IBM FileNet Image Services
Version 4.2

Integral Single Document Storage and Retrieval Guidelines
IBM FileNet Image Services
Version 4.2

Integral Single Document Storage and Retrieval Guidelines
Note
Before using this information and the product it supports, read the information in “Notices” on page 191.

This edition applies to version 4.2 of IBM FileNet Image Services (product number 5724-R95) and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2002, 2011.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
About this manual 13

Audience 13

Document revision history 13

Accessing IBM FileNet Documentation 14

Software Education 14

Feedback 14

Documentation feedback 14

Product consumability feedback 14

1 Single Document Storage (SDS) Overview 16

Introduction 16

Availability 20

Compatibility 20

Prerequisites 21

Image Services software 21

Permanent database usage 21

Server memory 22

Special consideration for Windows Servers 22

Major SDS features 22

SDS repository information 22

Repository connector libraries 23

Standard Image Services tools manage the configuration information 23
Contents

Database Maintenance Document Family 23
SDS-only document families 24
Support for multiple SDS units 24
Backward compatibility with NLS-SDS 25
Object retention 26
 Retention types 27
 The SDS Update Retention Tool 28
 Indefinite hold 29
Content deletion 30
 deldocs 30
 Document services 30
 Client applications 31
Checksumming 31
SDS Enable and Disable capability 32
Support for all CFS-IS document types 33
Integration into the IS committal/migration process 33
Committal/migration auto-restart 34
Retrieval redirection for individual documents 34
Page cache usage 34
Error handling 34

2 How to set up your SDS system 36

Performance Recommendations and Best Practices 37
Multiple storage library servers with SDS 37
Preferred library settings 38

How to configure Single Document Storage devices 39
Adjust Performance Tuning Parameters 39
Rebuild the IS configuration files and update the MKF databases 41
Set up the repository device 42
Determine the repository location string 42
Define the SDS configuration in Image Services 43
View the SDS details in the System Configuration Editor 49
Delete the SDS configuration from Image Services 50
Define SDS Families and Document Classes 53
How to define SDS Families 53
 Supported family configurations 54
 Configure the document class 54
Fast batch break up 54
Multi-Committal systems with SDS 55
Compatible systems 56
Incompatible systems 56
Verify your ISDS system is working 57
Read after write 64

3 How to manage your SDS system 66

SDS system monitoring 67
Monitor RSVP and INFO messages in Storage Library Control (SLC) 67
 RSVP scripting 68
IS Syslog and Subsystem Logging 68
IS Performance Monitoring (perf_mon) 69
Simple Network Management Protocol 70
SDS System States 70
About SDS background job tools 71
Convert, delete, or move data to integral SDS 72
Appendix A – Log Files and Messages 127

Error Logs 127

SDS Error Message Tuples 128
The fn_msg Tool 128

SDS (238) Messages 129
SDS general messages 129
SDSw Repository messages 133
Background SDS migration job messages 135
SDS Fastbatch committal messages 136

Appendix B – EMC Centera 138

Support policy 138

Performance tuning suggestions for Centera 139
Contents

What is EMC Centera? 140
IS-Specific Centera Object Format 141
Embedded BLOBs 143
 Deactivating Embedded BLOBs 145

Configuration steps 145
Set up Centera Profile and Pool Entry Authorization (.pea) file 146
 Create the home pool 146
 Create the pool entry authorization profile 147
 Verify the .pea profile file 149
 Copy the .pea file to the IS server 151
 Modify the .profile and .cshrc files 151
For HP Integrity support 151
 Modify the .profile and .cshrc files 151
Add the Centera device to the IS configuration 152

Appendix C – IBM DR550 153

What is IBM DR550? 153
What is IBM Tivoli Storage Manager? 153
Install the Tivoli API Client Package 5.5 libraries 153
Install the Tivoli API Client Package 6.2.0.0 libraries 155
Install the gsk* modules (AIX servers only) 156

TSM Configuration Steps 157
Set up the IS software for IBM DR550 157
Restart the IS Software 161
Verify the TSM API Environment Variables 161
 First Time Installation of TSM 161
 Pre-existing installation of TSM 162
Contents

Set the MaxSessions Parameter 163
Add the DR550 device to the IS configuration 165
Restart the IS Software 165
Update the SDS family 165

Set API Environment Variables for Tracing (Optional) 165
Set TSM Tracing Method 166
 Tracing on UNIX Systems 167
 Tracing On Windows Systems 167
 Restart the IS Software 168

Image Services support of IBM Information Archive (IIA) 168
To enable support of IIA 168

Tivoli Storage Manager tape support 171

Appendix D – Windows network security settings 172

How to create a Domain Account for Image Services 172
How to set security properties for archive devices 172
How to stop IS software and IS ControlService 173
How to modify the IS ControlService to use the domain account 173
How to add the domain account to the following groups:
 Administrators, FNADMIN, FNOP, FNUSR 174
How to modify the local security policy for Domain Account 175

Appendix E – Centera License Agreement 177
Glossary 179

Notices 191

 Trademarks 195
 U.S. Patents Disclosure 195
About this manual

This document provides procedures and guidelines for Single Document Storage (SDS) on IBM® FileNet® Image Services (IS) systems for both Windows® Server and UNIX® platforms.

Important

Before performing any procedures to setup and configure your system, read this document (especially Chapters 1 and 2) to familiarize yourself with the concepts and features of an SDS system.

Audience

This manual is written for IS System Administrators and support personnel. We assume that you are familiar with the IS Application Executive (Xapex), which includes Storage Library Control, Background Job Control, and Database Maintenance, as well as the IS System Configuration Editor. We also assume that you are familiar with your operating system environment and workstation operations.

Document revision history

<table>
<thead>
<tr>
<th>Image Services version</th>
<th>Date</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td>May 2011</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>

May 2011

Integral SDS Procedures and Guidelines for FileNet Image Services, Version 4.2
Accessing IBM FileNet Documentation

To access documentation for IBM FileNet Image Services products:

2. Select IBM - Product Documentation for FileNet Image Services from the list of search results.

Software Education

IBM provides various forms of education for FileNet software. Please visit Global Learning Services on the IBM Web site at (www.ibm.com/software/sw-training/).

Feedback

Documentation feedback

Send comments on this publication or other IBM FileNet Image Services documentation by e-mail to comments@us.ibm.com. Be sure to include the name of the product, the version number of the product, and the name and part number of the book (if applicable). If you are commenting on specific text, include the location of the text (for example, a help topic title, a chapter and section title, a table number, or a page number).

Product consumability feedback

Help us identify product enhancements by taking a Consumability Survey. The results of this comprehensive survey are used by product development teams when planning future releases. Although we are
especially interested in survey responses regarding the most recent product releases, we welcome your feedback on any of our products.

The survey takes approximately 30 minutes to complete and must be completed in a single session; there is no option to save a partially completed response.
1

Single Document Storage (SDS) Overview

Single Document Storage (SDS) is an integral function of IBM FileNet Image Services that provides the ability to store documents on magnetic, “Write Once, Read Many” (WORM) protected storage devices, which enforce retention protection at the storage level.

Introduction

The development of SDS has been motivated by the desire from customers to find high-performance, low-maintenance alternatives to optical technology, and the introduction in the market of affordable, very large protected magnetic storage solutions that typically offer the following benefits:

- **Address Regulatory Requirements**: provide advanced, storage-level retention and disposition functionality typically required for compliance regulations such as SEC Rule 17a-4.

- **Virtually Unlimited Scalability**: offers network storage with a wide range of settings and configuration options that match the high scalability of Image Services systems.

- **Transparent provisioning**: as the volume of information continues to grow or as technology upgrades are needed, adding storage is as easy as plugging in another storage unit—with no downtime, planned or unplanned—transparently providing a large storage continuum to Image Services systems.

- **Tiered Storage**: some devices permit the off-load or migration of data that is accessed less often to slower, less expensive media
such as tape, which also provide infinite storage capacity and portable disaster recovery capabilities.

- **Built-in High Availability and Disaster Recovery**: provide retail hardened hardware with built-in storage redundancy using RAID (redundant array of independent disks) or RAIN (redundant array of independent nodes) technology depending on device, often coupled with replication.

- **Reduce Total Cost of Ownership**: provide fast, affordable on-line access to fixed content assets by managing more content with fewer staff, by automating key data and storage management functions with self-management, self-configuration, and self-healing capabilities.

“Single Document Storage” describes the process of storing and retrieving documents as individual content objects through an API or a file system interface. Unlike surface-based devices where document pages are stored on physical or virtual “surface containers” that are internally controlled by Image Services, documents are stored in and retrieved from SDS devices as individual content objects through an API or a file system interface.

Also, while physical retention of documents is enforced at the platter level in surface-based storage, retention is enforced at the document object level in SDS devices, which gives Image Services the ability to manage and propagate retention and deletion of individual documents at the storage level.

Integral SDS archival and retrieval processes take advantage of the robust service architecture of Image Services on a level equivalent with OSAR/MSAR technology.
Connectivity with each SDS device is implemented through a specific pluggable connector library that is part of Image Services. This release of Image Services supports the following devices:

- **EMC Centera**
 with the SDSw_centera connector library

- **IBM TotalStorage® DR550**
 with the SDSw_tivoliDR connector library

- **NetApp SnapLock**
 with the SDSw_snaplock connector library

- **Sun StorageTek 5320**
 with the SDSw_SunSAR connector library

- **Hitachi Content Archive Platform (HCAP)**
 with the SDSw_HCAP connector library
The device-specific pluggable libraries are loaded on demand by a configurable number of "worker" processes that handle all the low-level operations of writing and reading content to and from the device. Each worker establishes a channel of communication with the device. The more the workers, the higher the throughput and the higher the demand on system resources. While still being subject to the usual hardware or other environment variables that might limit performance, this model allows for a tight, componentized, efficient, and scalable implementation that supports up to 256 independent SDS devices, each with up to 99 worker processes.

Integral SDS workers use the Image Services Document Buffer Pool (DBP) and shared memory to read from and write to the SDS device.
This greatly reduces the footprint of the worker processes and helps manage resources effectively.

SDS object references are maintained in the document locator (DOCS) table in the multi key file (MKF) permanent database in the same way as OSAR/MSAR document references.

Since Integral SDS is at the heart of Image Services, it is also part of the document entry and migration transactional path. If Image Services fails during the document capture process, the transaction is either undone or recovered depending at which stage of the process the failure occurs, in exactly the same manner as OSAR/MSAR.

And finally, Integral SDS comes with an efficient SDS object format, in which data is stored internally in a tight layout borrowed from MSAR. This design makes it especially fast to convert from OSAR/MSAR to SDS.

Availability

Integral SDS is available in IBM FileNet *Image Services 4.1.1* and higher.

Compatibility

Integral SDS can retrieve documents from storage devices configured with both NLS-SDS and Integral SDS.

NLS-SDS, the former Single Document Storage product for Image Services, requires a separate Near Line Storage (NLS) Archive software component and supports only one SDS device.
See the *Image Services Single Document Storage and Retrieval Procedures and Guidelines* for Image Services 4.1 for more information about NLS-SDS. To download this manual from the IBM support page, see “Accessing IBM FileNet Documentation” on page 14.

Prerequisites

The following prerequisites are required to be in place before you configure your SDS system.

Image Services software

The following releases of Image Services support integral SDS:

- **Image Services 4.1.1** and higher

Permanent database usage

On average, each document uses the following amount of space allocated for the MKF database in the permanent database DOCS table:

- Each document stored to Image Services without Integral SDS, takes up 24 bytes*
- Each document stored to Image Services with SDS and stored to snaplock/HCAP/Sun_SAR, takes up 36 bytes*.
- Each document stored to Image Services with SDS and Centera, takes up 96 bytes*. (The clip_id length is about 60 bytes.)
- Each document stored in Image Services with SDS and DR550 takes up 72 bytes (this size is variable).
You can calculate how much permanent database space you need based on how many documents you plan to store.

Server memory

Each Image Services server must have 1 GB of RAM for use by Image Services. If the server is also running other applications, this requirement is in addition to the RAM required for those applications.

Special consideration for Windows Servers

If you are configuring a file system repository such as SnapLock or StorageTek in a Windows Server environment, the Windows Server must be a member of a Windows Domain. See “Appendix D – Windows network security settings” on page 172 for more information about configuring integral SDS on a Windows server.

Major SDS features

This section provides a functional description of Integral SDS software.

SDS repository information

The Integral SDS repository information is stored in the Document locator (DOCS) table in the MKF permanent database. The DOCS table also contains the content location for surface based storage (that is, the surface_id and offset).
Repository connector libraries

Based on the SDS configuration settings, Image Services dynamically loads the connector libraries (such as SDSw_centera) that interact with specific repositories.

Standard Image Services tools manage the configuration information

The fn_edit and fn_build tools store configuration information in the Image Services Configuration Database (CDB). The Image Services System Configuration Editor, fn_edit, contains new procedures to add, view, and modify the SDS unit, and the CDB schema has been extended to store the SDS information. The new SDS Storage Library tab enables you to view and modify SDS information.

Database Maintenance Document Family

The Database Maintenance Document Family configuration in Xapex includes support for integral SDS units. Database Maintenance also lists the configured SDS units that are associated with a primary document family, and supports an SDS-only setting for document families that are stored only on an SDS device.

The ddexim program also supports the new document family SDS properties. The ddexim tool saves (exports) and restores (imports) document class and index information in the index database. The ddexim program uses the SDS unit name for export and import, rather than the SDS ID.
SDS-only document families

Integral SDS supports SDS-only documents. A document family can be configured so that documents are only associated with an SDS unit. Rather than having a transaction log on other media as a backup, an SDS-only document family depends on the built-in high availability capabilities of the SDS device for redundancy.

Support for multiple SDS units

Integral SDS supports up to 255 SDS units per system. You can still have only one NLS-SDS unit, but you can add up to 255 new integral SDS units to your Image Services system.

Some advantages of supporting multiple SDS units are:

- Multiple Centera Storage pools can be used on one Image Services system

- A different SDS unit can be specified for each document family. That is, one SDS unit can be associated with one document family/class, allowing for aggregation of content.

- Any combination of repository types can be supported on an Image Services system. For example, SDS NetApps SnapLock, DR550, Centera, and Sun StorageTek repository types can co-exist on one Image Services system.

- Migration of data between different repository types can be done easily with the sds_copy tool.

- Each SDS unit can be independently configured with:
 - Different retrieval priorities (low, medium, or high).
Single Document Storage (SDS) Overview

Major SDS features

- Different retention settings (none, indefinite, enabled).
- Different content deletion settings (delete or do not delete).
- As many as 99 dedicated SDS_worker processes.

Backward compatibility with NLS-SDS

Integral SDS is backward compatible with NLS-SDS. Integral SDS operates in a dual mode where documents can be retrieved from storage devices configured in either in NLS-SDS and Integral SDS.

- You can continue to store NLS-SDS information in the DOCTABA table.
- You can use the `sds_convert_nls` tool to move the NLS-SDS information into the DOCS table.
- You can use the `sds_copy` tool to copy the content itself from an NLS-SDS unit to a integral SDS unit.

All of the above modes can co-exist on a system.

The NLS-SDS readers (SDS_CSAR_reader, SDS_FS_reader and SDS_ISAR_reader) are still used (when configured) to read documents stored in an NLS-SDS repository. The NLS-SDS readers only support read requests.

`SDS_tool` can still be used with documents that are stored in the NLS-SDS repository unit, but the NLS-SDS information must also be stored in the DOCTABA table.

`SDS_tool` gives you the following capabilities for managing the NLS-SDS objects:
1 Single Document Storage (SDS) Overview

Major SDS features

- You can display and verify NLS-SDS information about stored documents.

- You can recover documents from an NLS-SDS configured device.

- You can modify some of the document's SDS attributes on the SDS device.

The `sds_convert_nls` tool supports moving or copying of NLS-SDS information to the DOCS table. (The move option removes DOCTABA NLS-SDS information, while the copy option leaves the DOCTABA NLS-SDS information in place.)

With the copy option you can continue using SDS_tool on documents stored in an NLS-SDS unit. SDS_tool does not support documents created in Integral SDS. The other Integral SDS tools support similar features as SDS_tool.

Object retention

Object retention is a way of protecting content for a specified period of time. After the retention date for a document has been reached, the document can be deleted.

Image Services retention has always been stored in the DOCTABA table in the index database. With Integral SDS, retention value is propagated to the SDS object itself and is also stored in the DOCS table in the MKF permanent database.

- Retention of a new SDS object is inherited from the document class when the SDS object is created as a result of committal.
Retention of an SDS object is inherited from DOCTABA when the SDS object is created as a result of migration, such as when documents in MSAR storage are migrated to an SDS device.

The `sds_update_retention` tool synchronizes the SDS object retention value with the retention value stored in DOCTABA.

Retention types

Retention and disposition for a document class is set in the Disposition portion of the Define/Update Document Classes screen in Xapex. The following illustration shows the Archive and Delete radio buttons, the Months From: field, and the Date Filed and Date Closed radio buttons:

- **Chronological retention** – the retention value is based on the date a document is created or entered into the repository. The document class disposition “Date Filed” corresponds to chronological retention.

- **Event-based retention (EBR)** – Retention is based on an event that triggers the disposition. In Image Services, closing the document is the triggering event. Until this event occurs, the retention setting is indefinite. After a document is marked as closed, the retention is set to the current date plus the number of months specified in the “Months From” field. The document class disposition “Date Closed” corresponds to event-based retention.
Tip
Only certain SDS devices, such as Centera, support EBR.

- **Virtual event-based retention** - for those SDS devices that do not support EBR, such as SnapLock and StorageTek, or for SDS devices that have EBR disabled, such as Centera, Image Services provides a way to emulate event-based retention. The document class disposition Date Closed also corresponds to virtual event-based retention.

The SDS Update Retention Tool

The retention settings stored in the SDS device generally mirror the values in DOCTABA in the Image Services index database. A newly committed document uses the default retention values specified in the document class definition.

Because the triggering event does not occur automatically, both event-based and virtual event-based retention types require that you run the `sds_update_retention` tool periodically to synchronize the retention settings in the SDS object and the MKF permanent database with the settings in DOCTABA.

- For EBR documents on Centera devices, `sds_update_retention` sets the trigger event.
- For virtual EBR documents, `sds_update_retention` sets the trigger event and can optionally extend the retention if the triggering event has not occurred. The extend option lets you prolong the retention indefinitely.
 - When a retention setting expires, a new retention setting can be applied.
- Retention settings can be extended, but they cannot be shortened.

- If the specified retention is shorter than the existing retention, the existing retention remains.

- The retention of virtual EBR documents can be extended by a specified offset (in number of days) from the current date, or to a specific date (yyyy-mm-dd).

- If the document is already marked closed (triggered) in DOCTABA, then the trigger date takes precedence over the extension.

See “Update the retention on specific documents” on page 80 for more information about the `sds_update_retention` tool.

Indefinite hold

You can use the `sds_hold` tool to place an indefinite hold on any document during litigation or for some other purpose to prevent the document from being deleted if its retention expires. A hold overrides the current retention value, whether chronological or event-based, and must be explicitly released when the hold is no longer needed. When the hold is released, the retention value is returned to its original setting. The document can only be deleted when the retention has expired and the hold has been released.

Note Holds are not supported on SnapLock, Hitachi Content Archive Platform (HCAP), and StorageTek devices.

See “Place SDS documents on indefinite hold” on page 84 for more information about the `sds_hold` tool.
Content deletion

A configurable option in fn_edit lets you specify whether the content stored in the SDS unit should be deleted from the SDS unit when reference to the document is deleted from the DOCS table in the MKF permanent database.

Note You cannot delete a document stored in an SDS device within 24 hours of its committal, even if the SDS device does not have a retention setting.

deldocs
deldocs is the preferred method of deleting documents stored in SDS with the "content delete" option turned on because it checks the retention of the object in the DOCS table prior to deleting the documents. When the deldocs -i (ignore) option is used, the SDS retention settings DOCS table is disregarded. If the SDS consistent delete is enabled and the deldocs -i option is used, the deletion is only done if the retention setting allows it. See “SDS consistent delete” on page 98 for additional information on deletion behavior.

Document services

When a document is deleted with the Xapex Document Services “Delete Doc/Folder” option, if the retention has not been reached, the document properties in the DOCs table and in DOCTABA are deleted, but the content is not deleted.

When a deletion fails, document services writes detailed information about the object in the system log: doc_id, retention expiration date,
Single Document Storage (SDS) Overview

Major SDS features

hold, retention type, sds_obj_id, and so on. Later, you can delete the content with the DOC_tool DELETE option.

The behavior of document services is subject to the new SDS Consistent Delete feature. See “SDS consistent delete” on page 98.

Client applications

If you have the appropriate access rights, you can also delete a document after you have displayed it in a client application, such as IDM desktop, or an ISTK application.

This method deletes the document from the DOCS table, DOCTABA, cache, and the SDS device without checking the “delete date” in DOCTABA first. If the delete content option is set, and if the retention has not expired, the content is not deleted, and an error message is logged. As with a failed Document Services deletion, you can delete the content with the DOC_tool DELETE option.

The behavior of client applications, such as IDM Desktop, are subject to the new “SDS consistent delete” on page 98.

Checksumming

Image Services uses checksumming to verify document integrity. Normally, a checksum is created for each page when a document is captured. The checksum is then stored with the document when the document is committed. A configurable option in the Image Services System Configuration editor allows you to select one of three checksumming options: none, minimum (the default), or maximum.

For documents stored on MSAR and optical media, if a checksum is not calculated when the document is captured, it is not stored with the
document, and Image Services cannot validate the checksum later, even though the option for checksumming is set to maximum.

Integral SDS will use the checksum that is stored during capture in the SDS document BLOB header. However, if the document was captured with no checksum, Image Services calculates the checksum while writing the document to SDS and appends it to the SDS document BLOB. Upon retrieval, Integral SDS will verify the checksum of every document, regardless of checksum settings.

SDS Enable and Disable capability

The integral SDS “enable” and “disable” capability is consistent with surface based enable and disable of each surface. SDS units and surfaces can be read disabled, write disabled, or both.

For SDS units, only DOC_tool **Enable** and **Disable** commands are supported. (Xapex Storage Library Control does not support SDS disable or enable functions.) The SDS unit DOC_tool setting remains the same between restarts of Image Services.

