>IMS2</td>
<td>0</td>
<td>CREATE</td>
<td></td>
</tr>
</tbody>
</table>

When the PF4 key is pressed, the following is displayed:

Log for: IMPORT DEFN SOURCE(RDDS) RDDSDSN(IMSPLEX1.RDDS.DEFN)

```
IMSplex . . . . .  : PLEX1
Routing . . . . . : 2007.074 12:40:02.30
Start time . . . : 2007.074 12:40:02.30
Stop time . . . : 2007.074 12:40:03.32
Return code . . . : 0200000C
Reason code . . . : 00003000
Reason text . . .  : At least one request successful
Command master . . : IMS2
```

<table>
<thead>
<tr>
<th>MbrName</th>
<th>Return Code</th>
<th>Reason Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMS1</td>
<td>0000000C</td>
<td>00003000</td>
<td>At least one request successful</td>
</tr>
</tbody>
</table>

Explanation: The IMPORT command is routed to two IMS systems: IMS1 and IMS2. Each IMS imports the resource and descriptor definitions from RDDS IMSPLEX1.RDDS.DEFN. IMS1 failed to import one or more resource or descriptor definitions. IMS2 imported all of the resource and descriptor definitions successfully. Transaction resource TRND01 is not imported at IMS1, because its program name does not exist at IMS1. Because OPTION(ALLRSP) is specified, a list of imported resources at IMS1 and IMS2 is returned.

Example 4 for IMPORT command

TSO SPOC input:

```
IMPORT DEFN SOURCE(RDDS) RDDSDSN(MYDSN.DEFN) OPTION(ABORT,ALLRSP)
```

TSO SPOC output:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>MbrName</th>
<th>CC</th>
<th>CCText</th>
</tr>
</thead>
<tbody>
<tr>
<td>PART</td>
<td>DB</td>
<td>IMS1</td>
<td>9</td>
<td>NO IMPORT - OPTION ABORT</td>
</tr>
<tr>
<td>PARTMAST</td>
<td>DB</td>
<td>IMS1</td>
<td>9</td>
<td>NO IMPORT - OPTION ABORT</td>
</tr>
</tbody>
</table>

Chapter 35. IMPORT command 761
When the PF4 key is pressed, the following is displayed:

Log for: IMPORT DEFN SOURCE(RDDS) RDDSDSN(MYDSN.DEFN) OPTION(ALLRSP,UPDATE)

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>MbrName</th>
<th>CC</th>
<th>ImpType</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDBJN01</td>
<td>DB</td>
<td>IMS2</td>
<td>0</td>
<td>CREATE</td>
</tr>
<tr>
<td>DBDFLT</td>
<td>DBDESC</td>
<td>IMS2</td>
<td>0</td>
<td>CREATE</td>
</tr>
<tr>
<td>CDEBS</td>
<td>PGM</td>
<td>IMS2</td>
<td>0</td>
<td>UPDATE</td>
</tr>
<tr>
<td>PGMDFLT</td>
<td>PGMDESC</td>
<td>IMS2</td>
<td>0</td>
<td>CREATE</td>
</tr>
<tr>
<td>SMQFP5A</td>
<td>RTC</td>
<td>IMS2</td>
<td>0</td>
<td>CREATE</td>
</tr>
<tr>
<td>RTCDFLT</td>
<td>RTCDESC</td>
<td>IMS2</td>
<td>0</td>
<td>CREATE</td>
</tr>
<tr>
<td>CDEBTRN1</td>
<td>TRANS</td>
<td>IMS2</td>
<td>0</td>
<td>UPDATE</td>
</tr>
<tr>
<td>TRANDFLT</td>
<td>TRANDESC</td>
<td>IMS2</td>
<td>0</td>
<td>CREATE</td>
</tr>
</tbody>
</table>

When the PF4 key is pressed, the following is displayed:

Log for: IMPORT DEFN SOURCE(RDDS) RDDSDSN(MYDSN.DEFN) OPTION(ALLRSP,UPDATE)

IMSplex : PLEX1
Routing:
Start time: 2007.074 12:40:02.30
Stop time: 2007.074 12:40:02.50
Return code: 0200000C
Reason code: 00003008
Reason text: None of the clients were successful.
Command master . . .: IMS1

MbrName	Messages
IMS1 | DFS3405I IMPORT COMMAND COMPLETE FOR NONE, DSN=MYDSN.DEFN

Explanation: The IMPORT command is sent to IMS1. IMS1 encountered an error when importing resource and descriptor definitions from RDDS MYDSN.DEFN. Transaction resource TRND01 is not imported, because its associated program name does not exist at IMS1. Because OPTION(ABORT,ALLRSP) is specified, no resources are imported at IMS1 because of the ABORT option, and a response line is returned for each resource processed by the command because of the ALLRSP option. The resources that are not imported because of the ABORT option have a completion code of 9 and completion code text of “NO IMPORT - OPTION ABORT”. If OPTION(ALLRSP) is not specified, response lines are only returned for those resources that encountered an import error, such as TRND01 in this example, and response lines are not returned for those resources that have a completion code of 9.

Example 5 for IMPORT command

TSO SPOC input:

IMPORT DEFN SOURCE(RDDS) RDDSDSN(IMSPLEX1.RDDS.DEFN) OPTION(ALLRSP,UPDATE)

TSO SPOC output:

When the PF4 key is pressed, the following is displayed:

Log for: IMPORT DEFN SOURCE(RDDS) RDDSDSN(IMSPLEX1.RDDS.DEFN) OPTION(ALLRSP,UPDATE)

IMSplex : PLEX1
Routing:
Start time: 2007.074 12:40:02.30
Stop time : 2007.074 12:40:03.32
Return code . . . : 00000000
Reason code . . . : 00000000
Reason text . . . :
Command master. . : IMS2

MbrName Messages
---------- -------------------------------------
IMS2 DFS34051 IMPORT COMMAND COMPLETE FOR ALL , DSN=IMSPLEX1.RDDS.DEFN

OM API input:
CMD(IMPORT DEFN SOURCE(RDDS) RDDSdsn(IMSPLEX1.RDDS.DEFN) OPTION(ALLRSP,UPDATE))

OM API output:

<imsout>
<ctl>
<omname>OM1OM </omname>
<omvsn>1.3.0 </omvsn>
<xmlvsn>20 </xmlvsn>
<statime>2009.099 00:26:38.776367</statime>
<stotime>2009.099 00:26:38.829881</stotime>
(stseq=C402395EBA42FF00</stseq>
<stseq=C402395EC7539267</stoseq>
<rqsttkn1>USRT011 10172638</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>IMS2 </master>
<userid>USRT011 </userid>
<verb>IMP </verb>
<kwd>DEFN </kwd>
<input>IMPORT DEFN SOURCE(RDDS) RDDSdsn(IMSPLEX1.RDDS.DEFN) OPTION(ALLRSP,UPDATE) </input>
</cmd>
<cmdrsphdr>
<hdr slbl="NAME" llbl="Name" scope="LCL" sort="a" key="2" scroll="no" len="8" dtype="CHAR" align="left" />
<hdr slbl="TYPE" llbl="Type" scope="LCL" sort="a" key="1" scroll="no" len="8" dtype="CHAR" align="left" skipb="yes" />
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" key="3" scroll="no" len="8" dtype="CHAR" align="left" />
<hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0" scroll="yes" len="4" dtype="INT" align="right" />
<hdr slbl="CCTXT" llbl="CCText" scope="LCL" sort="n" key="0" scroll="yes" len="32" dtype="CHAR" align="left" skipb="yes" />
<hdr slbl="IMPTYPE" llbl="ImpType" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left" skipb="yes" />
<hdr slbl="OLDDEF" llbl="OldDefault" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left" skipb="yes" />
</cmdrsphdr>
<cmdrspdata>
<rsp>NAME(CDEBTRN1) TYPE(TRAN) MBR(IMS2) CC(0) IMPTYPE(UPDATE) </rsp>
<rsp>NAME(TRANFLT) TYPE(TRANDESC) MBR(IMS2) CC(0) IMPTYPE(CREATE) </rsp>
<rsp>NAME(DDBJNOI1) TYPE(DB) MBR(IMS2) CC(0) IMPTYPE(CREATE) </rsp>
<rsp>NAME(DBDFLT) TYPE(DBDESC) MBR(IMS2) CC(0) IMPTYPE(CREATE) </rsp>
<rsp>NAME(CDEBS) TYPE(PGM) MBR(IMS2) CC(0) IMPTYPE(UPDATE) </rsp>
<rsp>NAME(PGMDFLT) TYPE(PGMDESC) MBR(IMS2) CC(0) IMPTYPE(CREATE) </rsp>
<rsp>NAME(SMQFP5A) TYPE(RTC) MBR(IMS2) CC(0) IMPTYPE(CREATE) </rsp>
<rsp>NAME(RTCDFLT) TYPE(RTCTDESC) MBR(IMS2) CC(0) IMPTYPE(CREATE) </rsp>
</cmdrspdata>
<msgdata>
IMS2

<msg>DFS3405I IMPORT COMMAND COMPLETE FOR ALL, DSN=IMSPLEX1.RDDS.DEFN</msg>

Explanation: The IMPORT command is sent to IMS IMS2. All resources from RDDS IMSPLEX1.RDDS.DEFN are imported successfully by IMS2. Because OPTION(ALLRSP) is specified, a list of imported resources is returned. In this example, runtime resource definitions for program CDEBS and transaction CDEBTRAN already exist. Because OPTION(UPDATE) is specified, the existing runtime resource definitions for those resources are replaced. New runtime resource definitions are created for the remaining resources and descriptors.

Example 6 for IMPORT command

TSO SPOC input:
IMPORT DEFN SOURCE(RDDS) RDDSDSN(MYDSN.DEFN) OPTION(UPDATE,ABORT)

TSO SPOC output:
Name Type MbrName CC CCText
TRND01 TRAN SYS3 6D INVALID PROGRAM NAME

When the PF4 key is pressed, the following is displayed:

Log for . . . : IMPORT DEFN SOURCE(RDDS) RDDSDSN(MYDSN.DEFN) OPT... More: +>

IMSpelix : PLEX1
Routing :
Stop time . . . : 2011.124 15:59:03.41
Return code . . . : 0200000C
Reason code . . . : 00003000
Reason text . . . : At least one request was successful.
Command master. . . : IMS2

MbrName Return Code Reason Code Reason text
---------- -------- ------ --------------
IMS1 0000000C 00003004 No requests were successful

OM API input:
CMD(IMPORT DEFN SOURCE(RDDS) RDDSDSN(MYDSN.DEFN) OPTION(UPDATE,ABORT))

OM API output:
<imsout>
<ctl>
<omname>OM1OM </omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>28 </xmlvsn>
<statime>2011.124 22:59:03.358498</statime>
<stotime>2011.124 22:59:03.407697</stotime>
<staseq>C7887CB30422A2C</staseq>
<stoseq>C7887CB49451F2C</stoseq>
<rqsttkn1>USRT011 10155903</rqsttkn1>
<rc>0200000C</rc>
<rsn>00003004</rsn>
<rsm>CSLN023I</rsm>

764 Commands, Volume 1: IMS Commands A - M
At least one request was successful.

No requests were successful.

Explanation: The IMPORT command is sent to two IMS subsystems: IMS1 and IMS2. IMS1 encountered an error when importing resource and descriptor definitions from RDDS MYDSN.DEFN. Transaction resource TRND01 is not imported at IMS1 because the program specified in the transaction definition does not exist on IMS1. Because OPTION(ABORT) is specified, no resources are imported at IMS1. The command is successful at IMS2. Because OPTION(ALLRSP) is not specified, a list of resource names is not returned for IMS2.

Example 7 for IMPORT command

The following example consists of three separate commands.

TSO SPOC input:
QRY TRAN NAME(SKS1,SKS2,TRAN) SHOW(TIMESTAMP)

TSO SPOC output:
Response for: QRY TRAN NAME(SKS1,SKS2,TRAN) SHOW(TIMESTAMP)
Trancode MbrName CC CCText LGTimeAccess
SKS1 IMS1 0 2011.130 11:55:16.02
Response for: QRY TRAN NAME(SKS1,SKS2,TRANA) SHOW(TIMESTAMP) More: <

<table>
<thead>
<tr>
<th>Trancode</th>
<th>MbrName</th>
<th>LTimeUpdate</th>
<th>LTimeCreate</th>
<th>LTimeImport</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKS1</td>
<td>IMS1</td>
<td>2011.130 12:02:17.44</td>
<td>2011.130 11:49:11.01</td>
<td></td>
</tr>
<tr>
<td>SKS2</td>
<td>IMS1</td>
<td>2011.130 11:49:11.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRANA</td>
<td>IMS1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Explanation: The QRY TRAN SHOW(TIMESTAMP) command is issued to display the current time stamp values for transactions SKS1, SKS2, and TRANA. Transactions SKS1 and SKS2 exist on IMS IMS1. An access time, an update time, and a create time are displayed for SKS1. A create time is displayed for SKS2. The import time fields are blank for both SKS1 and SKS2. Transaction TRANA does not exist on IMS IMS1.

TSO SPOC input:

IMPORT DEFN SOURCE(RDDS) NAME(SKS1,SKS2,TRANA) RDDSDSN(NONSYS.RDDS1) OPTION(UPDATE)

TSO SPOC output:

Response for: IMPORT DEFN SOURCE(RDDS) NAME(SKS1,SKS2,TRANA) ...

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>MbrName</th>
<th>CC</th>
<th>ImpType</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKS1</td>
<td>TRAN</td>
<td>IMS1</td>
<td>0</td>
<td>UPDATE</td>
</tr>
<tr>
<td>SKS2</td>
<td>TRAN</td>
<td>IMS1</td>
<td>0</td>
<td>CREATE</td>
</tr>
<tr>
<td>TRANA</td>
<td>TRAN</td>
<td>IMS1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

When the PF4 key is pressed, the following is displayed:

Log for . . : IMPORT DEFN SOURCE(RDDS) NAME(SKS1,SKS2,TRANA) ... More:

OM API input:

CMD(IMPORT DEFN SOURCE(RDDS) NAME(SKS1,SKS2,TRANA) RDDSDSN(NONSYS.RDDS1) OPTION(UPDATE))

OM API output:

<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2011.130 19:07:27.297021</statime>
<stotime>2011.130 19:07:27.323045</stotime>
<staseq>C7C00F37801F0CE7</staseq>
<stoseq>C7C00F37867A5C4C</stoseq>
<rqsttkn>USRT011 10120727</rqsttkn1>
<rc>00000000</rc>
<rns>00000000</rns>
</ctl>
<cmd>
<master>IMS1</master>
<userid>USRT011</userid>
</cmd>

--------- -----------------------
IMS1 DFS3405I IMPORT COMMAND COMPLETE FOR ALL, DSN=NONSYS.RDDS1
The **IMPORT DEFN** command is issued to import definitions for transactions SKS1, SKS2, and TRANA from RDDS NONSYS.RDDS1. A runtime resource definition for SKS1 already exists in IMS IMS1. One or more of the attribute values in the imported definition differ from the attribute values in the existing runtime definition, so the runtime definition is replaced with the attribute values from the imported definition, and the import type is set to **UPDATE**. A runtime resource definition for SKS2 already exists in IMS IMS1. The attribute values in the imported definition are the same as the attribute values in the existing runtime definition, so the import type is set to **UPDATE**. A runtime resource definition does not exist for TRANA, so a new runtime definition is created and the import type is set to **CREATE**.

TSO SPOC input:

QRY TRAN NAME(SKS1,SKS2,TRANA) SHOW(TIMESTAMP)

TSO SPOC output:

Response for: QRY TRAN NAME(SKS1,TRANA) SHOW(TIMESTAMP)

<table>
<thead>
<tr>
<th>File</th>
<th>Action</th>
<th>Manage resources</th>
<th>SPOC</th>
<th>View Options</th>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLEX1</td>
<td>IMS</td>
<td>Single Point of Control</td>
<td>Command ===></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chapter 35. IMPORT command 767
Trancode MbrName CC LTimeAccess LTimeUpdate
SKS1 IMS1 0 2011.130 11:55:16.02 2011.130 12:07:27.29
SKS2 IMS1 0
TRANA IMS1 0

Response for: QRY TRAN NAME(SKS1,SKS2,TRANA) SHOW(TIMESTAMP)

More: <
Trancode MbrName LTimeCreate LTimeImport
SKS1 IMS1 2011.130 11:49:11.01 2011.130 12:07:27.29
SKS2 IMS1 2011.130 11:49:11.01 2011.130 12:07:27.29

Explanation: After the IMPORT command is completed, the QRY TRAN SHOW(TIMESTAMP) command is issued again to display the current time stamp values for transactions SKS1, SKS2, and TRANA. The existing runtime definition for SKS1 was replaced by the IMPORT command. Both the import time stamp and the update time stamp were set to the time that the IMPORT command was received by OM. The access time stamp and create time stamp were not changed. The existing runtime definition for SKS2 was unchanged. The import time stamp for SKS2 was set to the time that the IMPORT command was received by OM. The update time stamp, access time stamp, and create time stamp were unchanged. The IMPORT command created a runtime definition for TRANA. The import time stamp was set to the time that the IMPORT command was received by OM. The create time stamp was obtained from the imported definition and stored in the new runtime definition.

Example 8 for IMPORT command

TSO SPOC input:

```
IMPORT DEFN SOURCE(REPO) NAME(TRANA,DBA,RTCA,PGMA) TYPE(ALL) SCOPE(ACTIVE)
```

TSO SPOC output:

```
Name Type MbrName CC ImpType
DBA DB IMS2 0 CREATE
DBA DB IMS1 0 CREATE
PGMA PGM IMS2 0 CREATE
PGMA PGM IMS1 0 CREATE
RTCA RTC IMS2 0 CREATE
RTCA RTC IMS1 0 CREATE
TRANA TRAN IMS2 0 CREATE
TRANA TRAN IMS1 0 CREATE
```

When the **PF4** key is pressed, the following is displayed:

```
Log for . . . : IMPORT DEFN SOURCE(REPO) NAME(TRANA,DBA,RTCA,PGMA) More: >
IMSp lex . . . . : PLEX1
Routing . . . . :
Return code . . . : 00000000
Reason code . . . : 00000000
Reason text . . . :
Command master. . . : IMS2
```

MbrName Messages

```
-----------------------------
IMS2 DFS3406I IMPORT COMMAND COMPLETE FOR ALL, REPOTYPE=IMSRSC, REPONAME=IMS_REPOS
IMS1 DFS3406I IMPORT COMMAND COMPLETE FOR ALL, REPOTYPE=IMSRSC, REPONAME=IMS_REPOS
-----------------------------
```

OM API input:

```
CMD(IMPORT DEFN SOURCE(REPO) NAME(TRANA,DBA,RTCA,PGMA) TYPE(ALL) SCOPE(ACTIVE))
```
OM API output:

<imsout>
<ctl>
<omname>OM1</omname>
<omvsn>1.5.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2011.125 18:09:18.842449</statime>
<stotime>2011.125 18:09:19.093317</stotime>
<staseq>C7B9B8E580A517AE</staseq>
<stoseq>C7B9B8E5C5E45638</stoseq>
<rqsttkn1>USRT011 10110918</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>IMS2</master>
<userid>USRT011</userid>
<verb>IMP</verb>
<kwd>DEFN</kwd>
<input>IMPORT DEFN SOURCE(REPO) NAME(TRANA,DBA,RTCA,PGMA) TYPE(ALL) SCOPE(ACTIVE)</input>
</cmd>
<cmdrsphdr>
<hdr slbl="NAME" llbl="Name" scope="LCL" sort="a" key="2" scroll="no" len="8" dtype="CHAR" align="left"/>
<hdr slbl="TYPE" llbl="Type" scope="LCL" sort="a" key="1" scroll="no" len="8" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" key="3" scroll="no" len="8" dtype="CHAR" align="left"/>
<hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0" scroll="yes" len="4" dtype="INT" align="right" skipb="no"/>
<hdr slbl="CCTXT" llbl="CCText" scope="LCL" sort="n" key="0" scroll="yes" len="32" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="ERRT" llbl="ErrorText" scope="LCL" sort="n" key="0" scroll="yes" len="*" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="IMPTYPE" llbl="ImpType" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="OLDDEF" llbl="OldDefault" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left" skipb="yes"/>
</cmdrsphdr>
<cmdrspdata>
<rsp>NAME(DBA) TYPE(DB) MBR(IMS2) CC(0) IMPTYPE(CREATE)</rsp>
<rsp>NAME(PGMA) TYPE(PGM) MBR(IMS2) CC(0) IMPTYPE(CREATE)</rsp>
<rsp>NAME(RTCA) TYPE(RTC) MBR(IMS2) CC(0) IMPTYPE(CREATE)</rsp>
<rsp>NAME(TRANA) TYPE(TRAN) MBR(IMS2) CC(0) IMPTYPE(CREATE)</rsp>
<rsp>NAME(DBA) TYPE(DB) MBR(IMS1) CC(0) IMPTYPE(CREATE)</rsp>
<rsp>NAME(PGMA) TYPE(PGM) MBR(IMS1) CC(0) IMPTYPE(CREATE)</rsp>
<rsp>NAME(RTCA) TYPE(RTC) MBR(IMS1) CC(0) IMPTYPE(CREATE)</rsp>
<rsp>NAME(TRANA) TYPE(TRAN) MBR(IMS1) CC(0) IMPTYPE(CREATE)</rsp>
</cmdrspdata>
<msgdata>
<mbr name="IMS2">DFS3406I IMPORT COMMAND COMPLETE FOR ALL, REPOTYPE=IMSRSC, REPONAME=IMS_REPOS</mbr>
<mbr name="IMS1">DFS3406I IMPORT COMMAND COMPLETE FOR ALL, REPOTYPE=IMSRSC, </msgdata>

Chapter 35. IMPORT command 769
Explanation: The runtime resource definitions for the database named DBA, transaction named TRANA, program named PGMA, and routing code named RTCA are imported from the repository as the runtime resource definitions for IMS systems IMS2 and IMS3. The command is processed by all IMS systems that receive the command.

Example 9 for IMPORT command

TSO SPOC input:

```
IMPORT DEFN SOURCE(REPO) NAME(PGM002,PGM003,PGM004,PGM005,PGM006) SCOPE(ALL)
```

TSO SPOC output:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>MbrName</th>
<th>CC</th>
<th>ImpType</th>
<th>IMSid</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGM002 PGM</td>
<td>IMS1</td>
<td>0</td>
<td>CREATE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PGM002 PGM</td>
<td>IMS1</td>
<td>0</td>
<td>CHGLIST</td>
<td>IMS2</td>
<td></td>
</tr>
<tr>
<td>PGM002 PGM</td>
<td>IMS1</td>
<td>0</td>
<td>CHGLIST</td>
<td>IMS3</td>
<td></td>
</tr>
<tr>
<td>PGM002 PGM</td>
<td>IMS1</td>
<td>0</td>
<td>CHGLIST</td>
<td>IMS4</td>
<td></td>
</tr>
<tr>
<td>PGM002 PGM</td>
<td>IMS1</td>
<td>0</td>
<td>CHGLIST</td>
<td>IMS5</td>
<td></td>
</tr>
<tr>
<td>PGM003 PGM</td>
<td>IMS1</td>
<td>0</td>
<td>CHGLIST</td>
<td>IMS2</td>
<td></td>
</tr>
<tr>
<td>PGM003 PGM</td>
<td>IMS1</td>
<td>0</td>
<td>CHGLIST</td>
<td>IMS3</td>
<td></td>
</tr>
<tr>
<td>PGM003 PGM</td>
<td>IMS1</td>
<td>0</td>
<td>CHGLIST</td>
<td>IMS4</td>
<td></td>
</tr>
<tr>
<td>PGM003 PGM</td>
<td>IMS1</td>
<td>0</td>
<td>CREATE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PGM003 PGM</td>
<td>IMS1</td>
<td>0</td>
<td>CHGLIST</td>
<td>IMS5</td>
<td></td>
</tr>
<tr>
<td>PGM004 PGM</td>
<td>IMS1</td>
<td>0</td>
<td>CHGLIST</td>
<td>IMS2</td>
<td></td>
</tr>
<tr>
<td>PGM004 PGM</td>
<td>IMS1</td>
<td>0</td>
<td>CHGLIST</td>
<td>IMS3</td>
<td></td>
</tr>
<tr>
<td>PGM004 PGM</td>
<td>IMS1</td>
<td>0</td>
<td>CHGLIST</td>
<td>IMS4</td>
<td></td>
</tr>
<tr>
<td>PGM004 PGM</td>
<td>IMS1</td>
<td>0</td>
<td>CHGLIST</td>
<td>IMS5</td>
<td></td>
</tr>
<tr>
<td>PGM004 PGM</td>
<td>IMS1</td>
<td>0</td>
<td>CREATE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PGM004 PGM</td>
<td>IMS1</td>
<td>0</td>
<td>CHGLIST</td>
<td>IMS5</td>
<td></td>
</tr>
<tr>
<td>PGM005 PGM</td>
<td>IMS1</td>
<td>0</td>
<td>CHGLIST</td>
<td>IMS2</td>
<td></td>
</tr>
<tr>
<td>PGM005 PGM</td>
<td>IMS1</td>
<td>0</td>
<td>CHGLIST</td>
<td>IMS3</td>
<td></td>
</tr>
<tr>
<td>PGM005 PGM</td>
<td>IMS1</td>
<td>0</td>
<td>CHGLIST</td>
<td>IMS5</td>
<td></td>
</tr>
<tr>
<td>PGM006 PGM</td>
<td>IMS1</td>
<td>0</td>
<td>CHGLIST</td>
<td>IMS2</td>
<td></td>
</tr>
<tr>
<td>PGM006 PGM</td>
<td>IMS1</td>
<td>0</td>
<td>CHGLIST</td>
<td>IMS3</td>
<td></td>
</tr>
<tr>
<td>PGM006 PGM</td>
<td>IMS1</td>
<td>0</td>
<td>CHGLIST</td>
<td>IMS4</td>
<td></td>
</tr>
<tr>
<td>PGM006 PGM</td>
<td>IMS1</td>
<td>0</td>
<td>CHGLIST</td>
<td>IMS5</td>
<td></td>
</tr>
</tbody>
</table>

When the **PF4** key is pressed, the following is displayed:

```
Log for . . : IMPORT DEFN SOURCE(REPO) NAME(PGM002,PGM003,PGM004,PGM005,PGM006) SCOPE(ALL)

IMSpex . . . : PLEX1
Routing . . . : 
Start time . . : 2013.189 16:06:50.58
Stop time . . : 2013.189 16:06:50.59
Return code . . : 00000000
Reason code . . : 00000000
Reason text . . : 
Command master . . : IMS1

MbrName Messages
--------- ---------------
IMS1 DFS3406I IMPORT COMMAND COMPLETE FOR ALL, REPOTYPE=IMSRSC, REPONAME=IMS_REPOS
```

OM API input:

```
CMD(IMPORT DEFN SOURCE(REPO) NAME(PGM002,PGM003,PGM004,PGM005,PGM006) SCOPE(ALL))
```

OM API output:
Chapter 35. IMPORT command

<table>
<thead>
<tr>
<th>NAME</th>
<th>TYPE</th>
<th>MBR</th>
<th>CC</th>
<th>IMPTYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGM002</td>
<td>PGM</td>
<td>IMS1</td>
<td>0</td>
<td>CREATE</td>
</tr>
<tr>
<td>PGM003</td>
<td>PGM</td>
<td>IMS1</td>
<td>0</td>
<td>CREATE</td>
</tr>
<tr>
<td>PGM004</td>
<td>PGM</td>
<td>IMS1</td>
<td>0</td>
<td>CREATE</td>
</tr>
<tr>
<td>PGM005</td>
<td>PGM</td>
<td>IMS1</td>
<td>0</td>
<td>CREATE</td>
</tr>
<tr>
<td>PGM006</td>
<td>PGM</td>
<td>IMS1</td>
<td>0</td>
<td>CREATE</td>
</tr>
<tr>
<td>PGM002</td>
<td>PGM</td>
<td>IMS2</td>
<td>0</td>
<td>CHGLIST</td>
</tr>
<tr>
<td>PGM003</td>
<td>PGM</td>
<td>IMS2</td>
<td>0</td>
<td>CHGLIST</td>
</tr>
<tr>
<td>PGM004</td>
<td>PGM</td>
<td>IMS2</td>
<td>0</td>
<td>CHGLIST</td>
</tr>
<tr>
<td>PGM005</td>
<td>PGM</td>
<td>IMS2</td>
<td>0</td>
<td>CHGLIST</td>
</tr>
<tr>
<td>PGM006</td>
<td>PGM</td>
<td>IMS2</td>
<td>0</td>
<td>CHGLIST</td>
</tr>
<tr>
<td>PGM002</td>
<td>PGM</td>
<td>IMS3</td>
<td>0</td>
<td>CHGLIST</td>
</tr>
<tr>
<td>PGM003</td>
<td>PGM</td>
<td>IMS3</td>
<td>0</td>
<td>CHGLIST</td>
</tr>
<tr>
<td>PGM004</td>
<td>PGM</td>
<td>IMS3</td>
<td>0</td>
<td>CHGLIST</td>
</tr>
<tr>
<td>PGM005</td>
<td>PGM</td>
<td>IMS3</td>
<td>0</td>
<td>CHGLIST</td>
</tr>
<tr>
<td>PGM006</td>
<td>PGM</td>
<td>IMS3</td>
<td>0</td>
<td>CHGLIST</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAME</th>
<th>TYPE</th>
<th>MBR</th>
<th>CC</th>
<th>IMSID</th>
<th>IMPTYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGM002</td>
<td>PGM</td>
<td>IMS2</td>
<td>0</td>
<td>IMS2</td>
<td>CHGLIST</td>
</tr>
<tr>
<td>PGM003</td>
<td>PGM</td>
<td>IMS2</td>
<td>0</td>
<td>IMS2</td>
<td>CHGLIST</td>
</tr>
<tr>
<td>PGM004</td>
<td>PGM</td>
<td>IMS2</td>
<td>0</td>
<td>IMS2</td>
<td>CHGLIST</td>
</tr>
<tr>
<td>PGM005</td>
<td>PGM</td>
<td>IMS2</td>
<td>0</td>
<td>IMS2</td>
<td>CHGLIST</td>
</tr>
<tr>
<td>PGM006</td>
<td>PGM</td>
<td>IMS2</td>
<td>0</td>
<td>IMS2</td>
<td>CHGLIST</td>
</tr>
<tr>
<td>PGM002</td>
<td>PGM</td>
<td>IMS3</td>
<td>0</td>
<td>IMS3</td>
<td>CHGLIST</td>
</tr>
<tr>
<td>PGM003</td>
<td>PGM</td>
<td>IMS3</td>
<td>0</td>
<td>IMS3</td>
<td>CHGLIST</td>
</tr>
<tr>
<td>PGM004</td>
<td>PGM</td>
<td>IMS3</td>
<td>0</td>
<td>IMS3</td>
<td>CHGLIST</td>
</tr>
<tr>
<td>PGM005</td>
<td>PGM</td>
<td>IMS3</td>
<td>0</td>
<td>IMS3</td>
<td>CHGLIST</td>
</tr>
<tr>
<td>PGM006</td>
<td>PGM</td>
<td>IMS3</td>
<td>0</td>
<td>IMS3</td>
<td>CHGLIST</td>
</tr>
</tbody>
</table>
Explanation: IMS1 is active. IMS2, IMS3, IMS4, and IMS5 are not active. IMS1 through IMS5 have programs PGM002 through PGM006 defined in their resource lists. Because SCOPE(ALL) is specified, the change lists of the IMS systems that are down are updated with the resources that are being imported. The IMPORT command imports five programs, which are created for IMS1 and added to the change lists of IMS2, IMS3, IMS4, and IMS5. The IMSID column identifies the IMS whose change list was created or updated.