MSAR/optical surfaces can also be disabled because of an error condition. For example, an MSAR or optical surface might be write-disabled because the MSAR surface file is out of resources. This is different from a surface that has been write-disabled by a user. Surfaces that are disabled because of error conditions cannot be enabled with the Storage Library Control “enable surface” window, but must be addressed through an RSVP window. SDS units are also managed this way.

Note This type of disabled setting of an SDS unit or a surface is **not** persistent after the Image Services software is restarted, but if the
error condition is persistent the SDS unit or surface will be disabled again and an RSVP or INFO message will be regenerated.

When an SDS unit is disabled for reads (for example, if there is a sudden network connection issue), queued read requests are redirected to MSAR or optical devices. If redirection is not possible and notification is enabled, SDS error status is sent through ds_notify. If an SDS unit is disabled with DOC_tool, all queued read requests for that SDS unit are redirected to MSAR or optical devices, if possible. Display applications will not hang when an SDS unit is disabled or goes down if the document is stored on another permanent storage device such as MSAR or optical.

Support for all CFS-IS document types

Integral SDS uses the DOCS table in the MKF permanent database and can support documents federated through CFS-IS from a Content Engine server.

Integration into the IS committal/migration process

Integral SDS is fully integrated into the Image Services committal/migration process. Every supported committal type has been extended to include SDS: fast batch committal (FBC), regular committal, and cache-only.

The Image Services media family infrastructure has also been expanded to include SDS units.
Committal/migration auto-restart

Part of being fully integrated into the committal/migration infrastructure of Image Services includes automatic restart of SDS writes when Image Services software is restarted, as it is with MSAR and optical media.

Retrieval redirection for individual documents

Integral SDS supports retrieval redirection between SDS and MSAR/Optical. Integral SDS also supports retrieval redirection from MSAR/Optical to SDS. Redirection is done automatically based on the DOCS table information.

Page cache usage

Integral SDS makes extensive use of the native Image Services page cache instead of using a working directory. Integral SDS write and read requests go directly between the SDS repository and the page cache to increase performance.

Integral SDS takes advantage of the Cache Services (CSM) resource management infrastructure. Writes are done in Document Buffer pool chunk sizes. The Document Buffer Pool buffer size is defined using the Image Services System Configuration Editor, fn_edit.

Error handling

Integral SDS error handling is built into the conventional Image Services error handling. For example, if the SDS repository runs out of resources to store document objects, the SDS repository is write-
disabled and an RSVP message is generated in the Storage Library Control RSVP window.

If an SDS repository is down or cannot be accessed, an INFO message appears in the Storage Library Control window to indicate the state of the SDS unit. The RSVP message triggering can be used with both SDS RSVP and SDS INFO messages.

Integrated SDS has retry logic when the repository fails to perform the specified operations, such as read, write, or creating objects. elogs are generated indicating that the retries were necessary and also indicating whether the operation was successful. If you experience excessive retries, contact your repository vendor.
How to set up your SDS system

This chapter provides procedures and recommendations for planning and setting up an SDS system. Follow the procedures in this chapter to setup and configure your SDS system. The main topics provided in this chapter include:

- “Performance Recommendations and Best Practices” on page 37
- “Multiple storage library servers with SDS” on page 37
- “How to configure Single Document Storage devices” on page 39
- “View the SDS details in the System Configuration Editor” on page 49
- “Delete the SDS configuration from Image Services” on page 50
- “Define SDS Families and Document Classes” on page 53
- “Fast batch break up” on page 54
Performance Recommendations and Best Practices

Many factors can affect the performance of your SDS system. The following list contains some recommendations that could help to improve the performance of your system.

Recommendations that can improve performance

- On systems using local storage, when possible, install all databases (index, permanent, and transient) on separate physical devices.

- If you are using a high throughput attached storage device, put all databases on those devices, thereby gaining flexibility with regard to redundancy and high availability, without sacrificing performance.

- Increase your network connection speed to a minimum of 100Mbps.

- Upgrade to an NAS device with a higher rated I/O speed.

- Run in a full duplex data transmission environment, when possible, to increase network throughput speed. Verify that the network settings match on all servers and storage devices in the environment.

- Isolate SDS traffic from other network traffic.

Tip ECM Lab Services provides planning and tuning services.

Multiple storage library servers with SDS

When you configure an SDS device in an IS system that has multiple storage servers, the SDS device must be accessible by every storage
library server in the system. Each storage server contains the descriptions of all the SDS devices, so when you configure an SDS unit with the IS Configuration Editor (fn_edit), the configured repository location string will be used on all storage servers.

Tip

For SnapLock, use the same mount point name on all storage servers.

Preferred library settings

The Database Maintenance application in Xapex allows you to select a preferred server and library under certain conditions:

- If the family has MSAR and SDS, or MSAR-only, you can set a preferred server and library. The committal path is through the preferred storage server.

- If the family has MSAR and SDS, or MSAR-only, but you choose not to select a preferred server and library, the committal path alternates between the storage servers.

- However, if the family is defined as SDS-only, you cannot set a preferred server and library. The committal path is through the primary (document locator) storage server.

- If the IS system is a cache-only system, whether the family is SDS-only or MSAR-only, you cannot set a preferred server and library. The committal path alternates between the storage servers.

Tip

If you are using `sds_migr` tool to copy or move MSAR surfaces to SDS in a multi-storage library server environment, you can improve system performance if you generate multiple files of document IDs and group them so that all the IDs whose MSAR surfaces belong to the same
storage server are in the same file. Then transfer each file to its associated storage server and run sds_migr on each server with the -doc_file option.

How to configure Single Document Storage devices

Adjust Performance Tuning Parameters

Use the IS System Configuration Editor to configure the Single Document Storage devices that you need.

Before you configure the SDS device, adjust the performance tuning parameters.

1 As a FileNet software user, such as fnsw, launch the IS System Configuration Editor by entering:

 fn_edit &

2 When the Configuration Editor window displays, select the Performance Tuning tab.

3 Select the System Processes subtab, and locate the Number of dtp_tran processes field.

 If your server has more than one CPU, increase the number of dtp tran processes to half the number of CPUs.

 The dtp tran process is responsible for cataloging documents in the Index database using Document Service's fast batch committal option. Performance can be improved if more than one dtp_tran process is running on a system. The maximum number is 16.
2 How to set up your SDS system
How to configure Single Document Storage devices

Note

Increasing the number of dtp tran processes should only be done on systems that have multiple CPUs. The number of dtp_tran processes should never exceed the total number of CPUs on your system.

4 Select the Server Memory subtab, and set the following parameters to their maximum values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Maximum Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document Buffer Count</td>
<td>256</td>
</tr>
<tr>
<td>Document Buffer Size (KB)</td>
<td>1024 KB</td>
</tr>
<tr>
<td>Directory Buffer Count</td>
<td>256</td>
</tr>
<tr>
<td>Directory Buffer Size (KB)</td>
<td>256 KB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Optimum Value for AIXOS only</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Shared Memory (MB)</td>
<td>2560 MB</td>
</tr>
</tbody>
</table>

5 Optionally, increase the Permanent Buffer Pool Size and the Transient Buffer Pool Size.

- The Permanent Buffer Pool Size is 5000 KB (5 MB) by default.
- The Transient Buffer Pool Size is 100000 KB (100 MB) by default.

You can increase system performance by having a small database entirely resident in memory. The size of these buffers should be approximately twice the size (in KB) of the data and index (but not the description) in the database. (The minimum size of the permanent database is 100 MB; the minimum size of the transient database is 320 MB.)

6 Exit from fn_edit and save your changes.
Rebuild the IS configuration files and update the MKF databases

After you have increased the Buffer Pool Size (KB) field for one or more of the MKF permanent or transient datasets and/or the Max Shared Memory (MB) field, follow these steps:

1. Rebuild the system configuration files:
   ```
   fn_build -a
   ```
 Check that the command runs successfully and that no errors have occurred.

2. If you changed only the Max Shared Memory (MB) field, skip to the next step.
 If you changed any of the Buffer Pool Size fields, enter the following command to update the appropriate databases on your server:
   ```
   fn_util update<xxxx>
   ```
 where `<xxxx>` is the MKF database (for example, trans or perm) whose buffer pool size you modified.

 Repeat this step for each MKF database whose buffer pool size you increased.

3. Stop all Image Services processes by entering the following command:
   ```
   killfnsw -DAy
   ```

4. Start the Image Services software:
   ```
   initfnsw start
   ```
Make a note of any errors that occur when restarting the Image Services software after a configuration change. In many cases, the size of the recovery logs might also need to be increased in proportion to the new MKF permanent or transient buffer pool sizes.

Set up the repository device

- **Centera**: Create Profile (.pea) file. Skip to “Appendix B – EMC Centera” on page 138 to create the Pool Entry Authorization file.

- **DR550**: Run the TSM (Tivoli Storage Manager) scripts, which are provided with Image Services, in the /fnsw/etc directory.

- **Snaplock, SunStorageTek, HCAP**: Create a mount point to the device, such as /SDS_device/dept.

Note The FileNet software users (such as fnsw) and groups (such as fnadmin and fnop) must have the appropriate access rights to these devices.

Determine the repository location string

When you add an SDS device to the Image Services configuration, you will be prompted to enter a repository location string. The format of the repository string varies from one SDS device to another.

- **Centera**: the repository location string is in the format <domain name>?<absolute path to the Pool Entry Authorization (.pea) file>.

- **DR550**: the repository location string is the domain name.

- **Snaplock, SunStorageTek, HCAP**: the repository location string is the mount point of the device.
The repository location string for your SDS device might look similar to one of these:

- Centera: centera1.yourcorp.com?/fnsw/local/sd/1/merged.pea
- DR550: hq-TivoliSM.yourcorp.com
- SnapLock: /SDS_snap2/finance
- StorageTek: /SDS_sunsar2/sales
- Hitachi HCAP /SDS_HCAP/acctng

Define the SDS configuration in Image Services

To configure an SDS device you will need the following information:

- SDS unit type
- SDS repository path or domain name
- Number of SDS workers (1-99, the default is 3)
- SDS unit retrieval priority (high, medium, low)
- SDS unit debug level (off, min, max)
- SDS retention type (none, infinite, enabled)
- SDS retention default (only needed if retention is enabled)
- SDS content deletion enabled? (yes or no)
- SDS foreign unit ssn and name

1. As a FileNet software user, such as fnsw, launch the IS System Configuration Editor by entering:

   ```bash
   fn_edit &
   ```
2 How to set up your SDS system
How to configure Single Document Storage devices

2 From the Procedures tab, select “Configure a Single Document Storage unit” and click Run.

3 From the list of servers that appears, select the server to add the SDS unit to.

4 Select the SDS connector library from the list of supported SDS library types:

 SDSw_snaplock
 SDSw_SunSAR
 SDSw_tivoliDR
 SDSw_centera
 SDSw_HCAP

 The SDS connector library provides the software connection between the IS server and the SDS device. If the SDS connector library for the device you are configuring is not listed, but has been qualified as compatible with the current release of IS, select Other, and specify the name:

 SDSw_newdevice

 where “newdevice” is the specific device type. The new connector library must be in the /fnsw/lib/shobj directory.

5 Enter a unique object name for your SDS unit, such as Snaplock1. The maximum length is 18 characters.

6 Enter the repository location string for the SDS unit.

7 Enter the number of SDS workers.
The main function of the SDS worker process is to handle read and write requests. For read requests, the SDS_worker reads SDS data and writes it to page cache. For write requests, the SDS_worker reads the document content from cache and forms the SDS data object and writes it to the SDS unit. The SDS_worker also handles copy requests, which are similar to write requests.

Three SDS workers are assigned by default, but you can specify as many as ninety-nine (99). You can adjust this number up or down in the future as you monitor system performance using the DOC_tool sds_info utility.

Tip

Start with ten workers and then use the `DOC_tool sds` command to see if they're being fully utilized. Add more workers as needed. For more information about the DOC_tool sds command, see “**SDS consistent delete**” on page 98.

Too many workers might cause memory allocation issues with the connections to the SDS devices, especially Centera. A 238,3,1 error tuple would be a symptom of this problem. See “**SDSw Repository messages**” on page 133 for more information.

Enter an appropriate number of SDS workers.

8 Select the SDS retrieval priority.

Each SDS unit can have a different retrieval priority. For example, on an IS system with optical, MSAR, and SDS storage devices, setting high SDS priority means that IS will send retrieval requests to the SDS unit first, MSAR second, and optical media last. The priority settings correspond to the following retrieval sequences:

- **high** – SDS, MSAR, optical
2 How to set up your SDS system
How to configure Single Document Storage devices

- **medium** – MSAR, SDS, optical
- **low** – MSAR, optical, SDS

Choose the appropriate priority for this SDS unit. (For best SDS performance, select **high**.)

9 Select the SDS debug level.

The debug setting you choose (off, min, or max) determines the amount of information that is reported in the system log. Use the **vl** tool to view the system log.

- **off** – when debug is set to off, no SDS activity is reported in the system log.
- **min** – integral SDS logs a single message for each retrieval, write, or copy operation.
- **max** – integral SDS continues to log the same information as the “min” setting, but additional information (doc_id, request priority, target cache id, cache ssn, first_page, number of pages) is logged when the request is complete. The SDS_worker also logs SDS object information such as the ClipID for Centera devices.

Tip On a production system, setting the debug level to min or max could have a negative performance impact.

10 Select the document retention type.

- **none** - no retention policy is established.
- **infinite** - documents are retained permanently. (This retention type is the equivalent of WORM–Write Once, Read Many.)
2 How to set up your SDS system
How to configure Single Document Storage devices

- **enabled with default offset** - enables document retention.
- **enabled with default date** - enables document retention.

If you select none, the retention is actually set to the current time, plus one day. As a result, you cannot remove a document immediately after committal. You must wait one day before removing it. Document content is always protected against modification.

If you select enabled with default offset or default date, virtual EBR is enabled, and the value will be set to be consistent with the retention setting in DOCTABA. (See “Object retention” on page 26 for more information).

Important: If you plan to enable retention on the SDS device, you need to determine a policy on retention, then update your document classes to be consistent with the retention policy. Then run doctaba_retent_update to set the existing documents retention in doctaba to be consistent with the document class retention settings.

For more information on how doctaba retention update functions, see the ‘Image Services System Tools Reference Manual’.

11 If you selected **enabled with default offset** in the previous window, you are prompted: Enter the default retention offset (days).

Enter the number of days (up to a maximum of 12,000) that you want to retain the documents stored in this SDS unit. This value is only used for virtual EBR.

12 If you selected **enabled with default date**, in the retention type window, enter the default retention date [yyyy-mm-dd].
Enter the future date when the documents stored in this SDS unit will expire. This value is only used for virtual EBR. For example, you might enter **2027-12-31**.

13 **Content deletion enabled?**

When a document is deleted from an Image Services system, whether by Document Services or by the deldocs tool, the document properties are deleted from the MKF permanent database (DOCs table) and the index database (DOCTABA) if the retention has expired and the document is not on hold. The document content remains in storage unless you enable content deletion. See “**Content deletion**” on page 30 in Chapter 1 for more information.

Select **Yes** to make the document content eligible for deletion from the SDS unit when the document properties are deleted.

14 **Is this a foreign SDS unit?**

If this SDS unit was previously configured on another IS system and contains data from that system, it is considered a “foreign” SDS unit. Foreign devices are read-only on the current system; no new documents can be committed to this device. Documents from the “foreign” SDS unit can be imported to the current SDS device with the sds_import tool. See “**Copy documents from SDS to MSAR or optical**” on page 90 in the next chapter.

Select **Yes** if this SDS unit is “foreign” to your current IS system. Otherwise, select **No**.

15 **If you indicated in the previous window that the SDS unit is “foreign,” you are prompted to enter the original system serial number.”**
Enter the System Serial Number of the IS system to which this “foreign” SDS unit was originally attached. The System Serial Number is a unique ten-digit number (provided by IBM) from 0000000001 to 4294967295. For example, 0000100728.

If you indicated that the SDS unit is “foreign,” enter the original SDS name, such as snaplock5, that was configured for this “foreign” SDS unit on the original IS system.

When the procedure has completed successfully, save your changes and exit from the System Configuration Editor.

Stop the IS Software and run `fn_build -a` to regenerate the system configuration files. Your SDS unit is ready to put into production.

View the SDS details in the System Configuration Editor

After you have configured the SDS unit, you can view the details in the System Configuration Editor on the Single Document Storage tab.

Launch the System Configuration Editor.

```
fn_edit &
```

Select the Single Document Storage tab.

Verify that the information displayed is correct. Make any needed changes. Some fields, such as SDS unit number, SDS name, and SDS connector library, cannot be modified.

Use extreme caution if you change the **repository location string**. You might not be able to access documents that have already been committed.

The system looks for the most recent successful configuration settings.
2 How to set up your SDS system

Delete the SDS configuration from Image Services

in /fnsw/local/logs/sds. If you enter the wrong repository location string, then restart IS, and later correct it, you will continue to receive errors.

When you change the repository location string, you must also move or delete the sds device’s log files in /fnsw/local/logs/sds.

– For new system configurations, if the initial setting is incorrect, then you must remove the logs for a successful change to occur.

– For existing system configurations, incorrect changes will not take effect if prior successful logs exist.

4 Save your changes and exit from the System Configuration Editor.

5 Stop the IS Software and run `fn_build -a` to regenerate the system configuration files.

Delete the SDS configuration from Image Services

In the event that you need to remove an SDS device from your IS configuration, follow these steps. If there are multiple SDS units configured on your IS system, you will need to know the name of the unit you want to remove.

1 If any document families are associated with the SDS unit you plan to delete, use the Database Maintenance Define/Update Families window in the Application Executive (Xapex) to remove all document family associations with that SDS unit. Click the SDS Unit: **No** radio button, as shown in the following example.
2 How to set up your SDS system

Delete the SDS configuration from Image Services

2 Launch the IS System Configuration editor.

 fn_edit &

3 On the Procedures tab, select the procedure to “Delete a Single Document Storage unit” and click Run.

4 If more than one SDS unit has been configured on your IS system, you are prompted, “Select the SDS unit to delete.”

 A list of the Single Document Storage units that are currently configured on your IS system appears in the window. Select the unit you want to delete, and click Next.

5 Then you are prompted, “Is this SDS unit associated with any document families?”

 If no families are associated with this SDS unit, click the No radio button.

 Note If you click the Yes radio button, you will see an error message when you try to continue.

 Error: Cannot delete an SDS unit that is associated with a document family

 Use the Database Maintenance application in the Application Executive (Xapex) to remove any document family associations with
the SDS unit you are planning to delete. When all families have been removed, rerun this procedure to delete the SDS unit.

6 When the procedure to delete the SDS unit is finished, select the Single Document Storage tab and verify that the configuration values for the SDS unit you deleted no longer appear.
Define SDS Families and Document Classes

Use this information to define new SDS families and classes.

How to define SDS Families

Define SDS Families using the Define/Update Family dialog of the Database Maintenance application of the IS Application Executive (Xapex).

Important
Select Primary as the Family type. If you select Tranlog as the Family type, an error message will display when you try to save the SDS family settings.

- To associate the documents in this family with an SDS unit (not MSAR or optical), click the SDS Unit: Yes radio button at the bottom of the Define/Update Families window.

- To assign the media family to an SDS unit, choose the appropriate SDS Name from the list of currently configured SDS units.

- If the documents in this family will be associated with only an SDS unit (not MSAR or optical), click the SDS only: Yes radio button at the bottom of the Define/Update Families window.
When configuring an SDS-only family, you must select a media type, but it is not used.

Supported family configurations

- SDS-only media
- MSAR/optical primary + SDS
- MSAR/optical primary family + MSAR or optical transaction log + SDS

Note

IS does not support a transaction log family on an SDS device.

If no libraries such as MSAR or optical are configured on the system, the Migration Delay and the No Migrate options in the document class are ignored and documents will migrate to SDS right away. Otherwise, the Migration Delay and the No Migrate options are used with SDS as usual.

Configure the document class

Configure the document class to use with the new SDS family. There is no difference from the usual procedure.

Fast batch break up

This enhancement allows documents that are committed using Fast Batch to ISDS to be broken up into accessible cache objects prior to writing the documents to the ISDS repository. The break up enhancement makes Fast Batch documents available from cache if the ISDS device is disabled for any reason. The documents remain locked in cache and write requests are generated until the repository becomes available. This feature is activated by the presence of a
trigger file, /fnsw/local/trigger/SDS_fbc_breakup. Image Services must be recycled after creation of the trigger file.

Without this enhancement, documents are not retrievable before they are written to the ISDS repository because Fast Batch cache objects are in a BLOB format that might not be retrieved, and documents are not cataloged in the MKF DOCS table and the DOCTABA table in the index database. With this enhancement, the Fast Batch BLOB object in cache is broken up into a retrievable format and cataloged to the MKF DOCS table and the DOCTABA table in the index database before writing to ISDS. This means that if the ISDS device is down or disabled, incoming Fast Batch documents are retrievable, since they are broken up in cache and cataloged in the MKF DOCS table and the DOCTABA table in the index database.

When using SDS Fast Batch Breakup it is recommended to use the standard Fast Batch Breakup function in fn_edit (in the System Application Services > Others tab).

An additional feature is the ability to configure more than one fbc_commit process. Multiple fbc_commit processes can share the processing on cache-only servers or for commits to SDS-only families. The process is controlled by a trigger file, /fnsw/local/trigger/fbc_commit_number. The file contains the wanted number of processes, a maximum of 256.

Image Services must be recycled after creation of the trigger file.

Multi-Committal systems with SDS

Integral SDS is supported with multiple system committal. Both the target and the source families can be associated with SDS units.
Compatible systems

In a multi-committal environment where both IS systems are compatible (the ranges of document ID numbers do not overlap each other), you can define a family on one system that points to a remote SDS family.

Each compatible IS system has a unique range of document ID numbers. For example, if source IS system A has a range of document ID numbers from 100,000 to 5,000,000, and target IS system B has a range of document ID numbers from 6,000,000 to 9,000,000, the two systems are compatible.

Incompatible systems

If the two IS systems are incompatible (the ranges of document ID numbers overlap), do not define a family that points to a remote SDS family.