Example 10 for IMPORT command

TSO SPOC input:
IMPORT DEFIN SOURCE(REPO) NAME(DB0010) TYPE(DB) SCOPE(ALL) OPTION(ALLRSP)

TSO SPOC output:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>MbrName</th>
<th>CC</th>
<th>CCText</th>
<th>ImpType</th>
<th>IMSid</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB0010</td>
<td>IMS1</td>
<td>10</td>
<td></td>
<td>NO RESOURCES FOUND</td>
<td>CHGLIST</td>
<td>IMS5</td>
</tr>
<tr>
<td>DB0010</td>
<td>DB</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td>CHGLIST</td>
<td>IMS5</td>
</tr>
</tbody>
</table>

When the PF4 key is pressed, the following is displayed:

Log for : IMPORT DEFIN SOURCE(REPO) NAME(DB0010) TYPE(DB) SCOPE(ALL) OPTION(ALLRSP)

IMSp!ex: PLEX1
Routing :
Start time : 2013.189 16:18:35.27
Stop time : 2013.189 16:18:35.33
Return code ... : 0200000C
Reason code ... : 00003008
Reason text ... : None of the clients were successful.
Command master. : IMS1
<table>
<thead>
<tr>
<th>MbrName</th>
<th>Return Code</th>
<th>Code</th>
<th>Reason Code</th>
<th>Reason text</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMS1</td>
<td>00000000C</td>
<td>00003000</td>
<td></td>
<td>At least one request successful</td>
</tr>
</tbody>
</table>

Messages

<table>
<thead>
<tr>
<th>MbrName</th>
<th>Messages</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMS1</td>
<td>DFS3407E IMPORT COMMAND COMPLETE FOR SOME, REPOTYPE=IMSRSC, REPONAME=IMS_REPOS</td>
</tr>
</tbody>
</table>

OM API input:

```plaintext
CMD(IMPORT DEFN SOURCE(REPO) NAME(DB0010) TYPE(DB) SCOPE(ALL) OPTION(ALLRSP))
```

OM API output:

```xml
<?xml version="1.0"?>
<!DOCTYPE imsout SYSTEM "imsout.dtd">
<imsout>
  <ctl>
    <omname>OM1OM</omname>
    <omvsn>1.6.0</omvsn>
    <xmlvsn>20</xmlvsn>
    <statime>2013.189 23:18:35.272816</statime>
    <stotime>2013.189 23:18:35.332778</stotime>
    <staseq>CA188C3S270282</staseq>
    <stoseq>CA188C3D3CAA981</stoseq>
    <rqsttkn1>USRT005 10161835</rqsttkn1>
    <rc>0200000C</rc>
    <rsn>00003008</rsn>
    <rsntxt>None of the clients were successful.</rsntxt>
  </ctl>
  <cmderr>
    <mbr name="IMS1">
      <typ>IMS</typ>
      <styp>DBDC</styp>
      <rc>0000000C</rc>
      <rsn>00003000</rsn>
      <rsntxt>At least one request successful</rsntxt>
    </mbr>
  </cmderr>
  <cmd>
    <master>IMS1</master>
    <userid>USRT005</userid>
    <verb>IMP</verb>
    <kwd>DEFN</kwd>
    <input>IMPORT DEFN SOURCE(REPO) NAME(DB0010) TYPE(DB) SCOPE(ALL) OPTION(ALLRSP) </input>
  </cmd>
</imsout>
```

Chapter 35. IMPORT command
Explanation: IMS1 is active, and IMS5 is down. The IMPORT command is routed to IMS1, which does not have database DB0010 in its resource list. The repository has database DB0010, which is defined for IMS5 but not IMS1. Because SCOPE(ALL) is specified, the change list of the IMS systems that are down are updated with the resources that are being imported. IMS1, the command master, reports that IMS5's change list is updated for DB0010, but it does not import anything itself. A response line with a completion code of X'10', no resources found, is returned for IMS1 because DB0010 is not defined for IMS1 in the repository.

Related concepts:

- How to interpret CSL request return and reason codes (System Programming APIs)
- CSL RM, IMS, and Repository Server termination (System Administration)
- IMSRSC repository administration (System Administration)

Related reference:

Chapter 2, “Command keywords and their synonyms,” on page 63
Chapter 36. INITIATE commands

Use the INITIATE commands to initiate the online change process or online reorganization of the specified HALDB partitions.

INITIATE commands are:
- “INITIATE OLC command” on page 819

INITIATE OLC command

Use the INITIATE OLC command to initiate the global online change process. The resources that can be changed online are areas, databases, DMBs, Fast Path DEDB databases, MFS formats, programs, routing codes, and transactions. The correct online change command sequence is INITIATE OLC PHASE(PREPARE) followed by INITIATE OLC PHASE(COMMIT).

Restrictions:
- The INITIATE OLC command is not supported if local online change is enabled.
- This command is invalid on XRF alternate, RSR tracker, and FDBR systems.

Subsections:
- “Environment”
- “Syntax”
- “Keywords” on page 776
- “Usage notes” on page 783
- “Output fields” on page 785
- “Return, reason, and completion codes” on page 787
- “Examples” on page 806

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) from which the INITIATE command and keywords can be issued.

Table 295. Valid environments for the INITIATE OLC command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>INITIATE OLC</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>OPTION</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PHASE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TYPE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

© Copyright IBM Corp. 1974, 2016
Keywords

The following keywords are valid for the INITIATE OLC command:

OPTION()

Specifies an additional function to be performed during an online change. Following is a list of additional functions:

- **BLDL**: Sends asynchronous information message DFS3498I to the system console for each PSB or DMB not found in ACBLIB. This message does not affect the success of the command.

- **FRCABND**: Forces the online change prepare phase even if one or more required IMS systems in the IMSplex have ended abnormally. An IMS is required to participate in the global online change if it is listed in the OLCSTAT data set as being current with the online change libraries. An IMS is listed in the OLCSTAT data set because it either participated in the last global online change or cold started since the last global online change. A successful global online change specified with the FRCABND removes an abnormally ended IMS from the list of required IMS systems in the OLCSTAT data set.

 If the INITIATE OLC PHASE(PREPARE) command is specified with the FRCABND keyword and the command fails for any IMS, you can proceed with an INITIATE OLC PHASE(COMMIT) command, if you want, after canceling those IMS systems where prepare failed. Otherwise, you must cancel (abort) the online change and start over.

- **FRCNRML**: Forces the online change prepare phase even if one or more required IMS systems in the IMSplex have terminated normally. An IMS is required to participate in the global online change if it is listed in the OLCSTAT data set as being current with the online change libraries.
change libraries. An IMS is listed in the OLCSTAT data set because it either participated in the last global online change or cold started since the last global online change. A successful global online change specified with the FRCNRML keyword removes an IMS that shut down normally from the list of required IMS systems in the OLCSTAT data set.

If the INITIATE OLC PHASE(PREPARE) command is specified with the FRCNRML keyword and the command fails for any IMS, you can proceed with an INITIATE OLC PHASE(COMMIT) command, if you want, after shutting down those IMS systems where prepare failed. Otherwise, you must terminate the online change and start over.

NAMEONLY

Specifies that only the DBDs and PSBs that are specified in the NAME keyword are to be processed.

By default, when a DBD is specified on the NAME keyword of the INITIATE OLC PHASE(PREPARE) TYPE(ACBMBR) command, the ACB member online change (OLC) function automatically copies all associated PSBs and externally referenced DBDs from the staging ACB library to active ACB library. Depending on the number of PSBs and DBDs, the amount of time required for the copying process can be significant.

In many cases, you can significantly reduce the amount of time the ACB member online change function takes by specifying OPTION(NAMEONLY) on the INITIATE OLC PHASE(PREPARE) TYPE(ACBMBR) command. The NAMEONLY option limits the processing of the ACB member online change function to only the DBDs and PSBs that are specified in NAME() keyword of the command.

If a PSB is specified in the NAME keyword, the following rules apply:

- Regardless of whether a PSB is new to the active ACB library or not, if the DBDs in the intent list have not been modified, this PSB is copied to the active ACB library.
- If a PSB is not new to the active ACB library and the DBDs in the intent list have been modified, this PSB is not copied to the active ACB library and a completion code 12B is returned.

If a DBD is specified in the NAME keyword, the following rules apply:

- If a DBD is new to the active ACB library and the DBDs in the reference list have not been modified, this DBD is copied to the active ACB library.
- If a DBD is new to the active ACB library and the DBDs in the reference list have been modified, this DBD is not copied to the active ACB library and a completion code 12C is returned.
- If a DBD is not new to the active ACB library and has been modified, this DBD is not copied to the active ACB library and a completion code 12A is returned.
NAME(acbmbr)

Specifies that one or more ACB library members are to be copied from the staging ACB library to the active ACB library. *acbmbr* can be a DBD or a PSB that is being changed or added.

Wildcard characters are not supported in the member names.

The maximum number of DBDs and PSBs that can be specified on the *acbmbr* parameter is limited to 100.

If a DBD is being changed and OPTION(NAMEONLY) is not specified, you do not have to specify the associated PSBs on the command because all of the PSBs that are associated with the changed DBD are copied automatically from the staging ACB library to the active ACB library.

If a DBD that is being changed or added has external references and OPTION(NAMEONLY) is not specified, the secondary index DBD does not have to be specified on the *acbmbr* parameter. The INIT OLC TYPE(ACBMBR) command processing copies all externally referenced members of the DBD from the staging ACB library to the active ACB library.

PHASE()

Specifies the online change phase to start. The PREPARE phase must be performed first, followed by the COMMIT phase.

PREPARE

Performs the online change prepare phase on each IMS system listed in the OLCSTAT data set by specifying which resources are to be added, changed, and deleted. PREPARE is not recovered across an emergency restart and must be reentered after restart if the COMMIT phase did not complete before IMS failure.

The prepare phase is rejected if any IMS systems in the IMSplex current with the online change libraries are down, unless the FRCABND or the FRCNRML option is used. The OLCSTAT data set lists the IMS systems that are current with the online change libraries. These IMS systems either participated in the last global online change or cold started after the last global online change. To force a global online change in spite of abended IMS systems, use the FRCABND option. To force a global online change in spite of IMS systems that are shut down normally, use the FRCNRML option. The prepare phase fails if any IMS participating in the global online change prepare phase fails, detects an error, or fails to respond in time. Zero, one, or more of the IMS systems remain in an online change prepare complete state. Issue the QUERY MEMBER TYPE(IMS) SHOW(STATUS) command to display the online change state of all the IMS systems in the IMSplex. Evaluate the QUERY MEMBER TYPE(IMS) output to help you decide whether to issue the INITIATE OLC PHASE(PREPARE) command to try the PREPARE phase again, or to issue the TERMINATE OLC command to terminate the online change. The IMS systems that are in an online change state remain in an online change state until you terminate or commit the online change. IMS does not automatically terminate online change because of a failure. IMS leaves the IMS systems in their online change states. You must issue the QUERY MEMBER TYPE(IMS) SHOW(STATUS) command and evaluate the output to decide whether to terminate the online change or attempt the online change phase again.
Restriction: The INITIATE OLC PHASE(PREPARE) command is rejected if the IMS to which the command is routed does not support global online change. If this situation occurs and there is an IMS that supports global online change, you must route the command to a specific IMS that supports global online change.

COMMIT

Performs the online change commit phase on each IMS listed in the OLCSTAT data set, which commits the online changes by bringing all the newly defined resources online, updating changed resources, and removing deleted resources. The commit phase consists of commit phase 1, the OLCSTAT data set update, commit phase 2, and commit phase 3. The OLCSTAT data set is updated with the new current online change libraries and the list of IMS systems that are current with the current online change libraries. The commit phase 2 switches the online environment from the active ACBLIB, FORMAT, or MODBLKS libraries to the inactive libraries containing the new or changed resource descriptions.

Recommendation: Use the /DISPLAY MODIFY command to display the work in progress for resources to be changed or deleted, before attempting the COMMIT phase.

When COMMIT is successful, the modifications persist across all IMS restarts, unless global online change occurs while this IMS is down.

The commit phase fails if any IMS participating in the global online change commit phase fails, detects an error, or fails to respond in time. Zero, one, or more of the IMS systems might be in an online change prepare complete state, a commit phase 1 complete state, or no longer in an online change state because commit phase 2 succeeded. Issue the QUERY MEMBER TYPE(IMS) SHOW(STATUS) command to display the online change state of all the IMS systems in the IMSplex. Evaluate the QUERY MEMBER TYPE(IMS) output to help you decide whether to issue the INITIATE OLC PHASE(COMMIT) command to try the commit again, or issue the TERMINATE OLC command to terminate the online change. The IMS systems that are in an online change state remain in an online change state until you terminate or commit the online change.

IMS does not automatically terminate online change because of a failure. IMS leaves the IMS systems in their online change states. You must issue the QUERY MEMBER TYPE(IMS) SHOW(STATUS) command and evaluate the output to decide whether to terminate the online change or attempt the online change phase again.

If a database is deleted, IMS closes the database and makes it unavailable to programs. Also, if the database is authorized for DBRC, COMMIT deauthorizes it.

If FMTLIB is being changed, most new and in-progress requests are queued for processing after the INITIATE OLC PHASE(COMMIT) command is completed.

Most new and in-progress requests are queued for processing.

An INITIATE OLC PHASE(COMMIT) command is rejected if:
• An INITIATE OLC PHASE(PREPARE) command was not previously entered.
• Commit phase 1 fails on one or more IMS systems in the IMSplex.
• Transactions to be deleted have messages queued.
• Transactions to be changed by the following system definition keywords have messages queued:
 – MSGTYPE
 – INQUIRY
 – FPATH
 – EDIT
 – SPA
 – SERIAL
• Transactions to be changed by keywords not shown in the previous bullet have messages queued and the transactions have not been the object of a /STOP or /PSTOP command.
• Transactions with access to programs or databases to be changed or deleted are prevented from updating and the transactions have not been the object of a /STOP or /PSTOP command. When a transaction shows a status of USTOP during a /DISPLAY TRAN command, the /STO command might have to be entered because the /PSTOP command might not enable the INITIATE OLC command to complete the transaction.
• Any program (PSB) that is currently scheduled has a program, database, or transaction change or deletion. This includes Wait for Input (WFI) and Fast Path transactions. All WFI and Fast Path regions that reference changed or deleted routing codes, programs, or databases must be stopped before entering the INITIATE OLC PHASE(COMMIT).
• An I/O error occurs while reading the inactive MFS FORMAT library directory or the resident index ($$IMSDIR) member.
• A /START DATABASE command is in progress for any database that is changed or deleted.
• A /DBDUMP or /DBRECOVERY command is in progress for any database that is changed or deleted.
• An IMS that participated in the prepare phase was shut down normally or ended abnormally. The online change must be aborted and started over.
• OM routed the command to an IMS where local online change is enabled.
• The OLCSTAT data set is not locked for global online change. The INITIATE OLC PHASE(PREPARE) command locks the OLCSTAT data set, so that no IMS systems can initialize during the global online change. The commit command is rejected if the lock is not set. The INITIATE OLC PHASE(PREPARE) command might not have completed successfully or the OLCSTAT data set contents might be invalid.
• An IFP region is running. The INITIATE OLC PHASE(COMMIT) command is rejected because an active route code exists. All IFP regions must be terminated before issuing a COMMIT.
IMS does not reject the INITIATE OLC PHASE(COMMIT) command if the online change indirectly affects transactions (having work in progress) that reference resources in the ACB library or in the MODBLKS data set that are directly affected by the online change. These transactions themselves are not being changed (no attribute on the TRANSACT macro is being changed), but they reference a PDIR, PSB, or DMB that is affected by the online change. A transaction can be indirectly affected by an online change in one of the following situations:

- The transaction references a PSB directory (PDIR) control block in the IMS.MODBLKS data set that is being changed.
- The transaction references a PSB in the ACB library that is being changed.
- The transaction references a PSB directory (PDIR) control block in the IMS.MODBLKS data set which in turn references a database that is being changed online.
- The transaction references a PSB in the ACB library (IMS.ACBLIB) that references a database that is being changed online.

Operator action might be required to prevent the preceding conditions. For example, if a program or database is scheduled, the operator must either wait until the program or database is finished before the INITIATE OLC PHASE(COMMIT) command is entered or issue the /STOP, /PSTOP, or UPDATE TRAN command for the associated transaction.

If IMS is in an IMSplex and Resource Manager (RM) is using a resource structure, the transactions being added by the online change are registered to RM if they are not already registered to RM. If any error occurs during the CSLRMUPD request to register the transactions, the /MODIFY or INITIATE OLC command fails and IMS will be in a COMMIT2F state.

If an INITIATE OLC PHASE(COMMIT) command results in the IMS remaining in a COMMIT2F state, a completion code of the error that caused it is returned to OM. If the error can be fixed, the INITIATE OLC PHASE(COMMIT) can be reissued and CSLRMUPD tried again and the online change completed. If the error cannot be fixed, the IMS must be canceled and warm started as the online change is not complete.

TYPE()

Specifies the types of resources that are changed online. The resources are as follows:

ACBLIB

Causes IMS to prepare to add, change, or delete database descriptors (DMB) and program descriptors (PSB) to ACBLIB. The online environment is switched from the active ACBLIB to the inactive ACBLIB containing new or changed DMB and PSBs. ACBLIB members that are not found are displayed as CHANGED because a DDIR or PDIR exists in MODBLKS. Additions or deletions to ACBLIB require the MODBLKS parameter. Quiesces transactions to be changed or deleted and transactions that access databases or programs to be changed or deleted. Fast Path DEDBs are supported but Fast Path MSDBs are not supported.
ACBMBR
Specifies that an ACB library member online change process is to be performed for the specified ACB library member name or names. The command response lists all the members that are to be copied from the staging ACB library to the active ACB library during the COMMIT command processing.

When you issue either an INIT OLC PHASE(PREPARE) TYPE(ALL) command or an INIT OLC PHASE(PREPARE) TYPE(ACBLIB) command, IMS initiates a full online change process for either the ACB library or the ACB, FMT, and MODBLKS libraries. In either case, an ACB library member online change process is not involved.

After an INITIATE OLC PHASE(COMMIT) command, when the TYPE(ACBMBR) online change completes successfully, the active and inactive ACB library suffixes and the MODID are not updated in the OLCSTAT data set or in the IMS control blocks because ACB library member online change processing changes or adds ACB members directly into the active ACB library.

ALL
Prepares to add, change, and delete resources for the ACBLIB, FMTLIB, or MODBLKS libraries. The BLDL function is performed for ACBLIB. ALL does not include the ACBMBR online change.

If the INITIATE OLC PHASE(PREPARE) command is specified with type ALL, IMS systems with MODBLKS online change enabled perform the MODBLKS online change and return a good completion code. IMS systems with DRD enabled ignore the MODBLKS keyword, perform the ACBLIB online change, FMTLIB online change, or both, and return a good completion code. DBCTLs with DRD enabled ignore the MODBLKS and FMTLIB keyword, perform an ACBLIB online change, and return a good completion code.

FMTLIB
Causes IMS to prepare to add, change, or delete MFS maps in the FMTLIB library that are produced by the MFS Language utility and Service utility. The online environment is switched from the active FMTLIB to the inactive FMTLIB containing new MFS maps produced by the MFS Language utility and Service utility. The FMTLIB parameter is ignored with DBCTL. There are no restrictions on the use of MFS format blocks until the INITIATE OLC PHASE(COMMIT) command is entered.

MODBLKS
Causes IMS to prepare to add, change, or delete database, transaction, program, or RTCODE resources in the MODBLKS library.

The online environment is switched from the active MODBLKS library to the inactive MODBLKS library. The MODBLKS library contains a subset of control blocks produced by IMS system definition. Transactions to be changed or deleted and transactions that access databases or programs to be changed or deleted are quiesced.

MODBLKS is disabled if DRD is enabled for IMS. If DRD is enabled on all the IMS systems, the INITIATE OLC TYPE(MODBLKS) command fails. If DRD is enabled on some IMS
systems, the INITIATE OLC PHASE(PREPARE) TYPE(MODBLKS) command succeeds with a warning return code indicating that the command was not applicable to some IMS systems. The IMS systems where online change for MODBLKS is enabled perform the MODBLKS online change. The IMS systems where DRD is enabled return a completion code of 1 (not applicable).

If the INITIATE OLC PHASE(PREPARE) command is specified with type MODBLKS and ACBLIB and/or FMTLIB, IMS systems with MODBLKS online change enabled perform the MODBLKS online change and return a good completion code. IMS systems with DRD enabled ignore the MODBLKS keyword, perform the ACBLIB online change, FMTLIB online change, or both, and return a good completion code. DBCTLs with DRD enabled ignore the MODBLKS and FMTLIB keyword, perform an ACBLIB online change, and return a good completion code.

Usage notes

The INITIATE OLC command can be issued to an IMSplex by using the Batch SPOC utility.

If an IMSplex is running with a Resource Manager (RM) environment (RMENV=Y in the DFSCGxxx PROCLIB member), the INITIATE OLC command initiates a phase of global online change of resources and coordinates the phase with all of the IMS systems in the IMSplex. The INITIATE OLC command is similar to the command sequence /MODIFY PREPARE and /MODIFY COMMIT, except that it applies to an IMSplex-wide global online change. OM sends the INITIATE OLC command to one master IMS in the IMSplex. The command master IMS uses RM services to coordinate the online change with all participating IMS systems.

If the command master IMS in an IMSplex is running without an RM environment (RMENV=N in the DFSCGxxx PROCLIB member), the INITIATE OLC command is performed locally at the IMS to which the command was sent. The OLCSTAT data set must be unique for each IMS in the IMSplex that is running without an RM environment. The OLCSTAT data set cannot be shared between IMS systems and must be unique. If the OLCSTAT data set contains the name of an IMS other than the one processing the online change, the INITIATE OLC command is rejected. You can use the QUERY OLC command to display the contents of the OLCSTAT data set to determine which IMS member name is invalid. To correct the data set, you can use the Global Online Change utility, DFSUOLC0.

If the INITIATE OLC command is issued with a route list containing either the default Route All or multiple IMS systems that do not have RM running, the INITIATE OLC command must be issued separately to each IMS. To perform online change for IMS systems that do not have RM running, you must issue the INITIATE OLC command to each IMS. To determine which IMS systems are defined with RMENV=N in the DFSCGxxx PROCLIB member, you can issue the QUERY MEMBER SHOW(ATTRIB) command.

If some IMS systems in an IMSplex use RM services and some do not, you must ensure that the OLCSTAT data sets are properly defined to the IMS systems. The IMS systems that use RM services and global online change must share one OLCSTAT data set. Each IMS system that does not use RM services must have its own unique OLCSTAT data set.
If the INITIATE OLC PHASE(PREPARE) command is specified without an FRCABND or FRCNRML keyword and the command fails because one or more IMS systems are down or go down before the online change is committed, the online change must be aborted and started over. Issue the TERMINATE OLC command to terminate the online change.

The INITIATE OLC command master usually performs the online change phase locally first. If the online change phase fails locally, the command master usually skips sending the online change phase to the other IMS systems, sets a completion code for each other IMS indicating that the online change phase was not attempted, and terminates command processing. However, if the INITIATE OLC PHASE(COMMIT) command fails on the local IMS because of work in progress for resources that are directly affected by the online change, the command master still sends the commit phase 1 to the other IMS systems. The purpose is to report work in progress for all the IMS systems in the IMSplex, to facilitate completion of the work in progress.

In a mixed IMSplex, you might have some variations of IMS systems that support a particular type of online change and some that do not. At least one IMS in the IMSplex must successfully perform the online change phase for the command to be considered successful. If no IMS in the IMSplex supports the type of online change that the command is attempting, the command reason code indicates that none of the IMS systems performed the online change phase. If you enter an INITIATE OLC PHASE(PREPARE) command that does not apply to any IMS in the IMSplex, you must terminate the online change with a TERMINATE OLC command.

If the INITIATE OLC PHASE(COMMIT) command fails for any IMS before the OLCSTAT data set is updated, either correct the errors and try the commit again or terminate the online change with a TERMINATE OLC command. If the INITIATE OLC PHASE(COMMIT) command fails for any IMS after the OLCSTAT data set has been updated, correct the errors and try the commit again. The online change cannot be terminated.

If an IMS ends abnormally during online change and the INITIATE OLC PHASE(PREPARE) command was not specified with FRCABND, then issue the TERMINATE OLC command to terminate the online change. The INITIATE OLC PHASE(COMMIT) command is not permitted in this case. If an IMS ends abnormally during online change and the INITIATE OLC PHASE(PREPARE) command was specified with FRCABND, then the INITIATE OLC PHASE(COMMIT) command is permitted.

Type-1 and type-2 commands that come from the OM interface are rejected during the commit phase, if the command changes resources. Commands that change resources could interfere with the online change of the resources. Type-1 and type-2 commands that come from the OM interface are permitted during the commit phase, if the command displays resources such as QUERY or /DISPLAY. Type-1 commands that are entered from the system console or an IMS terminal are queued during the online change commit phase. These commands run after the online change is committed or aborted.

Each IMS participating in the global online change does not issue the same synchronous online change messages to the master terminal or system console that it does for a local online change. The OM command response contains information equivalent to the online change messages that appear for the local online change, such as the DFS3499 message contents.
Each IMS participating in the global online change might issue asynchronous online change messages to the system console, such as DFS3400, DFS3445, and DFS3498.

The INITIATE OLC PHASE(PREPARE) TYPE(ALL) command ignores the following resource definitions on IMS systems where dynamic resource definition is enabled: database directories (DDIRs), program directories (PDIRs), Fast Path routing codes (RCTEs), and scheduler message blocks (SMBs, which are also known as transactions). INITIATE OLC PHASE(PREPARE) specified with TYPE MODBLKS alone or with other keywords is rejected on the IMS systems where dynamic resource definition is enabled, but processed on the IMS systems where dynamic resource definition is not enabled. The INITIATE OLC PHASE(COMMIT) command master updates the OLCSTAT data set to switch the MODBLKS data set, even in the case where the master has dynamic resource definition enabled and the MODBLKS online change does not apply. The MODBLKS data set is switched in the OLCSTAT data set in case another IMS in the IMSplex does not have dynamic resource definition enabled. If the INITIATE OLC PHASE(PREPARE) command is specified with TYPE MODBLKS and there is only one IMS in the IMSplex and it has dynamic resource definition enabled, the command is rejected and the OLCSTAT data set is not updated.

The OM command timeout default of 300 seconds (5 minutes) might not be enough time for the online change phase to complete. You might have to specify a timeout value on the command based on the needs of the installation. To change the timeout value, use the TIMEOUT parameter of the CSLOMCMD command request or specify a Wait (timeout) value when you issue the INITIATE OLC command from TSO SPOC.

An online change of a PSB or DBD removes the member from the 31–bit pool as well as from the 64–bit pool.

If a resident program is changed, it becomes nonresident locally because its definition in the resident PSB pool is no longer valid. If its resident definition attribute was not changed, it becomes resident again at the next IMS restart. If a nonresident program is changed to be resident, the residency takes effect at the next IMS restart.