For example, when you commit an MSAR document to a remote family, the MSAR document will be successful because the IS software writes the document to a unique MSAR file and assigns a local document ID number that does not conflict, but the SDS document will not be stored on the SDS device. Instead, you will see an error like this in the system log:

```
2007/11/13 15:37:02.340 79,0,23 <fnsw> dtp b 1 (29226) ...[WARNING]
Fastbatch object 4160000000 is from an incompatible system ssn=101410110. Skip writing all documents with doc_ids (100723-100724) to SDS device id 5.
```
If the target family on the incompatible system is SDS-only, an SDS_worker on the target system will remove the cache object and the write request, and will report the following error in the system log:

```
2007/11/13 15:37:02.340 79,0,23 <fnsw> SDS_worker 5 2 (29226) ...[WARNING]
Fastbatch object 4160000000 is from an incompatible system ssn=101410110. Skip writing all documents with doc_ids (100725-100726) to SDS device id 5.
```

Verify your ISDS system is working

This section should be used to verify that ISDS is writing to the device as expected. To accomplish this, verify that the device is accessible, is configured correctly, and that the objects are written to the device with the correct retention values.

1. Use fn_edit (Single Document Storage tab) to verify the debug level is set to MAX.

2. Turn on the Read after Write feature by setting the trigger file. See “Read after write” section for details.
2 How to set up your SDS system

Verify your ISDS system is working

3 Start Image Services software. Check the elog. The elog output should appear similar to:

```
2011/01/18 07:51:41.411 238,0,1 HGPGJ0001I <fnsw> SDS_worker 3 1
(1110098.1.98 0x10f052.1) ... [INFO]
Logon to: 'centera1.domain.xx.com,centera2.domain.xx.com?/home/fnsw/
DEV101410315.pri' Repository
    Dynamic Connector library: 'SDSw_centera'
    Device specific info: 'EMC/Centera libSDSw Ver=1.0, Mode=CE, SDK v3.2.705 (Nov 9 2010 04:48:59)'
    Capacity: 28961.435291GB (30368265972KB)
    Used: 9033.309982GB (9472112048KB) (31.19%)
    Free: 19928.125309GB (20896153924KB) (68.81%)
    Supports EBR=YES holds=YES retention_extend=YES

2011/01/18 07:51:37.774 238,0,1 HGPGJ0001I <fnsw> SDS_worker 2 1
(766150.1.95 0xbb0c6.1) ... [INFO]
Logon to: 'hq-tivolism.domain.xx.com' Repository
    Dynamic Connector library: 'SDSw_tivoliDR'
    Device specific info: 'IBM/DR550 libSDSw Ver=1.0, SDK v5.5.0.0 (Nov 9 2010 04:49:00)'
    Supports EBR=NO holds=YES retention_extend=NO

2011/02/03 11:09:51.936 238,0,1 HGKMG0015I <fnsw> SDS_worker 4 1
(3703.1.146 0xe77.1) ... [INFO]
Logon to: '/SDS_snaplock' Repository
    Dynamic Connector library: 'SDSw_snaplock'
    Device specific info: 'HCAP FileSytem SDSw connector library version=1.0'
    Capacity: 4.812269GB (5046030KB)
    Used: 2.660898GB (2790154KB) (55.29%)
    Free: 2.151371GB (2255876KB) (44.71%)
    Supports EBR=NO holds=NO retention_extend=YES
```
Here is an example of a badly configured SDS unit (an access mode is down). In this scenario the access node Centera1.domain.xx.com is down. If the Centera2.domain.xx.com is added to the search string, the system will start up as expected:

```
2011/02/03 11:09:57.982 238,3,1 HGKMG0015E <fnsw> SDS_worker 2 2 (3694.1.141 0xe6e.1) ... [SERIOUS]
Error from SDSw_open_repository repository_id=Centera1.domain.xx.com?/fnsw/local/sd/1/QA000000000.pri
  err_msg='FPPool_SetGlobalOption(openstrategy=1)

2011/02/03 11:09:57.983 238,0,1 HGKMG0015I <fnsw> SDS_worker 2 2 (3694.1.141 0xe6e.1) ... [INFO]
SDS_disable: SDS 2 from 'SYSTEM ENABLED' (0x0) to 'SYSTEM DISCONNECTED' (0x1)
```
2 How to set up your SDS system
Verify your ISDS system is working

4 Run DOC_tool, ‘SDS; command and select “s” for summary report. A report similar to this is returned:

```
<DOC_tool:lib a>sds
Summary info, Detailed, Worker info, All info, Find object, or list?
('s', 'd', 'w', 'a', 'f', 'l') : s
The current time is Mon Dec 22 07:32:28 2008
SDS info: SUMMARY option
All SDS units mode (y/n) [y]: : <carriage return>
****** SDS unit = Centera3 (2)
    SYSTEM state = SYSTEM ENABLED (0x0)
    USER state = USER ENABLED  (0x0)
    Worker = 'SDS_worker' Number Instances = 3
    info = 'Centera.xxx.com?/home/fnsw/DEV101410315.pri'
    SDS priority = high
    DEBUG Setting = MAX
    dynamic repository lib = 'SDSw_centera'
    retention default offset (30 days)
    SDS content delete setting=YES
    SDS supports: EBR=YES HOLDS=YES Retention Extension=YES
<DOC_tool:lib a>
```

Compare the output against expected values.

a Ensure that the SDS unit is set to Enabled.

b Verify the device retention setting. There are four possible values:

 - retention
 - retention infinite
 - retention default offset (N days)
Verify your ISDS system is working

- retention default date (dd/mm/yyyy hr:min:sec)

Verify that this is set to the expected value.

c Verify the supported operations. These are the expected values. If these values do not match one of the following, contact IBM Support:

- Centera with Advance Retention Management (ARM) enabled:
 SDS supports: EBR=YES HOLDS=YES Retention Extension=YES

- Centera without Advance Retention Management (ARM) enabled:
 SDS supports: EBR=NO HOLDS=NO Retention Extension=YES

- NetApps snaplock, Sun StorageTek, and HCAP:
 SDS supports: EBR=NO HOLDS=NO Retention Extension=YES

- DR550 (Tivoli_DR):
 SDS supports: EBR=NO HOLDS=YES Retention Extension=NO

5 Perform a committal test for each DCL that has been set to go to an Integral SDS unit. This assumes that the ISDS DCL and Document families have been configured.

a Commit documents to the ISDS Doc class.

b Check the elog for errors. Since MAX SDS debug level is turned on, an elog is generated for successful writes.
How to set up your SDS system

Verify your ISDS system is working

c Use the docfetch –v option to ensure the document can be retrieved from the SDS unit.

d Check the elog for errors. Since MAX SDS debug level is turned on, an elog is generated for successful reads.

e Use the DOC_tool “SDS” command with the “Find” option. (The SDS unit number can be mapped to the SDS unit with the “SDS” command and list option (“l”).

```
<DOC_tool:lib a> sds
Summary info, Detailed, Worker info, All info, Find object, or list?
('s', 'd', 'w', 'a', 'f', 'l') : f

The current time is Mon Dec 22 08:34:10 2008

SDS ID (2-255) : 2
Doc ID : 594366
SDS OBJ ID : <carriage return>
CLIP_ID='A9V1T4M6UMBC5e3TFMNT2HQ550DG413PFC3TMQ0VF97G9SQRG1GSJ'
Doc ID=594366 found in SDS=Centera1 (7)
Dump SDS object header? <y=yes/n=no>[y] : n
Get SDS retention settings? <y=yes/n=no>[y] : <carriage return>
  event_base=TRUE held=FALSE retention=NONE
```

In this example, the DCL is set to “Date Closed” (EBR) and the device supports EBR (specifically for Centera), the DOC_tool output should have the following values for “SDS retention settings”. Note that the retention is set to NONE, which means indefinite when the object is EBR.
f Using MKF_tool, verify that the DOCS table has the SDS values set for the committed documents. Note that sds_obj_id is only set for Centera devices.

```
<MKF_tool> select docs doc_id=594367
  doc_id.............594367  pages..................1  contig_sectors........2
  surface_id_1.........3028  offset_1...........198464  surface_id_2.........0
  offset_2.............0  sds_id............22  sds_obj_id_len........53
  sds_obj_blob_sz.......1528  sds_retent_typ........3
  sds_obj_date...1229964584 => 12/22/2008 08:49:44
  sds_obj_id [0]....0x3732464c48444b4f474a4b4665354d363151324a4b454355
                   [25]...0x335147343133504644354d513505536444b4c563043303434
                   [50]...0x4c4d34
  sds_retent_value.1256281199 => 10/22/2009 23:59:59
```

Verify the appropriate SDS fields have the correct values. The following SDS retention type settings indicate retention handling:

- If `sds_retent_typ` is equal to 1 then it has no retention
- If `sds_retent_typ` is equal to 2 then it has infinite retention
- If `sds_retent_typ` is equal to 3 then it has chronological retention
- If `sds_retent_typ` is equal to 4 then it has EBR retention
- If `sds_retent_typ` is equal to 5 then it has virtual EBR retention

g Use an independent method of verifying that the object is written and the retention settings are correct.

- For EMC Centera, use the JCASScript provided by EMC to verify the retention value. Use the “poolopen <pool ID>” command and “clipopen <CLIP ID for Document>”
2 How to set up your SDS system
Verify your ISDS system is working

- For Snaplock, SunStorageTek and HCAP use the following command on UNIX from the SDS root directory:

```bash
cd <root directory>/<ssn>
ls -ul `find . -name <document number> -print`
```

Output:
```
-r-Sr--r-- 1 fnsw  fnusr  1524 May 21 2009  ./594368
```

6 After verifying the SDS unit, use fn_edit to set the SDS debug level to ‘Off’ and turn the Read after Write option off. If the debug level is not set to ‘Off’, elogs will fill. If Read after Write is on, performance is degraded.

Read after write

With IS fix pack 4.1.2.3 release, Read after Write functionality with SDS devices is introduced. General functions of Read after Write include:

- Activated by trigger file: /fnsw/local/trigger/SDS_read_after_write
- If read after write fails, or if a duplicate object is detected, the SDS unit will be write disabled and an RSVP will be generated.
- Called whenever writing to SDS repositories:

 FBC

 Regular committal
Sds_migr, sds_copy

When SDS Max Debug level is used in conjunction with the read after write feature, a sys_log per document is generated about the read_after_write operation.

This should only be turned on to verify that the content is correctly written.

If read after write fails, an elog message is returned and an RSVP, and the device is disabled for writes until you respond to the RSVP.

Once you verify the content is correctly written, turn Read after Write off.
How to manage your SDS system

This chapter contains administrative procedures for managing and maintaining your SDS system. The following procedures are included:

- “SDS system monitoring” on page 67
- “Convert, delete, or move data to integral SDS” on page 72
- “Update the retention on specific documents” on page 80
- “Place SDS documents on indefinite hold” on page 84
- “Copy between two SDS units” on page 86
- “Copy documents from SDS to MSAR or optical” on page 90
- “SDS consistent delete” on page 98

Important

The `docchk` tool cannot be used with SDS documents. The `docchk` tool only works with surface-based storage, such as optical or MSAR.

The `stdoccpy` tool cannot be used to copy documents from an SDS-only family to MSAR or optical media.
SDS system monitoring

To monitor the health and performance of your Image Services system, you can use the following tools:

Monitor RSVP and INFO messages in Storage Library Control (SLC)

Log on to the Image Services Application Executive (Xapex), and select Storage Library Control from the Applications menu.

The title of the SLC main window shows the name of the local storage library server. The SLC main window has four sections:

- Informational Messages section displays status information.
- RSVP Messages section displays operator instructions.
- The RSVP/INFO Trigger field indicates whether or not the RSVP/INFO triggering script is enabled.
- Storage Libraries section displays a line for each library or ODU attached to the server.

The SLC RSVP and INFO messages have been expanded to include SDS information.

See the Image Services System Administrator's Handbook for more information on Storage Library Control. To download this manual from the IBM support page, see “Accessing IBM FileNet Documentation” on page 14.
RSVP scripting

Two new string-type arguments have been added to the list of fixed arguments that are passed to the messaging script you create. Like the other arguments, the sds_id and sds_name arguments apply to both RSVP and INFO messages.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Field</th>
<th>Type</th>
<th>Valid Range</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>sds_id</td>
<td>integer</td>
<td>2-255</td>
<td>The id number assigned to the SDS unit when it was configured with the Image Services Configuration Editor.</td>
</tr>
<tr>
<td>19</td>
<td>sds_name</td>
<td>Variable string[250]</td>
<td></td>
<td>The name you assigned to the SDS unit in the Image Services Configuration Editor. For example, DR550_acct.</td>
</tr>
</tbody>
</table>

See Appendix E, “Message Triggering” in the Image Services System Administrator’s Handbook for more information on creating customized scripts. To download this manual from the IBM support page, see “Accessing IBM FileNet Documentation” on page 14.

IS Syslog and Subsystem Logging

Errors, warnings, and informational messages are recorded in the standard system log. Use the `vl` command to view the log file.

The SDSw connector libraries return device-specific errors from the SDS unit to Image Services, as in the following examples.
SnapLock error message:

```
SDS_open_object: Error from SDSw_open_object err_msg='SDSw_open_object: open() failed errno=2 docfile='/SDS_sunsar/SDS_test2/101410035/SunSAR/00/0F/42/1000000' Does not exist' doc_id=1000000
```

Centera error message:

```
SDS_open_object: Error from SDSw_open_object err_msg='FPClip_Open[Flat](Pool=2306434306920808704, Clip=0)Error =-10006, SysErr=0 Mess =Wrong parameter detected Trace =FPObjRemote:SetID(xxxxx)<FPClip_Open(-,xxxxx,2)' doc_id=10000000
```

DR550 error message:

```
SDS_open_object: Error from SDSw_open_object err_msg='Can't find object, ObjName=/DR550/00/98/96/10000000 ANS0272I (RC121) The operation is finished.' doc_id=10000000
```

IS Performance Monitoring (perf_mon)

The `perf_mon` tool gathers statistical data from the following areas: cpu usage for kernel and non-kernel activities; overall file system activities; kernel file system activities; network I/O statistics; database server counts; document services counts, RPC statistics, and security statistics. The `perf_mon` tool also reports read and write counts of SDS documents.
See the *Image Services System Tools Guide* for more information on using the `perf_mon` tool. To download this manual from the IBM support page, see “Accessing IBM FileNet Documentation” on page 14.

Simple Network Management Protocol

Simple Network Management Protocol (SNMP) is an industry-standard protocol for network management. SNMP enables network administrators to manage network performance, find and solve network problems, and plan for network growth.

You can use your SNMP-compliant network management software to access a wide variety of information in your Image Services system through the Image Services Management Information Base (MIB), which has been enhanced to support SDS.

Although the SNMP protocol is a standard, there are many variations in specific implementations. Always refer to the manuals that came with your network management software for details.

See the *Image Services SNMP Reference Manual* for more information on configuring and using the SNMP. To download this manual from the IBM support page, see “Accessing IBM FileNet Documentation” on page 14.

SDS System States

When an error occurs, integral SDS might change the system state.

- The SDS System states are **enabled**, **disconnected**, **read-only**, or **write-only**.
- When the System state changes, an SDS_worker issues an RSVP or INFO message. For example, if the SDS_worker does not have write permission to a repository, the SDS device will be set to read-only and an RSVP message will be generated.

- If an SDS unit is disconnected, it can be reconnected automatically and set to enabled System state.

- These states are changed automatically as a result of system conditions, and they do not remain in effect when the Image Services software is restarted.

The **DOC_tool sds** command can be used to view the SDS system state.

About SDS background job tools

A suite of command line tools help you manage documents in your SDS environment:

- **sds_convert_nls**: converts documents from NLS-SDS to integral SDS
- **sds_copy**: copies documents between two SDS units
- **sds_hold**: places a document on indefinite hold or releases a hold
- **sds_import**: imports SDS documents from another Image Services system
- **sds_migr**: migrates documents (migrating from cache only) from MSAR or optical media to SDS
3 How to manage your SDS system

Convert, delete, or move data to integral SDS

`sds_update_retention`
updates the retention for EBR documents

All `sds_*` command line tools run in the background, and you can monitor their progress with Background Job Control (BJC) in Xapex. To view the usage statement for each tool, run the command with no options.

These tools generate the standard BJC progress and completion logs. They also have a `-writelist` option that generates a list of documents processed.

Each `sds_*` tool has the standard BJC capabilities: Auto restart, suspend, abort, and log files. See Chapter 6, “Background Job Control” in the *Image Services System Administrators Handbook* for a complete description of BJC. To download this manual from the IBM support page, see “Accessing IBM FileNet Documentation” on page 14.

Convert, delete, or move data to integral SDS

The tools described in this section will help you copy, move, and convert data to integral SDS. They include:

Important: If you plan to enable retention on the SDS device, you need to determine a policy on retention, then update your document classes to be consistent with the retention policy. Then run doctaba_retent_update to set the existing documents retention in doctaba to be consistent with the document class retention settings.

For more information on how doctaba retention update functions, see the ‘Image Services System Tools Reference Manual’.

- "Convert an NLS-SDS unit to integral SDS” on page 73
• “Convert an MSAR/optical/cache system to integral SDS” on page 76

Convert an NLS-SDS unit to integral SDS

This procedure describes how to convert an existing NLS-SDS unit to use integral SDS.

The sds_convert_nls tool moves the NLS-SDS references from the index database to the MKF permanent database.

The SDS information in DOCTABA can be moved or copied to the DOCS table. The document content remains in place and unchanged in the SDS repository.

These documents can still be retrieved by either the SDS_CSAR_reader, the SDS_ISAR_reader, or the SDS_FS_reader process. In addition, use the -copy option to preserve the index database entry. This allows for the continued support of the NLS-SDS SDS_tool which relies on the index database entry to operate. If the -copy option is not used, then SDS tool can not delete the document.

If you choose not to use the NLS-SDS SDS_tool for deletions, you can use native applications, for example, using deldocs or IDM Desktop. See NLS Native delete feature for details.

In a multiple storage library server environment, run this tool on the primary storage library server.

Log on as a member of the fnadmin group to run sds_convert_nls.
3 How to manage your SDS system
Convert, delete, or move data to integral SDS

Syntax

```
sds_convert_nls  { -doc_file <filename> | 
                   -first <doc_id>  -last <doc_id> | 
                   -all } 
                  [ -copy ] 
                  [ -overwrite ] 
                  [ -writelist ]
```

Required parameters

Only one of the document specifiers (doc_file, range, or all) is required.

- **-doc_file <filename>**
 Specifies the name of a text file of document ids, one id per line.

- **-first <doc_id>**
 Specifies the first document in a range.

- **-last <doc_id>**
 Specifies the last document in a range.

- **-all**
 Migrate all documents to integral SDS.

Optional parameters

- **-copy**
 Copies, not moves, the archive and ClipID index values to the MKF permanent database.

- **-overwrite**
 Allows migration again even if the documents have already been migrated.

- **-writelist**
 Generates a list of migrated documents in a file named ConvertNLSDocs.nnn. The file is in the /fnsw/local/logs/bkglog/ directory.
How to manage your SDS system

Convert, delete, or move data to integral SDS

Examples

To copy all SDS-related database entries from DOCTABA to the DOCS table, and create a list of the copied documents, enter:

```bash
sds_convert_nls -copy -all -writelist
```

(With the `-copy` option, the entries in DOCTABA are preserved so they can be used by `SDS_tool`.)

To move a range of SDS-related database entries from DOCTABA to the DOCS table, enter:

```bash
sds_convert_nls -first 24680 -last 86420
```

(Without the `-copy` option, the DOCTABA entries will be removed.)

Delete NLS objects

Image Services 4.2.0 introduces the ability to delete NLS objects from within the Image Services environment. Currently, `SDS_tool` is the only application that can delete NLS objects. It requires you to run `sds_convert_nls` on the documents and to have `sds_conf "delete_content"` configured. After configuring and running the command, NLS documents can be deleted using `deldocs` or through IDM Desktop. This is supported for `SDS_CSAR_reader` and `SDS_FS_reader` but not for `SDS_ISAR_reader`.

Example: to set "delete_content" in the `sds_conf` file:

```bash
SDS 1 {
  sds_name CSAR_reader
  worker SDS_CSAR_reader 4
  info "WorkingDirectory=/fnsw/msar/SDS_NLS Domain=centera2?/
```
Convert an MSAR/optical/cache system to integral SDS

The `sds_migr` tool copies or moves documents from conventional storage (MSAR, optical, or cache-only) to SDS.

Note When you use the `-sds_only` option, which indicates move mode, the references to surface locations are removed from the Document Locator table in the MKF permanent database. Future retrievals will only be done from the SDS unit, not MSAR, optical, or cache.

When a document is copied or moved with the `sds_migr` tool, the retention is set in the target object.

If you are copying or moving MSAR surfaces to SDS in a multiple storage library server environment, you can run this tool on any storage server, even if the MSAR surfaces are on another storage server.

Notes

- Image Services does not support the use of the `stdoccpy` tool to copy documents to or from an SDS unit.

- Use the `stdoccpy` tool only for surface-based copying.

- Do not use `stmigrate` to migrate docs to an SDS unit.

- Use `sds_migr` to copy or move documents. The `stmigrate` tool migrates documents from cache to optical or
MSAR surfaces. The sds_migr tool migrates documents to ISDS from cache, optical or MSAR surfaces.

Log on as a member of the fnadmin group to run sds_migr.

Syntax

Syntax

```
sds_migr-sds <SDS unit name>  
  { -doc_file <filename> | 
    -first <doc_id>  -last <doc_id> | 
    -all | 
    -surface <surf_id> } 
  [ -overwrite ] 
  [ -sds_only ] 
  [ -use_page0 ] 
  [ -writelist ] 
  [-favor_optical]
```

Required parameters

(The SDS unit name and only one of the document specifiers (doc_file, range, or all) are required.)

- `sds <SDS unit name>`
 The configured SDS unit name. NLS/CSAR (SDS 1) cannot be used.

- `doc_file <filename>`
 Specifies the name of a text file of document ids, one id per line.

If you are copying or moving MSAR surfaces to SDS in a multi-storage library server environment, you can improve system performance if you generate multiple files of document IDs and group them so that all the IDs whose MSAR surfaces belong to the same storage server are in
the same file. Then transfer each file to its associated storage server
and run sds_migr on each server with this (-doc_file) option.

-**first** <doc_id>
 Specifies the first document in a range.

-**last** <doc_id>
 Specifies the last document in a range.

-**all**
 Migrate all documents to SDS.

-**surface** <surface_id>
 The surface_id may be optical or MSAR. The surface must be local.
The sds_migr command line program checks to verify the surface is
local and returns an error if it is not.
Only migrate documents that are in the DOCS table and use surface_id_1 or surface_id_2. The documents must point to this surface.