Output fields

The following table shows the output fields for an INITIATE OLC command. The columns in the table are as follows:

<p>| Short label | Contains the short label generated in the XML output. |
| Keyword | Identifies the keyword on the command that caused the field to be generated. N/A appears for output fields that are always returned. |
| Meaning | Provides a brief description of the output field. |</p>
<table>
<thead>
<tr>
<th>Short label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACBL</td>
<td>TYPE(ACBLIN,FMTLIB, MODBLKS, ALL)</td>
<td>The current ACBLIB library suffix (if prepare succeeded or commit succeeded that did not include ACBLIB), or the new ACBLIB library suffix (if commit succeeded for ACBLIB). The ACBLIB suffix is returned if the online change prepare phase or commit phase is successful. Suffix A means that ACBLIBA is current. Suffix B means that ACBLIBB is current.</td>
</tr>
<tr>
<td>ACBS</td>
<td>TYPE(ACBMBR)</td>
<td>Value of an IMS system.</td>
</tr>
<tr>
<td>ADD</td>
<td>TYPE(ACBMBR)</td>
<td>Resource added. The ACB member is found in the staging ACBLIB and not in the active ACBLIB. The ACB member is to be added to the active ACBLIB.</td>
</tr>
<tr>
<td>CC</td>
<td>N/A</td>
<td>Completion code returned by IMS member that performed the global online change phase. Completion code is always returned.</td>
</tr>
<tr>
<td>CCTXT</td>
<td>error</td>
<td>Completion code text that briefly explains the meaning of the nonzero completion code.</td>
</tr>
<tr>
<td>CHG</td>
<td>TYPE(ACBMBR)</td>
<td>Resource changed. The ACB member is found in the staging ACBLIB and the active ACBLIB. The ACB member is to be changed in the active ACBLIB.</td>
</tr>
<tr>
<td>CPY</td>
<td>TYPE(ACBMBR)</td>
<td>Resource copied. The ACB member is found in the staging ACBLIB and not in the active ACBLIB. The ACB member does not have a PDIR for a PSB or a DDIR for a DBD in an IMS system. The ACB member is to be copied from the staging to the active ACBLIB. The ACB resource is not available until a PDIR for a PSB or a DDIR for a DBD is created.</td>
</tr>
<tr>
<td>DBD</td>
<td>TYPE(ACBMBR)</td>
<td>DBD resource name</td>
</tr>
<tr>
<td>ERRT</td>
<td>N/A</td>
<td>Error text returned by IMS member that failed performing the global online change phase. Error text might be returned if the completion code is nonzero.</td>
</tr>
<tr>
<td>FMTL</td>
<td>TYPE(ACBLIN,FMTLIB, MODBLKS, ALL)</td>
<td>The current FMTLIB library suffix (if prepare succeeded or commit succeeded that did not include FMTLIB), or the new FMTLIB library suffix (if commit succeeded for FMTLIB). The FMTLIB suffix is returned if the online change prepare phase or commit phase is successful. Suffix A means that FMTLIBA is current. Suffix B means that FMTLIBB is current.</td>
</tr>
<tr>
<td>IMSMBR</td>
<td>N/A</td>
<td>IMS member that performed the global online change phase. The IMS member name is always returned.</td>
</tr>
<tr>
<td>MBR</td>
<td>N/A</td>
<td>IMSplex member that built the line of output. IMS identifier of the IMS that is the master of this online change phase. IMS identifier is always returned.</td>
</tr>
</tbody>
</table>
Table 296. INITIATE OLC output field descriptions (continued)

<table>
<thead>
<tr>
<th>Short label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODB</td>
<td>TYPE(ACBLIN,FMTLIB,</td>
<td>The current MODBLKS library suffix (if prepare succeeded or commit succeeded that did not include MODBLKS), or the new MODBLKS library suffix (if commit succeeded for MODBLKS). The MODBLKS suffix is returned if the online change prepare phase or commit phase is successful.</td>
</tr>
<tr>
<td></td>
<td>MODBLKS,ALL)</td>
<td></td>
</tr>
<tr>
<td>MODI</td>
<td>TYPE(ACBLIN,FMTLIB,</td>
<td>The current modify ID (if prepare succeeded), or new modify ID (if commit succeeded). The modify ID - 1 indicates the number of global online changes that have been performed. The modify ID is returned if the online change prepare phase or commit phase is successful.</td>
</tr>
<tr>
<td></td>
<td>MODBLKS,ALL)</td>
<td></td>
</tr>
<tr>
<td>PSB</td>
<td>TYPE(ACBMBR)</td>
<td>PSB resource name</td>
</tr>
<tr>
<td>RSC</td>
<td>TYPE(ACBSHR)</td>
<td>Resource type is not known.</td>
</tr>
<tr>
<td>RFS</td>
<td>TYPE(ACBSHR)</td>
<td>Resource is refreshed in the active ACBLIB.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

Two sets of return and reason codes are returned when a command is issued through the OM API. One set of codes is for the OM request and the other set of codes is for the command itself. The OM request return and reason codes that can be returned as a result of the INITIATE OLC command are standard for all commands entered through the OM API.

The return and reason codes returned by the INITIATE OLC command are passed from the OM API on to the SPOC application. These codes are encapsulated in XML tags similar to how the response to the command is encapsulated in XML tags. The IBM-supplied TSO SPOC displays these codes, whereas a user-written SPOC application might choose not to display these codes.

Some reason codes are accompanied by a complete list of IMS systems and return codes. The reason code meaning indicates whether a list is returned. A partial list of IMS systems and return codes might be returned with any INITIATE OLC error reason code, if any output was built before the error was detected.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.
<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The INITIATE OLC command completed successfully. The INITIATE OLC command applies to all of the IMS systems listed in the OLCSTAT data set. Each IMS listed in the OLCSTAT data set is current with the online change libraries and required to participate in the online change. The FRCABND option was not specified. The FRCNRML option was not specified, either.</td>
</tr>
</tbody>
</table>

If the INITIATE OLC PHASE(PREPARE) command was specified, all of the IMS systems listed in the OLCSTAT data set are now in an online change prepare state.

If the INITIATE OLC PHASE(COMMIT) command was specified, all of the IMS systems listed in the OLCSTAT data set successfully committed the online change.

An output line is built for each IMS listed in the OLCSTAT data set. Each output line contains the IMS member name and a completion code of zero.

| X'00000004' | X'0000100C' | The command completed successfully, but was not applicable to one or more IMS systems for acceptable reasons. The INITIATE OLC command applies to all of the IMS systems listed in the OLCSTAT data set. Each IMS listed in the OLCSTAT data set is current with the online change libraries and required to participate in the online change (unless FRCABND or FRCNRML is specified). |

An output line is built for each IMS listed in the OLCSTAT data set. Each output line contains the IMS member name and a completion code. A nonzero completion code might be accompanied by error text. One or more of the IMS systems contain a completion code indicating that the online change phase did not apply to this IMS, such as the IMS state is shutdown and FRCSHUT was specified, the IMS state is abended and FRCABND was specified, the online change type does not apply to this IMS, or this IMS is already in the correct online change state. The INITIATE OLC completion code table contains the list of completion codes and error text that can be returned by the INITIATE OLC command.

| X'00000004' | X'0000100D' | The specified online change type is not applicable to all the IMS systems in the OLCSTAT. Because the online change cannot be committed, use the TERMINATE OLC command to terminate the online change in progress. This error return and reason code combination is returned in the following situations: |

• If a MODBLKS type of online change process is attempted in an IMSplex where all IMS systems are DRD enabled

• If an FMTLIB type of online change process is attempted in an IMSplex where all IMS systems are configured as DBCTL systems

| X'00000008' | X'00002040' | The INITIATE OLC command is rejected because of an invalid filter. The INITIATE OLC PHASE(PREPARE) OPTION(BLDL) command can be specified only with TYPE(ACBLIB) or TYPE(ALL). The INITIATE OLC PHASE(COMMIT) command does not support TYPE or OPTION. |
Table 297. Return and reason codes for INITIATE OLC (continued)

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000008'</td>
<td>X'00004300'</td>
<td>The command is not allowed, because online change for the MODBLKS data set is disabled (DFSDFxxx or DFSCGxxx is defined with MODBLKS=DYN). Dynamic resource definition is enabled.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003000'</td>
<td>The INITIATE OLC command is successful for at least one IMS but not all IMS systems. The INITIATE OLC command applies to all of the IMS systems listed in the OLCSTAT data set. Each IMS listed in the OLCSTAT data set is current with the online change libraries and required to participate in the online change (unless FRCABND or FRCNRML is specified). An output line is built for each IMS listed in the OLCSTAT data set. Each output line contains the IMS member name and a completion code. A nonzero completion code might be accompanied by error text. One or more of the IMS systems returned an error completion code. The INITIATE OLC completion code table contains the list of completion codes and error text that can be returned by the INITIATE OLC command.</td>
</tr>
</tbody>
</table>

If INITIATE OLC PHASE(PREPARE) fails, the online change must be aborted and started over.

If INITIATE OLC PHASE(COMMIT) fails and you want to try the commit again, correct the problem, and issue the INITIATE OLC PHASE(COMMIT) command again.

To abort the online change, issue the TERMINATE OLC command. If the INITIATE OLC PHASE(PREPARE) command failed or the INITIATE OLC PHASE(COMMIT) command failed before the commit master updated the OLCSTAT data set, the online change is aborted.

See 'INITIATE OLC error handling' for more details.
<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>The INITIATE OLC command failed for all of the IMS systems. The INITIATE OLC command applies to all of the IMS systems listed in the OLCSTAT data set. Each IMS listed in the OLCSTAT data set is current with the online change libraries and required to participate in the online change (unless FRCABND or FRCNRML is specified). An output line is built for each IMS listed in the OLCSTAT data set. Each output line contains the IMS member name and a completion code. A nonzero completion code might be accompanied by error text. The INITIATE OLC completion code table contains the list of completion codes and error text that can be returned by the INITIATE OLC command. If INITIATE OLC PHASE(PREPARE) fails for all of the IMS systems listed in the OLCSTAT data set, no IMS is in an online change state. You can try the online change again with another INITIATE OLC PHASE(PREPARE) command. If INITIATE OLC PHASE(COMMIT) fails and you want to try the commit again, correct the problem, and then issue the INITIATE OLC PHASE(COMMIT) command again. To terminate the online change, issue the TERMINATE OLC command. If the INITIATE OLC PHASE(PREPARE) command failed or the INITIATE OLC PHASE(COMMIT) command failed before the commit master updated the OLCSTAT data set, the online change is terminated. For more details, see “INITIATE OLC error handling” on page 816.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004004'</td>
<td>The INITIATE OLC command failed because there is no CQS. RM attempted to access the process resource on the resource structure, but it failed because CQS is not available. The online change phase might have succeeded on one or more IMS systems. For more details, see “INITIATE OLC error handling” on page 816.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000400C'</td>
<td>The INITIATE OLC command failed because it is invalid for an XRF alternate.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>The INITIATE OLC command failed because it is invalid for an RSR tracker.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000401C'</td>
<td>The INITIATE OLC command failed because it is invalid for an FDBR region.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004018'</td>
<td>The INITIATE OLC command failed because the RM resource structure is not available. The online change phase might have succeeded on one or more IMS systems. For more details, see “INITIATE OLC error handling” on page 816.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004100'</td>
<td>The INITIATE OLC PHASE(PREPARE) command is rejected because the resource structure is full. RM failed trying to create the process resource on the resource structure.</td>
</tr>
</tbody>
</table>
Table 297. Return and reason codes for INITIATE OLC (continued)

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000010'</td>
<td>X'00004104'</td>
<td>The INITIATE OLC command failed because RM is not available. The online change phase might have succeeded on one or more IMS systems. Either there is no RM address space, or RM is active but not registered to SCI because CQS or the resource structure is not available. For more details, see “INITIATE OLC error handling” on page 816.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004108'</td>
<td>The INITIATE OLC command failed because SCI is not available. The online change phase might have succeeded on one or more IMS systems. For more details, see “INITIATE OLC error handling” on page 816.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000410C'</td>
<td>The INITIATE OLC command is rejected, because global online change is not enabled. Local online change is enabled. Use the /MODIFY command for local online change. If your IMSplex is made up of some IMS systems that support global online change and some that support local online change, route the INITIATE OLC command to an IMS that is enabled for global online change.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000410D'</td>
<td>Online change prepare has already been done. Another prepare command is not allowed. The only commands that are allowed when IMS is in this state are INITIATE OLC PHASE(COMMIT) or TERMINATE OLC.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000410E'</td>
<td>Online change prepare has not been done. An online change prepare command must complete successfully before a commit command is attempted.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000410F'</td>
<td>The online change has already been committed, so it cannot be terminated. However, an error occurred that prevented the commitment from being fully completed. For example, one of the IMS systems that participates in the online change was unable to complete commit phase 2 or commit phase 3, or an IMS response to RM timed out and the commit master could not determine whether the online change commit succeeded on the other IMS systems. Another commit command is required to complete the online change commitment.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004110'</td>
<td>The INITIATE OLC command is rejected, because the command does not apply to the online change state of the command master. INITIATE OLC PHASE(COMMIT) is rejected if the command master is not in an online change prepare state. INITIATE OLC PHASE(COMMIT) is rejected if routed to an IMS that already successfully completed commit phase 3. INITIATE OLC PHASE(PREPARE) is rejected if the command master is already in an online change prepare state. For more details, see “INITIATE OLC error handling” on page 816.</td>
</tr>
</tbody>
</table>

Chapter 36. INITIATE commands 791
<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000010'</td>
<td>X'00004111'</td>
<td>The INITIATE OLC command failed because the command master is not in the OLCSTAT data set.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004112'</td>
<td>The PREPARE command cannot be processed, because the OLCSTAT is locked.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004114'</td>
<td>The INITIATE OLC command failed because of an error accessing the OLCSTAT data set. The online change phase might have succeeded on one or more IMS systems. A DFS2843 message is sent to the OM output exit as unsolicited output. For more details, see “INITIATE OLC error handling” on page 816.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004118'</td>
<td>The INITIATE OLC command failed because of an error allocating the OLCSTAT data set. The online change phase might have succeeded on one or more IMS systems. A DFS2848 message is sent to the OM output exit as unsolicited output. For more details, see “INITIATE OLC error handling” on page 816.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000411C'</td>
<td>The INITIATE OLC command failed because of an error in the OLCSTAT data set contents. One or more of the values is invalid. A DFS2844 message is sent to the OM output exit as unsolicited output.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004120'</td>
<td>The INITIATE OLC command is rejected because an online change command is already in progress on this IMS. The command in progress might be INITIATE OLC, TERMINATE OLC, or /DISPLAY MODIFY.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004124'</td>
<td>The INITIATE OLC PHASE(PREPARE) command is rejected, because another process of the same type is already in progress. Processes include another OLC command or a DRD command such as CREATE DB or DELETE DB for a DEDB. Wait until the other process has completed.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000412C'</td>
<td>The OLCSTAT data set contains the name of an IMS other than the IMS processing the online change. Use DFSUOLC0 to correct the data set.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004303'</td>
<td>At least one IMS in the OLCSTAT is at a lower level than required for the TYPE(ACBMBR) online change.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004304'</td>
<td>Data set version is invalid. The OLCSTAT is initialized to an invalid version for the type of online change requested. For example, version 1 is invalid for TYPE(ACBMBR) member online change. Or, the data set is initialized to version 2 and one or more IMS systems are lower than IMS Version 10.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004305'</td>
<td>IMS version mismatch. There is a mismatch between the version of the IMS in the OLCSTAT and the actual version of IMS that is currently running. The actual version of IMS is returned from the CSLSCQRY request. The OLCSTAT must be reinitialized so that the IMS is at the correct version.</td>
</tr>
</tbody>
</table>
Table 297. Return and reason codes for INITIATE OLC (continued)

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000010'</td>
<td>X'0000501C'</td>
<td>The INITIATE OLC command is rejected because an IMODULE GETMAIN storage request failed.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005000'</td>
<td>The INITIATE OLC command is rejected because an IMODULE GETSTOR storage request failed.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005004'</td>
<td>The INITIATE OLC command failed because a DFSOCMD response buffer could not be obtained. The online change phase might have succeeded on one or more IMS systems. For more details, see “INITIATE OLC error handling” on page 816.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'0000500C'</td>
<td>The INITIATE OLC command failed because an AWE could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005100'</td>
<td>The INITIATE OLC command failed because of an RM error. The online change phase might have succeeded on one or more IMS systems. The RM error might be caused by a resource structure failure that causes RM to lose knowledge of an IMSplex-wide process. For more details, see “INITIATE OLC error handling” on page 816.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005104'</td>
<td>The INITIATE OLC command failed because of a CQS error. The online change phase might have succeeded on one or more IMS systems. For more details, see “INITIATE OLC error handling” on page 816.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005108'</td>
<td>The INITIATE OLC command failed because of an SCI error. The online change phase might have succeeded on one or more IMS systems. For more details, see “INITIATE OLC error handling” on page 816.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'0000510C'</td>
<td>Another RM process step is in progress. If this reason code is returned after the previous COMMIT command timed out, try the COMMIT command again.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005FFF'</td>
<td>The INITIATE OLC command failed because of an internal IMS error. The online change phase might have succeeded on one or more IMS systems. For more details, see “INITIATE OLC error handling” on page 816.</td>
</tr>
</tbody>
</table>

The INITIATE command (with the OLC keyword) can result in errors that leave one or more of the IMS systems in the IMSplex in various online change states. The following table contains the possible completion codes that can be returned as a result of issuing an INITIATE OLC command. The table also includes a brief explanation of the code and provides the error text if applicable.

Table 298. Completion codes for the INITIATE OLC command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Meaning</th>
<th>ERROR TEXT (uppercase)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The online change prepare phase or commit phase completed successfully.</td>
<td></td>
</tr>
<tr>
<td>Completion code</td>
<td>Meaning</td>
<td>ERROR TEXT (uppercase)</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------</td>
<td>------------------------</td>
</tr>
<tr>
<td>1</td>
<td>The online change type does not apply to this IMS. For example, an FMTLIB online change does not apply to a DBCTL IMS. This IMS keeps status indicating that it is participating in the online change. This IMS is included in the OLCSTAT data set IMS list after a successful commit phase 1. For another example, a MODBLKS online change does not apply to an IMS where dynamic resource definition is enabled (DFSDFxxx or DFSCGxxx is defined with MODBLKS=DYN).</td>
<td></td>
</tr>
</tbody>
</table>
| **2** | The online change phase was not attempted by this IMS for one of the following reasons:
• The online change phase master encountered an error and did not direct this IMS to perform the online change phase.
• The online change phase master rejected the online change because one or more IMS systems are down and the FRCNRML or FRCABND keyword was not specified on the INITIATE OLC PHASE(PREPARE) command. The online change phase master did not direct this IMS to perform the online change phase. | |
| **3** | This IMS is already in the correct online change state. The INITIATE OLC command must have been tried again after a previous INITIATE OLC command resulted in a mix of successes and failures. This IMS keeps status indicating that it is participating in the online change. This IMS is included in the OLCSTAT data set IMS list after a successful commit phase 1. | |
| **4** | The online change commit phase is incomplete on this IMS. One or more online change commit phases have been completed on this IMS. All online change commit phases were not sent to this IMS due to errors. | |
| **5** | The ACBMBR OLC is complete; however, during COMMIT processing after the OLCSTAT was updated, an error was encountered and one or more members that have been added or changed with the ACBMBR OLC are unusable. Any programs that are not usable are marked bad with a reason code of MOLCCOMMIT. Any databases that are not usable are marked bad with a reason code of MOLCFAIL. | OLC COMPLETE, SOME MBRS UNUSABLE |
| **1D** | The OLC directive cannot be processed, because a takeover is in progress. | XRF TAKEOVER IS IN PROGRESS |
Table 298. Completion codes for the INITIATE OLC command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Meaning</th>
<th>ERROR TEXT (uppercase)</th>
</tr>
</thead>
</table>
| 57 | The queue structure is unavailable. IMS is unable to check if there is a global queue count for transactions to be added, changed, or deleted. Commit is not permitted to proceed. The structure might be unavailable for one of the following reasons:
 • CQS is unavailable
 • The MSGQ structure failed and it has not been rebuilt yet
 • CQS lost connectivity to the MSGQ structure | THE QUEUE STRUCTURE IS UNAVAILABLE. |
| 58 | An IMS is not registered to RM. An OLCSTAT data set contains an IMS that is not registered to RM. The INITIATE command fails for that IMS. | |
| | If the INITIATE OLC PHASE(PREPARE) command is issued to an IMS that is registered to RM and the OLCSTAT data set contains an IMS system that is not registered to RM, the command fails. The unregistered IMS command-line response is cc=58. To initiate online change, you must remove the unregistered IMS from the OLCSTAT data set. To remove the IMS, perform the following steps:
 1. Issue QRY MEMBER TYPE(IMS) SHOW(ATTRIB) or SHOW(ALL) to verify the IMS that received the cc=58 was initialized with RMENV=N.
 2. Unlock the OLCSTAT data set using the DFSUOLC0 utility. When online change is in progress it is necessary for the utility to delete the invalid member name.
 3. Delete the invalid IMSID from the OLCSTAT data set using the DFSUOLC0 utility.
 4. Issue TERM OLC to terminate the OLC with the valid IMS systems.
 5. Reissue the OLC. | |
| 60 | IMODULE GETMAIN storage error. | |
| 61 | DFSBCB storage error. | INTERNALBLOCK NOT BUILD
 IMS was unable to get the CSA storage that is required to build the DBRC work area. |
| 62 | HIOP storage error. | |
| 63 | WKAP storage error. | |
| 64 | GETSTOR storage error, | INTERNALBLOCK NOT BUILD
 IMS was unable to get the CSA storage that is required to build an internal block that holds a list of altered HALDB master databases. |
Table 298. Completion codes for the INITIATE OLC command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Meaning</th>
<th>ERROR TEXT (uppercase)</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>Module load error.</td>
<td>Module name (8 characters), module type (8 characters).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The module type can be 'SECURITY'.</td>
</tr>
<tr>
<td>71</td>
<td>Module locate error.</td>
<td>Module name (8 characters), module type (8 characters).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The module type can be 'SECURITY'.</td>
</tr>
<tr>
<td>72</td>
<td>Randomizer load error.</td>
<td>FP area randomizer name (8 characters).</td>
</tr>
<tr>
<td>80</td>
<td>Data set error.</td>
<td>Function (8 characters), ddname (8 characters), return code (8 bytes), and error detail (8 characters).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Function can be one of the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BLDL Data set BLDL error.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BUSY The data set is busy. The detail contains the job name that has the data set.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DIR Data set directory error.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EMPTY Library is empty.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENQUEUE Data set enqueue error.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EOF Data set end-of-file (EOF) error.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OPEN Data set open error. Error detail can be 'DLS REG'.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>READ Data set read error.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WRITE Data set write error.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DDname can be ACBLIBA, ACBLIBB, FMTLIBA, FMTLIBB, MODBLKSA, MODBLKSB, or MODSTAT.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Return code is the data set service return code.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reason code is the data set service reason code.</td>
</tr>
<tr>
<td>90</td>
<td>Internal error</td>
<td>Module name that detected internal error (8 characters), unused (8 characters), return code or function code (8 bytes), and error detail (8 characters).</td>
</tr>
<tr>
<td>91</td>
<td>The online change prepare phase, commit phase, or abort phase timed out before this IMS responded to the online change prepare or commit phase. The online change prepare phase or commit phase might have succeeded on this IMS. Issue QUERY MEMBER TYPE(IMS) to determine the online change state of this IMS.</td>
<td></td>
</tr>
<tr>
<td>Completion code</td>
<td>Meaning</td>
<td>ERROR TEXT (uppercase)</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>B0</td>
<td>Resource definition error.</td>
<td>Resource type (8 characters), resource name (8 characters), error detail (16 characters).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The resource type can be AREA, DB, DMB, PSB, SECURITY, or SMB.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The resource name can be a resource name, ACBLIB or MODBLKS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The error detail can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>CISIZE ERROR</td>
<td>An attempt to add the area name to the DEDB failed. The CI size of the area exceeds</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the Fast Path buffer size (BSIZ=) of the IMS online control region.</td>
</tr>
<tr>
<td></td>
<td>CPCTRAN CONFLICT</td>
<td>The online change command attempted to add a transaction name that conflicts with a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CPIC transaction name. Tranname specifies the transaction that exists as a CPIC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>transaction.</td>
</tr>
<tr>
<td></td>
<td>DESC CONFLICT</td>
<td>The online change command attempted to add a transaction name that conflicts with a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>descriptor name. Tranname specifies the transaction that exists as a descriptor name.</td>
</tr>
<tr>
<td></td>
<td>DUPLICATE</td>
<td>A duplicate area name was found in the named DEDB DBD defined in the IMS system.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The area name, that was defined in the DD1 operand on one of the AREA statements in</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the DBDGEN, is defined in another DEDB DBDGEN or is defined within the DEDB DBDGEN.</td>
</tr>
<tr>
<td></td>
<td>INCOMPATIBLE</td>
<td>The DMB in the inactive ACBLIB is not compatible with IMS. The level of the inactive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>library is not compatible with the current IMS release.</td>
</tr>
<tr>
<td></td>
<td>PDIR NAME</td>
<td>The online change attempted to change the program name of the transaction, but the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>program does not exist, nor is it being added by online change. The program name for</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a local transaction must exist or be added with the same online change.</td>
</tr>
</tbody>
</table>

Table 298. Completion codes for the INITIATE OLC command (continued)
<table>
<thead>
<tr>
<th>Completion code</th>
<th>Meaning</th>
<th>ERROR TEXT (uppercase)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B0</td>
<td>Resource definition error (continued).</td>
<td>INCONSISTENT
IMS detected an inconsistency between the indicated security module and the definition of the new blocks in the inactive MODBLKS data set. Either the security option was requested on the online change command or the prevailing security option is YES or FORCE. In the module name, nnns is the specific table name, where s is the suffix.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LTERM CONFLICT
The online change command attempted to add a transaction name that conflicts with a dynamic LTERM. Tranname specifies the transaction that exists as a dynamically created LTERM. The error detail can be one of the following (continued):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MSNAME CONFLICT
The online change command attempted to add a transaction name that conflicts with an MSNAME. Tranname specifies the transaction that exists as an MSNAME.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT DEFINED
Control block was not defined in the active library during the online prepare phase. This is an internal error that should not occur.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO BLOCKS
Control blocks were missing from the inactive library during the online prepare phase.</td>
</tr>
<tr>
<td>Completion code</td>
<td>Meaning</td>
<td>ERROR TEXT (uppercase)</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------</td>
<td>------------------------</td>
</tr>
</tbody>
</table>
| B0 | Resource definition error (continued). | NO FP INSTALLED
An attempt was made to add a data entry database (DEDB) to an IMS system that does not have Fast Path installed. |
| | | NO OTHREADS
An attempt was made to add a data entry database (DEDB) to an IMS system that was not initialized with DEDBs. No output threads (OTHREADS) were initialized and no I/O will be possible to the added DEDB. |
| | | PARTITION EXISTS
A database partition by that name exists. |
| | | RSRC CONFLICT
The online change command is attempting to add a transaction name that conflicts with another message destination resource in the Resource Manager (RM). The resource can be an LTERM, CPIC transaction, MSNAME, or descriptor. Tranname specifies the transaction that exists as another resource type. |
| | | UNSUPPORTED MSDB
The online change attempted to add an MSDB or change a DEDB to an MSDB, which is not permitted. |
| B1 | Resource type (8 characters), resource name (8 characters), error detail (16 characters). |
The resource name is the name of the resource as it is defined to IMS, such as the database name, the program name, or the transaction name.
The resource type can be DATABASE, DMB, FORMAT, PROGRAM, PSB, RTCODE, or TRAN. |
Table 298. Completion codes for the INITIATE OLC command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Meaning</th>
<th>ERROR TEXT (uppercase)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>Resource state error.</td>
<td>The error detail can be one of the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The routing code rtcode is active.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>An area associated with the FP DEDB is open.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>An area associated with the FP DEDB is started.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The transaction to be changed or deleted or the transaction referencing a program or database to be changed or deleted is in conversation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alter processing is not complete for a HALDB database. After alter processing completes, retry the INITIATE OLC command.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The OLC function cannot process the altered DDIR because there is not enough internal block storage.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The lack of storage could be caused by the start of another HALDB alter operation after OLC reaches the commit phase.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Retry the INITIATE OLC PHASE(COMMIT) command.</td>
</tr>
</tbody>
</table>

Error details continued in next row.
Table 298. Completion codes for the INITIATE OLC command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Meaning</th>
<th>ERROR TEXT (uppercase)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>Resource state error (continued).</td>
<td>DBD ACTIVE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A /DBDUMP command is active for the database.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DBR ACTIVE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A /DBRECOVERY command is active for the database.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DBR NEEDED</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A /DBRECOVERY command is needed for the database resource. Online change was initiated to either change or delete one or more HALDB databases which have not been taken offline with a /DBR command.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If the IMS catalog is enabled with an alias other than DFSC (the standard alias prefix), and the catalog databases have been modified with online change, issue the DBR DB command for the databases IMS1D000 and IMS1X000 instead of DFSCD000 and DFSCX000.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DEP REGS ACTIVE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dependent regions using the FP DEDB are active.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Error details continued in next row.</td>
</tr>
<tr>
<td>Completion code</td>
<td>Meaning</td>
<td>ERROR TEXT (uppercase)</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>B1</td>
<td>Resource state error (continued).</td>
<td>Error detail (continued):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DYNAMIC OR CPIC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The transaction being added exists and is not dynamic or CPIC. This is an internal error that should not occur.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ELIGIBLE SCHD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The named transaction is eligible for scheduling and cannot be deleted by online change. Stop the transaction before attempting another online change commit.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>INTERNAL ERROR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The resource control block is not found in the active IMS, or the resource control block exists. These are internal errors that should not occur.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IN USE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The resource is in use.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A transaction has queuing in progress (either terminal input program-to-program switch).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A database is in use.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PSB SCHEDULED</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A program referencing a database to be changed or deleted is scheduled.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QUEUEING</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Messages are queued to the transaction or program.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SCHEDULED</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The named resource (a transaction or program to be changed or deleted, or a program referencing a database to be changed or deleted) is scheduled.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SUSPENDED</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The transaction to be changed or deleted is on the suspend queue.</td>
</tr>
</tbody>
</table>
Table 298. Completion codes for the INITIATE OLC command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Meaning</th>
<th>ERROR TEXT (uppercase)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2</td>
<td>IMS state error.</td>
<td>IMS state error (32 characters). The IMS state can be one of the following:</td>
</tr>
</tbody>
</table>

ABENDED
This IMS ended abnormally since the last successful online change. Online change is not permitted if any IMS ended abnormally since the last online change, unless the FRCABND option is specified on prepare. If the online change phase was rejected, issue TERMINATE OLC to abort the online change, correct the problem, and try the online change again. If an online change specified with the FRCABND option succeeds, this IMS might have to cold start.

CHECKPOINT IN PROGRESS
This IMS has checkpoint in progress.