The surface ID is used for building a list but does not always retrieve
the document from that particular surface.

Optional parameters

-**overwrite**
 If the document is already associated with an SDS unit
 and the '-overwrite' flag is selected, the document is re-written to
 another SDS unit. By default, sds_migr does not migrate a document if
 it is already associated with an SDS unit. (If the target and the current
 SDS unit are the same, this option is ignored, except for Centera
 systems. For Centera systems, the document can be re-written to the
 same Centera SDS unit.)

-**sds_only**
 Deletes references to the migrated documents on MSAR or optical
 media from the DOCS table in the MKF permanent database.
3 How to manage your SDS system
Convert, delete, or move data to integral SDS

- **use_page0**
 By default, the metadata stored with the SDS object is extracted from DOCTABA when possible. If the -use_page0 option is selected, the metadata is taken from page0 of the document. Select this option to speed up the copy job because it will not need to extract this information from DOCTABA. Generally, it is preferable to use the metadata that is stored in DOCTABA because the indexing information might have been modified.

 Note
 This option takes the original index values from the document on the optical or MSAR surface. If there are updated short descriptors (created by the stsurfupdate tool) with newer index values on the surface, they are ignored.

- **writelist**
 Generates a list of migrated documents in a file named SDSMigrDocs.nnn. The file is in the /fnsw/local/logs/bkglog/ directory.

- **favor_optical**
 - Favor optical as a source. When used in conjunction with the -surface option, the document content will always be copied from an optical surface. If a document is available on optical and in cache, delete from cache and retrieve from optical.

Examples

To copy all documents to an SDS unit named snaplock1, enter:

```
sds_migr -sds snaplock1 -all
```

To copy a range of documents to an SDS unit named centera42, enter:

```
sds_migr -sds centera42 -first 534654 -last 999973
```
3 How to manage your SDS system

Update the retention on specific documents

Tip

If you have a large number of documents to migrate, you can optimize the process by running multiple instances of *sds_migr* using different document number ranges.

If you are migrating from optical media, do not run more instances of *sds_migr* than there are drives in the optical library to prevent unnecessary disk swapping.

To move a group of documents whose document ids are listed in a text file to the SDS unit named SDS_solaris, enter:

```
sds_migr -sds SDS_solaris -doc_file doclist.txt -sds_only
```

Update the retention on specific documents

The *sds_update_retention* tool updates the retention of specific documents based on their retention settings in DOCTABA in the index database. Use this tool to update the virtual event-based retention on repositories such as SnapLock that do not support EBR.

- If DOCTABA indicates that the document has non-event-based retention, *sds_update_retention* will update the SDS object retention if it is not consistent with DOCTABA.

- For event-based documents (whose retention is determined only when the document is closed):
 - **If the SDS device supports EBR:**

 If the event is triggered in DOCTABA (a close event has occurred and a delete date is set), *sds_update_retention* will set the SDS object retention to be triggered with the retention expiration date in DOCTABA.
If the event is not triggered, sds_update_retention will not change the SDS object retention.

- **If the SDS device does not support EBR:**
 (also known as virtual EBR)

 Run sds_update_retention with the -extend on a regular schedule to protect virtual EBR objects before the triggering event occurs.

 If the object has not been triggered, the -extend value is applied. For example, if you run sds_update_retention weekly, you could extend retention by seven days each time. If the object has been triggered, the retention setting in DOCTABA is applied.

 See “Object retention” on page 26 for more information.

Important

The sds_update_retention tool operates only on SDS documents that are cataloged in DOCTABA in the Image Services index database. Documents captured and cataloged on Content Engine and stored in Image Services cannot be updated with this tool because they are not cataloged in the Image Services index database.

In a multiple storage library server environment, run this tool on the primary storage library server.

Log on as a member of the fnadmin group to run sds_update_retention.
3 How to manage your SDS system
Update the retention on specific documents

Limitations

- The sds_update_retention tool is not supported on DR550 devices because DR550 uses predefined document management classes.
- Retention cannot be decreased.
- Documents set to infinite retention cannot be modified.
- Chronological retention cannot be changed to EBR.
- On Centera devices, retention type “none” cannot be changed to EBR using the -override option.

Syntax

```
    sds_update_retention -sds <SDS unit name> 
    { -doc_file <filename> | 
      -first <doc_id> -last <doc_id> | 
      -all } 
    [ -extend [yyyy-mm-dd | <offset> ] ] 
    [ -overwrite ] 
    [ -writelist ]
```

Required parameters

- The SDS unit name and one of the document specifiers (-doc_file, -first/-last, or -all) are required.
- The configured SDS unit name. NLS SDS (SDS 1) cannot be used.
- Specifies the name of a text file of document ids, one id per line.
3 How to manage your SDS system
Update the retention on specific documents

- **first <doc_id>** Specifies the first document in a range.
- **last <doc_id>** Specifies the last document in a range.
- **all** Updates the retention of all documents on the specified SDS unit.

Optional parameters

- **extend** (Only applies to documents with virtual EBR retention.)

 This option extends the retention of the specified documents either to a specific future date (yyyy-mm-dd), or by a certain number of days from the current date. (For example, if the current retention expires 89 days from today, and you specify -extend 90, you only add one day to the retention value.)

 Also, you cannot shorten a retention setting. If the retention value you specify is shorter than the existing retention, the existing retention remains.

 For virtual EBR documents, the trigger overrides the -extend option.

- **override** For documents with a retention setting of “none,” this option forces the retention update to be based on their current settings in DOCTABA. However, on Centera devices, retention cannot be changed from “none” to EBR using this option.

- **writelist** Generates a list of updated documents in a file named SDSUpdateDocs.nnn. The file is in the /fnsw/local/logs/bkglog/ directory.
Examples

To update the retention to a specific date on all documents in an SDS repository named SunStorTek_Accts, enter:

```
sds_update_retention -sds SunStorTek_Accts -all -extend 2017-12-31
```

To extend the virtual EBR retention of a certain range of documents for sixty days from today, and create a list, enter:

```
sds_update_retention -sds SunStorTek_Accts -first 123123 -last 234234 -extend 60 -writelist
```

To update retention for a group of documents listed in a file named upretent.txt based on the current retention setting in DOCTABA, enter:

```
sds_update_retention -sds SunStorTek_Accts -doc_list upretent.txt
```

Place SDS documents on indefinite hold

The `sds_hold` tool sets the retention of documents to an indefinite hold or releases an existing hold.

Placing a hold on a group of documents overrides the standard retention values of those documents, which might be needed for litigation or some other purpose. The standard retention values are maintained, and even though the retention of a particular document expires, the hold prevents the document content from being deleted from the system. The document properties in the DOCS table and DOCTABA can still be removed. Only one hold can be placed on a document. Additional hold requests are ignored.
3 How to manage your SDS system
Place SDS documents on indefinite hold

Note
The `sds_hold` tool is not supported with SnapLock, HCAP, or StorageTek devices.

In a multiple storage library environment, run this tool on any storage server. Log on as a member of the `fnadmin` group to run `sds_hold`.

Syntax

```plaintext
sds_hold  -sds <SDS unit name>
{ -doc_file <filename>  
  -first <doc_id>  -last <doc_id>  
  -all } 
[ -release ] 
[ -writelist ]
```

Required parameters
The SDS unit name and one of the document specifiers (`-doc_file`, `-first/-last`, or `-all`) are required.

- **-sds**
 `<SDS unit name>`
 The configured SDS unit name. NLS/CSAR (SDS 1) cannot be used.

- **-doc_file**
 `<filename>`
 Specifies the name of a text file of document ids, one id per line.

- **-first**
 `<doc_id>`
 Specifies the first document in a range.

- **-last**
 `<doc_id>`
 Specifies the last document in a range.

- **-all**
 Holds (or releases) all documents to the specified SDS unit.
3 How to manage your SDS system
Copy between two SDS units

Optional parameters

- **release**
 Releases the hold on the specified documents.

- **writelist**
 Generates a list of held or released documents in a file named **SDSHoldDocs.nnn**. The file is in the /fnsw/local/logs/bkglog/ directory.

Examples

To place an indefinite hold on a range of documents on an SDS unit named Cent_archive, enter:

```
sds_hold  -sds Cent_archive  -first 139383  -last 949392
```

To release the hold on a group of documents listed in a file named release.txt and create a list, enter:

```
sds_hold  -sds Cent_archive  -doc_file release.txt  -writelist
```

Copy between two SDS units

The **sds_copy** tool copies data between SDS units. The source SDS unit can be either NLS-SDS unit type or integral SDS unit type. The target SDS **cannot** be an NLS-SDS unit since writes are not supported.

Note
Image Services does not support the use of the **stdoccopy** tool to copy documents to or from an SDS unit.

Use the **stdoccopy** tool only for surface-based copying.

You can copy content from any SDS unit type to any other SDS unit type (for example, from Centera to DR550). When a document is copied between newer SDS unit types, the content will be removed.
from the source SDS unit if the content deletion setting in fn_edit is Yes. In the case of NLS, the content will also be deleted if the NLS content delete feature is turned on (gaf - add link to new section). If the retention has not expired, then the source SDS object will not be removed, but the copy will be successful and a message will be logged.

When content is also available on MSAR, it will be read from MSAR because copying from MSAR has been optimized.

When a document is copied or moved with the sds_copy tool, the retention is set in the target object to be consistent with retention setting in DOCTABA (if retention is enabled on the target SDS unit).

If a document is on hold in the source SDS unit, it will not be copied. A message will be logged to indicate that the held document must be released before it can be copied.

In a multiple storage library server environment, run this tool on any storage library server.

Log on as a member of the fnadmin group to run sds_copy.

Syntax

```bash
sds_copy  -source <SDS unit name>
            -target <SDS unit name>
            { -doc_file <filename> | 
              -first <doc_id> -last <doc_id> | 
              -all }
            [ -sds_only ]
            [ -use_page0 ]
            [ -writelist ]
```
Required parameters

The -source option, the -target option, and one of the document specifiers (-doc_file, -first/-last, or -all) are required.

- **source**
 `<SDS unit name>`
 The configured source SDS unit name (required).

- **target**
 `<SDS unit name>`
 The configured target SDS unit name (required).

- **doc_file**
 `<filename>`
 Specifies the name of a text file of document ids, one id per line.

- **first**
 `<doc_id>`
 Specifies the first document in a range.

- **last**
 `<doc_id>`
 Specifies the last document in a range.

- **all**
 Migrates all documents to the target SDS unit.

Optional parameters

- **sds_only**
 Deletes MSAR or optical references to the copied documents from the MKF permanent database.

- **use_page0**
 By default, the metadata stored with the SDS object is extracted from DOCTABA when possible. If the -use_page0 option is selected, the metadata is taken from page0 of the document. Select this option to speed up the copy job because it will not need to extract this information from DOCTABA. Generally, it is preferable to use the metadata that is stored in DOCTABA because the indexing information might have been modified.
3 How to manage your SDS system
Copy between two SDS units

Note
This option takes the original index values from the document on the optical or MSAR surface. If there are updated short descriptors (created by the stsurfupdate tool) with newer index values on the surface, they are ignored.

-writelist
Generates a list of migrated documents in a file named SDSCopyDocs.nnn. The file is in the /fnsw/local/logs/bkglog/ directory.

The NLS/SDS unit can be used as the source SDS unit but can not be used as the target SDS unit. sds_copy also attempts to remove the SDS object from the source SDS if the source SDS unit has been configured with the content deletion setting well the source SDS device. When content is available on MSAR, it is read from MSAR because copying from MSAR has been optimized. Otherwise if SDS 'high' priority setting is used, the content will come from the source SDS unit if it is enabled.

Tip
When the source SDS unit is an NLS unit, running sds_convert_nls is no longer necessary.

Examples
To copy a group of documents whose document id numbers are listed in a file named copydocs.txt, from an SDS device named OldCentera to an SDS device named NewSnaplock, enter:

 sds_copy -source OldCentera -target NewSnaplock -doc_file copydocs.txt

To copy a range of documents from an SDS device named DR550_finance to an SDS device named DR550_acctg, enter:
3 How to manage your SDS system

Copy documents from SDS to MSAR or optical

```
sds_copy -source DR550_finance -target DR550_acctg -first 123456 -last 234567
```

To copy all documents from an SDS device named Snaplock_A to an SDS device named Snaplock_B, and create a list of copied documents, enter:

```
sds_copy -source Snaplock_A -target Snaplock_B -all -writelist
```

Copy documents from SDS to MSAR or optical

This program copies documents from SDS to MSAR or optical.

Syntax

```
sds_copy_to_surf {-sds <SDS unit name> | -sds_id <SDS unit ID>} {-family <family_name>} {-doc_file <filename> | -first <doc_id> -last <doc_id> | -all} [-newindex] [ -writelist ]
```

Required run string parameters: sds_name, family and one of the document specifiers (doc_file, range or all) are required as follows:

- **-sds <sds name>**
 This must be a configured SDS unit name. Source SDS unit name.

- **-sds_id <sds ID>**
 This must be a configured SDS ID. Source SDS unit ID.
3 How to manage your SDS system
Copy documents from SDS to MSAR or optical

-family <family_name>
 Document family name (can be a primary or tranlog family).

-doc_file <filename>
 Specifies the name of a text file of document ids, one id per line.

-first <doc_id>
 Specifies first document in range.

-last <doc_id>
 Specifies last document in range.

-all
 Specifies all documents to be copied.

Optional parameters:

-newindex
 Gets new indexing information for the document from doctaba. This updated indexing information is written with the document (page 0) on the target surface.

-writelist
 Generates a list of migrated documents. The list file will be located at:

 '/fnsw/local/logs/bkglog/SDSCpyToSurf.nnn'.

Restrictions

- Documents will not be copied if the DOCS table already has surface reference for the family type (surface_id_1 for primary and surface_id_2 for tranlog).
- The media family must not be an sds_only family.
- The media family disk type must be supported on this Storage Server.
- sds_copy_to_surf must be run on a Storage Server and must have at least one surface based storage library (MSAR or optical) on the Storage Server.
3 How to manage your SDS system

Restore or import data to an SDS unit

- MSAR/optical index value clustering will not be used when copying to the surface based storage.

Restrictions

For multiple storage server configuration:

- Documents will always be copied to local surfaces only.
- The media family disk type must be supported on this Storage Server.
- If the family is preferred to a library, it must prefer to a library in this server.
- The DOCS surface locations must be on the same Server after sds_copy_to_surf is complete (surface_id_1 and surface_id_2), otherwise an error will occur while copying.
- To avoid the problem above when sds_copy_to_surf is used to copy to both primary and tranlog surfaces start with the primary family.
- If document location consistency errors persist, first use move_disk to move all referenced (DOCS) surfaces to the storage server where sds_copy_to_surf will be run and is supported on this Storage.

Restore or import data to an SDS unit

The **sds_import** tool imports or restores data to an SDS repository, and works much like the **stdocimp** tool, which is used with data on MSAR and optical media. The DOCS and DOCTABA tables can be recovered using this tool. Like stdocimp, sds_import assumes that the INX data dictionary information is restored using a tool such as
ddexim. The sds_import tool can also be used to import an SDS repository to another Image Services system.

When a document is imported or recovered, the retention setting of the object remains unchanged. The SDS object retention setting is propagated to DOCTABA.

In a multiple storage library server environment, run this tool on the primary storage library server.

Log on as a member of the fnadmin group to run sds_import.

This program imports documents from an SDS unit. Run this program on the storage library server that has the doclocator server only.

To run this program, enter:

Syntax

```
sds_import -sds <SDS unit name> 
   { -doc_file <filename> | 
     -first <doc_id> -last <doc_id> | 
     -all } 
   [ -nonexactclass ] 
   [ -noinsertdoctaba ] 
   [ -security { none | doc } ] 
   [ -original_mapping | -current_mapping ] 
   [ -updatesnt ] 
   [ -noworkflopedia ] 
   [ -writelist ]
```
3 How to manage your SDS system

Restore or import data to an SDS unit

Required parameters

The SDS unit name and one of the document specifiers (-doc_file, range, or -all) are required.

- **-sds** <SDS unit name>
 The name of a configured SDS unit. NLS/CSAR (SDS 1) cannot be used.

- **-doc_file** <filename>
 Specifies the name of a text file, containing the following:

 (1) a pair of values per line representing the doc id and the clip ID for Centera SDS unit, where the doc id could be 0, but the clip ID is required;
 or

 (2) a doc id value, one id per line for all other type of SDS units.

- **-first** <doc_id>
 Specifies the first document in a range.

- **-last** <doc_id>
 Specifies the last document in a range.

- **-all**
 Imports all documents from the target SDS unit.

Optional parameters

- **-nonexactclass**
 This option allows you to import documents even if the source and target document classes are not an exact match.

- **-noinsertdoctaba**
 Does not insert documents into DOCTABA. You must also specify the -security none option if documents from non-existent classes are imported.

- **-security** { none | doc }
 Sets the document security. If you specify -security none, the security of the imported document is set to “anyone.” If you specify -security doc, the security is set to the value from the document on the SDS unit.
3 How to manage your SDS system

Restore or import data to an SDS unit

The default is to use the security from the document class.

- **updatesnt** Updates the scalar number table if the imported document id is greater than the next available document id.

- **noworkfloqueue** Does not insert the document into a WorkFlo queue if a queue is defined for the document class.

- **writelist** Generates a list of imported documents in a file named `SDSImportDocs.nnn`. This file is in the `/fnsw/local/logs/bkglog/` directory.

The following two parameters pertain to Content Engine originated documents only:

- **original_mapping** Local documents that originated on Content Engine are federated to the original Content Engine Object Store specified in the document header on the sds device, regardless of the current docclass mapping. This does not apply to any foreign documents. Foreign documents always federate to the default document class mapping.

- **current_mapping** All CFS-IS federation is based on the current default document class mapping.

Tip The default setting is `-current_mapping` and is used if none is specified. The Content Engine object store value used, as described by above rules, is used in the DOCs table for annotation reflection if the Annotation flag is set, or there is already a DOCs table entry for the document with a non-null ce_object store. If the Annotation flag is not set and the DOCs table entry has no ce_object store, or there is no DOCs table entry, the ce_object store is NULL.
3 How to manage your SDS system

Examples

To import a group of documents whose document numbers are listed in a file named importdocs.txt, to an SDS device named NewCentera, enter:

 sds_import -sds NewCentera -doc_file importdocs.txt

To import a range of documents to an SDS device named DR550_acctg, enter:

 sds_import -sds DR550_acctg -first 123456 -last 234567

To restore all documents to an SDS device named Snaplock_A, enter:

 sds_import -sds Snaplock_A -all

Using sds_import on Centera

When importing a Centera device, the preferred method is to use the -doc_file option with clip IDs. Document range options are less efficient than using the clip IDs with the -doc_file option.

On Centera devices, when extending the retention of an existing object, a separate object with the same document id is created on the device. As a result, there can be duplicate objects with the same document id.

Consequently, if you run sds_import to import the document, all the objects with the same document id will be processed.

This results in multiple counts in the sds_import log file and the processed id list from the -writelist option.

For example, if you enter the following command:
3 How to manage your SDS system

Restore or import data to an SDS unit

`sds_import -sds Centera -first 122240 -last 122243 -writelist`

you would expect four documents to be imported.

However, the resulting `SDSLog.000181` file might look like this:

```
Information for bkg_sds job number 181 started at 02/06/2008 13:52:13
Job parameters:
Import SDS Unit: centera_new (15)
-writelist: yes
Documents from document range (First doc=122240, Last doc=122243).

End of job information:
Number of non fatal errors encountered: 0
Number of documents processed: 5
Job completed at 02/06/2008 14:07:00
```

And the resulting `SDSImportDocs.000181` file would look like this:

```
DOC ID
-------
122240 7DS19L96ITM1Fe7U82R0BI6AQUGG412V6A4K4G0S4AVKEUTHRSR4K
122241 EP5QTR3HI5Le36BIH7Q6CPDL1G412V6ALEEH0R75IHL4A7N15MO
122242 2KPL267SHMQQTe2IGNNTTOF6AJPJC412V7UH25L029UF32HMKG2A6
122243 5B52BO08FKV05e9D7LPMAEBK3D8G412V7VG8A80UDEP3N62M2D49J
122243 8B8ICHLHFKHOFep9H4D7IQ60Q6E2G412V7VK75MOUDEP3N62M2D49J

Although the last two Doc IDs are the same, the Clip IDs are unique.
```
SDS consistent delete

SDS Consistent Delete is a feature that allows you to set parameters that determine what criteria the deletion mechanism uses to decide if an SDS document can be deleted. SDS document deletion operates consistently from Image Services clients such as IDM Desktop.

Content Delete must be enabled on the SDS unit in order for documents that are candidates for deletion to be deleted from the SDS device. To delete a document, it must satisfy the deletion criteria. This feature is controlled by a trigger file, /fnsw/local/trigger/consistent_delete_mask. Possible settings in the trigger file are "check_docs", "check_doctaba", "check_obj", and "off". The settings are:

- "check_docs" - The MKF docs table is checked to see if retention settings allow the document to be deleted.

 The MKF docs table is checked to see if retention settings allow the document to be deleted. This is the default setting in the absence of the trigger file. Infinite, EBR and VEBR docs are not deletable. ‘None’ docs and expired chrono docs are deletable.

- "check_doctaba" - The documents index database (doctaba) settings are checked. A document is not deleted if f_deletedate or f_archivedate is set in the future. If f_deletedate or f_archivedate is not set it indicates that the document has indefinite retention and can not be deleted. This is an EBR document that is not triggered.

- "check_obj" - The object on the SDS device is checked to see if it can be deleted. EBR and Virtual EBR docs are not deleteable using this setting.

- "off" - Operates the same as previous Image Services releases: client applications, such as IDM Desktop, delete documents regardless of retention settings.

...
settings of SDS docs. deldocs -i overrides retention restrictions to delete documents that might not have expired.

It is also possible to use the settings in combination.

If "off" is one of the entries, the feature is turned off.

A newly created document with a "NONE" retention setting cannot be deleted for a day regardless of trigger file settings.

The presence of the trigger file and its contents is written to the view log on Image Services startup. An error is posted in the view log if a document cannot be consistently deleted.

Consistent Delete and CFS-IS

There are certain exceptions relating to the new Consistent Delete feature in a CFS-IS environment where documents are indexed only on the Content Engine system and whose content is stored on the Image Services system. These documents do not have cataloging on Image Services, so it is not possible to update or trigger this type of document on an SDS device for deletion.