NOT-REACHABLE
The online change phase is rejected because this IMS is NOT-REACHABLE. The SCI on the OS image where this IMS is active is down. Restart the SCI and reissue the INITIATE OLC or TERMINATE OLC command.

OLC ALREADY COMMITTED
The online change phase is rejected because online change is already committed. All IMS systems have completed commit phase 1 and the OLCSTAT data set was updated.

OLC NOT IN PROGRESS
The online change phase is rejected because this IMS is not in an online change state.
Table 298. Completion codes for the INITIATE OLC command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Meaning</th>
<th>Error Text (uppercase)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2</td>
<td>IMS state error (continued).</td>
<td>IMS state error (32 characters). The IMS state can be one of the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OLC PHASE IN PROGRESS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The online change phase is rejected because this IMS has an online change phase</td>
</tr>
<tr>
<td></td>
<td></td>
<td>already in progress.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RECOVERY IN PROGRESS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The online change command is rejected because the online recovery service is</td>
</tr>
<tr>
<td></td>
<td></td>
<td>already in progress.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RESOLVE DB INDOUBTS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This IMS has DB indoubts. You must resolve the DB indoubts either by</td>
</tr>
<tr>
<td></td>
<td></td>
<td>reconnecting the coordinator controller and IMS or by using an operator command.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RESTART IN PROGRESS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This IMS has restart in progress.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RESTART NOT COMPLETE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This IMS initialized before the online change was initiated, but has not</td>
</tr>
<tr>
<td></td>
<td></td>
<td>completed restart. The online prepare or abort phase is rejected as long as this IMS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>is in this state. Cancel this IMS, then abort the online change before attempting the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>online change prepare phase again.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SHUTDOWN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This IMS was shut down normally since the last successful online change. Online</td>
</tr>
<tr>
<td></td>
<td></td>
<td>change is not permitted if any IMS was shut down normally since the last online</td>
</tr>
<tr>
<td></td>
<td></td>
<td>change, unless the FRCNRML option is specified on prepare. If the online change</td>
</tr>
<tr>
<td></td>
<td></td>
<td>phase was rejected, issue TERMINATE OLC to terminate the online change, correct the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>problem, and try the online change again. If an online change specified</td>
</tr>
<tr>
<td></td>
<td></td>
<td>with the FRCNRML option succeeds, this IMS might have to cold start.</td>
</tr>
<tr>
<td>120</td>
<td>The INIT OLC TYPE(ACBMBR) online change failed.</td>
<td>Staging ACBLIB is empty.</td>
</tr>
<tr>
<td>121</td>
<td>The INIT OLC TYPE(ACBMBR) online change failed.</td>
<td>Resource in command has no change.</td>
</tr>
<tr>
<td>122</td>
<td>The INIT OLC TYPE(ACBMBR) online change failed.</td>
<td>Not all PSBs are rebuilt for this DMB.</td>
</tr>
<tr>
<td>123</td>
<td>The INIT OLC TYPE(ACBMBR) online change failed.</td>
<td>Staging library level is not compatible with the current IMS.</td>
</tr>
<tr>
<td>124</td>
<td>The INIT OLC TYPE(ACBMBR) online change failed.</td>
<td>DOPT PSB will not be copied to the active ACBLIB.</td>
</tr>
<tr>
<td>Completion code</td>
<td>Meaning</td>
<td>ERROR TEXT (uppercase)</td>
</tr>
<tr>
<td>----------------</td>
<td>---------</td>
<td>------------------------</td>
</tr>
<tr>
<td>125</td>
<td>The INIT OLC TYPE(ACBMBR) online change failed.</td>
<td>No PSB is rebuilt for this change DMB.</td>
</tr>
<tr>
<td>126</td>
<td>The INIT OLC TYPE(ACBMBR) online change failed.</td>
<td>The previous member OLC failed in the commit phase 1 processing. The terminate OLC command must be entered to terminate the pending member OLC.</td>
</tr>
<tr>
<td>127</td>
<td>The INIT OLC TYPE(ACBMBR) online change failed.</td>
<td>COMMIT MEMBER failure.</td>
</tr>
<tr>
<td>128</td>
<td>The INIT OLC TYPE(ACBMBR) online change failed.</td>
<td>REFRESH MBR failure.</td>
</tr>
<tr>
<td>129</td>
<td>The INIT OLC TYPE(ACBMBR) online change failed.</td>
<td>Mismatch in ACBSHR= values among IMS systems in the OLCSTAT.</td>
</tr>
<tr>
<td>12A</td>
<td>Existing DBDs in the active ACB library cannot be modified.</td>
<td>NAMEONLY DBD CHANGES NOT ALLOWED</td>
</tr>
<tr>
<td>12B</td>
<td>The PSB that is specified in the command includes references to the existing DBDs that have been changed in the staging ACB library. The INIT OLC command failed because existing DBDs in the active ACB library cannot be modified.</td>
<td>NAMEONLY PSB CONTAINS CHANGED DB</td>
</tr>
<tr>
<td>12C</td>
<td>The DBD that is specified in the command includes references to the existing DBDs that have been changed in the staging ACB library. The INIT OLC command failed because existing DBDs in the active ACB library cannot be modified.</td>
<td>NAMEONLY DBD HAS CHNG LOGICAL DB</td>
</tr>
<tr>
<td>12D</td>
<td>The online change prepare phase failed. The catalog PSB DFSCP000 cannot be deleted from the online system while the catalog is enabled. To allow the online change prepare phase to proceed, perform an ACBGEN of the staging ACBLIB with BUILD PSB=DFSCP000.</td>
<td>DELETING CATALOG PSB NOT ALLOWED</td>
</tr>
<tr>
<td>12E</td>
<td>The online change prepare phase failed. The catalog DBD DFSCD000 or DFSCX000 cannot be deleted from the online system while the catalog is enabled. In order for the online change prepare phase to proceed, perform and ACBGEN with BUILD PSB=DFSCP000 to the staging ACBLIB.</td>
<td>DELETING CATALOG DBD NOT ALLOWED</td>
</tr>
<tr>
<td>130</td>
<td>The INIT OLC TYPE(ACBMBR) online change failed.</td>
<td>Allocation of staging ACBLIB failed.</td>
</tr>
<tr>
<td>131</td>
<td>The INIT OLC TYPE(ACBMBR) online change failed.</td>
<td>Allocation of active ACBLIB failed.</td>
</tr>
<tr>
<td>132</td>
<td>The INIT OLC TYPE(ACBMBR) online change failed.</td>
<td>Open of staging ACBLIB failed.</td>
</tr>
<tr>
<td>133</td>
<td>The INIT OLC TYPE(ACBMBR) online change failed.</td>
<td>IO error of active ACBLIB.</td>
</tr>
<tr>
<td>134</td>
<td>The INIT OLC TYPE(ACBMBR) online change failed.</td>
<td>Open of active ACBLIB failed.</td>
</tr>
<tr>
<td>135</td>
<td>The INIT OLC TYPE(ACBMBR) online change failed.</td>
<td>IO error of staging ACBLIB.</td>
</tr>
</tbody>
</table>
Table 298. Completion codes for the INITIATE OLC command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Meaning</th>
<th>ERROR TEXT (uppercase)</th>
</tr>
</thead>
<tbody>
<tr>
<td>136</td>
<td>The INIT OLC TYPE(ACBMBR) online change failed because there were more than the maximum supported concatenations for the active ACB library.</td>
<td></td>
</tr>
<tr>
<td>14B</td>
<td>IMS is being shut down. The ACBMBR online change prepare command is terminated.</td>
<td>SHUTDOWN</td>
</tr>
<tr>
<td>180</td>
<td>During an INIT OLC PHASE(PREPARE) command processing, the load of the DFSMDA member for the inactive ACBLIB failed. Message DFS0887A is issued on the system console.</td>
<td>DATASET ERROR MDA LOAD</td>
</tr>
<tr>
<td>181</td>
<td>During an INIT OLC PHASE(PREPARE) command processing, the allocation of the inactive ACBLIB failed. Message DFS2500W is issued on the system console.</td>
<td>DATASET ERRORALLOCATE</td>
</tr>
</tbody>
</table>

Examples

The following are examples of the INITIATE OLC command.

Example 1 for INITIATE OLC command

TSO SPOC input:

INITIATE OLC PHASE(PREPARE) TYPE(MODBLKS,ACBLIB)

TSO SPOC output:

<table>
<thead>
<tr>
<th>MbrName</th>
<th>Member</th>
<th>CC</th>
<th>ACBLIB</th>
<th>FMTLIB</th>
<th>MODBLKS</th>
<th>ModId</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMS3</td>
<td>IMS2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMS3</td>
<td>IMS3</td>
<td>0</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>IMS3</td>
<td>SYS3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OM API input:

CMD (INITIATE OLC PHASE(PREPARE) TYPE(MODBLKS,ACBLIB))

OM API output:

```
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.1.0</omvsn>
<xmlvsn>1</xmlvsn>
<statime>2003.163 15:40:53.336327</statime>
<stotime>2003.163 15:41:08.282146</stotime>
<staseq>B7C4AC11FED070C6</staseq>
<stoseq>B7C4AC203FB220C1</stoseq>
<rqsttkn1>USRT011 10084053</rqsttkn1>
<rc>02000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmderr>
<mbr name="IMS2">
<typ>IMS</typ>
<styp>DBDC</styp>
<rc>02000004</rc>
<rsn>00001008</rsn>
</mbr>
```
Explanation: The IMSplex consists of three IMS systems: SYS3, IMS2, and IMS3. All three of the IMS systems complete the online change prepare phase successfully for the MODBLKS library. IMS3 is the master of the prepare phase. The current online change libraries are ACBLIBB, FMTLIBA, and MODBLKSB. The current modify ID is 1.

Example 2 for INITIATE OLC command

TSO SPOC input:
INITIATE OLC PHASE(COMMIT)

TSO SPOC output:

OM API input:
CMD (INITIATE OLC PHASE(COMMIT))

OM API output:

Explanation: A global online change commit is initiated and completes successfully.

Example 3 for INITIATE OLC command

TSO SPOC input:
INITIATE OLC PHASE(PREPARE) TYPE(ACBMBR) NAME(OLCDB105 OLCDX111)

TSO SPOC output:
OM API input:

CMD (INITIATE OLC PHASE(PREPARE) TYPE(ACBMBR) NAME(OLCDB105 OLCDX111))

OM API output:

<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.3.0</omvsn>
<xmlvsn>20</xmlvsn>
<statime>2006.268 17:31:50.028126</statime>
<stotime>2006.268 17:31:50.672287</stotime>
<staseq>8F75A9623B5EAE3</staseq>
<stoseq>8F75A96C0F97F23</stoseq>
<rqsttknl>USRT001 10103150</rqsttknl>
<rc>0200000C</rc>
<rsn>00003000</rsn>
<rsnmsg>CSLN023I</rsnmsg>
<rsntxt>At least one request was successful.</rsntxt>
</ctl>
</imsout>

<cmderr>
<mbr name="IMS1">
<typ>IMS</typ>
<style>DBDC</style>
<rc>02000004</rc>
<rsn>00001008</rsn>
<rsntxt>Command ROUTE list overridden w/ANY</rsntxt>
</mbr>
</cmderr>

<cmd>
<master>IMS2</master>
<userid>USRT001</userid>
<verb>INIT</verb>
<kwd>OLC</kwd>
<input>INIT OLC PHASE(PREPARE) TYPE(ACBMBR) NAME(OLCDB105 OLCDX111)</input>
</cmd>

<cmdrshdr>
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left" />
<hdr slbl="IMSMBR" llbl="Member" scope="LCL" sort="a" key="4" scroll="no" len="8" dtype="CHAR" align="left" />
<hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0" scroll="yes" len="4" dtype="INT" align="right" />
<hdr slbl="CCTXT" llbl="CCText" scope="LCL" sort="n" key="0" scroll="yes" len="*" dtype="CHAR" align="left" skipb="yes" />
<hdr slbl="ACBS" llbl="ACBSHR" scope="LCL" sort="n" key="0" scroll="yes" len="1" dtype="CHAR" align="left" skipb="yes" />
<hdr slbl="RSC" llbl="RSCName" scope="LCL" sort="a" key="3" scroll="no" len="8" dtype="CHAR" align="left" skipb="yes" />
<hdr slbl="DBD" llbl="DBDName" scope="LCL" sort="a" key="2" scroll="no"
Explanation: The INIT OLC PHASE(PREPARE) TYPE(ACBMBR) NAME(OLCDB105 OLCDB111) command is issued. IMS2 is the command master. IMS1 and IMS2 are in the OLCSTAT data set. The ACBSHR=Y is defined at all IMS systems so only the command master writes to the ACBLIB. The online change prepare phase is successful at all IMS systems. The command master returns to the OM the members that are to be added, changed, or copied from the staging ACBLIB to the active ACBLIB.

You can issue the INIT OLC PHASE(COMMIT) command to complete the online change.

Example 4 for INITIATE OLC command

TSO SPOC input:
INITIATE OLC PHASE(PREPARE) TYPE(ACBMBR) NAME(OLCDB105)

TSO SPOC output:

<table>
<thead>
<tr>
<th>MbrName</th>
<th>Member</th>
<th>CC</th>
<th>CCText</th>
<th>ACBSHR</th>
<th>RSCName</th>
<th>DBDName</th>
<th>PSBName</th>
<th>ADD</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMS2</td>
<td>IMS1</td>
<td>0</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMS2</td>
<td>IMS2</td>
<td>0</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMS2</td>
<td>IMS2</td>
<td>10</td>
<td>NO RESOURCES FOUND</td>
<td>OLCDB105</td>
<td>OLCDB105</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMS2</td>
<td>IMS1</td>
<td>0</td>
<td>OLCDB105</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMS2</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td>OLCPB105</td>
<td>OLCPB105</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OM API input:

CMD (INITIATE OLC PHASE(PREPARE) TYPE(ACBMBR) NAME(OLCDB105))

OM API output:

<imsout>
The command completed with warning(s).

```xml
<cmderr>
  <mbr name="IMS2">
    <typ>IMS</typ>
    <styp>DBDC</styp>
    <rc>00000004</rc>
    <rsn>0000100C</rsn>
    <rsntxt>Some down or not applicable</rsntxt>
  </mbr>
  <mbr name="IMS1">
    <typ>IMS</typ>
    <styp>DBDC</styp>
    <rc>02000004</rc>
    <rsn>00001008</rsn>
    <rsntxt>Command ROUTE list overridden w/ANY</rsntxt>
  </mbr>
</cmderr>
```

```
<cmd>
  <master>IMS2</master>
  <userid>USRT001</userid>
  <verb>INIT</verb>
  <kwd>OLC</kwd>
  <input>INIT OLC PHASE(PREPARE) TYPE(ACBMBR) NAME(OLCDP105) </input>
</cmd>
```

```
<cmdrsphdr>
  <hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="n" key="0">
    <name>IMS2</name>
  </hdr>
  <hdr slbl="IMSMBR" llbl="Member" scope="LCL" sort="a" key="4">
    <name>IMS1</name>
  </hdr>
  <hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0">
    <int>0</int>
  </hdr>
  <hdr slbl="ACBS" llbl="ACBSHR" scope="LCL" sort="n" key="0">
    <name>ACBS(N)</name>
  </hdr>
  <hdr slbl="RSC" llbl="RSCName" scope="LCL" sort="a" key="3">
    <name>RSC(OLCDB105)</name>
  </hdr>
  <hdr slbl="DBD" llbl="DBDName" scope="LCL" sort="a" key="2">
    <name>DBD(OLCDP105)</name>
  </hdr>
  <hdr slbl="PSB" llbl="PSBName" scope="LCL" sort="a" key="1">
    <name>PSB(OLCDP105)</name>
  </hdr>
  <hdr slbl="ADD" llbl="ADD" scope="LCL" sort="n" key="0">
    <name>ADD(Y)</name>
  </hdr>
  <hdr slbl="CHG" llbl="CHNG" scope="LCL" sort="n" key="0">
    <name>CHG(Y)</name>
  </hdr>
  <hdr slbl="CPY" llbl="COPY" scope="LCL" sort="n" key="0">
    <name>CPY(Y)</name>
  </hdr>
  <hdr slbl="RFS" llbl="RFSH" scope="LCL" sort="n" key="0">
    <name>RFS(Y)</name>
  </hdr>
</cmdrsphdr>
```

```
<cmdrspdata>
  <rsp>MBR(IMS2) IMSMBR(IMS1) CC(0) ACBS(N)</rsp>
  <rsp>MBR(IMS2) IMSMBR(IMS1) CC(0) DBD(OLCDP105) ADD(Y)</rsp>
  <rsp>MBR(IMS2) IMSMBR(IMS1) CC(0) PSB(OLCDP105) ADD(Y)</rsp>
  <rsp>MBR(IMS2) IMSMBR(IMS2) CC(0) ACBS(N)</rsp>
</cmdrspdata>
```
Explanation: The INIT OLC PHASE(PREPARE) TYPE(ACBMBR) NAME(OLCDB105) command is issued. IMS2 is the command master. IMS1 and IMS2 are in the OLCSTAT data set. The ACBSHR=N is defined at all IMS systems. All IMS systems will write to their own ACBLIB.

The online change prepare phase is successful at IMS1 and IMS3. The online change is not applicable at IMS2 because member DBD1 is not found in IMS2 staging ACBLIB and active ACBLIB.

All sharing IMS systems return the member information to the command master. The command master returns to the OM the members that are to be added, changed, or copied from the staging ACBLIB to the active ACBLIB.

You can issue the INIT OLC PHASE(COMMIT) command to complete the online change.

Example 5 for INITIATE OLC command

TSO SPOC input:

INITIATE OLC PHASE(PREPARE) TYPE(ACBMBR) NAME(OLCDB105 OLCDB111)

TSO SPOC output:

<table>
<thead>
<tr>
<th>MbrName</th>
<th>Member</th>
<th>CC</th>
<th>CCTX</th>
<th>ACBSHR</th>
<th>DBDName</th>
<th>PSBName</th>
<th>ADD</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMS2</td>
<td>IMS1</td>
<td>1</td>
<td>CMD</td>
<td>NOT APPLICABLE TO THIS IMS</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMS2</td>
<td>IMS2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMS2</td>
<td>IMS2</td>
<td>0</td>
<td></td>
<td>OLCDB105</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMS2</td>
<td>IMS2</td>
<td>0</td>
<td></td>
<td>OLCDB111</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMS2</td>
<td>IMS2</td>
<td>0</td>
<td></td>
<td>OLCDB111</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMS2</td>
<td>IMS2</td>
<td>0</td>
<td></td>
<td>OLCDB105</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMS2</td>
<td>IMS2</td>
<td>0</td>
<td></td>
<td>OLCDB111</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OM API input:

CMD (INITIATE OLC PHASE(PREPARE) TYPE(ACBMBR) NAME(OLCDB105 OLCDB111))

OM API output:

```xml
<imspdata>
<imsm>
<cmd>
<ctl>
<omname>OM1OM </omname>
<omvsn>1.3.0 </omvsn>
<xmlvsn>20 </xmlvsn>
<stotime>2006.275 22:34:25.572982</stotime>
<staseq>BF7EB4154154744026</staseq>
<stoseq>BF7EB4667C761E4</stoseq>
<rqsttkn1>USRT001 10152951</rqsttkn1>
<rc>0200000C</rc>
<rsn>0000300C</rsn>
<rsnmsg>CSLN055I</rsnmsg>
<rsntxt>The command completed with warning(s).</rsntxt>
</ctl>
</cmderr>
</mbr name="IMS2 ">
</typ>IMS </typ>
</styp>DBDC </styp>
</imspdata>
</imsvdata>
</cmdrspdata>
</imsout>
```
Explanation: The INIT OLC PHASE(PREPARE) TYPE(ACBM8R) NAME(OLCDB105 OLCDX111) command is issued. IMS2 is the command master. IMS1 and IMS2 are in the OLCSTAT data set. The ACBSHR=N is defined at all IMS systems. All IMS systems will write to their own ACBLIB.

The online change prepare phase is successful at IMS1 and IMS3. The online change prepare phase fails at IMS2 because PSBY is not found in IMS2 staging ACBLIB and PSBY is found in IMS2 active ACBLIB. This implies a member deletion for PSBY. The command fails with a return and reason code of LIST | SOME because member online change does not support deleting members.
All sharing IMS systems return the member information to the command master. The command master returns to the OM the members that are to be added, changed, or copied from the staging ACBLIB to the active ACBLIB.

You must issue the TERM OLC command to terminate the online change. You must add PSBY to the staging ACBLIB for member online change or perform a full library switch online change to have PSBY deleted.

Explanation: The INIT OLC PHASE(PREPARE) TYPE(ACBMBR) NAME(OLCDLIB05) command is issued. IMS2 is the command master. IMS1 and IMS2 are in the OLCSTAT data set. The ACBSHR=N is defined at all IMS systems. All IMS systems will write to their own ACBLIB.

The online change prepare phase is successful at IMS1 and IMS3. The online change is not applicable at IMS2 because member DBD1 is not found in IMS2 staging ACBLIB and active ACBLIB.

All sharing IMS systems return the member information to the command master. The command master returns to the OM the members that are to be added, changed, or copied from the staging ACBLIB to the active ACBLIB.

You can issue the INIT OLC PHASE(COMMIT) command to complete the online change.

Example 6 for INITIATE OLC command

TSO SPOC input:

```plaintext
INIT OLC PHASE(PREPARE) TYPE(ACBMBR) NAME(ECHOPGM,ECHODBD) OPTION(NAMEONLY)
```

TSO SPOC output:

```
<table>
<thead>
<tr>
<th>MbrName</th>
<th>Member</th>
<th>CC</th>
<th>ACBSHR</th>
<th>DBDName</th>
<th>PSBName</th>
<th>ADD</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMS1</td>
<td>IMS1</td>
<td>0</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMS1</td>
<td>IMS1</td>
<td>0</td>
<td>ECHODBD</td>
<td></td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>IMS1</td>
<td>IMS1</td>
<td>0</td>
<td>ECHOPGM</td>
<td></td>
<td></td>
<td>Y</td>
</tr>
</tbody>
</table>
```

OM API input:

```plaintext
INIT OLC PHASE(PREPARE) TYPE(ACBMBR) NAME(ECHOPGM,ECHODBD) OPTION(NAMEONLY)
```

OM API output:

```xml
<cmdrphdr>
<hdr sbl="MBR" lbl="MbrName" scope="LCL" sort="n" key="0"
   scroll="yes" len="8" dtype="CHAR" align="left" />
<hdr sbl="IMSMBR" lbl="Member" scope="LCL" sort="a" key="4"
   scroll="no" len="8" dtype="CHAR" align="left" />
<hdr sbl="CC" lbl="CC" scope="LCL" sort="n" key="0" scroll="yes"
   len="1" dtype="INT" align="right" />
<hdr sbl="CCTXT" lbl="CCText" scope="LCL" sort="n" key="0"
   scroll="yes" len="*" dtype="CHAR" align="left" skipb="yes" />
<hdr sbl="ACBS" lbl="ACBSHR" scope="LCL" sort="n" key="0"
   scroll="yes" len="1" dtype="CHAR" align="left" skipb="yes" />
<hdr sbl="RSC" lbl="RSCName" scope="LCL" sort="a" key="3"
   scroll="no" len="8" dtype="CHAR" align="left" skipb="yes" />
<hdr sbl="DBD" lbl="DBDName" scope="LCL" sort="a" key="2"
   scroll="no" len="8" dtype="CHAR" align="left" skipb="yes" />
<hdr sbl="PSB" lbl="PSBName" scope="LCL" sort="a" key="1"
   scroll="no" len="8" dtype="CHAR" align="left" skipb="yes" />
<hdr sbl="ADD" lbl="ADD" scope="LCL" sort="n" key="0"
   scroll="yes" len="1" dtype="CHAR" align="left" skipb="yes" />
<hdr sbl="CHG" lbl="CHNG" scope="LCL" sort="n" key="0"
   scroll="yes" len="*" dtype="CHAR" align="left" skipb="yes" />
```
Explanation: PSB ECHOPGM and DBD ECHOPGM are specified to be added to the active ACB library. These are new to the active ACB library.

Example 7 for INITIATE OLC command

TSO SPOC input:
INIT OLC PHASE(PREPARE) TYPE(ACBMBR) NAME(ECHODBD) OPTION(NAMEONLY)

TSO SPOC output:

<table>
<thead>
<tr>
<th>MbrName</th>
<th>Member</th>
<th>CC</th>
<th>CCText</th>
<th>ACBSHR</th>
<th>DBDName</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMS1</td>
<td>IMS1</td>
<td>0</td>
<td></td>
<td>N</td>
<td>ECHODBD</td>
</tr>
<tr>
<td>IMS1</td>
<td>IMS1</td>
<td>12A</td>
<td>NAMEONLY</td>
<td>DBD</td>
<td>CHANGES NOT ALLOWED</td>
</tr>
</tbody>
</table>

OM API input:
INIT OLC PHASE(PREPARE) TYPE(ACBMBR) NAME(ECHODBD) OPTION(NAMEONLY)

OM API output:

Chapter 36. INITIATE commands 815
Explanation: ECHODBD already exists in the active ACB library. ECHODBD is not in the MODBLKS library.

Related concepts:
- How to interpret CSL request return and reason codes (System Programming APIs)

Related reference:
- Chapter 2, “Command keywords and their synonyms,” on page 63
- Chapter 40, “/MODIFY command,” on page 841
- Global Online Change utility (DFSUOLC0) (System Utilities)

INITIATE OLC error handling

The INITIATE OLC command can result in errors that leave one or more of the IMS systems in the IMSplex in various online change states. Issue the QUERY MEMBER command and the QUERY OLC command to help you determine whether to terminate the online change or try the INITIATE OLC command again.

Before attempting online change, issue the QUERY OLC LIBRARY(OLCSTAT) SHOW(MODID) command to get the current modify id. If the INITIATE OLC command fails, issue the QUERY OLC LIBRARY(OLCSTAT) SHOW(MODID) command again, to see if the modify id is the same. If the modify id increased by 1, the online change is considered to be successfully completed.

If the INITIATE OLC command fails, issue the QUERY MEMBER TYPE(IMS) SHOW(STATUS) command to display the online change state of all the IMS systems in the IMSplex. Evaluate the QUERY MEMBER TYPE(IMS) SHOW(STATUS) output to help you to determine what to do:

- None of the IMS systems in an online change state

 If the INITIATE OLC PHASE(PREPARE) command failed on all of the IMS systems in the IMSplex, none of them are in an online change state. This QUERY OLC LIBRARY(OLCSTAT) SHOW(MODID) command output shows the same modify id as the QUERY OLC LIBRARY(OLCSTAT) SHOW(MODID) command issued before the INITIATE OLC PHASE(PREPARE) command. If you want to attempt online change again, issue another INITIATE OLC PHASE(PREPARE) command.

 If an INITIATE OLC PHASE(COMMIT) command successfully completes commit phase 3 on all the IMS systems but fails because of an error such as a command timeout, then no IMS will remain in an online change state. The QUERY MEMBER TYPE(IMS) SHOW(STATUS) command output shows no IMS in an online change state, so no further action is needed. The online change successfully completed.

 If an INITIATE OLC PHASE(PREPARE) command failed for all the IMS systems in the IMSplex, but Resource Manager (RM) still has information about the process, then the online change needs to be terminated. This is a very rare case where the command master initiates the online change process with RM, an error occurs, or the online change prepare phase fails on all the IMS systems, and the command master in unable to terminate the online change process with RM. RM issues a CSLR2200 message but no CSLR2201 message. The QUERY MEMBER TYPE(IMS) SHOW(STATUS) command output shows no IMS in an online change state. If you try to initiate an online change again with another INITIATE OLC PHASE(PREPARE) command, it is rejected. You must terminate the online change with a TERMINATE OLC command.

- Some of the IMS systems in a prepare complete state
If the INITIATE OLC PHASE(PREPARE) command fails and some of the IMS systems show a status of online change prepare complete (OLCPREPC), then the prepare phase succeeded on some of the IMS systems. You must terminate the online change with the TERMINATE OLC command. The IMS systems that have a status of OLCPREPC remain in an online change prepare complete state until you abort the online change.

- All IMS systems in a prepare complete state

If the INITIATE OLC PHASE(PREPARE) or INITIATE OLC PHASE(COMMIT) command fails and all of the IMS systems are in a prepare complete state (OLCPREPC) and the master shows a global status of online change prepare complete (OLCPREPC), then the prepare succeeded. You can issue INITIATE OLC PHASE(COMMIT) if you want to proceed with the online change. You can issue TERMINATE OLC if you want to abort the online change.

If the specified INITIATE OLC PHASE(PREPARE) command did not apply to any IMS in the IMSplex, the command is rejected, but all of the IMS systems show a status of OLCPREPC. For example, if the IMSplex consists of only DBCTL subsystems, then the INITIATE OLC PHASE(PREPARE) TYPE(FMTLIB) command does not apply to any of the IMS systems and is rejected. However, all of the IMS systems will show a status of OLCPREPC, indicating they are participating in the online change. If this situation occurs, you must terminate the online change. INITIATE OLC PHASE(COMMIT) will be rejected, since the online change applies to no IMS in the IMSplex.

- Some IMS systems in prepare complete and commit phase 1 complete state

If an INITIATE OLC PHASE(COMMIT) command fails during commit phase 1, some of the IMS systems may be in a prepare complete state (OLCPREPC) and some of the IMS systems may be in a commit phase 1 complete state (OLCCMT1C). The commit phase failed before the master updated the OLCSTAT data set, so the online change is not committed. You may correct the problem and try the commit again with the INITIATE OLC PHASE(COMMIT) command. Or, you may decide to abort the online change with the TERMINATE OLC command.

The IMS systems that are in an online change state remain in an online change state until you abort the online change or commit the online change.

- All IMS systems in a commit phase 1 complete state

If an INITIATE OLC PHASE(COMMIT) command fails after commit phase 1 is completed, all of the IMS systems are in a commit phase 1 complete state (OLCCMT1C).