Documents that have 'none' or expired chrono SDS retention may be successfully deleted regardless of the settings are used in the Consistent Delete trigger file.

Documents that have 'infinite' or unexpired chrono or EBR or VEBR (regardless of sds_retent_value) SDS retention cannot be deleted when 'check_docs' and/or 'check_obj' settings are used in the Consistent Delete trigger file. If either 'check_doctaba' or 'off' is used, deletion from docs will occur, but the document will be orphaned on the device.
If the document retention has not expired on the SDS device, then the Consistent Delete feature will not prevent orphaning the document on the SDS device when the 'check_doctaba' or 'off' settings are used. Documents whose content is stored on the FileNet Image Services system, but whose index properties are stored only on the Content Engine are only protected by the Consistent Delete feature if the 'check_docs' or 'check_obj' settings are used.

The DOC_tool utility

Use DOC_tool to see information about your SDS device, such as the device state, and to enable or disable the SDS device.

For full information on using DOC_tool, refer to the Image Services System Tools Reference Manual. To download this manual from the IBM support page, see “Accessing IBM FileNet Documentation” on page 14.

SDS States

Use the DOC_tool SDS command to view the state of an SDS unit. The following are valid SDS states:

- The SDS User states are enabled, read-only, write-only, or disabled.
 - These states can be changed by the user with the DOC_tool DISable and ENable commands, and remain in effect when the Image Services software is restarted.

- The SDS System states are enabled, disconnected, read-only, or write-only.
- These states are changed automatically as a result of system conditions, and they do not remain in effect when the Image Services software is restarted.

- When the System state changes, an SDS_worker issues an RSVP or INFO message. For example, if the SDS_worker does not have write permission to a repository, the SDS device will be set to read-only and an RSVP message will be generated.

- If an SDS unit is disconnected, it can be reconnected automatically and set to enabled System state.

Note

When the SDS device is disconnected, the SDS worker retries the open device command indefinitely. After it has successfully opened the SDS device, the SDS worker sets the SDS unit to an enabled state. At this point, any new requests can now be dispatched to the enabled SDS device.

The User and System states are managed independently of each other.

DOC_Tool commands for managing SDS devices

Use DOC_tool to monitor and manage the SDS units in your Image Services system. The SDS command with the list “l” option displays a list of SDS units and their SDS unit IDs. DOC_tool uses the SDS unit IDs to identify the SDS unit for various operations.

- The **SDS** commands allow you to gather information about the SDS unit and the SDS worker processes.

- The **Enable** and **Disble** commands allow you to enable and disable the SDS unit.
3 How to manage your SDS system
The DOC_tool utility

- The DEMand queue command displays a list of pending read and write requests for the SDS unit you specify.

Note
In a multi-storage server environment, an SDS device can be accessed by each storage server in the system. So, when enabling or disabling an SDS device with DOC_tool, you must run DOC_tool on each storage server in the system to completely enable or disable all paths to the device.

These commands are also available for cache-only servers. For more information on DOC_tool, see the *Image Services System Tools Reference Manual*. To download this manual from the IBM support page, see “Accessing IBM FileNet Documentation” on page 14.

ENable Command

The DOC_tool **ENable** command allows you to enable SDS units that have been set to DISABLED by DOC_tool **DISable**. This command is only available in the allowupdate DOC_tool mode.

Note
If an SDS unit has been disabled by a network problem or hardware failure, it cannot be enabled with this command.

Depending on the type of storage library selected, the ENable command displays the following screens.

MSAR Library

```
drive, Platter(surface), SDS? ('d', 'p', 'SDS')
```
3 How to manage your SDS system
The DOC_tool utility

Cache-only Servers
When a server is a Cache-only server, there can be no MSAR or optical library selected.

- If the SDS unit is in a DISABLED state, the following prompt displays after you enter the ENable command:

  ```
  SDS unit? <y=yes>
  SDS id: 2
  ```

DISable Command
The DOC_tool DISable command allows you to disable SDS units that have been set to ENABLED. Like the ENable command, this command is only available in the allowupdates mode.

The screen prompts displayed are identical to those displayed for the ENable command.

```
<DOC_tool:lib a>allowupdates
password? **************
<DOC_tool:lib a>dis
Drive, Platter(surface), SDS? ('d', 'p', 'SDS'): sds
SDS id: 2
Disable reads and writes [no]? (y/n): 
Disable read-only (no => disable just writes) [no]? (y/n): 
DISABLED unit =2 for writes only (old state=USER ENABLED)
```
You can disable the SDS unit for writes only, reads only, or both. (The ENable command fully enables the device.) The system state settings are not affected by this command.

DEMand Queue Command

The DOC_tool **DEMand queue** command displays a list of pending read and write requests for the SDS unit you specify. In the following example, there are no pending read or copy requests, but there are four pending write requests:

```
<DOC_tool:lib a>dem
SDS unit? <y=SDS/n=surf> [y]: y
SDS unit ID: 2

Read Q: : count = 0
WRITE Q: : count = 4
  Request Type: WRITE_REQUEST
    doc_id=101592, doc_index=101592
    numpages=1, fbc=FALSE, fam_id=3
  Request Type: WRITE_REQUEST
    doc_id=101593, doc_index=101593
    numpages=1, fbc=FALSE, fam_id=3
  Request Type: WRITE_REQUEST
    doc_id=101594, doc_index=101594
    numpages=1, fbc=FALSE, fam_id=3
  Request Type: WRITE_REQUEST
    doc_id=101595, doc_index=101595
    numpages=1, fbc=FALSE, fam_id=3

COPY Q: : count = 0
```
3 How to manage your SDS system
The DOC_tool utility

SDS Command

The DOC_tool SDS command allows you to view the current state of the SDS unit and its associated SDS workers, as well as other performance information.

SDS command prompt and options

The **SDS** command has several display options:

- `s` – Summary report
- `d` – Detailed report
- `w` – Worker report
- `a` – All information report
- `f` – Find object report
- `l` – List report

Important

Several of these options, such as the Detailed report, the Worker report, and the All information report, use a large amount of system processing resources to gather the requested information.

If you plan to run any of these options repeatedly in a background script, keep in mind that doing so could slow system performance.
SDS List option (l)

The list option provides a list of currently configured SDS devices and their SDS ID numbers:

Sample output - List option

```
<DCC_tool:lib a> sds
Summary info, Detailed, Worker info, All info, Find object, or list?
('s', 'd', 'w', 'a', 'f', 'l') : l

The current time is Tue Oct 30 12:37:13 2007

SDS info: list  sds_id  Name
  2        NetApps2
  4        SunSAR
  5        DR550
  6        Centera
```
3 How to manage your SDS system
The DOC_tool utility

SDS Summary option (s)
The summary option provides a brief display of SDS device characteristics. This option prompts you to select all SDS units or one specific SDS unit.

Sample output - Summary option

```
<DOC_tool:lib a>sds
Summary info, Detailed, Worker info, All info, Find object, or list? ('s', 'd', 'w', 'a', 'f', 'l') : s

The current time is Tue Oct 30 12:37:20 2007

SDS info: SUMMARY option
All SDS units mode (y/n) [y]: n
SDS unit ID: 2
****** SDS unit = NetApps2 (2)
    SYSTEM state = SYSTEM ENABLED (0x0)
    USER state = USER ENABLED (0x0)
    Worker = 'SDS_worker' Number Instances = 3
    info = '/SDS_snaplock/SDS_test2'
    SDS priority = high
    DEBUG Setting = MAX
    dynamic repository lib = 'SDSw_snaplock'
    retention default offset (10 days)
    SDS content delete setting=YES
```

SDS Detailed info option (d)
When you select the Detailed option, the report displays detailed information about the performance of the SDS device in several sections:
3 How to manage your SDS system
The DOC_tool utility

- SDS Configuration and state
- Total Accumulated counters
- Read Request Performance
- Write/Copy Request Performance
- Cumulative time spend in CSM cache operations and SDS device library calls.
- Average queue wait time. How long request are queued before an SDS worker starts to process it.

Sample output - Detailed option

```
<DOC_tool:lib a>sds
Summary info, Detailed, Worker info, All info, Find object, or list? ('s', 'd', 'w', 'a', 'f', 'l') : d

The current time is Tue Oct 30 12:37:33 2007
SDS info: Detailed option
All SDS units mode (y/n) [y]: n
SDS unit ID: 2
****** SDS unit = NetApps2 (2)
  SYSTEM state = SYSTEM ENABLED (0x0)
  USER state = USER ENABLED (0x0)
  Worker = 'SDS_worker' Number Instances = 3
  info = '/SDS_snaplock/SDS_test2'
  SDS priority = high
  DEBUG Setting = MAX
dynamic repository lib = 'SDSw_snaplock'
retention default offset (10 days)
SDS content delete setting=YES

(continued on next page)
```
Sample output - Detailed option, continued

Total Accumulated counters from all workers (3):

** Configured workers = 3 active workers = 2

TOTAL WORKER COUNTERS (sds_id=2):
 Read Requests processed: 1
 Write Requests processed: 64
 Copy Requests processed: 0
 Errors: 0
 Requests processed = 65
 Successful requests processed = 65
 Errors = 0

AVERAGE ACCUMULATED ELAPSE TIMES:
 Up time: 1670.561958 secs/workers (27.842699 mins)
 Idle time: 1584.622689 secs/workers (26.410378 mins) (94.86%)
 Total processing time: 85.914369 secs/workers
 (1.321760 secs/reqs)
 (0.167149 secs/image page)
 (0.012215 secs/KB)
 AVG requests queue wait time: 34.442542 secs/reqs

*****Total READ REQUEST PERFORMANCE (sds_id=2)
 Total retrieval requests = 1
 Images retrieved from SDS = 1
 Data retrieved = 0.013184MB
 AVG Image Size = 13.500000K
 Number of read requests where the whole blob fits into the internal image buffer (256K): 1
 Number of read requests where the whole blob does not fits into the internal image buffer (256K): 0
 Cache hits: 0
 Number of redirection: 0
 Number of redirection errors: 0

(continued on next page)
Sample output - Detailed option, continued

Total Time to process read requests: 0.079858 secs (0.001331 mins)
Time in SDS device open and read: 0.001743 secs (0.000029 mins)
 (0.001743 secs/reqs)
 (0.001743 secs/image page)
 (0.000129 secs/KB)
Time in SDS device read only: 0.000079 secs (0.000001 mins)
 (0.000079 secs/reqs)
 (0.000079 secs/image page)
 (0.000006 secs/KB)
Time in cache (CSM) to process read: 0.077418 secs (0.001290 mins)
 (0.077418 secs/reqs)
 (0.077418 secs/page)
 (0.005735 secs/KB)

*****Total WRITE/COPY REQUEST PERFORMANCE (sds_id=2)
Total write requests = 64
Total copy requests = 0
Documents written = 113 (FBC=50, MSAR reads=50, Cache=13, Copy=0)
Images written = 513
Data written = 6.855503MB
AVG Image Size = 13.684279K
Cache hits in copy: 0
Total Time to process write requests: 171.748132 secs (2.862469 mins)
Total Time to process copy requests: 0.000000 secs (0.000000 mins)
Time in SDS device create and write object: 168.531598 secs (2.808860 mins)
 (2.633306 secs/reqs)
 (0.328522 secs/image page)
 (0.024007 secs/KB)

(continued on next page)
Sample output - Detailed option, continued

| Time in SDS device write only: 168.287921 secs (2.804799 mins) |
| (2.629499 secs/reqs) |
| (0.328047 secs/image page) |
| (0.023973 secs/KB) |
| Time in cache(CSM) to process write/copy: 0.480883 secs (0.008015 mins) |
| (0.007514 secs/reqs) |
| (0.000937 secs/page) |
| (0.000069 secs/KB) |
| Time in MSAR read to process write/copy: 0.068860 secs (0.001148 mins) |

SDS Configuration and state

The following table describes the **SDS Configuration Settings** section of the summary:

<table>
<thead>
<tr>
<th>Configuration Settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDS unit</td>
<td>The name of the SDS unit, such as NetApps2, which is assigned during configuration in fn_edit.</td>
</tr>
<tr>
<td>SYSTEM state</td>
<td>Shows the current SDS unit state: Enabled, Read-only, Write-only, or Disconnected.</td>
</tr>
<tr>
<td>USER state</td>
<td>Shows the current SDS user state: Enabled, Read-only, Write-only, or Disabled.</td>
</tr>
<tr>
<td>Worker name and number of instances</td>
<td>The number of SDS_worker instances can be from 1 to 99.</td>
</tr>
<tr>
<td>info</td>
<td>This field contains the repository connection string.</td>
</tr>
</tbody>
</table>
3 How to manage your SDS system

The DOC_tool utility

SDS Configuration Settings and state, continued

<table>
<thead>
<tr>
<th>Configuration Settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDS priority</td>
<td>Can be set to High, Medium or Low. This setting determines if read request will go to SDS first, or to MSAR or optical.</td>
</tr>
<tr>
<td>DEBUG setting</td>
<td>Settings are MAX, MIN, and OFF. If set to MAX, more information will be logged as SDS requests are processed.</td>
</tr>
<tr>
<td>dynamic repository lib</td>
<td>The associated SDS connector library name, such as SDSw_snaplock.</td>
</tr>
<tr>
<td>retention setting</td>
<td>Retention default offset <number of days> - or - Retention default date <future date></td>
</tr>
<tr>
<td>SDS content deletion setting</td>
<td>Yes, content will be deleted from the SDS device when the corresponding entries in the DOCS table are deleted from the Image Services system. - or - No, content will remain intact in the SDS device when the corresponding entries in the DOCS table are deleted from the Image Services system.</td>
</tr>
</tbody>
</table>

Total Accumulated counters

Note

Counters start incrementing when Image Services starts and cannot be reset unless the Image Services software is recycled.

The following tables describe the Total Accumulated Counter sections of the summary:
3 How to manage your SDS system

The DOC_tool utility

Total Accumulated Counters Information

<table>
<thead>
<tr>
<th>Counter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read/Write/Copy Requests</td>
<td>Total number of read/write/copy requests that have been processed by all of SDS_worker processes serving a single SDS unit.</td>
</tr>
<tr>
<td>Requests processed</td>
<td></td>
</tr>
<tr>
<td>Successful requests</td>
<td>Total number of requests that have been successfully processed.</td>
</tr>
<tr>
<td>processed</td>
<td></td>
</tr>
<tr>
<td>Errors</td>
<td>Total number of errors encountered. Only errors that were not corrected after retries and did not result in termination of SDS worker processes. This class of errors can be characterized as errors that resulted in an error completion status being sent back to the client with the ds_notify queue.</td>
</tr>
</tbody>
</table>

Average Accumulated Elapse Times

<table>
<thead>
<tr>
<th>Counter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up time</td>
<td>Accumulated average up time of all SDS workers (seconds/workers). This total accumulated time of all SDS workers divided by the number of workers. The elapsed time since the last request was done for each is used to calculate the up time.</td>
</tr>
<tr>
<td>Idle</td>
<td>Accumulated average idle time (seconds/workers). This is time that workers are idle waiting for request. The elapsed time of the last request is added to the idle time.</td>
</tr>
</tbody>
</table>
Average Accumulated Elapse Times, continued

<table>
<thead>
<tr>
<th>Counter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total processing time</td>
<td>Total elapsed processing time per worker. The time between the dequeue of an SDS request and the completion of the request process. The average time elapsed per request is also displayed (seconds/requests). The average time elapsed per image page (seconds/image page) and elapsed per K-byte (seconds/K-byte) is also displayed.</td>
</tr>
<tr>
<td>AVG requests queue wait time</td>
<td>The average wait time in seconds per request. The wait time is the elapsed time between the time a request is enqueued by the dispatch process and the time the SDS_worker dequeues the request. This means that a submission time is calculated and stored in SDS QMA structure when the request is enqueued in the SDS queue. After the SDS_worker dequeues the request, it will get the current time and subtract the submission time to calculate the elapsed or wait time. The wait time is accumulated and an average is displayed here.</td>
</tr>
</tbody>
</table>

Read Request Performance

The following table describes the Read Request Performance section of the summary:

Total Read Request Performance

<table>
<thead>
<tr>
<th>Accumulated Counter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total retrieval requests</td>
<td>Total number of retrieval requests submitted.</td>
</tr>
<tr>
<td>Images retrieved</td>
<td>Total number of images retrieved.</td>
</tr>
<tr>
<td>Data retrieved</td>
<td>Total amount of data transferred in K-bytes to CSM cache from the SDS repository. This does not include document pages that were requested and might have been read into the internal buffers and subsequently the page objects were already in cache.</td>
</tr>
<tr>
<td>AVG Image Size</td>
<td>Average size of an image page transferred.</td>
</tr>
</tbody>
</table>
Total Read Request Performance, continued

<table>
<thead>
<tr>
<th>Accumulated Counter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of read requests where the whole BLOB fits into the internal image_buffer</td>
<td>Number of requests where the whole document BLOB fits into the internal buffer. The size of the configurable internal buffer is displayed.</td>
</tr>
<tr>
<td>Number of read requests where the requested images do not fit into the internal image_buffer</td>
<td>Number of requests where the whole document BLOB does not fit into the internal buffer. The size of the configurable internal buffer is displayed.</td>
</tr>
<tr>
<td>Cache hits</td>
<td>Cache hits encountered by the SDS_worker process.</td>
</tr>
<tr>
<td>Number of redirections</td>
<td>This counter indicates the number of read requests that have been redirected to MSAR or optical. These re-directions might have occurred due to errors or because the SDS unit has been disabled with DOC_tool. This counter includes successful and unsuccessful re-directions. The number of successful re-directions can be determined by subtracting the number of redirection errors.</td>
</tr>
<tr>
<td>Number of redirection errors</td>
<td>Indicates how many redirections have failed.</td>
</tr>
<tr>
<td>Total Time to process read request</td>
<td>Total elapsed time to process all read requests. This is the total time between the dequeue of an SDS request and the completion of the read request.</td>
</tr>
<tr>
<td>Time in SDS device open and read</td>
<td>Indicates the time spent in opening and reading calls to the SDS entry point only.</td>
</tr>
<tr>
<td>Time in SDS device read only</td>
<td>Indicates the time spent reading from the SDS entry point only.</td>
</tr>
<tr>
<td>Time in cache(CSM) to process read</td>
<td>Indicates the time spent processing the read request in page cache.</td>
</tr>
</tbody>
</table>
Write/Copy Request Performance

The following table describes the Write/Copy Request Performance section of the summary:

<table>
<thead>
<tr>
<th>Accumulated Counter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total write requests</td>
<td>Total number of write requests processed.</td>
</tr>
<tr>
<td>Total copy requests</td>
<td>Total number of copy requests processed.</td>
</tr>
<tr>
<td>Documents written</td>
<td>Total number of documents written. A single document can be composed of several pages, which are stored as individual images.</td>
</tr>
<tr>
<td>Images written</td>
<td>Total number of images written. This is the number of document pages, not documents.</td>
</tr>
<tr>
<td>Data written</td>
<td>Total amount of data transferred in K-bytes from CSM cache to the SDS repository.</td>
</tr>
<tr>
<td>AVG Image Size</td>
<td>Average size of an image page transferred.</td>
</tr>
<tr>
<td>Cache hits in copy</td>
<td>Indicates the number of cache hits while processing copy requests.</td>
</tr>
<tr>
<td>Total Time to process write requests</td>
<td>Total elapsed time for processing write requests. This is the total time between dequeue of an SDS request and the completion of the write request.</td>
</tr>
<tr>
<td>Total Time to process copy requests</td>
<td>Total elapsed time for processing copy requests. This is the total time between dequeue of an SDS request and the completion of the copy request.</td>
</tr>
<tr>
<td>Time in SDS device create and write object</td>
<td>Indicates the time spent processing create and write calls to the SDS entry point only.</td>
</tr>
<tr>
<td>Time in SDS device write only</td>
<td>Indicates the time spent writing to the SDS entry point only.</td>
</tr>
<tr>
<td>Time in cache(CSM) to process write/copy</td>
<td>Indicates the time spent processing the write/copy request in page cache.</td>
</tr>
<tr>
<td>Time in MSAR read to process write/copy</td>
<td>Indicates the time spent reading from MSAR to process the write/copy request.</td>
</tr>
</tbody>
</table>
SDS Worker option (w)

When you select the Worker option, basic SDS information is displayed, along with information about each active worker and a detail worker report. The information displayed is similar to worker detail reports, but the counters and time accumulated are specific to each worker. The fields displayed in the detail report and Worker report are the same except there is an additional field, the “Last request done” field, which is a time stamp of the last completed request.