If the error occurs before the master updates the OLCSTAT data set, then the online change is not yet successful. You may abort the online change with the TERMINATE OLC command or attempt the commit again with another INITIATE OLC PHASE(COMMIT) command.

If the error occurs after the master updates the OLCSTAT data set, then the online change is successful. You may not abort the online change. You must attempt the commit again with another INITIATE OLC PHASE(COMMIT) command to finish up the online change. The INITIATE OLC PHASE(COMMIT) command finishes the online change by completing commit phase 2.

The IMS systems that are in an online change state remain in an online change state until you abort the online change or commit the online change.

You can determine if the OLCSTAT data set has been updated by checking the modify id. Issue the QUERY OLC LIBRARY(OLCSTAT) SHOW(MODID) command. Check if the modify id returned is different from the modify id returned by the INITIATE OLC PHASE(PREPARE) command, or the modify id
returned by a QUERY OLC LIBRARY(OLCSTAT) SHOW(MODID) command issued before the INITIATE OLC PHASE(COMMIT) command.

- Some IMS systems in commit phase 1 complete state and some in commit phase 2 complete state
 If an INITIATE OLC PHASE(COMMIT) command fails during commit phase 2, some of the IMS systems may be in a commit phase 1 complete state (OLCCMT1C) and some may have completed commit phase 2 and be in a commit phase2 complete state (OLCCMT2C). The INITIATE OLC PHASE(COMMIT) command failed after commit phase 1 completed on all of the IMS systems and the master updated the OLCSTAT data set. Once the OLCSTAT data set is updated, the online change is considered to be successful and cannot be aborted. You must finish the online change commit phase 2 by issuing the INITIATE OLC PHASE(COMMIT) command again. The INITIATE OLC PHASE(COMMIT) command finishes the online change by completing commit phase 2.

 The IMS systems that are in an online change state remain in an online change state until you finish the online change with an INITIATE OLC PHASE(COMMIT) command.

- All IMS systems in commit phase 2 complete state
 If an INITIATE OLC PHASE(COMMIT) command fails during commit phase 2 or commit phase 3, all of the IMS systems may end up in a commit phase 2 complete state (OLCCMT2C). The INITIATE OLC PHASE(COMMIT) command failed after commit phase 1 completed on all of the IMS systems and the master updated the OLCSTAT data set. Once the OLCSTAT data set is updated, the online change is considered to be successful and can not be aborted. You must finish the online change commit phase 2 and commit phase 3 by issuing the INITIATE OLC PHASE(COMMIT) command again.

 The IMS systems that are in an online change state remain in an online change state until you finish the online change with an INITIATE OLC PHASE(COMMIT) command.

- Some IMS systems in commit phase 2 complete state and some not in online change state
 If an INITIATE OLC PHASE(COMMIT) command fails during commit phase 3, some of the IMS systems may be in a commit phase 2 complete state (OLCCMT2C) and some may have completed commit phase 3 and no longer be in an online change state. The INITIATE OLC PHASE(COMMIT) command failed after commit phase 1 completed on all of the IMS systems and master updated the OLCSTAT data set. Once the OLCSTAT data set is updated, the online change is considered to be successful and can not be aborted. You must finish the online change commit phase 3 by issuing the INITIATE OLC PHASE(COMMIT) command again, routing it to an IMS that is still in a commit phase 2 complete state. The INITIATE OLC PHASE(COMMIT) command finishes the online change by completing commit phase 3.

 The IMS systems that are in an online change state remain in an online change state until you finish the online change with an INITIATE OLC PHASE(COMMIT) command.

- One IMS in commit phase 3 failed state
 If an INITIATE OLC PHASE(COMMIT) command fails during commit phase 3 and the command master associated with this command determines the command was not successful at other IMS systems, the commit phase 3 fails and the command master exits with an error. At this point, the command master is left in an online change state. Issue another INITIATE OLC PHASE(COMMIT)
command routed to the master (perhaps with a longer command timeout value) to complete the commit phase 3 cleanup of online change information.

Errors unique to the processing of this command are returned as a completion code. A completion code is returned for an IMS participating in the online change phase.

INITIATE OLREORG command

Use the INITIATE OLREORG command to reorganize online HALDB PHDAM or PHIDAM partitions or to alter the definition of an online HALDB database.

This command can be issued in either a type-1 format (/INITIATE OLREORG) or a type-2 format (INITIATE OLREORG).

The ALTER option is supported only by the type-2 format of the command.

Subsections:

- “Environment”
- “Syntax”
- “Keywords” on page 820
- “Usage notes” on page 822
- “Command responses for /INITIATE OLREORG” on page 823
- “Output fields” on page 823
- “Return, reason, and completion codes” on page 824
- “Examples” on page 827

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) from which the INITIATE command and keywords can be issued.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>INITIATE OLREORG</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SET</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OPTION</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Syntax

```
INITIATE OLREORG NAME(partname) SET(RATE(100))
```

```
INITIATE OLREORG NAME(partname) SET(RATE(rate))
```
Keywords

The following keywords are valid for the /INITIATE OLREORG command:

NAME()
The name of a HALDB partition or, when OPTION(ALTER) is specified, the name of a HALDB master database.

You can specify only PHDAM or PHIDAM partition names. You cannot use the wildcard character (*). For example, you cannot specify DBPART*.

When you use the type-2 version of this command, you can specify multiple partition names.

When you use the type-1 version of this command, you can specify only one partition name.

SET(RATE)
Specifies the RATE at which the HALDB OLR runs.

rate
You can specify a value of 1 to 100 for the rate values. A HALDB OLRs impact on the system is affected by the available system resources, by total system utilization (including other HALDB OLRs), by total logging volume, by log contention, and by the intensity at which this reorganization was requested to run. These same factors also affect the speed at which the reorganization runs.

You can use the RATE parameter to control the intensity at which the reorganization runs. This can affect both the reorganization's speed and its impact on the rest of the system. The value you specify for rate is the percentage of elapsed time to be devoted to copying records. The remaining time is to be an intentionally introduced delay in the copying process that minimizes the reorganization's impact on other IMS work and on the whole system.

A rate value of 50 specifies that 50% of the elapsed time be spent copying records and the remaining 50% be spent in a delay. This causes the reorganization to run approximately twice as long as it would have run with a rate value of 100.

RATE(100) is the default.

OPTION()
You can specify the following values on the OPTION keyword:

ALTER
Applies changes that have been made to a database definition, such as an increase in the size of a segment, to an online database via the online reorganization process.
Prior to specifying the ALTER option, the changes must be defined in DBD generation macros, and both DBD and ACB generation must be complete. The new ACB member for the database must be in the ACB staging library.

When the ALTER keyword is specified, the name of the HALDB master database must be specified on the NAME parameter of the INITIATE OLREORG command. All of the partitions in the database are reorganized.

Restrictions:

The ALTER keyword is supported only by the type-2 version of the INITIATE OLREORG command.

The ALTER keyword cannot be specified when one or more partition names are specified on the NAME parameter.

DEL|NODEL

Specifies whether IMS attempts to delete the inactive data sets after the reorganization process is complete. DEL and NODEL are mutually exclusive keywords.

When DEL is specified, IMS attempts to delete the inactive data sets when the reorganization process is complete. IMS attempts to delete the data sets regardless of who created the data sets or when the data sets were created.

When NODEL is specified, IMS does not attempt to delete the inactive data sets when the reorganization process is complete.

Attention: If the HALDB OLR is stopped before completion, the OPTION(NODEL) specification is not retained by IMS. You must specify OPTION(NODEL) on the INITIATE OLREORG command to resume the stopped HALDB OLR. You can also specify OPTION(NODEL) on the UPDATE OLREORG command.

If the partition is tracked at an RSR tracker site, the DEL or NODEL value in effect at the completion of the HALDB OLR also determines whether the inactive data sets for the shadow partition are deleted when the tracking of the online reorganization is completed.

REL|NOREL

Specifies whether the IMS system releases or retains the ownership of the reorganization process if IMS shuts down or terminates before the reorganization process is complete. REL and NOREL are mutually exclusive keywords.

Specifying OPTION(REL) or OPTION(NOREL) with this command overrides any setting in the database section of the DFSDFxxx member of the IMS PROCLIB data set.

NOREL

Specifies that the IMS system retains ownership of the reorganization when it shuts down or terminates. NOREL is the default.

REL

Specifies that the IMS system releases ownership of the reorganization process if it terminates before the reorganization is completed. Specifying this keyword allows any IMS system to resume the suspended reorganization.
The LIST.DB DBD(*partition_database*) command shows the owning IMS (OLRIMSID=*ssid*). RELEASE OLR OWNERSHIP is also displayed when an OLR is owned and the REL option is active for the OLR.

When OLR is active and running on an IMS and the IMS terminates abnormally, and if release OLR ownership is requested, the LIST.DB command will show OLRIMSID=*ssid* (instead of OLRIMSID=NULL) and RELEASE OLR OWNERSHIP because IMS was unable to request OLR ownership release.

Requesting release OLR ownership in an XRF environment: In an XRF environment, if release OLR ownership is requested while OLR is running on an active IMS, OLR will not automatically resume on the new active IMS after an XRF takeover occurs. You must issue the INIT OLREORG command again on the new active IMS.

Usage notes

HALDB OLR is not supported for PHDAM and PHIDAM databases that use 8-GB OSAM data sets.

When OPTION(ALTER) is specified, before the command is issued, the ACB members that contain the altered database definition must be in the staging ACB library. After alter processing is complete, Online Change must be performed to activate the ACB members and complete the alter process.

When the /INITIATE OLREORG command is complete and the integrated HALDB Online Reorganization function (OLR) is initiated successfully, a DFS0725I message with a completion code of 0 is sent back to the system console and the MTO as an asynchronous message. If the /INITIATE OLREORG command is issued from a terminal that is not the MTO or system console, the DFS0725I message is also sent to the terminal asynchronously. The DFS0725I message is not sent back to an AOI program that issues the /INITIATE OLREORG command. If the /INITIATE OLREORG command is issued from an LU 6.2 application, the LU 6.2 program receives the DFS0725I message followed by the DFS058I INITIATE COMMAND COMPLETED message.

When OPTION(ALTER) is specified, DFS3197I is also issued to indicate the start of alter processing. When alter processing completes or otherwise stops, DFS3198I is issued.

A type X’22’ log record is created when INITIATE OLREORG is issued. The command is non-recoverable and is not reprocessed when IMS is restarted.

The type-1 /INIT OLREORG command can be entered at an IMS terminal, MTO, system console, APPC, OTMA application, or a CMD or ICMD call. You can issue /INIT OLREORG as a type-1 command from a non-OM API using the first three command characters; for example, /INI OLREORG. The type-1 command is processed at the IMS where the command was entered. However, when you issue INIT OLREORG as a type-2 command from an OM API, the only valid command verb form is INIT or INITIATE.

This command can be issued to an IMSplex by using the Batch SPOC utility.

While the database is being quiesced, this command cannot be processed successfully.
Part of the HALDB OLR processing involves:

- The creation of the output data sets at the beginning of the online reorganization
- The optional deletion of the inactive data sets when the HALDB OLR is completed

If the partition is tracked at an RSR tracker site, the OPTION value (DEL or NODEL) that is in effect at the completion of the HALDB OLR also determines whether the inactive data sets for the shadow partition are deleted at the completion of the tracking of the reorganization.

The output for this command is defined in XML and is available to automation programs that communicate with OM if the command is entered from OM API. When entered as a type-1 command, the command output is in message format.

When a HALDB OLR is completed, a DFS2974I message is sent to the system console indicating that the OLR is complete. The command response indicates if an OLR is initiated.

Command responses for /INITIATE OLREORG

When you issue the type-1 /INITIATE OLREORG command, the command response is returned in a message format.

When the command is completed successfully, message DFS0725I with a completion code of 0 is returned to the system console and to the master terminal. If the command results in an error, a nonzero completion code or an error message is returned to the master terminal and system console.

If the command results in an error, an error message is returned to the entering terminal. One or more of the following messages might also be returned:

DFS0725I INITIATE|UPDATE|TERMINATE OLREORG COMMAND FOR DB dbnamexx COMPLETE.
CC= nn
where: dbnamexx is the HALDB partition name entered on the command
nn is the completion code

DFS058 - INITIATE COMMAND IN PROGRESS
DFS107 - REQUIRED KEYWORD NOT PRESENT
DFS110 - COMMAND KEYWORD OLREORG INVALID FOR yyyyyyyy (tracker, XRF alt)
DFS128 - TOO FEW KEYWORDS
DFS136 - COMMAND xxxxxxxxxxx INVALID FOR yyyyyyyy (tracker, XRF alt)
DFS165 - COMMAND VERB IS INVALID
DFS2026 - NO WKAP STORAGE
DFS2038 - INSUFFICIENT STORAGE AVAILABLE TO PROCESS COMMAND
DFS2262 - TOO MANY DATABASE PARAMETERS
DFS3630 - GENERIC PARAMETER NOT ALLOWED

Output fields

This section describes the responses from the OM API for the INITIATE OLREORG command. The following table shows the INITIATE OLREORG output fields and a description of each field:

Short label
The short label that is generated in the XML output. This field does not apply to the /INITIATE command.

Show Keyword
The command keyword that caused the field to be generated. N/A appears for output fields that are always returned.
Meaning
A brief description of the output field.

Table 300. Output fields for INITIATE OLREORG command

<table>
<thead>
<tr>
<th>Short label</th>
<th>Show Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>PART</td>
<td>N/A</td>
<td>Partition name.</td>
</tr>
<tr>
<td>MBR</td>
<td>N/A</td>
<td>The IMS that processed the command and built the command response line.</td>
</tr>
<tr>
<td>CC</td>
<td>N/A</td>
<td>Completion code.</td>
</tr>
</tbody>
</table>

Return, reason, and completion codes

The OM return and reason codes that might be returned as a result of the INITIATE OLREORG command are standard for all commands that are entered through the OM API.

The following table includes the return and reason codes and a brief explanation of the codes. The return or reason code returned for the command might also indicate an error from a CSL request.

Table 301. Return and reason codes for the INITIATE OLREORG command

<table>
<thead>
<tr>
<th>Return code</th>
<th>Reason code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The INITIATE OLREORG command completed successfully.</td>
</tr>
<tr>
<td>X'00000004'</td>
<td>X'00001010'</td>
<td>No matches found for filter.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002008'</td>
<td>Insufficient number of keywords.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002020'</td>
<td>Invalid rate value.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002040'</td>
<td>No filter, an invalid filter, or an insufficient number of filters was specified.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003000'</td>
<td>At least one request was successful.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>None of the requests was successful.</td>
</tr>
<tr>
<td>X'00000100'</td>
<td>X'0000400C'</td>
<td>Command issued on an XRF alternate.</td>
</tr>
<tr>
<td>X'00000100'</td>
<td>X'00004014'</td>
<td>Command issued on an RSR tracker.</td>
</tr>
<tr>
<td>X'00000100'</td>
<td>X'00004030'</td>
<td>Command is invalid for LSO=Y.</td>
</tr>
<tr>
<td>X'00000100'</td>
<td>X'00004520'</td>
<td>Another HALDB alter operation is in progress.</td>
</tr>
<tr>
<td>X'00000104'</td>
<td>X'00005000'</td>
<td>A GETMAIN error occurred.</td>
</tr>
</tbody>
</table>

The following table includes an explanation of the completion codes. Errors that are unique to the processing of INITIATE OLREORG command are returned as completion codes. A completion code is returned for each action against a HALDB partition. Also, if the type-1 /INITIATE OLREORG command is entered, the completion codes are displayed in the DFS0725I message.

Table 302. Completion codes for the INITIATE OLREORG command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>The INITIATE OLREORG command completed successfully for the partition.</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Resource name is invalid.</td>
</tr>
</tbody>
</table>
Table 302. Completion codes for the INITIATE OLREORG command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td></td>
<td>Resource is not a partition name.</td>
</tr>
<tr>
<td>17</td>
<td>ANOTHER CMD IN PROGRESS</td>
<td>The INITIATE OLREORG command failed because IMS was already processing another command that was issued against the same database. If OPTION(ALTER) was specified, the IMS system might be processing another INITIATE OLREORG command that has OPTION(ALTER) specified for the same or a different database.</td>
</tr>
<tr>
<td>1C</td>
<td></td>
<td>Resource is a partitioned secondary index.</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>HALDB OLR is already in progress.</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>No OLR is in progress.</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>No DMB is loaded.</td>
</tr>
<tr>
<td>90</td>
<td></td>
<td>Internal error. The command entered is not processed because of an internal error.</td>
</tr>
<tr>
<td>122</td>
<td></td>
<td>Staging ACBLIB is empty.</td>
</tr>
<tr>
<td>AE</td>
<td></td>
<td>Dynamic allocation error.</td>
</tr>
<tr>
<td>C1</td>
<td></td>
<td>OLR database directory (DDIR) is missing.</td>
</tr>
<tr>
<td>C3</td>
<td></td>
<td>OLR partition is either stopped or locked, or is in an input-only access state.</td>
</tr>
<tr>
<td>C4</td>
<td></td>
<td>OLR partition is being recovered.</td>
</tr>
<tr>
<td>C5</td>
<td></td>
<td>OLR partition access is not UPDATE or EXCLUSIVE.</td>
</tr>
<tr>
<td>C6</td>
<td></td>
<td>OLR scheduling failed.</td>
</tr>
<tr>
<td>C7</td>
<td></td>
<td>OLR partition is not authorized.</td>
</tr>
<tr>
<td>C8</td>
<td></td>
<td>OLR master database is either stopped or locked, or is in an input-only access state.</td>
</tr>
<tr>
<td>C9</td>
<td></td>
<td>OLR master database access is not UPDATE or EXCLUSIVE.</td>
</tr>
<tr>
<td>CA</td>
<td></td>
<td>OLR ownership setting failed.</td>
</tr>
<tr>
<td>CC</td>
<td>OLR IS ACTIVE FOR DATABASE</td>
<td>The INITIATE OLREORG command failed because the OLR function, with or without OPTION(ALTER) specified, is already reorganizing one or more partitions in the database.</td>
</tr>
<tr>
<td>CD</td>
<td></td>
<td>HALDB OLR was attempted for an RSR-covered HALDB.</td>
</tr>
<tr>
<td>CE</td>
<td></td>
<td>HALDB OLR cannot access all the data in the partition because an EEQE exists.</td>
</tr>
<tr>
<td>CF</td>
<td></td>
<td>Parameter value conflict, or invalid parameter value.</td>
</tr>
<tr>
<td>DA</td>
<td></td>
<td>The command processing failed because the database is being recalled from HSM.</td>
</tr>
<tr>
<td>DF</td>
<td>DB DIRECTORY INIT FAILURE</td>
<td>The DDIR for the database cannot be initialized.</td>
</tr>
<tr>
<td>E7</td>
<td></td>
<td>The database command could not be processed because a command that specifies START(QUIESCE) is in progress.</td>
</tr>
</tbody>
</table>
Table 302. Completion codes for the \textit{INITIALIZE OLREORG} command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1E1</td>
<td>OLR ITASK creation failed</td>
<td>An internal OLR ITASK cannot be created.</td>
</tr>
<tr>
<td>1E2</td>
<td>RECON MINVERS or CHANGE# error</td>
<td>In the RECON data set, either the minimum IMS version that is specified in the RECON data set does not support OPTION(ALTER), or the change version number in a CHANGE# field does not match the change version number in the database directory (DDIR) control block for the HALDB database. The minimum IMS version is specified in the RECON by the MINVERS keyword on either the INIT.RECON or the CHANGE.RECON DBRC command.</td>
</tr>
<tr>
<td>1E3</td>
<td>Partition queued for OLR</td>
<td>The partition is queued for online reorganization processing by either the OLR function or the OLR function with the ALTER option specified.</td>
</tr>
<tr>
<td>1E4</td>
<td>OLC is pending for HALDB alter</td>
<td>An alter request against the same HALDB was done, but an Online Change has not yet done for the HALDB.</td>
</tr>
<tr>
<td>1E5</td>
<td>No DB structure change detected</td>
<td>OPTION(ALTER) was specified, but the ACB member for the specified HALDB database does not contain any structural changes. If you intended to change the structure of the database, ensure that the ACB member that contains the database changes is in the ACB staging library. If you are not changing the structure of the database, remove the OPTION(ALTER) keyword from the command.</td>
</tr>
<tr>
<td>1E6</td>
<td>Insufficient CI/Block size detected</td>
<td>The size of the block or CI of an output data set is too small. Before initiating the alter operation, increase the size of the block or CI by issuing the DBRC CHANGE.PART command.</td>
</tr>
<tr>
<td>1E7</td>
<td>Unsupported DBD changes detected</td>
<td>The ACB member for the specified database contains a structural change that is not supported by the ALTER option. See message DFS1849E for the reason code that identifies the unsupported change.</td>
</tr>
<tr>
<td>1E8</td>
<td>Altered DMB not loaded</td>
<td>The DMB for the altered database was not loaded, so the delta block required to validate the structural changes to the database could not be created.</td>
</tr>
<tr>
<td>1E9</td>
<td>DB level error detected</td>
<td>During alter processing, a database level error on the altered DBD is detected.</td>
</tr>
<tr>
<td>1EA</td>
<td>Segment level error detected</td>
<td>During alter processing, a segment level error on the altered DBD is detected.</td>
</tr>
<tr>
<td>1EB</td>
<td>Field level error detected</td>
<td>During alter processing, a field level error on the altered DBD is detected.</td>
</tr>
<tr>
<td>1EC</td>
<td>Logical database error</td>
<td>During alter processing, an error related to a logical relationship on the altered DBD is detected.</td>
</tr>
</tbody>
</table>
Table 302. Completion codes for the INITIATE OLREORG command (continued)

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Completion code text</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1ED</td>
<td>HALDB structure not init</td>
<td>Required internal HALDB control blocks were not initialized or accessible.</td>
</tr>
<tr>
<td>1EE</td>
<td>Alter owned by other IMS</td>
<td>Alter processing could not be resumed on this IMS system because all partitions that remain to be altered are owned by one or more other IMS systems.</td>
</tr>
<tr>
<td>1EF</td>
<td>Not OLR capable</td>
<td>The database is not capable of being reorganized online, which can be caused by a HALDB database that uses 8-GB OSAM data sets.</td>
</tr>
</tbody>
</table>

Examples

The following are examples of the INITIATE OLREORG command.

Example 1 for /INITIATE OLREORG command

Entry ET:

/INITIATE OLREORG NAME(HALDBPRT) SET(RATE(50))

Response ET:

DFS058I INITIATE COMMAND IN PROGRESS
DFS0725I INITIATE OLREORG COMMAND FOR DB HALDBPRT COMPLETE. CC=0

System Console or MTO:

DFS2970I - OLR STARTED FOR NAME=HALDBPRT
DFS0725I INITIATE OLREORG COMMAND FOR DB HALDBPRT COMPLETE. CC=0

Explanation: The /INITIATE OLREORG command for the partition named HALDBPRT is issued from a terminal, resulting in the message, DFS058I INITIATE COMMAND IN PROGRESS being sent to that entering terminal. When OLR is started successfully, the DFS0725I and DFS2970I messages are sent to the system console and to the MTO. The DFS0725I message is also sent to the entering terminal if the entering terminal is not the system console, MTO, AOI program.

Example 2 for /INITIATE OLREORG command

Entry ET:

/INIT OLREORG NAME(PDHDOKA) SET(RATE(5))

Response ET:

DFS058I INITIATE COMMAND IN PROGRESS
DFS0725I INITIATE OLREORG COMMAND FOR DB PDHDOKA COMPLETE. CC=0

Response MTO or System console:

DFS2970I - OLR STARTED FOR NAME=PDHDOKA
DFS0725I INITIATE OLREORG COMMAND FOR DB PDHDOKA COMPLETE. CC=0

Explanation: The INIT OLREORG command for the partition named PDHDOKA is issued from a terminal, resulting in the DFS058I INITIATE COMMAND IN PROGRESS
message being sent to that entering terminal. The DFS0725I message is also sent to
the entering terminal if the entering terminal is not the system console, the MTO,
or an AOI program.

When OLR is started successfully, the DFS0725I and the DFS2970 messages are sent
to the system console and to the MTO.

Example 3 for INITIATE OLREORG command

TSO SPOC Input:
INIT OLREORG NAME(PDHDOKA,PĐHDOKB) SET(RATE(5))

TSO SPOC output:

<table>
<thead>
<tr>
<th>Partition</th>
<th>MbrName</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDHDOKA</td>
<td>IMSA</td>
<td>0</td>
</tr>
<tr>
<td>PDHDOKB</td>
<td>IMSA</td>
<td>0</td>
</tr>
<tr>
<td>PDHDOKB</td>
<td>IMS1</td>
<td>C3</td>
</tr>
</tbody>
</table>

OM API Input:
CMD (INIT OLREORG NAME(PDHDOKA,PĐHDOKB) SET(RATE(5)))

OM API output:

```xml
<imsout>
  <ctl>
    <omname>OMIOM</omname>
    <omvsn>1.2.0</omvsn>
    <xmlvsn>1</xmlvsn>
    <statime>2003.168 21:19:06.827362</statime>
    <staseq>B99629BFEC66256E</staseq>
    <staseq>B99629C01F684F44</staseq>
    <rqsttkn>USRT005 10141906</rqsttkn>
    <rc>00000000</rc>
    <rsn>00000000</rsn>
  </ctl>
  <cmd>
    <master>IMSA</master>
    <userid>USRT005</userid>
    <verb>INIT</verb>
    <kwd>OLREORG</kwd>
    <input>INIT OLREORG NAME(PDHDOKA,PĐHDOKB) SET(RATE(5))</input>
  </cmd>
  <cmdrsphdr>
    <hdr slbl="PART" llbl="Partition" scope="LCL" sort="A" key="1" scroll="NO" len="9" dtype="CHAR" align="left" />
    <hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="N" key="0" scroll="NO" len="8" dtype="CHAR" align="left" />
    <hdr slbl="CC" llbl="CC" scope="LCL" sort="N" key="0" scroll="YES" len="4" dtype="INT" align="right" />
  </cmdrsphdr>
  <cmdrspdta><rsp> PART(PDHDOKA) MBR(IMSA) CC(0) </rsp>
    <rsp> PART(PDHDOKB) MBR(IMSA) CC(0) </rsp>
    <rsp> PART(PDHDOKA) MBR(IMS1) CC(C3) </rsp>
    <rsp> PART(PDHDOKB) MBR(IMS1) CC(C3) </rsp>
  </cmdrspdta>
</imsout>
```
Explanation: The INIT OLREORG command is issued from TSO SPOC for partitions PDHDOKA and PDHDOKB. The command is routed to IMSA and IMS1. The command is successful at IMSA for both partitions, but is not successful at IMS1 for both partitions.

Example 4: INITIATE OLREORG command with OPTION(ALTER)

In the following example, the INITIATE OLREORG command with the ALTER option is issued for the HALDB database DBOVLFPC, which contains four partitions.

Two IMS systems are participating in the alter operation, IMS1 and IMS2. IMS1 gets ownership of partitions PDBOVLA and PDBOVLC. IMS2 gets ownership of PDBOVLB and PDBOVLD.

When alter processing stops in an IMS system, the IMS system issues message DFS3198I.

TSO SPOC Input:

`INIT OLREORG OPTION(NODEL,ALTER,NOREL) SET(RATE(100)) NAME(DBOVLFPC)`

TSO SPOC output:

<table>
<thead>
<tr>
<th>Partition</th>
<th>MbrName</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDBOVLA</td>
<td>IMS2</td>
<td>CA</td>
</tr>
<tr>
<td>PDBOVLA</td>
<td>IMS1</td>
<td>0</td>
</tr>
<tr>
<td>PDBOVLB</td>
<td>IMS2</td>
<td>0</td>
</tr>
<tr>
<td>PDBOVLB</td>
<td>IMS1</td>
<td>CA</td>
</tr>
<tr>
<td>PDBOVLC</td>
<td>IMS2</td>
<td>CA</td>
</tr>
<tr>
<td>PDBOVLC</td>
<td>IMS1</td>
<td>0</td>
</tr>
<tr>
<td>PDBOVLD</td>
<td>IMS2</td>
<td>0</td>
</tr>
<tr>
<td>PDBOVLD</td>
<td>IMS1</td>
<td>CA</td>
</tr>
</tbody>
</table>

OM API Input:

`CMD (INIT OLREORG OPTION(NODEL,ALTER,NOREL) SET(RATE(100)) NAME(DBOVLFPC))`

OM API output:

```
<stotime>2013.217 22:36:50.823178</stotime>
<staseq>CBC4B3A59D79A7C2</staseq>
<stoseq>CBC4B3A83F40A950</stoseq>
<rqsttkn1>USRT011 10153648</rqsttkn1>
[...]
<cmd><master>IMS2</master><userid>USRT011</userid><verb>INIT</verb><kwd>OLREORG</kwd><input>INIT OLREORG OPTION(NODEL,ALTER,NOREL) SET(RATE(100)) NAME(DBOVLFPC)</input></cmd>
```

```xml
<cmdrsphdr><hdr slbl="PART" llbl="Partition" scope="LCL" sort="A" key="1" scroll="NO" len="7" dtype="CHAR" align="left" />
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="N" key="0" scroll="NO" len="8" dtype="CHAR" align="left" />
<hdr slbl="CC" llbl="CC" scope="LCL" sort="N" key="0" scroll="YES" len="4" dtype="INT" align="right" />
</cmdrsphdr>
<cmdrspdata>
<rsp> PART(PDBOVLA ) MBR(IMS2 ) CC( CA ) </rsp>
<rsp> PART(PDBOVLB ) MBR(IMS2 ) CC( 0 ) </rsp>
```
Each IMS system issues DFS3198I when alter processing stops. The message shows the number of partitions in the database, the number of partitions that the IMS system started altering, and the number of partitions that the IMS system successfully altered.

DFS3198I HALDB ALTER ENDED FOR NAME=DBOVLFPC
PARTITION NUMBER=4 STARTED=2 COMPLETED=2 IMS1

DFS3198I HALDB ALTER ENDED FOR NAME=DBOVLFPC
PARTITION NUMBER=4 STARTED=2 COMPLETED=2 IMS2

Related concepts:
[How to interpret CSL request return and reason codes (System Programming APIs)]

Related reference:
Chapter 2, “Command keywords and their synonyms,” on page 63
Chapter 37. /LOCK command

The /LOCK command stops the sending and receiving of messages to and from a terminal, stops the scheduling of messages containing a specific transaction code, stops the scheduling of a specific program, and stops the use of a database.

Queuing of output messages for a particular communication line, terminal, or transaction code is not affected.

Subsections:
- “Environment”
- “Syntax”
- “Keywords” on page 832
- “Usage notes” on page 833
- “Equivalent IMS type-2 commands” on page 834
- “Examples” on page 834

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

Table 303. Valid environments for the /LOCK command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/LOCK</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DB</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>LTERM</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NODE</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PGM</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PTERM</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>TRAN</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Syntax
Keywords

The following keywords are valid for the /LOCK command:

DB LOCK prevents subsequently scheduled programs from accessing the database. The /LOCK DB command does not close the database or affect currently scheduled programs.

If the database is a DEDB or MSDB, programs using the database will not be scheduled. For other databases, the programs will still be scheduled. If the INIT call was issued, however, a call against the database will result in either a 3303 pseudoabend or a BA status code.

For DBCTL, CCTL can specify LONG or SHORT when it schedules a PSB. If the database is currently scheduled to a LONG thread, the command is rejected. If not, the thread completes before the database is acted upon. If the thread completes, a commit point or transaction termination is the result.

While the database is being quiesced, this command cannot be processed successfully.

LTERM Specifies the logical terminal for which sending and receiving of messages is to be stopped. /LOCK LTERM applies only to logical terminals associated with the entering physical terminal.

The /LOCK LTERM ALL command can only be used when none of the logical terminals associated with the entering physical terminal have passwords.

NODE Specifies that the sending and receiving of messages for the VTAM node associated with the entering physical terminal is to be stopped.

PGM Specifies the program for which scheduling is to be stopped.

PTERM Specifies that the sending and receiving of messages for the entering physical terminal is to be stopped.
TRAN

Specifies that scheduling of messages containing this transaction code is to be stopped. The /LOCK TRAN command cannot be used with Fast Path exclusive transactions but can be used with Fast Path potential transactions.

The /LOCK TRAN command cannot be used for CPI Communications driven programs.

Usage notes

The /LOCK command can be used on HALDB databases.

The output of the /LOCK DB command is changed when the command is entered through the OM API. In this case, the DFS058I message is not returned to OM. The command response returned to OM contains one or more of the following messages: DFS0488I, DFS3466I, or DFS132. The OM API does not support the /LOCK command without any keywords.

The /LOCK command can be issued by APPC and OTMA clients.

This command can be issued to an IMSplex by using the Batch SPOC utility.

A resource name can be defined with password protection in SAF for the DB, LTERM, PGM, and TRAN keywords. If the parameter, LOCKSEC=Y (N is the default) is specified on the DFSPBxxx IMS.PROCLIB member, IMS calls the SAF and user exit calls. If the resource is not defined to SAF, or is defined and is authorized to the user, the command is processed. If the resource is defined to SAF but not authorized for use, the command is rejected with a DFS3689W message.

The password associated with a signed on user, and specified after a command resource parameter, will be used to perform a reverification check, if the resource is defined to RACF with 'REVERIFY' specified in the APPLDATA field. Passwords can be mixed case or uppercase depending on what is specified on the PSWDC keyword in the DFSPBxxx IMS.PROCLIB member. If the resource passes the RACF authorization check, and RVFY=Y is specified as an IMS startup parameter, IMS will verify that the password following the parameter is the same as the password entered during signon for the user that entered the command. If 'REVERIFY' is specified for a resource, but a password is not provided, or the wrong password is provided, the command processing for that resource will be rejected.

A period that is specified in the password brackets is not treated as a delimiter.

The /LOCK LTERM, NODE, and PTERM commands apply only to the entering physical terminal. The /LOCK DB | PGM | TRAN command is only valid if entered from the master terminal, the system console, a TCO script, or an AOI application program.

Issuing the /LOCK command for a physical terminal, logical terminals, or nodes prevents application program output from being sent (assuming nonresponse mode transactions) and message switches from any other terminals. Output message queuing continues for the locked physical terminal. The /STOP LTERM command can be used instead of the /LOCK LTERM command, because both stop the sending and receiving of messages to the physical terminal.
If the terminals are on a switched communication network and a physical or logical terminal disconnection occurs, an implied /UNLOCK command is processed against the physical terminal and inquiry logical terminal.

The /LOCK command cannot be used with logical terminals assigned to deallocated users.

When you enter this command, the database name can be an existing non-HALDB, a HALDB master, or a HALDB partition. A command against a HALDB partition operates exactly like a command against a non-HALDB with the exception of the /START DB and the UPDATE DB START(ACCESS) commands. A HALDB partition is not allocated during the command unless it was previously authorized but not allocated, the OPEN keyword was specified, or the partition has EEQEs. The partition is allocated at first reference.

The HALDB partition reflects conditions such as STOPPED, LOCKED, or NOTOPEN. When a HALDB partition is stopped, it must be explicitly started again. Commands with the keyword ALL and commands against a HALDB master do not change the STOPPED and LOCKED indicators in each HALDB partition.

When the command target is a HALDB master, processing acts on all HALDB partitions. For example, if the IMS command is /DBR on the HALDB master, all of the HALDB partitions are closed, deallocated, and deauthorized. Only the HALDB master displays STOPPED (each HALDB partition does not display STOPPED unless it was itself stopped). If a /DBR command was issued against a HALDB master, the display output of a /DISPLAY DB command shows the HALDB master (as STOPPED), but does not display the status of the partitions.

Each partition inherits the access limitations of its HALDB master. If the /DBD command is issued against a HALDB master, all of its partitions close. A subsequent reference to any of the partitions results in the partition opening for input, although the partition’s access might be UPDATE or EXCLUSIVE. The DBRC authorization state reflects the limited access.

Equivalent IMS type-2 commands

The following table shows variations of the /LOCK command and the IMS type-2 commands that perform similar functions.

<table>
<thead>
<tr>
<th>Task</th>
<th>/LOCK command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stops the use of a database.</td>
<td>/LOCK DB dbname</td>
<td>UPDATE DB NAME(dbname) SET(LOCK(ON))</td>
</tr>
<tr>
<td>Locks a program.</td>
<td>/LOCK PGM pgmname</td>
<td>UPDATE PGM NAME(pgmname) SET(LOCK(ON))</td>
</tr>
<tr>
<td>Locks a transaction.</td>
<td>/LOCK TRAN tranname</td>
<td>UPDATE TRAN NAME(tranname) SET(LOCK(ON))</td>
</tr>
</tbody>
</table>

Examples

The following are examples of the /LOCK command:

Example 1 for /LOCK command
Entry ET:
/LOCK DB TREEFARM

Response ET:
DFSO58I LOCK COMMAND COMPLETED

Explanation: Application programs that use the MSDB database named TREEFARM are no longer scheduled. Transaction input can continue.

Example 2 for /LOCK command

Entry ET:
/LOCK LTERM ALL

Response ET:
DFSO58I LOCK COMMAND COMPLETED

Explanation: Output is queued but not sent to the logical terminals associated with the physical terminal from which the /LOCK command was entered.

Example 3 for /LOCK command

Entry ET:
/LOCK PGM APPLETRE

Response ET:
DFSO58I LOCK COMMAND COMPLETED

Explanation: Program APPLETRE can no longer be scheduled.

Example 4 for /LOCK command

Entry ET:
/LOCK PTERM

Response ET:
DFSO58I LOCK COMMAND COMPLETED

Explanation: Application program output (if nonresponse mode transaction) and message switches from other terminals are not sent to the entering physical terminal. Output is queued for later transmission when the terminal is unlocked.

Example 5 for /LOCK command

Entry ET:
/LOCK TRAN SEED

Response ET:
DFSO58I LOCK COMMAND COMPLETED

Explanation: The application program for transaction code SEED can no longer be scheduled. Transaction input can continue.
/LOCK TRAN TXCDLM06

Response ET:
 DFS058I LOCK COMMAND COMPLETED EXCEPT TRANSACTION
 TXCDLM06

Explanation: TXCDLM06 is a Fast Path exclusive transaction. The /LOCK command cannot stop the scheduling of Fast Path exclusive transactions.

Related concepts:
- Sharing secondary index databases (Database Administration)

Related reference:
- UPDATE DB command (Commands)
- UPDATE PGM command (Commands)
- UPDATE TRAN command (Commands)
Chapter 38. /LOG command

The /LOG command writes a single-segment message to the IMS system log. Any text can be logged, including transaction codes or command streams.

Subsections:
- “Environment”
- “Syntax”
- “Keywords”
- “Usage notes”
- “Example”

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) from which the command can be issued.

Table 305. Valid environments for the /LOG command

<table>
<thead>
<tr>
<th>Command</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/LOG</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

/text

Keywords

The following keywords are valid for the /LOG command:

text

 An alphanumeric character message to be logged.

Usage notes

An X'02' log record is produced and contains the text. This command applies only to the currently entered message segment and does not establish a continuing operational mode.

This command can be issued to an IMSplex using the Batch SPOC utility.

Example

Entry ET:

 /LOG TODAY IS MONDAY

Response ET:

 DFS058I LOG COMMAND COMPLETED

Explanation: An X'02' log record containing the text

© Copyright IBM Corp. 1974, 2016
TODAY IS MONDAY

is written to the IMS system log.
Chapter 39. /LOOPTEST command

The /LOOPTEST command is a multisegment command that creates an output write loop that tests for output errors.

It causes a single-segment message to be repeatedly transmitted to the terminal being tested.

Subsections:
- “Environment”
- “Syntax”
- “Usage notes”
- “Example” on page 840

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

Table 306. Valid environments for the /LOOPTEST command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/LOOPTEST</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LINE</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PTERM</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

```
►► /LOOPTEST LINE line# PTERM pterm# ◄◄
```

Usage notes

Multisegment input is combined into a single segment for output transmission. For the terminal in looptest mode to receive the complete message, the cumulative output segment must not exceed the terminal’s output size restrictions.

/LOOPTEST requires an EOM indication to denote end-of-message; an EOS indication must be included for all segments that precede the last segment.

/LOOPTEST causes all I/O error detection and notification procedures within IMS to be bypassed. Depending on the types of errors involved, some write loops might result in high processor utilization.

The /END command terminates looptest mode.

LINE, PTERM

Specifies the communication line or physical terminal to be placed into looptest mode. If the terminal in looptest mode is attached to a multipoint line, the
entire line must be stopped and idle before the /LOOPTEST command is allowed. /LOOPTEST is not allowed on VTAM-attached terminals.

If the device specified is not powered on and ready, intervention-required messages will be sent to the master terminal.

The /DISPLAY LINE PTERM command identifies a terminal in looptest mode.

Example

Entry ET:

```
/LOOPTEST LINE 5 PTERM 1 (EOS)
DATA TEST (EOS)
12345 (EOM)
```

Response ET:

```
DFS058I  LOOPTEST COMMAND COMPLETED
```

Response RT:

```
DATA TEST 12345
DATA TEST 12345
and so forth.
```

Explanation: DATA TEST 12345 is repetitively sent to PTERM 1 on LINE 5.

Related reference:

"How to enter IMS commands" on page 2
Chapter 40. /MODIFY command

The /MODIFY command controls the modification of IMS resources online.

It switches the online environment from the active ACBLIB, FORMAT, and MODBLKS libraries to the inactive libraries containing the new or changed resource descriptions.

Subsections:
- “Environment”
- “Syntax”
- “Keywords” on page 842
- “Usage notes” on page 845
- “Examples” on page 846

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

Table 307. Valid environments for the /MODIFY command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/MODIFY</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ABORT</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>COMMIT</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LTERM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PREPARE</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

A:

- ALL
 - ACBLIB
 - BLDL
 - FMTLIB
 - MODBLKS
 - RACF

© Copyright IBM Corp. 1974, 2016
Keywords

The following keywords are valid for the /MODIFY command:

ABORT

Resets the status that was set by the /MODIFY PREPARE command after a /MODIFY PREPARE, or can be used if the /MODIFY COMMIT was not successful and the operator chooses not to attempt the online change at that time.

COMMIT

Brings all the newly defined resources online, updates the changed resources, and invalidates the deleted resources.

If ALL was specified on the /MODIFY PREPARE command, the ACBLIB, FMTLIB, and MODBLKS changes must be successful or the /MODIFY COMMIT will be rejected. When COMMIT is successful, the modifications will persist across all IMS restarts. If FMTLIB is entered, most new and in-progress requests will be queued for processing after the /MODIFY COMMIT command is completed.

If MODBLKS or ACBLIB is specified, work in progress for changed or deleted resources in the IMS.ACBLIB data set or in the IMS.MODBLKS data set that are directly affected must be completed, or the /MODIFY command is rejected.

If DRD is enabled and /MODIFY PREPARE ALL was specified, the /MODIFY COMMIT command does not swap the MODBLKS library suffix. The DFS3499 message shows the same MODBLKS suffix before and after the online change.

IMS does not reject the /MODIFY COMMIT command if the online change indirectly affects transactions (having work in progress) that reference resources in the ACB library or in the MODBLKS data set that are directly affected by the online change. These transactions themselves are not being changed (no attribute on the TRANSACT macro is being changed), but they reference a PDIR, PSB, or DMB that is affected by the online change. A transaction can be indirectly affected by an online change in one of the following situations:

- The transaction references a PSB directory (PDIR) control block in the IMS.MODBLKS data set that is being changed
- The transaction references a PSB in the ACB library (IMS.ACBLIB) that is being changed online
- The transaction references a PSB directory (PDIR) control block in the IMS.MODBLKS data set which in turn references a database that is being changed online
- The transaction references a PSB in the ACB library (IMS.ACBLIB) that references a database that is being changed online

/DISPLAY MODIFY is used to display the work that was in progress prior to the entering of /MODIFY COMMIT.

IMS will prevent messages entered from terminals from being queued to transactions, but program-to-program switches from applications can still occur. Therefore, a /DISPLAY MODIFY command can indicate that no work is pending for the resources to be modified or deleted, but the /MODIFY COMMIT might be rejected. If this occurs, the new work must be allowed to complete and then the /MODIFY COMMIT command must be reentered.

/MODIFY COMMIT is rejected if:

- A /MODIFY PREPARE command was not previously entered.
• Transactions to be deleted have messages queued.
• Transactions to be changed by the following system definition keywords have messages queued:
 – MSGTYPE
 – INQUIRY
 – FPATH
 – EDIT
 – SPA
• Transactions to be changed by keywords not shown in the previous bullet have messages queued, and the transactions have not been the object of a /STOP or /PSTOP command.
• Transactions with access to programs or databases to be changed or deleted are prevented from updating, and the transactions have not been the object of a /STOP or /PSTOP command. When a transaction shows a status of USTOP during a /DISPLAY TRAN, the /STOP command might need to be entered, because the /PSTOP command might not enable the /MODIFY command to complete the transaction.
• Any program (PSB) that is currently scheduled has a program, database, or transaction change or deletion. This includes Wait for Input (WFI) and Fast Path transactions. All WFI and Fast Path regions that reference changed or deleted routing codes, programs, or databases must be stopped before entering the /MODIFY COMMIT.
• An I/O error occurs while reading the inactive MFS FORMAT library directory or the resident index ($$IMSDIR) member.
• A /START DATABASE command is in progress for any database that is changed or deleted.
• A /DBDUMP or /DBRECOVERY command is in progress for any database that is changed or deleted.

Operator action might be required to prevent the preceding conditions. For example, if a program or database is scheduled, the operator should either wait until the program or database is finished before the /MODIFY COMMIT command is entered, or the operator should issue /STOP or /PSTOP for the associated transaction.

If IMS is in an IMSplex and Resource Manager (RM) is using a resource structure, the transactions being added by the online change are registered to RM if they are not already registered to RM. If any error occurs during the CSLRMUPD request to register the transactions, the /MODIFY or 1INITIATE 0LC command will fail and IMS will be in a COMMIT2F state.

If a /MODIFY COMMIT command results in the COMMIT2F state, the command is rejected with a DFS178 message. A DFS3308 message is sent to the system console with the CSLRMUPD return/reason code. The IMS remains in a COMMIT2F state and the /MODIFY cannot be committed or aborted. The IMS must be canceled and warm started as the online change is not complete.

PREPARE

/MODIFY PREPARE is not recovered across an emergency restart and must be reentered after restart if the /MODIFY COMMIT did not complete prior to an IMS failure.

The parameters in the following table are valid with /MODIFY PREPARE. The environments in which the parameters are valid are also shown in this table.
Table 308. /MODIFY PREPARE parameters environments

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACBLIB</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ALL</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>BLDL</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>FMTLIB</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LTERM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MODBLKS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>RACF</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Note:
1. Only applies to ACBLIB, MODBLKS, and BLDL.

ACBLIB

Quiesces the transactions to be changed or deleted and transactions that access databases or programs to be changed or deleted. ACBLIB members that are not found are displayed as CHANGED because a DDIR or PDIR exists in MODBLKS. Additions or deletions to ACBLIB require the MODBLKS parameter.

If a DMB is being added to the ACBLIB with no MODBLKS change (no DMB exists in the active ACBLIB and a DMB exists in the inactive ACBLIB), then the display will show ADDED instead of CHANGED. If a DMB is being deleted from the ACBLIB with no MODBLKS change (DMB exists in the active ACBLIB and no DMB exists in the inactive ACBLIB), then the display will show DELETED instead of CHANGED. No MODBLKS change means a DDIR exists in the MODBLKS and the same MODBLKS is used before and after the online change.

ALL

Indicates that /MODIFY PREPARE is to be performed for ACBLIB, FMTLIB, RACF, MODBLKS and BLDL.

BLDL

Causes information message DFS3498I to be issued for each PSB or DMB not found in ACBLIB. This message does not affect the success of the command.

FMTLIB

Indicates that there will be no restrictions on the use of MFS format blocks until the /MODIFY COMMIT command is entered.

**LTERM ** *ltermname*

Specifies a logical terminal to receive lists of added, changed, or deleted resources.

MODBLKS

Causes IMS to prepare to bring the changes or deletions defined by the new system definition to IMS. Using MODBLKS also quiesces the transactions to be changed or deleted and transactions that access databases or programs to be changed or deleted. This command is rejected if it is issued on an IMS that has DRD enabled.

RACF

Use of the RACF data space invalidates the IMS online change support for RACF with the /MODIFY command. The IMS online change support is still valid, though, when the RACF data space is not being used.
The message DFS3432 RACF PARAMETER INVALID IF RACF DATA SPACE IS USED is issued if the RACF parameter is used on the /MODIFY PREPARE command when the RACF data space is being used. You can use the RACF command SETROPTS RACLIST (classname) REFRESH to refresh the RACF resource profiles in the RACF data space without requiring the IMS applications to suspend work.

Usage notes

The following table lists the resources and parameters available to the /MODIFY command:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Library</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACBLIB</td>
<td>IMS.ACBLIBx</td>
<td>Contains database and program descriptors such as DMBs and PSBs.</td>
</tr>
<tr>
<td>FMTLIB</td>
<td>IMS.FORMATx</td>
<td>Contains MFS maps produced by the MFS language utility and service utility. The FMTLIB parameter is not valid with DBCTL.</td>
</tr>
<tr>
<td>MODBLKS</td>
<td>IMS.MODBLKSx</td>
<td>Contains a subset of control blocks produced by IMS system definition.</td>
</tr>
<tr>
<td>RACF</td>
<td>RACF in-storage profiles. The RACF parameter is not valid with DBCTL.</td>
<td></td>
</tr>
</tbody>
</table>

Note:

1. $\times = A$ or B
2. Use the SETROPTS RACLIST(CIMS) REFRESH command to refresh RACF updates.

The correct sequence for /MODIFY commands is PREPARE followed by COMMIT. If the online change is not to be completed, the /MODIFY ABORT command is used. The /MODIFY PREPARE command specifies which resources are to be changed or deleted. Depending on the parameters entered, the system will initiate quiescing of appropriate resources. COMMIT initiates the changes entered in a preceding PREPARE. If a previously entered /MODIFY PREPARE command is to be canceled, ABORT must be entered.

An IMS automated operator program can issue the /MODIFY PREPARE and /MODIFY ABORT commands, but it cannot issue the /MODIFY COMMIT command. Thus, you can automatically prepare or abort online change.

If this command is used to delete a database, IMS closes the database and makes it unavailable to programs. Also, if the database is authorized for DBRC, /MODIFY deauthorizes it.

Fast Path DEDBs are supported by the /MODIFY command, but Fast Path MSDBs are not supported.

In an IMSplex, /MODIFY is not supported if coordinated online change is enabled. This command can be issued to an IMSplex using the Batch SPOC utility.

If DRD is enabled, the /MODIFY command specified with the MODBLKS keyword alone or with other keywords is rejected. The command /MODIFY PREPARE ALL ignores resources in the MODBLKS data set. If IMS is started without the MODBLKS DD cards, the MODBLKS-name field in the DFS3499 message is blank, which means that the MODBLKS data set is not applicable. This
is consistent with what DBCTL does with FMTLIB. If IMS is started with the MODBLKS DD statements, the MODBLKS-name field is displayed, with a name suffix of A during prepare and during commit, which means that the MODBLKS libraries were not changed. The ACBLIB and FMTLIB data sets are still supported if DRD is enabled.

An online change of a PSB or DBD will remove the member from the 31-bit pool as well as the 64-bit pool.

If a resident program is changed, it becomes nonresident locally because its definition in the resident PSB pool is no longer valid. If its resident definition attribute was not changed, it becomes resident again at the next IMS restart. If a nonresident program is changed to be resident, the residency takes effect at the next IMS restart.

Examples

The following are examples of the /MODIFY command:

Example 1 for /MODIFY command

This is an example of a successful PREPARE, COMMIT sequence. In this example, DRD is not enabled. First, the command /MODIFY PREPARE ALL is issued.

Entry ET:

/MODIFY PREPARE ALL

Response ET:

DFS3499I ACTIVE DDNAMES MODBLKSA IMSACBA FORMATA MODSTAT ID: 103

Explanation: The modifications are brought online to IMS during a subsequent successful /MODIFY COMMIT command. The ddnames of the active data sets and the current MODSTAT identifier are shown. This message is the normal response.

Example 2 for /MODIFY command

The following example show the modifications from a /MODIFY PREPARE ACBLIB LTERM WTOR command.

Entry ET:

/MODIFY PREPARE ACBLIB LTERM WTOR

Response ET:

DFS3499I ACTIVE DDNAMES: MODBLKSA IMSACBA FORMATA MODSTAT ID:
DFS3430I THE FOLLOWING MODIFICATIONS WILL OCCUR DURING /MODIFY COMMIT:
DFS3430I DMB OLCDB115 CHANGED
DFS3430I DMB OLCDB116 CHANGED
DFS3430I DMB OLCDB117 CHANGED
DFS3430I DMB OLCDB118 CHANGED
DFS3430I DMB OLCDB119 CHANGED
DFS3430I PSB BMP255 NOT CHANGED(DMB CHANGED ONLY)
DFS3430I END OF MODIFICATIONS

Explanation: The PSB references a DBD that is changed, but it is not required to be rebuilt. The DBDs' PSB copies are purged, and the PSB is read from ACBLIB the next time it is scheduled.
Chapter 41. /MONITOR command

The /MONITOR command stops output from being sent to programmable remote stations (System/3). Input and output message queuing are allowed to continue.

The /MONITOR command can be used to reset conditions previously established by the /START, /RSTART, /STOP, /PSTOP, or /PURGE command.

This command can be issued to an IMSplex using the Batch SPOC utility.

Subsections:
- “Environment”
- “Syntax”
- “Keywords”
- “Example”

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the command and keywords.

Table 310. Valid environments for the /MONITOR command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/MONITOR</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LINE</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PTERM</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

The following keywords are valid for the /MONITOR command:

LINE, PTERM

LINE

Specifies the communication line or physical terminal for which output is being stopped.

Example

Entry ET:

/MONITOR LINE 4 PTERM 3

Response ET:

DFS058I MONITOR COMMAND COMPLETED

© Copyright IBM Corp. 1974, 2016
Response RT:

DFS059I TERMINAL MONITORED

Explanation: No further output is allowed to PTERM 3 on LINE 4.
Chapter 42. /MSASSIGN command

The /MSASSIGN command alters the assignments of the following multisystem resources: LINK, MSPLINK, MSNAME, and SYSID. These assignments include logical link to physical link, remote system identification (SYSID) to logical link, logical link path (MSNAME) to logical link, and transaction to a local or remote system.

Subsections:
- “Environment”
- “Syntax”
- “Keywords” on page 850
- “Usage notes” on page 850
- “Equivalent IMS type-2 commands” on page 851
- “Examples” on page 851

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 311. Valid environments for the /MSASSIGN command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/MSASSIGN</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LINK</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LOCAL</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MSNAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MSPLINK</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SYSID</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TRAN</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

© Copyright IBM Corp. 1974, 2016 849
Keywords

The following keywords are valid for the /MSASSIGN command:

LINK
Specifies the logical link in a multiple system configuration.

Logical links can be assigned to physical links for input/output purposes. Only one logical link at a time can be assigned to a physical link (except for VTAM MSPLINKs, which can have multiple logical links assigned to them). The logical link must be stopped and idle for this assignment. Systems can only communicate with each other across a logical link established through specification of the same partner ID in both systems.

This type of assignment must be synchronized between the master terminal operators of the two systems. If a connection becomes inoperable while a transmission is in progress, this type of assignment allows switching to an alternate connection and proceeding with the unfinished transmission.

LOCAL
Specifies the local system, that is the subsystem in which the command is issued. The command /MSASSIGN TRAN p1 TO LOCAL assigns transaction p1 to the local system.

MSNAME
Specifies the logical link path in a multiple systems configuration.

MSPLINK
Specifies the physical link in a multiple subsystem configuration.

The command /MSASSIGN LINK p1 MSPLINK p2 assigns the logical link p1 to the physical link p2 for input and output purposes.

SYSID
Specifies the system identification of a remote system in a multiple system configuration. Remote SYSIDs can be assigned to logical links for output purposes. More than one SYSID (=MSNAME) can be assigned to one logical link. A remote SYSID (=MSNAME) cannot be assigned to another logical link if a message is currently transmitting on the connection corresponding to this SYSID. Therefore, the logical link must be stopped and idle for this assignment.

TRAN
Specifies the transaction to be assigned to either the local or the remote system.

For successful completion of the command:

• The transactions must be stopped.
• When assigning a remote transaction to local, a local APPLCTN macro (no SYSID parameter) for the corresponding program (PSB) must have been included in the system definition. There must be a local as well as a remote PSB of the same name defined during system definition.

The /MSASSIGN TRAN command cannot be used for the CPI Communications driven transaction program.

Usage notes

All changes made by an /MSASSIGN command remain until changed with another /MSASSIGN command or an IMS cold start is performed. After the /MSASSIGN command is used, /MSVERIFY should be used to ensure that the assignment produced a valid configuration.
The /MSASSIGN TRAN tranname TO LOCAL command sets the remote system ID to be the same as the local system ID. It is equivalent to the command UPDATE TRAN NAME(tranname) SET(REMOTE(N),SIDR(localsysid),SIDL(localsysid)).

This command can be issued to an IMSplex by using the Batch SPOC utility.

Equivalent IMS type-2 commands

The following table shows variations of the /MSASSIGN command and the IMS type-2 commands that perform similar functions.

<table>
<thead>
<tr>
<th>Task</th>
<th>/MSASSIGN command</th>
<th>Similar IMS type-2 command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changes the transaction so that it is local and runs on the local system.</td>
<td>/MSASSIGN TRAN tranname TO LOCAL</td>
<td>UPDATE TRAN NAME(tranname) SET(REMOTE(N))</td>
</tr>
<tr>
<td>Changes the transaction so that it is remote, and assign it to a specific logical link path.</td>
<td>/MSASSIGN TRAN tranname TO MSNAME msname</td>
<td>UPDATE TRAN NAME(tranname) SET(MSNAME(name))</td>
</tr>
</tbody>
</table>

Examples

The following are examples of the /MSASSIGN command:

Example 1 for /MSASSIGN command

Entry ET:
/MSASSIGN LINK 2 TO MSPLINK BBB

Response ET:
DFS058I MSASSIGN COMMAND COMPLETED

Explanation: The input system now has a logical connection to physical link BBB for all the SYSIDs assigned to link 2.

Example 2 for /MSASSIGN command

Entry ET:
/MSASSIGN MSNAME BOSTON TO LINK 3

Response ET:
DFS058I MSASSIGN COMMAND COMPLETED

Explanation: The MSNAME BOSTON and its associated SYSID (19) have been reassigned to link 3. Link 3 can be used to associate all its SYSIDs with a main storage-to-main storage connection as opposed to a channel-to-channel or a bisynchronous connection.

Example 3 for /MSASSIGN command

Entry ET:
/MSASSIGN SYSID 19 TO LINK 2

Response ET:
DFS058I MSASSIGN COMMAND COMPLETED
Explanation:SYSID 19 might have been originally assigned to link 1 in the remote system and known by the MSNAME of CHICAGO. In this example, SYSID 19 (CHICAGO) is reassigned to link 2. This assignment can be made when both link 1 and link 2 are connected to the same two IMS systems and link 1 is inoperable.

Example 4 for /MSASSIGN command

Entry ET:
/MSASSIGN TRAN XYZ TO MSNAME LNKY

Response ET:
DFS058I MSASSIGN COMMAND COMPLETED

Explanation: Local and remote SYSIDs of transaction XYZ are assigned to the link associated with MSNAME LNKY.