Sample output - Worker Option

```
<DOC_tool:lib a>sds
Summary info, Detailed, Worker info, All info, Find object, or list?
('s', 'd', 'w', 'a', 'f', 'l') : w

SDS info: WORKER option

****** SDS unit = 1 state = ENABLED SDS priority = medium ********
    DEBUG Setting = MAX
    Worker = 'SDS_worker' Number Instances = 3
    info = 'WorkingDirectory=/NLS/tivoli domain=10.10.8.35'
    Current number of outstanding requests in the SDS queue: 0

Worker instance 1:
    WORKER COUNTERS:
    Requests processed: 3
    Requests satisfied via SDS device (IBM DR550): 2
    Successful requests processed: 2
    Errors: 1 (last error = ca64000a)
    Retrieved image pages count: 9
    Retrieved data: 0.719210MB

(continued on next page)
```
Sample output - Worker Option, continued

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVG Image Size</td>
<td>81.830078K</td>
</tr>
<tr>
<td>AVG request size</td>
<td>245.490234K</td>
</tr>
<tr>
<td>Number of SDS device read (API calls)</td>
<td>11</td>
</tr>
<tr>
<td>Number of SDS device query calls</td>
<td>0</td>
</tr>
<tr>
<td>Number of SDS device requests where the whole document fits into the internal image_buffer (128K)</td>
<td>0</td>
</tr>
<tr>
<td>Number of SDS device requests where the requested images fits into the internal image_buffer (128K)</td>
<td>1</td>
</tr>
<tr>
<td>Number of SDS device requests where the requested images do not fit into the internal image_buffer (128K)</td>
<td>1</td>
</tr>
<tr>
<td>Cache hits</td>
<td>0</td>
</tr>
<tr>
<td>WORKER ACCUMULATED TIMES:</td>
<td></td>
</tr>
<tr>
<td>Up time</td>
<td>76481.966902 secs (1274.699448 mins)</td>
</tr>
<tr>
<td>Total Idle time</td>
<td>76477.196948 secs (1274.619949 mins) (99.99%)</td>
</tr>
<tr>
<td>Last request done</td>
<td>76355.779166 secs (1272.596319 mins)</td>
</tr>
<tr>
<td>Total processing time (reqs/image page/KB)</td>
<td>4.752298 secs</td>
</tr>
<tr>
<td>1.584099 secs/reqs</td>
<td></td>
</tr>
<tr>
<td>0.528033 secs/image page</td>
<td></td>
</tr>
<tr>
<td>0.006453 secs/KB</td>
<td></td>
</tr>
<tr>
<td>Time in get_doc_from_filesystem()</td>
<td>0.000790 secs</td>
</tr>
<tr>
<td>Time in get_doc_from_device()</td>
<td>4.076062 secs</td>
</tr>
<tr>
<td>Time in SDS device open and read (API calls)</td>
<td>2.991772 secs</td>
</tr>
<tr>
<td>0.997257 secs/reqs</td>
<td></td>
</tr>
<tr>
<td>0.332419 secs/image page</td>
<td></td>
</tr>
<tr>
<td>0.004062 secs/KB</td>
<td></td>
</tr>
<tr>
<td>Time in SDS device read only (API calls)</td>
<td>2.133966 secs</td>
</tr>
<tr>
<td>0.711322 secs/reqs</td>
<td></td>
</tr>
<tr>
<td>0.237107 secs/image page</td>
<td></td>
</tr>
<tr>
<td>0.002898 secs/KB</td>
<td></td>
</tr>
<tr>
<td>Time in SDS device querying database</td>
<td>0.000000 secs</td>
</tr>
</tbody>
</table>

(continued on next page)
Sample output - Worker Option, continued

Time in writing to page cache(CSM): 0.438663 secs
 (0.146221 secs/reqs)
 (0.048740 secs/page)
 (0.000596 secs/KB)

Total SDS requests queue wait: 0.741531 secs
 (0.247177 secs/reqs)
 (0.082392 secs/page)
 (0.001007 secs/KB)

.
.
.
3 How to manage your SDS system
The DOC_tool utility

SDS All option (a)

When you select the **All info** option, all of the previous information mentioned above is displayed.

Sample output - All Option

```plaintext
<DOC_tool:lib a> sds
Summary info, Detailed, Worker info, All info, Find object, or list?
('s', 'd', 'w', 'a', 'f', 'l') : a

SDS info: ALL option

***** SDS unit = 1 state = ENABLED SDS priority = medium ********
   DEBUG Setting = MAX
   Worker = 'SDS_ISAR_reader' Number Instances = 1
   info = 'workingdirectory=/NLS/tivoli domain=10.10.8.35'
   Current number of outstanding requests in the SDS queue: 0

SDS (unit=1) queue is currently empty

Worker instance 1:
   WORKER COUNTERS:
   Requests processed: 3
   Requests satisfied via SDS device (IBM DR550): 2
   Successful requests processed: 2
   Errors: 1  (last error = ca64000a)
   Retrieved image pages count: 9
   Retrieved data: 0.719210MB
   AVG Image Size = 81.830078K
   AVG request size = 245.490234K
   Number of SDS device read (API calls): 11
   Number of SDS device query calls: 0
   Number of SDS device requests where the whole document fits
   into the internal image_buffer (128K): 0
```

(continued on next page)
Sample output - All Option, continued

Number of SDS device requests where the requested images fits
into the internal image_buffer (128K): 1
Number of SDS device requests where the requested images do not
fit into the internal image_buffer (128K): 1
Cache hits: 0

WORKER ACCUMULATED TIMES:
Up time = 76594.523156 secs (1276.575386 mins)
Total Idle time = 76589.753202 secs (1276.495887 mins) (99.99%)
Last request done = 76468.335420 secs (1274.472257 mins)
Total processing time: 4.752298 secs
(1.584099 secs/reqs)
(0.528033 secs/image page)
(0.006453 secs/KB)
Time in get_doc_from_filesystem(): 0.000790 secs
Time in get_doc_from_device(): 4.076062 secs
Time in SDS device open and read (API calls): 2.991772 secs
(0.997257 secs/reqs)
(0.332419 secs/image page)
(0.004062 secs/KB)
Time in SDS device read only (API calls): 2.133966 secs
(0.711322 secs/reqs)
(0.237107 secs/image page)
(0.002898 secs/KB)
Time in SDS device querying database: 0.000000 secs
Time in writing to page cache(CSM): 0.438663 secs
(0.146221 secs/reqs)
(0.048740 secs/page)
(0.000596 secs/KB)
Total SDS requests queue wait: 0.741531 secs
(0.247177 secs/reqs)
(0.082392 secs/page)
(0.001007 secs/KB)
(continued on next page)
3 How to manage your SDS system
The DOC_tool utility

Sample output - All Option, continued

Total Accumulated counters from all workers(1):
TOTAL WORKER COUNTERS:
 Requests processed = 3
 Successful requests processed = 2
 Requests satisfied via SDS device (IBM DR550): 2
 Errors = 1
 last error = ca64000a

SDS Find object option (f)

The Find object option enables you to display characteristics of a specific document in a specific SDS unit.

This option allows you to see the contents of the descriptor stored in the SDS object header and the retention setting of the SDS object. The tool reads the information directly from the record, not from the MKF permanent database.

Note

The entry for SDS OBJ ID is blank for file system storage devices such as SnapLock and StorageTek. For Centera devices, the SDS OBJ ID contains the ClipID. It is auto filled when the document is in the MKF DOCS table.

For foreign documents, you must specify the original document ID.
Sample output - Find object option

```
<DOC_tool:lib a>sds
Summary info, Detailed, Worker info, All info, Find object, or list?
('s', 'd', 'w', 'a', 'f', 'l') : f

The current time is Tue Oct 30 12:38:24 2007

SDS ID (2-255) : 2
Doc ID : 101589

SDS OBJ ID :
Doc ID=101589 found in SDS=NetApps2 (2)

Dump SDS object header? <y=yes/n=no>[y]:
SDS header info:
version..........1
sds_id..........2
local_doc_id.....101589
local_ssn.........101410035
obj_size.........14396

Document descriptor:
Doc hdr length: 456
check_word....0xad0cde5c format...............2
num_pages........1 total_sectors.........0
doc_id..........101589 system_id........101410035
doc_location......0 alt_surf_ssn...........0
annot_base_doc....0 alt_doc_loc.........0
annot_page_num....0 alt_surf_id...........0
doc_type..........0x00 key_info_len.......310
class_name_len....18 sec_rd_nm_len.......9
sec_wrt_nm_len....9 sec_exe_nm_len.......9
contig_sectors....0 back_contig.........0
```

(continued on next page)
Sample output - Find object option, continued

(continued from previous page)

checksums.............1 character_set........11
deleted..................0
cluster_id...............0x0000000000000000
class_name.............'Sds_snaplock_only'
sec_rd_name.....'(ANYONE)'
sec_wrt_name.....'(ANYONE)'
sec_exe_name.....'(ANYONE)'

Key type=2(str) Key name='F_DOCFORMAT' len=11
Key value='application/excel;name="Simple excel.xls"'
len=41

Key type=2(str) Key name='F_DOCLOCATION' len=13
Key value='nnnnnnnnnn' len=10

Pg...1 Sector#........0 Byte_offset..572 #Bytes...13824

Pg...0 Checksum..0x081badff Pg...1 Checksum..0xb305e8c7

Get SDS retention settings? <y=yes/n=no>[y]:
event_base=FALSE held=FALSE retention=11/09/2008 11:34:09

SDS Delete option (DELETE)

(Requires ALLOWUPDATES.)

The **DELETE** option enables you to delete the content of a specific document from a specific SDS unit.
This option is only available in allowupdates mode.

Sample output - DELETE option

```
<DOC_tool:lib a>allowupdates
password? ***************
<DOC_tool:lib a>sds
Summary info, Detailed, Worker info, All info, Find object, List, DELETE?
('s', 'd', 'w', 'a', 'f', 'l', 'DELETE') : DELETE
SDS ID (2-255) : 10
Doc ID : 3945937
SDS OBJ ID :
Doc ID=3945937 found in SDS=QA_hcap (10)
Deleted Doc ID=3945937 SDS=QA_hcap (10) sds_obj='' (length=0)
<DOC_tool:lib a>
```

SDS space option (SPACE)

(Requires ALLOWUPDATES.)

The space option allows you to determine how much space is used by an SDS unit. The space can be broken down by document ID range.
Summary info, Detailed, Worker info, All info, Find object, List, DELETE, SPACE?
('s', 'd', 'w', 'a', 'f', 'l', 'DELETE', 'space') : space
Determining SDS space usage does a table scan of the DOCS table.
Do you want to continue? [y]: y
Sleep between 1000 DOCS selects in seconds [1]:
Starting doc_id[100000]:
Last doc_id[3999999999]:
Started sleep_delay=1 between 1000 selects doc range 100000-3999999999
...............
Finished total_docs_scan=15137 docs_sds=3758 (1.726508GB)
 sleep_delay=1 between 1000 selects doc range 100000-3999999999
 last doc selected=115490
 sds=SDS_CSAR_reader (1) num_docs=15 space_used=N/A
 sds=sn_old120 (2) num_docs=3055 space_used=1.725164GB
 sds=sn_hpl120 (3) num_docs=456 space_used=0.000768GB
 sds=cen_hpl120 (4) num_docs=222 space_used=0.000564GB
 sds=cen_hpl120 (5) num_docs=10 space_used=0.000011GB
Appendix A – Log Files and Messages

This appendix contains information about errors you might encounter with integral Single Document Storage.

Error Logs

When an Image Services related error is encountered, the FileNet error tuple and error text, if available, are reported. If a utility or file system error is encountered, a utility error code is reported. The utility error codes are generally related to an incorrect configuration, bad input file format, or a problem with the SDS file system. File system errors (Code 1024) are almost always the responsibility of the System Administrator to correct.

The following are examples of error types and locations related to all utilities.

IS error logs – SDS errors and all IS related messages and errors (Storage Library, SDS_FS_reader, database, security, and so on) are logged in the IS elog. Use the `vl` command to view error logs.

```
Default UNIX - /fnsw/local/logs/elogs
Default Windows - \fnsw_loc\logs\elogs
```

To view more information about an IS or SDS error, you can use the **fn_msg tool** directly on the error tuple. See “The fn_msg Tool” below.
Appendix A – Log Files and Messages
SDS Error Message Tuples

SDS Error Message Tuples
Error messages include a three-part numerical identifier called a tuple (for example, 238,3,1). SDS error tuples (generated by the SDS abstract or SDS_reader programs) use the same format as other IS error tuples. The following diagram identifies each part of an IS error tuple:

```
238, 3, 1
  Error identifier
Software module
Shared library that issues the tuple
```

For example, if the first number of the error tuple is NOT zero, then the error tuple is either an SDS error or an IS error.

Note An SDS or IS error never has a 0 as the first number of the identifier.

The fn_msg Tool
Use the fn_msg tool to retrieve additional information for SDS or IS error tuples. Enter the following at the command line:

```
fn_msg <tuple>
```

where <tuple> is the three-part number preceding the message text.

For example, if you receive this message:

```
238,3,1 Optical disk drive not ready.
```
Enter this command to display additional information:

```
fn_msg 238,3,1
```

The following text displays:

```
<SDS,3,1> SDSw Repository: connection error. Typically caused by
repository down or network down. The SDS is read and write disabled. SDS_
worker will redirect read requests and attempt to re-connect. INFO Message
will be generated in SLC window
```

For example, the hexadecimal equivalent of the error tuple <238,3,1>
is 0xEE003001. In this case, running any of the following commands produces the same text:

```
fn_msg 238,3,1
fn_msg 0xee003001
fn_msg ee003001
```

Note The `fn_msg` tool accepts hexadecimal values in either upper or lower case hexadecimal numbers and does not require leading `0x`'s.

SDS (238) Messages

The following is a general list of SDS errors that you might encounter. To view more information about these errors, use the `fn_msg` tool directly on the error tuple. See “*The fn_msg Tool*” on page 128

SDS general messages

`238,0,1` SDS informational message.
(SDS_err_info)
Appendix A – Log Files and Messages
SDS (238) Messages

238,0,2 Invalid session handle. This is a programmatic problem.
(SDS_err_invalid_sess)

238,0,3 A particular document is not stored in the SDS.
(SDS_err_no_document)

238,0,4 An unsupported request type was encountered by a SDS worker.
(SDS_err_not_type_supported)

238,0,5 The SDS unit is disabled.
(SDS_err_disabled)

238,0,6 A particular SDS is not configured.
(SDS_err_not_configured)

238,0,7 A particular SDS unit is not valid.
(SDS_err_invalid_sds_unit)

238,0,8 The checksum stored with the SDS document page is not consistent
with the retrieved document (SDS_err_chksum)

238,0,9 A critical error was encountered by a SDS worker and as result the
worker aborted. See sys_log for the reason.
(SDS_err_worker_abort)

238,0,10 The Doc_id or ssn stored in the document header and read request
does not match. See sys_log.
(SDS_err_header_doc_or_ssn_mismatch)

238,0,11 Invalid worker instance number. See sys_log.
(SDS_err_invalid_instance)

238,0,12 The version number of SDS Worker Info structure does not match.
This would indicate that there is mixture of old and new modules (SDS,
worker, DOC_tool, etc). See sys_log.
(SDS_err_info_struct_ver_mismatch)
Appendix A – Log Files and Messages
SDS (238) Messages

238,0,13 Failed to access file or directory.
(SDS_err_file_access)

238,0,14 A particular SDS is no longer configured.
(SDS_err_no_longer_configured)

238,0,15 For old NLS SDS ID=1 only reads are supported.
(SDS_err_old_sds_id_invalid_operation)

238,0,16 A particular SDS is no longer configured in Document Family.
(SDS_err_no_longer_configured_in_fdt)

238,0,17 SDS ID may not be configured for tranlog document family. It must be associated with primary document family.
(SDS_238_tranlog)

238,0,18 Unexpected bytes read from CSM or MSAR surface file.
(SDS_badreadlen)

238,0,19 Cannot set the persistent & non-persistent state at the same time.
(SDS_err_invalid_state)

238,0,20 SDSw pluggable library load error.
(SDS_load_SDSw_error)

238,0,21 SDS unit is write disabled.
(SDS_err_write_disabled)

238,0,22 SDS unit is read disabled.
(SDS_err_read_disabled)

238,0,23 Object is not found in SDS unit.
(SDS_err_obj_not_found)

238,0,24 - SDS read after write error.
238,0,27 SDS content is not deletable based on the retention setting of the DOCS.

238,0,28 SDS content is not deletable based on the retention setting of the SDS object.

238,0,29 SDS content is not deletable based on the retention setting of the DOCTABA.
SDSw Repository messages

238,3,1 SDSw Repository: connection error. Typically caused by repository down or network down. The SDS is read and write disabled. An SDS_worker will redirect read requests and attempt to re-connect. INFO Message will be generated in SLC window.
(SDS_err_repository_connect)

For example, if the IS system cannot connect to the SDS unit, you might see a message similar to this:

```
2008/02/04 07:46:28.177 238,3,1 <fnsw> SDS_worker 7 74 (8876) ... [SERIOUS]
Error from SDSw_open_repository repository_id=10.10.8.35
err_msg='Can’t Init TSM/ Client Node=FNP8IM_15197
        ANS1075E (RC102) *(*)The operating system refused a TSM request for memory allocation.’
```

In this case, you might have too many SDS_workers. Use fn_edit to lower the number of SDS_workers for the SDS device.

238,3,2 SDSw Repository: Resource error. The SDS is write disabled. Generate RSVP. Respond to RSVP will enable SDS for writes.
(SDS_err_repository_no_resource)

238,3,3 SDSw Repository: permission error. The SDS is read and write disabled.
(SDS_err_repository_permission_err)

238,3,4 SDSw Repository: write permission error. The SDS is write disabled. Read can still processed.
(SDS_err_repository_write_permission_err)

238,3,5 SDSw Repository: read permission error. The SDS is read disabled. Write can still processed.
(SDS_err_repository_read_permission_err)

238,3,6 SDSw Repository: No object could be located from the repository.
(SDS_err_no_object)
238,3,7 SDSw Repository: Corrupt object.
(SDS_err_corrupt_object)

238,3,8 SDSw Repository: Retryable error condition. Close and open the connection and start over. This is useful for transactional repositories. DR550.
(SDS_err_retryable_err)

(SDS_err_nonretyable_err)

(SDS_err_nonretyable_write_err)

238,3,11 SDSw Repository: Could not allocate memory.
(SDS_err_no_memory_err)

238,3,12 SDSw Repository: Get repository info error.
(SDS_err_get_info_err)

238,3,13 SDSw Repository: Set retention error.
(SDS_err_set_retention_err)

238,3,14 SDSw Repository: Delete content error.
SDS_err_delete)

238,3,15 SDSw Repository: Unexpected error see elog for more info.
(SDS_err_unexpected_system_err)

238,3,16 SDSw Repository: Target repository software version is not supported.
(SDS_err_target_repository_version_not_support)

238,3,17 SDSw Repository: Get retention error.
(SDS_err_get_retention)
Appendix A – Log Files and Messages
SDS (238) Messages

238,3,18
SDSw Repository: Duplicate object. The document object was already created. This can occur when migration to SDSw is interrupted after writing out.
(SDS_err_duplicate_obj)

238,3,19
SDSw Repository: Invalid Parameter where SDSw client and SDSw libraries do not match up.
(SDS_err_invalid_parameter)

238,3,20
SDSw Repository: Pending delete.
(SDS_err_pending_delete)

238,3,21
SDSw Repository: Failed to delete an SDS object because of retention settings

238,3,22
SDSw Repository: Object size mismatch from SDSw_create_object size and stat() call after object creation.

238,3,23
SDSw Repository: Invalid Parameter for SDSw dynamic device library and the native repository AP

Background SDS migration job messages

238,4,1
Failed to write to background task log file.
(4_logwrt_err)

238,4,2
SDS background job logic error
(4_logic_err)

238,4,3
Background job terminated due to operator abort command.
(4_operabort_err)

238,4,4
Archive index not found in the database.
(SDS_archive_index_not_found)
This document has already had its ARCHIVE and or CLIP ID migrated from the index database to the docs table. If you want to migrate the entry again, run sds_convert_nls and specify the -override option. (SDS_already_converted)

SDS background job syntax error. (SDS_migr_syntax_err)

The document has a hold status in the source SDS. Cannot copy or migrate this document. (err_SDS)

Disallow copying SDS to MSAR/Optical on this server because doing so would result tranlog and primary copies of document on a different server. (err_SDS)

The specified sds unit does not match this document's sds unit. Skip migrating or copying this document. (err_SDS)

Document has been migrated to ISDS so sds_convert_nls should not used. The document has been skipped (err_SDS)

SDS Fastbatch committal messages

Invalid offsets of cache and od info in client attrs of batch (SDS_err_badbatchoffset)

Invalid number of pages in batch (SDS_err_badbatchpages)

Unexpected number of bytes read (SDS_err_badreadlen)

Page zero not found (SDS_err_pagezeronotfound)
Appendix B – EMC Centera

Support policy

Image Services 4.1.2 and higher includes the EMC Centera Software Developers Kit (SDK). The CentraStar version must be 3.1.1 or higher.

Support is limited to the functional scope of IS integration with Centera, as described in the IS documentation. New features appearing in a release of CentraStar are not automatically supported.

To take advantage of Event-Based Retention (EBR) in Centera Governance and Compliance Plus editions, customers must acquire the Advanced Retention Management (ARM) license from EMC and have EMC activate the event-based retention on the licensed system.

If you use Centera with ISDS and will not use EBR features, you do not need to purchase the ARM license. In this case, you are restricted to using ‘none’, ‘infinite’, ‘virtual EBR’, and ‘chronological retention’ types. In addition, document holds are not supported in this use case.

Note

According to EMC, all current versions of CentraStar are backward compatible with all versions of the Centera SDK, provided that the Centera device is configured to be compatible with the environment that the Centera SDK supports. Also, specific versions of the SDK are backward compatible with CentraStar from a specific release up. Refer to the Centera documentation for SDK/CentraStar compatibility. Beginning with Image Services fix pack IS 4.1.2 FP3, EMC Centera is supported with Integral SDS on HP Integrity.
With Centera SDK/CentraStar version 3.1, Centera supports both Event-Based Retention (EBR) and Chronological retention. With EBR, client applications can store a document with an "indefinite" retention, waiting for a business event to define and activate it a later time, as would be required for example for protecting a document from deletion for three years after close date. Centera also provides the capability to place "retention holds" on documents subject to legal inquiries. The C-Clips associated with these documents cannot be deleted until they are released from retention hold. These capabilities require EMC's Advance Retention Management License for Governance and Compliance Plus editions.

Performance tuning suggestions for Centera

As you configure the Centera device with your Image Services (IS) system, keep the following suggestions and best practices in mind.

- If the Centera device is set to 1000BaseT FD (full duplex), ensure that your Layer 2 switch settings match exactly.
- Ensure your Ethernet 1000BaseT cables are Category 6 and nothing less (such as Category 5 or 5e).
- The IS server and the Centera device should always be on the same subnet / VLAN.
- Use embedded BLOBs for all object sizes 100 KB or less. This is the default setting.
- Verify that the Centera device is set to Storage Strategy Performance = FULL.
- Ensure that all IP addresses or fully qualified DNS names are properly coded on the IS server .pea profile file or input string where the
connection IP addresses to the Centera device are coded. Include all access codes in the input string.

- Ensure that the IS index database is on the faster SAN attached DMX storage and that your placement of this database is highly optimized for performance.

- For best performance under heavy workloads, any IS application that writes to, or reads from, a storage device, such as Centera, must use multiple process threads for any I/O operation.

What is EMC Centera?

Centera is a storage repository device that uses a type of storage called Content Addressed Storage (CAS). Rather than address a data object by its file name at a physical location, a CAS device uses a content address that is based on attributes of the content itself. This results in a unique identifier (or Content Address) that is used to store and retrieve the data object.

When a reference data object is initially stored in the Centera repository, the application is given a “claim check” that is uniquely derived from the object’s content. Subsequent retrievals of that data object are made by simply giving the claim check, that uniquely identifies the object, back to the repository, and the data object is returned.