Related reference:

- [UPDATE TRAN command (Commands)](Commands, Volume 1: IMS Commands A - M)
- [UPDATE MSNAME command (Commands)](Commands, Volume 1: IMS Commands A - M)
Chapter 43. /MSVERIFY command

The /MSVERIFY command verifies local transactions and local LTERMs for corresponding remote transactions and remote LTERMs.

The /MSVERIFY command also verifies the consistency of the attributes of corresponding transactions. For instance, Fast Path exclusive transactions cause an error message to be returned because the transactions can only be processed as local transactions. Defined paths that are usable between the two systems can also be verified with this command.

Subsections:
- "Environment"
- "Syntax"
- "Keywords"
- "Usage notes" on page 854
- "Examples" on page 854

Environment

The following table lists the environments (DB/DC, DBCTL, and DCCTL) in which you can use the commands and keywords.

Table 313. Valid environments for the /MSVERIFY command and keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/MSVERIFY</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSNAME</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SYSID</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Syntax

►►/MSVERIFY►◄ MSNAME msname /MSV SYSID sysid#

Keywords

The following keywords are valid for the /MSVERIFY command:

MSNAME
 Specifies the logical link path in a multiple systems configuration.

SYSID
 Specifies the remote system identification of a system in a multiple systems configuration.
Usage notes

The IMS Multiple Systems Verification utility is run offline following system definition. The /MSVERIFY command is used during online execution when verification of two systems is desired, such as after an /MSASSIGN command has been entered.

Restrictions: The /MSVERIFY command has the following restrictions:
- Only one remote system can be specified for each /MSVERIFY command.
- The /MSVERIFY command does not apply to Intersystem Communication (ISC) or directed routing.

Examples

The following are examples of the /MSVERIFY command:

Example 1 for /MSVERIFY command

Entry ET:
/MSVERIFY MSNAME ABC

Response ET:
DFS2234I MSVERIFY COMMAND IN PROGRESS FOR LOCAL SYSIDS 001,002,003,004 ddddd

Explanation: Assume SYSID numbers 001 through 004 are defined as local in the input system. ddddd is the time stamp.

Response ET:
DFS2243 TA11A IS NOT DEFINED AS TRANSACTION IN BOTH SYSTEMS.

Explanation: TA11A is defined as a remote transaction in one system but is not defined as a transaction in the partner system.

Response ET:
DFS2237I MSVERIFY COMPLETED FOR LOCAL SYSID 001 ddddd

Explanation: Verification of local SYSID 001 is completed. The response message is repeated for local SYSIDs 002, 003, and 004 if all verify. ddddd is the time stamp.

Response ET:
DFS2235I SYSID 004 IS DEFINED AS LOCAL IN BOTH SYSTEMS. ddddd

Explanation: SYSID 004 has no corresponding remote SYSID. ddddd is the time stamp.

Remote SYSIDs are processed next.

Response ET:
DFS2236I MSVERIFY COMMAND IN PROGRESS FOR REMOTE SYSIDS 005,006,007,008 ddddd
Response ET:

```
DFS2237I MSVERIFY COMPLETED FOR SYSID 005
```

Explaination: The verification of one remote SYSID is completed. The response is repeated for remote SYSIDs 006, 007, and 008 if all verify. ddddd is the time stamp.

Example 2 for /MSVERIFY command

Entry ET:

```
/MSVERIFY SYSID 8
```

Explaination: The input system sends a list of its local SYSIDs to the remote system and then displays the following message on the input terminal.

Response ET:

```
DFS2234I MSVERIFY COMMAND IN PROGRESS FOR LOCAL SYSIDS 001, 002, 003, 004 ddddd
```

Explaination: Assume SYSID numbers 001 through 004 are defined as local in the input system.

As the input system completes processing of the information returned for each of the input system's local SYSIDs, the following message is displayed on the input terminal:

Response RT:

```
DFS2237I MSVERIFY COMPLETED FOR SYSID 001 ddddd
```

Explaination: The verification of local SYSID 001 is completed. The response message is repeated for local SYSIDs 002, 003, 004 if all verify. Verification is complete only if a DFS2237I message is received for every SYSID identified in the DFS2234I message. Definition and assignment errors can cause conditions that prevent these messages from being returned. Stopped or unassigned links can also prevent the return of the message. ddddd is the time stamp.

Remote SYSIDs are processed next. The input system sends all its pertinent information related to the remote system's local SYSIDs and displays the following message:

Response ET:

```
DFS2236I MSVERIFY COMMAND IN PROGRESS FOR REMOTE SYSIDs 005, 006, 007, and 008 ddddd
```

As the remote system completes processing of the information it received for each of its local SYSIDs, the following message is displayed on the input terminal. ddddd is the time stamp.

Response ET:

```
DFS2237I MSVERIFY COMPLETED FOR SYSID 005 ddddd
```

Explaination: The verification of one remote SYSID is complete. The last response message is repeated for remote SYSIDs 006, 007, 008 if all verify. ddddd is the time stamp.
Notices

This information was developed for products and services offered in the US. This material might be available from IBM in other languages. However, you may be required to own a copy of the product or product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to actual people or business enterprises is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be liable for any damages arising out of your use of the sample programs.

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. © Copyright IBM Corp. _enter the year or years_.

Programming interface information

This information documents Product-sensitive Programming Interface and Associated Guidance Information provided by IMS.

Product-sensitive Programming Interfaces allow the customer installation to perform tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or tuning of this software product. Use of such interfaces creates dependencies on the detailed design or implementation of the IBM software product. Product-sensitive Programming Interfaces should be used only for these specialized purposes. Because of their dependencies on detailed design and implementation, it is to be expected that programs written to such interfaces may need to be changed in order to run with new product releases or versions, or as a result of service. Product-sensitive Programming Interface and Associated Guidance Information is identified where it occurs, either by an introductory statement to a section or topic, or by a Product-sensitive programming interface label. IBM requires that the preceding statement, and any statement in this information that refers to the preceding statement, be included in any whole or partial copy made of the information described by such a statement.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Terms and conditions for product documentation

Permissions for the use of these publications are granted subject to the following terms and conditions.
Applicability

These terms and conditions are in addition to any terms of use for the IBM website.

Personal use

You may reproduce these publications for your personal, noncommercial use provided that all proprietary notices are preserved. You may not distribute, display or make derivative work of these publications, or any portion thereof, without the express consent of IBM.

Commercial use

You may reproduce, distribute and display these publications solely within your enterprise provided that all proprietary notices are preserved. You may not make derivative works of these publications, or reproduce, distribute or display these publications or any portion thereof outside your enterprise, without the express consent of IBM.

Rights

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either express or implied, to the publications or any information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement

IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies or other technologies to collect product usage information, to help improve the end user experience, to tailor interactions with the end user or for other purposes. In many cases no personally identifiable information is collected by the Software Offerings. Some of our Software Offerings can help enable you to collect personally identifiable information. If this Software Offering uses cookies to collect personally identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, See IBM’s Privacy Policy at http://www.ibm.com/privacy and
IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details the
section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
Bibliography

This bibliography lists all of the publications in the IMS Version 13 library, supplemental publications, publication collections, and accessibility titles cited in the IMS Version 13 library.

<table>
<thead>
<tr>
<th>Title</th>
<th>Acronym</th>
<th>Order number</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMS Version 13 Application Programming</td>
<td>APG</td>
<td>SC19-3646</td>
</tr>
<tr>
<td>IMS Version 13 Application Programming APIs</td>
<td>APR</td>
<td>SC19-3647</td>
</tr>
<tr>
<td>IMS Version 13 Commands, Volume 1: IMS Commands A-M</td>
<td>CR1</td>
<td>SC19-3648</td>
</tr>
<tr>
<td>IMS Version 13 Commands, Volume 3: IMS Component and z/OS Commands</td>
<td>CR3</td>
<td>SC19-3650</td>
</tr>
<tr>
<td>IMS Version 13 Communications and Connections</td>
<td>CCG</td>
<td>SC19-3651</td>
</tr>
<tr>
<td>IMS Version 13 Database Administration</td>
<td>DAG</td>
<td>SC19-3652</td>
</tr>
<tr>
<td>IMS Version 13 Database Utilities</td>
<td>DUR</td>
<td>SC19-3653</td>
</tr>
<tr>
<td>IMS Version 13 Diagnosis</td>
<td>DGR</td>
<td>GC19-3654</td>
</tr>
<tr>
<td>IMS Version 13 Exit Routines</td>
<td>ERR</td>
<td>SC19-3655</td>
</tr>
<tr>
<td>IMS Version 13 Installation</td>
<td>INS</td>
<td>GC19-3656</td>
</tr>
<tr>
<td>IMS Version 13 Licensed Program Specifications</td>
<td>LPS</td>
<td>GC19-3663</td>
</tr>
<tr>
<td>IMS Version 13 Messages and Codes, Volume 1: DFS Messages</td>
<td>MC1</td>
<td>GC19-4240</td>
</tr>
<tr>
<td>IMS Version 13 Messages and Codes, Volume 2: Non-DFS Messages</td>
<td>MC2</td>
<td>GC19-4241</td>
</tr>
<tr>
<td>IMS Version 13 Messages and Codes, Volume 3: IMS Abend Codes</td>
<td>MC3</td>
<td>GC19-4242</td>
</tr>
<tr>
<td>IMS Version 13 Messages and Codes, Volume 4: IMS Component Codes</td>
<td>MC4</td>
<td>GC19-4243</td>
</tr>
<tr>
<td>IMS Version 13 Operations and Automation</td>
<td>OAG</td>
<td>SC19-3657</td>
</tr>
<tr>
<td>IMS Version 13 Release Planning</td>
<td>RPG</td>
<td>GC19-3658</td>
</tr>
<tr>
<td>IMS Version 13 System Administration</td>
<td>SAG</td>
<td>SC19-3659</td>
</tr>
<tr>
<td>IMS Version 13 System Definition</td>
<td>SDG</td>
<td>GC19-3660</td>
</tr>
<tr>
<td>IMS Version 13 System Programming APIs</td>
<td>SPR</td>
<td>SC19-3661</td>
</tr>
<tr>
<td>IMS Version 13 System Utilities</td>
<td>SUR</td>
<td>SC19-3662</td>
</tr>
</tbody>
</table>

Supplementary publications

<table>
<thead>
<tr>
<th>Title</th>
<th>Order number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program Directory for Information Management System Transaction and Database Servers V13.0</td>
<td>GI10-8914</td>
</tr>
<tr>
<td>Program Directory for Information Management System Transaction and Database Servers V13.0 Database Value Unit Edition V13R1</td>
<td>GI10-8966</td>
</tr>
<tr>
<td>Program Directory for Information Management System Transaction and Database Servers V13.0 Transaction Manager Value Unit Edition V13R1</td>
<td>GI10-9001</td>
</tr>
<tr>
<td>IRLM Messages and Codes</td>
<td>GC19-2666</td>
</tr>
</tbody>
</table>
Publication collections

<table>
<thead>
<tr>
<th>Title</th>
<th>Format</th>
<th>Order number</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMS Version 13 Product Kit</td>
<td>CD</td>
<td>SK5T-8864</td>
</tr>
</tbody>
</table>

Accessibility titles cited in the IMS Version 13 library

<table>
<thead>
<tr>
<th>Title</th>
<th>Order number</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS TSO/E Primer</td>
<td>SA22-7787</td>
</tr>
<tr>
<td>z/OS TSO/E User’s Guide</td>
<td>SA22-7794</td>
</tr>
<tr>
<td>z/OS ISPF User’s Guide Volume 1</td>
<td>SC34-4822</td>
</tr>
</tbody>
</table>
Index

Special characters

/ACTIVATE command
 description 97
 environments 97
 examples 98
 syntax 97

/ALLOCATE command
 description 99
 environments 99
 syntax 99

/ASSIGN command
 description 111
 dynamic terminals, using in 113
 environments 101
 examples 114
 restriction 112
 static terminals, using in 112
 syntax 102
 VTAM terminals, using in 113

/BROADCAST command
 description 121
 environment 121
 examples 124
 keywords 122
 requirement 123
 syntax 121
 usage notes 123

/CANCEL command
 description 127
 environments 127
 example 127
 syntax 127
 usage notes 127

/CHANGE command
 APPC keyword
 description 129
 environment 129
 keywords 130
 syntax 130
 usage notes 130
 CTTL keyword
 description 130
 environment 130
 examples 131
 keywords 131
 syntax 131
 CPLOG keyword
 description 132
 environment 132
 keywords 132
 syntax 132
 DESC keyword
 description 132
 environment 133
 keywords 133
 syntax 133
 usage notes 134
 description 129
 DIR MFS keyword
 description 134
 environment 135
 /CHANGE command (continued)
 DIR MFS keyword (continued)
 syntax 135
 usage notes 135
 FDR keyword
 description 135
 environment 135
 syntax 136
 usage notes 136
 LINK keyword
 description 136
 environment 136
 examples, ASR 139
 examples, TCP/IP links 138
 keywords 137
 syntax 137
 NODE keyword
 description 140
 environment 141
 examples 143
 keywords 141
 syntax 141
 SUBSYS keyword
 description 144
 environment 144
 examples 145
 keywords 144
 syntax 144
 SURV keyword
 description 145
 environment 146
 examples 147
 keywords 146
 syntax 146
 usage notes 146
 TRAN keyword
 description 148
 environment 148
 examples 149
 keywords 149
 syntax 148
 UOR keyword
 description 150
 environment 150
 examples 150
 keywords 150
 syntax 150
 USER keyword
 description 151
 environment 151
 keywords 152
 syntax 151
 /CHANGE LINK command
 examples, ASR 139
 examples, TCP/IP links 138
 /CHECKPOINT command
 description 153
 environment 153
 examples 157
 shutdown
 description 153
 /CHECKPOINT command (continued)
 simple checkpoint
 description 154
 statistics checkpoint
 description 154
 usage notes 156
 /CLSDST command
 description 159
 environment 159
 example 161
 syntax 159
 usage notes 161
 /COMPT command
 description 163
 environment 163
 examples 165
 parameters 164
 syntax 164
 usage notes 165
 /CQCHKPT command
 description 167
 environment 167
 examples 168
 syntax 167
 usage notes 168
 /CQQUERY command
 description 169
 environment 169
 examples 170
 keywords 169
 syntax 169
 usage notes 170
 /CQSET command
 description 173
 environment 173
 examples 174
 syntax 173
 usage notes 174
 /DBDUMP command
 description 293
 environment 293
 examples 297
 keywords 293
 syntax 293
 usage notes 295
 /DBRECOVERY command
 description 299
 environment 299
 examples 305
 keywords 300
 syntax 299
 usage notes 303
 /DELETE command
 description 309
 environment 309
 keywords 309
 syntax 309
 /DEQUEUE command 383
 description 383
 environment 383
 examples 389

© Copyright IBM Corp. 1974, 2016
/DEQUEUE command (continued)
keywords 384
usage notes 388
/DIAGNOSE command
description 391, 392
environment 391, 393
element 392, 427
keywords 395
SET keyword 391
SNAP keyword 395
syntax 391, 393
/DISPLAY command
ACT keyword
CLASS 457
DC 450
description 449
environments 449
examples 458
JOBNAME 452
OTMA GROUP 450
PROGRAM 453
REGION 452
REGION 450
STATUS 451, 453
syntax 449
TRANSACTION/STEP 453
TYPE 452
usage notes 450
VTAM ACB 451
AFFIN keyword
description 466
environments 466
examples 467
output fields 468
syntax 466
usage notes 466
AOITKN keyword
description 468
environment 468
examples 469
syntax 468
usage notes 468
APPC keyword
description 469
environment 469
examples 471
output fields 469
syntax 469
AREA keyword
description 471
environments 472
examples 475
output fields 474
syntax 472
usage notes 473
ASMT keyword
description 477
environments 477
examples 480
syntax 478
CCTL keyword
description 487
environments 487
examples 488
keywords 487
output fields 488
syntax 487
/DISPLAY command (continued)
CONV keyword
description 489
environments 490
examples 492
output fields 491
syntax 490
usage notes 491
CLOG keyword
description 493
environments 494
syntax 494
CQS keyword
description 494
environments 494
examples 494
syntax 494
DB keyword
description 494
environments 495
examples 501
output fields 498
syntax 495
usage notes 498
DB keyword with BKERR
description 500
DBD keyword
description 505
environments 505
examples 506
syntax 505
DESC keyword
description 506
environments 506
examples 507
output fields 506
syntax 506
description 433
FDR keyword
description 507
environments 507
examples 508
output fields 507
syntax 507
FPV keyword
description 508
environments 508
examples 509
output fields 508
syntax 508
HSB keyword
description 510
environments 511
examples 512
output fields 511
syntax 511
HSSP keyword
description 513
environments 513
examples 514
output fields 514
syntax 513
LINE keyword
description 514
environments 515
examples 517
keywords 515
/DISPLAY command (continued)
LINK keyword (continued)
reserved parameters 516
syntax 515
LINK keyword
description 518
environments 518
examples 520
keywords 519
output fields 520
syntax 519
usage notes 519
LTERM keyword
description 522
EMHQ 523
environments 522
examples 524
keywords 523
QCNT 523
syntax 522
usage notes 523
LU keyword
environments 526
examples 528
syntax 526
LUNAME keyword
description 526
keywords 526
output fields 527
MASTER keyword
description 531
environments 531
examples 531
syntax 531
MODIFY keyword
description 532
environments 532
examples 540
keywords 533
output fields 535
syntax 533
usage notes 535
MSNAME keyword
description 546
environments 546
examples 547
keywords 546
syntax 546
NODE keyword
description 548
EMHQ 550
environments 548
examples 554
keywords 550
MODEL 550
QMCNT 550
syntax 548
usage notes 552
OASN SUBSYS keyword
description 559
environments 559
examples 560
syntax 559
OLDS keyword
description 560
environments 560
examples 562
/DISPLAY command (continued)
OLDS keyword (continued)
 keywords 560
 syntax 560
 usage notes 561
OTMA keyword
 description 563
 environments 563
 examples 565
 output fields 563
 syntax 563
OVERFLOWQ keyword
 description 568
 environments 568
 examples 570
 keywords 569
 output fields 569
 syntax 568
 usage notes 569
PGM keyword
 description 572
 environments 572
 syntax 572
 usage notes 572
POOL keyword
 description 574
 environments 574
 examples 584
 syntax 574
 usage notes 575
PSB keyword
 description 593
 environments 593
 examples 594
 syntax 593
 usage notes 594
PTERM keyword
 description 595
 environments 595
 examples 596
 syntax 595
 usage notes 595
Q keyword
 description 596
 environments 596
 examples 597
 keywords 597
 syntax 597
QCNT keyword
 description 600
 environments 600
 examples 603
 output fields 602
 syntax 601
 usage notes 602
RECOVERY keyword
 description 604
 environments 604
 examples 607
 keywords 605
 output fields 607
 syntax 605
 usage notes 605
RTCODE keyword
 description 611
 environments 611
 examples 611
 /DISPLAY command (continued)
RTCODE keyword (continued)
 syntax 611
SHUTDOWN STATUS keyword
 description 612
 environments 612
 examples 615
 syntax 612
 usage notes 612
STATUS keyword
 description 617
 environments 617
 examples 621
 syntax 618
 usage notes 618
STRUCTURE keyword
 description 624
 environments 625
 examples 626
 syntax 625
 usage notes 625
SUBSYS keyword
 description 626
 environments 626
 examples 628
 syntax 626
 usage notes 626
SYSID TRANSACTION keyword
 environments 629
 examples 629
 syntax 629
TIMEOVER keyword
 description 629
 environments 630
 examples 630
 keywords 630
 syntax 630
 usage notes 630
TMEMBER keyword
 description 631
 environments 631
 examples 631
 output fields 633
 syntax 631
 usage notes 631
TMEMBER QCNT keyword
 description 631
TMEMBER TPIPE keyword
 description 632
TMEMBER TPIPE OUTPUT keyword
 description 632
TMEMBER TPIPE QCNT keyword
 description 632
TMEMBER TPIPE SYNC keyword
 description 632
TRACE keyword
 description 643
 environments 643
 examples 646
 keywords 644
 output fields 645
 syntax 644
 usage notes 645
TRACKING STATUS keyword
 description 653
 environments 653
 examples 661
TRACKING STATUS keyword (continued)
 output fields 654
 syntax 653
TRAN keyword
 description 662
 environments 662
 examples 665
 keywords 662
 output fields 664
 QCNT 663
 syntax 662
 usage notes 663
TRANSACTION keyword
 description 629
UOR keyword
 description 666, 667
 environments 666
 examples 668
 output fields 667
 syntax 667
 usage notes 674
 keywords 671
 syntax 671
 usage notes 673
/DISPLAY MODIFY command
 library status information 535
/END command
 description 677
 environment 677
 example 678
 keywords 677
 syntax 677
 usage notes 678
/ERESTART command
 description 679
 environment 679
 example 679
 keywords 679
 syntax 679
 usage notes 679
/EXCLUSIVE command
 description 691
 environment 691
 example 692
 keywords 691
 syntax 691
 usage notes 692
/EXIT command
 description 693
 environment 693
 example 695
 keywords 693
 syntax 693
 usage notes 694
/FORMAT command
 description 729
 environment 729
 example 730
 keywords 729
 syntax 729
 usage notes 730

Index 867
Numerics

3270 Information Display System
- display screen 2
- printer 2

AOI (automated operator) application
- CMD call 32
- commands supported 31
- ICMD call 34
- using CMD 32
- using ICMD 34
- AOTKN keyword

AOITOKEN keyword
- DEQUEUE command 384

APPC keyword
- DISPLAY command 469

AREA keyword
- DBRECOVERY command 300
- DISPLAY command 471
- example 475

ASMT keyword
- DISPLAY command 477
- example 480

ASSIGN command
- CLASS keyword 103
- COMPONENT keyword 103
- CPRI keyword 104
- equivalent IMS type-2 commands 114
- examples 114
- ICOMPONENT keyword 104
- IMSplex, using in 112

ATTEND keyword
- data considerations 107
- description 105
- master terminal 105
- physical terminal 105
- PRIMARY parameter 106
- master terminal 112
- NODE keyword 108
- NOSAVE keyword 108

BPRI keyword
- data considerations 107
- description 108
- PARLIM keyword 108
- PLMCT keyword 109

BTOKEN keyword
- data considerations 107
- description 109
- PTERM keyword 110
- REGION keyword 110
- SAVE keyword 110

CA keyword
- data considerations 107
- description 110
- SEGNO keyword 110

CD keyword
- data considerations 107
- description 110
- SEGNC keyword 110

COMPONENT keyword
- description 103
- data considerations 107
- description 108
- PLMCT keyword 109
- data considerations 107
- description 109
- PTERM keyword 110
- REGION keyword 110
- SAVE keyword 110

DATA keyword
- data considerations 107
- description 108

DELETE keyword
- data considerations 107
- description 109
- PTERM keyword 110

DELETEB keyword
- data considerations 107
- description 109

DEQUEUE command 384

DISPLAY command 469

SOURCE keyword
- data considerations 107
- description 108

STOP keyword
- data considerations 107
- description 109

TRAN keyword 110

USER keyword 110

VTAM terminals in
- data considerations 107
- description 110

VTAMPOOL commands
- description 111

assign command
- equivalent IMS type-2 commands 114
- examples 114
- ICOMPONENT keyword 104
- IMSplex, using in 112

Commands, Volume 1: IMS Commands A - M

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3270 terminal</td>
<td>COMPONENT keyword 104</td>
</tr>
<tr>
<td>3275 terminal</td>
<td>COMPONENT keyword 104</td>
</tr>
<tr>
<td>3770 terminal</td>
<td>COMPONENT keyword 104</td>
</tr>
<tr>
<td>ABDUMP keyword</td>
<td>CHECKPOINT command 154</td>
</tr>
<tr>
<td>ABORT keyword</td>
<td>MODIFY Command 842 accessibility</td>
</tr>
<tr>
<td></td>
<td>keyboard shortcuts ix</td>
</tr>
<tr>
<td>ACT keyword</td>
<td>/DISPLAY command</td>
</tr>
<tr>
<td></td>
<td>CLASS 457</td>
</tr>
<tr>
<td></td>
<td>DC 450</td>
</tr>
<tr>
<td></td>
<td>JOBNAME 452</td>
</tr>
<tr>
<td></td>
<td>OTMA GROUP 450</td>
</tr>
<tr>
<td></td>
<td>PROGRAM 453</td>
</tr>
<tr>
<td></td>
<td>REGID 452</td>
</tr>
<tr>
<td></td>
<td>REGION 450</td>
</tr>
<tr>
<td></td>
<td>STATUS 451, 453</td>
</tr>
<tr>
<td></td>
<td>TRANSACTION/STEP 453</td>
</tr>
<tr>
<td></td>
<td>TYPE 452</td>
</tr>
<tr>
<td></td>
<td>VTAM ACB 451</td>
</tr>
<tr>
<td></td>
<td>DISPLAY command 449</td>
</tr>
<tr>
<td></td>
<td>activate command 97</td>
</tr>
<tr>
<td></td>
<td>environments 97</td>
</tr>
<tr>
<td></td>
<td>examples 98</td>
</tr>
<tr>
<td></td>
<td>LINK keyword 97</td>
</tr>
<tr>
<td></td>
<td>NODE keyword 97</td>
</tr>
<tr>
<td></td>
<td>syntax 97</td>
</tr>
<tr>
<td></td>
<td>ACTIVE keyword 122</td>
</tr>
<tr>
<td></td>
<td>BROADCAST command 122</td>
</tr>
<tr>
<td></td>
<td>active system 449</td>
</tr>
<tr>
<td></td>
<td>status 449</td>
</tr>
<tr>
<td></td>
<td>AFFIN keyword 466</td>
</tr>
<tr>
<td></td>
<td>DISPLAY command 466</td>
</tr>
<tr>
<td></td>
<td>ALL parameter 18</td>
</tr>
<tr>
<td></td>
<td>KEYWD macro statement 18</td>
</tr>
<tr>
<td></td>
<td>specifying 18</td>
</tr>
<tr>
<td></td>
<td>ALLOCATE command 99</td>
</tr>
<tr>
<td></td>
<td>environments 99</td>
</tr>
<tr>
<td></td>
<td>LUNAME keyword 99</td>
</tr>
<tr>
<td></td>
<td>MODE keyword 99</td>
</tr>
<tr>
<td></td>
<td>syntax 99</td>
</tr>
<tr>
<td></td>
<td>TPNAME keyword 100</td>
</tr>
<tr>
<td></td>
<td>ALTER option 819</td>
</tr>
<tr>
<td></td>
<td>INITIATE OLREORG command 819</td>
</tr>
<tr>
<td></td>
<td>AOI (automated operator interface) 31</td>
</tr>
<tr>
<td></td>
<td>AOTKN keyword 468</td>
</tr>
<tr>
<td></td>
<td>DISPLAY command 468</td>
</tr>
</tbody>
</table>

The table above lists various commands and keywords with their descriptions and usage notes. This is a subset of the complete list provided in the document.
AUTOLOGON keyword
DISPLAY USER command
examples 675
automated operator interface (AOI) 31

B
BACKUP keyword
ERESTART command 679
BALGRP keyword
DISPLAY command 597
Base Primitive Environment (BPE) commands in CSL 25
Batch SPOC
format 11
BKERR keyword
DISPLAY command
description 500
BMP (batch message processing) program
no backout of updates 679
BMP transactions
ASSIGN command
NPRI keyword 108
LPRI keyword 104
BPE (Base Primitive Environment) commands in CSL 25
BROADCAST command
ACTIVE keyword 122
CHECKPOINT command 157
description 121
environment 121
examples 124
keywords 122
LINE keyword 122
LTERM keyword
ALL parameter 123
description 122
MASTER parameter 123
MSNAME keyword 123
NODE keyword 123
PSTATE keyword 123
syntax 121
SYSID keyword 123
usage notes 123
USER keyword 123
BUILDQ keyword
ERESTART command 679