The claim check is called a clip ID. The clip ID contains the user’s data and associated C-CLIP Descriptor File (CDF), or metadata stored in a tag form.
IS-Specific Centera Object Format

IS converts the documents into a BLOB (Binary Large Object) file, and requests storage of the object on a Centera repository. During this process, IS temporarily stores the document images, and then later migrates them to the Centera object repository using Centera API calls.

IS stores specific metadata with each document in the C-CLIP Descriptor File (CDF) and in the BLOB file that contains the document. The BLOB includes header information and the table of contents to each document image page.

A Centera top tag with the IS name is created for each document with the following tag attributes:

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_DOCNUMBER</td>
<td>123456789</td>
<td>Original Doc Id</td>
</tr>
<tr>
<td>SSN</td>
<td>120000002</td>
<td>Original System Serial Number</td>
</tr>
<tr>
<td>SURFACE</td>
<td>5002</td>
<td>Original Primary Surface Number</td>
</tr>
<tr>
<td>BLOB_CHK</td>
<td>3245643</td>
<td>BLOB Checksum</td>
</tr>
<tr>
<td>BLOB_SIZE</td>
<td>32768</td>
<td>BLOB Size</td>
</tr>
<tr>
<td>BLOB_DATE</td>
<td></td>
<td>UTC (Coordinated Universal Time) of BLOB write</td>
</tr>
<tr>
<td>SDS_PT</td>
<td></td>
<td>• BLOB Page Table, fixed array of 1000 unsigned longs containing page offsets (this allows direct access to each page in the document)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• First value is page count; first page offset is always 0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Page count = 0 for Version 0, since the page table is in the BLOB already.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Max. 4 KB embedded BLOB</td>
</tr>
</tbody>
</table>
Appendix B – EMC Centera

What is EMC Centera?

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDS_VERSION</td>
<td>1</td>
<td>• 1 = SDS (IMS Format)</td>
</tr>
<tr>
<td>SDS_DIR</td>
<td>(Not yet implemented)</td>
<td>Document Index Record (DIR), embedded BLOB. This TAG attribute stores the DIR in a BLOB format.</td>
</tr>
</tbody>
</table>

![Diagram of Centera](image)

Centera

C-CLIP Descriptor File (CDF)
- Document ID
- SSN
- Surface
- BLOB_CHK
- BLOB_SIZE

- BLOB_DATE
- SDS_PT
- SDS_VERSION
- SDS_DIR
- BLOB_PT (system attribute not directly accessible)

BLOB (Document File)
Embedded BLOBs

Integral SDS automatically embeds document BLOBs that are 100 KB or less inside the CDF itself. Document content that is larger than 100 KB is still kept separate. Earlier Image Services releases always kept the document content separate from the document BLOB.

Embedding document BLOBs inside the CDF has several advantages:

- Embedded BLOBs cut Centera network traffic in half
- Embedded BLOBs reduce the number DB objects by half
Appendix B – EMC Centera

What is EMC Centera?

Centera

C-CLIP Descriptor File (CDF)
- Document ID
- SSN
- Surface
- BLOB_CHK
- BLOB_SIZE
- BLOB_DATE
- SDS_PT
- SDS_VERSION
- SDS_DIR
- BLOB_PT (system attribute not directly accessible)

BLOB (Document File < 100 KB)

Notes
- If you do not want to use this feature, you can deactivate embedded BLOBs by setting the following environment variable to true:

 SDSw_centera_not_embed

- The FP_OPTION_EMBEDDED_DATA_THRESHOLD environment variable allows you to set a lower upper value for the size of images that will be embedded as blobs. 100 KB is the default. You can set the value lower than 100KB using this variable.
Deactivating Embedded BLOBs

To set the environment variable SDSw_centera_not_embed, follow these steps:

1. Shut down the IS software and the TM_daemon.

 `initfnsw -y stop`
 `killfnsw -DAy`

2. Set the environment variable:

<table>
<thead>
<tr>
<th>Shell</th>
<th>Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>C shell</td>
<td><code>setenv SDSw_centera_not_embed TRUE</code></td>
</tr>
<tr>
<td>Korn or Bourne</td>
<td><code>SDSw_centera_not_embed=TRUE</code></td>
</tr>
<tr>
<td></td>
<td><code>export SDSw_centera_not_embed</code></td>
</tr>
</tbody>
</table>

 With this environment variable set to true, the Centera device will not embed document BLOBs and the system will behave exactly as it has in the past.

3. Restart the IS software.

Configuration steps

In addition to the general configuration settings discussed in the main body of this document, some specific configuration settings apply to EMC Centera. These settings are discussed in the following sections.

Tip

To improve SDS import and recovery performance, each Centera SDS unit should have its own Centera Pool.
Appendix B – EMC Centera
Configuration steps

Set up Centera Profile and Pool Entry Authorization (.pea) file

Create a Pool Entry Authorization file to activate the security for accessing the Centera device. Create one .pea file for each Centera device. (Refer to Centera documentation for more information about creating profile and .pea files.)

Create the home pool

1. Log on to the Centera device and launch the Centera interactive shell.
2. Enter the following command at the Config# prompt:

 Config# create pool IMPool

 where IMPool is the name of the pool file you want to create.

3. When you are prompted for the Pool Mask, enter:

 rdqewh
 Where these entries equal:

 - r = read
 - d = delete
 - q = query
 - e = exist
 - w = write
 - h = hold (hold requires ARM license)

4. Accept the Pool Quota of 1 GB.
5 Centera asks if you want to replicate this pool and if you want to issue the command now. Enter yes to both prompts.

 The sequence of commands looks similar to this:

```
Config# create pool IMPool
Pool Mask [rdqeDcw-]: rdqewh
Pool Quota: [1 GB]:
Do you want to replicate this pool? (yes, no) [yes]:
   Issue the command?
     (yes, no) [no]: yes
Created pool IMPool with ID 6086fa3a-1dd2-11b2-bdd1-867da7cfd572-9.
```

Create the pool entry authorization profile

1 At the Config# prompt, enter:

```
Config# create profile IMDevel
```

where IMDevel is the name of the .pea profile file you want to create for this Centera device.

2 Accept the default values for all of the prompts, except these:

 Enable Profile? yes
 Home Pool: IMPool (or whatever name you chose)
 Granted Rights: rdqewh
 Profile-Metadata Capability? yes
 Compliance Role? yes
 Issue the command? yes
The sequence of commands looks similar to this:

```
Config# create profile IMDevel
Profile Secret [generate]:
Enable Profile? (yes, no) [no]: yes
Profile Type (access, cluster) [access]:
Home Pool [default]: IMPool
Granted Rights for the Profile in the Home Pool [rdqeDcw-]: rdqewh
Profile-Metadata Capability? (yes, no) [no]: yes
Accesscontrol role? (yes, no) [no]:
Audit role? (yes, no) [no]:
Compliance role? (yes, no) [no]: yes
Configuration role? (yes, no) [no]:
Monitor role? (yes, no) [no]:
(continued on next page)
```

(continued from previous page)
```
Replication role? (yes, no) [no]:
Issue the command?
  (yes, no) [no]: yes
Establish a Pool Entry Authorization for application use? (yes, no) [no]: yes
Please enter Pool Authorization creation information: C:\IMDevel.pea

Config#
```

3 Repeat the steps in this section on each Centera unit to create a separate profile for each unit. (The profiles can be shared, but sharing makes sds_import slower.)

Tip If you answer yes to the Replication role prompt, you must create a merged profile. See the Centera documentation for details.
Verify the .pea profile file

On the Centera device, run the CenteraVerify program to make sure the .pea profile file has been configured successfully.

The first step in the CenteraVerify program verifies that it can access each Centera device successfully.
The second step verifies Cluster Information and displays the capabilities that are allowed or not allowed in the .pea profile file.

The third step verifies the read, write, and delete capabilities.
Appendix B – EMC Centera
Configuration steps

Copy the .pea file to the IS server

Copy the .pea file from the Centera unit to every IS server in the system. The .pea file must be in the same directory path on each server, such as `/fnsw/local/sd/1/merged.pea`

Modify the .profile and .cshrc files

Modify the .profile and .cshrc files for the FileNet software user, such as fnsw, and any other users in the fnadmin and fnop groups who are responsible for starting and stopping the Image Services software.

1 Log in and use your preferred text editor to edit the .profile and .cshrc files.

 • In the Bourne or Korn shell, add the following line to the .profile file:

     ```bash
     export SHLIB_PATH=$SHLIB_PATH:/fnsw/lib/shobj/3rdparty/centera
     ```

 • In the C shell, add the following line to the .cshrc file:

     ```bash
     setenv SHLIB_PATH $SHLIB_PATH:/fnsw/lib/shobj/3rdparty/centera
     ```

2 Repeat the previous step for each user.

3 Then start the Image Services software.

For HP Integrity support

Modify the .profile and .cshrc files

1 For .profile, add the following line at the end of the file:

   ```bash
   export SHLIB_PATH=$SHLIB_PATH:/fnsw/lib/shobj
   ```
For .cshrc, add the following line at the end of the file:

```
setenv SHLIB_PATH $SHLIB_PATH:/fnsw/lib/shobj
```

3 Log off, then log back on for the changes to take effect.

Add the Centera device to the IS configuration

Return to Chapter 2, “Define the SDS configuration in Image Services,” on page 43 to add this SDS unit to the Image Services configuration.
Appendix C – IBM DR550

What is IBM DR550?
The IBM TotalStorage DR550 packages storage, server, and software retention components into a lockable cabinet. For installation information, see the *IBM TotalStorage DR550 Version 2.0 Installation, Setup, Operations, and Problem Determination Guide* at the IBM Web site.

Restriction

HP Integrity servers do not support IBM DR550.

Tip

As of Image Services fix pack IS 4.1.1 FP2, the DR550 Tape Behind feature is supported. For more information, see the Tech Note at: http://www-01.ibm.com/support/docview.wss?uid=swg21380399.

What is IBM Tivoli Storage Manager?
IBM Tivoli® Storage Manager (TSM) is a software product that enables you to protect your organization’s data through features like backup and recovery and archive management. (See the IBM Web site for details.)

Install the Tivoli API Client Package 5.5 libraries
This applies to HP9000 systems only.

The Tivoli API client package software must be installed on all Image Services servers that use Integral SDS to access Tivoli 5.5 libraries.
1. To download the TSM software to your local server, go to:

2. Open the appropriate folder for your operating system, open the folder for your server type (if necessary), and locate the `v550` folder.

3. Download the README file to your local server.
 - On UNIX servers, download the tar.Z file (UNIX) and extract the files.
 - On Windows servers, download the .exe file. (This file is a self-expanding archive.)

4. The README file contains general installation instructions.

 See the *IBM Tivoli Storage Manager Quick Start Guide* for installation instructions and important links. The Quick Start Guide is available on your Quick Start CD or download image.

Tip

Install the 32-bit version of the API client, for example:

```
tivoli.tsm.client.api.32bit
```
Install the Tivoli API Client Package 6.2.0.0 libraries

This installation applies to Windows, Sun and AIX systems.

FileNet Image Services 4.1.2 FP8 introduces support for Tivoli TSM Client API v.6.2.0.0 for the IBM DR550 storage repository. Image Services Integral SDS and SDS_ISAR_reader (for NLS/SDS documents) supports the new client on Windows, AIX, and Solaris servers. It is NOT be supported on HP-UX or HP-Integrity servers.

1. To download and install this new TSM release, use the following link:

2. Before you install this TSM release, back up the original versions of the affected files.

3. After the installation, before starting FileNet Image Services, remove or rename the /fnsw/local/logs/sds/SDSw_tivoliDR directory, and the /fnsw/client/logs/sdst directory (if SDS_tool is used).

4. After the installation on AIX and Solaris servers, link to the location of the new files.

 For example (customer TSM Client API installation location may differ):

 ln -s /usr/tivoli/tsm/client/api/bin/libApiDS.{a|so} /fnsw/lib/shobj/libApiDS.{a|so}
 ln -s /usr/tivoli/tsm/client/api/bin/EN_US /fnsw/lib/SDSw_tivoliDR/EN_US
 ln -s /usr/tivoli/tsm/client/api/bin/EN_US /fnsw/lib/IBM_DR550/EN_US
 (if SDS_ISAR_reader is used)
(if SDS_ISAR_reader is used)

5 After the installation on Windows servers, copy the new files to the
FileNet Image Services directories. Effected files are in:

- \fnsw\lib\shobj: dsmntapi.dll, tsmapi.dll, and tsmutil1.dll
- \fnsw\lib\sdsw_tivolidr: dscenu.txt
- If SDS_ISAR_reader is used, in: \fnsw\lib\IBM_DR550: dscenu.txt.

Install the gsk* modules (AIX servers only)

Depending on your current gsk version, you might also need to install
the following two modules:

gskta.rte
SSL Toolkit 32-bit (required by the backup-archive client
and its components).

gkska.rte
SSL Toolkit 64-bit (required by the 64-bit client API).

These modules are included in the .tar.Z file for AIX:

5.5.0.0-TIV-TSMBAC-AIX.tar.Z

See the subsection, “Installing the AIX client” in "Chapter 1. Installing
Tivoli Storage Manager” of the *IBM Tivoli Storage Manager Backup-
Archive Clients Installation and User's Guide*.
TSM Configuration Steps

In addition to the general configuration settings discussed in the main body of this document, there are some specific configuration settings that apply to the IBM DR550 discussed in the following sections.

- Create the SDS family and document classes (without specifying the SDS unit) as described in Chapter 2, “Define SDS Families and Document Classes,” on page 53.

- Run the TSM scripts as described in this appendix, beginning with the section, “Set up the IS software for IBM DR550” on page 157.

- Use the IS System Configuration Editor (fn_edit) to add the DR550 device to the IS configuration as described in Chapter 2, “Define the SDS configuration in Image Services,” on page 43.

- Restart the Image Services software.

- Update the SDS family with the SDS unit information as described in Chapter 2, “Define SDS Families and Document Classes,” on page 53.

Set up the IS software for IBM DR550

Image Services software contains the following two scripts: TSM_SetupSvr and TSM_SetupSvr.awk (these scripts are located in the /fnsw/etc directory. To set up an instance of IBM DR550, complete the following steps:

1. After you have created the family and document classes for your SDS documents, run the ddeim tool on the IS server that is going to communicate with the IBM DR550 device:
Appendix C – IBM DR550
TSM Configuration Steps

ddexim -e > inxdb.<ssn>

where <ssn> is the system serial number of the IS system.

2 Copy the following files from the IS server to the DR550 device:

 inxdb.<ssn> TSM_SetupSvr TSM_SetupSvr.awk.

3 On the IBM DR550 console, run the TSM_SetupSvr script with the <ssn> argument as shown below to generate three files: FN<ssn>, FN<ssn>.scr, and FN<ssn>.rpt.

 TSM_SetupSvr <ssn>

4 On the IBM DR550 console, change the permissions of the .cmd file:

 chmod +x FN<ssn>.cmd

5 On the IBM DR550 console, run the following command to set up the domain, policyset, and management class, and pipe the output to a log file:

 FN<ssn>.cmd | tee FN<ssn>.out

where <ssn> is the system serial number of the IS server.
6 Review the output to make sure no errors occur. Below is an example of the beginning, middle, and ending of this file without any errors.

IBM Tivoli Storage Manager
Command Line Administrative Interface - Version 5, Release 2, Level 0.0
(c) Copyright by IBM Corporation and others 1990, 2003. All Rights Reserved.

Session established with server TSM: AIX-RS/6000
 Server Version 5, Release 3, Level 0.0
 Server date/time: 11/22/07 17:47:16 Last access: 11/21/07 19:30:40

ANS8000I Server command: 'Delete Script FN16164_Setup'
ANS1455E DELETE SCRIPT: Command script FN16164_SETUP does not exist.
ANS8001I Return code 11.

ANS8002I Highest return code was 11.
...

ANR1514I Policy set FN16164SET activated in policy domain FN16164.
ANR1462I RUN: Command script FN16164_SETUP completed successfully.

ANS8002I Highest return code was 0.
...

ANS8000I Server command: 'Query Node FNP8IM_16164 Format=Detailed'
ANR2034E QUERY NODE: No match found using this criteria.
ANS8001I Return code 11.

ANS8002I Highest return code was 11.

In this example, the line in bold text indicates instance FN16164 was successfully set up.

7 Review the FN<ssn>.cmd file. On the IBM DR550 console, run the line in the file that has been commented out (bold in the following example)
to create the IBM DR550 instance. You can copy the line without the comment character from the file to the command line.

```
dsmadmc -id=admin -password=admin Delete Script FN16164_Setup
dsmadmc -id=admin -password=admin Define Script FN16164_Setup File="pwd"/FN16164.scr Desc="FileNet - SSN 16164 Domain Setup Script"
dsmadmc -id=admin -password=admin Run FN16164_Setup
#dsmadmc -id=admin -password=admin Register Node FNP8IM_16164 SysAdmin Domain=FN16164 Comp=Client
dsmadmc -id=admin -password=admin Query Domain FN16164 Format=Detailed
dsmadmc -id=admin -password=admin Query Policy FN16164 Format=Detailed
dsmadmc -id=admin -password=admin Query MgmtClass FN16164 Format=Detailed
dsmadmc -id=admin -password=admin Query Node FNP8IM_16164 Format=Detailed
```

8. After you run the line from the above file, you receive output on the console screen similar to the next example, and toward the end you will see output that indicates FNP8IM_<ssn> is registered in policy domain FN<ssn> (bold below).

```
IBM Tivoli Storage Manager
Command Line Administrative Interface - Version 5, Release 2, Level 0.0
(c) Copyright by IBM Corporation and others 1990, 2003. All Rights Reserved.
Session established with server TSM: AIX-RS/6000
  Server Version 5, Release 3, Level 0.0
  Server date/time: 11/22/05 17:47:16 Last access: 11/21/05 19:30:40
ANS8000I Server command: 'Register Node FNP8IM_95780 SysAdmin Domain=FN95780 Comp=Client'
ANR2050I Node FNP8IM_95780 registered in policy domain FN95780
ANR2099I Administrative userid FNP8IM_95780 defined for OWNER access to node FNP8IM_95780
```

Note If a new document class is added to the system, repeat the steps in this section to rerun the TSM_SetupSvr script and add the new document classes to the IBM DR550 environment.
Appendix C – IBM DR550

TSM Configuration Steps

Restart the IS Software

Restart the IS software on all servers to put the new configuration into effect.

Verify the TSM API Environment Variables

The dsm files must be set up for the TSM software to communicate with the IBM DR550 device.

First Time Installation of TSM

If this is a new installation of TSM and you are using TSM only with IS, you do not need to do much. By default, IS creates the dsm.sys (UNIX only) and dsm.opt (UNIX and Windows) configuration files in the following locations when the IS software is brought up, depending upon your operating system:

- `/fnsw/local/logs/sds/SDSw_tivoliDR/<SDS unit name>/<instance number>/dsm.sys` (UNIX)
- `/fnsw/local/logs/sds/SDSw_tivoliDR/<SDS unit name>/<instance number>/dsm.opt` (UNIX – placeholder file)
- `<drive>:\fnsw_loc\logs\sds\SDSw_tivoliDR\<SDS unit name>\<instance number>\dsm.opt` (Windows)

Note

One dsm.sys and one dsm.opt file are created for each instance of TSM on a UNIX system, but the dsm.opt on UNIX is a placeholder file for trace file information or other options.

On a Windows system, only the dsm.opt file exists and it holds all of the information that both the dsm.sys and dsm.opt files hold on UNIX.
For information on setting up API tracing, go to “Set API Environment Variables for Tracing (Optional)” on page 165.

These files are expected by the initial TSM API call (dsmSetup) for the APIs to work correctly. API library error messages are logged to one of the following files:

UNIX

/fnsw/local/logs/IBM_DR550/rdr_TSM_err_yyyymmdd

WIN

<drive>:\fnsw_loc\logs\IBM_DR550\rdr_TSM_err_yyyymmdd

Pre-existing installation of TSM

If this is a pre-existing installation of TSM and you are using TSM with other applications in addition to IS, you probably already have versions of the dsm.sys and dsm.opt files (UNIX) or a dsm.opt file (Windows) in a pre-existing location. If the environment variables already point to this location, the IS software does not touch these files.

In the dsm.sys file (UNIX) or the dsm.opt file (Windows), add the lines shown in the following example. Make sure the settings are appropriate for your system, and that the Tcpserveraddress line matches the IP address of the IBM DR550 as configured in the repository location string in fn_edit.

<table>
<thead>
<tr>
<th>Servername</th>
<th>FileNet_SDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commmethod</td>
<td>tcpid</td>
</tr>
<tr>
<td>Tcpserveraddress</td>
<td>212.3.248.36</td>
</tr>
<tr>
<td>EnableArchiveRetentionProtection</td>
<td>yes</td>
</tr>
</tbody>
</table>
Note The `dsm.opt` file is used for optional API tracing or other options. For information on setting up API tracing, go to “Set API Environment Variables for Tracing (Optional)” on page 165.

Set the MaxSessions Parameter

It is important to consider how many systems are going to be in communication with the IBM DR550 and to make sure the MaxSessions parameter is set to accommodate that number and more. To do this, complete the following steps:

1. Login the DSM Admin Console (IBM DR550).

2. Enter the following command at the TSM> prompt to see the current setting of the Maximum Sessions parameter:

 `query system`

 You will see output similar to the following, where the Maximum Sessions setting is shown in bold text:

   ```
   tsm: TSM>query system
   ****************************************
   *** ---> Q STATUS
   ****************************************
   Storage Management Server for AIX-RS/6000 - Version 5, Release 3, Level 0.0
   Server Name: TSM
   Server host name or IP address:
   Server TCP/IP port number: 1500
   (continued on next page)
   ```
The example above shows Maximum Sessions set to 256, which would mean no more than 256 users could concurrently be accessing a particular DR550 device.

3 Determine the setting for your site (suggest 100 per server) that is going to communicate with the DR550 device and enter a command similar to the following at the TSM> prompt:

```
SETOPT MAXSESSIONS 200
```

where you are changing the setting to 200.
Add the DR550 device to the IS configuration

Use the IS System Configuration Editor (fn_edit) to add the DR550 device to the IS configuration as described in Chapter 2, “Define the SDS configuration in Image Services,” on page 43. When you have finished step 18 on page 47, return to this appendix.