C
CANCEL command
description 127
environments 127
example 127
syntax 127
usage notes 127
CBT (control block table) pool
display abbreviations 578
DISPLAY POOL command 575
storage pool 576
CCTL (coordinator controller)
status 487
CCTL keyword
CHANGE command
ABORT 131
cctlname 131
CCTL keyword (continued)
CHANGE command (continued)
COMMIT 131
prtln 131
DISPLAY command
description 487
examples 488
CHANGE command
APPC keyword
description 129
environment 129
keywords 130
syntax 130
usage notes 130
CCTL keyword
description 130
environment 130
examples 131
keywords 131
syntax 131
CPLOG keyword
description 132
environment 132
keywords 132
syntax 132
DESC keyword
description 132
environment 133
keywords 133
syntax 133
usage notes 134
description 129
DIR MFS keyword
description 134
environment 135
syntax 135
usage notes 135
FDR keyword
description 135
environment 135
syntax 136
usage notes 136
INTERVAL value 147
LINK keyword
description 136
environment 136
examples, ASR 139
examples, TCP/IP links 138
keywords 137
syntax 137
NODE keyword
description 140
environment 141
examples 143
keywords 141
syntax 141
OUTBND keyword 130
SUBSYS keyword
description 144
environment 144
examples 145
keywords 144
syntax 144
SURV keyword
description 145
environment 146
examples 147
CHANGE command
keywords 146
syntax 146
usage notes 146
TIMEOUT keyword 130
TIMEOUT value 147
TRAN keyword
description 148
environment 148
examples 149
keywords 149
syntax 148
USER keyword
AUTOLOGON 152
description 151
environment 151
ID 152
keywords 152
LOGOND 152
MODE 152
NODENAME 152
NOSAVE 152
SAVE 152
syntax 151
CHANGE LINK command
examples, ASR 139
examples, TCP/IP links 138
CHECKPOINT command
ABDUMP keyword 154
DBCTL (database control) 155
description 153
DUMPQ keyword 154
environment 153
examples 157
FREEZE keyword 154
LEAVEGR keyword 155
LEAVEPLEX keyword 156
NOQSSHUT keyword 156
notifying with the BROADCAST command 157
PURGE keyword 154
QUIESCE keyword 156
shut down
description 153
simple checkpoint
description 154
SNAPQ keyword 156
STATISTICS keyword 156
system messages 157
usage notes 156
CHECKPOINT command
ERESTART command 679
CLASS keyword
/DISPLAY command
ACT 457
ASSIGN command 103
DISPLAY command 597
Commands, Volume 1: IMS Commands A - M
DELETE command
DB keyword
DESCRIPTION command 505
Fast Path 505
DBDESC keyword 320
DBDUMP command
DATABASE keyword 293
DBCTL 294
description 293
environment 293
equivalent IMS type-2
commands 296
examples 297
GLOBAL keyword 294
keywords 293
LOCAL keyword 295
MSDB 294
NOFEOFV keyword 295
NOPPA keyword 295
syntax 293
usage notes 295
DCB (data communication control)
DBRECOVERY command 301
DBRECOVERY command
AREA keyword 300
DATAGRIP keyword 300
DB keyword 300
DBCTL 301
DBRC 301
DED 303
description 299
environment 299
equivalent IMS type-2
commands 304
examples 305
GLOBAL keyword 301
keywords 300
LOCAL keyword 302
MSDB 300
NOFEOFV keyword 302
NOPPA keyword 302
syntax 299
usage notes 303
DC keyword
/DISPLAY command
ACT 450
IDLE command 735
DCCTL (data communication control)
commands 87
DEADQ status
DEQUEUE USER command 388
DED (data entry database)
DBRECOVERY command 303
DISPLAY command 494
ERESTART command 679
LOCK DB command 832
DEFN keyword 325
DELETE command 312, 320, 325, 370
DB keyword
completion codes 313
description 311, 312
environment 311
examples 317
keywords 312
output fields 313
reason codes 313
return codes 313
DBRECOVER command
DB keyword (continued)
return codes 313
DBDESC keyword
completion codes 321
description 319
environment 319
examples 323
keywords 320
output fields 321
reason codes 321
return codes 321
usage notes 320
DEFN keyword
completion codes 331
description 325, 329
environment 325
examples 333
keywords 326
output fields 330
reason codes 331
return codes 331
description 309
environment 309
keywords 309
LE keyword
completion codes 341
description 339
environment 339
examples 342
keywords 340
output fields 341
reason codes 341
return codes 341
syntax 339
usage notes 340
OTMADESC keyword
completion codes 347
description 346
environment 346
examples 348
keywords 346
output fields 347
reason codes 347
return codes 347
syntax 346
usage notes 347
PGM key
completion codes 351
description 349
environment 349
examples 353
keywords 350
output fields 351
reason codes 351
return codes 351
syntax 350
usage notes 350
PGMDESC keyword
completion codes 357
description 355
environment 355
examples 358
keywords 355
output fields 356
reason codes 357
return codes 357
DELETE command (continued)
PGMDESC keyword (continued)
syntax 355
usage notes 356
RTC key
completion codes 362
description 360
environments 360
examples 363
keywords 360
output fields 361
reason codes 362
return codes 362
syntax 360
usage notes 361
RTCDESC keyword
completion codes 367
description 365
environments 365
examples 368
keywords 365
output fields 366
reason codes 367
return codes 367
syntax 365
usage notes 366
syntax 309
TRAN keyword
completion codes 372
description 370
environments 370
examples 374
keywords 370
output fields 371
reason codes 372
return codes 372
usage notes 371
TRANDESC keyword
completion codes 378
description 376
environments 376
examples 380
keywords 377
output fields 378
reason codes 378
return codes 378
syntax 377
usage notes 377
type-2
environment 339
LE keyword 340
requirement 341
syntax 339
usage 311
DELETE LE command
examples 342
DEQUEUE command 383
AOITOKEN keyword 384
description 383
environments 383
examples 389
keywords 384
LINE keyword 384
LTERM keyword 384
LUNAME keyword 385
MSNAME keyword 385
network-qualified LU name 385
DISPLAY command (continued)

TERM keyword (continued)
 usage notes 523

LU keyword
 environments 526
 examples 528
 syntax 526

LUNAME keyword
description 526

MASTER keyword
description 531
 environments 531
 equivalent IMS type-2 commands 531
 examples 531
 syntax 531

MODIFY keyword
description 532
 environments 532
 equivalent IMS type-2 commands 535
 examples 540
 keywords 533
 output fields 535
 syntax 533
 usage notes 535

MSNAME keyword
description 546
 environments 546
 examples 547
 keywords 546
 syntax 546
 network-qualified LU name 469

NODE keyword
description 548
 EMHQ 550
 environments 548
 equivalent IMS type-2 commands 553
 examples 554
 keywords 550
 MODE 550
 QCNT 550
 syntax 548
 usage notes 552

OASN keyword
description 559
 examples 560

OASN SUBSYS keyword
environments 559
 examples 560
 syntax 559

OLDS keyword
description 560
 environments 560
 examples 562
 keywords 560
 syntax 560
 usage notes 561

OTMA keyword
description 563
 environments 563
 examples 565
 output fields 563
 syntax 563
 OVERFLOWQ keyword
description 568

DISPLAY command (continued)

OVERFLOWQ keyword (continued)
 environments 568
 examples 570
 keywords 569
 output fields 569
 syntax 568
 usage notes 569
 parameters 601
 PGM keyword
description 572
 environments 572
 equivalent IMS type-2 commands 572
 examples 573
 syntax 572
 usage notes 572

POOL keyword
 abbreviations used 578
 CBT pool 575
description 574
 environments 574
 equivalent IMS type-2 commands 578
 examples 584
 syntax 574
 usage notes 575

PRIORITY keyword 597

PSB keyword
description 593
 environments 593
 equivalent IMS type-2 commands 594
 examples 594
 syntax 593
 usage notes 594

PTERM keyword
description 595
 environments 595
 examples 596
 syntax 595
 usage notes 595

Q keyword
description 596
 environments 596
 examples 597
 keywords 597
 syntax 597

QCNT keyword
description 600
 environments 600
 equivalent IMS type-2 commands 602
 examples 603
 output fields 602
 syntax 601
 usage notes 602

RECOVERY keyword
description 604
 environments 604
 examples 607
 keywords 605
 output fields 607
 syntax 605
 usage notes 605

DISPLAY command (continued)

RTC keyword
 equivalent IMS type-2 commands 611

RTCODE keyword
description 611
 environments 611
 examples 611
 syntax 611

SHUTDOWN keyword
description 612
 examples 615

SHUTDOWN STATUS keyword
environments 612
 examples 615
 syntax 612
 usage notes 612

status
 list 435

STATUS keyword
description 612, 617
 environments 617
 equivalent IMS type-2 commands 619
 examples 621
 syntax 618
 usage notes 618

STRUCTURE keyword
description 624
 environments 625
 examples 626
 syntax 625
 usage notes 625

SUBSYS keyword
description 559, 626
 environments 626
 examples 560, 628
 syntax 626
 usage notes 626

SYSID keyword
description 629
 examples 629

SYSID TRANSACTION keyword
environments 629
 examples 629
 syntax 629

TIMEOVER keyword
description 629
 environments 630
 examples 630
 keywords 630
 syntax 630
 usage notes 630

TMEMBER keyword
description 631
 environments 631
 examples 631
 output fields 631, 633
 syntax 631
 usage notes 631

TMEMBER QCNT keyword
description 631
 example 638

TMEMBER TPIPE keyword
description 632
 output fields 631
DISPLAY command (continued)
TMEMBER TPIPE OUTPUT keyword
description 632
example 642
TMEMBER TPIPE QCNT keyword
description 632
example 638
TMEMBER TPIPE SYNC keyword
description 632
TRACE keyword
description 643
environments 643
equivalent IMS type-2 commands 645
examples 646
keywords 644
output fields 645
syntax 644
usage notes 645
TRACKING STATUS keyword 653
environments 653
examples 661
output fields 654
syntax 653
TRAN keyword
description 662
environments 662
equivalent IMS type-2 commands 664
examples 665
keywords 662
output fields 664
QCNT 663
syntax 662
usage notes 663
TRANSACTION keyword
with Q keyword 597
with SYSID keyword 629
UOR keyword
description 666, 667
environments 667
examples 668
output fields 667
syntax 667
USER keyword
description 670
environments 670
equivalent IMS type-2 commands 673
examples 674
keywords 671
syntax 671
usage notes 673
DISPLAY NODE command
EMHQ keyword
examples 558
QCNT keyword
examples 558
display screen format
display area 4
master terminal 2
master terminal in XRF 2
message area 4
system status 2
user input area 4
warning message area 4
XRF system status 2
DISPLAY USER command
AUTOLOGON keyword
examples 675
EMHQ keyword
examples 675
QCNT keyword
examples 675
DL/I database error queues
status 500
DL/I databases
inflight changes
backing out 679
DUMPQ keyword
CHECKPOINT command 154
E
E-MCS 5
EMHQ keyword
/DISPLAY command
LTERM 523
NODE 550
DISPLAY NODE command
examples 558
DISPLAY USER command
examples 675
END command
description 677
environment 677
example 678
keywords 677
LINE keyword 677
NODE keyword 677
PTERM keyword 677
syntax 677
usage notes 678
USER keyword 678
Entry Terminal (ET) 15
environments, valid for keywords
/AUXIN command 101
EOM
multisegment command input 6
EOS
multisegment command input 6
ERESTART command
BACKUP keyword 679
BUILDQ keyword 679
CHECKPOINT keyword 679
CMDAUTH keyword 679
CMDAUTH THE keyword 679
COLDBASE keyword 679
COLDCOMM keyword 679
COLDSYS keyword 679
DEDB 679
description 679
environment 679
example 679
FORMAT keyword 679
keywords 679
MSDB 679
MULTSIGN keyword 679
NOBMP keyword 679
NOCMDAUTH keyword 679
NOCMDAUTH THE keyword 679
NOTRANAUTH keyword 679
NOUSER keyword 679
ERESTART command (continued)
OVERRIDE keyword 679
restart
security definition 679
SNGLSIGN keyword 679
syntax 679
TRANAUTH keyword 679
usage notes 679
USER keyword 679
ET (Entry Terminal)
response 15
ETO commands 95
terminal
ERESTART CMDAUTH
command 679
ERESTART CMDAUTH THE
command 679
examples
/DISPLAY ACT command 458
/DISPLAY AFFIN command 467
/DISPLAY AOITKN command 469
/DISPLAY APPC command 471
/DISPLAY FDR command 508
/DISPLAY FPV command 509
/DISPLAY TRACKING STATUS
command 661
DELETE LE command 342
TSO SPOC 16
EXCEPT phrase
response to command 13
EXCLUSIVE command
description 691
environment 691
example 692
keywords 691
LINE keyword 691
NODE keyword 691
PTERM keyword 691
syntax 691
usage notes 692
USER keyword 691
EXIT command
CONVERSATION keyword 694
description 693
environment 693
examples 695
keywords 693
LINE keyword 694
LUNAME keyword 694
NODE keyword 694
PTERM keyword 694
syntax 693
TMEMBER TPIPE keyword 694
usage notes 694
USER keyword 694
EXPORT command
completion codes 710
description 697
environment 697
examples 714
keywords 699
output fields 709
reason codes 710
return codes 710
syntax 697
usage notes 706
Extended Recovery Facility 2

F
Fast Path
area
status 471
database
MODIFY command 845
database buffer pool
display 583
DEDBs
recovering 679
DISPLAY DB command 505
ERESTART COLDBASE
command 679
exclusive transactions
DISPLAY command 662
LOCK TRAN command 833
FDR
keyword
DISPLAY command 507
FORCE keyword
CLSDST command 159
format
lost during conversation
restoring 730
FORMA
command
data parameter 730
description 729
environment 729
example 730
keywords 729
LTERM keyword 729
modname parameter 729
syntax 729
usage notes 730
FORMAT
keyword
ERESTART command 679
FPV
keyword
DISPLAY command 508
FREEZE
keyword
CHECKPOINT command 154

G
generic resources
affinity
displaying 466
GLOBAL keyword
DBDUMP command 294
DBRECOVERY command 301

H
HALDB
example
/DISPLAY DB command 503
/DISPLAY DB Command 503
reorganizing
INITIATE OLRERG
command 819
 HOLD command (continued)
description 731
environment 731
example 731
syntax 731
HSB
keyword
DISPLAY command
description 510
example 512
HSSP (high-speed sequential processing)
description 513
HSSP
keyword
DISPLAY command
description 513
example 514

I
IAM
command
password 21
ICMD call 34
ICOMPONENT keyword
ASSIGN command 104
IDLE
command
DC keyword 735
description 733
environment 733
examples 736
keywords 734
LINE keyword 734
LINK keyword 734
NODE keyword 735
NOSHUT keyword
description 734
restarting 734
syntax 733
IMPORT
command
collection codes 748
description 737
environment 737
examples 759
keywords 739
output fields 746
reason codes 748
return codes 748
syntax 737
usage notes 744
IMS Command
entering
MCS 5
IMS commands
entering 2, 9
Batch SPOC 11
Control Center 10
LU 6.2 device 8
Master Terminal Format 2
TSO SPOC 9
OM API 9
supported by OM API 45
long form 45
short form 45
type-2 22
IMS Connect
CREATE IMSCON
TYPE(DATASTORE) 189
DATASTORE definition
CREATE IMSCON command 189
IMS-supported terminals
RSR environment 43

IMSpex
command processing 25
command routing 26
issuing commands to 25
INITIATE
command 775
OLC
keyword
collection codes 787
description 775
environment 775
examples 806
keywords 776
output fields 785
reason codes 787
return codes 787
syntax 775
usage notes 783
OLRERG
keyword
collection codes 824
description 819
environment 819
examples 827
keywords 820
output fields 823
reason codes 824
return codes 824
syntax 819
usage notes 822
INITIATE OLC
command
collection codes 793
error handling 816
keywords
OPTION 776
PHASE 778
TYPE 781
return and reason codes 787
INITIATE OLC PHASE(COMMIT)
command 783
INITIATE OLC PHASE(PREPARE)
command 783
INITIATE OLRERG
command
collection codes 824
keywords
NAME 820
OPTION 820
SET 820
output fields 823
responses 823
return and reason codes 824
INPUT
keyword
ASSIGN command 104
input, maximum length from z/OS
consoles 5
INTERVAL
keyword
DISPLAY command 512
INTERVAL
value
CHANGE command 147
ISC (Intersystem Communication)
END NODE command 678
node
ASSIGN OUTPUT command 108
CLSDST command 159
user
CLSDST NODE USER
command 160

876 Commands, Volume 1: IMS Commands A - M
LOCAL keyword
 DBDUMP command 295
 DBRECOVERY command 302
 MSASSIGN command 850
 LOCK command
 DB keyword 832
 description 831
 environment 831
 equivalent IMS type-2 commands 834
 examples 834
 keywords 832, 837
 LTERM keyword 832
 NODE keyword 832
 password 21
 PGM keyword 832
 PTERM keyword 832
 syntax 831
 TRAN keyword 832
 usage notes 833
 LOG command
description 837
 environment 837
 example 837
 syntax 837
 logical link path
 queue counts 546
 LOOPTEST command
description 839
 environment 839
 example 840
 LINE keyword 839
 PTERM keyword 839
 syntax 839
 loop test mode
 DISPLAY LINE PTERM
 command 839
 LPRI keyword
 ASSIGN command 104
 BPMP transactions 104
 lterm
 status 522
 LTERM control block
 preventing deletion of
 LTERM keyword
 /DISPLAY command
 EMHQ 523
 QCNT 523
 ASSIGN command
data considerations 107
 description 105
 master terminal 105
 physical terminal 105
 PRIMARY parameter 106
 BROADCAST command
 ALL parameter 123
 description 122
 DELETE type-2 command 340
 DEQUEUE command 844
 DISPLAY command
description 522
 examples 524
 FORMAT command 729
 LOCK command 832
 LU 6.2 application program
 DEALLOCATE 695
 descriptor 506
 LU 6.2 application program (continued)
 ending conversations 695
 EXIT command 695
 network-qualified LU name
 status 506
 status
 related activity 469
 specific device 526
 LU 6.2 device
 allocating a synchronous
 conversation 8
 command
 examples 8
 format 8
 response 14
 security defaults 44
 supported 44
 multisegment command input 6
 LU keyword
 DISPLAY command
 examples 528
 LUNAME keyword
 ALLOCATE command 99
 DEQUEUE command 385
 DISPLAY command
description 526
 EXIT command 694
 network-qualified LU name 385
 M
 MASTER parameter
 BROADCAST command 123
 DISPLAY command
description 531
 examples 531
 master terminal
 ASSIGN command 112
 display screen 2
 display screen format 2
 entering commands 2
 messages to 14
 status 531
 XRF display screen format 2
 Master Terminal (MT) 15
 maximum length of command input from
 z/OS consoles 5
 MCS (multiple console support)
 console 5
 message
 destination
 CHANGE DESCRIPTOR
 command 134
 Message Requeuer program 679
 messages
 sending
 Master Terminal (MT) 15
 restrictions 15
 MFS (Message Format Service)
 bypass 34
 FORMAT command 730
 password 21
 MODE keyword
 /DISPLAY command
 NODE 550
 ALLOCATE command 99
MODIFY command
- ABORT keyword 842
- COMMIT keyword 842
- description 841
- environment 841
- examples 846
- keywords 842
- PREPARE keyword 843
- RACF keyword 844
- syntax 841
- usage notes 845

MODIFY keyword
- DISPLAY command
 - description 532
 - examples 540
- modname parameter
 - FORMAT command 729
- MONITOR command 847
 - description 847
 - environment 847
 - example 847
 - keywords 847
 - LINE keyword 847
 - PTERM keyword 847
- MRQ (Message Requeuer program)
 - ERESTART BUILDQ command 679
- MSASSIGN command
 - description 849
 - environment 849
 - equivalent IMS type-2 commands 851
 - examples 851
 - keywords 850
 - LINK keyword 850
 - LOCAL keyword 850
 - MSNAME keyword 850
 - MSPLINK keyword 850
 - syntax 849
 - SYSSID keyword 850
 - TRAN keyword 850
 - usage notes 850
- MSC (Multiple Systems Coupling)
 - MSASSIGN command 850
 - MSVERIFY command 854
- MSDB (main storage database)
 - DBDUMP command 294
 - DBRECOVERY command 300
 - ERESTART command 679
 - LOCK DB command 832
 - reloading 679
- MSNAME keyword
 - BROADCAST command 123
 - DEQUEUE command 385
 - DISPLAY command
 - description 546
 - examples 547
 - MSASSIGN command 850
 - MSVERIFY command 853
 - MSPLINK keyword
 - DISPLAY command 479
 - MSASSIGN command 850
 - MSVERIFY command 853
- MSNAME keyword
 - BROADCAST command 123
 - DEQUEUE command 385
 - DISPLAY command
 - description 546
 - examples 547
 - MSASSIGN command 850
 - MSVERIFY command 853
 - MSPLINK keyword
 - DISPLAY command 479
 - MSASSIGN command 850
 - MSVERIFY command 853
- MSVERIFY command
 - description 853
 - environment 853
 - examples 854
 - keywords 853
 - MSNAME keyword 853
- MSVERIFY command (continued)
 - syntax 853
 - SYSSID keyword 853
 - usage notes 854
- MT (Master Terminal)
 - response 15
 - multiple console support 5
 - multisegment command input
 - 3270 Information Display System 6
 - display screen 4
 - EOM 6
 - EOS 6
 - examples 6
 - LU 6.2 device 6

MULTSIGN keyword
- ERESTART command 679

N
- network-qualified LU name 9
- NOBMP keyword
 - ERESTART command 679
- NOCMDAUTH keyword
 - ERESTART command 679
- NOCMDAUTHHE keyword
 - ERESTART command 679
- NOQSSHUT keyword
 - CHECKPOINT command 156
 - node status 548
- NODE keyword
 - /DISPLAY command
 - EMHQ keyword 550
 - MODE 550
 - QCNT 550
 - ACTIVATE command 97
 - ASSIGN command 108
 - BROADCAST command 123
 - CHANGE command
 - ASR 141
 - COLDSESS 142
 - FORCSESS 142
 - MODE 142
 - SYNCSESS 142
 - USER 142
 - CLSDST command 160
 - DEQUEUE command 385
 - DISPLAY command
 - description 548
 - examples 554
 - END command 677
 - EXCLUSIVE command 691
 - EXIT command 694
 - IDLE command 735
 - LOCK command 832
 - NOEEOV keyword
 - DBDUMP command 295
 - DBRECOVERY command 302
 - non-VTAM lines
 - terminate input
 - IDLE LINE NOSHUT command 734
 - NOPFA keyword
 - DBDUMP command 295
 - DBRECOVERY command 302
 - NOSAVE keyword
 - ASSIGN command 108
- NOSHUT keyword
 - IDLE command
 - description 734
 - restarting 734
 - NOTRANAUTH keyword
 - ERESTART command 679
 - NOTIFY keyword
 - COMMF command 164
 - NOUSER keyword
 - ERESTART command 679
 - NPRI keyword
 - ASSIGN command
 - BMP transactions 108
 - null keywords 20
 - null word
 - reserved words 91

O
- OASN (origin application schedule numbers)
 - status 559
- OASN keyword
 - DISPLAY command
 - description 559
 - examples 560
- OLDSD keyword
 - DISPLAY command
 - description 560
 - examples 562
- OM (Operations Manager) 26
- OM API
 - command example 16
 - command responses 13
 - input 16
 - issuing commands 9
 - output 16
 - supported command long form 45
 - supported command short form 45
 - supported commands 45
 - supported keywords 45
- OM security 37
- Open Transaction Manager Access (OTMA)
 - status 563
 - Operations Manager (OM)
 - choosing a master client 26
 - supported command long form 45
 - supported command short form 45
 - supported commands 45
 - OSAM (overflow sequential access method)
 - buffer pool
 - /DISPLAY POOL command 579
 - enhanced buffer pool
 - /DISPLAY POOL command 580
 - OTMA security default commands 44
 - supported commands 44
 - OTMA GROUP keyword
 - /DISPLAY command
 - ACT 450
 - OTMA keyword
 - DISPLAY command
 - description 563
 - examples 565
OTMA keyword (continued)
OTMA keyword 565
OUTBND keyword
CHANGE command 130
OUTPUT keyword
ASSIGN command
description 108
outstanding reply numbers
z/OS system console 5
OVERFLOWQ keyword
DISPLAY command
description 568
examples 570
OVERRIDE keyword
ERESTART command 679

P
parameters
ALL 18
description 17
generic 18, 24
group 20
inclusive 18
PARLIM keyword
ASSIGN command
description 108
password
command 21
definition 21
RACF 21
terminals 21
performance
checkpointing the queue
structure 167
displaying global queue
information 602
records 156
serial search 19, 24
when using /CQCHKPT 167
when using /DISPLAY ALL 472
when using /DISPLAY QCNT 602
PGM keyword
DELETE type-2 command 340
DISPLAY command
description 572
examples 573
LOCK command 832
PHIDAM
eexample
/DISPLAY DB command 503
PLMCT keyword
ASSIGN command
description 109
POOL keyword
DISPLAY command
description 574
examples 564
PREPARE keyword
MODIFY command 843
preset mode
3270 Information Display System
MFS bypass 34
ASSIGN command
LINE keyword 104
LTERM keyword 105
NODE keyword 108

PRIORITY keyword
DISPLAY command 597
PROGRAM keyword
/DISPLAY command
ACT 453
PSB keyword
DISPLAY command
description 593
examples 594
pterml exclusive parameter 18
PTERM keyword
ASSIGN command 110
BROADCAST command 123
DEQUEUE command 384
DISPLAY command
description 595
examples 596
EXCLUSIVE command 691
EXIT command 694
LOCK command 832
LOOPTEST command 839
MONITOR command 847
PURGE keyword
CHECKPOINT command 154
DEQUEUE command 386
PURGE1 keyword
DEQUEUE command 386

Q
Q keyword
DISPLAY command
description 596
examples 597
QCNT keyword
/DISPLAY command
LTERM 523
NODE 550
TRANSACTION 663
DISPLAY command
description 600
examples 603
DISPLAY NODE command
examples 558
DISPLAY USER command
examples 675
QUIESCE keyword
CHECKPOINT command 156

RECOVERY keyword
DISPLAY command
description 604
REGID keyword
/DISPLAY command
ACT 452
REGION keyword
/DISPLAY command
ACT 450
ASSIGN command 110
reorganization
INITIATE OLREORG command 819
reserved words
description 18
keywords 17, 91
null keywords 20
null words 91
parameters 91
RESET command
MFS bypass 34
Resource Manager (RM)
called behavior 26
resources
assignment
status 477
changed status 532
Response Terminal (RT) 15
restart
security definition 679
restriction
/ASSIGN command 112
command status in emergency
restart 30
shutdown checkpoint in
shared-queues environment 154
RM (Resource Manager) 26
RSR (Remote Site Recovery)
calleds supported on the
tracker 40
IMS-supported terminals 43
RT (Response Terminal)
response 15
RTC command 236
RTCODE keyword
DISPLAY command
description 611
examples 611

SAVE keyword
ASSIGN command 110
secondary master terminal
commands logged 31
security
definition
at restart 679
OM 37
terminal default 27
SEGNO keyword
ASSIGN command
description 110
SEGSIZE keyword
ASSIGN command
description 110
serial search
performance 19, 24

Index 879
SET keyword
/DIAGNOSE command 391
SGN= parameter
overriding with ERESTART COLDSYS command 679

SHAREDQ keyword
CQCHKPT command 167
CQSET command 173

status (continued)
conversation processing 489
database 494
database access 505
DEDB 494
DISPLAY command
list 435
DL/I database error queues 500
external subsystem 626
Fast Path
area 471
database 618
routing code 611
HSSP activities 513
IMS resources 617
logical link 518
logical link path 546
logical terminal 522
LU 6.2 application program
descriptor 506
for specific devices 526
related activities 469
master terminal 531
message queues 597
node 548
OASN 559
OTMA 563
OTMA target member 631
physical terminal 514, 595
program 572
PSB 593
resource assignment 477
resources
added, changed, or deleted 532
shutdown 612
storage pools 574
system logging 560
trace 643
transaction 629, 662
unit of recovery 666
user structures 670
VTAM response 629
XRF system 510
STATUS keyword
/DISPLAY command
ACT 451, 453
DISPLAY command
description 612, 617
examples 621
status, library information 535
storage pool
status 574

SURVEILLANCE keyword (continued)
CHANGE command (continued)
LNK 146
LOG 146
RDS 146
TIMEOUT 146

SUSPEND keyword
DEQUEUE command 387
syntax 236, 312, 320, 325, 370, 383, 847
syntax diagram
how to read viii

SYSID keyword
BROADCAST command 123
DISPLAY command
description 629
examples 629
MSASSIGN command 850
MSVERIFY command 853

system initialization parameters,
displayed 679

SYSTEM keyword
CQCHKPT command 168
system logging
status 560
system messages

CHECKPOINT command 157

SNAP keyword
/DIAGNOSE command 395
ADDRESS 396
AREA 396
BLOCK 397
DB 401
LINE 403
LINK 405
LTERM 408
MODULE 411
MSNAME 411
NODE 414
OPTION 416
PGM 418
REGION 420
STRUCTURE 424
TRAN 424
USER 424

SNAPQ keyword
CHECKPOINT command 156
SNGLSIGN keyword
ERESTART command 679
SPOC (single point of control)
sending commands with 25
static
node
inclusive parameter 18
terminal
ERESTART CMDAUTH command 679

STATISTICS keyword
CHECKPOINT command 156
CQUERY command 169
status
active system 449
CCTL 487
communication line 514

status (continued)
terminal command
examples 15
terminal security
defaults for LU 6.2 devices 44
defaults for OTMA 44
terminal security defaults 27
time stamp
defined by COMM macro 13
in command responses 13

TIMEOUT keyword
CHANGE command 130
TIMEOUT value
CHANGE command 147
TIMEOVER keyword
DISPLAY command
description 629
examples 630

TIME keyword
DEQUEUE command 387
TIMEM keyword
description 631
examples 631

TIPPE keyword
EXIT command 694

TPNAME keyword
ALLOCATE command 100
DEQUEUE command 385

TRACKING STATUS keyword
DISPLAY command 653

TRA keywords
857, 859

TRAN keyword 370
TRAN keyword (continued)
/DISPLAY command
QCNT 663
ASSIGN command 110
DELETE type-2 command 340
DEQUEUE command 388
DISPLAY command
description 662
examples 665
LOCK command 832
MSASSIGN command 850
TRANAUTH keyword
ERESTART command 679
TRANSACTION keyword
/DISPLAY command
description 662
examples 665
TRN= parameter
overriding with ERESTART COLDSYS
command 679
truncated commands 13
TSO SPOC
cmd example 16
entering 10
format 9
interface 9
issuing
commands 9
type-1 commands 9
type-2 commands 9
screen example 9
TYPE keyword
/DISPLAY command
ACT 452
type-1
command
entering 1
examples 15
format 16
responses
OM API 13
type-2
command
entering 1
command format 22
resource types 22
responses
OM API 13
type-2 commands
CREATE 175
DELETE 311
IMPORT 697
INITIATE 737

U
UNLOCK command
password 21
UOR keyword
CHANGE command
ABORT 150
COMMIT 150
PRTKN 150

V
VSAM (Virtual Storage Access Method)
buffer pool
/DISPLAY POOL command 579
enhanced buffer pool
/DISPLAY POOL command 582
VTAM (Virtual Telecommunications
Access Method)
ACB
close 613
attached terminals
LOOPTEST LINE command 839
MSC links
checkpoint shutdown 734
node
close 613
EXCLUSIVE NODE
cmd 691
IDLE NODE command 735
terminal
CLSDST command 161
VTAM ACB keyword
/DISPLAY command
ACT 451
VTAMPOOL keyword
ASSIGN command 111

X
XRF (Extended Recovery Facility)
commands mirrored by the
alternate 37
commands supported on the
alternate 38
display screen
master terminal 2
system status 2
system-related status
information 510
XRF takeover 30

Z
z/OS
command
entering 1
multiple console support 5
system console
maximum length of command
input 5
messages to 14
outstanding reply numbers 5