Restart the IS Software

Restart the IS software on all servers to put the DR550 configuration changes into effect.

Update the SDS family

- Return to Chapter 2, “Define SDS Families and Document Classes,” on page 53 to update the SDS family with the appropriate information for DR550.

Set API Environment Variables for Tracing (Optional)

Use the following tracing method for troubleshooting the IBM DR550 device.

- You can optionally set the DSML_CONFIG environment variable to take advantage of the API tracing provided by Tivoli Storage Manager.

| Note | Be aware that tracing might have a significant impact on system performance. |
Set TSM Tracing Method

TSM tracing provides you with very detailed tracing information. To enable TSM tracing, add two lines of text to the dsm.opt file (for both UNIX and Windows) and point the DSMI_CONFIG environment variable to the full path name <path> of your dsm.opt file.

To set the environment variable enter the following commands:

On UNIX platforms:

- For Bourne and Korn shell users, enter the following command:

 `export DSMI_CONFIG=/<path>/dsm.opt`

- For C shell users, enter the following command:

 `setenv DSMI_CONFIG /<path>/dsm.opt`

On Windows platforms, you must use the graphical user interface to set the environment variable:

a Right-click My Computer > select Properties > select the Advanced tab > click Environment Variables.

b In the Environment Variables window, click New in the System variables pane.

c In the New System Variable pop-up window, enter DSMI_CONFIG in the Variable Name field and `<drive>:\<path>\dsm.opt` in the Variable Value field (where <path> is the location of your dsm.opt file) and click OK.
Tracing on UNIX Systems

After setting the environment variables and either creating new or using the default dsm.opt file, make sure they have content similar to that shown in the following example:

In the dsm.opt file, enter trace information as shown.

```
Traceflags api perform
Tracefile <api trace file name>
```

All the extensive API trace file information provided by TSM is in the <api trace file name> you specify in the dsm.opt file.

Tracing On Windows Systems

After setting the environment variables and either creating a new file or using the default dsm.opt file, verify the contents are similar to the following example. Make sure the settings are appropriate for your system, and that the Tcpserveraddress line matches the IP address of the IBM DR550 from the as_conf.g file.

```
Servername                        FileNet_SDS
Commmethod                        tcpid
Tcpserveraddress                  212.3.248.36
EnableArchiveRetentionProtection  yes
Traceflags api perform
Tracefile <api trace file name>
```

All the extensive API trace file information provided by TSM is in the <api trace file name> you specify in the dsm.opt file.
Restart the IS Software

Stop the IS software with `killfnsw` and restart the IS software on all servers to put the TSM Tracing into effect.

Return to Chapter 2, “Define SDS Families and Document Classes,” on page 53 for information on adding the DR550 to the SDS family.

Image Services support of IBM Information Archive (IIA)

As of Image Services fix pack IS 4.1.1 FP6, Image Services supports IBM Information Archive (IIA).

Support of IIA requires Image Services IBM Tivoli Storage Manager (TSM) Client 6.1 or greater. You must also install the TSM 6.1 client Backup Archive (BA) package. The BA client package contains the dsmadmc program used by IIASetup.

Download the latest release of the TSM client from the IBM support site:

To enable support of IIA

Three new Setup script files are required for the IIA interface. The files are located in: /fnsw/etc

- IIA_SetupSvr
- IIA_SetupSvr.awk
- IIA_MkScript.awk
1 Prior to running the IIA_SetupSvr script (which calls the two .awk files), modify the values on line 40 to reflect the local implementation.

IIA_SetupSvr Line 40: set CON_IN="dsmadm -se=<collection> -id=tiamadmin -password=tiamadmin"

- Modify the '-se=<collection>' line to specify the collection name.
- Modify the '-id=tiamadmin' line to specify the appropriate id.
- Modify the '-password=tiamadmin' line to specify the appropriate password.

2 After modifying the IIA_SetupSvr script, run the IIA_SetupSvr script with the <ssn> argument to generate these files:

- -rw-rw---- 1 fnsw fnus 104961 Sep 23 2009 FN581108_iia.cmd
- -rw-rw---- 1 fnsw fnusr 40825 Sep 23 2009 FN581108_iia.rpt
- -rw-rw---- 1 fnsw fnusr 55627 Sep 23 2009 FN581108_iia.scr

The files that are created are: FN<ssn>.cmd, FN<ssn>.rpt and FN<ssn>.scr, and are located where the user runs the IIA_SetupSvr script.

3 Create the dsm.sys file:
a Start Images Services. This automatically creates a dsm.sys file for each SDS_worker in the directory /fnsw/local/logs/sds/SDSw_tivoliDR/<sds name>/<worker number>. As each IIA SDS_worker is started, connection errors are logged in the Image Services syslog.

b This also applies to DOC_tool. Start DOC_tool, run 'sds', 's', 'y' so that the DOC_tool returns a connection error before modification of the dsm.sys associated with DOC_tool.

c Shut down Image Services to modify each dsm.sys file to correct the connection error.

d To allow the IIA collection access through Image Services, modify each 'dsm.sys' file in the '/fnsw/local/logs/sds/SDSw_tivoliDR/<sds name>/<worker number>' directory. **Tip** The 'dsm.sys' file used by DOC_tool is present in directory 99: As an example (notice the last entry for worker 99):

```
sun222d2r(fnsw)/fnsw/local/logs/sds/SDSw_tivoliDR/tiv_222>
ll total 24
  drwxrwx--- 8 fnsw    fnusr          8 Oct 27 07:29 ./
  drwxrwx--- 3 fnsw    fnusr          3 Oct 27 07:28 ../
  drwxrwx--- 2 fnsw    fnusr          32 Feb 18 10:10 1/
  drwxrwx--- 2 fnsw    fnusr          32 Feb 18 10:10 2/
  drwxrwx--- 2 fnsw    fnusr          32 Feb 18 10:10 3/
  drwxrwx--- 2 fnsw    fnusr          32 Feb 18 10:10 4/
  drwxrwx--- 2 fnsw    fnusr          32 Feb 18 10:10 5/
  drwxrwx--- 2 fnsw    fnusr          16 Jan  4 13:33 99/
```

e Modify each dsm.sys file by adding the TcpPort information, as in the following example. Add this (bold) line to the 'dsm.sys' file:

```
ServerName Tivoli_IIA_One
```
TCPServerAddress TivoliIIA.domain.com
CommMethod tcpip
EnableArchiveRetentionProtection On
TcpBuffSize 512
TcpPort 1501
TcpNoDelay On

TcpPort 1501 represents the port for the first collection on the IIA server. If multiple collections are used, change the port number changed to represent the associated collection.

- 1501 – First collection
- 1502 – Second collection
- 1503 – Third collection

After modifying each ‘dsm.sys’ file, restart Image Services.

Tivoli Storage Manager tape support

Generic Tape Support is available for TSM supported devices.

For details on Tivoli Storage Manager, see: http://www-01.ibm.com/software/tivoli/products/storage-mgr
Appendix D – Windows network security settings

These procedures are for setting permissions on file system type repositories, such as Snaplock, Sun Storagetek, Hitachi HCP. You must configure your IS system appropriately.

Important
Create a storage area on the device with appropriate permissions first. Have your system administrator or vendor assist you.

How to create a Domain Account for Image Services
Create, or verify, a domain group account in a domain where both the IS server and the remote storage device are members.

For example, <domain>\domain fnadmin

Use a domain account that includes the owner of the IS Control Service and any other users that require access to archived documents.

Note
The examples in this appendix use domain1 for the domain name and domain fnadmin for the user name.

How to set security properties for archive devices
Use this procedure if you will be accessing an archive repository device, such as Snaplock, Sun Storagetek, or Hitachi HCP.
Appendix D – Windows network security settings
How to stop IS software and IS ControlService

On the **archive device**:

1. Using the repository’s administration tool, create the archive directory with ample space for your documents.

2. Using the repository’s administration tool, set permissions for the archive directory and give <domain>\domain fnadmin full control.

How to stop IS software and IS ControlService

On the **IS server**.

1. Open a Command Prompt and stop IS:

 `initfnsw -y stop`

2. From the Control Panel, open Administrative Tools and then open Services.

3. In the Services window, right-click IS ControlService and select **Stop**.

 Note You can also click the button on the tool bar at the top of the Services window to stop the IS Control Service.

How to modify the IS ControlService to use the domain account

On the **IS server**.

1. In the IS ControlService Properties window, select the Log On tab.

2. From the Log On tab, click the **Browse** button to open the Select User window.
Appendix D – Windows network security settings
How to add the domain account to the following groups: Administrators, FNADMIN, FNOP, FNUSR

3 From the drop-down list in the Look in: box, select your domain.
4 Select your domain user name and click OK.
5 In the IS ControlService window, enter the domain user password, confirm the password entry, and click OK.
6 In the Services window, right-click IS ControlService and select Start.

Tip You can also click the button on the Services tool bar at the top of the window to start the IS Control Service.

7 After verifying that the IS ControlService starts successfully, close the Services window.

How to add the domain account to the following groups: Administrators, FNADMIN, FNOP, FNUSR
On the IS server.

1 From the Taskbar, click Start > Programs > Administrative Tools and click Computer Management.
2 Expand the Local Users and Groups folder and select Groups.
3 Double-click the Administrators group to open the Administrators Properties window.
4 Click Add to open the Select Users or Groups window.
5 From the drop-down list in the Look in: box, select your domain.
Appendix D – Windows network security settings
How to modify the local security policy for Domain Account

6 Select the domain user name you created in the section, “How to create a Domain Account for Image Services” on page 172, click Add and then OK.

7 Click OK to close the Administrators Properties window.

8 Repeat Steps 3 through 7 for the remaining groups: FNADMIN, FNOP, and FNUSR.

How to modify the local security policy for Domain Account
On the IS server.

Modify the local security policy to give the domain account permissions for the following policies:

- Act as part of the operating System
- Log on as a service
- Increase quotas
- Replace a process token

1 From the Taskbar, click Start, point to Programs, point to the Administrative Tools, and click Local Security Policy.

2 Expand the Local Policies folder and select the User Rights Assignment folder.

3 Right-click on the policy selection you want to add and select Security.

4 Click the Add button to open the Select Users or Groups window.

5 From the drop-down list in the Look in: box, select your domain name.
Appendix D – Windows network security settings
How to modify the local security policy for Domain Account

6 Select the user name you created in the section, “How to create a Domain Account for Image Services” on page 172, click the Add button, and click OK.

7 Click OK to close the Local Security Policy Setting window.

8 Repeat Steps 3 through 7 for the remaining Policy selections. After all Policy selections have been modified, continue to the next section.
Appendix E – Centera License Agreement

Copyright © 2003 EMC Corporation. All rights reserved.

EMC believes the information in this publication is accurate as of its publication date. The information is subject to change without notice.

THE INFORMATION IN THIS PUBLICATION IS PROVIDED "AS IS." EMC CORPORATION MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WITH RESPECT TO THE INFORMATION IN THIS PUBLICATION, AND SPECIFICALLY DISCLAIMS IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Use, copying, and distribution of any EMC software described in this publication requires an applicable software license.

Copyright © 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved.

License to copy and use this software is granted provided that it is identified as the "RSA Data Security, Inc.

MD5 Message-Digest Algorithm" in all material mentioning or referencing this software or this function. RSA Data Security, Inc. makes no representations concerning either the merchantability of this software or the suitability of this software for any particular purpose. It is provided "as is" without express or implied warranty of any kind.

These notices must be retained in any copies of any part of this documentation and/or software.
Copyright (c) 1995-2011 International Business Machines Corporation and others. All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, provided that the above copyright notice(s) and this permission notice appear in all copies of the Software and that both the above copyright notice(s) and this permission notice appear in supporting documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
Glossary

Ageable cache object
Cache objects that can be aged out of page cache. Typically a cache object is made ageable after it has been migrated to permanent storage and the write request is removed.

Background Job Control
Background Job Control is an Image Services application used to start, control, and monitor background jobs.

background jobs
Background jobs are time-intensive IS software functions designed to run at lower priority and without user attention (that is, in the background). As such, they do not interfere with other tasks. Copying media, importing documents from storage media, and consolidating media are examples of functions that are performed as background jobs. Background job progress is checkpointed and will automatically restart from where it stopped if the software is restarted.

blob
A collection of binary data stored as a single entity in a database management system. The term blob was originally used by James Starkey at DEC to refer to an amorphous chunk of data. Blob was later interpreted as a “backronym” for basic large object or binary large object.
cache

Cache is the magnetic disk space used to store documents on the way to and from storage media. Cache can also act as permanent storage if you do not use optical or MSAR storage media. Portions of cache (referred to as logical caches) are allocated for storage of different document types. IS uses multiple cache types.

Cache-only

Some IS customers choose not to use optical or MSAR storage libraries for their systems. All of their committed documents stay locked in page cache. This type of configuration is called a Cache-only system.

Cache-only Storage Server

Some FileNet customers do not use MSAR or optical storage libraries with their systems. All of their committed documents stay locked in page cache.

checksum

The arithmetic sum of the binary data in an object. Checksumming is used to verify image integrity. The checksum is normally calculated when a document is captured and stored with the document when it is committed. A checksum can be recalculated and compared with the original checksum at any point in the lifecycle of the document.

clip ID

clip ID is the Centera repository method to reference objects. The clip ID is a Content Address that Centera returns to Image Services upon creation of a document object. The clip id associated with a document stored in the MKF DOCS table. The clip id is used to
retrieve a document from Centera. A clip ID consistent of 40 to 65 bytes. It is also referred to as C-Clip ID, Clip-ID, a C-Clip handle or C-Clip reference.

committal

Committal is the stage at which scanned images become retrievable documents. Index values are written to the index database and an entry in the document locator table of the permanent database is inserted. For systems equipped with a storage library or SDS unit, requests to migrate the documents to the storage library or SDS unit are written to the write_request table.

CSM Page cache

CSM Page cache, also known as retrieval cache, is a cache containing all documents being committed to or retrieved from storage media. Page cache is an ageable cache, meaning that documents not locked can be aged out to make room for newer documents.

database

A database is a collection of logically related records or files managed by a database management subsystem. The IS system uses two types of databases: a third-party relational database for index data and WorkFlo queues and "MKF (multi-keyed file)" for document addresses, work in progress, and other purposes.

ddexim

The ddexim tool saves (exports) and restores (imports) document class and index information in the index database.
Docs table

Also known as the Document locator table, this Permanent MKF database table contains information about each document such as the associated primary and tranlog surfaces and offsets to the document (Long descriptor or TOC). There is only one docs table per system and it is on the primary Storage Library Server. Documents stored on all Storage Library Servers will have an entry in the docs table.

Doctaba table

The relational database table where all user Index information about documents is stored.

Document class

A logical grouping of similar documents. A document's scanning, indexing, and security characteristics are defined by the document class. All documents assigned to that class share the same characteristics. A document class is associated with a media family.

Document family

This is also known as media family. There are two types of families: primary and tranlog families. A family is used to migrate documents to a configured media type. New SDS ID and SDS only properties have been added to the family paradigm. These properties are only valid for the primary families. The database maintenance family configuration UI (Xdodprog) supports these new SDS properties.

Document locator (DOCS) table

The document locator table is part of the MKF permanent database and resides on the primary storage server. The DOCS table
contains a record for each document id number and its location whether on optical media, MSAR, or integral SDS.

EBR
Event-Based Retention.

EMC Centera domain name
Used to connect to the appropriate Centera object repository.

EMC Centera Object Repository
EMC Centera Object Repository stores data based on the actual content value. This is a content based addressing system.

Fast Batch Committal
Fast batch committal is a quick way of moving documents from batch cache to page cache. In a fast batch committal environment, all documents and all pages of the documents for the batch are in one cache object, so the entire batch is committed in a single operation. Unlike normal committal, fast batch committed documents are not retrievable from the cache. They must be migrated to and then from a storage library before a retrievable copy of the document is in the page cache.

If the "Fast Batch Breakup" option is selected, the fastbatch object remains in the cache after it has been written to a surface. This option also causes the fastbatch object to be broken up so that individual documents are retrieved.

Image Services
Image Services is a set of servers and services providing a single document image database. The database includes a single index
database, a single document locator database, and the collection of document images on storage media.

In box surface
A surface that is physically available in a library.

index database
The index database contains document and folder information and is implemented by relational database management system such as Oracle, DB2®, or Microsoft® SQL Server™.

Locked objects
Images not yet written to storage media are "locked" in cache and cannot be aged out (that is, they cannot be deleted or moved). In a system without a storage library, all documents are locked objects in page cache.

MKF (multi-keyed file)
The MKF stands for multi-keyed file databases. They include the transient database, the permanent database, the NCH database, and the security database.

Migration
Migration is the process of writing documents from batch cache to the storage library. It can also be used to describe the retrieval of documents from the storage library into page cache.

MSAR
Magnetic Storage and Retrieval library. This is a FileNet term for using available magnetic storage for IS documents and treating this space as a storage library.
Multiple storage library server system

IS systems can have multiple storage library servers, each of which can manage multiple libraries. If you have multiple storage library servers, one serves as the master server (called a document locator server) that keeps track of the contents of all storage libraries. Some diagnostic tools and commands must be run from the document locator server.

The document locator server includes the complete permanent database that maps each document number into one or two media locations. Other storage library servers contain small permanent databases that store this information until enough accumulates to transfer to the document locator server.

NAS (Network-Attached Storage)

File-level computer data storage connected to a computer network providing data access to network clients.

NLS-SDS

Near Line Storage - Single Document Storage. The previous implementation of Single Document Storage and Retrieval used an add-on software component known as Near Line Storage. The system was limited to one SDS device, and configuration files had to be updated manually.

OSAR

OSAR is an acronym for the proprietary Optical Storage and Retrieval unit. An OSAR is a type of storage library.
out-of-box surface
A surface that is not physically available in a library. An RSVP message is issued if a document on that surface has been requested.

permanent database
The permanent database stores the media location of each document entered into the system and contains tables for media surfaces, media families, and annotations.

primary family
A collection of media that stores documents from one or more document classes. Before you can complete the definition of a document class, you must assign it to a media family so the system knows where to store the documents in that class. You can also create a primary family to be used exclusively for archiving the index and permanent databases.

primary storage server
In IS systems that are configured with multiple storage servers, the primary storage server is the storage server where the centralized document locator table is maintained. In addition, the surf_locator and family_locator tables also reside on the primary storage server.

QMA queue
The QMA queue is a part of the Queue Manager Abstract, which manages shared memory queues. The IS software has many well known or permanent queues that are created during software startup. Among these are a scheduler queue for a dsched process, a dtp queue for each dtp process, a dtp_tran queue for each dtp_tran process, a remote committal queue for a rmt_commit process, and so on.
These permanent queues are created or found by the entry points QMA_find_queue. Permanent queues cannot be deleted without restarting the IS software.

The first time QMA_find_queue is called for a permanent queue it is created, and subsequent calls to QMA_find_queue find the queue instance. The QMA_find_queue creates or finds a permanent queue with a queue class ID and associated size of each queue entry. In addition, QMA_find_queue can be called with up to 256 instance indicators. The instance indicator is used to support multiple SDS units by mapping the SDS unit number to QMA instance number.

Each instance of a QMA queue class is a separate queue and is managed independently. To send a request, the sender process must create a queue entry (with QMA_create_entry) and insert it into the tail or head of the queue instance (with QMA_insert_last or QMA_insert_first). The receiver process can dequeue a request from the top of the queue by calling QMA_wait_remove_first.

QMA has a locking mechanism to prevent two different processes from accessing or retrieving from the same queue at the same time. SDS uses the QMA structure to manage each SDS unit.

For SDS, the IS dispatch process calls the SDS_submit_read_request entry, which in turn calls the QMA_create_entry entry to queue a read request to the SDS QMA queue instance.

Each SDS worker task calls the SDS_get_next_request entry, which will in turn call the QMA_wait_remove_first entry to dequeue read requests from the SDS QMA queue instance. The SDS enhancement will take advantage of the existing locking and separately managed queue instances infrastructure in QMA.
Read Enabled Surface
A database setting (surf_info table) that enables retrieval requests for a particular surface. If "read enable" is set to "not available," read requests will not be submitted to the particular surface.

Remote System Committal
Documents entered on one IS system can be transmitted to and committed on another IS system at a remote location.

RSVP message
An RSVP message requires the operator to respond and perform some action, such as loading storage media. RSVP messages are displayed by the “SLC (Storage Library Control)” UI program.

SAN (Storage Area Network)
A mass storage device independently managed for access by many different users across a network.

Secondary Storage Server
For Multiple Storage Configured systems, the Secondary Storage Server is any Storage Library Server that is not the Primary Storage Server.

Server
A single computer that provides services to other computers (clients) in the system.

SLC (Storage Library Control)
SLC is an IS application that monitors the status of storage libraries on the server where SLC is running and provides messages about the media. SLC also provides status information, reports, and a user
interface to initiate such actions as enabling or disabling drives, pre-formatting media, and so on.

SSN (System Serial Number)

The system serial number is a unique ten-digit number provided to you by IBM. For UNIX systems, this number is based on the unique processor ID of the server. For Windows systems, this number is based on the network adapter address.

system - Image Services

An Image Services server, or multiple servers, in its own domain is often referred to as a system.

transaction log (tranlog)

The IS system is configured to write one or more backup copies of committed documents to transaction log media. A media family can be configured to be a tranlog family. A primary family can be configured to use a tranlog family. Tranlogs, when they exist, are always written before the primary.

virtual EBR

Event-Based Retention for SDS devices without native EBR support. See “EBR” on page 183.

Write_request table

This is a transient MKF table used to insure that writes to permanent storage occurs. When a document is committed to an IS system a write_request entry is created and write request is submitted. If the write is not complete and IS software is recycled, the IS software automatically regenerates the write request to the device from write_request entries.
Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not grant you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:
IBM World Trade Asia Corporation
Licensing
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between
independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the results obtained in other operating environments may vary significantly. Some measurements may have been made on development-level systems and there is no guarantee that these measurements will be the same on generally available systems. Furthermore, some measurements may have been estimated through extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of
non-IBM products should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.
Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of IBM trademarks is available on the Web at “Copyright and trademark information” at www.ibm.com/legal/copytrade.shtml.

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

U.S. Patents Disclosure

This product incorporates technology covered by one or more of the following patents: U.S. Patent Numbers: 6,094,505; 5,768,416; 5,625,465; 5,369,508; 5,258,855.